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Division of Mathematical Methods in Physics, University of Warsaw
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Abstract.

The notion of a double vector bundle and the dual double vector bundle is defined. Theorems
on canonical isomorphisms are formulated. Examples related to classical mechanics are given.

1. Introduction.

The existence of two different vector bundle structures on TTM and TT∗M makes pos-
sible the lagrangian formulation of the dynamics in classical mechanics ([3]). TTM and
TT∗M are examples of double vector bundles. The concept of a double vector bundle was
first introduced by Pradines ([2]). In this note we present a definition of a double vector
bundle following Mackenzie ([1]). In Section 4, we define right and left dual double vector
bundles. The main example is the cotangent bundle T∗E of a vector bundle. The most
important theorem stated in this note concerns the existence of the canonical isomorphism
of a double vector bundle and its third right dual. In Sections 7, 8, and 9, we give examples
of situations in classical mechanics which adopt the notion of a double vector bundle (spe-
cial symplectic manifolds, linear connections, torsion-free connections). In the following we
state theorems and provide examples. Proofs will be presented in a separate publication.

2. Double vector bundles.

Let K be a system (Kr,Kl,E,F) of vector bundles, where Kr = (K, τr, E), Kl =
(K, τl, F ), E = (E, τ̄l,M) and F = (F, τ̄r,M), such that the diagram

K



�
τl

N
N
NNPτr

FN
N
NNPτ̄r

E



�
τ̄l

M

(1)

is commutative.
We introduce the following notation:

(1) mr, ml, m̄r and m̄l will denote the operation of addition in Kr, Kl, E and F respec-
tively.

(2) we use also v +r w for mr(v, w), v +l w for ml(v, w) and simply + for all other
additions,

(3) 0r, 0l, 0̄r, 0̄l will denote the zero sections of τr, τl, τ̄r and τ̄l respectively.

Let the pair (τr, τ̄r) be a vector bundle morphism Kl → E. It follows that K ×E K is a
vector subbundle of Kl⊕Kl with (τl× τl)(K ×E K) = F ×M F . We denote this subbundle
by Kl ⊕E Kl. Moreover, the addition mr: K ×E K → K is a fiber bundle morphism which
projects to m̄r: F ×M F → F .
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Definition 1. A double vector bundle K is a system (Kr,Kl,E,F) of vector bundles
Kr = (K, τr, E), Kl = (K, τl, F ), E = (E, τ̄l,M) and F = (F, τ̄r,M) such that the diagram
(1) is commutative and the following conditions are satisfied:

(1) pairs (τl, τ̄l), (τr, τ̄r) are vector bundle morphisms,
(2) pairs of additions (ml, m̄l) and (mr, m̄r) are vector bundle morphisms Kr ×F Kr →

Kr and Kl ×E Kl → Kl respectively,
(3) zero sections 0r:E → Kl, 0l:F → Kr are vector bundle morphisms.

In the following we use the diagram (1) to represent the double vector bundle K.

Proposition 2. The vector bundle structures of Kr and Kl coincide on the intersection
C of ker τl and ker τr.

Thus, we have a vector bundle C = (C, τ,M), where τ = τ̄lτr = τ̄rτl. This vector bundle
is called the core of K.

Proposition 3.

(1) ker τr with the vector bundle structure induced from Kr is canonically isomorphic
to the Whitney sum F⊕M C.

(2) ker τr with the vector bundle structure induced from Kl is canonically isomorphic to
the vector bundle F ×M C, i.e., to the pull-back of C by the projection τ̄r.

(3) ker τl with the vector bundle structure induced from Kl is canonically isomorphic to
the Whitney sum E⊕M C.

(4) ker τl with the vector bundle structure induced from Kr is canonically isomorphic to
the vector bundle E ×M C, i.e., to the pull-back of C by the projection τ̄l.

Local coordinates. Let (xi)n
i=1 be a coordinate system on M . In the bundles E,F we

introduce coordinate systems ((xi)n
i=1, (e

a)nE
a=1) and ((xi)n

i=1, (f
A)nF

A=1). By xi, ea, fA we
denote also their pull-backs to the coordinates on K. We can introduce coordinates (cα)nC

α=1

such that (xi, ea, fA, cα) is a local coordinate system on K and

cα(v +r w) = cα(v) + cα(w),
cα(v +l w) = cα(v) + cα(w),
cα ◦ 0r = 0,
cα ◦ 0l = 0,

It follows that (xi, cα) is a vector bundle coordinate system in C. The operation of addition
+r is characterized by the following equalities

cα(v +l w) = cα(v) + cα(w)

fA(v +l w) = fA(v) + fA(w)
ea(v +l w) = ea(v) = ea(w)

xi(v +l w) = xi(v) = xi(w).

The operation of addition +l is characterized by

cα(v +r w) = cα(v) + cα(w)

fA(v +r w) = fA(v) = fA(w)
ea(v +r w) = ea(v) + ea(w)

xi(v +r w) = xi(v) = xi(w).

Examples.
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1. Let E = (E, τ̄l,M), F = (F, τ̄r,M), C = (C, τ, M) be vector bundles and let K =
F×M C×M E. By K(F,C,E) we denote a double vector bundle represented by the diagram

K



�
τl

N
N
NNPτr

FN
N
NNPτ̄r

E



�
τ̄l

M

, (2)

where τr: K = F ×M C ×M E → E and τl: K = F ×M C ×M E → F are the canonical
projections. The right and left vector bundle structures are obvious:

(f, k, e) +r (f ′, k′, e) = (f + f ′, k + k′, e)
(f, k, e) +l (f, k′, e′) = (f, k + k′, e + e′).

The core of K(F,C,E) can be identified with C.
2. Let E = (E, τ,M) be a vector bundle. The tangent manifold TE has two vector

bundle structures ([3]):

the canonical vector bundle structure of the tangent bundle, with respect to the
projection τE : TE → E,
the tangent vector bundle structure with respect to the projection Tτ :TE → TM .

It is easy to verify that the diagram

TE



�
Tτ

N
N
NNPτE

TMN
N
NNPτM

E



�
τ

M

(3)

represents a double vector bundle. We denote this double vector bundle by TE. The core
consists of vertical tangent vectors at the zero section of E. Thus, it can be identified, in
an obvious way, with E.

3. Let K be a double vector bundle represented by the diagram

K



�
τl

N
N
NNPτr

FN
N
NNPτ̄r

E



�
τ̄l

M

, (4)

then the diagram
K




�
τr

N
N
NNPτl

EN
N
NNPτ̄l

F



�
τ̄r

M

(5)
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also represents a double vector bundle. We denote it by J(K).
In examples (1) and (2) we identified canonically the core with a certain vector bundle.

In the following we shall write a diagram

K



�
τl

N
N
NNPτr

FN
N
NNPτ̄r

C

u

y

u
τ

E



�
τ̄l

M

(6)

instead of the diagram (1), if we identify the core of (1) with the vector bundle C. In the
case of K = TE we write the diagram

TE



�
Tτ

N
N
NNPτE

TMN
N
NNPτM

E

u

y

u
τ

E



�

τ

M

. (7)

3. Morphisms of double vector bundles.
Let K = (Kr,Kl,E,F) and K′ = (K′

r,K
′
l,E

′,F′) be double vector bundles with cores
C and C′ respectively. A morphism Φ:K → K′ of double vector bundles is a family
Φ = (Φ,Φr,Φl, Φ̄) of morphisms

Φ: K → K ′, Φr:E → E′,

Φl:F → F ′, Φ̄: M → M ′,

such that Φr = (Φ, Φr), Φl = (Φ, Φl), Φ̄r = (Φr, Φ̄) and Φ̄l = (Φl, Φ̄) are morphisms of
vector bundles

Φr:Kr → K′
r, Φl:Kl → K′

l,

Φ̄r:E → E′, Φ̄l:F → F′.

We have thus a commutative diagram

K

A
A
A
AAD

τl

'
'
'')τr

wΦ K ′

A
A
A
AAD

τ ′l

'
'
'')τ
′
r

E

N
N
N
NNQ

τ̄l

wΦr E′

N
N
N
NNQ

τ̄ ′lF'
'
'')τ̄r

wΦl F ′'
'
'')τ̄
′
r

M wΦ̄ M ′

. (8)

Proposition 4. Let Φ:K → K′ be a morphism of double vector bundles. Then

(1) Φ(ker τr) ⊂ ker τ ′r,
(2) Φ(ker τl) ⊂ ker τ ′l ,
(3) Φ(C) ⊂ C ′.
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Proof: Since Φ̄r:E → E′ is a morphism of vector bundles, it maps the zero section of E
into the zero section of E′. It follows that Φ(ker τr) ⊂ ker τ ′r. Similarly, Φ(ker τl) ⊂ ker τ ′l
and, consequently, Φ(C) ⊂ C ′.

We denote by Φc = (Φc, Φ̄) the induced by Φ morphism of vector bundles C and C′.
Let (xi, ea, fA, cα) be an adapted local coordinate system on K and let (x̄ī, ēā, f̄ Ā, c̄ᾱ) be

an adapted coordinate system in K ′. We have, that in local coordinate systems,

x̄ī ◦ Φ = Φī,

ēā ◦ Φ = Φā
beb,

f̄ Ā ◦ Φ = ΦĀ
BfB ,

c̄ᾱ ◦ Φ = Φᾱ
βcβ + Φᾱ

aAeafA, (9)

where Φī, Φā
b , ΦĀ

B , Φᾱ
β , Φᾱ

aA are functions on the domain of (xi) in M .

Examples.
1. Let E = (E, τ,M) and E′ = (E′, τ ′,M ′) be vector bundles and let Φ = (Φ, Φ̄) be a

vector bundle morphism
Φ:E → E′.

The quadruple of mappings TΦ = (TΦ,Φ,TΦ̄, Φ̄) is a morphism of double vector bundles

TΦ: TE → TE′

and, with the identification of cores as in the diagram (7), we have Φc:E → E′, Φc = Φ.
2.An essential role in the Lagrangian formulation of a classical mechanical system is played

by the isomorphism κM , which relates TTM with J(TTM) ([3]). Here, TM is the vector
bundle of tangent vectors. All three vector bundle morphisms Φ̄r, Φ̄l,Φc:TM → TM are
the identities.

3. Let be K = K(F,C,E) and K′ = K(F′,C′,E′). If Φ = (Φ, Φr, Φl, Φ̄) is a morphism
of double vector bundles,

Φ:K → K′, (10)

then
Φ(f, c, e) = (Φl(f),Φc(c) + Ψ(f, e), Φr(e)),

where
Ψ:F×M E → C′

is bilinear.

4. The right dual.

Let K∗r be the vector bundle, dual to Kr. We denote by K∗r the total fiber bundle space
and by πl the projection

πl: K∗r → E.

Let a ∈ K∗r and k ∈ C satisfy τ(k) = τ̄l(πl(a)). We can evaluate a on a vector (πl(a), k)
of ker τl. We define a mapping πr: K∗r → C∗ by the formula

〈k, πr(a)〉 = 〈(πl(a), k), a〉. (11)

It follows directly from this construction that
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Proposition 5. The mapping πr:K∗r → C∗ is a morphism of vector bundles

πr:K∗r → C∗.

We define a relation
Pr(ml): K∗r ×K∗r → K∗r

in the following way: c ∈ Pr(ml)(a, b) if

(1) πl(c) = πl(a) + πl(b),
(2) 〈w, c〉 = 〈v, a〉 + 〈v′, b〉 for each w, v, v′ ∈ K such that τr(w) = πl(c), τr(v) = πl(a),

τr(v′) = πl(b) and w = ml(v, v′).

Local coordinates. Let (xi, ea, fA, cα) be an adapted coordinate system on K and let
(xi, ea, pA, qα) be the adopted coordinate system on the dual bundle K∗r , i. e., the canonical
evaluation is given by the formula

〈v, a〉 =
∑

A

pA(a)fA(v) +
∑
α

qα(a)cα(v). (12)

We use (xi, cα) as a coordinate system in C and (xi, qα) as a coordinate system on C∗. In
these coordinate sytems we have

xi ◦ πr(a) = xi(a),
qα ◦ πr(a) = qα(a) (13)

and

xi(a +r b) = xi(a) = xi(b),
ea(a +r b) = ea(a) + ea(b),
pA(a +r b) = pA(a) + pA(b),
qα(a +r b) = qα(a) = qα(b). (14)

It follows that (K∗r , πr, C
∗) is a vector bundle. We denote it by K∗r

r . The vector bundle
(K∗r , πl, E) we denote by K∗r

l .

Theorem 6. The system K∗r = (K∗r
r ,K∗r

l ,C∗,E) is a double vector bundle.

We identify the kernel ker τr with F ⊕M C and, consequently, the kernel of πl with
C∗ ⊕M F∗. With this identifications we have

〈(f, c), (c∗, f∗)〉 = 〈f, f∗〉+ 〈c, c∗〉 (15)

and that πr is the canonical projection C∗ ⊕F∗ → C∗. It follows that the core of K∗r can
be identified with F∗ and that

kerπr = E⊕ F∗.
Now, we can write the diagram for K∗r . If K is represented by the diagram

K



�
τl

N
N
NNPτr

FN
N
NNPτ̄r

C

u

y

u
τ

E



�
τ̄l

M

(16)
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then the right dual is represented by the diagram

K∗rN
N
NNPπr




�
πl

EA
A
AAC
π̄r

F∗

u

y

u
π

C∗
�

�
���

π̄r

M

. (17)

The left dual. A similar construction shows that the left dual K∗l has natural structure
of double vector bundle. We denote it by K∗l = (K∗l

r ,K∗l

l ,F,C∗). The core of K∗l is E∗.
There is an obvious identity

J(K∗l) = (J(K))∗r . (18)

Examples.
1. Let K = K(F,C,E). The right dual can be canonically identified with K(E,F∗,C∗)

and the left dual with K(C∗,E∗,F).
2. If E = (E, τ,M) is a vector bundle, then TE is a double vector bundle with the

diagram

TE



�
Tτ

N
N
NNPτE

TMN
N
NNPτM

E

u

y

u
τ

E



�

τ

M

. (19)

Its right dual (TE)∗r is represented by the diagram

T∗EN
N
NNPT
∗τ


�
πE

E4
4
446τ

T∗M

u

y

u
πM

E∗hhhhk
π

M

. (20)

We see that the manifold of cotangent vectors to a vector bundle has two compatible
vector bundle structures. The double vector bundle J((TE)∗r ), represented by the diagram

T∗E



�

T∗τ
N
N
NNPπE

E∗4
4
446π

T∗M

u

y

u
πM

Ehhhhk
τ

M

, (21)

will be denoted by T∗E. In particular, for E = TM , the diagram (21) assumes the form
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T∗TM



�

T∗τM

N
N
NNPπTM

T∗M'
'
'
')πM

T∗M

u

y

u
πM

TM[[[[̂
τM

M

. (22)

3. In order to identify the left dual of TE let us recall that the dual to the vector bundle
(TE, Tτ, TM) can be canonically identified with (TE∗, Tπ, TM) ([3]). It follows that the
left dual to TE is canonically isomorphic to J(TE∗) with the diagram

TE∗N
N
NNPTπ


�
τE∗

E∗A
A
AACπ

E∗

u

y

u
π

TM
�
�

���
τM

M

. (23)

5. Dual morphisms.
Since the dual to a vector bundle mapping is, in general, not a mapping but a relation, we

discuss in this section the case of isomorphisms only. It follows from the formulae (9) that
Φ is an isomorphism of double vector bundles if and only if Φ̄r, Φ̄l and Φ̄c are isomorphisms
of vector bundles.

Let Φ:K → K′ be an isomorphism of double vector bundles. Then the right dual
Φ∗r : (K′

r)
∗ → (Kr)∗ is a morphism of vector bundles. The corresponding mapping of

bundle spaces we denote by Φ∗r .

Proposition 7. Φ∗r defines an isomorphism of vector bundles K′∗r

r and K∗r
r .

Corollary 8. We have the following equalities for Ψ = Φ∗r

Ψ̄r = (Φ̄c)∗
Ψ̄l = (Φ̄r)−1

Ψ̄c = (Φ̄l)∗ (24)

Examples.
1. Let K = K(F,C,E), K′ = K(F′,C′,E′) and Φ:K → K′, with

Φ(f, c, e) = (Φl(f),Φc(c) + Ψ(f, e), Φr(e)). (25)

Since we identify K∗r with K(E,F∗,C∗) and (K′)∗r with K(E′, (F′)∗), (C′)∗, we have

Φ∗r :K(E′, (F′)∗, (C′)∗) → K(E,F∗,C∗).
One can easily verify the equalitity

Φ∗r = (Φ∗r

l , Φ∗r
c + Ψ∗r , Φ∗r

r ),

where

Φ∗r
r (q′) = Φ∗c (q′),

Φ∗r

l (e′) = Φ−1
r (e′),

Φ∗r
c (p′) = Φ∗l (p′),

Ψ∗r (e′, q′) = Ψ∗(q′,Φ−1
r (e′)), (26)
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and Ψ∗ is the vector bundle morphism, dual to Ψ with respect to the left argument, i. e.,
with respect to F .

2.([3]) We have (Section 3.) an isomorphism of double vector bundles

κM : TTM → J(TTM).

The right dual
(κM )∗r : TT∗M → T∗TM

is usually denoted by αM and plays a crucial role in the Lagrangian formulation of the
dynamics of mechanical systems.

6. Canonical isomorphisms.

Proposition 9. We have
(K∗r )∗l = (K∗l)∗r = K. (27)

Proof: It follows from the construction that we can identify manifolds (K∗r )∗l and K.
Also the right vector bundle structures coincide. Let Φ: K → (K∗r )∗l be the canonical
diffeomorphism and let ϑr, ϑl be projections in (K∗r )∗l . For f∗ ∈ F∗ = ker πr ∩ kerπl we
have

〈f∗, ϑl(Φ(v))〉 = 〈(τr(v), f∗), Φ(v)〉 = 〈v, (e, f∗)〉 = 〈τl(v), f∗〉,
hence ϑl(Φ(v)) = τl(v). Equality of the left vector bundle structures follows from

〈a +r b,Φ(v) +l Φ(w)〉 = 〈a,Φ(v)〉+ 〈b,Φ(w)〉 = 〈v, a〉+ 〈w, b〉 = 〈v +l w, a +r b〉.

In the following, we show that there is a canonical isomorphism of double vector bundles
K and ((K∗r )∗r )∗r . Through this section we denote by τr, πr, ξr, ϑr and by τl, πl, ξl, ϑl the
right and left projections in K, K∗r , (K∗r )∗r , ((K∗r )∗r )∗r respectively. Identifying vector
bundles with their second duals, we have

ξr: (K∗r )∗r → F ξl: (K∗r )∗r → C∗
ϑr: ((K∗r )∗r )∗r → E ϑl: ((K∗r )∗r )∗r → F.

The core of (K∗r )∗r is E∗ and the core of ((K∗r )∗r )∗r is (C∗)∗ = C.
We define a relation RK ⊂ K × ((K∗r )∗r )∗r in the following way:
Let v ∈ K, ϕ ∈ ((K∗r )∗r )∗r be such that τ̄l(τr(v)) = ϑ̄l(ϑr(ϕ)). We say that (v, ϕ) ∈ RK

if for each a ∈ K∗r , α ∈ (K∗r )∗r such that

τr(v) = πl(a), πr(a) = ξl(α), ξr(α) = ϑl(ϕ)

we have
〈a, α〉 = 〈v, a〉+ 〈α, ϕ〉. (28)

Theorem 10. The relation RK is an isomorphism of double vector bundles.

If we replace the right-hand side of (28) by a different combination of 〈v, a〉 and 〈α,ϕ〉, we
obtain another isomorphism. The isomorphism corresponding to 〈v, a〉 − 〈α, ϕ〉 we denote
by R±K , the isomorphism corresponding to −〈v, a〉 + 〈α,ϕ〉 we denote by R∓K and the
isomorphism corresponding to −〈v, a〉 − 〈α, ϕ〉 we denote by R=

K .

Proposition 11.

(1) ϕ = R±K(v) iff ϕ = RK((−1) ·r v) or equivalently, (−1) ·l ϕ = RK(v),
(2) ϕ = R∓K(v) iff ϕ = RK((−1) ·r v) or equivalently, (−1) ·r ϕ = RK(v),
(3) ϕ = R=

K(v) iff (−1) ·l ϕ = RK((−1) ·r v) or equivalently, (−1) ·l ((−1) ·r ϕ) = RK(v).
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Examples.
1. Let K = K(F,C,E). Using the identifications: K∗r = K(E,F∗,C∗), E∗∗ = E,

F∗∗ = F, and C∗∗ = C, we get

K∗r∗r = K(C∗,E∗,F)

and
K∗r∗r∗r = K(F,C,E).

Thus, we have obtained another identification of K and K∗r∗r∗r . With this identification
the formula (28) looks like follows

〈(e, ϕ, γ), (γ, ε, f̄)〉 = 〈(f, c, e), (e, ϕ, γ)〉+ 〈(γ, ε, f̄), (f̄ , c̄, ē)〉,
〈e, ε〉+ 〈f̄ , ϕ〉 = 〈f, ϕ〉+ 〈c, γ〉+ 〈c̄, γ〉+ 〈ē, ε〉, (29)

where e, ē ∈ E, f, f̄ ∈ F, c, c̄ ∈ C, ε ∈ E∗, ϕ ∈ F∗, ψ ∈ C∗. Hence, e = ē, f = f̄ , c = −c̄,
and, consequently,

RK(f, c, e) = (f,−c, e). (30)

Analogously,

R±K(f, c, e) = (f, c,−e)

R∓K(f, c, e) = (−f, c, e)
R=

K(f, c, e) = (−f,−c,−e). (31)

2. Let K = T∗E:

T∗E



�

T∗τ
N
N
NNPπE

E∗4
4
446π

T∗M

u

y

u
πM

Ehhhhk
τ

M

. (32)

Then the first, second and third right duals can be identified with double vector bundles
J(TE), TE∗ and J(T∗E∗), represented by the diagrams

TEN
N
NNPTτ


�
τE

EN
N
NNPτ

E

u

y

u
τ

TM



�
τM

M

TE∗



�
Tπ

N
N
NNP

τE∗

TMA
A
AACτM

E∗

u

y

u
π

E∗
�

�
���
π

M

T∗E∗N
N
NNPT
∗π


�

πE∗

E∗4
4
446π

T∗M

u

y

u
πM

Ehhhhk τ

M

. (33)

Thus the canonical isomorphisms RK , R±K , R∓K , R=
K define diffeomorphisms from T∗E∗

to T∗E. For RK , R=
K these diffeomorphisms are antisymplectomorphisms with respect

to the canonical symplectic structure of the cotangent bundle and for R±K , R∓K we obtain
symplectomorphisms.
Identification of isomorphisms. Let Φ:K → K′ be an isomorphism of double vector
bundles. We have

Φ∗r∗r∗r : (K′)∗r∗r∗r → K∗r∗r∗r .

Using one of the introduced isomorphisms of a double vector bundle and its third right
dual, we can compare Φ and its third right dual.
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Proposition 12. We have the following equality

R−1
K ◦ Φ∗r∗r∗r ◦ RK′ = Φ−1. (34)

In this formula R can be replaced by R∓, R± and R=.

Remark. In the case of K = K(F,C,E) and K′ = K(F′,C′,E′), we have another isomor-
phisms of K and K∗r∗r∗r , K′ and (K′)∗r∗r∗r (see Example 1 of this section). It easy to
verify that, with respect to these isomorphisms, Φ∗r∗r∗r does not correspond to Φ−1.

7. Special symplectic manifolds.
Let E = (E, τ,M) be a vector bundle and let ω be a 2-form on E. By ω̃ we denote the

corresponding vector bundle morphism

ω̃:TE → T∗E. (35)

We say that ω is linear with respect to the vector bundle structure E if ω̃ is a morphism
double vector bundles

ω̃:TE → T∗E. (36)

If ω is linear then there are also three vector bundle morphisms:

ω̃r: E → E,

ω̃l: TM → E∗,
ω̃c: E → T∗M.

Of course, ω̃r = idE and, because ω̃ is skew-symmetric, we have, from (24),

ω̃l = −ω̃∗c .

Proposition 13. ω is closed if and only if the pull-back of the canonical symplectic form
ωM on T∗M by ω̃c is equal ω:

ω = ω̃∗c ωM . (37)

If ω is nondegenerate, i.e., ω̃ is an isomorphism of vector bundles, then also ω̃c is an
isomorphism. In that case ω̃c is a symplectomorphism. Thus, we can consider the pair
(E, ω) as a special symplectic manifold ([4], [5]).

8. Linear connections.
A connection on a vector bundle E can be regarded as a spliting of the tangent bundle

TE into the vertical and horizontal parts. Since the bundle VE of vertical vectors can be
identified with the product E ×M E, we can look at the splitting map as an isomorphism
of vector bundles

D:TE → (TM ⊕M E)×M E (38)

over the identity of E.

Proposition 14. A mapping D: TE → (TM ⊕M E) ×M E is the splitting related to a
linear connection if and only if D defines a double vector bundle morphism

D:TE → K(TM,E,E) (39)

such that the corresponding mappings

Dr:E → E

Dl:TM → TM

Dc:E → E (40)

are identities.
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Let D be the the splitting of a linear connection on E. The transposed left dual to D
defines an isomorphism

D∗:TE∗ → K(TM,E∗,E∗) (41)

and, because of (40) and (24), D∗r , D∗l , D∗c are identities. Thus D∗ is the splitting of a
linear connection on E∗. We call it the dual connection.

Let g:E → E∗ be a metric on E (g is a self-adjoint isomorphism of vector bundles). The
splitting D is the splitting of a metric connection if the following diagram is commutative

TE

u
Tg

wD K(TM,E,E)

u
idTM ×g × g

TE∗ wD∗ K(TM,E∗,E∗)

. (42)

9. Torsion-free connections.
In this section E = TM . We have then the canonical isomorphism

κM : TTM → J(TTM).

We introduce also an isomorphism

κ:K(TM, TM, TM) → J(K(TM, TM, TM))

by
κ(v, w, u) = (u, w, v).

Proposition 15. A connection D is torsion-free if and only if

κ ◦D = J(D) ◦ κM (43)

i. e., if the following diagram is commutative

TTM

u
κM

wD K(TM, TM, TM)

u
κ

J(TTM) wJ(D)
J(K(TM, TM, TM))

. (44)

The diagram (44) is commutative if and only if the diagram of left duals is commutative.
The commutativity of the diagram of left duals is equivalent to the commutativity of the
following diagram

TT∗M wD∗

u
βM

K(TM, T∗M, T∗M)

u
β

T∗T∗M K(TM, T∗M, T∗M)u
J((D∗)∗r )

, (45)

where β(v, g, f) = (−v, f, g) and βM is the canonical symplectic structure on T∗M . The
evaluation in K(T, T∗M, T∗M) is given by the formula

〈(v, f, g), (w, h, g)〉 = 〈v, h〉+ 〈w, f〉.
For a subbundle W ⊂ K(T, T∗M, T∗M) defined by W = {(v, f, g): f = 0}, we have

W ◦ = β(W ).

One can easily see that the diagram (45) is commutative if and only if

βMV = V ◦ (46)

for V = (D∗)−1(W ). This equality means that V is a lagrangian distribution on T∗M and,
since V is the horizontal distribution of the connection D∗, we get

12



Proposition 16. A connection D on TM is symmetric if and only if the horizontal dis-
tribution of the dual connection D∗ is lagrangian with respect to the canonical symplectic
structure on T∗M .
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