# Produkcja cząstek w zderzeniach proton-jądro i jądro-jądro przy energii wiązki ~200A MeV



Tomasz Matulewicz

Instytut Fizyki Doświadczalnej



Uniwersytet Warszawski

współpraca TAPS



(GANIL-Gießen-Groningen-GSI-Rež-Valencia)

Seminarium ZFJA 10 października 2003

# Produkcja cząstek przy ~200A MeV

• Wprowadzenie



• 190 MeV p+A: przypadek prosty



- 180A MeV Ar+Ca: *przypadek złożony*
- Wnioski



- Diagram fazowy materii jądrowej
- Podprogowa produkcja cząstek
- Fotony jako sonda do badania ewolucji stanu materii
- Narzędzie: spektrometr TAPS







# Podprogowa produkcja cząstek







• Energia progowa

- Zderzenie jąder atomowych
  - $A+A \rightarrow A+A+X$
- Energia jądra pocisku T<sub>A</sub>







# Przykład: produkcja $\pi^{\circ}$



 $m_{\pi}$ =135 MeV

 $T_{\rm pr}=280 {\rm MeV}$ 

Obserwowano produkcję  $\pi^{\circ}$ w zderzeniach ciężkich jonów o energii T<sub>A</sub>=25A MeV

# the Physical Review

 $\mathcal{A}$  journal of experimental and theoretical physics established by E. L. Nichols in 1893

Second Series, Vol. 72, No. 1

#### JULY 1, 1947

### On the Production of Mesotrons by Nuclear Bombardment

W. G. MCMILLAN<sup>†</sup> AND E. TELLER University of Chicago, Chicago, Illinois (Received March 27, 1947)

Mesotron production by nuclear bombardment with fast, heavy particles has been investigated theoretically in a semi-quantitative way to determine the expected threshold energies, the cross sections, and their energy dependence. Whereas a treatment in which the target nucleons are assumed to be at rest predicts a requisite incident energy of  $\sim 210$  MeV, the present treatment, based on the Fermi degenerate gas model, finds the threshold incident energy as  $\sim 95$  MeV. The threshold is somewhat higher for positive than for negative mesotrons. The cross section for single mesotron production, evaluated from the accessible volume in momentum space, is found to vary with the fractional excess energy,  $\epsilon$ , as  $\epsilon^{3.6}$  in the scalar or axial-vector theories; at low values of  $\epsilon$ , a small difference in the energy dependence for negative and positive mesotrons arises from the necessity of giving the former a non-zero initial kinetic energy. For the pseudo-scalar and the polar-vector theories, the matrix element for mesotron emission is proportional to the momentum of the mesotron. This changes the power law to  $\epsilon^{4.5}$ .

# Własności produkcji podprogowej

- Energia wiązki na nukleon poniżej progu na produkcję mezonów w zderzeniu elementarnym NN (280 MeV dla π°): *badanie wstępnej fazy reakcji*
- p+A vs A+A: "zimna" vs gorąca materia jądrowa
- p+A vs A+A: normalna vs podwyższona gęstość materii

### *Znaczenie ruchu Fermiego (270 MeV/c \rightarrow E \sim 35 MeV)*



# Foton - najlepsza sonda

- Opuszcza obszar oddziaływania bez zaburzeń wynikających z silnych oddziaływań w stanie końcowym
- Niski przekrój czynny
- Tło pochodzące z rozpadów e-m barionów  $(\Delta \rightarrow N\gamma)$  i mezonów neutralnych (98.9%  $\pi^{\circ} \rightarrow \gamma\gamma$ , 39.2%  $\eta \rightarrow \gamma\gamma$ , ...)



Dane dotyczące produkcji mezonów i wzbudzeń barionowych są niezbędne!







# Detekcja wysokoenergetycznych fotonów

- Jak wykryć fotony (~10<sup>-4</sup>/reakcję) wśród wielu (~100/reakcję) hadronów?
- Scyntylator BaF<sub>2</sub>: doskonała czasowa zdolność rozdzielcza (separacja γ/h) oraz analiza kształtu sygnału scyntylacyjnego (dyskryminacja e/h)
- Mobilny spektrometr **TAPS** (Two Arm Photon Spectrometer)
- Pozycyjna zdolność rozdzielcza pozwala na identyfikację mezonów:  $m_{\gamma\gamma} = \sqrt{2E_{\gamma_1}E_{\gamma_2}(1-\cos\vartheta_{\gamma_1\gamma_2})}$

# Własności scyntylacji BaF<sub>2</sub>



# Jeden moduł spektrometru TAPS



- Kryształ BaF<sub>2</sub>
- długość 25 cm (12 długości radiacyjnych)
- średnica 6 cm
- fotopowielacz z oknem kwarcowym
- cena ~5000 euro

# Moduły można ustawiać blisko tarczy...



# ... nieco dalej ...





... oraz bardzo daleko

# Zderzenia proton-jądro p (190 MeV) + C, Ca, Ni, W

- Eksperyment: AGOR w KVI Groningen
- produkcja mezonów  $\pi^{\circ}$
- produkcja fotonów
- wielostopniowe procesy w produkcji fotonów





### Widmo fotonów po usunięciu wkładu $\pi^{\circ} \rightarrow \gamma \gamma$





# Zderzenia ciężkich jąder Ar (180A MeV) + Ca

- Eksperyment: SIS w GSI Darmstadt
- Produkcja mezonów
- Produkcji rezonansu  $\Delta(1232)$
- Widmo fotonów: jak uwzględnić wkład od rozpadu neutralnych mezonów?





# Widmo masy poprzecznej $\pi^{\circ}$

poprawione na wydajność detektora





# Pochodzenie mezonów $\pi$







ZFJA 10 października 2003

### Prawdopodobieństwo produkcji fotonów w materii jądrowej





## Podsumowanie

- Badanie zderzeń proton-jądro (pA) ważnym elementem zrozumienia bardziej złożonych zderzeń jądro-jądro (AA).
- Fotony-sonda trudna ale używalna także dla wyższych energii niż oczekiwano.

- Zmiana mechanizmu produkcji fotonów w funkcji ich energii.
- Cząstki podprogowe pochodzą nie tylko z pierwszych zderzeń NN, ale także z procesów wielostopniowych.
- Dominująca rola rezonansu ∆ w produkcji mezonów π wykazana doświadczalnie.

# Slajdy zapasowe







## **High m<sub>t</sub> pions: from multi-step processes**



# **Pion reabsorption in nuclear matter**



- Pion production proportional to the overlap volume
- Random emission according to 1+A<sub>2</sub>P<sub>2</sub>(cosθ) angular distribution and thermal energy distribution in NN center of mass system
- Absorption of pions depending on the distance travelled in nuclear matter (frozen shape)
  - Momentum-dependent absorption length

eV/c] ZFJA 10 października 2003

### angular distribution of primordial pions: constant



# Stan termodynamiczny zderzenia AA

- Modelowanie dynamiki wielocząstkowej poprzez równanie transportu przybliżane numerycznie (BUU, #QMD, etc). Składniki modeli : EOS, ???
- Podejście empiryczne: porównywanie zderzeń AA i pA.

# Podróże z TAPS 1989-2003

