STRINGS, GERBES, AND ALL THAT

2. SYMMETRIES AND GENERALISED
GEOMETRY

RAFAL R. SUSZEK
(KMMF, WYDZIAL FIZYKI, UNIWERSYTET WARSZAWSKI)

Methods of Geometry in Physics, Instytut Matematyki PAN, Warszawa
24/11/2010



SHTYLAININAS € SHILITVNA |-

; TOTJROIISSB[D [BIISY[OTWOT0D
/ \
/

/ \ N
[ RMIEANOTD AdSITVHAND | ,~_ S
/ o N
\ (¢) smop pory
Proqosye oI A1jomwAs N . A .
\ e s \
\
((£),929%‘3) ANNOYDMDVI C
h\ _
| A'IdIONTHd EDAVD | oords A1001]} Jo Aydeisodoy
NN [ HYNLONYLS TVDINONVD | o
; 199SplIOM 7
UOIIRIYISSR[D /%Bwoﬁcacgoo \\ 7 \\ 4
| AMOAHL DNIULS < = -7

~ A1njowooS-uou,, ‘Sploj-°G

:309(qns a7y Jo ASoj0doy oy,



I. The field theory of interest — the two-dimensional o-model

The physics: propagation of loops in an ambient space(time) target.

[.1. The mono-phase o-model

The standard setting: loops sweep out metric WORLD-SHEETS (X,~)
x:x- % m

embedded in a metric TARGET SPACE (M,g), and undergo

SPLITTING-JOINING INTERACTIONS

as determined by the TWO-DIMENSIONAL NON-LINEAR 0-MODEL

loc.

S,[X37] = -4 A ey (dX2 %, dX) + Sp[X],  dX 2% 9,X"do" ® 9,

with the topological term
Stop[ X | = —i log Holg(X)
written in terms of the 2-SURFACE HOLONOMY Holg along X

of an ABELIAN GERBE G WITH CONNECTION, i.e. a Cheeger—
Simons differential character that explicitly realises

H*(Z,U(1)) 2 U(1) as per  Holg(X) =[X"G].



The gerbe G is a differential-geometric structure

(LaanuL)

YN == (YM,B)
lw
(M, H)

associated with a class [5- H] € H3(M,Z) c H3(M,R) such that

_1\aeB / _ )
Ry (VY o) - % (g 1) (g 1)7 Hyoy Hyps = O(a),
and admitting the following cohomological description:
Given an open cover Oy = {OM},. 4, of M, there exist local

curvings B; € Q%(0;), conNEcTIONS  A;; € Q1(O;5),

TRANSITION FUNCTIONS  (;jk € U(l)@ijk )

subject to cohomological constraints

H|o, = dB;
(Bj - Bi)

O = dA;;
mod Aij = Aij + (H] — Hz)|(9” —id 10g Xij
(Ajk: - Azk + Aij)|(9ijk =:id lOg Gijk

Gijk = Giji - OG- Xk Xij o

(gjni - 9{;3; " Gijl 'g{jlk) O = 1

These define, for a triangulation Ay, of ¥ subordinate to Oy wrt. X,

ecp €

pELY vee

N.B. Local data (B;, A;j, giji.) define a class in H2(M,D(2)*).



[.1. The poly-phase o-model

A generic setting: the mono-phase picture valid only locally on X, i.e. we
have a poly-phase field theory over

with phases supported on patches gp € Py,
X :p->M, with (g0),
separated by DEFECT LINES /€ & of a DEFECT QUIVER I'c X,
X (- Q, with la : Q> M, ae{l,2} and
1somorpHISM D : 116 — 135G ® 1, weN?(Q),
joining at DEFECT JUNCTIONS , € Q]%n) (of valence n € Ny3),

X - {m}—->Ty, with TSGR T,-Q, kel,n and

kk+lx g hkel 2 kok+1
2-ISOMORPHISM ¢, : of_ m," O —=1id, en T e{-1,+1}.

Thus, a o-model for NETWORK-FIELD CONFIGURATIONS (X |I')
prerequires

FIELD SPACE % = M uQ Ul ey, T, together with
BACKGROUND ‘B = (M, B,7) with components
TarGer M =(M,g,G), ¢-BL.BRANE B = (Q, o, w, P | v € {1,2}),

(G,B)-INTER-BI-BRANE 7 = (Tn, (8§’k+1, Wﬁ’kﬂ | k€ I,_n), ©n | n e Nzg) )



Given a family of open covers:

OQ = {Og}AejQ OTn = {Ofn})&fm

{ with ¢, : ﬂQ - I !l with lbkk” : an —>jQ

Y Y

OM = {Oiw}ZEJMa

Q M
s.t. 1a(0F) 0, ()

k,k+1 T, Q
st (O) © Owﬁ’k“(k)

the background B can be presented by its local data

loc.

== (Bi, Aij, gijr) € ¥ (M) x Q'(M) x U(1)

loc.

= (Py, Kap) € 21(Q) xU(1),,-

loc.

pn = (for) € UQ),

subject to cohomological constraints

(de', dA;; — Bj + B;, —idlog giji. + Aji — Aix + Aij, gjklg - Gikl - 9[]11 'gijk) =0,

(dPa,—idlog Kap + P — Pa, Kt - Kac - K3)

= > (D By (a)s Ape(4)60(B)s I6u(A)bu(B)6a(c)) + (w0, 0,1)
ae{1,2}

n

(-idlog fun, far~ fay) = Z p A (P ), Ky g g )

and serving to define the action functional of the field theory:

SAXID] = =3 [ ex(dXt+, dX) - ilogHolga,p, (X).,

~i log Holyy(X |T) = [/X sz(fx A —i Y log X*g: ;;Z.U(v))]
peEL ecp

vee

+ (fX Py —i S log X K5 (v))
eeAF\QTp

vee

—i Z log X* fnw\J(j).

2€0r



IT. Rigid symmetries of the o-model

We want to understand the geometry of those field transformations X +
foX, feZiff(%) which preserve S, and hence descend the space of
classical field configurations.

II.1. The infinitesimal picture

Consider a flow 9. : [-1,1] x F - F of a vector field # on Z, with
restrictions | 4 = “#, M < {M,Q,T,} aligned as

R G S Y 7

R ta () = "X .0

Since Holg ¢ ,, is a generalised differential character, we find
GlioSa (o X ID)i7) = =% [ (HBurg) ((aX50,dX) + [ X000 o)+ [ Xp(0F 0w),
and so symmetries correspond to those globally smooth sections

R=("H &k H ok "X oc)el(EF)
of the GENERALISED TANGENT SHEAVES

EF =EMMuEMOQu | | E4YVT, > MuQu || T, EXD M =T M ST M,

neNs3 neNs3

written in terms of sheaf components 7.7 :=R and T34 := O (A ) of

. . dV=id d®=d __, dM=d
TS 0T M = Ty M — T M —

that are Killing for g and satisfy the section descent relations
d (" @r)=0, dV (e @ k) = ~Agk, di V(" @) = -Ark

- kbl k1% :
wrt. Ag =15 -1}, Ap, =Y1 e m " and dg()w)(”// ov):=d@Dv+¥ JH.9.



On I'(£.7), there exists a canonical ANCHOR (MAP)

a CANONICAL CONTRACTION with restrictions

(), T(EWDAY ST(Tgdl) + (Vou, W ewm) (¥ Jm+W Jv),
(), = T(EmV.4)° ST(Thd) : (Vv W ew) 0.

and an essentially unique (H,w; Ag)-TWISTED BRACKET such that

[, - ]Hwae) . T (EF)? > T, (EF), argz o[, M) = [ Joars.
Given U; = (" @ v;, ;@ &, ™V @ ¢;), i € {1,2}, it restricts as

[m17m2ﬂ(H,w;AQ)’M _ [MAI/LM%] ® %47/11)2 _9%47/21}1 _ %d(M% vy — M% Jvl) n M% F IVI% JH),
[01,0:] %) = [, %] @ (V1 adéa - Vo ad& + 1 2% Jw+ (Y1 3 Aqua - W5 1 Agur)),

[D1,05] (Hw;Aq) Iz,

("1, %] ©0.
We thus obtain a (H,w; Agp)-TWISTED BRACKET STRUXTURE

mheide) () = (597 [, -] (Heite), (.’.)J’OCT?).

N.B. The restriction D20 (F)|y; yields the familiar Courant alge-
broid of £&VM with the Courant bracket twisted by H & la Severa-

Weinstein. The algebroid is central to the Gaultieri-Hitchin definition of
GENERALISED GEOMETRY.

The (G,®,¢,) enter the definition of the bracket structure through the
tensorial twist fields curv(G) and curv(B). However, ...



I1.2. The gerbe-theoretic interpretation

Prop®: [rrS ’10] Automorphisms of MEwiA)(F) are of the form

Mf>e 0 Qf* 0 T"f>e 0
oe P U oe™® :
0 (Mf—l) 0 (Qf—l) 0 (Tnf—l)
with “fuefun™fe Zif f(F) such that
Mfol/a:l/aon, Qf /{Jlﬁ-l Wﬁ7k+1oT"f,
MfrH=H, frw=w,

and with B e Z2(M) and 9B e Z!(Q) acting as per
B (Yov)=Veao(v+¥ 1B
and such that Yyeperany @ Ag(? 2¥B) = 0.

Furthermore, using the proof of the above, we readily establish
Prop2: [rrS ’10] (Hitchin-type isomorphisms)

(Hw;AQ) / o ( o )“(e “‘)uld (1,1) (1,0) (1,-1) (0,0;A0)
m Kkl (F) (g{e—dAij}M'—’g{ePApr}Q'—’ %l EVTIT,, [ e ,(',')J,OéTy)(Lmﬂﬁ,ku)
neN>3

(a 7L

where the 5{(“’),//1 ~ # are TWISTED GENERALISED TAN-
GENT SHEAVES, with TRANSITION OPERATORS

gi; € End(5§;;j>///(0;/f nO7))
subject to the cocycle relation
(8ij © gir)lownownon = Bikloxnownon
and defining the gluing of the local sections of the sheaf as per

jlownox = 8ij > Vilownox -



I1.3. The canonical interpretation

The phase space of the o-model is neatly parameterised by Cauchy data
localised on twisted (space-like) loops, i.e.

Po Bler) —{ (X,p,qi, Vi | ke, T)eT* Cw(S{P}, M) x T |

limeg+ p( Py + (-1)**€) = gLik(Pk)(gk- 1 Vi, +) }
A
g(11(Pe)) (R (L), 1)) = 8(e2(Pr) ) (Fo(Br) 124 (1)) = Vi dwlar)
where S}P \ = Sl\{Pk}keﬁ for arbitrary Py, where T, (Py) := —¢) lime_¢- X*tA(PkJr

(-1)**'ege), and where (.11, 13") := (Ll,LQ) and (¢7150) = (12, 01), Lee.

Posle) = { V2 at

E.

Using the first-order formalism of Gawedzki—Kijowski-Szczyrba—Tulczyjew,
we derive from S, a SYMPLECTIC FORM for P, pgy.,, ¢ P,

1
QU7B|{Ek}[(X7 P, 4k, Vk)] pl”T C°°(S{P b (60 + 77 v/S\l GVZH) + kz:l Ek pra(k)w,
{Pr} =

the latter being written in terms of the canonical maps:

prx ¢ Pogey = X, TCOO(S}P}’ ) COO(S}P}’ )

(Sl M) Sl - M
and the canonical 1-form 0[(X,p)] fsl VOI(S}PIC}) A Pp.

10



I1.3*. Reminder on the KGST formalism

To a theory given in terms of an action functional (D = dim .#)
S[¢?] = -//// dPx L(a#, ", D) eno, 07 dPz = daz! Ad2® Ao A d2?

on sections (¢4)4<LN of the CONFIGURATION BUNDLE 75 :.% - ./,
we associate the CARTAN FORM on the first-jet bundle J.% - .#,

O(a",¢",67) = (L - &0 35) (" ¢1.67) dPw + J5 (2, 0. €7) 667 A (01 1dVx).

The latter has the all-important properties:

(i) the PLA for the functional
U] = f//{ V'O,  Uel(J\F)
yields the Euler-Lagrange equations of S

(ii) upon defining a functional

o[y ] = f% (Terlir) O

12

for a region #15 c .# cobounded by two homotopic Cauchy surfaces
%1 and %, we readily establish

0512[ V] =24 [Va] - Z4[Va.],

and so © canonically defines a closed 2-form
Q[\I,CI.] = 65%[‘1101] ) C € [Cgl]hom.

on the space P(4,...) of extremal sections of J1.%, i.e. also a sym-
plectic structure on the phase space 5([%]hom') of the field theory.

11



We have a Noether mapping

~

[, (E(MuQ)) - F(E(l’O)PU’BHEk}) N ker(S&?BH% : R~ R HAMILTONIAN SECTION.

E.g.: Introduce the (1-)twisted loop space

Lo = { (X.@) €C™(SLM)xQ | lim X(r+(-1)""ce) =g},
and the canonical projection pr| : P, g. = L.
For any (*¥,v)u, (97, f) e (EGDM LENNQ)), we have

L=(LaL) o (7)o ([ oprg) €D(TLay)

™

CANONICAL L-LIFTS

(L) ) () evivprf) eN(TrLop) ™.

T

These can be used to induce

L.« I(TMu,TQ)~>T(TP,z.),
CANONICAL P-LIFTS

(T, T) = prf o (L) ¢ DT MUTy Q) ~ (75 Pag )™,
with the former fixed by the standard conditions
pry . oL, =L, A o%[*(Mﬂ//’W)pr-*r*cw(SLM)Q =0.
This gives us a lift

Li(e) : T(EMIMu,, £19Q)) - T(ELOP, 4.)

(Y, 0)u(, f) e LY, ) e (Lru+edl f).

Prop2: [rrS '10]

—~

r* —~ ~  ~ QU € - = HawaA
& = M remetan’ 5 T1(e) R, G NS

12



IIT. The Gauge Principle

The next logical step consists in understanding the mechanism of gauging
for rigid symmetries G, of the o-model.

Motivation:

(i) The topography of the theory space: Working out systematic
tools for constructing new o-models, with field spaces given by G-
cosets of the original ones.

(ii) Stringy dualities: Obtaining ancillary tools for a rigorous study
of bona fide dualities of the o-model (e.g., the mirror symmetry for
Calabi—Yau field spaces).

(iii) “INon-geometry”: Getting hints as to possible extensions of the

smooth category Man via stringy-duality quotients.

Challenges:
(i) Gy-equivariance: Lifting the geometric symmetry from # to B.

(ii) A principal extension: In the case of continuous symmetries, the
introduction of the world-sheet G-gauge field and coupling them to
X*B, in particular in the topologically non-trivial setting.

(iii) The coset construction: Understanding the descent B — B/G,
in purely geometric terms.

13



ITI.1. Insights from the study of the next-to-trivial case

Observation: g, = a7z (Iy(€.F)) is a Lie subalgebra of T'(T.%).

Let %, a€l,D be generators of g, = LieG,, satisfying
STRUCTURE RELATIONS [, 4] = fape Ko, fare €R.
Complete the %, to the respective

R = (" @ k) U (@ k) L (", ®0) e T, (EF) .

Gauging G, calls for the introduction of

PRINCIPAL C,-BUNDLE G, < P 5> % with 7 : PxG,—>P : (p,g) » p.g
P, JA =1,
PRINCIPAL G,-CONNEcTION A€ Q'(P)® g, s.t.

A(p.g~') = Ad,A(p) |

Consider, first, a G,-invariant top.-trivial background

H=dB, AgB+w=dP, Ar P =—-idlog f,,

0%»4%320:0%%P=0=O%W%fn, with ﬁa:(eBuep)(%EBO),
and a top.-trivial principal G,-bundle, P =X x G,, with A€ Q1Y) ® g,.

Particle-physics’ intuition:

MINIMAL COUPLING  dX# (o) + e A 0) #u(X(0)1d X (o) = Dy XH(0),

Da(g.X)r=202"p, xv.

14



Upshot: Upon simple rearrangement, we obtain

Mw—XNT'xM,
EXTENDED FIELD SPACE QI \UrxqQ,

T, » 0" x T,

g~ PIg, G prag ® I,
EXTENDED BACKGROUND D= pro®®J,, ,
Pn = PIyPn
where
pA = Prika APriA” — 2 pry (", 2 ky) pri(A® A AY), AA = —prok, priA®.

Ansatz: For P =Y x G, with A € Q(X) ® g,, we take
(i) Sk — minimal coupling;

(ii) Siop — decorated-surface holonomy for an extended background

((Z \I,prog, prsg ® I, ), (I N DVp, prs® ® J,, ), (QI(PH) X Tn,prggon)) .

Upshot: Infinitesimal-invariance analysis yields

CA = PA, A g AA with the K, subject to

c%%,"fb = fabcﬁc A c%l/(, kb = fabckca
GAUGEABILITY CONSTRAINTS

Mg Kk +MA, JKk, = 0.

15



IT1.2. An algebroidal interpretation of the gaugeability constraints

The action ¢ : G, x ¥ - % gives rise to

$=pr,

ACTION GROUPOID GxZ : Gx.Z F

t=(

i.e. the small category
GxT = (F,Cy x F,pry, {,m S (e,m),0)
with all morphisms invertible, as per

Inv : G, xF > G, xF : (g,m)~ (g7, g.m).

As for any Lie groupoid, we define its
TANGENT (LIE) ALGEBROID  {,X.% = (Id*ker(ds), [-], Q/T(Ob(G,,xﬂ))) :

with at(opqr) inducing the map dt oi between spaces of sections, defined
in terms of the canonical vector-space isomorphism

i » T(Idker (ds)) = x5_. . (Mor Gr),

R-inv
and with [-,-] given by the unique bracket on I'(Id*ker (ds)) for which ¢
is an isomorphism of Lie algebras.

In the case in hand,

gaxﬁ = (@fz):l Coo(gv R) ‘@av ['7 ']ga@o CYng) ) Hq =Ry 0 prl‘Id(ﬁ)

[)\a%aa Mb%b ]gger = fabc ¢ ,ub%c + (o%\alfa,ub _D%L“%)\b)%b-

Prop2: [rrS '10]

9T = (82, C°(F R) Ry, [, ] H420) a7 7).

16



VIIL.3. The global gauge anomaly

Invariance of the gauged o-model under large gauge transformations calls
— via a cohomological argument — for the existence of

T : 'G5 priGe Ly, over Mor(GyxM),
and a consistent 2-extension thereof to ® and ,.
At this stage, we need to comply with the following requirements

(i) Incorporation of topologically non-trivial gauge bundles (~ G,-twisted
sectors, or — less evidently — a solution to the field-identification prob-
lem).

(ii) Preservation of the original count of the physical degrees of freedom,
given by dim.%.

Problem: Goal (i) readily achieved via

PRINCIPAL EXTENSION % +> (Pls.p x M) U (Plray, x Q) U || (Plyen x T;,) = Z
r

neNs3
with obvious Ansatze:
Ga=pr;Ge1,,, Oy=pr;@®.J),, Pn,A = ProPn -
However, the typical fibres here are
G, x Mo M—>3I\T, G, xQ<=>Q—>T~Dp,

GaxTngfneml(ﬂn).

~

Idea: Lift the geometric action of G, from .# to the extended back-
ground.

17



VIL.3*. Intermezzo: The Descent Principle, or (bundling,) gerbing and gauging

Given a pair (M, M) of manifolds and a surjective submersion w : M
M , define over the simplicial manifold

Plijk Pr; __ Dpr;

=My Mxy M==Mxy M —=M—>M

the DESCENT 2-CATEGORY Desc(w), with objects (G, WV, x), where
prig — prsg. pr3 5 ¥ o pri ¥ = prj, ¥
Prig X ® (ido Prf,z,;aX) = PITg X ® (Pr§,3,4X oid),
1-cells (®,n):(G1, ¥y, x1) = (Go, ¥a, x2), where
Gi = Gs. pri® oWy = Wy oprjd,
(x20id) e (id o prjyn) @ (pryznoid) = prizne (idoxi1),

and 2-cells ¢ : (P, 11) == (Ps,7>), where

d, :go» Dy, (id o pri) enmy =y @ (prypoid)

Th®: [Stevenson '00]
) G ~ (w*G,id,id)
@+ BBV (M) - Desc(w) = { & » (w*d,id)
p =

The beautiful:

(i) B&w" () = (77 ,)  (Triv-B&tbY(V.#)), the latter being de-
fined in terms of smooth 2-forms and Bun" (Y .#), with Bun" (Y .#) =
(w;,y///)_l(‘Ztin—%unv(Y’Y/l)).

(ii) Descent for the action groupoid over G, = M = M/G,, where
G, c Iso(M,g) is a group of o-model symmetries, determines the

Gauge Principle (due to a remarkable interplay between ¥ and .%).

18



A 2-birds-with-1-stone solution:

(i) Demand of (G, ®,¢,) a full-blown G,-EQUIVARIANT STRUC-
TURE (i.e., morally speaking, pass from Cech—Deligne- to Cech—
Deligne—G,-hypercohomology).

Prop?®: [Gawedzki, Waldorf & 1S ’10] A G,-equivariant structure on
B relative to arbitrary (p.,A.) canonically induces a G,-equivariant
structure on B 4 relative to (p., A.) = (0,0).

(ii) Employ the Principle of Descent, in the guise
B&b], |\ 0 (F) =BG (F/G,)

valid for the distinguished surjective submersmns wm/’ — / F |G =
Pxg, .# (engendered by the free action (:G,x.Z J) to descend

(gAa 6«4’ @n,fl) - (Q(A),@(A),En(/l))

to the associated bundles.

Upshot: The GAUGED o-MODEL
Sel(X|T);7, Al = Sy [X5 7, Al — i log Holg () a(a).¢ (4)(X)
manifestly invariant under the action of the GAUGE GROUP

D(PxaaGo) = [(p,g1)] [(p,92)] = [(p;91-92)]-

The latter is induced by the action

At (PxaaGo)xP =P : ([(p,g1)],p-92) = p-(g1- 92)

and reads

(X’K) = (AX71dM) OX? (XaA) = )\;(—1./4-

19



VII.4. The coset model

For the topologically trivial gauge field (or locally), we may define the
COSET 0-MODEL as

o Wer(X|T)7] . / G A oS [(XID)A]
[A]

.B. The above path integral is gaussian, whence

Wo et [(X|T);7] ~ Se[(X|T);v,Aa]-

Under certain (mild) technical assumptions regarding B, the effective field
theory is, indeed, a o-model with a field space .# and

EFFECTIVE BACKGROUND w;}g , G I, d® J;, On -

The remarkable, again: The effective background is G,-equivariant rel-
ative to (p.,\.) =(0,0) iff the original one is G,-equivariant.

Conclusion: 8.4 descends to a unique equivalence class B over the coset
space Z |G, iff B is endowed with a G,-equivariant structure.

Outlook: Towards “non-geometry” via gauged stringy dualities associated
with groupoidal backgrounds. ..

20



