

Eksperyment CBM -założenia i rzeczywistość

Stany materii jądrowej

2 Eksperyment CBM @ FAIR

3 Rozwój technik eksperymentalnych (półprzewodniki,RICH,TRD,RPC)

4 Symulacje

K.Wisniewski, ZFJAt

Eksperyment CBM, 1 / 36

Równanie stanu

Gaz doskonały : pV=NRT

Siły przyciągające = ujemne ciśnienia

K.Wisniewski, ZFJAt

Siły jądrowe – np. pot. Yukawy Pierwsze przybliżenie

zależność kwadratowa

Eksperyment CBM, 2 / 36

npd Materia jądrowa – warunki ekstremalne

Zderzenia ciężkich jonów – wysokie energie

K.Wisniewski, ZFJAt

Diagram fazowy

Energie SPS,RHIC,(LHC) - wysokie T, niskie μ_B

Niskie energie - mniejsze Τ, większe μ_B

K.Wisniewski, ZFJAt

Eksperyment CBM, 6 / 36

Plasma kwarkowo gluonowa (?)

Mezony wektorowe

Konsekwencje kosmologiczne

npd

Przywrócenie symetrii chiralnej (?) npd

4.5 5 M (GeV/c²)

Podsumowanie

Plasma kwarkowo-gluonowa istnieje

Wydaje się, że potwierdzono to eksperymentalnie :

- wymrożenie chemiczne
- dziwność
- J/ψ
- pływ eliptyczny protonów
- fluktuacje

Przywrócenie chiralnej symetrii

• mezony wektorowe (ρ, ω, Φ)

Eksperymenty RHIC & LHC

Co dalej ?

Interesujący obszar 30 GeV/A Niezależne potwierdzenie

Open charm – Mezony D

Produkcja okołoprogowa – przy dużej gęstości

Przewidywane modyfikacje: 100MeV przy ρ_0 Wzmożona produkcja D Konsekwencje dla rozpadu J/ ψ , ψ ', χ_c

K.Wisniewski, ZFJAt

Eksperyment CBM, 13 / 36

FAIR

<u>Wiązki:</u> 10¹² /s ²³⁸U²⁸⁺ 1-2 AGeV 4·10¹³/s protony 90 GeV 10¹⁰/s U 35 AGeV (Ni 45 AGeV)

<u>Wiązki wtórne:</u> żadkie izotopy: 1-2 AGeV antyprotony: do 30 GeV

K.Wisniewski, ZFJAt

Eksperyment CBM, 14 / 36

Obserwacje - wymagania

Duża ilość cząstek (~ 1000) Identyfikacja hadronów Identyfikacja leptonów Rekonstrukcja wtórnego vertex'u (\leq 50 µm)

Duza statystyka czyli duża świetlność: intensywne wiazki: 10⁹ /sec. duża częstość interakcji : 107 /sec. dobra sprawność akceleratora duże dawki promieniowania

Szybkie detektory i elektronika Elementy odporne na promieniowanie

Detektor CBM

Silicon Tracking Stations

MAPS

"Trakowanie"

Bardzo duża gęstośc śladów ≈600 cząstek naładowanych w ± 25° ≈Pędy: 0.1 GeV/c Algorytmy Conf.Map.,Hugh.Transf.,Kalm.Filt.,Cell.Aut.

cut	optimized value	signal efficiency $\%$
χ^2 distance to the primary vertex	3.5 σ	53
p-cut	$1.0 \ GeV/c$	72
p_t -cut	$0.5 \ GeV/c$	61
z-vertex cut	$250 \ \mu m$	54
D ⁰ pointing cut	30 µm	99
geometric vertex χ^2 cut	≤ 5	91
all cuts	-	10.4

K.Wisniewski, ZFJAt

Eksperyment CBM, 20 / 36

MAPS - promieniowanie

Detektor zniszczony po około 10¹¹ zdarzeń (10⁴ D0) 1 dzień przy 10⁷ int./sec, lub 1 miesiąc przy 10⁵ int./sec

Większa grubość, inna technologia, inne rozwiązanie

Eksperyment CBM, 22 / 36

Ring Imaging Cerenkov Counter

Rozmiary : 2,2 x 4x5 x 1,8 m Radiator : $He_1N_2, Ch_4, C0_2, mieszanki$ Lustro : Be + szklo

K.Wisniewski, ZFJAt

RICH – identyfikacja elektronów

Transition Radiation

K.Wisniewski, ZFJAt

Eksperyment CBM, 25 / 36

npd

TR Detektor - identyfikacja

Sygnał *e* wyraźnie inny niż π (A,T) Wydajność eliminacji pionów >99% Każda granica wnosi przyczynek

Radiator: folie,"słomki",pianki Gaz : CO₂+Ar/Xe - szybkość dryfu Geometria elektrod

K.Wisniewski, ZFJAt

Eksperyment CBM, 26 / 36

Czas przelotu

Resistive Plate Chamber

Zdolność rozdzielcza

$$\sigma_{t} = 1.28255/(\alpha - \eta)v$$

 α = Townsend coefficient η =Attachment coefficient α - η = Effective townsend coefficient v= Drift velocity

K.Wisniewski, ZFJAt

RPC a krotność cząstek

Tryger i akwizycja

Nowe podejście

Symulacje J/w i rozpad pionów

Podsumowanie

- Badanie równania stanu materii jądrowej
- **2.** Poszukiwanie sygnałów QGP i χ-symetrii
- 3 CBM @ FAIR- materia o dużej gęstości
- 4. Bogaty program badawczy AA,pA od 8 do 35/90 GeV
- **5.** Pomiar dziwności i powabu
- 6. Wysokie wymagania dla technik eksp.
- 7. Detektory dokładne, szybkie i odporne na prom.
- 8. Nowe podejście do akwizycji danych

K.Wisniewski, ZFJAt

Ekspervment CBM, 36 / 36