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0. Introduction

Symplectic relations have found extensive application in mathemati-
cal physics (see e.g. [1]). Results of a systematic study of linear sym-
plectic relations are presented in a paper by Benenti and Tulczyjew
[2]. In the present paper we define the concept of a positive linear
symplectic relation and prove a theorem about the structure of positi-
ve relations. Results will be applied in symplectic control theory [3].

1 . Symplectic vector spaces. Lagrangian subspaces.

A symplectic vector space is a pair (P, co), where P is a real vector
space of finite dimension and co : P X P^R is a nondegenerate
skew-symmetric bilinear form. The standard example of a symplectic
vector space is provided by the direct sum Q © Q* of a vector space
Q and its dual space (2* together with the canonical bilinear form co
defined by

Let (P, co) be a symplectic vector space and let K be a subspace
of P. The subspace of P defined by

>(p,p') = Q foreach p'eK}
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is called the symplectic polar of K. The subspace K is said to be isotro-
pic if K C K§ , coisotropic if K§ C K, Lagrangian if K = K§ .

A Lagrangian subspace L of Q ® Q* is uniquely described by its
generating function F: C-+R defined on the image C = prQ (L) of L
by the canonical projection prq : Q® Q* -+ Q. The relation between
L and the generating function F is expressed by

Q*;q(=C and (q',f)=(q, dF(q))

for each q e C}

or by

where / is any element of Q* such that q®f&L. The differential
dF of the quadratic function F is a linear mapping dF: Q-+Q*

related to F by F(q) = <q,dF(q)>.

2. Symplectic relations. Reductions

Let (P, to) and (/*', a/) be symplectic vector space. A symplectic
relation is a linear relation p :P-*P' whose graph is a Lagrangian
subspace of (P®P', (-co) ® w'). It can be shown that the composi-
tion of two symplectic relations is a symplectic relation.

Let p : P -*• P' be a symplectic relation. For each subspace K of P
we have

It follows that p (0) is isotropic and p (P) is coisotropic.
Let K be a coisotropic subspace of (P, co). The vector space P{ K , =

= K/K§ and the projection CiJf^j of the symplectic form a? define a
symplectic space CP[#], ^r/n)- The canonical relation from P to Pt^j
is symplectic. It will be denoted by red(P ̂ -,K) and called the symplectic
reduction of (P, cj) with respect to K. We have a structure theorem [2]:

THEOREM 2.1. - Let (P, w) and (P', w') be symplectic vector spa-
ces and let p : P-+P' be a symplectic relation. There exists a unique
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symplectic isomorphism p0 such that

Let P=Q®Q* and P' = Q' ® Q'*, and let u> and co' denote the
canonical symplectic forms. For each subspace S of P' © P we denote
by S& the subspace

(</'»/> fo ® (-/)) e S}.

A linear relation p : P-*P' is symplectic if and only if (graph(p)) is
a Lagrangian subspace of (P®P', cj' © 05). The generating function
of a symplectic relation p : P-+P' is the generating function of the
Lagrangian subspace (graph(p))&. If £ is a Lagrangian subspace of
(P, cj) generated by a function F : C-*R and p-.P-^-P' is a symplec-
tic relation generated by a function G :D-+R then Z/ = p(£) is a
Lagrangian subspace of (P', co'), C' =P>"Q' (•£') is the subspace

C' = {q © £'; there exists q ® C such that q © <?' €Z>

(2.1) and <4 © 0, rfG (<jr © ?')> + <4, dF(q)) = 0

for each q E C such that 4 © 0 ED}

and Z,' is generated by the function F' : C' -*R defined by

(2.2) F' («?') = /''to) + C (<?«<! ' ) ,

where q satisfies the condition stated in the definition of C' .

3. Positive Lagrangian subspaces

Spaces P and P' considered in this section and the subsequent are
the direct sums Q © Q* and Q' © Q'*, and ca and a?' denote the ca-
nonical symplectic forms.

DEFINITION 3.1. A Lagrangian subspace L of (P, w) is said to be
positive (negative) if its generating function is positive (negative). A
symplectic relation p:P-+P' is said to be positive (negative) if



THE STRUCTURE OF POSITIVE LINEAR SYMPLECTIC RELATIONS 83

graph(p)& is a positive (negative) Lagrangian subspace of (P®Pr, to © w').
The following proposition is an immediate consequence of the com-

position properties of generating functions.

PROPOSITION 3.1. - The image p(X) of a positive Lagrangian
subspaces L of P by a positive symplectic relation p : P -> P' is
positive.

The set of positive Lagrangian subspaces of P is ordered by the rela-
tion > defined by

LI >£2 if C\ C2 and Fl>F2\Cl ,

where FI : Cv -*• R and F2 : C2 ->R are generating functions of Ll

and LI respectively. The subspace £mjn = Q © 0 is the minimal ele-
ment in the set of positive Lagrangian subspaces of P and £max =0 ® Q*
is the maximal element.

THEOREM 3.1. - Let p : P-*P' be a positive symplectic relation
and let Ll and L2 be positive Lagrangian subspaces of P. If LI ^ L2

then p(Z,i)>p(Z2) .

Proof. - Let p, LI and L2 be generated by G : D -*R, Fl : Cl -*R
and F2 : C2 -*R respectively. Since these functions are positive and
Q C C2 it follows from (2.1) and (2.2) that C,' C C2, where C\
= prQ, (p (Z,j)) and C'2 =prQ, (p(L2)).

The point q in (2.1) is the minimum point of F(q) + G(q ® ^') for
each q'. If qi and ^2 are related to Fj and F2 as <? in (2.1) is related
to F then

Q.E.D.

4. Structure of positive symplectic relations.

In this section we give a proof of the following theorem.

THEOREM 4.1. - Let p : P-*P' be a positive symplectic relation
and let K denote p~l (P'). The space Q can be represented as the
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direct sum Qi ® Q2 of subspaces Ql and Q2 such that if PI and P2

denote the symplectic subspaces Qt ®(Q2)° and Q2 ® (Qi)° of P
and #1 = Arn/» j , K2 = Knp2 then K = Ki ® K2, Kr = prQ(K1)®

C&\ and K2 is a strictly negative Lagrangian subspace of P2 .
If Qi is a subspace of Q then (20° denotes the polar of Qi defined

by

= {/e0*;<?>/> = 0 foreach q

The proof of the theorem is based on the following three lemmas.

LEMMA 4.1. - Let p and K be the objects introduced in Theorem
4. 1 . Then K§ is a negative isotropic subspace, i.e., {q, /) ^0 for

Proof. We have K§ = p'1 (0) C p-1 (Z,max). Let G:D-+R be
the generating function of p. The generating function // of p"1 defi-
ned by H(q' ®q) = — G(q ®q) is negative. It follows from (2.2) that

then <<?,/> = 2#(0 ©?)<0. Q.E.D.

LEMMA 4.2. - Let L I , L2 and /, be positive Lagrangian subspa-
ces of P. If L1>L>L2 then Z D (Zx n L2 ).

Proof. Let Fj, F2 and F be generating functions of LI, L2 and L
defined on C,, C2 and C respectively. Then Cj C CC C2, Fl>F\Cl

and F>F2|C If q£prQ(Li OZ2) then F, (^) = F2 (q) = F(q) and,
since F-F2|C is positive, dF(q)-d(F2\C)(q) = 0. It follows that
<?©/£Z,2 implies <?©/££. Q.E.D.

LEMMA 4.3. - If p : P-*P' is a positive symplectic relation then

Proof. We denote by P+ the set of positive elements of P defined
by P+ = (q ® f^P; <q, /» 0} . This set in open in P. We assume that

K = p~l(P') is not Lagrangian, i.e., dim(^T)> - dim(P) = «. If K

is Lagrangian then the lemma is trivial. Since P+ U 0 contains an n-di-
mensional subspace, it follows that P+ n K is not empty and open in
K. Hence p (PJ is not empty and open in p(P). Let p = q®f^PJe and
let Lp be the positive Lagrangian subspace generated by the function
Fp : Cp -> R defined on Cp = {q e C; q= aq for some a e R} by
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Fp (aq) - —— a2 (q, />. From Lemma 4.2 it follows that

)C (p(£min)

Since p (P+) is open in p(P), we have

p(/» t)C (pamin)np(Zmax))§ = p(P). Q.E.D.

Proof of Theorem 4. 1. - From Lemma 4. 1 we know that K § is
isotropic and negative. We introduce subspaces

n# _ !f^n*.y0 ij^y ,
if§ — ft «a /~>* r~ P'iA1 "Go ®QQ C A s .

Let K2 be a complement of K^ in AT§ . Since AT§ is isotropic,
we have inclusions

prQ (K2 ). C (Q* )°, prQ* (K2 ) C (00)°.

Let q&QQ and q®f£K%. Then /eg* and qr e/E^ . It fol-
lows that <? = 0 and /= 0. We conclude that prQ (K\ n Q0 = 0 and
/?/-g* (K2 ) n Q* =0. This implie_s tha^ spaces Q and Q* can bej;epre-
sented as direct sums Q = Q0 ® Qi ® Qz and Q* = Q* ® Q* ® Q* of
their subspaces such that

QO ® Q* = (2o)° and p/-e* (^|) C g* ,

g ' © £?*" = (<22)° and Qi = (Q. ® Q. )° .

_ It follows that Q2 =(<20 ©• Qi)°. We see that the dual_spaces of
Q2 and Q0 ® Qi can be identified with Q^ and ̂  © Q* respec-
tively. Hence the vector space P2=Q2® Q* and Pv = (Q0 ®Q^)®
® (G* ® G*) are canonically symplectia It is easily seen that the
canonical identification ofP with PI ® P2 _is a symplectomorphism. It
follows that Kl =K§ OP,, K\^K* nP2 and K\j are
isotropic subspaces of PI and P2 respectively. Hence K = Kl ® K2,
where Kv and K2 are symplectic polars of K^ and K2 in P! and
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PI respectively, and we have the canonical identification

It is easily seen that AT| isjhe graph of a bijection between 02 —
= prQ (K%2 ) and 0* = prQ* (K\. From Lemma 4.3 it follows that

(4.1) K2 = K% +K2n (02 © 0) + K2 n (0 © 02*) -

On the other hand we have K2 n(02 ©0) = (02)° and K2 n(0©0*) =
~(02)° > a°d a simple comparison of dimensions shows that the decom-
position (4.1) is a_direct sum. Hence, Q2 O (0*)° = 0- It follows that
with 0! - 0o + 0i ®(Q2T we obtain the required decompositions
of Q and P with P, and P2 identified with Pl © ((<22*)° © (Qa)°)
and (22 © <2* respectively. Q.E.D.

It is obvious that a theorem analogous to Theorem 4.1 holds for ne-
gative symplectic relations and that an analogous decomposition of
Q', P' and K'=p(P) can be obtained.

DEFINITION 4. 1 . - The reduction of P with respect to a coisotro-
pic subspace K is said to be

a) special symplectic if there exist subspaces QQ and Q". of Q and
Q* respectively such that K=QQ®Q#

o

o '

b) essentially special symplectic if there is a decomposition Q = Q\
© 02 and the corresponding decomposition P = Pl ®P2, with
^1=01 ®«2a)° and P2=02©(0,)°, such that AT=C8:n/»1) +
+ C&T O P2 ), K n P2 is Lagrangian subspace of P2 and the reduction
of Pj with respect to K n P1 is special symplectic.

PROPOSITION 4.1 - Let the reduction of P with respect to a coiso-
tropic subspace K be essentially special symplectic. The reduced space
P[#] can be identified with the symplectic space 0 © 0* constructed
from a linear space 0 .

The following theorem is a consequence of Theorem 4. 1 and Propo-
sition 4.1.

THEOREM 4.2. - Let p:P-*P' be a positive symplectic relation.
Then all components in the decomposition

are positive and the reductions are essentially special symplectic.
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THEOREM 4.3. - Let p : P-+P1 be a positive symplectic relation.
Let Ll and L2 be positive Lagrangian subspaces of P such that
Ll >£2. A positive lagrangian subspace L' of P' is the image of a
positive Lagrangian subspace L satisfying LI >Z >Z,2 if and only if

The following lemma reduces the proof of the theorem to the case
and L =Lm-

LEMMA 4.4 - Let LI and L2 be positive Lagrangian subspaces of
P such ^hat LI ^£2- There exists a positive symplectic relation
a:Q®Q*-*P such that a(/,max) = JL, and a(Lmia) = L2.

Complete proofs of Lemma 4.4 and Theorem 4.3 will be given in a
more extensive publication.

Aknowledgments

This paper is a contribution to the programme of study of symplec-
tic geometry and its application in mathematica physics centered at
Istituto di Fisica Matematica "J.-L. Lagrange" of Torino. This research
programme has been made possible by the support from Consiglio Na-
zionale delle Ricerche.

I am indebted to Dr. Adam Smolski for his critical comments.

REFERENCES

[1] J. KUOWSKI and W.M. TULCZYJEW, A sympletic framework for field theories.,
Lecture Notes in Physics, 107, Springer, Berlin, 1979.

[2] S. BENENTI and W.M. TULCZYJEW, Relazioni linear! simplettiche, Mem. Ace.
Sci. Torino, 5 (1981).

[3] W.M. TULCZYJEW and P. URBANSKI, Symplectic control theory, Mem. Ace. Sci.
Torino, (to appear).


