ON EFFECTIVE METHODS IN INVESTIGATION OF QUANTUM OPERATIONS AND PROCESSES

Andrzej Jamiołkowski

Institute of Physics, N. Copernicus University, Toruń, Poland

3 SPECTRAL PROPERTIES OF SUPEROPERATORS

2 POLYNOMIAL IDENTITIES

3 SPECTRAL PROPERTIES OF SUPEROPERATORS

Decoherence is a non-unitary dynamics of open quantum systems that is a consequence of system – environment coupling.

Let Φ denote a superoperator on $\mathcal{B}(\mathcal{H})$, where dim $\mathcal{H} = d$, which is completely positive. Then there exist some operators K_1, \ldots, K_η on dim $\mathcal{H} = d$ such that

$$\Phi(X) = \sum_{j=1}^{\eta} K_j X K_j^*,$$

and $\eta \leq d^2$. If $\sum K_j^* K_j \leq I$, then Φ is called the quantum operation. A decoherence-free subspace (DFS) is a subspace of the space \mathcal{H} that is invariant to non-unitary dynamics.

Let \mathcal{A} denote subalgebra of the full algebra $M_d(\mathbb{C})$ generated by operators K_1, \ldots, K_η . Then \mathcal{A} is called the interaction algebra of the superoperator Φ .

In a similar way, evolution of open quantum systems continuous in time may be described by Hamiltonians of the form (closed system formulation)

$$H=H_{\mathcal{S}}\otimes \mathbb{I}_{\mathcal{E}}+\mathbb{I}_{\mathcal{S}}\otimes H_{\mathcal{E}}+H_{\mathcal{I}},$$

where H_l denotes the interaction term which can be written in general as

$$H_I = \sum_{lpha}^{\omega} S_{lpha} \otimes E_{lpha}.$$

Now, interaction algebra is defined by S_1, \ldots, S_{ω} .

In the so-called master equation description of time evolution we assume dynamics of the form

$$\frac{\mathrm{d}\rho_{\mathcal{S}}}{\mathrm{d}t} = -\mathrm{i}[H_{\mathcal{S}}, \rho_{\mathcal{S}}(t)] + L_{\mathcal{D}}[\rho_{\mathcal{S}}(t)],$$

where

$$L_{D}[\rho_{S}(t)] = \frac{1}{2} \sum_{\alpha,\beta=1}^{M} A_{\alpha\beta} \left\{ [F_{\alpha},\rho_{S}(t)F_{\beta}^{*}] + [F_{\alpha}\rho_{S}(t),F_{\beta}^{*}] \right\}.$$

General observations.

In all above descriptions we will have a part of the Hilbert space \mathcal{H} decoherence-free (decoherence-free subspace) if and only if the set of operators $\{K_1, \ldots, K_\eta\}$ or $\{S_1, \ldots, S_\omega\}$ or $\{F_1, \ldots, F_M\}$ have invariant subspaces of degree at least 2.

Let K_1, K_2 be given $d \times d$ complex matrices. We formulate the following question.

Is it possible to verify whether K_1 and K_2 have – or do not have – a common invariant subspace of dimension 1 < m < d, by an effective procedure?

For m = 1 an answer to this question was given by Shemesh in 1984. For us the case when m is bigger than 1 is interesting.

The matrices K_1 , K_2 have a common eigenvector if and only if the subspace of \mathcal{H}

$$\mathcal{M}_1 := igcap_{lpha,eta}^{d-1} \operatorname{Ker}[\mathit{K}_1^lpha, \mathit{K}_2^eta]$$

is nontrivial: $\mathcal{M}_1 \neq \{\mathbf{0}\}.$

Theorem (Shemesh' criterion)

The above inequality is equivalent to the following geometrical condition. The matrices K_1 and K_2 have a common eigenvector if and only if the $d \times d$ matrix

$$\Omega := \sum_{\alpha,\beta=1}^{d-1} [\mathbf{K}_1^{\alpha},\mathbf{K}_2^{\beta}]^* [\mathbf{K}_1^{\alpha},\mathbf{K}_2^{\beta}]$$

is singular, i.e. $\det \Omega = 0$.

Now, using the concept of the so-called polynomial identities (PI) and the Amitsur-Levitzki theorem one can generalize the above theorem.

Recall that one says that a polynomial $P(X_1, ..., X_r)$ in noncommuting variables defines an identity on an algebra \mathcal{A} , if $P(A_1, ..., A_r) = 0$ for any $A_1, ..., A_r$ that belong to the algebra \mathcal{A} . In particular, the standard polynomial of degree *r* is the polynomial in noncommutating variables $X_1, ..., X_r$ of the form

$$S_r(X_1,\ldots,X_r) := \sum \operatorname{sign}(\sigma) X_{\sigma(1)} \cdots X_{\sigma(r)} \qquad (*)$$

The summation here is assumed over all permutations of $1, \ldots, r$.

Let \mathcal{A} be the set of all n by n matrices, $\mathcal{A} = M_n(\mathbb{C})$. By the celebrated Amitsur-Levitzki theorem if $k \ge n$ then the equality

 $S_{2k}(N_1,\ldots,N_{2k})=0$

holds for any (2*k*)-tuple of matrices $N_1, \ldots, N_{2k} \in M_n(\mathbb{C})$. Moreover, for every $n \ge k + 1$, there exists a (2*k*)-tuple of $n \times n$ matrices P_1, \ldots, P_{2k} , such that

 $S_{2k}(P_1,\ldots,P_{2k})\neq 0.$

In other words, the full matrix algebra $M_n(\mathbb{C})$ satisfies the standard identity (*) with r = 2n. The algebra $M_n(\mathbb{C})$ does not satisfy any polynomial identity of degree less than 2n.

Theorem (Alpin, Ikramov)

Let subspaces of \mathcal{H} for k = 1, 2, 3... be defined by

$$\mathcal{M}_k := \bigcap \operatorname{Ker} \left\{ S_{2k}(N_1, \ldots, N_{2k}) N_{2k+1} \right\},\,$$

where the intersection is taken over all (2k + 1)-tuples of matrices $N_1, \ldots, N_{2k+1} \in \mathcal{A}(K_1, K_2)$. Then \mathcal{M}_k is an invariant subspace for the algebra \mathcal{A} and \mathcal{A} satisfies the identity $S_{2k} = 0$ on this subspace. This means that

$$S_{2k}(N_1,\ldots,N_{2k})x=0,$$

for all $N_1, \ldots, N_{2k} \in A$ and all $x \in M_k$. Moreover, M_k can be found by an effective way.

2 POLYNOMIAL IDENTITIES

3 SPECTRAL PROPERTIES OF SUPEROPERATORS

Classical definition

By definition, a matrix *A* is reducible if there exists a permutation matrix *P* such that

$$\boldsymbol{P}^{T}\boldsymbol{A}\boldsymbol{P} = \begin{bmatrix} \boldsymbol{X} & \boldsymbol{Z} \\ \boldsymbol{0} & \boldsymbol{Y} \end{bmatrix},$$

where X and Y are square matrices and 0 denotes a block of zeros. A matrix which is not reducible is called irreducible.

There are three main categories of results in Perron and, respectively, Frobenius approach to linear operators which preserve the nonnegative orthant \mathbb{R}^{n}_{+} :

POSITIVE MATRICES (PERRON)

<u>C</u>I. If *A* is strictly positive matrix, A > 0, i.e., all entries of *A* satisfy the inequality $a_{ij} > 0$, then

a) the spectral radius of the matrix A, r(A), is a simple eigenvalue of A, greater than the magnitude of any other eigenvalue;

b) there exists a corresponding eigenvector which is positive (componentwise), Ax = r(A)x;

c) if $A \leq B$ and $A \neq B$, then r(A) < r(B).

NONNEGATIVE MATRICES (FROBENIUS)

<u>**C II.</u>** If *A* is nonnegative matrix, $A \ge 0$, that is some entries a_{ij} can be equal to zero, then</u>

a) the spectral radius r(A) of the matrix A is an eigenvalue of A;

b) there exists a corresponding eigenvector which is nonnegative;

c) if $A \leq B$, then $r(A) \leq r(B)$.

IRREDUCIBLE MATRICES (FROBENIUS)

<u>C III.</u> If A is irreducible and nonnegative, $A \ge 0$, then we have

a) r(A) is a simple eigenvalue;

b) there exists a corresponding eigenvector which is positive;

c) if $A \leq B$ and $A \neq B$, then r(A) < r(B).

2 POLYNOMIAL IDENTITIES

3 SPECTRAL PROPERTIES OF SUPEROPERATORS

K-IRREDUCIBILITY

Now we introduce one of the main ideas of the Perron-Frobenius theory both in classical and quantum case. Let *V* be a real vector space and *K* a cone in *V*. Let $\Pi(K)$ denote the set of all maps such that $\Phi(K) \subseteq K$.

For a fixed K in V a natural generalization of the concept of an irreducible matrix is the following:

Linear map Φ is *K*-irreducible if and only if Φ leaves invariant no face of *K* except $\{\mathbf{0}\}$ and *K* itself.

In other words, a linear map in $\Pi(K)$ is *K*-reducible if and only if it leaves invariant a nontrivial face of *K*.

Spectral properties of superoperators

K-IRREDUCIBILITY

Another, strictly equivalent, definition of K-irreducibility can be given by the following theorem:

An operator $\Phi \in \Pi(K)$ is *K*-irreducible if and only if no eigenvector of Φ lies on the boundary of *K*.

In fact, one can say even more: An operator $\Phi \in \Pi(K)$ is *K*-irreducible if and only if Φ has exactly one (up to scalar multiples) eigenvector in *K* and this vector belongs to K^o – the interior of *K*.

Moreover, for any proper cone *K* we have

 $\Pi^+(K)\subseteq\widetilde{\Pi}(K)\subseteq\Pi(K),$

where $\widetilde{\Pi}(K)$ denotes the set of all *K*-irreducible operators.

Spectral properties of superoperators

Theorem (I)

Let $\Phi \in \Pi^+(K)$. Then we have

- a) the spectral radius of the operator Φ is a simple eigenvalue of Φ, greater than the magnitude of any other eigenvalue;
- **b)** an eigenvector of Φ corresponding to $r(\Phi)$ belongs to K^o ;
- c) no other eigenvector of Φ (up to scalar multiples) belongs to *K*.

Theorem (II)

Let $\Phi \in \Pi(K)$. Then the following hold

- a) $r(\Phi)$ is an eigenvalue of Φ ;
- **b)** K contains an eigenvector of Φ corresponding to $r(\Phi)$;
- c) if $\Phi \leq \Psi$, then $r(\Phi) \leq r(\Psi)$.

Theorem (III)

Let $\Phi \in \widetilde{\Pi}(K)$. Then the following hold a) $r(\Phi)$ is a simple eigenvalue of Φ ;

- **b)** no eigenvector of Φ lies on the boundary of K;
- c) Φ has exactly one (up to scalar multiples) eigenvector in K and this vector belongs to K^o;

d) $(I + \Phi)^{n-1} \in \Pi^+(K)$, where $n = \dim V$.

Theorem (IV)

The following statements are equivalent for a positive map on PSD.

- There is a nontrivial (that is different from {0} and PSD) face of PSD that is invariant under Φ;
- **2.)** There is nontrivial projection $P \in \mathcal{P}_n$ and a positive real number $\lambda > 0$ such that $\Phi(P) \le \lambda P$;
- There is a nontrivial projection P ∈ P_n such that subalgebra P(B_{*}(H))P is invariant under Φ.

Spectral properties of superoperators

A family of closed subspaces of a given Hilbert space is called trivial if this family contains only $\{0\}$ and \mathcal{H} . For a fixed operator $X \in \mathcal{B}(\mathcal{H})$ we will denote by Inv (X) the set of all invariant subspaces of X.

Theorem (V)

Let Φ denote a superoperator on $\mathcal{B}(\mathcal{H})$ which is PSD-positive. If Φ is completely positive, then there exist some operators A_1, \ldots, A_η such that

$$\Phi(X) = \sum_{j} A_{j} X A_{j}^{\star}.$$

Completely positive Φ is irreducible if and only if the Kraus operators A_j do not have a nontrivial common invariant subspace in \mathcal{H} .

2 POLYNOMIAL IDENTITIES

3 SPECTRAL PROPERTIES OF SUPEROPERATORS

- P. Zanardi, M. Rasetti, Modern Phys. Lett. B 11, 1085, (1997).
- D. A. Lider, D. Bacon, K. B. Whaley, Phys. Rev. Lett. **82**, 4556, (1999).
- O. Perron, Math. Ann. 64, 248 (1907).
- G. Frobenius, S. B. Preuss. Akad. Wiss. (Berlin), 256 (1912).
- M. G. Krein, M. A. Rutman, Linear Operators Leaving Invariant a Cone in a Banach Space, AMS Translations 26, (1950).
- J. S. Vandergraft, SIAM J. App. Math. 16, 1208 (1968).
- D. Shemes, Linear Alg. Appl. 62, 11, (1984).
 - D. R. Farenick, Proc. AMS **124**, 3381, (1996).
 - Yu. A. Alpin, Kh. D. Ikramov, J. of Math. Sciences **114**, 1757, (2003).