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Dispersion and Ultrashort Pulses 



Refractive index dispersion 

B1 = 1,61625977 

B2 = 0,259229334 

B3 = 1,07762317 

C1 = 0,0127534559 

C2 = 0,0581983954 

C3 = 116,607680 

Sellmeiera formula 

e.g. SF 10 glass from Schott 
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n(0,532 mm) = 1,73673 



Dispersion in Optics 

The dependence of the refractive index on wavelength has two 

effects on a pulse, one in space and the other in time. 

temporal dispersion 

d2n/d2  

 

angular dispersion 

dn/d 

Both of these effects play major roles in ultrafast optics. 

Dispersion also disperses a pulse in time: 

Dispersion disperses a pulse in space (angle): 

vgr(blue) < vgr(red) 

( ) ( )ou o tt u redblue 



Group 

velocity 

vs.  

phase 

velocity 

v vg 

v vg v vg 

v 0 

Movies! 



   vg    dw /dk 
 
Now, w is the same in or out of the medium, but k = k0 n, where k0 is  
the k-vector in vacuum, and n is what depends on the medium.   
So it's easier to think of w as the independent variable: 
 
 
 
Using k  =  w n(w) / c0, calculate:  dk /dw = (n + w dn/dw) / c0  
  
 vg    c0 / n  w dn/dw) =  (c0 /n) / (1 + w /n dn/dw ) 
 
Finally:   
 
 
 

So the group velocity equals the phase velocity when dn/dw = 0, such 

as in vacuum.  But n usually increases with w, so dn/dw > 0, and: 

         vg  <  vphase. 

Calculating the group velocity 
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Use the chain rule : 

Now, , so :      
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or :

Calculating group velocity vs. wavelength 

We more often think of the refractive index in terms of wavelength, 

so let's write the group velocity in terms of the vacuum wavelength 0. 
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n(w) 
Schott SF 10 glass 
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The group velocity is lower than the phase 

velocity in non-absorbing regions. 

         vg  =  c0  / (n + w dn/dw) 
 

Except in regions of anomalous dispersion (near a resonance and which 

are absorbing), dn/dw is positive.  So vg < vphase for most frequencies!  



Recall that the effect of a linear passive 

optical device (i.e., windows, filters, etc.) on 

a pulse is to multiply the frequency-domain 

field by a transfer function: 

 

˜ E out(w)  H(w) ˜ E in (w)

where H(w) is the transfer function 

of the device/medium: 

( ) ( ) exp[ ( )]H HH B iw w  w 

Since we also write E(w) = √S(w) exp[-i(w)], the spectral phase of the 

output light will be: 

out(w)  H (w) in (w)
We simply add  

spectral phases. 

Spectral Phase and Optical Devices 

Note that we CANNOT add the temporal phases! 

out(t)  H (t)  in (t)

H(w) 
˜ E in(w)

˜ E out(w)

Optical device 

or medium 

exp[ ( ) / 2]L w for a medium 



The Group-Velocity Dispersion (GVD) 

The phase due to a medium is:      H(w) =  n(w) k L = k(w) L  
 
To account for dispersion, expand the phase (k-vector) in a Taylor series: 
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is the “group velocity dispersion.” 
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The first few terms are all related to important quantities. 

The third one is new: the variation in group velocity with frequency: 



The effect of group velocity dispersion 

GVD means that the group velocity will be different for different 

wavelengths in the pulse. 

vgr(blue) < vgr(red) 

Because ultrashort pulses have such large bandwidths, GVD is a 

bigger issue than for cw light. 



Calculation of the GVD (in terms of wavelength) 

Recall that: 
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Okay, the GVD is: 

Simplifying: 
Units: 

ps2/km 

ps/THz·km 





GVD in optical fibers  

Sophisticated cladding structures, i.e., index profiles, have been 

designed and optimized to produce a waveguide dispersion that 

modifies the bulk material dispersion 



GVD yields group delay dispersion (GDD). 

Delays are just velocities times the medium length L. 

 

The phase delay: 
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The group delay: 

The group delay dispersion (GDD): 

so: 
0

0 0

( )

v ( )

k LL
t



w

w w
 

0 0

0

( ) ( )
v ( )

g

g

L
t k Lw w

w
 

1
( )

vg

d
GDD L k L

d
w

w

 
  

  

so: 

so: 

Units: fs2 or fs/Hz  

GDD = GVD L 
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Manipulating the phase of light 

Recall that we expand the spectral phase of the pulse in a Taylor Series: 

2

0 1 0 2 0( ) [ ] [ ] / 2! ... w   w w  w w     

So, to manipulate light, we must add or subtract spectral-phase terms. 

2
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and we do the same for the spectral phase of the optical medium, H: 

For example, to eliminate the linear chirp (second-order spectral phase), 

we must design an optical device whose second-order spectral phase 

cancels that of the pulse: 

2  H2  0
d2

dw
2

w 0


d2 H

dw
2

w 0

 0i.e., 

group delay group delay dispersion (GDD) phase 



Propagation of the pulse manipulates it. 

Dispersive pulse  

broadening  

is unavoidable. 
 

If 2 is the pulse 2nd-order spectral phase on entering a medium, and 

k”L is the 2nd-order spectral phase of the medium, then the resulting 

pulse 2nd-order phase will be the sum: 2 + k”L. 
 

A linearly chirped input pulse has 2nd-order phase: 

 

Emerging from a medium, its 2nd-order phase will be: 
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(This result 

pulls out the 

½ in the 

Taylor 

Series.)  

A positively chirped pulse will broaden further;  

a negatively chirped pulse will shorten.  

Too bad material GDD is always positive in the visible and near-IR… 

This result, with 

the spectrum, 

can be inverse 

Fourier-

transformed to 

yield the pulse. 



So how can we generate negative GDD? 

This is a big issue because pulses spread 

further and further as they propagate 

through materials. 

 

We need a way of generating negative 

GDD to compensate. 



Angular dispersion yields negative GDD. 

Suppose that an optical element introduces angular dispersion. 

We’ll need to compute the projection onto the optic axis (the 

propagation direction of the center frequency of the pulse). 

Input 

beam 

Optical 

element  

Optic 

axis 

Here, there is negative 

GDD because the blue 

precedes the red. 



A prism pair has 

negative GDD. 

How can we use dispersion 

to introduce negative chirp 

conveniently? 

Let Lprism be the path 

through each prism and  

Lsep be the prism separation. 

This term assumes 

that the beam grazes  

the tip of each prism 
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This term allows the beam  

to pass through an additional 

length, Lprism, of prism material. 

Vary Lsep or Lprism to tune the GDD! 

Always 

negative! 

Always 

positive (in 

visible and 

near-IR) 

Assume Brewster 

angle incidence 

and exit angles. 



It’s routine to stretch and then compress ultrashort pulses by factors 

of >1000. 

Pulse Compressor 

This device, which also puts the pulse back together, has negative 

group-delay dispersion and hence can compensate for propagation 

through materials (i.e., for positive chirp). 

Angular dispersion yields 

negative GDD. 



Note the unintuitive color variation of the pulse after the first prism. To 

see the effect on a positively chirped pulse, read right to left! 

What does the pulse look like inside a 

pulse compressor? 

If we send an unchirped pulse 

into a pulse compressor, it 

emerges with negative chirp. 



Adjusting the GDD maintains alignment. 

Any prism in the compressor can be translated perpendicular to the  

beam path to add glass and reduce the magnitude of negative GDD. 

Remarkably, this does 

not misalign the beam. 

Output beam Input beam 

The output path is 

independent of prism 

position. 



The required separation between prisms 

in a pulse compressor can be large. 

It’s best to use highly dispersive glass, like SF10, or gratings.  

But compressors can still be > 1 m long.  

Kafka and Baer,  

Opt. Lett., 12,  

401 (1987) 

Different prism  

materials 

Compression of a 1-ps, 

600-nm pulse with 10 

nm of bandwidth (to 

about 50 fs). 

The GDD      the prism separation and the square of the dispersion. 



Four-prism pulse compressor 

Fine GDD 

tuning 

Prism 

Wavelength 

tuning 

Wavelength 

tuning 

Prism 

Coarse GDD tuning  

(change distance between prisms) 

Wavelength 

tuning 

Wavelength 

tuning 

Prism 

Prism 

Also, alignment is critical, and many knobs must be tuned. 

All prisms and their incidence angles must be identical. 



Pulse compressors are 

notorious for their large size, 

alignment complexity, and 

spatio-temporal distortions. 

Pulse-

front tilt 

Spatial 

chirp 

Unless the compressor is 

aligned perfectly, the output 

pulse has significant:  

1. 1D beam magnification  

2. Angular dispersion 

3. Spatial chirp  

4. Pulse-front tilt 

Pulse-compressors have alignment issues. 



Why is it difficult to align a pulse 

compressor? 

Minimum 

deviation 

The prisms are usually aligned using 

the minimum deviation  

condition.   

The variation of the deviation angle is 2nd order in the prism angle. 

But what matters is the prism angular dispersion, which is 1st order! 

Using a 2nd-order effect to align a 1st-order effect is a bad idea. 

Prism angle 
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Two-prism pulse 

compressor 

Prism 

Wavelength tuning 

Periscope 

Wavelength 

tuning 

Prism 

Coarse GDD tuning 

Roof 

mirror 

Fine GDD 

tuning 

This design cuts the size and alignment issues in half. 



Single-prism pulse compressor 

Corner cube 

Prism 

Wavelength 

tuning 

GDD tuning 

Roof 

mirror 

Periscope 



Diffraction-grating pulse compressor 

The grating pulse compressor also has negative GDD. 
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where d = grating spacing 

(same for both gratings) 

Grating #1 

Grating #2 

Note that, as in the prism 

pulse compressor, the 

larger Lsep, the larger 

the negative GDD. 



2nd- and 3rd-order phase terms for prism 

and grating pulse compressors 

Piece of glass 

'' ''' 

Grating compressors offer more compression than prism compressors. 

Note that the relative signs of the 2nd and 3rd-order terms are opposite 

for prism compressors and grating compressors. 



Compensating 2nd and 3rd-order spectral phase 

Use both a prism and a grating compressor.  Since they have 3rd-order 

terms with opposite signs, they can be used to achieve almost arbitrary  

amounts of both second- and third-order phase. 

This design was used by Fork and Shank at Bell Labs in the mid 1980’s 

to achieve a 6-fs pulse, a record that stood for over a decade. 

input2   prism2  grating2  0

input3  prism3  grating3  0

Given the 2nd- and 3rd-order phases of the input pulse, input2 and input3,  

solve simultaneous equations: 

Grating compressor Prism compressor 



Pulse Compression Simulation 

Resulting intensity vs. time  

with only a grating compressor: 

Resulting intensity vs. time  

with a grating compressor 

and a prism compressor: 

Note the cubic  

spectral phase! 

Brito Cruz, et al., Opt. Lett., 13, 123 (1988). 

Using prism and grating pulse compressors vs. only a grating compressor 



The grism pulse compressor has tunable 

third-order dispersion. 

A grism is a prism with a diffraction grating etched onto it. 

A grism compressor can compensate for both 2nd and 3rd-order 

dispersion due even to many meters of fiber. 

a [sin(m) – n sin(i)] = m 

The (transmission) 

grism equation is: 

Note the factor of n, 

which does not occur 

for a diffraction 

grating. 



Chirped mirror coatings also yield 

dispersion compensation. 

Such mirrors 

avoid spatio-

temporal 

effects, but 

they have 

limited GDD. 

Longest wavelengths 

penetrate furthest. 



Chirped mirror coatings 

Longest 

wavelengths 

penetrate 

furthest. 

Doesn’t work 

for < 600 nm 
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(from Agata Jasik group at IET Warsaw) 
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Tunable chirped mirror 
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