


Lecture 2. Short Light Pulses 

Description of pulses 

 

Intensity and phase 

 

The instantaneous frequency and group delay 

 

Zeroth and first-order phase 

 

The linearly chirped Gaussian pulse 



An ultrashort laser pulse 

has an intensity and 

phase vs. time. 
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Neglecting the spatial dependence for 

now, the pulse electric field is given by: 

Intensity 
Phase Carrier 

frequency 

A sharply peaked function for the intensity yields an ultrashort pulse. 

The phase tells us the color evolution of the pulse in time. 
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The real and complex 

pulse amplitudes 

( ) ( ) exp{ ( )}E t I t i t 

Removing the 1/2, the c.c., and the 

exponential factor with the carrier 

frequency yields the complex 

amplitude, E(t), of the pulse: 

This removes the rapidly varying part of the pulse electric field and 

yields a complex quantity, which is actually easier to calculate with. 

I (t) is often called the real amplitude, A(t), of the pulse. 
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The Gaussian pulse 

where tHW1/e is the field half-width-half-maximum, and tFWHM is 

intensity the full-width-half-maximum. 

 

The intensity is: 
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For almost all calculations, a good first approximation for any 

ultrashort pulse is the Gaussian pulse (with zero phase). 
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Intensity vs. amplitude 

The intensity of a Gaussian pulse is √2 shorter than its real amplitude. 

This factor varies from pulse shape to pulse shape. 

The phase 

of this pulse 

is constant, 

(t) = 0, 

and is not 

plotted. 



It’s easy to go back and forth between the electric field and the 

intensity and phase. 

 

 

 

The intensity: 

Calculating the intensity and the phase 
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The phase: 

(ti) 

Re 

Im 
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I(t) = |E(t)|2 



The Fourier Transform 

To think about ultrashort laser pulses, the Fourier Transform 

is essential. 
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We always perform Fourier transforms on the real or complex pulse 

electric field, and not the intensity, unless otherwise specified. 



The frequency-domain electric field 

The frequency-domain equivalents of the intensity and phase 
are the spectrum and spectral phase. 

 

Fourier-transforming the pulse electric field: 
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The frequency-domain electric field has positive- and 

negative-frequency components. 

Note that  and  are different! 



The complex frequency-domain pulse field 

Since the negative-frequency component contains the same infor-

mation as the positive-frequency component, we usually neglect it.  

 

We also center the pulse on its actual frequency, not zero. Thus, the 

most commonly used complex frequency-domain pulse field is: 

Thus, the frequency-domain electric field also has an intensity and phase. 

S is the spectrum, and  is the spectral phase. 
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The spectrum with and without the 

carrier frequency 

Fourier transforming E (t) and E(t) yield different functions. 

We usually use just 

this component. 

( )E  ( )E



The spectrum and spectral phase 

The spectrum and spectral phase are obtained from the frequency-

domain field the same way as the intensity and phase are from the 

time-domain electric field. 
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Intensity and phase of a Gaussian 

The Gaussian is real, so its phase is zero. 

Time domain: 

 

 

 

 

 

 

Frequency domain: 

So the spectral phase is 

zero, too. 

A Gaussian 

transforms 

to a Gaussian 



The spectral phase of a time-shifted pulse 

 ( ) exp( ) ( )f t a i a F   FRecall the Shift Theorem: 

So a time-shift 

simply adds some 

linear spectral 

phase to the 

pulse! 

Time-shifted 

Gaussian pulse 

(with a flat phase): 



What is the spectral phase? 

The spectral phase is the phase of each frequency in the wave-form. 

t 0 

All of these 

frequencies have 

zero phase. So 

this pulse has: 

   () = 0 

Note that this 

wave-form sees 

constructive 

interference, and 

hence peaks, at  

t = 0. 

And it has 

cancellation 

everywhere else. 
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Now try a linear spectral phase: () = a. 

By the Shift Theorem, a linear spectral phase is just a delay in time.  

And this is what occurs! 

t 

(1) = 0 

(2) = 0.2  

(3) = 0.4  

(4) = 0.6  

(5) = 0.8  

(6) =  



To transform the spectrum, note that, because the energy is the same, 

whether we integrate the spectrum over frequency or wavelength: 

Transforming between wavelength and 

frequency 

The spectrum and spectral phase vs. frequency differ from 

the spectrum and spectral phase vs. wavelength. 
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The spectrum and spectral phase vs. 

wavelength and frequency 

Example:  A Gaussian spectrum with a linear phase vs. frequency 

vs. Frequency vs. Wavelength 

Note the different shapes of the spectrum when plotted vs. 

wavelength and frequency. 



Bandwidth in various units 
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By the Uncertainty Principle, a 1-ps pulse has a bandwidth, d, of  

~1/2 THz.  But what is this in s-1?  In cm-1?  And in nm? 

In angular frequency units, d  2 d, so it’s  x 1012 s-1. 

In wave numbers, (cm-1), we can write: 
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So  d(1/) = (0.5 x 1012 /s) / 3 x 1010 cm/s = 17 cm-1 

In nm, we can write: 2
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Assuming an 

800-nm 

wavelength: 



The temporal phase, (t), contains frequency-vs.-time information. 
 
The pulse instantaneous angular frequency, inst(t), is defined as: 

The Instantaneous frequency 

0( )inst

d
t

dt


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This is easy to see. At some time, t, consider the total phase of the 

wave. Call this quantity 0: 

 

  

Exactly one period, T, later, the total phase will (by definition) increase 

to 0 + 2:  

 

  

where (t+T) is the slowly varying phase at the time, t+T. Subtracting 

these two equations:  
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Dividing by T and recognizing that 2π/T is a frequency, call it inst(t): 
 

 inst(t) =  2π/T = 0 – [(t+T) – (t)] / T 

  

But T is small, so [(t+T)–(t)] /T is the derivative, d /dt.  
 
So we’re done!  
 

Usually, however, we’ll think in terms of the instantaneous 

frequency, inst(t), so we’ll need to divide by 2: 
 
 
        inst(t) = 0 – [d /dt] / 2 
 
 

While the instantaneous frequency isn’t always a rigorous quantity, 

it’s fine for ultrashort pulses, which have broad bandwidths. 

Instantaneous frequency (cont’d) 



Group delay 

While the temporal phase contains frequency-vs.-time information, 
the spectral phase contains time-vs.-frequency information.  
 
So we can define the group delay vs. frequency, tgr(), given by: 
 
 

   tgr() = d / d  

 

A similar derivation to that for the instantaneous frequency can 

show that this definition is reasonable.  

 
Also, we’ll typically use this result, which is a real time (the rad’s 
cancel out), and never d/d, which isn’t.  

 

Always remember that tgr() is not the inverse of inst(t). 



Phase wrapping and unwrapping 

Technically, the phase ranges from – to . But it often helps to 

“unwrap” it. This involves adding or subtracting 2 whenever there’s 

a 2 phase jump. 

 

Example: a pulse with quadratic phase 

Wrapped phase Unwrapped phase 

The main reason for unwrapping the phase is aesthetics. 

Note the scale! 



Phase-blanking 

When the intensity is zero, the phase is meaningless.  

When the intensity is nearly zero, the phase is nearly meaningless. 

 

Phase-blanking involves simply not plotting the phase when the 

intensity is close to zero. 

Without phase blanking With phase blanking 

The only problem with phase-blanking is that you have to decide the 

intensity level below which the phase is meaningless. 



Phase Taylor Series expansions 

We can write a Taylor series for the phase, (t), about the time t = 0: 

 

  

 

where 

where only the first few terms are typically required to describe well-

behaved pulses. Of course, we’ll consider badly behaved pulses, 

which have higher-order terms in (t). 

Expanding the phase in time is not common because it’s hard to 

measure the intensity vs. time, so we’d have to expand it, too. 
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Frequency-domain phase expansion 
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It’s more common to write a Taylor series for (): 

As in the time domain, only the first few terms are typically required to 

describe well-behaved pulses. Of course, we’ll consider badly behaved 

pulses, which have higher-order terms in (). 
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 is called the “group-delay dispersion.” 



Zeroth-order phase: the absolute phase 

An absolute phase of /2 will turn a cosine carrier wave into a sine. 

It’s usually irrelevant, unless the pulse is only a cycle or so long. 

Different absolute phases 

for a four-cycle pulse 

Different absolute phases 

for a single-cycle pulse 

Notice that the two four-cycle pulses look alike, but the three single-

cycle pulses are all quite different. 



First-order phase in frequency: a shift in time 

     

      

Time domain Frequency domain 

 

1  0

  1   20 fs

Note that 1 does not affect the instantaneous frequency, but the 

group delay = 1. 



First-order phase in time: a frequency shift 

     

      

Time domain Frequency domain 

1 0 /  fs

  1  .07/ fs

Note that 1 does not affect the group delay, but it does affect the 

instantaneous frequency = –1. 



Second-order phase:  the linearly chirped pulse 

A pulse can have a frequency that varies in time. 

This pulse increases its frequency linearly in time (from red to blue). 

 

In analogy to bird sounds, this pulse is called a "chirped" pulse. 
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The linearly chirped 

Gaussian pulse 

We can write a linearly chirped Gaussian pulse mathematically as: 

Chirp Gaussian  

amplitude  

Carrier 

wave 

Note that for  > 0, when t < 0, the two terms partially cancel,  

so the phase changes slowly with time (so the frequency is low). 

And when t > 0, the terms add, and the phase changes more rapidly 

(so the frequency is larger) 



The instantaneous frequency 

vs. time for a chirped pulse 

A chirped pulse has: 

 

 

 

where: 

 

 

The instantaneous frequency is:    

      

 

which is: 

            

 

So the frequency increases linearly with time. 

( )0( ) exp ( )E t i t t    

2( )t t  

0( ) /inst t d dt   

0( ) 2inst t t   



The negatively chirped pulse 

We have been considering a pulse whose frequency increases 

linearly with time: a positively chirped pulse. 

 

One can also have a negatively  

chirped (Gaussian) pulse, whose  

instantaneous frequency  

decreases with time.   

 

We simply allow  to be negative 

in the expression for the pulse: 

 

 

 

 

And the instantaneous frequency will decrease with time: 
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Frequency-domain phase expansion 
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Recall the Taylor series for (): 

As in the time domain, only the first few terms are typically required to 

describe well-behaved pulses. Of course, we’ll consider badly behaved 

pulses, which have higher-order terms in (). 
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 is called the “group-delay dispersion.” 



The Fourier transform 

of a chirped pulse 

Writing a linearly chirped Gaussian pulse as: 

 

 

or: 

 

 

Fourier-Transforming yields: 

 

 

 

Rationalizing the denominator and separating the real and imag parts: 

A Gaussian with 

a complex width! 

A chirped Gaussian pulse 

Fourier-Transforms to itself!!! 
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But when the pulse is long (    0): 

 

 

which is the inverse of the instantaneous frequency vs. time.  

The group delay vs.  for a chirped pulse 

The group delay of a wave is the derivative of the spectral phase: 
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So: 

For a linearly chirped Gaussian pulse, the spectral phase is: 

0( ) 2inst t t   

And the delay vs. 

frequency is linear. 

This is not the inverse of the instantaneous frequency, which is: 



2nd-order phase: positive linear chirp 

Numerical example: Gaussian-intensity pulse w/ positive linear 

chirp, 2 = –0.032 rad/fs2 or 2 = 290 rad fs2.  

      

     

Here the quadratic phase has stretched what would have been a 

3-fs pulse (given the spectrum) to a 13.9-fs one. 



      

        

2nd-order phase: negative linear chirp 

Numerical example: Gaussian-intensity pulse w/ negative linear 

chirp, 2 = 0.032 rad/fs2 or 2 = – 290 rad fs2.  

As with positive chirp, the quadratic phase has stretched what 

would have been a 3-fs pulse (given the spectrum) to a 13.9-fs one. 



The frequency of a light wave can also vary nonlinearly with time.  

 
This is the electric field of a 

Gaussian pulse whose fre- 

quency varies quadratically 

with time: 

 

 

This light wave has the expression: 

 

 

 

Arbitrarily complex frequency-vs.-time behavior is possible. 

 

But we usually describe phase distortions in the frequency domain. 

Nonlinearly chirped pulses 
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3rd-order spectral phase: quadratic chirp 

Numerical example: Gaussian spectrum and positive cubic 

spectral phase, with 3 = 3x104 rad fs3  

Trailing satellite pulses in time indicate positive spectral cubic phase. 

      

      



Negative 3rd-order spectral phase 

Another numerical example: Gaussian spectrum and negative 

cubic spectral phase, with 3 = –3x104 rad fs3  

Leading satellite pulses in time indicate negative spectral cubic phase. 

      

      



4th-order spectral phase 

Numerical example: Gaussian spectrum and positive quartic 

spectral phase, 4 = 4x105 rad fs4. 

Leading and trailing wings in time indicate quartic phase. Higher-

frequencies in the trailing wing mean positive quartic phase. 

       

      

       



Negative 4th-order spectral phase 

Numerical example: Gaussian spectrum and negative quartic 
spectral phase, 4 = –4x105 rad fs4. 

       

              

Leading and trailing wings in time indicate quartic phase. Higher-

frequencies in the leading wing mean negative quartic phase. 



    

       

5th-order spectral phase 

Numerical example: Gaussian spectrum and positive quintic 

spectral phase, 5 = 7x106 rad fs5. 

An oscillatory trailing wing in time indicates positive quintic phase.  



Negative 5th-order spectral phase 

Numerical example: Gaussian spectrum and negative quintic 

spectral phase, 5 = –7x106 rad fs5. 

An oscillatory leading wing in time indicates negative quintic phase.  

        

       



Pulse propagation 

What happens to a pulse as it propagates through a medium? 

Always model (linear) propagation in the frequency domain. Also, 

you must know the entire field (i.e., the intensity and phase) to do so. 
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In the time domain, propagation is a convolution—much harder. 



Sout()  Sin()exp[()L]
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Pulse propagation 

(continued) 
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using k =  /c: 

Separating out the spectrum and spectral phase: 

( )inE  ( )outE 

Rewriting this expression: 



The pulse width 

There are many definitions of the  

"width" or “length” of a wave or pulse. 

 

The “effective width” is the width of a rectangle whose height and 

area are the same as those of the pulse. 

 

Effective width ≡ Area / height: 

Advantage:  It’s easy to understand. 

Disadvantages:  The Abs value is inconvenient. 

   We must integrate to ± ∞. 
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(Abs value is 

unnecessary 

for intensity.) 



The rms pulse width 

The “root-mean-squared width” 

or “rms width:” 

Advantages: Integrals are often easy to do analytically. 

Disadvantages:  It weights wings even more heavily, 

so it’s difficult to use for experiments, which can't scan to ±      ) 
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The rms width is the “second-order moment.” 



The Full-Width-

Half-Maximum 

“Full-width-half-maximum” 

is the distance between the 

half-maximum points. 

Advantages:  Experimentally easy. 

Disadvantages:  It ignores satellite 

pulses with heights < 49.99% of the 

peak! 

Also:  we can define these widths in terms of f(t) or of its intensity,|f(t)|2. 

Define spectral widths () similarly in the frequency domain (t  ). 
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tFWHM 
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0.5 

t 

tFWHM 



The Uncertainty Principle 

The Uncertainty Principle says that the product of a function's widths 

in the time domain (t) and the frequency domain () has a minimum. 
 
Define the widths 

assuming f(t) 

and F() peak at 0: 

 

 

 

 

 

 

 

Combining 

results:        
            or: 

(Different definitions of the widths and the Fourier Transform yield 

different constants.) 
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The Time-Bandwidth Product 

For a given wave, the product of the time-domain width (t) and  

the frequency-domain width () is the  

 

   Time-Bandwidth Product (TBP) 

 

      t      TBP 

 
A pulse's TBP will always be greater than the theoretical minimum 

given by the Uncertainty Principle (for the appropriate width definition).   

 

The TBP is a measure of how complex a wave or pulse is. 

 

Even though every pulse's time-domain and frequency-domain  

functions are related by the Fourier Transform, a wave whose TBP is 

the theoretical minimum is called "Fourier-Transform Limited." 



The coherence time (tc = 1/) 

indicates the smallest temporal  

structure of the pulse. 

 

 

In terms of the coherence time: 

 

  TBP  =    t  =  t  / tc 

 

           =  about how many spikes are in the pulse 

  
A similar argument can be made in the frequency domain, where the 

TBP is the ratio of the spectral width to the width of the smallest 

spectral structure. 

The Time-Bandwidth Product is a 

measure of the pulse complexity. 
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Time-Bandwidth Product 

For the angular frequency and different definitions of the widths:  

 

TBPrms      0.5   TBPe = 3.14  

TBPHW1/ e = 1   TBPFWHM = 2.76  

 

   

    

Numerical example: A transform-limited pulse: A Gaussian-intensity 

pulse with constant phase and minimal TBP. 



Time-Bandwidth Product 

For the angular frequency and different definitions of the widths:  

 

TBPrms = 6.09   TBPe = 4.02 

TBPHW1/ e = 0.82   TBPFWHM = 2.57  

 

   

Numerical example: A variable-phase, variable-intensity pulse with 

a fairly small TBP. 

        



Time-Bandwidth Product 

For the angular frequency and different definitions of the widths:  

 

TBPrms = 32.9   TBPe = 10.7 

TBPHW1/ e = 35.2   TBPFWHM = 116  

 

  . 

Numerical example: A variable-phase, variable-intensity pulse with 

a larger TBP. 

        



A linearly chirped pulse with no structure can 

also have a large time-bandwidth product. 

For the angular frequency and different definitions of the widths:  

 

TBPrms = 5.65   TBPe = 35.5 

TBPHW1/ e = 11.3   TBPFWHM = 31.3  

 

   

Numerical example: A highly chirped, relatively long Gaussian-

intensity pulse with a large TBP. 

        


