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Motivation

Frame independent (intrinsic) formulation of some physical
theories requires affine objects.
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Motivation

Frame independent (intrinsic) formulation of some physical
theories requires affine objects.

• The phase space for relativistic charged particle is not the
cotangent bundle, but an affine bundle, modelled on the
cotangent bundle (Weistein, Sternberg, Tulczyjew).

• Hamiltonian for a time-dependent system is not a function,
but a section of an affine bundle over the phase manifold
(Mangiarotti, Martínez, Popescu, Sarlet, Sardanashvili, ...).

• Frame independent Lagrangian in Newtonian mechanics is
an affine object (Duval, Tulczyjew, ...).
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What is AV-differential geometry?

Differential geometry of affine values
(AV-differential geometry) is, roughly
speaking, the differential geometry built
on the set of sections of one-dimensional
affine bundle ζ : Z → M modelled on
M × R, instead of just functions on M .
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What is AV-differential geometry?

The bundle Z will be called a bundle of affine values.

Z is modelled on M × R, so we can add reals in each fiber of Z.

Z is an (R,+)-principal bundle.
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Affine analog of the cotangent bundle T
∗M

We define an equivalence relation in the set of pairs of (m, σ),
where m ∈ M and σ is a section of Z.

(m, σ), (m′, σ′) are equivalent if m = m′ and d(σ − σ′)(m) = 0,
where we have identified the difference of sections of Z with a
function on M .
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Affine analog of the cotangent bundle T
∗M

We define an equivalence relation in the set of pairs of (m, σ),
where m ∈ M and σ is a section of Z.

(m, σ), (m′, σ′) are equivalent if m = m′ and d(σ − σ′)(m) = 0,
where we have identified the difference of sections of Z with a
function on M .

The equivalence class of (m, σ) is denoted by dσ(m). The set of
equivalence classes is denoted by PZ and called the phase
bundle for Z.

Pζ : PZ → M : dσ(m) 7→ m

is an affine bundle modelled on the cotangent bundle
T
∗M → M .
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Other examples of affine constructions

A, B - affine spaces modelled on a vector space V .
A × B ∋ (a, b), (a′, b′) are equivalent if a − a′ = b′ − a′.
Equivalence class is the affine sum a⊞b.
A⊞B is an affine space modelled on V .
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Equivalence class is the affine sum a⊞b.
A⊞B is an affine space modelled on V .

Similarly, we have A⊟B. In particular, A⊟A = V .

c = γ([a, b]) - 1-dimensional, oriented cell in M .
ϕ, ϕ′ - sections of PZ are equivalent if

∫

c

(ϕ − ϕ′) = 0.

Equivalence class is the integral
∫
c
ϕ.
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Other examples of affine constructions

A, B - affine spaces modelled on a vector space V .
A × B ∋ (a, b), (a′, b′) are equivalent if a − a′ = b′ − a′.
Equivalence class is the affine sum a⊞b.
A⊞B is an affine space modelled on V .

Similarly, we have A⊟B. In particular, A⊟A = V .

c = γ([a, b]) - 1-dimensional, oriented cell in M .
ϕ, ϕ′ - sections of PZ are equivalent if

∫

c

(ϕ − ϕ′) = 0.

Equivalence class is the integral
∫
c
ϕ.

We have
∫
c
ϕ ∈ Zγ(b)⊟Zγ(a).
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Duality

Let A be an affine space modelled on V ∗. V is a vector space.
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Duality

Let A be an affine space modelled on V ∗. V is a vector space.

Standard: f ∈ V ∗ is a linear function on V , i.e. a linear section
of the trivial bundle V × R → V .

AV: a ∈ A is a linear section of a bundle τ : A†
→ V .

As A† we can take the vector space of all affine functions on A.
τ(f) is the linear part of f .

A† is a special vector space, i.e. a vector space with a
distinguished, non-zero vector (constant function 1).
We call τ : A†

→ V the bundle of affine values for affine
co-vectors in A.

There is full duality between affine spaces and special vector
spaces.
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Example

A = PmZ

The AV-bundle for A can be identified with TzZ for any ζ(z) = m
with τ = Tζ restricted to TzZ.
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Example

A = PmZ

The AV-bundle for A can be identified with TzZ for any ζ(z) = m
with τ = Tζ restricted to TzZ.

For a ∈ PmZ we take a representative (σ, m) such that σ(m) = z.
We put a(v) = Tσ(v).

For the whole bundle, (PZ)† = T̃Z, where T̃Z = TZ/R
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Lagrangian and action
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An example is given by a section ϕ of the phase bundle PZ:
for each m ∈ M , ϕ(m) corresponds to a linear section of the
AV-bundle T̃ζ : T̃mZ → TmM . We denote this section by iTϕ(m).
The action of λ along a curve γ : [a, b] → M is defined by the

formula
∫ b

a

λ ◦ γ̇ =

∫ b

a

(λ ◦ γ̇ − iTϕ ◦ γ̇) +

∫

γ([a,b])
ϕ .

It does not depend on the choice of ϕ.
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An example is given by a section ϕ of the phase bundle PZ:
for each m ∈ M , ϕ(m) corresponds to a linear section of the
AV-bundle T̃ζ : T̃mZ → TmM . We denote this section by iTϕ(m).
The action of λ along a curve γ : [a, b] → M is defined by the

formula
∫ b

a

λ ◦ γ̇ =

∫ b

a

(λ ◦ γ̇ − iTϕ ◦ γ̇) +

∫

γ([a,b])
ϕ .

It does not depend on the choice of ϕ.

∫ b

a

λ ◦ γ̇ ∈ Zγ(b)⊟Zγ(a)
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Euler-Lagrange equation. Standard case

The basis for the representation of the differential of the action
functional is the decomposition

dL = ((τ1
2 )∗dL − dT(iF dL)) + dT(iF dL) (∗)
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Euler-Lagrange equation. Standard case

The basis for the representation of the differential of the action
functional is the decomposition

dL = ((τ1
2 )∗dL − dT(iF dL)) + dT(iF dL) (∗)

Where τ1
2 is the canonical projection τ1

2 : T
2M → TM ,

iF is a derivation associated with the vertical (1,1) tensor F
(vector valued 1-form) on TM . Essentially, it is the vertical
derivative of L.
dT = diT + iTd is the ’total time derivative’.

The first component in (∗) is a 1-form on T
2M , vertical with

respect to projection T
2M → M .

It can be considered a mapping T
2M → T

∗M
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Euler-Lagrange equation. Affine case

• The AV-bundle for (τ1
2 )∗dλ is

(Tτ1
2 )∗T̃T̃Z = T̃(τ1

2 )∗T̃Z = T̃(Tτ0
1 )∗T̃Z = T̃T̃(τ0

1 )∗Z

(pull-back commutes with the exterior derivative and τ1
2

coincides with Tτ0
1 ).
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Euler-Lagrange equation. Affine case

• The AV-bundle for (τ1
2 )∗dλ is

(Tτ1
2 )∗T̃T̃Z = T̃(τ1

2 )∗T̃Z = T̃(Tτ0
1 )∗T̃Z = T̃T̃(τ0

1 )∗Z

(pull-back commutes with the exterior derivative and τ1
2

coincides with Tτ0
1 ).

• The AV-bundle for iF dλ is (Tτ0
1 )∗T̃Z = T̃(τ0

1 )∗Z.

• dT = iTd + diT and the first term gives an ordinary 1-form.
Hence the AV-bundle for dT iF dλ is just the AV-bundle for
d iT iF dλ, i.e. T̃T̃(τ0

1 )∗Z

• The AV-bundle for ((τ1
2 )∗dλ − dT(iF dλ)) is trivial.
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As in the standard case, the form ((τ1
2 )∗dL − dT(iF dL)) is

semi-basic and can be interpreted as a mapping T
2M → T

∗M .
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As in the standard case, the form ((τ1
2 )∗dL − dT(iF dL)) is

semi-basic and can be interpreted as a mapping T
2M → T

∗M .

Also iF dλ is semi-basic and can be interpreted as a mapping
TM → PZ.

Forces are co-vectors on M , momenta are affine co-vectors,
elements of PZ.
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