


Refractive index dispersion
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Calculating the group velocity
v, = do/dk
Now, o Is the same in or out of the medium, but k = k,n, where k, Is

the k-vector in vacuum, and n is what depends on the medium.
So it's easier to think of » as the independent variable:

Iv, =[dk/d]"|

Using k = o n(w) / c,, calculate: dk/dw = (n+ o dn/dw) / c,

Vg = G/ (N+ @wdn/dw) = (cy/n) /(1 + w/ndn/dw)

Vi =V e /(1+ Qj—nj

So the group velocity equals the phase velocity when dn/dw = 0, such
as in vacuum. But n usually increases with o, so dn/dw > 0, and:

Finally:

Vg < Vphase'



We more often think of the refractive index in terms of wavelength,
so let's write the group velocity in terms of the vacuum wavelength A,.

ey SO R
do di, do
di, -27¢,  -27C,  —A

Now, A, = 27C,/ w, SO = —
& : do  ®®  (22¢,1A)* 2xc,

Recallingthat: v, = (C—Oj/[ldrgﬂ}
n

? 72
we have: v, = (C_Oj/ 14 27C; | dn [ 4
n nh, |d,| 2#¢;

or.
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The group velocity is lower than the phase
velocity In non-absorbing regions.
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Recall that the effect of a linear passive _
optical device (i.e., windows, filters, etc.) on £ (®) E (o)
a pulse is to multiply the frequency-domain H(w)
field by a transfer function:

E, (o) = H(®) E, (®)

~

Optical device
or medium

where H(w) is the transfer function
of the device/medium:

H(w) = B, (@) exp[-ig, (®)]

Since we also write E(w) = VS(w) exp[-ip{®)], the spectral phase of the
output light will be:

exp[—a(w)L /2] for a medium

| 0..@) = 0,0 +0,0) |

Note that we CANNOT add the temporal phases!
¢0ut(t) * ¢H (t) + ¢m (t)



The Group-Velocity Dispersion (GVD)
The phase due to a mediumis:  @,(®) = n(w) KL =k(w) L

To account for dispersion, expand the phase (k-vector) in a Taylor series:

k@)L = k(@)L + K(@p)[w—ap]L + 1k"(w,)[@—a9,]' L +...

0)0 k'(a) ) _ 1 d 1
0
V¢ (a)o) Vv (a)o) dw Vg

K(w,) =

The first few terms are all related to important quantities.
The third one is new: the variation in group velocity with frequency:

d| 1

K"(w) = rpn iy is the “group velocity dispersion.”




GVD means that the group velocity will be different for different
wavelengths in the pulse.

] &

v, (blue) <

Because ultrashort pulses have such large bandwidths, GVD is a
bigger issue than for cw light.



dd, _ -4 4 _dkhd _—h d

Recall that:

do 27rc, do dod4, 27¢,d4,
dn
and ngcol(n_ﬂoa)

Okay, the GVD is:
4Lk 4L, ) A, g0
do| v, |~ 2re 4% | 5, A%, )| ~ 2zt dn | CdA

. 2 dn
- ZnCS{dﬂo ﬂodﬂo CMJ

- — Units:
SIMpHfyIng: 1~y _ K@) = zj:cz dﬂg pS%kI-T K
: ps/THz-Km
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GVD in optical fibers
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GVD yields

Delays are just velocities times the medium length L.

The phase delay:
W, | L k(mw)L
SO: ’[¢ =

V¢(wo)

S V(@) @,

The group delay:
1 L

vy T @)

=k'(w,)L

K'(@,) =

The group delay dispersion (GDD): GDD/: GVD L
— = ¥

K"() = 3 {1} oo |coD = 9| 1L - k(w)L

do| v, dw| VvV

Units: fs2 or fs/Hz



material |, [nm] n(A) dn 107 {L} ':Jh‘rf 107 : } d”-;_' : 1} T [ﬂ GDD{IL N\ToD!| fi}
d A um || d A Lpm” |[dAT ] um” || F | mm | mm | | mm
BK7 400 |1,5308 -13,17 10,66 -12,21 5282 120,79 40,57
500 [1,5214 -6,58 3,92 -3,46 5185 86,87 32,34
600 [1,5163 -3,91 1,77 -1,29 5136 67,52 29,70
800 [1,5108 -1,97 0,48 -0,29 5002 43,96 31,90
1000 |1,5075 -1,40 0,15 -0,09 5075 26,93 42,88
1200 |1,5049| -1,23 0,03 -0,04 5069 10,43 66,12
SF10 400 [1,7783 -52,02 59,44 -101,56 6626 673,68 548,50
500 [1,7432 -20,89 15,55 -16,81 6163 344,19 219,81
600 |1,7267 -11,00 6,12 -4,98 5980 233,91 140,82
800 [1,7112 -4,55 1,58 -0,91 5830 143,38 97,26
1000 [1,7038 -2,62 0,56 -0,27 5771 99,42 92,79
1200 |1,6992 -1,88 0,22 -0,10 5743 68,59 107,51
Sapphire| 400 |1,7866 -17,20 13,55 -15,05 6189 153,62 47,03
500 [1,7743 -8,72 510 -4.42 6064 112,98 39,98
600 [1,7676 -5,23 2,32 -1,68 6001 88,65 37,97
800 [1,7602 -2,68 0,64 -0,38 5943 58,00 4219
1000 |1,7557 -1,92 0,20 -0,12 5921 35,33 57,22
1200 [1,7522 -1,70 0,04 -0,05 5913 13,40 87,30
Quartz | 300 |1,4878 -30,04 34,31 -54 66 5263 164,06 46,49
400 [1,4701 -11,70 9,20 -10,17 5060 104,31 31,49
500 [1,4623 -5,93 3,48 -3,00 4977 77,04 26,88
600 |1,4580] -3,55 1,59 -1,14 4934 60,66 25,59
-1,80 0,44 -0,26 4806 40,00 28,43

800

1,4533

Femtosecond Laser Pulses: Linear Properties, Manipulation, Generation and Measurement



Recall that we expand the spectral phase of the pulse in a Taylor Series:

(@) = @y +o [o-w]+e, [0-n]12!+..

and we do the same for the spectral phase of the optical medium, H:

(@) = Puo+ Py [0—0,]+ @y, [0—0,]" 12!+
/ N ™~ -
phase group delay group delay dispersion (GDD)

So, to manipulate light, we must add or subtract

For example, to eliminate the linear chirp (second-order spectral phase),
we must design an optical device whose second-order spectral phase
cancels that of the pulse:

d’ @
do’ .

d2
dw

O, + @y, =0 l.e.,

wo



Dispersive pulse
broadening
IS unavoidable.

If @, is the pulse 2"d-order spectral phase on entering a medium, and
k”L is the 2"d-order spectral phase of the medium, then the resulting
pulse 2nd-order phase will be the sum: ¢, + k”L.

,3 /2 (This result

i I i nd_ . .= pulls out the
A linearly chirped input pulse has 2"?-order phase: ;i o>+ B2 Vainthe
Taylor
. . . . Series.)
Emerging from a medium, its 2"d-order phase will be:

3 2 This result, with

- ,B/2 GDD - ,8/2 ﬂo d N L the spectrum,

(02,out -2 2 + - 2 2 + 2 2 can be inverse

24 +IB o +IB 27Z'Co dﬂ“o Fourier-

transformed to

A positively chirped pulse will broaden further; Y T e,

a negatively chirped pulse will shorten.
Too bad material GDD is always positive in the visible and near-IR...



This Is a big issue because pulses spread
further and further as they propagate
through materials.

We need a way of generating negative
GDD to compensate.



Angular dispersion yields negative GDD.

Suppose that an optical element introduces angular dispersion.

Optical
element
Optic
Input axis
beam

Here, there is negative
GDD because the blue
precedes the red.

WEe'll need to compute the projection onto the optic axis (the
propagation direction of the center frequency of the pulse).



Assume Brewster
angle incidence
and exit angles.

How can we use dispersion
to introduce negative chirp
conveniently?

Let L, be the path
through each prism and
L, be the prism separation.

d*¢ 2 (an| \ 2 dn
2 ~ sep k J + Lprism 2 2
dw 27 \dAl, 2mc” dA
@o T T Ao
This term assumes This term allows the beam
that the beam grazes to pass through an additional
the tip of each prism length, L, Of prism material.

Vary L, or L, to tune the GDD!

prism



~alf

~— Angular dispersion yields —
negative GDD.

/N




What does the pulse look like inside a
pulse compressor?

If we send an unchirped pulse —
into a pulse compressor, it
emerges with negative chirp.

Note the unintuitive color variation of the pulse after the first prism. To
see the effect on a positively chirped pulse, read right to left!



Adjusting the GDD maintains alignment.

Remarkably, this does The output path is
not misalign the beam. Independent of prism
position.

Input beam Output beam




The required separation between prisms
In a pulse compressor can be large.

1 cm Prism Spacing

Different prism

/ materials

SF10

Angle of Incidence




Also, alignment is critical, and many knobs must be tuned.

Wavelength Wavelength

tuning @ @ tuning

Prism

Prism Prism ~
z ; Fine GDD REN
tuning

Wavelength Wavelength

tuning tuning
Coarse GDD tuning

(change distance between prisms)

All prisms and their incidence angles must be identical.



Pulse-compressors have alignment issues.

Pulse compressors are

notorious for their large size,

alignment complexity, and
spatio-temporal distortions. &\ ]

front tilt

Unless the compressor is
aligned perfectly, the output
Spatial pulse has significant:
chirp
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Coarse GDD tuning

Two-prism pulse
compressor

Wavelength
tuning Roof

@ mirror

:

A -

Periscope

Prism

M <> Fine GDD

: tunin
Wavelength tuning J

This design cuts the size and alignment issues in half.



Single-prism pulse compressor

Q) Corner cube
/“

' GDD tuning
Roof

: Wavelength
mirror B ﬁ
tuning




Diffraction-grating pulse compressor

Grating #2

Grating #1




2nd- and 3rd-order phase terms for prism
and grating pulse compressors

e o

SQ1 (L = 1 cm) 620 3 04 550 240
Piece of glass 2.36 362

grating pair
b=20cm; 3=0°
d=1.2 um

Brewster prism 3.04 -760 —1300
pair, SQ1
£ =50 cm 2.36 -523 -612

3.04 8.2 10" 1.1 10
-3 108 6.8 108




Compensating 2nd 3rd-order spectral phase

Use a prism a grating compressor. Since they have 3rd-order
terms with opposite signs, they can be used to achieve almost arbitrary
amounts of both second- and third-order phase.

L SvAaW

Prism compressor Grating compressor

Given the 2nd- and 3rd-order phases of the input pulse, ¢,,,,,, and ¢,
solve simultaneous equations:

(Dinpuﬂ + ¢prism2 + (ngtingﬂ

goinpuﬁ + ¢prism3 + ¢grating3

0
0

This design was used by Fork and Shank at Bell Labs in the mid 1980’s
to achieve a 6-fs pulse, a record that stood for over a decade.
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The pulse compressor has tunable
third-order dispersion.

A grism is a prism with a diffraction grating etched onto it.

/

The (transmission)
grism equation Is:
B T t_

N\ l a [sin(6.) — n sin(6)] = mA
eC)L/ | Note the factor of n,

=
\ ! B— which does not occur
)
| <=> for a diffraction
— grating.

A grism compressor can compensate for both 2"d and 3"d-order
dispersion due even to many meters of fiber.




Chirped mirror coatings also yield
dispersion compensation.

Ultrabroad-t-nd Chirped Multilayer Mirrors

Longest wavelengths
penetrate furthest.

Group delay is nearly linear with the wavelength



Chirped mirror coatings

Air Antireflection coating Chirped mirror structure Substrate
1 [).:)() nm Hﬁ

8

Doesn’t work
for < 600 nm
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Real-life chirped mirror coating
(from Agata Jasik group at IET Warsaw)
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Tunable chirped mirror
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