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The goal: measuring the intensity and phase vs. time (or frequency)
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To study this event, you need a
strobe light pulse that’s shorter. T T S T
Photograph taken by Harold Edgerton, MIT

But then, to measure the strobe light pulse,
you need a detector whose response time is even shorter.

And so on...

So, now, how do you measure the shortest event?




Ultrashort laser pulses are the shortest
technological events ever created by humans.

It's routine to generate pulses shorter than 10-13 seconds in duration,
and researchers have generated pulses tens of as (1018 s) long.

Such a pulse is to one second as 5 cents is to the US national debt (or
was, around the turn of the century).

Such pulses have many applications in physics, chemistry, biology, and
engineering. You can measure any event—as long as you’ve got a pulse

that’s shorter. _/K
\I /||
\

So how do you measure the shortest pulse? )\/

You must use the pulse to measure itself.

But that isn't good enough. It's only the pulse. It's not shorter.

Technigues based on using the pulse to measure itself have not sufficed.



We must measure an ultrashort laser pulse’s
Intensity and phase vs. time or frequency.

A laser pulse has the time-domain electric field:

E(t) = Re{\/IT(:t) exp[i(ayt —¢(Tt))]}

Intensity Phase
: _ (neglecting the
component)
E(w) = /S () exp[-ip(w)] -
Spectrum Spectral
Phase

Knowledge of the intensity and phase or the spectrum and spectral
phase is sufficient to determine the pulse.



The instantaneous frequency: ‘ w(t) = W, — dg/dt ‘

Example: “Linear chirp”

Phase, #(1)

Frequency, at)

~

time

time

Light electric field

Time

We'd like to be able to measure,

not only linearly chirped pulses,

but also pulses with arbitrarily complex
phases and frequencies vs. time.



Pulse Measurement in the Frequency Domain:
The Spectrometer

The spectrometer measures the spectrum, of course. Wavelength varies
across the camera, and the spectrum can be measured for a single pulse.

Broad- Entrance
band ISlit \ '\ Collimating
pulse — T 1 | Mirror

Czerny-Turner Grating

arrangement
Focusing
| :
Mirror
Camera or

Linear Detector Array

“Imaging spectrometers” allow many spectra to be measured
simultaneously, one for each row of a 2D camera.



Pulse Measurement in the Time Domain: Detectors

Detectors are devices that emit electrons in response to photons.

Examples: Photo-diodes, Photo-multipliers

Detector
Detector
A / Another symbol A '/
'D e for a detector: ' D:l
Detectors have very rise and fall times: ~ 1 nanosecond.
As far as we’re concerned, detectors have responses.

They measure the time integral of the pulse intensity from —oo to +oo;

Vdetector ec J‘OO ‘ E(t)‘zdt

The detector output voltage is proportional to the pulse energy.
By themselves, detectors tell us little about a pulse.



Pulse Measurement in the Time Domain:
The Intensity Autocorrelator
Crossing beams in a nonlinear-optical crystal, varying the delay

between them, and measuring the signal pulse energy vs.
delay, yields the

Pulse to be
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i The signal field is E(t) E(t-7).
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Varying the delay yields varying overlap between the two replicas of the pulse.

The intensity autocorrelation is only nonzero when the pulses overlap.



This is easy to show:

AP (1) = j () I(t—7)dt = j I(t'+7) (") dt’ = A (—7)
t’ T’t
=t—-7

= |AD(7) = AD ()|

This means that intensity autocorrelation cannot tell the “direction of
time” of a pulse.

Of course, it also tells us nothing about the pulse phase either.



Square Pulse and Its Autocorrelation
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Gaussian Pulse and Its Autocorrelation
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Sech? Pulse and Its Autocorrelation
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Autocorrelations of more complex intensities

Intensity Autocorrelation
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Intensity Autocorrelation
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Autocorrelations of more complex
pulses: a double pulse

Pulse Autocorrelation

A?(7) = Aéz)(z' + rsep)+

I(t) = ly(t) + Io(t+Tsep) Aéz)(r)+A(())

7 /b[\_ AN
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A practical autocorrelator
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A more practical autocorrelator

100 USD/pc

0,1 USD/pc




Early prototype, ca. 2004
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ACrot ver 1.3 (DC motor)
for MINIMODS project
Work package No. 1

Task 1.1 Development of minaturised autocorrelator

base plate 2/2 (ver, 1.3)
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Single-shot autocorrelation

Crossing beams at an angle also maps delay onto transverse position.

Here, pulse #1 arrives

Pulse #1 ;
earlier than pulse #2

Here, pulse #1 and pulse #2
arrive at the same time

Here, pulse #1 arrives
later than pulse #2

7(X)=2(x/c)sin(@/2) = xb/c

Imaging the nonlinear medium onto an array detector allows us to
measure a pulse on a single laser shot if we use a large beam and a

large beam angle to achieve the desired range of delays.

So single-shot SHG AC has no geometrical smearing! (SHG FROG, too)



Single-Shot Autocorrelation

Input pulse (expanded Cylindrical lens focuses the beam in
in space to ~1 cm) the vertical direction (for high intensity),
while the delay varies horizontally.

Beam-splitter

SHG Aperture
crystal

No mirror v ' Camera or
moves! linear-array

detector

Lens images crystal onto
camera and hence delay
onto position at camera




Minimal amounts of glass must be used in the beam before the
crystal to minimize the GVD introduced into the pulse by the
autocorrelator.

Conversion efficiency must be kept low, or distortions due to
“depletion” of input light fields will occur.

In single-shot measurements, the beam must have a constant
Intensity vs. position. In multi-shot measurements, the beam overlap
In space must be maintained as the delay is scanned.

It's easy to introduce systematic error. The only feedback on the
measurement quality is that it should be maximal at t = 0 and
symmetrical.



Some ambiguity problems in autocorrelation can be overcome by
using a third-order nonlinearity, such as the Optical Kerr effect.

Pulse to be
measured

This arrangement is called
“polarization gating.”

Beam Eqi,(t,0) = E(1) [E(t-9)J?
splitter

> (6, 2) = 1(1) 1(t-2)2
/ E(t-7) polarization

rotation @
.-l"
I I/ -Q J\/v
- :
Variable Nonlinear
delay, 7 medium (glass) Note the 2
0 v

The third-order autocorrelation is not @) )
symmetrical, so it yields slightly more ~ |A™ (7) = j ()] (t—7) dt
information, but still not the full pulse. —o0




When a shorter reference pulse is available:

If a reference, very short pulse is available, then it can be used to
measure the unknown pulse. In this case, we perform sum-frequency
generation, and measure the energy vs. delay.

SFG
) I E(1) crystal Slow
Unknown pulse . detector
— N /LbEJ(t\) |>I. Ve (7) ¢ C(7)
Reference gt
pulse Lens Eg-(t,7) oc E(t)Eg(t_T)
N IDeIay = Ige(t,7) o 1()1,(t—7)

The Intensity Cross-correlation: | C(7) = j () |g(t— 7) dt

If the reference (unknown) pulse is much shorter than the unknown
pulse, then the intensity cross-correlation fully determines the unknown

pulse intensity.



What if we use a collinear beam geometry, and allow the autocorrelator
signal light to interfere with the SHG from each individual beam?

_ Input
Michelson .< SiEe SHG
Interferometer P Lens Filter Slow

crystal
E@) AA Y detector Diels and Rudolph,
Mirror |:| - |:|= . Ultrashort Laser
\ Pulse Phenomena,
Beam- E(t— E t) — E t—r 2 Acad.emlc Press,
splitter (=9 Et)—E(t—7) [E()-E(t-7)] 1996
== | [ Delay
Mirror AP (1) = j ‘ [Et)-E(t—7)]° ‘ dt
NG il' Usual
terms Autocor-
relation

IA® (r) EI [E*(t)+E*(t-0)-2EMER-0)| dt | term

Also called the “Fringe-Resolved Autocorrelation”



The measured intensity vs. delay is:

o0

IA? (1) Ej |E*(t)+E*(t—7)-2E(ME(t—7) || E*(1) + E*(t—7) - 2E"()E"(t-7) | dit

—00

Multiplying this out:

IA?(7) = j w{ ‘Ez(t)‘2+ E2()E2(t—7) — 2E2(t)E"(t)E"(t—17) +
“EAt-7) E™(t) + |[EX(t—o)| - 2EX(t—o)E"®E"(t-7)+
—2E(t)E(t—7)E2(t) — 2E(t)E(t—r)E*2(t—r)+4|E(t)|2|E(t—r)|2}dt

= jw{ 1%(t)+ E*()E™(t—7) — 2I(t)E()E (t—7) +
T OEN(t-7) ET() + 17(t—-7) - 21(t—7)E'@)E(t—7)+
“21QE@E-D)E'(M) - 21(t—7)E®E (t—7)+41 (1)l (t—7)} ot

where 1(t) =|E(Y)|’



= j 1%(t) + 1°(t—7) dt Constant (uninteresting)

4 4j 1) 1(t — 7) dt

[1t)+1(t-7)]ERX)E (t—7)dt + cc

, j o Sum-of-intensities-weighted
o (oscillates at w In delay)

+ j E*(t)E*(t-7)dt + cC.  equivalent to the spectrum of the SH
o (oscillates at 2w in delay)

The interferometric autocorrelation simply combines several measures
of the pulse into one (admittedly complex) trace. Conveniently, however,
they occur with different oscillation frequencies: 0, o, and 2 w.



Interferometric Autocorrelation: Examples

Intensity (a.u.)
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Does the interferometric autocorrelation yield
the pulse intensity and phase?

The claim has been made that the Interferometric Autocorrelation,
combined with the pulse interferogram (i.e., the spectrum), could do so
(except for the direction of time).

Naganuma, IEEE J. Quant. Electron. 25, 1225-1233 (1989).
But the required iterative algorithm rarely converges.

The fact is that the interferometric autocorrelation yields little more
Information than the autocorrelation and spectrum.

We shouldn’t expect it to yield the full pulse intensity and phase. Indeed,
very different pulses have very similar interferometric autocorrelations.
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Interferometric
Autocorrelations
for Pulses
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Chung
and
Weiner,
IEEE
JSTQE,
2001.




Interferometric Autocorrelation:
Practical Details and Conclusions

A good check on the interferometric autocorrelation is that it should be
symmetrical, and the peak-to-background ratio should be 8.

This device is difficult to align; there are five very sensitive degrees of
freedom in aligning two collinear pulses.

Dispersion in each arm must be the same, so it may be necessary to
insert a compensator plate in one arm.

The typical ultrashort pulse is still many wavelengths long. So many
fringes must typically be measured.

It is difficult to distinguish between different pulse shapes and,
especially, different phases from interferometric autocorrelations.

Like the intensity autocorrelation, it must be curve-fit to an assumed
pulse shape and so should only be used for rough estimates.



Nonlinear fluorescence and absorption are also
used for autocorrelation, interferometric or not.

Region of

Two-Photon Fluorescence /( B

. . TPF due t

Multi-shot (must scan delay) Single-shot: oulse (l)J\?ercl)ap
M / Filter

“— Filter
: : ]
Two-Photon-Absorption Photodiodes |

Photo-detector
A. A . that absorbs two
> photons of o each,
but not one at ®

D. T. Reid, et al., Opt. Lett. 22, 233-235 (1997)

Resolving the sub-A fringes yields interferometric autocorrelation; otherwise not,
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A mathematically rigorous form of a
musical score is the

2

S (0n7) = j CE(D) g(t—1) exp(—iot) dt



Linearly
chirped
Gaussian\

pulse
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g(t-7) gates out a
piece of E(t),
centered at t.




Spectrograms for Linearly Chirped Pulses

Negatively chirped Unchirped Positively chirped
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Like a musical score, the spectrogram visually displays the frequency
vs. time (and the intensity, too).



Properties of the Spectrogram

Algorithms exist to retrieve E(t) from its spectrogram.

The spectrogram essentially uniquely determines the waveform intensity,
I(t), and phase, #t).

There are a few ambiguities, but they're “trivial.”

The gate need not be—and should not be—much shorter than E(t).
Suppose we use a delta-function gate pulse:

/.

j CE() S5(t—7) exp(—icot) di

2

= |E(c) exp(-ior)|”

= [E@[

The spectrogram resolves the dilemma! It doesn’t need the shorter
event! It temporally resolves the slow components and spectrally
resolves the fast components.



FROG involves gating the pulse with a variably delayed replica of
itself in an instantaneous nonlinear-optical medium and then
spectrally resolving the gated pulse vs. delay.

Pulse to be
measured :
* Beam | FROG (C(), T) = J‘ Es,ig (t’ T) eXp(—i(()t) dt ‘
splitter P
/ E(t-p Polarization
rotation

Variabl Nonlinear Egig(t, ) = E(t) [E(t-7)/°
daelﬁgl, ? medium (glass)

Use any ultrafast nonlinearity: Second-harmonic generation, etc.
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about 21/3
for Gaussian
pulses).

Time (t)




FROG Traces for Linearly Chirped Pulses

Negatively chirped Unchirped Positively chirped
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Like a musical score, the FROG trace visually reveals the pulse
frequency vs. time—for simple and complex pulses.



Frequency
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Intensity
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Substituting for £, (7, 7) in the expression for the FROG trace:

Eiq(t,7) o E(0) |E(--7)I

Liroc (@,T) o

frnen
E, (t,7) exp(—iwt) dt

yields:

2

Lipoc (@,T) oc

J‘E(z‘) g(t—1) exp(—iwt) dt

where: g(t=7) = |E(t-7)|°

Unfortunately, spectrogram inversion algorithms
require that we know the gate function.
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A few more slides on phase retrieval
at the end of the lecture notes
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SHG FROG is simply a spectrally resolved

autocorrelation.
Pulse to be

measured

2

Ep?i?trgr | roc (@0, 7) = ‘ j Eg, (t,7) exp(—iwt) dt

Camera
SHG
crystal | | Spec-
)[I<: 0 trometer
- \
Variable E(t) E (1, )= E(YE(t-7)

delay,

SHG FROG is the most sensitive version of FROG.



(t—7)

The gate
pulse is
complex!
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SHG FROG is also a spectrogram, but its interpretation is more complex.



Negatively chirped Unchirped Positively chirped
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SHG FROG has an ambiguity in the direction of time, but it can be
removed.



Self-phase- Cubic-spectral- Double pulse

modulated pulise phase pulse
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SHG FROG fraces are symmefrized PG FROG fraces.
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Baltuska,
Pshenichnikov,
and Weirsma,

J. Quant. Electron.,
35, 459 (1999).



Generalizing FROG to arbitrary nonlinear-optical interactions

FROG is simply a frequency-resolved nonlinear-optical
signal that is a function of time and delay.

/\ Nonlinear-optical

process in which

beam(s) is(are) Spectrometer
Pulse to be delayed
measured X

E{T) E({t-x) SHG
_ E(t) |E(t-t)]° polarization gate
Esiglbt) < £y E(t)*  self diffraction
E(t) E(te) THG
Use any fast nonline ar-opiical process o create ihe signal Hield.

2

Pulse retrieval remains equivalent | 0. 7) = J“’O £ (t.2)exp(—iot dt
to the 2D phase-retrieval problem. rroc (@1 7) . sig (1, 7) €Xp( )

Many interactions have been used, e.g., polarization rotation in a fiber.



When a known reference pulse is available:

If a known pulse is available (it need not be shorter), then it can be
used to fully measure the unknown pulse. In this case, we perform

sum-frequency generation, and measure the vs. delay.
SFG crystal
Unknown pulse E(?) y I Camera
nd Spectro- I.
> ﬁF 4_. A | | meter
Known E (t-7)

PUise | N o Er(t,7) o EQ)E,(t—7)

The XFROG trace
(a spectrogram):

2

| (0,7) = j CE(t) E, (t—7) exp(-ioot) dt

XFROG completely determines the intensity and phase of the unknown
pulse, provided that the gate pulse is not too long or too short.
If a reasonable known pulse exists, use XFROG, not FROG.

Linden, et al., Opt. Lett., 24, 569 (1999).



The continuum
has many
applications, from
medical imaging
to metrology.

It's important to
measure |it.



It's better to gate a complicated pulse with a simple (known) one.

Gate pulse Sum-

frequency-

generation Camera
(SFG) \
crystal | Spec-
v\r\>oj\+ ..... N trometer

\éaﬁiable f Off-axis T
elay, : _
" paraboloid mirror Esig (t, T) EC (t) Eg (t z')
2

e (@) =| [ B0 E,(t=7) exp(-icot) dt

We angle-dither the crystal to increase the phase-matching bandwidth.



XFROG measurement of the continuum

340 340
360 360
‘T 380 ‘T 380
= —
= 400 = 400
g 420 g 420
o o
Y 440 Y 440
o] 4
= 460 = 460
w o
" 480 4 V480 2
500 - 500
-10000 -5800 0 5000 -10000 -5800 0 5000
Delay [fs] Delay [fs]
482 482
8192 x 8192 1
486 — 486
tracel ] XI;RO(:)LS error .
4 LI | j—
Measured over -8200 -7800 -8200 -7800
10 shots.

While the large-scale structure of each trace is identical, the measured
trace lacks the fine-scale structure of the retrieved trace.



Wave mixing for CW and pulsed fields
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Poor Man's FROG - the first prototype

f=150 1" CCD

( [— ‘ ' TOP VIEW
1 mm 3 mm KDP

)\ slit type | SHG

SIDE VIEW

12 08 04 00 04 08 12
crystal angle [deg)



PM FROG - does it actually do the job?

1.2- 12
1.0- 1.0
S 08- 0.8
2] |
>, 0.6- 0.6
z |
5 04 L 0.4
=y |
0.2- 0.2
0.0- 0.0
760 780 800 820 840

wavelength [nm]

C. Radzewicz, P. Wasylczyk, J. S. Krasinski, A Poor Man’s FROG, Optics Comm. 186, 329 (2000)

phase [rad]



GRating-Eliminated No-nonsense Observation
of Ultrafast Incident Laser Light E-fields

/ FROG \

Second-harmonic-
generation crystal

Crystal must
be very thin

Thick
SHG Cylindrical
lenses

(GRENOUILLE)



Suppose white light with a large divergence angle impinges on an SHG
crystal. The SH generated depends on the angle. And the angular width
of the SH beam created varies inversely with the crystal thickness.

% - Very thin crystal creates broad SH spectrum in all directions.

A

—

| Standard autocorrelators and FROGSs use such crystals.

@ Thin crystal creates narrower SH spectrum in

Very

SHG
crystal

Thin

)
o= —

_ : Thick
Very thick crystal acts like SHG crystal

a spectrometer! Why not replace the

spectrometer in FROG with a very thick crystal?

n
»

C
—
-

a given direction and so can’t be used

% 1/ \ /I for autocorrelators or FROGs.
Thin ::>
@ Jv /Thick crystal begins to

separate colors.

|

\

Very

thick crystal



ens images position in crysta

op Len ges position in crystal

(i.e., delay, 7) to horizontal
position at camera

Can place slit here to
filter out other beams

Sy | |/ Sy pe?

=R f Imaging Lens f Camera

)
/

Cylindrical Fresnel Thick
lens Biprism SHG
Crystal

Side FTLens | ens maps angle (i.e.,

. wavelength) to vertical
VIEW Ty position at camera

Yields a complete single-shot FROG. Uses the standard FROG algorithm.
Never misaligns. Is more sensitive. Measures spatio-temporal distortions!



Compare a

GRENOUILLE
measurement of a
pulse with a tried-
and-true FROG
measurement of the

same pulse:
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Read more
about
GRENOUILLE
in the cover
story of OPN,
June 2001
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Its low spectral resolution
limits its use to pulse
lengths between ~ 20 fs

and ~ 1 ps.

Like other single-shot
techniques, it requires
good spatial beam gquality.

Improvements on the horizon:

Inclusion of GVD and GVM in FROG code to extend the range of
operation to shorter and longer pulses.



PM FROG on the market (aka GRENOUILLE, Swamp Optics)




(z,7) Is the 1D Fourier transform with respect to Q2 of some new
(t,Q2), then:

If E

Sig

signal field, E

sig

The input pulse, E(7), Is easily obtained from Esig (t,Q2): E(t) Esig (t,0)

I
£, (1,0) = j E(t)|E(t— 1) exp(i(0)z) d

I W, T
Froo (17) =E(t)j|E(t—r)|2dr
So we must invert this in = E(’[)j| E(7") dr’ « =t-7
This integral-inversion p oc E(t)

for which the solution exists and Is (essentially) unique.
And simple algorithms exist for finding it.



1D vs. 2D Phase Retrieval

1D Phase Retrieval: Suppose we measure S(w) and desire E(¢), where:
2

S(w) =

j " E(t) exp(—iot) dt

Given S(w), there are infinitely many solutions
for E(r). We lack the spectral phase.

2D Phase Retrieval: Suppose we measure S(k,k,) and desire E(x,y):

2

S(k, k,) = j E(x, y) exp(-ik x—ik, y) dxdy o

— 0 &0 ark,
Image Recovery,
Academic Press,

Given S(k,k ), there is essentially one solution for E(x,y)!!! s

It turns out that it’s possible to retrieve the 2D spectral phase!

These results are related to the Fundamental Theorem of Algebra.



The Fundamental Theorem of Algebra states that all polynomials can be
factored:

S 2+ fy, 2+ fizt fy = fyg (2 (2) . (22 )

The Fundamental Theorem of Algebra for polynomials of
. Only a set of measure zero can be factored.

fN—],M—]yN S ML+ fN-J,M-zyN dAMI 4+ +fo,o = ?

Why does this matter?

The existence of the 1D Fundamental Theorem of Algebra implies that
1D phase retrieval is impossible.

The non-existence of the 2D Fundamental Theorem of Algebra implies
that 2D phase retrieval is possible.



The Fourier transform {F,, ..., F, ,} of a discrete 1D data set, { f, ..., fi.
1}, IS:

N1 N1
F = Z f g™ = Z f 2"  wherez=ei
m=0 m=0 \

polynomial!

The Fundamental Theorem of Algebra states that any polynomial,
faZVh+ .+ fy, can be factored to yield: £, (z—=z,) (z—2z,) ... (z—2zy)

So the magnitude of the Fourier transform of our data can be written:

|Fk| = |fN_1 (Z—Zl) (Z—Zz) (Z_ZN—l) | where z = ¢ i«

Complex conjugation of any factor(s) leaves the magnitude unchanged,
but changes the phase, yielding an ambiguity! So 1D phase retrieval is
Impossible!



The Fourier transform {F,, ..., Fy, v} Of a discrete  data set,

oo oo futwa ) IS
N-1 N-1 N-1 N-1
— —imk ~—ipq __ m_p
Fk’q ZZme,pe 2 _szm,pyz
m=0 p=0 m=0 p=0
/ where y = e

Polynomial of 2 variables! and z=e%u

But we cannot factor polynomials of two variables. So we can only
complex-conjugate the entire expression (yielding a trivial ambiguity).

Only a set of polynomials of measure zero can be factored.
So 2D phase retrieval is possible! And the ambiguities are very sparse.



