
VECTOR ANALYSIS IN CURVELINEAR OR-
THOGONAL (LAMÉ) COORDINATE SYSTEMS

We are used to work in the Cartesian coordinate system in which points of the space
are identified by values of x, y and z. Associated with this system is the basis of
three vectors

ix ≡ ex , iy ≡ ey , iz ≡ ez .

These three vectors have by definition unit lengths (we use the symbol ei for unit
length vectors) and are mutually orthogonal:

(ei|ej) ≡ ei ·ej = δij .

They also satisfy the rule

ei × ej = εijk ek ≡ ek εkij .

From these rules, the identity

εijkεklm = δilδjm − δimδjl ,

and the possibility of writing any vector V as a linear combination V = eiV
i all

vector identities can easily be proved. For example

A× (B×C) = ei × (el × em)AiBlCm

= ei × ek εklmA
iBlCm

= ej εjik εklmA
iBlCm

= ej(δjlδim − δjmδil)AiBlCm

= ejB
j(AiCi)− ejC

j(AiBi)

≡ B (A·C)−C (A·B) .

Usually in this type of calculations one does not write explicitly the unit vectors ei.
This makes the notation more economical but is possible only either if the vectors are
decomposed into the Cartesian unit vectors ex, ey, ez, or (for vectors decomposed
into unit vectors e1(ξ), e2(ξ), e3(ξ) associated with some curvelinear coordinates ξ1,
ξ2, ξ3 - see below) if no differentiations are involved: for example, if in the example
above C(ξ) = ei(ξ)C

i(x) and B(ξ) = ei(ξ)∇i, where ∇i is a differential operator
acting on everything standing to the right of it, then one cannot drop the vectors
ei(ξ) because they too get differentiated.

In numerous special problems of classical electrodynamics it proves more con-
venient to use coordinate systems ξi other than the Cartesian ones. Curvelinear
systems are introduced by giving three functions

x = x(ξ1, ξ2, ξ3) ,

y = y(ξ1, ξ2, ξ3) ,

z = z(ξ1, ξ2, ξ3) .
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Associated with each point of the space are then three vectors

ii(ξ) ≡
∂

∂ξi
≡ ex

∂x

∂ξi
+ ey

∂y

∂ξi
+ ez

∂z

∂ξi
,

(the notation ∂/∂ξi used by differential geometers - różniczkowych om ↪etrów zwanych
gdzieniegdzie jeszcze różniczkowymi skoczybruzdami - should not terrify you as we
will not use it). More precisely, with each point of the space (which should be
thought of as a differential manifold) there is associated a vector space (the tangent
space) in which vectors attached to this point live. The vectors ii(ξ) form a basis
of the vector space attached to the point labeled by ξ1, ξ2, ξ3. The vectors i1, i2, i3
are not the same for different points and for an arbitrary choice of the coordinates
ξi are not of unit length and even not mutually orthogonal. Their scalar product
defines the metric tensor gij(ξ)

gij(ξ) ≡ (ii|ij) =
∂x

∂ξi
∂x

∂ξj
+
∂y

∂ξi
∂y

∂ξj
+
∂z

∂ξi
∂z

∂ξj
.

Here we work in the Euclidean three dimensional space and the metric tensor gij(ξ)
can be computed directly because we assume that the three functions x(ξ), y(ξ),
z(ξ) are known.1 As in the usual algebra, any vector V attached to the point labeled
by ξi or a vector field V(ξ) can be written in the form

V(ξ) = ik(ξ)V
k

(i)(ξ) ≡ ik(ξ)V
k(ξ) ,

where V k
(i) is the notation borrowed from my Algebra notes (available from the web

page of J. Wojtkiewicz) indicating explicitly that these are components of the vector
V in the basis ik. The scalar product of two such vectors (vector fields) V and W
is then given by

(V|W) = (ii|ik)V iW k = gikV
iW k ≡ ViW

i .

We have defined here covariant components Vi ≡ gijV
j of the vector V (as opposed

to its contravariant components V i). Of course V i = gijVj where gij is the matrix
inverse with respect to the matrix gij. Mathematically Vk are components of a

linear form V̂ or, if Vi depend on ξj, components of a field of forms called also a
differential one-form associated with the vector V (with the vector field V(ξ)) which
on all vectors attached to the point ξ acts through the scalar product

V̂ (·) ≡ (V(ξ)| · ) .
1In General Relativity we do not assume this and try instead to reconstruct all features of the

space-time from the metric tensor which in turn is determined by the differential Einstein’s equa-
tions; the space-time is then in most cases non-Euclidean, that is it has a nonvanishing curvature
- a quantity which is independent of the choice of the coordinate system.
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All such linear forms attached to the point ξi form a vector space (the adjoint vector
space with respect to the vector space of vectors attached to this point) for which
different bases can be chosen; the two natural bases will be defined below.

In the following we will be concerned with a special class of coordinate systems
- the Lamé systems - singled out by the orthogonality (in each point of the space)
of the three vectors ii. In such systems the metric tensor is diagonal:

gij(ξ) = h2
i (ξ) δij , hi =

√
(ii|ii) ≡ ||ii|| .

hi are called Lamé coefficients. Of course, gij(ξ) = h−2
i (ξ) δij. In the Lamé systems,

to make vector analysis easier, i.e. to make it similar to the vector analysis in the
Cartesian coordinates, one introduces three normalized vectors

ei ≡
ii
||ii||

= h−1
i ii ,

(no summation over i here) such that

(ei|ej) = h−1
i h−1

j (ii|ij) = h−1
i h−1

j gij = h−1
i h−1

j hihjδij = δij .

(Of course, these vectors still depend on ξ, because their orientation in the space
varies from point to point). Any vector V can be then decomposed in two ways
(and, of course, in many other ways too)

V = ikV
k

(i) ≡ ikV
k

= ekV
k

(e) ≡ ekV̄
k .

From the relation between the vectors ik and ek it follows that

V k
(e) ≡ V̄ k = hkV

k ≡ hkV
k

(i) ,

(no summation over k here). The scalar product of two vectors can be then written
as

(V|W) = V̄ kV̄ k = V̄kV̄
k ,

i.e. it looks as in the Cartesian system. The barred covariant components V̄k of the
vector V are identical to the contravariant ones

V̄k = V̄ k ,

and are related to the unbarred covariant components Vk of V by

V̄k = h−1
k Vk ,

(again no sum over k here). Thus, the whole point of introducing “physical” com-
ponents V̄ k is to get rid of the metric tensor in the scalar product.
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Gradient

Consider a function S defined on the space (on the manifold). In coordinates ξi it
is a function S(ξ). At each point its total differential

dS =
∂S

∂ξi
dξi .

is a linear form, or more precisely, a differential one-form (two- and three-forms will
of course appear soon!). As every linear form, it is a machine with a hole into which
one inserts a vector and obtains in return a number; moreover the action of such
a form is linear. The differentials dξi form a basis in the space of one forms; their
action on any vector follows from the rule

dξk(ij) = δkj ,

and the linearity. The factors ∂S/∂ξi are simply components of the one-form dS in
the natural basis dξi of one-forms associated with the coordinates ξi. On a vector
δ
→
ξ = ikδξ

k of a small displacement by δξi the total differential dS gives

dS(δ
→
ξ ) =

∂S

∂ξi
dξi(ikδξ

k) =
∂S

∂ξi
dξi(ik) δξ

k =
∂S

∂ξi
δξi ≈ S(ξ + δξ)− S(ξ) ,

- the first approximation to the difference of S at ξi and the neighbouring point
ξi + δξi, that is what an average physicist, not mislead by mathematicians, would
call dS.

In the Lamé systems one introduces also another basis f̂ i of one-forms singled
out by their action on the ei vectors:

f̂k(ej) = δkj .

From linearity it then follows that

f̂k = hk dξ
k ,

because then

f̂k(ej) = f̂k(h−1
j ij) = h−1

j f̂k(ij) = dξk(ij) = δkj .

The action of a linear form (1)ω̂ = ωkdξ
k attached to the point ξ (or a field of

one-forms (1)ω̂(ξ) defined for each point of the manifold, if the components ωk are
functions of ξi) on a vector V attached to the same point ξ (or a vector field defined
on the manifold) is given by

(1)ω̂(V) = ωkdξ
k(ijV

j) = ωkV
k ≡ hkω̄k h

−1
k V̄ k = ω̄kV̄

k .
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This shows that components of a one-form can be treated as (covariant) components
of a vector and the action of the one-form (1)ω̂ on a vector V can be represented by
the scalar product of V with the vector ii ω

i = ei ω̄
i associated with the form (1)ω̂.

In Lamé systems gradient (the “physical” gradient) of a function S is by defini-
tion the total differential dS referred to the basis f̂k:

dS =
∂S

∂ξk
dξk =

(
1

hk

∂S

∂ξk

)
f̂k ≡ (∇S)kf̂

k .

The gradient of S : ξi −→ R, or in other words, the total derivative of S, is a liner
function mapping the vectors living in the tangent space into R:

dS(V) = V l ∂S

∂ξk
dξk(il) = V k ∂S

∂ξk
= V̄ k (∇S)k .

Of course, in physical calculations the bars over “physical” components are omitted
(as components of vectors and forms in the bases ii and dξj never appear in such
calculations).

Divergence

Divergence of a vector field V(ξ) = ikV
k(ξ) is in the most general case defined as

follows: We associate with the vector field V a one-form V̂ :

V̂ = Vi dξ
i ≡ gikV

k dξk ,

and apply to it the Hodge star operator:

∗V̂ ≡ 1

2

√
g εijkV

k dξi ∧ dξj ,

where g ≡ det(gij) and finally take the exterior derivative of the resulting two-form:

d(∗V̂ ) =
1

2
εijk

∂

∂ξl
(
V k√g

)
dξl ∧ dξi ∧ dξj

=
∂

∂ξk
(
V k√g

)
dξ1 ∧ dξ2 ∧ dξ3 .

We have used here the relations

dξl ∧ dξi ∧ dξj = εlij dξ
1 ∧ dξ2 ∧ dξ3 , and εijkεlij = 2δkl .

“Physical” divergence is the three-form d(∗V̂ ) but referred to the canonical volume
form f̂ 1 ∧ f̂ 2 ∧ f̂ 3:

d(∗V̂ ) =
1

h1h2h3

∂

∂ξk

(
h1h2h3

V̄ k

hk

)
f̂ 1 ∧ f̂ 2 ∧ f̂ 3 .
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i.e.

divV ≡ ∇·V =
1

h1h2h3

∂

∂ξk

(
h1h2h3

V̄ k

hk

)
.

Curl

Curl of a vector field V(ξ) = ikV
k(ξ) is defined as follows: first associate with V

the form V̂ = Vidξ
i. Then take its exterior derivative

dV̂ =
∂

∂ξk
(
gijV

j
)
dξk ∧ dξi ,

obtaining a two-form. Finally apply the Hodge star operation:

∗(dV̂ ) =
√
g gklgim

∂

∂ξk
(
gijV

j
)
εlmn dξ

n .

In a Lamé system, components of the resulting one-form in the basis f̂ i is just what
is called the “physical” curl of V:

∗(dV̂ ) = h1h2h3 h
−2
k h−2

i εkin
∂

∂ξk
(
hiV̄

i
)
h−1
n f̂n ≡ (∇×V)n f̂

n .

Simplifying a bit, the “physical” component of the curl of V is

(∇×V)n =
hn

h1h2h3

εkin
∂

∂ξk
(
hkV̄

k
)
.

Laplacian

The Laplacian acting on a function S(ξ) is just the divergence of its gradient - it is
a three-form:

d(∗dS) = (∇2S) f̂ 1 ∧ f̂ 2 ∧ f̂ 3 .

Explicitly:

d

(
∗
(
∂S

∂ξi
dξi
))

=
1

2
d

(
∂S

∂ξi
√
g gik εklm dξ

l ∧ dξm
)

=
1

2

∂

∂ξj

(
∂S

∂ξi
√
g gik εklm

)
dξj ∧ dξl ∧ dξm

=
∂

∂ξj

(
√
g gij

∂S

∂ξi

)
dξ1 ∧ dξ2 ∧ dξ3 .

We have used the same relations as in the derivation of the divergence. The “physical
Laplacian” (in Lamé coordinate systems) is referred to the canonical volume three-
form:

∇2S =
1

h1h2h3

∂

∂ξj

(
h1h2h3

h2
i

∂S

∂ξi

)
.

6



Example

We illustrate all these considerations by considering the spherical coordinates (ξi, ξ2, ξ3)
≡ (r, θ, φ) introduced through the well known relations

x = r sin θ cosφ ,

y = r sin θ sinφ ,

z = r cos θ .

One then has

ir =

 sin θ cosφ
sin θ sinφ

cos θ

 , iθ =

 r cos θ cosφ
r cos θ sinφ
−r sin θ

 , iφ =

−r sin θ sinφ
r sin θ cosφ

0

 .

The Lamé coefficients read

hr = (ir|ir) = 1 , hθ = (iθ|iθ) = r , hφ = (iφ|iφ) = r sin θ ,

and the vectors er, eθ, eφ have the form

er =

 sin θ cosφ
sin θ sinφ

cos θ

 , eθ =

 cos θ cosφ
cos θ sinφ
− sin θ

 , eφ =

− sinφ
cosφ

0

 .

The canonical volume three-form

f̂ r ∧ f̂ θ ∧ f̂φ = r2 sin θdr ∧ dθ ∧ dφ ,

looks familiar for anybody who at least once has integrated something over a three
dimensional domain using spherical coordinates, but what these “∧’s” serve for?!
Be patient and look below how the integration of differential forms is defined.

Using the Lamé coefficients given above it is straightforward to write down “phys-
ical” components of the gradient of a function S

(∇S)r =
∂S

∂r
, (∇S)θ =

1

r

∂S

∂θ
, (∇S)φ =

1

r sin θ

∂S

∂φ
,

of the rotation of a vector field V = erV̄
r + eθV̄

θ + eφV̄
φ

(∇×V)r =
1

r sin θ

(
∂

∂θ
(V̄ φ sin θ)− ∂V̄ θ

∂φ

)
,

(∇×V)θ =
1

r sin θ

∂V̄ r

∂φ
− 1

r

∂

∂r
(rV̄ φ) ,

(∇×V)φ =
1

r

(
∂

∂r
(rV̄ θ)− ∂V̄ r

∂θ

)
,
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as well as the “physical divergence” of V:

∇·V =
1

r2

∂

∂r
(r2V̄ r) +

1

r sin θ

∂

∂θ
(V̄ θ sin θ) +

1

r sin θ

∂V̄ φ

∂φ
,

and the “physical” Laplacian of a function S(ξ):

∇2S =
1

r2

∂

∂r

(
r2∂S

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂S

∂θ

)
+

1

r2 sin2 θ

∂2S

∂φ2
.

Integration of p-forms over p-dimensional domains

A p-form (p)ω̂ = ωi1...ip(ξ) dξ
i1 ∧ . . . ∧ dξip can be integrated over a p-dimensional

domain (a p-dimensional submanifold) Ωp of the d-dimensional space (d-dimensional
manifold). The integral∫

Ωp

(p)ω̂ =

∫
Ωp

ωi1...ip(ξ) dξ
i1 ∧ . . . ∧ dξip ,

is defined as follows. We have first to parametrize the domain Ωp with p parameters
τ 1, . . ., τ p:

ξ1 = ξ1(τ 1, . . . , τ p) ,

ξ2 = ξ2(τ 1, . . . , τ p) ,

. . . . . . . . . . . . . . . . . .

ξd = ξd(τ 1, . . . , τ p) .

One then has p vector fields t(1), . . ., t(p):

t(i) = i1
∂ξ1

∂τ i
+ . . .+ id

∂ξd

∂τ i
, i = 1, . . . , p.

all of which are tangent to the submanifold Ωp. It is easy to see that t(i) is tangent
to the curve traced in Ωp by varying the parameter τ i keeping all other τ ’s fixed.

By definition∫
Ωp

(p)ω̂ =

∫
dτ 1 . . .

∫
dτ p ωi1...ip(ξ(τ)) dξi1 ∧ . . . ∧ dξip(t(1), . . . , t(p)) .

The domain of integration over the parameters τ follows of course from the parametriza-
tion of Ωp. Since (see the definition of the action of a general p-form on p vectors)

dξi1 ∧ . . . ∧ dξip(t(1), . . . , t(p)) =
∑
π

sgn(π) dξi1(tπ(1)) . . . dξ
ip(tπ(p))

=
∑
π

sgn(π)
∂ξk1

∂τπ(1)
. . .

∂ξkp

∂τπ(p)
dξi1(ik1) . . . dξ

ip(ikp)

=
∑
π

sgn(π)
∂ξi1

∂τπ(1)
. . .

∂ξip

∂τπ(p)
≡ ∂(ξi1 , . . . , ξip)

∂(τπ(1), . . . , τπ(p))
,
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so, the final practical formula for the integral reads∫
Ωp

(p)ω̂ =

∫
dτ 1 . . .

∫
dτ p ωi1...ip(ξ(τ))

∂(ξi1 , . . . , ξip)

∂(τπ(1), . . . , τπ(p))
.

Stokes theorem

The fundamental Stokes theorem states that∫
Ωp

d((p−1)ω̂) =

∫
∂Ωp

(p−1)ω̂ ,

where ∂Ωp is the p− 1-dimensional boundary of the domain Ωp.

Exterior derivative of a zero-form, i.e. of a function S(ξ) is a one-form dS which
can be integrated over a curve ΓAB going from a point A to a point B. The Stokes
theorem reduces then to the trivial statement that∫

ΓAB

dS =

∫
∂ΓAB

S ≡ S(B)− S(A) ,

because the boundary of the curve ΓAB consists of the points A and B.

What is the physical interpretation of an integral of a one form (1)ω̂ = ωidξ
i over

a curve ΓAB? Let’s see. To evaluate the integral we parametrize the curve with
some parameter τ ∈ [τA, τB]: ξi = ξ(τ), where ξ(τA) = ξiA and ξ(τB) = ξiB. Then∫

ΓAB

(1)ω̂ =

∫ τB

τA

dτ ωi(ξ(τ)) dξi
(

ik
dξk

dτ

)
=

∫ τB

τA

dτ ωi(ξ(τ))
dξk

dτ
.

To get the physical interpretation let’s however rewrite the integrand differently:

ωidξ
i

(
ik
dξk

dτ

)
= ω̄i f̂

i

(
ex

∂x

∂ξk
dξk

dτ
+ ey

∂y

∂ξk
dξk

dτ
+ ez

∂z

∂ξk
dξk

dτ

)
= ω̄i f̂

i

(
ex
dx

dτ
+ ey

dy

dτ
+ ez

dz

dτ

)
.

We have used here the definition of the vectors ik and the ordinary chain differenti-
ation rule. On the other hand, in the Lamé systems one can also write

ω̄i f̂
i = ω̄xf̂

x + ω̄yf̂
y + ω̄zf̂

z ,

because both (ω̄x, ω̄y, ω̄z) and (f̂x, f̂ y, f̂ z) are related to (ω̄1, ω̄2, ω̄3) and (f̂ 1, f̂ 2, f̂ 3)
(associated with the coordinates ξi) by the same orthogonal transformation. Intro-
ducing a vector field V with the Cartesian components V x = ω̄x, V

y = ω̄y, V
z = ω̄z

we get ∫
ΓAB

(1)ω̂ =

∫ τB

τA

dτ
dr(τ)

dτ
·V(r(τ)) =

∫
ΓAB

dl·V ,
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where V is a vector field associated with the one-form (1)ω̂. The last equality is
obvious from ordinary mechanics: dl ≡ dτ (dr(τ)/dτ) is just the vector dr(τ) of
the displacement along the curve ΓAB corresponding to the change of the parameter
from τ to τ + dτ ; the integral of the scalar product of dr(τ) and V(τ) is just what
one calls the integral of V along the curve ΓAB.

Thus, to compute the integral of a vector field V over a curve Γ one takes this
field decomposed into vectors ik associated with some curvelinear coordinates ξi and
integrates the form V̂ = Vi dξ

i ≡ gijV
j dξi.

And how to get a flux of a vector field V through a surface Σ? To get the hint
let’s look at the Stokes theorem and compare it with the ordinary Gauss theorem
for a closed surface Σ = ∂Ω (Ω being a three-dimensional domain):∫

Ω

divV d(Volume) ≡
∫

Ω

d(∗V̂ ) = Stokes Th. =

∫
∂Ω

∗V̂ .

This shows that ∗V̂ must be the right object to integrate over Σ, i.e.∫
Σ

∗V̂ ,

should give the flux of the vector field V through the surface Σ. Indeed,∫
Σ

∗V̂ =

∫
Σ

1

2

√
g εijk V

k dξi ∧ dξj

=

∫ ∫
dτ 1dτ 2 1

2
h1h2h3 εijk h

−1
k V̄ k 1

hihj
f̂ i ∧ f j

(
t(1), t(2)

)
.

Due to the presence of the totally antisymmetric symbol εijk, the three Lamé coeffi-
cients h−1

k h−1
i h−1

j must be simply h−1
1 h−1

2 h−1
3 and they cancel out the factors h1h2h3,

so that∫
Σ

∗V̂ =

∫ ∫
dτ 1dτ 2 V̄ k 1

2
εijk

(
t̄i(1)t̄

j
(2) − t̄

i
(2)t̄

j
(1)

)
=

∫ ∫
dτ 1dτ 2 V̄ k εijk t̄

i
(1)t̄

j
(2).

The factor εijk (dτ 1t̄i(1))(dτ
2t̄j(2)) is nothing else than the vector perpendicular to

the parallelogram spanned by the vectors dτ 1t(1) and dτ 2t(2) of the infinitesimal
displacements corresponding to varying the two parameters from τ 1 and τ 2 to τ 1 +
dτ 1 and τ 2 +dτ 2 respectively, and has length equal to the area of this parallelogram.
It follows that the expression under the integral is just what one physically interprets
as the flux of V through the small element of area of the surface Σ. This completes
the demonstration.
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Example

As an example let us compute the flux of the electric field E produced by a uniformly
charged ball (of radius R and total charge Q) through a flat disc also of radius R,
tangent to the ball.

Outside the ball the electric field has the form as if it was produced by the
point charge Q located in the center of the ball. We will work with the spherical
coordinates ξ1 = r, ξ2 = θ, ξ3 = φ with the origin (r = 0) in the center of the
ball. In these coordinates only the radial component of the electric field is nonzero:
Er = Ēr = k1Q/r

2 (because hr = 1). According to the general considerations the
flux is given by

Flux =

∫
disc

∗Ê =

∫
disc

1

2

√
g εijk E

k xii ∧ dξj

=

∫
disc

r2 sin θ

(
k1Q

r2

)
dθ ∧ dφ .

We have used
√
g = hrhθhφ = r2 sin θ and the specific form of the components of

the electric field E.

We parametrize the disc by the parameters α ∈ [0, π
4
] and β ∈ [0, 2π]:

r = R/ cosα ,

θ = α ,

φ = β ,

so that the tangent vectors read

t(α) = ir
∂r

∂α
+ iθ

∂θ

∂α
+ iφ

∂φ

∂α
= ir

R sinα

cos2 α
+ iθ ,

t(β) = ir
∂r

∂β
+ iθ

∂θ

∂β
+ iφ

∂φ

∂β
= iφ .

Hence,

dθ ∧ dφ
(
t(α), t(β)

)
= dθ

(
t(α)

)
dφ
(
t(β)

)
− dθ

(
t(β)

)
dφ
(
t(α)

)
= 1− 0 = 1 ,

and

Flux =

∫ 2π

0

dβ

∫ π/4

0

dα k1Q sinα = k1Qπ(2−
√

2) .
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Useful formulae

1. A p-form (p)ω̂ is a p-linear totally antisymmetric mapping of p vectors into R.

p-forms form a vector space; for their basis one can take

(
d
p

)
(d is the space

dimension) antisymmetrized tensor products of p basic one-forms dξi:

dξi1 ∧ dξi2 ∧ . . . ∧ dξip ≡
∑
π

sgn(π) dξiπ(1) ⊗ dξiπ(2) ⊗ . . .⊗ dξiπ(p) .

π is a permutation and sgn(π) its sign. Action of a general p-form

(p)ω̂ ≡ ωi1i2...ip dξ
i1 ∧ dξi2 ∧ . . . ∧ dξip ,

on p vectors V(1) = ik1V
k1

(1), . . ., V(p) = ikpV
kp

(p) :

(p)ω̂(V(1), . . .V(p)) = V k1
(1) . . . V

kp
(p) ωi1...ip dξ

i1 ∧ . . . ∧ dξip(ik1 , . . . ikp)

=
∑
π

sgn(π)V k1
(1) . . . V

kp
(p) ωi1i2...ip dξ

i1(ikπ(1)
)dξi2(ikπ(2)

) . . . dξip(ikπ(p))

=
∑
π

sgn(π)V k1
(1) . . . V

kp
(p) ωkπ(1)...kπ(p)

.

2. Exterior derivative of a p-form (p)ω̂ = ωi1...ip(ξ)dξ
ii ∧dξi2 ∧ . . .∧dξip is p+1-form:

d((p)ω̂) =
∂ωi1...ip(ξ)

∂ξk
dξk ∧ dξii ∧ dξi2 ∧ . . . ∧ dξip .

3. Action of the Hodge star operator on basic one-forms

∗(dξi) =
1

2

√
g gik εklm dξ

l ∧ dξm ,

and on basic two-forms

∗(dξi ∧ dξj) =
√
g gik gjl εklm dξ

m .

Action on general one- and two-forms follows from linearity of the ? operation.

We can also check that ∗∗ =Id:

∗(∗(dξi)) = ∗
(√

g gik εklm dξ
l ∧ dξm

)
=

1

2

√
g gik εklm ∗

(
dξl ∧ dξm

)
=

1

2

√
g gik εklm

√
gglj gmsεjsp dξ

p

=
1

2
g
(
gik glj gms εklm

)
εjsp dξ

p = dξi
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because the expression in the last bracket is just det(gkl) εijs (and det(gkl) is the
inverse of g = det(gij)) and εijsεjsp = 2δip.

Similarly,

∗(∗(dξi ∧ dξj)) = ∗
(√

g gik gjl εklm dξ
m
)

=
√
g gik gjl εklm

1

2

√
g gmp εprs dξ

r ∧ dξs

=
1

2
g gik gjl gmp εprs dξ

r ∧ dξs

=
1

2
g g−1 εijp εprs dξ

r ∧ dξs

=
1

2

(
δi rδ

j
s − δi sδjr

)
dξr ∧ dξs

=
1

2

(
dξi ∧ dξj − dξj ∧ dξi

)
= dξi ∧ dξj .

4. Divergence referred to the canonical volume form
√
gdξ1∧dξ2∧dξ3 ≡ f̂ 1∧ f̂ 2∧ f̂ 3

is what in General Relativity is called the covariant divergence:

V k
; k

√
g dξ1 ∧ dξ2 ∧ dξ3 ≡

(
∂kV

k + Γkkj V
j
)√

g dξ1 ∧ dξ2 ∧ dξ3

We recall the definition of the Christoffel symbols (Krzysztofelki po naszemu) Γi kj
in terms of the metric tensor:

Γi kj =
1

2
gil (∂kglj + ∂jglk − ∂lgkj) .

Hence,

Γkkj =
1

2
gkl (∂kglj + ∂jglk − ∂lgkj) =

1

2
gkl∂jglk

=
1

2
tr
(
g−1∂jg

)
=

1

2
∂j ln(g) = ∂j ln(

√
g)

=
1
√
g

∂

∂ξj
√
g .

This should be compared to d(∗V̂ ):

d(∗V̂ ) =
∂

∂ξi
(√

g V k
)
dξ1 ∧ dξ2 ∧ dξ3

=
(√

g ∂kV
k + V k ∂k

√
g
)
dξ1 ∧ dξ2 ∧ dξ3

=

(
∂kV

k + V k 1
√
g
∂k
√
g

)
√
g dξ1 ∧ dξ2 ∧ dξ3

=
(
∂kV

k + Γi ikV
k
)√

g dξ1 ∧ dξ2 ∧ dξ3 .
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