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Lecture 2. Short Light Pulses

Description of pulses

Intensity and phase

The Iinstantaneous frequency and group delay
Zero and first-order phase

The linearly chirped Gaussian pulse
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Electric field E (t)

Neglecting the spatial dependence for |
now, the pulse electric field is given by: S S S

/ h _»Time [fsj
E (1) = 3J1(t) exp{i[agt — ()]} +cc.

/

Carrier Phase
frequency

Intensity

A sharply peaked function for the intensity yields an ultrashort pulse.
The phase tells us the color evolution of the pulse in time.
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Removing the 1/2, the c.c., and the = ,l

exponential factor with the carrier o '

frequency yields the Ll

of the pulse: T R T TR T

E(t) =/1(t) exp{-ig(t)}

This removes the rapidly varying part of the pulse electric field and
yields a complex quantity, which is actually easier to calculate with.

-J](t) is often called the real amplitude, A(t), of the pulse.



For almost all calculations, a good first approximation for any
ultrashort pulse is the (with zero phase).

E (t) = E, exp| —(t/ Tyyye)” |
= Eyexp| —2In2(t/ 7o)’ |
= E,exp| —1.38(t/ 7y )’ |

where 7,1, IS the field half-width-half-maximum, and 7 IS
Intensity the full-width-half-maximum.

The intensity is: I(t)=|E,| exp[—4 In2(/ TFWHM)z]

=|E,|" exp[—2.76(t / TFWHM)z]
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The phase
of this pulse
IS constant,
o(t) = 0,
and is not
plotted.




It's easy to go back and forth between the electric field and the
intensity and phase.

The intensity: 1(t) = |E(D)|?
The phase:
m | E(ti)
#(t) = arctan ImIE()] <
Re[E(t)] )
1:i

Re



To think about ultrashort laser pulses, the Fourier Transform
IS essential.

E (0) = jO:OE (t) exp(—iwt) dt
E ) = Ziwa”(a))exp(ia)t)da)
g

We always perform Fourier transforms on the real or complex pulse
electric field, and not the intensity, unless otherwise specified.



The frequency-domain equivalents of the intensity and phase
are the spectrum and spectral phase.

Fourier-transforming the pulse electric field:

E (1) = 21(t) exp{i[mt —g®)]}+cc

yields: I

e

E (@) = 1 S(0-a,) exp{-i[p(o-o,)[}+
L [S(~o—a,) exp{+i[p(-o— o)1}

The frequency-domain electric field has positive- and
negative-frequency components.



Since the negative-frequency component contains the same infor-
mation as the positive-frequency component, we usually neglect it.

We also center the pulse on its actual frequency, not zero. Thus, the
most commonly used complex frequency-domain pulse field is:

E (w) = S(w) exp{-ip(w)}

Thus, the frequency-domain electric field also has an intensity and phase.
S Is the spectrum, and ¢ is the spectral phase.



The spectrum with and without the
carrier frequency
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The spectrum and spectral phase are obtained from the frequency-
domain field the same way as the intensity and phase are from the
time-domain electric field.

S() = k(o)

Im[e ”(a))]}

p(w) = —arctan { Rel: ()]



Intensity and phase of a Gaussian

Intensity (solid) and Phase (dashed)

frequency




Intensity (solid) and Phase (dashed)

time

Spectrum (solid) and Spectral Phase (dashed)

Spectral Phase

Spectral Intensity

frequency




What Is the spectral phase?

The spectral phase is the phase of each frequency in the wave-form.




Now try a linear spectral phase: ¢p(w) = aw.

By the Shift Theorem, a linear spectral phase is just a delay in time.

And this is what occurs!

o(w;) =04 1




The spectrum and spectral phase vs. frequency differ from

the spectrum and spectral phase vs. wavelength. 5
T

The spectral phase is - _— P
easily transformed: ©,(1) = ¢,2mc/ )

To transform the spectrum, note that, because the energy is the same,
whether we integrate the spectrum over frequency or wavelength:

jisi(z)dz _ IZSw(w)da)

Changing _ j S (27¢/ A) _iﬂc di = I 5, (2nc/z)@d1

variables: /

do _ —27C — S, (1) =S8 (27zc/z)@
di A2




The spectrum and spectral phase vs.
wavelength and frequency

vs. Wavelength
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By the Uncertainty Principle, a 1-ps pulse has a bandwidth, ov, of
~1/2 THz. But what is this in s1? Incm*1? And in nm?

In angular frequency units, éw =2n ov, so it's © x 1012 s1,
In wave numbers, (cm-1), we can write:

© Vo s = svi— — suic
d(1/ )

2 d/a)

So 6(1/A) =(0.5x10%/s) /3 x 100 cm/s =17 cm-

dv
dA

C 2
=— oA = 5v/d—v = 51//1—
A dA C

In Nnm, we can write:

Assuming an 4
800-nm S1 — 0.5x102/s (800nm)(.8x10"cm) _

1n
wavelength: 3x10"cm/s




The temporal phase, ¢(t), contains frequency-vs.-time information.

The pulse , @, (1), Is defined as:

d¢

O (1) = 0y ——

dt

This is easy to see. At some time, t, consider the total phase of the
wave. Call this quantity ¢,:

@y = gt —P(t)

Exactly one period, T, later, the total phase will (by definition) increase

to ¢, + 2m:
Oy +2r =yt +T]—p(t+T)

where #(t+T) is the slowly varying phase at the time, t+T. Subtracting
these two equations:

27 = w1 =[p(t+T) - (V)]



Dividing by T and recognizing that 2=/T is a frequency, call it o, (¢):

a)insz‘(t) = 2n/T= @y — [¢(H_T) - ¢(t)] /T

But 7'is small, so [t+T)-@(¢)] /T is the derivative, d¢ /dt.

So we’re done!

Usually, however, we’ll think in terms of the
, SO we'll need to divide by 2m:

Vinst(t) — Vo~ [d¢/dt] /21

While the instantaneous frequency isn’t always a rigorous quantity,
it's fine for ultrashort pulses, which have broad bandwidths.



While the temporal phase contains frequency-vs.-time information,
the spectral phase contains time-vs.-frequency information.

So we can define the group delay vs. frequency, z,(w), given by:

to(®) =dp/dw

A similar derivation to that for the instantaneous frequency can
show that this definition is reasonable.

Also, we'll typically use this result, which is a real time (the rad’s
cancel out), and never dg/dv, which isn't.

Always remember that 7, (®) is not the inverse of @, ().



Phase wrapping and unwrapping

Wrapped phase Unwrapped phase
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When the intensity is zero, the phase is meaningless.
When the intensity is nearly zero, the phase is nearly meaningless.

Phase-blanking involves simply not plotting the phase when the
Intensity is close to zero.
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The only problem with phase-blanking is that you have to decide the
Intensity level below which the phase is meaningless.



We can write a Taylor series for the phase, #(t), about the time ¢ = 0:

6O =+ ho+ b

where

do

¢1 :Et:o

IS related to the instantaneous frequency.

where only the first few terms are typically required to describe well-
behaved pulses. Of course, we’ll consider badly behaved pulses,
which have higher-order terms in t).

Expanding the phase in time is not common because it's hard to
measure the intensity vs. time, so we’d have to expand it, too.



Frequency-domain phase expansion

It's more common to write a Taylor series for ¢ w):

2
- (0 —,)
¢(a)) - (00 i ¢1 1| ' T (02 2|O + ...
where
P = de is the group delay!
do|,_,

d*p

— is called the »”
@, dor

W=y

As in the time domain, only the first few terms are typically required to
describe well-behaved pulses. Of course, we’'ll consider badly behaved
pulses, which have higher-order terms in ¢(w).



Zeroth-order phase: the absolute phase

Different absolute phases Different absolute phases
for a four-cycle pulse for a single-cycle pulse
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First-order phase in frequency: a shift in time
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First-order phase in time: a frequency shift

Time domain Frequency domain

Frequency (1/fs)
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A pulse can have a frequency that varies in time.

Light electric field

Time

This pulse increases its frequency linearly in time (from red to blue).

In analogy to bird sounds, this pulse is called a "chirped" pulse.



Light electric field

Time

We can write a linearly chirped Gaussian pulse mathematically as:
E(t)=E,exp [—(t [75)° ] exp [i (coot + ft° )]

T T

Gaussian Chirp
amplitude

Note that for § > 0, when t <0, the two terms partially cancel,
so the phase changes slowly with time (so the frequency is low).
And when t > 0, the terms add, and the phase changes more rapidly

(so the frequency is larger)



The instantaneous frequency
vs. time for a chirped pulse

Light electric field

Time

A chirped pulse has:
E(t) oc expl i (et —¢(t)) |

where:

$(t) =—pt’

The instantaneous frequency is: @, () = @, —d¢@/ dt

WhICH 15: Wi (1) = 0y + 25t

So the frequency increases linearly with time.



We have been considering a pulse whose frequency
linearly with time: a chirped pulse.

One can also have a
chirped (Gaussian) pulse, whose
Instantaneous frequency

with time.

Light electric field

We simply allow 3 to be
In the expression for the pulse: time

E(t)=E, exp[—(t/rG )Z}exp[i (a)ot +,Bt2)]
And the instantaneous frequency will decrease with time:

W, (1) = Wy + 26t = o, _2|,B|t



Recall the Taylor series for ¢(w):

2
a— (a) — a)o)
p(@) = ¢, + ¢ S+ + .
1! 2!
where
do .
QO =— IS the group delay.
da) w=ay,
d*p | ’ '
P, = > s called the
do®|

As in the time domain, only the first few terms are typically required to
describe well-behaved pulses. Of course, we’'ll consider badly behaved
pulses, which have higher-order terms in ¢(w).



Writing a linearly chirped Gaussian pulse as:

E(t) = E, exp [—atzjexp[i (ot +,Bt2)]

or.

E(t)=E, exp[—(a— iﬂ)tzjexp[i (coot)]

Fourier-Transforming yields:

~ 1/4 2
E(w)=E, exp| — —(w—w
(@) = E, p{ a_lﬂ( 0)}
Rationalizing the denominator and separating the real and imag parts:

E(a)) = Eo exp{— aza_:flgz (a)—a)o)z}exp{—i aIZB_:;z (a)—a)o)z}




The group delay of a wave is the derivative of the spectral phase:
7,(w)=do/dw

For a linearly chirped Gaussian pulse, the spectral phase is:

,8/4 IRRY.
o(w) = o ~(0—aw,)

So: ~ B2

Ty

And the delay vs.
— 2 2 (a)_COO) frequency is linear.
a’+ 3 quency

This is not the inverse of the instantaneous frequency, which is:
a)inst (t) — a)o + Zﬁt

But when the pulse is long (o= 0): r 1 (a) W )
0

9 zﬂ

which is the inverse of the instantaneous frequency vs. time.
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2"d-order phase: negative linear chirp
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The frequency of a light wave can also vary nonlinearly with time.

This is the electric field of a
Gaussian pulse whose fre-
guency varies quadratically
with time:

Light electric field

a)inst (t) — a)o +37t2

time

This light wave has the expression:
E(t) = Re E, exp [—(t/rG )ZJexp[i (oot + )/’[3)]
Arbitrarily complex frequency-vs.-time behavior is possible.

But we usually describe phase distortions in the frequency domain.



3'd-order spectral phase: quadratic chirp
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Negative 4th-order spectral phase
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5th-order spectral phase
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Negative 5t-order spectral phase
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What happens to a pulse as it propagates through a medium?

Always model (linear) propagation in the . Also,
you must know the entire field (i.e., the intensity and phase) to do so.

IE,. (@) = E, (o) exp[-a(e)L/ 2] exp[-in(w) k L]|

In the time domain, propagation is a convolution—much harder.



Ein (a)), ‘\ JAN Eout (C())

Rewriting this expression:
E, (@) = E, (o) exp[-a(w)L/ 2] exp[-in(w) k L]

using k = w/c: _ o
= E_ (o) exp[-a(w)L /2] exp[-1 n(w) o L]

Separating out the spectrum and spectral phase:

Sout(a)) — S;n(a)) exp[—a(a))L]

Pout ((()) = O (C()) + n(a)) % L




The pulse width

At
There are many definitions of the .
"width" or “length” of a wave or pulse.

The “effective width” is the width of a rectangle whose height and
area are the same as those of the pulse.

Effective width = Area / height: 10)
At
1 e (Abs value is eff
—— j f (t)‘ dt unnecessary
O for intensity.)
—00 5 i

Advantage: It's easy to understand.
Disadvantages: The Abs value is inconvenient.
We must integrate to £ «.




At

The “root-mean-squared width”
or “‘rms width:”

T o —1/2
j t2 f (t) dt

rms (00

j f (t) dt

—00

At

The rms width is the “second-order moment.”

Advantages: Integrals are often easy to do analytically.
Disadvantages: It weights wings even more heavily,
so it’s difficult to use for experiments, which can't scanto £ o )
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The Uncertainty Principle says that the product of a function's widths
In the time domain (At) and the frequency domain (A®w) has a minimum.

Define the widths 1 = 1 =
assuming f(t) = f—J f()jdt  Aw = TJ F(o)| do
and F(w) peak at O: - -
1 5 1 7 : F(0
> 10 jw -0 [o £ (1) exp(<i[0]t) dt = %
1 5 1 7 27 £ (0
= F—-[ %j (w)exp(io[0]) do = 7;(0())
Combining
results: Ap At > f (0) F(0) Aw At > 2r
F(0) 1(0) ©°F AvAL>1

(Different definitions of the widths and the Fourier Transform yield
different constants.)



The Time-Bandwidth Product

For a given wave, the product of the time-domain width (At) and
the frequency-domain width (Av) is the

Av At = TBP

A pulse's TBP will always be greater than the theoretical minimum
given by the Uncertainty Principle (for the appropriate width definition).

The TBP is a measure of how complex a wave or pulse is.
Even though every pulse's time-domain and frequency-domain

functions are related by the Fourier Transform, a wave whose TBP is
the theoretical minimum is called " L



The coherence time (7, = 1/Av)
Indicates the smallest temporal
structure of the pulse.

A complicated
(1) BOE pulse

dv »@Amm Wb,

A'[ ——  time

[ —

In terms of the coherence time:
TBP = Av At = At /1,

= about how many spikes are in the pulse

A similar argument can be made in the frequency domain, where the
TBP is the ratio of the spectral width to the width of the smallest
spectral structure.



Temporal
and
spectral
shapes
and

TBPs of

simple
ultrashort
pulses

Common pulse envelopes (with 1, = Intensity FWHM):

E(t)
£(t)
E(t)
E(t)

exp[—1.385(¢/7p)?]
sech[1.763(t/7)]

[1 + 1.656(t/75)?] !
[exp(t/7p) + exp(—3t/7p)]~*

Intensity

Spectra for
pulses with

the same
pulse width

Intensity
profile

¢~ 2t/70)?
sech®(t/r,)
(1 + (t/7e)%]?

[et/7 + e3t/m] 2

. |1 for [t/7:] <%, 0 else

e~ (076)*/2
sech?(1w7,/2)
e-2lolm
sech(rw7,/2)
sinc?(ory)




Time-Bandwidth Product
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Time-Bandwidth Product
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Time-Bandwidth Product
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A linearly chirped pulse with no structure can
also have a large time-bandwidth product.
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