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DECOHERENCE-FREE SUBSPACES

Decoherence is a non-unitary dynamics of open quantum systems that
is a consequence of system – environment coupling.

Let Φ denote a superoperator on B(H), where dimH = d , which is
completely positive. Then there exist some operators K1, . . . ,Kη on
dim H = d such that

Φ(X ) =

η∑
j=1

KjXK ∗
j ,

and η ≤ d2. If
∑

K ∗
j Kj ≤ I, then Φ is called the quantum operation.

A decoherence-free subspace (DFS) is a subspace of the space H
that is invariant to non-unitary dynamics.
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DECOHERENCE-FREE SUBSPACES

Let A denote subalgebra of the full algebra Md (C) generated by
operators K1, . . . ,Kη. Then A is called the interaction algebra of the
superoperator Φ.

In a similar way, evolution of open quantum systems continuous in time
may be described by Hamiltonians of the form (closed system
formulation)

H = Hs ⊗ IE + IS ⊗ HE + HI ,

where HI denotes the interaction term which can be written in general
as

HI =
ω∑
α

Sα ⊗ Eα.

Now, interaction algebra is defined by S1, . . . ,Sω.
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DECOHERENCE-FREE SUBSPACES

In the so-called master equation description of time evolution we
assume dynamics of the form

dρS

dt
= −i[HS, ρS(t)] + LD[ρS(t)],

where

LD[ρS(t)] =
1
2

M∑
α,β=1

Aαβ
{

[Fα, ρS(t)F ∗
β ] + [FαρS(t),F ∗

β ]
}
.

General observations.

In all above descriptions we will have a part of the Hilbert space H
decoherence-free (decoherence-free subspace) if and only if the set of
operators {K1, . . . ,Kη} or {S1, . . . ,Sω} or {F1, . . . ,FM} have invariant
subspaces of degree at least 2.
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DECOHERENCE-FREE SUBSPACES

Let K1,K2 be given d × d complex matrices. We formulate the
following question.

Is it possible to verify whether K1 and K2 have – or do not
have – a common invariant subspace of dimension
1 < m < d, by an effective procedure?

For m = 1 an answer to this question was given by Shemesh in 1984.
For us the case when m is bigger than 1 is interesting.
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DECOHERENCE-FREE SUBSPACES

The matrices K1, K2 have a common eigenvector if and only if the
subspace of H

M1 :=
d−1⋂
α,β

Ker[Kα
1 ,K

β
2 ]

is nontrivial: M1 6= {0}.

Theorem (Shemesh’ criterion)
The above inequality is equivalent to the following geometrical
condition. The matrices K1 and K2 have a common eigenvector if and
only if the d × d matrix

Ω :=
d−1∑
α,β=1

[Kα
1 ,K

β
2 ]∗[Kα

1 ,K
β
2 ]

is singular, i.e. det Ω = 0.
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POLYNOMIAL IDENTITIES

Now, using the concept of the so-called polynomial identities (PI) and
the Amitsur-Levitzki theorem one can generalize the above theorem.

Recall that one says that a polynomial P(X1, . . . ,Xr ) in noncommuting
variables defines an identity on an algebra A, if P(A1, . . . ,Ar ) = 0 for
any A1, . . . ,Ar that belong to the algebra A.
In particular, the standard polynomial of degree r is the polynomial in
noncommutating variables X1, . . . ,Xr of the form

Sr (X1, . . . ,Xr ) :=
∑

sign(σ)Xσ(1) · · ·Xσ(r) (∗)

The summation here is assumed over all permutations of 1, . . . , r .
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POLYNOMIAL IDENTITIES

Let A be the set of all n by n matrices, A = Mn(C). By the celebrated
Amitsur-Levitzki theorem if k ≥ n then the equality

S2k (N1, . . . ,N2k ) = 0

holds for any (2k)-tuple of matrices N1, . . . ,N2k ∈ Mn(C). Moreover, for
every n ≥ k + 1, there exists a (2k)-tuple of n× n matrices P1, . . . ,P2k ,
such that

S2k (P1, . . . ,P2k ) 6= 0.

In other words, the full matrix algebra Mn(C) satisfies the standard
identity (*) with r = 2n. The algebra Mn(C) does not satisfy any
polynomial identity of degree less than 2n.
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POLYNOMIAL IDENTITIES

Theorem (Alpin,Ikramov)
Let subspaces of H for k = 1,2,3... be defined by

Mk :=
⋂

Ker {S2k (N1, . . . ,N2k )N2k+1} ,

where the intersection is taken over all (2k + 1)-tuples of matrices
N1, . . . ,N2k+1 ∈ A(K1,K2).ThenMk is an invariant subspace for the
algebra A and A satisfies the identity S2k = 0 on this subspace. This
means that

S2k (N1, . . . ,N2k )x = 0,

for all N1, . . . ,N2k ∈ A and all x ∈Mk .Moreover ,Mk can be found by
an effective way.
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INTERACTION ALGEBRAS

Classical definition
By definition, a matrix A is reducible if there exists a permutation
matrix P such that

PT AP =

[
X Z
0 Y

]
,

where X and Y are square matrices and 0 denotes a block of zeros. A
matrix which is not reducible is called irreducible.

There are three main categories of results in Perron and, respectively,
Frobenius approach to linear operators which preserve the
nonnegative orthant Rn

+:
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INTERACTION ALGEBRAS

POSITIVE MATRICES (PERRON)
C I. If A is strictly positive matrix, A > 0, i.e., all entries of A

satisfy the inequality aij > 0, then

a) the spectral radius of the matrix A, r(A), is a simple
eigenvalue of A, greater than the magnitude of any other
eigenvalue;

b) there exists a corresponding eigenvector which is
positive (componentwise), Ax = r(A)x ;

c) if A ≤ B and A 6= B, then r(A) < r(B).
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INTERACTION ALGEBRAS

NONNEGATIVE MATRICES (FROBENIUS)
C II. If A is nonnegative matrix, A ≥ 0, that is some entries aij

can be equal to zero, then

a) the spectral radius r(A) of the matrix A is an eigenvalue
of A;

b) there exists a corresponding eigenvector which is
nonnegative;

c) if A ≤ B , then r(A) ≤ r(B).
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FROBENIUS IRREDUCIBILITY

IRREDUCIBLE MATRICES (FROBENIUS)
C III. If A is irreducible and nonnegative, A ≥ 0, then we have

a) r(A) is a simple eigenvalue;

b) there exists a corresponding eigenvector which is
positive;

c) if A ≤ B and A 6= B, then r(A) < r(B).
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Spectral properties of superoperators

K -IRREDUCIBILITY
Now we introduce one of the main ideas of the Perron-Frobenius
theory both in classical and quantum case. Let V be a real vector
space and K a cone in V . Let Π(K ) denote the set of all maps such
that Φ(K ) ⊆ K .

For a fixed K in V a natural generalization of the concept of an
irreducible matrix is the following:

Linear map Φ is K-irreducible if and only if Φ leaves invariant no face of
K except {0} and K itself.

In other words, a linear map in Π(K ) is K -reducible if and only if it
leaves invariant a nontrivial face of K .
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Spectral properties of superoperators

K -IRREDUCIBILITY
Another, strictly equivalent, definition of K -irreducibility can be given by
the following theorem:

An operator Φ ∈ Π(K ) is K -irreducible if and only if no eigenvector of Φ
lies on the boundary of K .

In fact, one can say even more: An operator Φ ∈ Π(K ) is K -irreducible
if and only if Φ has exactly one (up to scalar multiples) eigenvector in K
and this vector belongs to K o – the interior of K .

Moreover, for any proper cone K we have

Π+(K ) ⊆ Π̃(K ) ⊆ Π(K ),

where Π̃(K ) denotes the set of all K -irreducible operators.
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Spectral properties of superoperators

Theorem (I)

Let Φ ∈ Π+(K ). Then we have
a) the spectral radius of the operator Φ is a simple

eigenvalue of Φ, greater than the magnitude of any other
eigenvalue;

b) an eigenvector of Φ corresponding to r(Φ) belongs to K o;
c) no other eigenvector of Φ (up to scalar multiples) belongs

to K .

Theorem (II)
Let Φ ∈ Π(K ) . Then the following hold

a) r(Φ) is an eigenvalue of Φ ;
b) K contains an eigenvector of Φ corresponding to r(Φ) ;
c) if Φ ≤ Ψ, then r(Φ) ≤ r(Ψ).
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Spectral properties of superoperators

Theorem (III)

Let Φ ∈ Π̃(K ). Then the following hold
a) r(Φ) is a simple eigenvalue of Φ;

b) no eigenvector of Φ lies on the boundary of K ;

c) Φ has exactly one (up to scalar multiples) eigenvector in
K and this vector belongs to K o;

d) (I + Φ)n−1 ∈ Π+(K ), where n = dim V.

A. Jamiołkowski (Toruń) EFFECTIVE METHODS 21 / 25



Spectral properties of superoperators

Theorem (IV)
The following statements are equivalent for a positive map on PSD.

1.) There is a nontrivial (that is different from {0} and PSD)
face of PSD that is invariant under Φ;

2.) There is nontrivial projection P ∈ Pn and a positive real
number λ > 0 such that Φ(P) ≤ λP;

3.) There is a nontrivial projection P ∈ Pn such that
subalgebra P(B∗(H))P is invariant under Φ.
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Spectral properties of superoperators

A family of closed subspaces of a given Hilbert space is called trivial if
this family contains only {0} and H. For a fixed operator X ∈ B(H) we
will denote by Inv (X ) the set of all invariant subspaces of X .

Theorem (V)
Let Φ denote a superoperator on B(H) which is PSD-positive. If Φ is
completely positive, then there exist some operators A1, . . . ,Aη such
that

Φ(X ) =
∑

j

AjXA?j .

Completely positive Φ is irreducible if and only if the Kraus operators Aj
do not have a nontrivial common invariant subspace in H.
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