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For efficient second harmonic generation 

you need: 

1. High intensity of the electric field 

2. High nonlinear response of the medium (deff) 

3. Proper medium symmetry 

4. Proper phases between contributions from 

different places in the medium (phase 

matching) 





H. A. Lorentz (1909) P. A. Franken (1961) 

Nonlinear electronic response 



Symmetry in second-harmonic generation 

For this to hold, c(2) must be zero for media with inversion symmetry. 

Most materials have inversion symmetry, so you just don’t see SHG—

or any other even-order nonlinear-optical effect—every day. 

E (t) E 2(t) 

Esig(x,t)  c(2)E 2(x,t) 

If we imagine inverting space: 

Esig(x,t) → -Esig(x,t) 

E (x,t) → -E (x,t) 

Now, if the medium is isotropic, 

c(2) remains unchanged.  So: 

-Esig(x,t)    c(2) [-E (x,t) ]2   =  c(2)E (x,t)2  =  Esig(x,t) 



Phase-matching in second-harmonic 

generation 

How does phase-matching affect SHG?  It’s a major effect, 

another important reason you just don’t see SHG—or any 

other nonlinear-optical effects—every day. 



First demonstration of second-harmonic 

generation 

P.A. Franken, et al, Physical Review Letters 7, p. 118 (1961) 

The second-harmonic beam was very weak because the process 

was not phase-matched. 



First demonstration of SHG:  the data 

The actual published results… 

Input beam The second harmonic 

Note that the very weak spot due to the second harmonic is missing.  

It was removed by an overzealous Physical Review Letters editor, 

who thought it was a speck of dirt. 



Sinusoidal dependence of SHG intensity 

on length 

Large Dk Small Dk 

The SHG intensity is sharply maximized if Dk = 0. 



which will only be satisfied when: 

 

 

 

 

Unfortunately, dispersion in „normal” 

materials, upon „normal” conditions, 

prevents this from ever happening! 

Phase-matching second-harmonic generation 

So we’re creating light at wsig = 2w.  
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And the k-vector of the polarization is:  

The phase-matching condition is: 

The k-vector of the second-harmonic is: 



We can now satisfy the  

phase-matching condition. 

 

Use the extraordinary polarization 

for w and the ordinary for 2w. 

Phase-matching second-harmonic 

generation using birefringence 

Birefringent materials have different refractive indices for different  

polarizations. Ordinary and extraordinary refractive indices 

can be different by up to ~0.1 for SHG crystals.  
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ne depends on propagation angle, so we can tune for a given w. 

Some crystals have ne < no, so the opposite polarizations work. 



Noncollinear SHG phase-matching 
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Phase-matching bandwidth 

Phase-matching only works exactly for one wavelength, say l0.   
Since ultrashort pulses have lots of bandwidth, achieving 
approximate phase-matching for all frequencies is a big issue. 
 
The range of wavelengths (or frequencies) that achieve approximate 
phase-matching is the phase-matching bandwidth.   
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Recall that the intensity out of an 

SHG crystal of length L is: 

where: 
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Phase-matching efficiency vs. 

wavelength for BBO 

These curves also take into account the (L/l)2 factor.  

While the curves are scaled in arbitrary units, the 

relative magnitudes can be compared among the 

three plots. (These curves don’t, however, include the 

nonlinear susceptibility, c(2)). 

Phase-matching efficiency vs. wavelength for the nonlinear-optical 

crystal, beta-barium borate (BBO), for different crystal thicknesses: 

10 m 100 m 1000 m 

Note the huge differences 

in phase-matching 

bandwidth and efficiency 

with crystal thickness. 



Phase-matching efficiency vs. 

wavelength for KDP 

The curves for the thin crystals don’t fall to zero 

at long wavelengths because KDP 

simultaneously phase-matches for two 

wavelengths, that shown and a longer (IR) 

wavelength, whose phase-matching ranges 

begin to overlap when the crystal is thin. 

Phase-matching efficiency vs. wavelength for the nonlinear-optical 

crystal, potassium dihydrogen phosphate (KDP), for different 

crystal thicknesses: 

10 m 100 m 1000 m 

The huge differences in 

phase-matching bandwidth 

and efficiency with crystal 

thickness occur for all 

crystals. 



Calculation of phase-matching bandwidth 

Dk(l) 
4

l
n(l)- n(l / 2) 

0 0 0 0

0 0

4
( ) 1 ( ) ( ) ( / 2) ( / 2)

2
k n n n n

 l l
l l l l l l

l l

   
 D  -  - -   

  

because, when the input wavelength changes by l, the second-

harmonic wavelength changes by only l/2. 

The phase-mismatch is: 

Assuming the process is phase-matched at l0, let’s see what the 

phase-mismatch will be at l = l0 + l 

x x 
But the process is phase-matched at l0  
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The sinc2 curve will decrease by a 

factor of 2 when Dk L/2 = ± 1.39. 

So solving for the wavelength 

range that yields |Dk | < 2.78/L 

yields the phase-matching 

bandwidth. 
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Calculation of phase-matching bandwidth (cont’d) 

sinc2(DkL/2) 



Phase-matching bandwidth: BBO & KDP 

BBO KDP 

The phase-matching bandwidth is usually too small, but it increases as 

the crystal gets thinner or the dispersion decreases (i.e., the 

wavelength approaches ~1.5 microns for typical media). 

The theory breaks down, however, when the bandwidth 

approaches the wavelength. 



Group-velocity mismatch 

Inside the crystal the two different wavelengths have different group 
velocities. 
 

Define the Group-Velocity  
Mismatch (GVM): 
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As the pulse  

enters the crystal: 

As the pulse 

leaves the crystal: 

Second harmonic created 

just as pulse enters crystal 

(overlaps the input pulse) 

Second harmonic pulse lags 

behind input pulse due to GVM 



Group-velocity mismatch 
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Calculating GVM: 
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Group-velocity  

mismatch lengthens 

the SH pulse. 

Assuming that a very short pulse 

enters the crystal, the length of the , 

SH pulse, t, will be determined by 

the difference in light-travel times 

through the crystal: 

 t 
L

v g(l0 / 2)
-

L

v g(l0 )
 L GVM

Crystal 

L GVM   pWe always try to satisfy: 



L /LD 

Group-velocity mismatch pulse lengthening 

Second-harmonic pulse shape for different crystal lengths: 

It’s best to use a very thin crystal. Sub-100-micron crystals are common. 

 

LD 
 p

GVM

Input 

pulse 

shape 

LD is the crystal 

length that 

doubles the 

pulse length. 



Group-velocity mismatch numbers 



Group-velocity mismatch limits bandwidth. 

Let’s compute the second-harmonic bandwidth due to GVM. 

Take the SH pulse to have a Gaussian intensity, for which t  = 0.44. 

Rewriting in terms of the wavelength, 

 

               t l  = t  [d/dl]–1  = 0.44 [d/dl]–1 = 0.44 l2/c0 

 

where we’ve neglected the minus sign since we’re computing the 

bandwidth, which is inherently positive. So the bandwidth is: 
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Calculating the bandwidth by considering the GVM yields the same 

result as the phase-matching bandwidth! 
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Alternative method for phase-matching: 

periodic poling 

Recall that the second-harmonic phase alternates every 

coherence length when phase-matching is not achieved, which is 

always the case for the same polarizations—whose nonlinearity is 

much higher. 

Periodic poling solves this problem.  But such complex crystals 

are hard to grow and have only recently become available. 

Periodically Poled Lithium Niobate (PPLN) 



SHG efficiency (rough estimation) 
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The second-harmonic field is given by: 

The irradiance will be: 

Dividing by the input irradiance to obtain the SHG efficiency: 

Substituting in typical numbers: 

Take Dk = 0 

d  c(2), and includes 

crystal additional 

parameters. 



Serious second-harmonic generation 

Frequency-doubling 

KDP crystals at 

Lawrence Livermore 

National Laboratory 

 

These crystals convert 

as much as 80% of the 

input light to its second 

harmonic. Then 

additional 

crystals produce the 

third harmonic with 

similar efficiency! 

 

These guys are 

serious! 



Third harmonic generation via 2nd order 

nonlinearities 





Third harmonic generation via 2nd order 

nonlinearities 

 

The pulses must overlap in time 

and in space 









w1 

w1 

w3 

w2 = w3 - w1 

Parametric Down-Conversion 

(Difference-frequency generation) 

Optical Parametric 

Oscillation (OPO) 

w3 

w2 

"signal" 

"idler" 

By convention: 

wsignal > widler 

Difference-Frequency Generation: Optical 

Parametric Generation, Amplification, Oscillation 

w1 

w3 w2 

Optical Parametric 

Amplification (OPA) 

w1 

w1 

w3 

w2 

Optical Parametric 

Generation (OPG) 

Difference-frequency generation takes many useful forms. 

mirror mirror 



Optical Parametric Generation 

Equations are just about identical to those for SHG: 

2
(2) *1

1 2 32

1 1

2
(2) *2

2 1 32

2 2

2
(2) 3

3 1 22

3 3

1

v 2

1

v 2

1

v 2

i k z

g

i k z

g

i k z

g

E i E E e
z t c k

E i E E e
z t c k

E i E E e
z t c k

w
c

w
c

w
c

D 

D 

- D 

  
  -    

  
  -    

  
  -    

where: 

     ki = wave vector of ith wave 

     Dk = k1 + k2 - k3 

     vgi = group velocity of ith wave 

The solutions for E1 and E2 

involve exponential gain! 

OPA’s etc. are ideal uses of ultrashort pulses, whose intensities are high. 



Phase-matching applies. 

We can vary the crystal angle in the usual manner, or we can vary 

the crystal temperature (since n depends on T). 



Free code to perform OPO, 

OPA, and OPG calculations 

Public domain software maintained by Arlee Smith at  

Sandia National Labs. Just web-search ‘SNLO’. 

 

You can use it to select the best nonlinear crystal for your particular 

application or perform detailed simulations of nonlinear mixing 

processes in crystals.  

 

Functions in SNLO: 
 

    1. Crystal properties 

    2. Modeling of nonlinear crystals in various applications. 

    3. Designing of stable cavities, computing Gaussian focus parameters  

       and displaying the help file.  



Optical 

Parametric 

Generation 

Recent results 

using the nonlinear 

medium, 

periodically poled 

RbTiOAsO4 

Sibbett, et al., Opt. Lett., 22, 1397 (1997). 

signal: 

idler: 



An ultrafast noncol-

linear OPA (NOPA) 

Continuum generates an 

arbitrary-color seed pulse. 



NOPA specs 



Crystals for far-IR generation 

With unusual crystals, 

such as AgGaS2, 

AgGaSe2 or GaSe, 

one can obtain 

radiation to 

wavelengths as long 

as 20 m. 

 

These long 

wavelengths are 

useful for vibrational 

spectroscopy. 

Gavin D. Reid, University of Leeds, and Klaas Wynne, University of Strathclyde 

10 m 1 m 

Wavelength 



Elsaesser, et al., Opt. 

Lett., 23, 861 (1998) 

Difference-

frequency 

generation in 

GaSe 

Angle-tuned 

wavelength 



Third-order nonlinear optical effects – 

supercontinuum generation (in 

photonic fibers) 



GVD in optical fibers  

Sophisticated cladding structures, i.e., index profiles, have been 

designed and optimized to produce a waveguide dispersion that 

modifies the bulk material dispersion 



Microstructured optical fibers – 

more degrees of freedom available at last 

The following materials courtesy Ryszard Buczyński, IGF, FUW 



Why supercontinuum? 

 

How much light can you get into a fiber? 

   0 dBm = 1 mW 

-30 dBm = 1 W 



Classical and photonic crystal fibers 

1968 – fabrication of the first telecommunication fiber (Uchida at al.) 

1996 – fabrication of the first photonic crystal fiber (Knight at al.) 

Classical optical fiber 

Core Photonic cladding 

core cladding coating 



Group velocity dispersion (GVD) 

Geometrical (fiber) dispersion Material dispersion 
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  Dispersion of single mode fiber     

Material dispersion 

Total dispersion 

Modal dispersion (only multimode fibers) 

Fiber dispersion 

Dispersion 

- Measure of pulse 

spreading 

- Commonly measured 

in ps.nm-1.km-1 

- Mainly fixed by 

dispersion of material 

- Can be normal (red 

travels faster) or 

   anomalous (blue 

travels faster) 

- Causes problems in 

telecommunications 

 



Zero-dispersion shift - PCF 

PCF gives unique possibilities to design 

dispersion in the fiber: 

-  Zero-dispersion shift  in the range of 650-

1300 nm 

-  Positive (anomalous ) dispersion for 

wavelengths below 1300 nm 

-  Flat dispersion in the range of a few 

hundred of nm.   

-  Ultra-flat dispersion   



Conventional fiber fabrication 

Modified chemical vapour deposition (MCVD) 

J. Knight Advanced topics: Photonic crystal fiber 



The fiber drawing tower for PCF 

fabrication at The Institute of 

Electronic Materials Technology, 

Warsaw, Poland 

PCF fabrication facility – 

„the tower” 



Photonic crystal fiber fabrication 

Drawing of 

preform 

elements 

(rods, 

capillaries) 

Assembly 

of preform 

from basic 

capillaries 

Subpreform 

drawing 
Fiber drawing 

Integration 

with tube 



Technological process of photonic 

fiber manufacturing  

1. Drawing of elements for preform construction – glass 

capillaries, rods, tubes. 

 

 

2. Macroscopic mosaic preform, with designed structure, 

stacking.  

     At this stage we decide about type of lattice, hole/spacing 

ratio, distribution of capillaries, rods, etc., adding special 

properties elements (active, sensing, conductive, 

magnetostrictive, etc.) . 



Technological process of photonic 

fiber manufacturing  

4. Arrangement of the preform for fiber drawing. Adding 

outside layers of glass to achieve designed dimensions of 

the fiber (photonic structure/fiber diameter ratio). 

 

5. Photonic fiber drawing. At this stage we can influence to 

holes diameter, filling factor and fiber diameter by 

parameters of drawing process (temperature, feeding and 

drawing speeds). 

3. Intermediate (subpreform) preform drawing. Structure of 

subpreform is adequate to designed photonic fiber but in 

diameter of a few mm. 



SC generation in PCF NL12D1  

Supercontinuum generation for pulses 100 fs, central wavelength 812 nm, fiber length 13 mm  
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The supercontinuum spectra 



SC generation in PCF NL12A5 
Supercontinuum generation for pulses 100 fs, central wavelength 755 nm, fiber length 19.5 cm  
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pulse energy 2.78 nJ  



A commercial supercontinuum source 

(SuperK Fianium from NKT Photonics) 


