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I. A motivating analogy

[.1. The lagrangean description of a charged point-like particle

A theory of Cl-maps z:T' -» M determined by the PLA for
Splel = =4 [ i) + Supli]. Siple] =7 [ ad P,

e ' - WORLD-LINE, assumed closed, 0I' = &;
« M —- TARGET SPACE:
e (g,F) — BACKGROUND fields:
— g€ Symy(M) — metric on M,
— F e Z2(M) — electromagnetic field strength.
Problem: H?(M)>[F]+0 — -3d-F

Solution: Abstractly, we need

e
LINE BUNDLE  C - L — M, curv(Vy) =7, F,

Stop[#] = —i log Holg(x) = [2*£] e H'(T', U(1)) 2 U(1).

Less so, given a GOOD OPEN COVER Oy = {O;}i of M,

F|()i = dAl, Az € Ql((’)l)
cohomological constraints:
(Aj — Al)|@” =:id loggij , gij € U(l)@ij

‘quantum’ constraints: (955 956) |01 = Giklosys

yield a local formula for Si,p[x].



[.2. The canonical structure of the theory

The PHASE SPACE: P,z T*M 5 M, equipped with

SYMPLECTIC STRUCTURE {2, = df1- )/ + m°F, 01+ — canonical 1-form on T*M .

The HILBERT SPACE H, =T, (L,) of the theory determined by
PRE-QUANTUM BUNDLE C > 71"L® (P, xC) =L, > P,

where the second tensor factor has the (global) connection 1-form 67+y;.

[.3. (Internal) Symmetries of the theory

Infinitesimally, generated by ¢ ¢ I'(TM),
Th ol + e Jdat = O xSplr] =€ ( — 3 [ (Zrg) (i, @) + [ a* (A 2 F)) :

Conclusion: Symmetries described by &:= % @k e [,(E0OM) c T(EGOM),

GENERALISED TANGENT BUNDLE E(MO A = AlTTM @ AT*M - M,

T(EQCOM):={ ¥ ovel(EMOM) | dvo+# 1F=0 A Zpg=0}.

Observation: F(E(LO)M) admits

F-TW. VINOGRADOV BRACKET [Y @uv, Ya@®uy v =%, Ya]@® (¥ Jva— Yo Jui+ ¥ 1% JF)
with the properties:
2

o (0,(ECOM).[-,-15) "5 (D(ECOP,). [, - ]{").



II. The two-dimensional (non-linear) o-model

A theory of Cl-maps X : ¥ - M determined by the PLA for
SO‘[X;/Y] = _% ./I: gX(dXQ *y dX) + Stop[X] ) Stop[X] =7 L X*d_lH” )

e ' - WORLD-SHEET, assumed closed, 0% = &;
e M — TARGET SPACE;
e (g,H) - BACKGROUND fields:

— g e Symy(M) — metric on M,

— He Z3(M) — torsion field strength .

Problem: H3(M)>[H]#0 — -3d-'H

N.B. The choice of (g,H) is severely constrained by the requirement of a
non-anomalous symmetry Zif f°(X)xWeyl(7) of the quantum theory.

Solution: [Alvarez ’85;Gawedzki '86] Locally, given a good open cover

OM = {Oi}iel Of M,

curviNgs B; € Q*(0;), conNeEcTIONS  A;; € QY O;5),

TRANSITION FUNCTIONS  (;jk € U(l)@ijk )

H‘(f)i = dBZ
(Bj—Bi)

0, = dAj;
mod Ajj e Ay + (I - 11;)

o, —1dlog xi;
(Ajk - Azk + Aij)|0ijk =:id log 9ijk

9ijk = Gijk - (X;;% * Xik ngl) Oiji

(gjkt - g{kll " 9iji .gi_jlk) Oy =1

define — for a triangulation Ay of ¥ subordinate to Oy wrt. X —

Siop[X]= 2 [LXgBip 2 (_/;XgAipie -y IOgX*gipieiv(U)gpw)].

JLFAN ecp vee



III. Abelian (bundle) gerbes with connection

[TII.1. The local (cohomological) description

Recall: given a sheaf & over M, and a cover Oy = {0, }icr, we have

CECH OPERATOR 0P) Cv’p(OM,S)—>CV’p+1(C’)M,S)

p+1
( 2021 Ap )}_> (Z( 1)kcloll Zp+1 igiq.. zp+1)

defined on sections Cligiy...i,] € S (Oioil...ip)-

Consider the DELIGNE COMPLEX of differential sheaves

1 d1og=d©®

D(2)" = U(1), - Q'(M) £ QQ(M)

Its Cech extension defines the CECH-DELIGNE BICOMPLEX

CO(Oy,02) CL(Oy,02) C2(0y,0%) "
dM dm dM

(00, Q1) CU Oy, Q1) C2(0y, 01 -
d(® d(® 4@

CO(Onr, U(1)) 22 CH(Oh, U(L)) 22 C2(Ony, U(L)) 22

Def?: The DELIGNE HYPERCOHOMOLOGY s the cohomology
of the Cech—Deligne bicomplezx, i.e. the cohomology of the diagonal subcom-
plex (additive notation!)

Do) D)

A]lw cee A?W = @p,qu CV1p((9]\471)(2)q) )

p+q=r

A;\I:AS)\/[

DELIGNE DIFFERENTIAL  D(v)|ew(o,, p(2y) = d@ 4+ (=1)7+1 @) .



Def?: Given a good open cover Oy ={0;}ier of a differentiable manifold
M, a Deligne 2-cocycle

(Bi, Aij, gijr) = b e Ay, Db =0

defines an ABELIAN GERBE WITH CONNECTION gG.
Its EQUIVALENCE CLASS [G] e H?(M,D(2)*) is

bNb+D(1)p7 p:(HmXij)eA}w-
The Classification Theorem: The set W(M;H) of equivalence classes

of gerbes of curvature He Z3 (M) over M is a H?(M,U(1))-torsor wrt.
the action

([Ceii)] [(Bi, Aij, 9ije)1) = [(Bi, Aij, cijie - gige) ]

Idea of proof: Clearly, W(M;H) is a W(M;0)-torsor wrt. the action

([(@', Oéz'j,%'jk)], [(B;, Az‘j:gijk)]) = [(B; + 53, Aij + i, Giji - %’jk)] .

Furthermore, W(M;0) = H2(M,U(1)).

Implication: Cohomological classification of (inequivalent) o-models for
given (g,H), e.g., for M =G a simple compact 1-connected Lie group,

Vien 3! Gk = GF%,  curv(Gy) = to=trg (0, A0 A 0L) .

Here, G; is the so-called BASIC GERBE.

Physical result: Given [(c;)] € H*(Z,U(1)) s.t. W(Z;0) 5 [X*G]
[(0,0, ciji,)], the triviality of the Bokshteyn homomorphism H?(¥,U(1)) =
H3(X,2nZ) implies the existence of [(p)] € H*(X,R)/H?*(Z,27Z) s.t.

[X*G]=[(p,0,)]=[L,], and stop[X]:fzp;-i log Holg(X) .



IH.l%. Constructions — examples & un bout d’histoire:

e basic gerbes over SC1C Lie groups: SU(2) [Gawedzki '86], SU(N)
[Chatterjee '98], G arbitrary [Meinrenken ’02]

e gerbes over SCCnsC Lie groups G=G/Z, Z c Z(G) (G is a simply
connected cover) R gerbes over G with the Z-equivariant struc-
ture [Gawedzki & Reis 02,’03]

e gerbes over orientifolds G/(ZyxZ) of SCIC Lie groups R

gerbes over G with the twisted ZoxZ-equivariant structure [Schreiber,
Schweigert & Waldorf '05;Gawedzki, Suszek & Waldorf 07,’08]

e multiplicative gerbes over SCC Lie groups [Carey, Johnson, Murray,
Stevenson & Wang '04;Waldorf ’08;Gawedzki & Waldorf]

e (continuously) equivariant gerbes for the gauged o-model, in par-
ticular, over semi-simple compact connected Lie groups [Gawedzki,

Suszek & Waldorf "10)]
e gerbe modules for D-branes [Carey, Johnson & Murray ’02]

e maximally symmetric modules of gerbes over SCC Lie groups |Gawedzki
& Reis '02,°03;Gawedzki '04]

e gerbes bi-modules for bi-branes, and maximally symmetric bi-modules
of gerbes over SC1C Lie groups [Fuchs, Schweigert & Waldorf '07]

e the full gerbe 2-category for the multi-phase o-model [Runkel &
Suszek '08]

e inter-bi-branes for the maximally symmetric bi-branes of gerbes over
SC1C Lie groups vs Verlinde fusion rings [Runkel & Suszek '09,’10]

e transgression [Gawedzki '86] and geometric quantisation of the WZW
model [Felder, Gawedzki & Kupiainen '88]

e canonical interpretation of the gerbe 2-category, and 2-categorially
twisted generalised geometry [Suszek "10]



IT1.2. The geometric construction — bundle gerbes

Problem: The lack of a natural choice of a good open cover.

Solution-Def8: [Murray ’94] An ABELIAN BUNDLE GERBE
WITH CONNECTION G of curvature H over a manifold M is a
quadruple (Y M, B, L, i) in which

o Tyy : Y M — M is a surjective submersion;

e the curving 2-form B e Q*(Y M) satisfies
myyH=dB;
e Co L—YEIM is a line bundle over the fibred product
YERIM =Y M xy YM :i={ (y1,42) eYM xYM | wym(yr) =mva(ye) },
pri(y1,y2) =y, i €{1,2}
with connection Vi of curvature
curv(Vy) =pry B —priB;
e i engenders a groupoid structure on L—ZY M wvia
poi Lip®Los— Lis,  Liji=(prxpr;)L

over YBIM that is associative in the sense of

id®pu2,3,4

Li2®La3® L3y Li2® Loy
/1,11273®id O H1,24 .
Li3® L3y Ly

H1,3,4



IV. The canonical structure of the o-model

The CONFIGURATION SPACE of the theory is given by LM =
C> (S, M), and we have the natural identification

TT*LM
PHASE SPACE P, =T'LM —— LM .

Denote by ev : LM xS! - M the standard evaluation map, and by
O1+ s the canonical 1-form on T*LM. Using the first-order formalism of
Gawedzki—Kijowski—Szczyrba—Tulczyjew, we derive

(PRE-)SYMPLECTIC FORM ), = 007+ 01 + T e 1y / ev’He Z%(P,).
Sl

It gives us access to the Poisson-bracket algebra of hamiltonian functions
C>(P,,R), or — equivalently — to

Def2: The CANONICAL VINOGRADOYV STRUCTURE on a sym-
plectic manifold (P,€) is the triple (E(LO)P, [-,-]g,an) composed of
e the GENERALISED TANGENT BUNDLE OF TYPE (1,0)

EGOP = A'TP @ A'T*P — P;

e the O-TWISTED VINOGRADOV BRACKET

(Vo f. W egly:=[V,#]e(¥dg-# adg+¥ 3W 1Q);

e the ANCHOR MAP atp=prp : EGOP - TP,

Observation: The bracket closes on

HAMILTONIAN SECTIONS @ h=X,eker (Y & f—d0f+7 1Q),

[%hﬂxb]?f = %{m Jhota -

10



IV.1. Reminder on the KGST formalism & geometric (pre)quantisation

To a theory given in terms of an action functional (D = dim .#)
S[(/bA] = L{ d"z L(xuu QbA, ff)‘gfzaugbB , dPz =dax' Ada® A Adz?

on sections (¢4)4<LN of the CONFIGURATION BUNDLE 75 :.% - ./,
we associate the CARTAN FORM on the first-jet bundle J'.% — .#

Ot 61,62) = (£~ €5 £2) (.6 €0) i + £ (a%1,62) 56 1 (01 37).

The latter has the all-important properties:

(i) the PLA for the functional
So[V] = //// V'O, Uel(J\.7)
yields the Euler—-Lagrange equations of S;

(ii) upon defining a functional

o[y ] = [% (Terlir) O

12

for a region .#15 c .# cobounded by two homotopic Cauchy surfaces
%1 and %5, we readily establish

0S12[Vea] = Eg[Va] - Z4[Va],
and so © canonically defines a closed 2-form
Q[\IICL] = 55‘5[\1161] 3 G € [Cgl]hom.

on the space P(4,...) of extremal sections of J1.%, i.e. also a sym-
plectic structure on the phase space E([cgl] ..) of the field theory.

ho

11



Let, next, C - L % P be a line bundle with connection V. of curva-

ture 75 and, for a choice {O;}ics of an open cover of P, fix local data
(0:,7ij) € AlE of L, so that

D1y(0;,7i5) = (©

OmO: 1)

PREQUANTISATION assigns to every h e C'* (5) a collection Oy, =
(hi)ics of local (linear) operators on I'(L),

’ﬁi = -y, — X 10; + hlo, satisfying [5h1» 6h2] = i G{hl,hg}g .

12



IV.2. Prequantisation via transgression

Given a choice Oy = {OM};cs, of a good open cover of M, consider the
non-empty open sets

Oi={XelM | Vepae) : X(e)cOM A X(v)eOM},
with the index i given by a pair (Asl,gb) consisting of a choice Ag of
the triangulation of S!', with its edges e and vertices v, and a choice
¢ Agt—»> Sy f iy of the assignment of indices of Oy to elements

of Agi. By varying these two choices arbitrarily, all of LM is covered, thus
yielding an OPEN COVER O\ = {O;}icq,, of LM.

The above choice of an open cover of the configuration space of the o-
model, together with the corresponding choice of local data for G, is the
basis of a constructive proof of the following remarkable

Th®: [Gawedzki '86] An abelian (bundle) gerbe G over a differentiable
manifold M with connection of curvature H € Z3(M,27Z) canonically

induces a line bundle C - L5 — LM, termed the TRANSGRESSION
BUNDLE, with connection V., of curvature

curv(Ve,) = [Sl ev'H,

and the assignment G — Ly defines a cohomology map

TRANSGRESSION MAP HQ(M,D(Q)') — Hl(LM,D(1)°) :

Corollary: The torsion gerbe G over the target space M of the o-model
canonically determines

PRE-QUANTUM BUNDLE L, := 71 3,L¢ ® (P, x C) - P,

TT*LM

over the phase space P, = T*LM —— LM of the o-model, in which the
trivial tensor factor comes with the (global) connection 1-form 67+ ;.

13



Explicitly, taking the induced open cover {O}}ics,,, Of = m7h,,(O1) of
P,, we find LOCAL DATA of L, in the form

Ooi = OreLulor + ey Ei € Q1(O)),

Voii = TGy € U(L)oy

where (Ei, Gy) € AiM are local data of Lg associated with Oy,

EI[X] = - Z f X;—Ble - Z X*Aie.'.(v)ie_(v) (/U) )
eeAg1 € vEQg]
S XEA _ _
Gij [X] - H € Ife e ele H X*(gia(i)iﬁ—(?)ja(?) ) gj;(i)jé_(i)ié_(i))(v) :

Eezsl @EZSl

These satisfy the standard cohomological identities
E; - E; =idlog Gy, G- Gyt -Gy =1,
and transform as
(Ei, Gy) = (Ei, Gy) + Doy (H,),

with
HI[X] = H el -[8 XgHie ) H X*X;i(v)ze_(v)(v)

eeASl veASl

under “gauge transformations”

(Bi, Aij» giji) = (Bi, Aij, gijr) + Dy (I, xi) -

14



V. Dualities of the o-model from dessins d’enfants, & the gerbe 2-category

Consider the symplectic space (P = T*LM, for now)
(P, x Py, 2, = priQ, - pr3Q%),  pr; : Py xP,— P, canonical,
together with the pair of line bundles (with connection) L,; :=pr;iL,.

Deft: A PREQUANTUM DUALITY of the o-model is a pair (J,,D,)

composed of
(i) a graph 3, c P, x P, isotropic wrt. €7 and such that the difference
T = priy — pry s of pullback hamiltonian densities ¢, of the

g

o-model satisfies F |5, =0;

(ii) an isomorphism D, : Ly1 = Lso .

World-sheet intuition: Consider an oriented closed time-like discontinu-
ity contour I' at t =ty, or a DEFECT LINE. The limiting field configu-

rations ¥ (@) = lim,.o- (X, p)(to +n,¢) and Y(p) = lim, .o+ (X, p)(to +
n,¢) define a (local) correspondence between states in P,,.
t

Y

by T 4

Formalisation: Pass from Cl-maps X from ¥ to M (with (g,G)) to
patchwise Cl-maps X :p - M, p € Py, with extensions X : ' - M x M

lim X(to+n,9) =prioX(),  lim X(to+n,¢) =pryo X(y)
and additional structure

D : pri’giprgg.

15



V.1. Bi-branes vs. dualities

Generalisation: A o-model for patchwise C''-maps X :p - M with dis-
continuities at a DEFECT QUIVER T :=l.¢, lc, {c = S' embedded in

2 = Upep,, 0, and, for some @ 2 M, ae{1,2} with ¢, smooth,

Xp=10X

X e M, X bi>Q, {X|2:L20X

Derivation:

(i) Choose Oy; and Ay subordinate to it and such that Aglp = Ap.

SOUXIT)] == Y Holg(X,).
PP

(ii) Independence of Sy, of the choice of (B;, A;j, giji) € A3, implies the
need for (B, K;;) € Ab associated with a choice Og = {OZQ }ies, and
such that, for Og chosen so that the ¢, are covered by index maps

Go : I — S such that 1,(OM) c Og iy

(B, Kij) = (P, Kij) + 15,0, Xon(iyen(5)) = 01 (L (i) X (1) ()

whenever (B;, Aij, gijr) = (Bi, Aij, giji) + D1y (1, xi5). Then,

SLCED] = SI T+ 3 ([ XeP =i T e lon XK ()

ecAp vce

N.B. For OI' = @, we may further allow proper “gauge freedom” (or
cohomological equivalences)

(B, Kij) = (P, Kij) = Doy(W5), (Wi) € A,

(ili) Invariance of Si,, under changes of i.: Ap — &, calls for a global
w € Q?(Q) such that (for iy = (ta, Pa))

1 (Bi, Aij, giji) — 3 (Bi, Aij, gijie) + Dy (P, Kij) = (W|@ZQ, 0,1).

16



Recapitulation: To defect lines, we associate a G-BI-BRANE

B:=(Q,tq,w,® | ae{l,2}), lo + Q—> M, d: iG> uGeI,,
with ¢, smooth and ® a (¢7G,:3G)-BI-MODULE, i.c. a distinguished
Deft: [Carey, Mickelsson & Murray '97] A STABLE ISOMORPHISM

between abelian bundle gerbes with connection (YoM, B L% u®), a€{1,2}
(over the same manifold M ) is a pair ® = (E,«) composed of

e g line bundle C - E — Y'M x3; Y2M = Y1L2M with connection
Vg of curvature

curv(Vy) = pry B> - pr{ B*;
e an isomorphism
o (Ll)l’g ® L3 4 = Ei2® (L2)2,4

over (YL2)2IM, compatible with the u; in the sense of

(LY)13® E34® (L?)4g

(L1350 (LY)s35® Es 6 @ E12® (L?)24® (L?)46 .

(p1)1,3,5®id id®(u2)2.4,6

(L')15® Esg Ei12® (L%)6

1,256

In the newly defined two-dimensional field theory, we still need to impose
DEFECT GLUING CONDITION  2'(Q) 3 pj3 0 ¢1. = pp o tox — X.T Jw(X) 20,
where e T, c T,% and 72 = 7‘1(?_1\/01(2, ’y)), and where pj, = g(X|,)(X}q.7,").

17



Returning to o-model dualities, we find

Th®: [rrS '10] A G-bi-brane (Q,tn,w,® | @ € {1,2}), in conjunction with
the DGC canonically define a prequantum duality of the o-model iff

(i) the induced loop maps 7, : LQ - LM : X »1,0X, ae{l,2} are
surjective submersions (onto connected components of M);

(ii) the network-field configuration (X |I') is TOPOLOGICAL, i.e.

the energy-momentum tensor

Tab 2 0S5,

" V/|det ] $Vab

is continuous across I' (<= DGC);

(iii) extra conditions (technical) are satisfied.

Idea of proof: Consider the subspace

o (X1, X5) € (11 x 12)(LQ)
78) '_{ (i) €PoxPo | { Syt () DOCL(0 . X) =0 }

We readily establish the following:
(i) T3,(B) c T(P, x P,) is isotropic wrt. 2;

(ii) explicit expressions for local data of the isomorphism ®,(B) can be
found — these are determined by local data of ®;

(iii) the remaining conditions ensure that J,(B) be a graph of a sym-
plectomorphism preserving 7 ~ Ty.

Amidst bi-brane dualities, we find the familiar “geometric” dualities, or
SYMMETRIES, with

B = ((ideF)(M),La :pra,w:O,ggF*g), Felso(M,g).

18



V.2. A “stringy” example: the T-dual pair

Let the target space contain, as a disjoint component, a torus bundle
™M B  with 040eyeQ(M)aRY,

with a metric
g =Ty + (WJ*uhAB) 01e 0Ff , (hap) invertible
and a gerbe G of a TN-invariant curvature

Observation: ¢ induces another torus bundle,

™oQ3 M
Idea: Equivariantly lift the TV-action to @), to obtain
Tiv x TN Q- B,

and, subsequently, endow 3G with a TV-equivariant structure.

Idea: [Gawedzki & S — wip|

TN x TN
(Q, Pr,wr)
TN . (M., g.,G.,...) (M,g,G) - >TN
(B7,77hAB)

with
Or ¢ G, S uG® L,

N.B.: For (M,M,) Calabi-Yau manifolds, we can thus reproduce
MIRROR PAIRS.

19



V.3. The 2-category for generic world-sheets

Heuresis: Factorisation of path integrals,

[+ D) T @ D

and state-field correspondence,

lead us to consider world-sheets with arbitrary embedded defect quivers

==

X:p->M, peBy, X :0-Q, le€, X :{v,}->T,, uv,eBW,

for which we find a FIELD SPACE % = M u Q u ., T, and
a BACKGROUND ‘B with components

TaARGET M =(M,g,G), ¢-BIBRANE B =(Q, 10, w, P | a€{1,2}),

(G,B)-INTER-BI-BRANE 1 = (Tn, (82’k+1,7rﬁ’k+1 | k€ 1,_n), on | ne Nzg) ,

1,2% €

k k+1 kk+1 = . . .. . . .
where ¢, : o}, 7y e == id K2, is a distinguished 2-isomorphism.
- "

20



Def2: [Stevenson '00] Let ®4 = (E4,a4), A € {1,2} be a pair of sta-
ble isomorphisms between the two abelian bundle gerbes with connection
(YeM, B Le,u*), a € {1,2} over a differentiable manifold M.
A 2-ISOMORPHISM ¢ = () between ®! and P2, denoted as ¢
¢! = P2, is an isomorphism

B E'> E?

that intertwines the a? in the sense of

Liz® E?}A = E11,2 ® L%A
id®f3 4 O B1,2®id .
Liz® E§,4 3 E12,2 ® L§,4

Statement: [Stevenson ’00] One has a natural notion of composition of
1-morphisms and 2-isomorphisms, alongside their respective tensor prod-
ucts. This structure gives rise to the (monoidal) 2-CATEGORY OF
ABELIAN BUNDLE GERBES with CONNECTION over a dif-
ferentiable manifold .#, denoted as B&tb" (.Z).

Conclusion: Thus, G,® and the ¢, are distinguished 0-cells, 1-cells and
2-cells, respectively, of the 2-category B&tb" (.F).

Implications:

(i) A definition of the o-model for arbitrary network-field configurations:

SU[(X | F)§ 7] = Skin[X§ ’Y] —ilog HOIQ@,%(X | F) .

(ii)) (G,B) canonically induce a pre-quantum bundle for both the un-
twisted and the twisted sector of the o-model, and J gives rise to a
canonical picture of the (twisted-)loop fusion.

(iii) A classification of inequivalent G-bi-branes (~ dualities) for given
(Q,to,w) by Hl(Q,U(l)), and that of (G, B)-inter-bi-branes (~ in-
tertwiners) for given (T, """ by HO(T,,U(1)) 2 U(1)lm(Tl,

21



VI. Rigid symmetries of the o-model

We want to understand the geometry of those field transformations X
foX, fePiff(F) which preserve S, and hence descend the space of
classical field configurations.

Consider a flow 9. : [-1,1] x F - F of a vector field # on F, with
restrictions | 4 =« , M# € {M,Q,T,} aligned as

T () = | e Lax(OH) =" H ], (0) -
Since Holg g, is a generalised differential character, we find
GlioSo [0 X |D)iv) = -5 [ (Bire) (X3 0 dX)+ [ X(0r sl + [ Xp(H sw),
and so symmetries correspond to those globally smooth sections
R=("H &k H ok "X oc)el(EF)
of the GENERALISED TANGENT SHEAVES
EF =EMWMuetOQu || 0V, > MuQu || T, YA =TT M

’I’LENZ;), ’I’LENzg

written in terms of sheaf components 7.7 =R and T .4 := Q" (A') of
. . d-D=id d®=d __, d®=d
ToM - O=>TANM > Ty M — T M — -,
that are Killing for g and satisfy the section descent relations

dP (" k) =0, dV (e @ k) = -Agr, d{V (" H @) = -Aqk

wrt. Ag=15—1], Ap, =0 ¢ ghktl bkt and d (”//eav) :=d@v+ ¥ J1H ).
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On I'(£.%), there exists a canonical ANCHOR (MAP) ars : £ —
T.%,a CANONICAL CONTRACTION with restrictions

(), F(5(1,1)///)x2_>p(70*//) (Veuv W ew)» 3 (Viw+ W Jv),
(), = T(EW DYV ST(Tod) + (Y eu,# &w) 0.
and an essentially unique (H,w; Ag)-TWISTED BRACKET such that

[[.’ .H(H7W;AQ) : Fo(gy)XQ — FO(59)7 &Ty Io) [[.7 .II(H’W;AQ) - [.’.] 1) Oé,Ty .
Given U; = ("¥; @ v;, W, ® &, ™V @ ¢;), i € {1,2}, it restricts as

[D1, Vo] B2y = [M4,295] @ (Buys v2 ~Bryyv1 — S Jvp =5 Juy) + 294 1M, JH),
[D1, Bo] 8@ = [94, %] @ (V4 2d&e - Do adér + DA 2% Jw+ 3 (W4 2 Agua - Ws 1 Agur)),

[0, 5] (Hw;AQ) Iz,

("4, "e] @0.
We thus obtain a (H,w; Ag)-TWISTED BRACKET STRUCTURE

meide) () = (gg»j [, JHwde) (1), Oém,) .

N.B. MiHwde)(F)|, is the canonical Courant algebroid with the bracket
twisted by H & la Severa—Weinstein. The algebroid is central to the
Gaultieri-Hitchin definition of GENERALISED GEOMETRY. It can
be related, via the Hitchin morphism, to a Courant algebroid with an un-
twisted bracket but for Eél’l)M . A similar phenomenon occurs for IM(Hwide) ((F).

Canonical interpretation: We have a Noether mapping

—~

[ (EF) - F(E(l’O)PUW) N ker(5gg)m : A= R HAMILTONIAN SECTION.

~ o~ ——— _(Hw;A
Prop®: [rrS ’10] [ﬁhﬁz]gg’m = [[ﬁlaﬁﬂ]( o
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VII. The Gauge Principle

The next logical step consists in understanding the mechanism of gauging
for rigid symmetries G, of the o-model.

Motivation:

(i) The topography of the theory space: Working out systematic
tools for constructing new o-models, with field spaces given by G-
cosets of the original ones.

(ii) Stringy dualities: Obtaining ancillary tools for a rigorous study
of bona fide dualities of the o-model (e.g., the mirror symmetry for
Calabi—Yau field spaces).

(iii) “INon-geometry”: Getting hints as to possible extensions of the
smooth category Man via stringy-duality quotients.

Challenges:

(i) Gy-equivariance: Lifting the geometric symmetry from # to B.

(ii) A principal extension: In the case of continuous symmetries, the
introduction of the world-sheet G-gauge field and coupling them to
X*B, in particular in the topologically non-trivial setting.

(iii) The coset construction: Understanding the descent B — B/G,
in purely geometric terms.
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VII.1. Insights from the study of the next-to-trivial case

Observation: g, := aTy(Fg(Sﬁ)) is a Lie subalgebra of I'(T.%#).

Let %, a€l,D be generators of g, = LieG,, satisfying
STRUCTURE RELATIONS [, 4] = fape Ko, fare €R.
Complete the %, to the respective

R = (" @ k) U (@ k) L (", ®0) e T, (EF) .

Gauging G, calls for the introduction of

PRINCIPAL C,-BUNDLE G, < P 5> % with r:PxG,—>P: (pg)~py
P, JA =1,
PRINCIPAL G,-CONNEcTION A€ Q'(P)® g, s.t.

A(p.g~') = Ad,A(p) |

Consider, first, a G,-invariant top.-trivial background

H=dB, AgB+w=dP, Ar P =—-idlog f,,

0%»4%320:0%%P=0=O%W%fn, with ﬁa:(eBuep)(%EBO),
and a top.-trivial principal G,-bundle, P =X x G,, with A€ Q1Y) ® g,.

A particle-physicist’s intuition:

MINIMAL COUPLING  dX# (o) + e A 0) #u(X(0)1d X (o) = Dy XH(0),

Da(g.X)r=202"p, xv.
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Upshot: Upon simple rearrangement, we obtain

Mw—XNT'xM,
EXTENDED FIELD SPACE QI \UrxqQ,

T, » 0" x T,

g~ PIg, G prag ® I,
EXTENDED BACKGROUND D= pro®®J,, ,
Pn = PIyPn
where
pA = Prika APriA” — 2 pry (", 2 ky) pri(A® A AY), AA = —prok, priA®.

Ansatz: For P =Y x G, with A eQ(X)®g,, we take
(i) Sk — minimal coupling;

(ii) Siop — decorated-surface holonomy for an extended background

((Z \I,prog, prsg ® I, ), (I N DVp, prs® ® J,, ), (QI(PH) X Tn,prggon)) .

Upshot: Infinitesimal-invariance analysis yields

CA = PA, A g AA with the K, subject to

c%%,"fb = fabcﬁc A c%l/(, kb = fabckca
GAUGEABILITY CONSTRAINTS

Mg Kk +MA, JKk, = 0.
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VII.2. An algebroidal interpretation of the gaugeability constraints

The action ¢ : G, x ¥ - % gives rise to

$=pr,

ACTION GROUPOID GxZ : Gx.Z F

t=(

i.e. the small category
GxT = (F,Cy x F,pry, {,m S (e,m),0)
with all morphisms invertible, as per

Inv : G, xF > G, xF : (g,m)~ (g7, g.m).

As for any Lie groupoid, we define its
TANGENT (LIE) ALGEBROID  {,X.% = (Id*ker(ds), [-], Q/T(Ob(G,,xﬂ))) :

with at(opqr) inducing the map dt oi between spaces of sections, defined
in terms of the canonical vector-space isomorphism

i » T(Idker (ds)) = x5_. . (Mor Gr),

R-inv
and with [-,-] given by the unique bracket on I'(Id*ker (ds)) for which ¢
is an isomorphism of Lie algebras.

In the case in hand,

gaxﬁ = (@fz):l Coo(gv R) ‘@av ['7 ']ga@o CYng) ) Hq =Ry 0 prl‘Id(ﬁ)

[)\a%aa Mb%b ]gger = fabc ¢ ,ub%c + (o%\alfa,ub _D%L“%)\b)%b-

Prop2: [rrS '10]

9T = (82, C°(F R) Ry, [, ] H420) a7 7).
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VIIL.3. The global gauge anomaly

Invariance of the gauged o-model under large gauge transformations calls
— via a cohomological argument — for the existence of

T : 'G5 priGe Ly, over Mor(GyxM),
and a consistent 2-extension thereof to ® and ,.
At this stage, we need to comply with the following requirements

(i) Incorporation of topologically non-trivial gauge bundles (~ G,-twisted
sectors, or — less evidently — a solution to the field-identification prob-
lem).

(ii) Preservation of the original count of the physical degrees of freedom,
given by dim.%.

Problem: Goal (i) readily achieved via

PRINCIPAL EXTENSION % +> (Pls.p x M) U (Plray, x Q) U || (Plyen x T;,) = Z
r

neNs3
with obvious Ansatze:
Ga=pr;Ge1,,, Oy=pr;@®.J),, Pn,A = ProPn -
However, the typical fibres here are
G, x Mo M—>3I\T, G, xQ<=>Q—>T~Dp,

GaxTngfneml(ﬂn).

~

Idea: Lift the geometric action of G, from .# to the extended back-
ground.
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VIL.3*. Intermezzo: The Descent Principle, or (bundling,) gerbing and gauging

Given a pair (M, M) of manifolds and a surjective submersion w : M
M , define over the simplicial manifold

Plijk Pr; __ Dpr;

=My Mxy M==Mxy M —=M—>M

the DESCENT 2-CATEGORY Desc(w), with objects (G, WV, x), where
prig — prsg. pr3 5 ¥ o pri ¥ = prj, ¥
Prig X ® (ido Prf,z,;aX) = PITg X ® (Pr§,3,4X oid),
1-cells (®,n):(G1, ¥y, x1) = (Go, ¥a, x2), where
Gi = Gs. pri® oWy = Wy oprjd,
(x20id) e (id o prjyn) @ (pryznoid) = prizne (idoxi1),

and 2-cells ¢ : (P, 11) == (Ps,7>), where

d, :go» Dy, (id o pri) enmy =y @ (prypoid)

Th®: [Stevenson '00]
) G ~ (w*G,id,id)
@+ BBV (M) - Desc(w) = { & » (w*d,id)
p =

The beautiful:

(i) B&w" () = (77 ,)  (Triv-B&tbY(V.#)), the latter being de-
fined in terms of smooth 2-forms and Bun" (Y .#), with Bun" (Y .#) =
(w;,y///)_l(‘Ztin—%unv(Y’Y/l)).

(ii) Descent for the action groupoid over G, = M = M/G,, where
G, c Iso(M,g) is a group of o-model symmetries, determines the

Gauge Principle (due to a remarkable interplay between ¥ and .%).
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A 2-birds-with-1-stone solution:

(i) Demand of (G, ®,¢,) a full-blown G,-EQUIVARIANT STRUC-
TURE (i.e., morally speaking, pass from Cech—Deligne- to Cech—
Deligne—G,-hypercohomology).

Prop?®: [Gawedzki, Waldorf & 1S ’10] A G,-equivariant structure on
B relative to arbitrary (p.,A.) canonically induces a G,-equivariant
structure on B 4 relative to (p., A.) = (0,0).

(ii) Employ the Principle of Descent, in the guise
B&b], |\ 0 (F) =BG (F/G,)

valid for the distinguished surjective submersmns wm/’ — / F |G =
Pxg, .# (engendered by the free action (:G,x.Z J) to descend

(gAa 6«4’ @n,fl) - (Q(A),@(A),En(/l))

to the associated bundles.

Upshot: The GAUGED o-MODEL
Sel(X|T);7, Al = Sy [X5 7, Al — i log Holg () a(a).¢ (4)(X)
manifestly invariant under the action of the GAUGE GROUP

D(PxaaGo) = [(p,g1)] [(p,92)] = [(p;91-92)]-

The latter is induced by the action

At (PxaaGo)xP =P : ([(p,g1)],p-92) = p-(g1- 92)

and reads

(X’K) = (AX71dM) OX? (XaA) = )\;(—1./4-
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VII.4. The coset model

For the topologically trivial gauge field (or locally), we may define the
COSET 0-MODEL as

o Wer(X|T)7] . / G A oS [(XID)A]
[A]

.B. The above path integral is gaussian, whence

Wo et [(X|T);7] ~ Se[(X|T);v,Aa]-

Under certain (mild) technical assumptions regarding B, the effective field
theory is, indeed, a o-model with a field space .# and

EFFECTIVE BACKGROUND w;:g , G I, PR Js, On -

The remarkable, again: The effective background is G,-equivariant rel-
ative to (p.,\.) =(0,0) iff the original one is G,-equivariant.

Conclusion: 8.4 descends to a unique equivalence class B over the coset
space Z |G, iff B is endowed with a G,-equivariant structure.

Outlook: Towards “non-geometry” via gauged stringy dualities associated
with groupoidal backgrounds. ..

LA FIN,
Pour qu’on n’en ait pas (que) la gerbe...
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