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0. Introduction

Symplectic relations have found extensive application in mathemati-
cal physics (see e.g. [1]). Results of a systematic study of linear sym-
plectic relations are presented in a paper by Benenti and Tulczyjew
[2]. In the present paper we define the concept of a positive linear
symplectic relation and prove a theorem about the structure of positi-
ve relations. Results will be applied in symplectic control theory [3].

1. Symplectic vector spaces. Lagrangian subspaces.

A symplectic vector space is a pair (P, w), where P is a real vector
space of finite dimension and w :P X P >R is a nondegenerate
skew-symmetric bilinear form. The standard example of a symplectic
vector space is provided by the direct sum Q @ 0* of a vector space
Q and its dual space O* together with the canonical bilinear form w
defined by

wlg, ©fi, q, ®12)=4q2, f12—4q,, f») .

Let (P, w) be a symplectic vector space and let X be a subspace
of P. The subspace of P defined by

K8 ={p€P;w(pp')=0 foreach p €K}
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is called the symplectic polar of K. The subspace X is said to be isozro-
picif KC K8, coisotropic if K8 C K Lagrangian if K=K?% .

A Lagrangian subspace L of Q© Q* is uniquely described by its
generating function F : C— R defined on the image C=prQ (L) of L
by the canonical projection prg 1 Q@ Q* - Q. The relation between
L and the generating function F is expressed by

L={qef€Q®Q*;q€C and (¢ f)=(q', dF ()
for each ¢' € C}

or by

1
F(q)=—2—<q,f>,

where f is any element of Q* such that q ® f € L. The differential
dF of the quadratic function F is a linear mapping dF : g - Q*

|
related to F by F(g)= > {q, dF (g)).

2. Symplectic relations. Reductions

Let (P, w) and (P', w') be symplectic vector space. A symplectic
relation is a linear relation p: PP’ whose graph is a Lagrangian
subspace of (P®P', (—w)® w'). It can be shown that the composi-
tion of two symplectic relations is a symplectic relation.

Let p:P—>P bea symplectic relation. For each subspace X of P
we have

(P (KN =p(K¥).

It follows that p(0) is isotropic and p (P) is coisotropic.

Let K be a coisotropic subspace of (2, w). The vector space P, K=
=K/K® and the projection wg; of the symplectic form w define a
symplectic space Pk W K]). The canonical relation from P to Pk
is symplectic. It will be denoted by red( P,w; k) and called the symplectic
reduction of (P, w) with respect to K. We have a structure theorem [2]:

THEOREM 2.1. - Let (2, w) and (P', w'") be symplectic vector spa-
ces and let p: P—>P' be a symplectic relation. There exists a unique
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symplectic isomorphism p, such that

— -1
p=(red pr o ppy) PP 0T ot (pryy -

Let P=QeQ* and P'=Q'©Q'*, and let w and w' denote the
canonical symplectic forms. For each subspace S of P' ® P we denote
by S% the subspace

§4={(4'ef)e(gof)EP &P,

(d'ef)e(ge(—f)ES}.

A linear relation p : P~ P' is symplectic if and only if (graph(p))& is
a Lagrangian subspace of (P®P', w' ® w). The generating function
of a symplectic relation p: P—P' is the generating function of the
Lagrangian subspace (graph(p))®. If L is a Lagrangian subspace of
(P, w) generated by a function F: C—>R and p: P~ P’ isasymplec-
tic relation generated by a function G:D—>R then L'=p(L) isa
Lagrangian subspace of (P’, '), C'= pry: (L") is the subspace

C'={q' ©Q'; thereexists g ® C suchthat g®q' €D
2.1) and (§90,dG(g@q')+(g dF(@g@)=0

for each ¢ € C such that § @ 0 €D}
and L' is generated by the function F': C' - R defined by
(2.2) F'(g)=F(@)+Ggeq),

where g satisfies the condition stated in the definition of C'.

3. Positive Lagrangian subspaces

Spaces P and P’ considered in this section and the subsequent are
the direct sums @@ Q* and Q' ©Q'*, and w and w' denote the ca-
nonical symplectic forms.

DEFINITION 3.1. A Lagrangian subspace L of (P, w) is said to be
positive (negative) if its generating function is positive (negative). A
symplectic relation p:P—>P' is said to be positive (negative) if
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graph(p)® isa positive (negative) Lagrangian subspace of (P@P’', w ® w").
The following proposition is an immediate consequence of the com-
position properties of generating functions.

PROPOSITION 3.1. - The image p(L) of a positive Lagrangian
_subspaces L of P by a positive symplectic relation p:P—>P is
.positive.

The set of positive Lagrangian subspaces of P is ordered by the rela-
tion 2 defined by

L]_ >L2 if Cl - C2 and Fl >F2|C1 N

where F; : C; >R and F, : C, >R are generating functions of L,
and L, respectively. The subspace Lin = Q@0 is the minimal ele-
ment in the set of positive Lagrangian subspaces of P and L, =0 ® Q*
is the maximal element.

THEOREM 3.1. - Let p:P—P be a positive symplectic relation
and let L, and L, be positive Lagrangian subspaces of P. If L, =L,
then p(L;)=p(Ly). :

Proof. - Let p, L, and L, be generated by G : D~ R, F,:C, >R
and F, : C, > R respectively. Since these functlons are positive and
Cy € C, it follows from (2.1) and (2.2) that C; C C,, where C, =

1
=prg. (p(L1)) and C, 2 =Prg (p(Ly)).
The pomt g in (2. 1) is the minimum point of F(g)+ G(g o ¢') for
each ¢'. If ¢, and q, are related to F, and F, as g in (2.1) is related
to F then

F(¢)=F (q) +G(g, 0q) >
>F,(q;)+ G, eq) >
>F,(q,)+G(q, ®q)=F,(q). Q.ED.

4. Structure of positive symplectic relations,
In this section we give a proof of the following theorem.

THEOREM 4.1. - Let p:P~>P' be a positive symplectic relation
and let K denote p~* (P'). The space Q can be represented as the
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direct sum @; ® @, of subspaces 0, and @, such that if P, and P,
denote the symplectic subspaces Q; @(Q,)° and 0, 9(Q,) of P
and K, =KNP,;, K, =KNP, then K=K eKk,, K, =prg(K;)e
®prg« (K ) and K, is a strictly negative Lagrangian subspace of P, .

If @, is a subspace of Q then (@,)° denotes the polar of @, defined
by

(@) ={f€Q*;{q.f)=0 foreach g€Q,}.
The proof of the theorem is based on the following three lemmas.

LEMMA 4.1. - Let p and K be the objects introduced in Theorem
4.1. Then K® is a negative isotropic subspace, ie., {g, /)<0 for
gOfEKS.

Proof. We have K& =p 1 (0)C p~! (Lnax). Let G:D—>R be
the generating function of p. The generating function H of p~! defi-
ned by H(g'®g)=— G (g ©4q') is negative. It follows from (2.2) that
ifge®fEKS then (g, f=2H0 e q)<0. Q.E.D.

LEMMA 4.2. - Let L;, L, and L be positive Lagrangian subspa-
cesof P.If L, 2L >L, then LD (L, NL,).

Proof. Let F;, F, and F be generating functions of L, L, and L
defined on C,, C, and C respectively. Then €, CCCQC,, Fi=2FIC
and F2F,|C If g Sprg(Ly NL,) then Fy (g)=F, (@)=F(g) and,
since F—F,|C is positive, dF(g)—d(F,|C)(g)=0. It follows that
g@fE€L, implies gofc L. Q.E.D.

LEMMA 43. - If p:P~>P isa positive symplectic relation then
PLnin) + p(Lmax) = p (P).

Proof. We denote by P, the set of positive elements of P defined
by P,={gefE€P;{qg, £)>0} . This set in open in P. We assume that

1
K=p~*(P') is not Lagrangian, i.e., dim(K)>7 dimP)=n. If K

is Lagrangian then the lemma is trivial. Since P,V 0 contains an #-di-
mensional subspace, it follows that P,NK is not empty and open in
K. Hence p (P,) is not empty and open in p(P). Let p=qg @ fEP, and
let L, be the positive Lagrangian subspace generated by the function
Fyp : C, >R defined on G ={g€C; g=aqg for some aER} by
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Fp(agq)= —; a* {q, ). From Lemma 4.2 it follows that

(0 Lmin) N pUmax)) C p(Ly) C (0(Lmin) N p(Linax))t .
Since p (P,) is openin p(P), we have

PL)C (0ULmin) NpLnax))® =p(P). Q.E.D.

Proof of Theorem 4.1. - From Lemma 4.1 we know that K$ is
isotropic and negative. We introduce subspaces

Qo={q€0;q00€K?},
Qf ={feg*0erckty,
K} =g,60% ckt .

Let I_(—2§ be a complement of l:(—f in K%, Since K% is isotropic,
we have inclusions

pro (K3)C(QF), pry- (K2)C (Q0)°.

Let ¢ €Q, and gof €K, Then f€Q] and gofEK’ . It fol-
lows that 4 =0 and f=0. We conclude that pro (Ki )N Qe =0 and
pro* (Kz§ )yn Qf =0. This implies that spaces Q and Q* can be TIepre-
sented as direct sums Q=Q, ®Q,; © @, and Q*= fo & Q‘f @ Qf of
their subspaces such that

Qo ©Q, =(Q} )° and prg (K ) CQ,,
Q5 © 0} =(Q)° and prg= (K3 )c o
Q; © 0} =(0.) and 0, = (@ e )" .

_ It follows that é: =(Qo ® él ). We see that the dual spaces of
Q, and Qq, ®Q; can be identified with Q_z# and Q__‘fe le respec-
tively. Hence the vector space P, = Q, o Q;‘ and P, =(Qp ©0,)®
e(Qf EBQT) are canonically symplectic. It is easily seen that the
canonical identification of P with P, e P, _is a symplectomorphism. It

follows that K§ =K® NP,, K =K% NP, and K° and K¥ are

isotropic_ subspaces of P; and P, respectively. Hence_K =K, ®K,,
where K, and K, are symplectic polars of K1§ and Kf in P; and
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P, respectively, and we have the canonical identification
Prxy @181 =i, ®P21i,10 @1 (K1) @ 92(K,1) -

It is easﬂy seen that K, K8 s _the graph of a bijection between @, =
=prg (K )} and Q# —prQ* (K5 §) From Lemma 4.3 it follows that

(4.1) K, =K} +K,N(Q,90)+K, N(0eQF).

On the other hand we have K2 ﬁ(Q2 ©0)=(Q,)° and Kz n(er )=
=(Q,)°, and a simple comparison of dimensions shows that the decom—
position (4.1) is a direct sum Hence, @, N (Q )° =0. It follows that
with @, =0 + Ql ® (Q )° we obtain the requlred decomp051t10ns
of Qand P with P, and P, identified with P, €9((Q )Y @(Q,))
and 0, ® Q# respectively. Q.E.D.

It is obv1ous that a theorem analogous to Theorem 4.1 holds for ne-
gative symplectic relations and that an analogous decomposition of
Q', P' and K'=p(P) can be obtained.

DEFINITION 4.1. - The reduction of P with respect to a coisotro-
pic subspace K is said to be

a) special symplectic if there exist subspaces Q¢ and Q of @ and
O* respectively such that K=Q, @ Q

b) essentially special symplectic if there is a decomposition =@, @
®Q, and the corresponding decomposition P=P, ® P,, with
P, =0,9(0,) and P, =Q, @(Q,)°, such that K=(KNP;)+
+ (K NP,y), KNP, is Lagrangian subspace of P, and the reduction
of P; with respect to K N P, is special symplectic.

PROPOSITION 4.1 - Let the reduction of P with respect to a coiso-
tropic subspace K be essentially special symplectic. The reduced space
Pik) can be identified with the symplectic space Q ® @* constructed
from a linear space Q.

The following theorem is a consequence of Theorem 4.1 and Propo-
sition 4.1.

THEOREM 4.2. - Let p: P~ P’ be a positive symplectic relation.
Then all components in the decomposition

= -1
P=(1ed(pr, i p (2p) ™" O P00 Ted g1 o)

are positive and the reductions are essentially special symplectic.
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THEOREM 4.3. - Let p: P~ P be a positive symplectic relation.
Let L; and L, be positive Lagrangian subspaces of P such that
L, = L,. A positive lagrangian subspace L' of P’ is the image of a
positive Lagrangian subspace L satisfying L, = L > L, if and only if
p(L)=2L=2p(L;).

The following lemma reduces the proof of the theorem to the case
Ly =Ly and L, =L;,.

LEMMA 4.4 - let L, and L, be positive Lagrangian subspaces of
P sgt:h that L, >L,. There exists a positive symplectic relation
0:0eQ0*—>P suchthat 6(Lpax)=L; and 6 (Lpp)=L,.

Complete proofs of Lemma 4.4 and Theorem 4.3 will be given in a
more extensive publication.
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