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The proof of existence of a differentiable structure in the space of states in /ly* theory
is given. This structure renders possible applications of the Kijowski-Szczyrba formalism.

Introduction

The canonical structure in classical theory is one of the most important objects on
the way leading to correspondence quantum field theory. Usually the principal elements
of this structure (e.g. Poisson brackets) are rather postulated than deduced. Kijowski
and Szczyrba [1] have proposed a method allowing to deduce the infinite-dimensional
canonical structure from the finite-dimensional formalism. Their method is based on the
concept of the finite-dimensional multisymplectic space—a natural (for the field theory)
generalization of the phase space in mechanics.

In order to apply the Kijowski-Szczyrba construction one must have an appropriate
structure of a differentiable manifold in the space of states. Namely, the model space
should be a space of initial data with a suitable differential structure. This structure should
have the following properties:

(1) Different initial surfaces should lead to the same differentiable structure in the
space of solutions of field equations.

(2) Lie brackets of vector fields exist.

For smooth solutions Kijowski and Szczyrba propose an idea of the "inductive dif-
ferentiable manifold". Unfortunately, in the case of the %>4 theory there are difficulties
with such structure. It should be replaced by another one by admitting a larger class
of solutions, so this is what we do.

Results

We shall consider the Agp4 field theory, i.e. the equation (D +mz)q> = Aq>3, A < 0, in
the four-dimensional space-time. In the space 3? of solutions of this equation we shall
introduce a differentiable structure with the model space $ (a) of initial data given on
a surface a = {t = %(x)}. Elements of S(a) are pairs of functions (/,g) where /is the
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value of the field, g its time derivative on a. We equip S(a) with the energy norm

\\(f,gW = \f2m2

Of course we take S(a) a H1(R3)xH°(R3) where Hl are Sobolev spaces. The fact that
the differentiable structure does not depend on the choice of a follows from the following

THEOREM. Let GI , az be asymptotically constant space-like surfaces. Then the natural
mapping

S(ot) a (/i , ft) -» (/2 , ft) e *(02) ,

where /2 = u\, g2 = ut\^ and (D+#*2)w = Aw3 with initial values' (ft , g t), is a C°°-
diffeomorphism.

Now, we can construct (following [1]) a symplectic form F on 3f£. Let us fix a
= (t = 9»(x))s then the element of the tangent space Ta{3^), ue#f can be represented
by X, = (Q, P) e <f (<r). We have ([!])

F does not depend on the choice of a and is continuous in the energy norm. Hence
F gives us a symplectic structure, weakly nondegenerate, i.e. the canonical mapping b :
T(#f) -> r*(.3f) is an injection (but not surjection: duality between T^f and T*2ff is
equivalent to that in L2, but as for the last one, T*^ '^ (H1®!!0)' = H~l®H°. On
the other hand, the image of the tangent space under b is equal to H0®!!1).

Two physical quantities, i.e. smooth functions G,Fe C1(^) such that dG, dFs H°®
©H1, generate canonical fields XF and Xa. Let us take any spacelike surface and the
coordinate system connected with it. From the definition F(Xe, X) = X(F) = dF(X). Now,
we have

X. = (Q, P) and (XP\ (QP, PF),
so

and on the other hand

dut(x);

where dF/du(x) and dF/dut(x) are variational derivatives with respect to the first and
to the second component in S(a) respectively.

Let us introduce new coordinates in £(a):

*<?) B (/, g) -» (/, g- (grad/l grad?))) = : (5, un).
We have
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Hence

f j dF dF
J [ du(x) oun(x)

Comparing with PU(XF,X) we get

dF
du(x)

dF

= PF-(gradQP\gra.d<p) = : PnF,

«„(*)

The Poisson bracket can be written in the following form:

which coincides with standard formulas.

Proof of the theorem

In the sequel we assume that <tt = (t = 0) and oz = (t = <p(x)). Since a2 is asymp-
totically constant there exist ti and t2 such that f t ^ qi(x) ^ t2 . For simplicity let us
take tt > 0.

. A. Continuity. Let us start with

LEMMA. 1 . Let u be a solution of wave equation with smooth initial data (with compact
support) (f,g). Then \\u\\ ^ const ||«||ai.

Proof: We have the explicit formula for the solution of wave equation:

4™»(x,0= J
IH=

Hence

We obtain

Sw2(x3 ̂ ))^3x < const ̂ {lf(x+fy(x))2d£+ ...} d*x.

Let us introduce new variables y = x+q>(x)g. Hence dy = |l + (gradg9|!)|*?x, but |1 +
+ (grad«p||)|| > 1 — Hgradyll so since a2 is spacelike: 1 — (grady)2 > 0, 1 — jgradyj > 0,
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and as it is asymptotically constant, we have
1 1

A2 < co.

Now our inequality takes the form

\u2(Xl<p(x))dx < 3A2 {5/2(x)<?3x+fiS \gradf(x)\dsx+t^g(x)2d3x}.

Now, we use the energy equality and obtain

3A2 m2 (f2(x) + ff |grad/(;e)|2 + tfg(x)}dax+ {|grad/(x)|2 +g(x)2}d3x

2+t}) \\u\\it q.e.d.

In order to solve the problem of continuity, we have to analyse the difference
w := MJ— M2- From now we assume that initial data, and in consequence ut, are
smooth functions.

Recall that M; are solutions of the integral equation

u(x, 0 = v(x, t)-](t-
o

where M{f\x, t; r} = —• { f(x+rg, t)dg and v is a solution of the free wave equation.

Thus we have

\w(x, 01 < \Vi(x,t)—v2(x,t)\+b\2 + U2)\w\\x, r; t — r}dr
o

and

,2 11/2
J I I I" I I l~ \ b{

\J I ,
0

Ifil-I
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\l2
2A(m+t2)\\w\\+bA (

o
'2

.... 11/22A(m+t2)\\w\\+2Abt2 J |J w2d3x\r + 2Abt2 \3x \
o

1/31 ff -11/2

o

Since w satisfies the equation (\^+m2)w-w(u\ ulu2 + ul) — 0, therefore

Integrating this identity over the domain 0 < t s$ <p(x), x e R3 we obtain

*-•",
We have already estimated the last term, so

3

0

tz
1/2 prp -11/3 r(« -11/6

dx

(Hwllt stands for the energy norm on the surface t = const). In the estimations above
we have used Schwarz, Holder and Sobolev inequalities.

Combining all the inequalities obtained we get
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If we put g(f) := sup \\w\\Z the following inequality holds

tz

and we obtain

Since the estimation above is uniform with respect to the energy norm, continuity follows
immediately.

B. Differentiability. We shall prove existence and continuity of the Gateaux derivative.
Let us introduce the following notations

MO — solution corresponding to the data (f,g),
MS — the solution corresponding to the data (f+s%,g+sy),

vs :=— (Ma-«0).
o

vs satisfies the equation (D+/«2)os = (its+usu0+t^)vs with the initial data (%,ip)
on at . We are going to show that vs -> »0 uniformly with respect to the energy norm.
The following lemma will be needed.

LEMMA 2. Let be (O+m2)u = V(x, t)u+F(x, t). The following inequality holds

where a(f) = c]\V\\+l.

Proof: As in pomt A we have

0

<2

(IMI.,)a+2

<f<X)

V(X,t*)u(x,t)ut(X,t)dt\d*x+2\

'2 «a

\\F\\>\\u\\dt
0

(INk)a+2J IM
0 0

t* tl
\\V\\A\u\\?dt +2
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*2 «2

s (IMk)2+'S
0

*2

(IMk)a+S"""*"• \ll—liujy

6

As before we obtain
*2 *2

\\ldt\exj? (J a(0#), q-e.d.
o o

In order to apply Lemma 2 we need one estimation

Now we have by Lemma 2 and A
INk < INk exp(r2 const) =. ||(#, v)lkexp(consU2).

On the other hand, ws— v0 satisfies the equation

with zero initial values.
From the Lemma 2 we infer that vs -> »0. In fact

From the obtained estimations it follows that there exists a Gateaux derivative which
is continuous.

COROLLARY 1. The mapping in the theorem is of class C1 for a± = {t = 0} and
<*2 = {/ = ?(*)}.

COROLLARY 2. The derivative at each point is an isomorphism and hence the mapping
is locally reversible.

In fact, in the proof of Lemma 2 we can change the roles of at and a2 •

COROLLARY 3. The mapping in the theorem is globally reversible.
This follows from reversibility for the smooth data ([4]).
This completes the proof for C1. Analogously, we obtain smoothness of higher order

(see e.g. [2]).
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