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 Ambiguities 
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Interferometric Autocorrelation 

Measuring Ultrashort Laser Pulses I: 

Autocorrelation and FROG 
The dilemma 

The goal:  measuring the intensity and phase vs. time (or frequency) 

Why? 

The Spectrometer and Michelson Interferometer 

 1D Phase Retrieval 



In order to measure  

an event in time, 

you need a shorter one. 

To study this event, you need a  

strobe light pulse that’s shorter. 

But then, to measure the strobe light pulse,  

you need a detector whose response time is even shorter. 

 

And so on… 

So, now, how do you measure the shortest event? 

Photograph taken by Harold Edgerton, MIT 

The Dilemma 



Ultrashort laser pulses are the shortest 

technological events ever created by humans. 

It’s routine to generate pulses shorter than 10-13 seconds in duration, 

and researchers have generated pulses tens of as (10-18 s) long. 

 

Such a pulse is to one second as 5 cents is to the US national debt (or 

was, around the turn of the century). 

 

Such pulses have many applications in physics, chemistry, biology, and  

engineering. You can measure any event—as long as you’ve got a pulse 

that’s shorter. 

 

So how do you measure the shortest pulse? 

 
 
     You must use the pulse to measure itself. 

     

     But that isn’t good enough.  It’s only as short as the pulse.  It’s not shorter. 

 

 

Techniques based on using the pulse to measure itself have not sufficed. 



A laser pulse has the time-domain electric field: 

Intensity Phase 

Equivalently, vs. frequency: 

Spectral  

Phase 

(neglecting the 

negative-frequency 

component) 

We must measure an ultrashort laser pulse’s 

intensity and phase vs. time or frequency. 

Spectrum 

Knowledge of the intensity and phase or the spectrum and spectral 

phase is sufficient to determine the pulse. 
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The instantaneous frequency: 

Example: “Linear chirp”  
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We’d like to be able to measure, 

not only linearly chirped pulses, 

but also pulses with arbitrarily complex  

phases and frequencies vs. time. 

The phase determines the pulse’s frequency  

(i.e., color) vs. time. 
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The spectrometer measures the spectrum, of course.  Wavelength varies 

across the camera, and the spectrum can be measured for a single pulse. 

Pulse Measurement in the Frequency Domain:   

The Spectrometer 

Collimating 

 Mirror 

“Czerny-Turner” 

arrangement 

Entrance  

Slit 

Camera or 

Linear Detector Array 

Focusing 

Mirror 

Grating 

“Imaging spectrometers” allow many spectra to be measured  

simultaneously, one for each row of a 2D camera. 

Broad- 

band 

pulse 



Pulse Measurement in the Time Domain: Detectors 

Examples:  Photo-diodes, Photo-multipliers 

Detectors are devices that emit electrons in response to photons. 

Detectors have very slow rise and fall times:  ~ 1 nanosecond. 

As far as we’re concerned, detectors have infinitely slow responses. 

They measure the time integral of the pulse intensity from – to +: 

The detector output voltage is proportional to the pulse energy. 

By themselves, detectors tell us little about a pulse. 

2
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Another symbol 

for a detector: 

Detector 

Detector 



Pulse Measurement in the Time Domain:   

The Intensity Autocorrelator 

Crossing beams in a nonlinear-optical crystal, varying the delay 

between them, and measuring the signal pulse energy vs. 

delay, yields the Intensity Autocorrelation, A(2)(t). 

The Intensity 

Autocorrelation: 
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SHG 
crystal 

Pulse to be 
measured 

Variable  
delay, t 

Detector 

Beam 
splitter 

E(t) 

E(t–t) 

Esig(t,t) 

The signal field is E(t) E(t-t). 

So the signal intensity is I(t) I(t-t) 
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Varying the delay yields varying overlap between the two replicas of the pulse. 

The intensity autocorrelation is only nonzero when the pulses overlap. 



The Intensity Autocorrelation is always 

symmetrical with respect to delay. 

(2) (2)( ) ( )A At t 

(2) (2)( ) ( ) ( ) ( ) ( ) ( )A I t I t dt I t I t dt At t t t        
 t  t  t

This is easy to show: 



This means that intensity autocorrelation cannot tell the “direction of 

time” of a pulse.  

Of course, it also tells us nothing about the pulse phase either. 



Square Pulse and Its Autocorrelation 
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Gaussian Pulse and Its Autocorrelation 

Pulse Autocorrelation 
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Pulse Autocorrelation 

t t 

Sech2  Pulse and Its Autocorrelation 
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Since theoretical models of ultrafast lasers often predict sech2 pulse 

shapes, people usually simply divide the autocorrelation width by 1.54 

and call it the pulse width.  Even when the autocorrelation is Gaussian… 



Autocorrelations of more complex intensities 
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Autocorrelations nearly always have considerably less structure 

than the corresponding intensity. 

An autocorrelation typically corresponds to more than one intensity.   

Thus the autocorrelation does not uniquely determine the intensity. 

Autocorrelation 
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Autocorrelations of more complex 

pulses: a double pulse 

Pulse Autocorrelation 
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Fig. 4.7. Co mplex intensities with Gaussian slowly varying

Autocorrelation of Very Complex Pulses 

Intensity Autocorrelation 

As the intensity 

increases in 

complexity, its 

autocorrelation 

approaches a 

broad diffuse 

background 

with a 

coherence 

spike. 



A practical autocorrelator 



100 USD/pc 

0,1 USD/pc 

A more practical autocorrelator 



Early prototype, ca. 2004 

A more practical autocorrelator 



 

- finite beam size, 

- finite optics size, 

- Fresnel reflections, 

- plate wedge, 

- dispersion of the elements, 

- AR coatings 













Single-shot autocorrelation 

Imaging the nonlinear medium onto an array detector allows us to 

measure a pulse on a single laser shot if we use a large beam and a 

large beam angle to achieve the desired range of delays. 

 

So single-shot SHG AC has no geometrical smearing! (SHG FROG, too) 

Crossing beams at an angle also maps delay onto transverse position. 

( ) 2( / ) sin( / 2) /x x c x ct   

2( / ) sin( / 2) /x c x ct   

Pulse #1 

Pulse #2 

Here, pulse #1 arrives 
earlier than pulse #2 

Here, pulse #1 and pulse #2 
arrive at the same time 

Here, pulse #1 arrives 
later than pulse #2 

 

x 



Single-Shot Autocorrelation 

Crossing beams at a large angle, focusing with a cylindrical lens, and 

detecting vs. transverse position (x) yields A(2)(t) for a single pulse. 

The beam must have constant intensity vs. x to avoid biases. 

Input pulse (expanded 
in space to ~1 cm) 

Beam-splitter 
SHG 
crystal 

Camera or 

linear-array 

detector 

E(t) 

E(t–t) 

Cylindrical lens focuses the beam in 

the vertical direction (for high intensity), 

while the delay varies horizontally. 

No mirror 

moves! 

Lens images crystal onto 

camera and hence delay 

onto position at camera 

Aperture 



Other Practical Issues in Autocorrelation 

Minimal amounts of glass must be used in the beam before the 

crystal to minimize the GVD introduced into the pulse by the 

autocorrelator. 

 

Conversion efficiency must be kept low, or distortions due to 

“depletion” of input light fields will occur. 

 

In single-shot measurements, the beam must have a constant 

intensity vs. position.  In multi-shot measurements, the beam overlap 

in space must be maintained as the delay is scanned.   

 

It’s easy to introduce systematic error.  The only feedback on the 

measurement quality is that it should be maximal at t = 0 and 

symmetrical. 



Third-order Autocorrelation 

Nonlinear 
medium (glass) 

Pulse to be 
measured 

Variable  
delay, t 

Beam 
splitter 

E(t) 

E(t-t) 

Esig(t,t) = E(t) |E(t-t)|2 

Some ambiguity problems in autocorrelation can be overcome by 

using a third-order nonlinearity, such as the Optical Kerr effect. 

45° 

polarization 

rotation 

   
2(3) ( )A I t I t dtt t




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Isig(t,t) = I(t) I(t-t)2 

The third-order autocorrelation is not 

symmetrical, so it yields slightly more 

information, but still not the full pulse. 

This arrangement is called 

“polarization gating.” 

Note the 2 



When a shorter reference pulse is available:  

The Intensity Cross-Correlation 

ESF(t,t )  E(t)Eg(t t )

ISF(t,t )  I(t)Ig (t t )

The Intensity Cross-correlation: 

Delay 

Unknown pulse 
Slow  

detector 
E(t) 

Eg(t–t) 
Vdet(t )  C(t )

SFG 
crystal 

Lens 
Reference 
pulse 

 

C(t)  I(t) Ig (t  t) dt






If a reference, very short pulse is available, then it can be used to 

measure the unknown pulse.  In this case, we perform sum-frequency 

generation, and measure the energy vs. delay. 

If the reference (unknown) pulse is much shorter than the unknown 

pulse, then the intensity cross-correlation fully determines the unknown 

pulse intensity.  



Interferometric Autocorrelation 

What if we use a collinear beam geometry, and allow the autocorrelator 

signal light to interfere with the SHG from each individual beam? 

Developed by 

J-C Diels 

2
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Usual 
Autocor- 
relation 
term 

New 
terms 

Also called the “Fringe-Resolved Autocorrelation” 

Filter Slow  

detector 

SHG 

crystal 

( ) ( )E t E t t 
2[ ( ) ( )]E t E t t 

Lens 

Beam- 
splitter 

Input 

pulse 

Delay 

Mirror 

Mirror 

E(t) 

E(t–t) 

Michelson 

Interferometer 

Diels and Rudolph, 

Ultrashort Laser 

Pulse Phenomena, 

Academic Press, 

1996. 



Interferometric Autocorrelation Math 

The measured intensity vs. delay is: 
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Multiplying this out: 
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The Interferometric Autocorrelation is the 

sum of four different quantities. 

 I
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    

Constant (uninteresting) 

Sum-of-intensities-weighted   
“interferogram” of E(t)  
(oscillates at  in delay) 

Intensity autocorrelation 

Interferogram of the second harmonic; 
equivalent to the spectrum of the SH  
(oscillates at 2 in delay) 

The interferometric autocorrelation simply combines several measures 
of the pulse into one (admittedly complex) trace. Conveniently, however, 
they occur with different oscillation frequencies:  0, , and 2. 



Interferometric Autocorrelation: Examples 

7-fs sech2 800-nm pulse 

Double pulse 

Pulse with cubic spectral 

phase 



Does the interferometric autocorrelation yield 
the pulse intensity and phase? 

No.  The claim has been made that the Interferometric Autocorrelation,  

combined with the pulse interferogram (i.e., the spectrum), could do so  

(except for the direction of time). 

 

            Naganuma, IEEE J. Quant. Electron. 25, 1225-1233 (1989). 

 

 

But the required iterative algorithm rarely converges. 

 

 

The fact is that the interferometric autocorrelation yields little more 

information than the autocorrelation and spectrum. 

 

We shouldn’t expect it to yield the full pulse intensity and phase.  Indeed, 

very different pulses have very similar interferometric autocorrelations. 



Pulse #2 

Phase    tFWHM=  

     5.3 fs 

     

-40         -20           0            20          40 

Intensity 

Despite very different pulse lengths, these pulses have nearly identical IAs! 

Chung  

and  

Weiner,  

IEEE 

JSTQE, 

2001. 

Example of Interferometric Autocorrelation ambiguity 

Interferometric 

Autocorrelations 

for Pulses  

#1 and #2: 

#1 and #2 

Pulse #1 

Intensity 

Phase 

tFWHM =  

 7.4 fs 

-40         -20           0            20           40 



Interferometric Autocorrelation: 

Practical Details and Conclusions 

A good check on the interferometric autocorrelation is that it should be 
symmetrical, and the peak-to-background ratio should be 8. 
 
This device is difficult to align; there are five very sensitive degrees of 
freedom in aligning two collinear pulses.   
 
Dispersion in each arm must be the same, so it may be necessary to   
insert a compensator plate in one arm. 
 
The typical ultrashort pulse is still many wavelengths long.  So many 
fringes must typically be measured. 
 
It is difficult to distinguish between different pulse shapes and, 
especially, different phases from interferometric autocorrelations. 
 
Like the intensity autocorrelation, it must be curve-fit to an assumed 
pulse shape and so should only be used for rough estimates. 



Nonlinear fluorescence and absorption are also 

used for autocorrelation, interferometric or not. 

Two-Photon Fluorescence 

D. T. Reid, et al., Opt. Lett. 22, 233-235 (1997) 

Two-Photon-Absorption Photodiodes 

Dye 

Filter 

Dye 

Filter 

Region of 

enhanced 

TPF due to 

pulse overlap 
Single-shot: 

Photo-detector  
that absorbs two  
photons of  each, 
but not one at  

Multi-shot (must scan delay) 

Resolving the sub-l fringes yields interferometric autocorrelation; otherwise not. 



Perhaps it’s time to ask how researchers in other fields deal with 

their waveforms… 

Consider, for example, acoustic waveforms. 

Autocorrelation and related techniques yield 

little information about the pulse. 



It’s a plot of frequency vs. time, with information on top about the intensity.  

 

The musical score lives in the time-frequency domain. 

Most people think of acoustic waves in 

terms of a musical score. 



If E(t) is the waveform of interest, its spectrogram is: 

2

( , ) ( ) ( ) exp( )E E t g t i t dt t t 




   

where g(t-t) is a variable-delay gate function and t is the delay. 

 

Without g(t-t), E(,t) would simply be the spectrum. 

A mathematically rigorous form of a 

musical score is the spectrogram. 

The spectrogram is a function of  and t.  

It is the set of spectra of all temporal slices of E(t). 



The Spectrogram of a waveform E(t) 

The spectrogram tells the color and intensity of E(t) at the time, t. 

We must compute the spectrum of the product:  E(t) g(t-t) 

Esig(t,t) 

g(t-t) 

g(t-t) gates out a 

piece of E(t), 

centered at t. 

Example:  

Linearly 

chirped 

Gaussian 

pulse 

)(E t

Time (t) 0 t 
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Spectrograms for Linearly Chirped Pulses 

Like a musical score, the spectrogram visually displays the frequency 

vs. time (and the intensity, too). 
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Negatively chirped            Unchirped              Positively chirped 



Properties of the Spectrogram 

The spectrogram resolves the dilemma!  It doesn’t need the shorter 

event!  It temporally resolves the slow components and spectrally 

resolves the fast components. 

Algorithms exist to retrieve E(t) from its spectrogram. 
 
The spectrogram essentially uniquely determines the waveform intensity, 

I(t), and phase, (t). 
  
 There are a few ambiguities, but they’re “trivial.” 
 
The gate need not be—and should not be—much shorter than E(t). 
 
 Suppose we use a delta-function gate pulse: 

2

2
( ) ( ) exp( ) ( ) exp( )E t t i t dt E i t  t t





   
2

( )E t          = The Intensity. 
 
No phase information! 



“Polarization Gate” Geometry 

Frequency-Resolved Optical Gating (FROG) 

Nonlinear 
medium (glass) 

Pulse to be 
measured 

Variable  
delay, t 

Camera 

Beam 
splitter 

E(t) 

E(t-t) 

Esig(t,t) = E(t) |E(t-t)|2 

FROG involves gating the pulse with a variably delayed replica of 

itself in an instantaneous nonlinear-optical medium and then 

spectrally resolving the gated pulse vs. delay. 

45° 

polarization 

rotation 

Use any ultrafast nonlinearity: Second-harmonic generation, etc. 

2
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FROG 
2

( , ) ( ) ( )sigE t E t E tt t 

The gating is more complex for complex pulses, but it still works. 

And it also works for other nonlinear-optical processes. 

|E(t-t)|2 gates out   

 a piece of E(t),  

  (centered at  

   about 2t/3  

     for Gaussian  

        pulses). 

Time (t) 
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FROG Traces for Linearly Chirped Pulses 

Like a musical score, the FROG trace visually reveals the pulse 

frequency vs. time—for simple and complex pulses. 
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FROG Traces for More Complex Pulses 
F

re
q
u
e
n
c
y
 

Delay 



   

Unfortunately, spectrogram inversion algorithms 

require that we know the gate function.  

Substituting for Esig(t,t) in the expression for the FROG trace: 

yields: 

Esig(t,t)  E(t) |E(t–t)|2 

IFROG (,t )  Esig(t,t) exp(it ) dt
2

IFROG (,t )  E(t) g(t t ) exp(it) dt
2

where: g(t–t)    |E(t–t)|2 

The FROG trace is a spectrogram of E(t). 



Generalized Projections 

Convergence is guaranteed for convex sets, but generally occurs 

even with non-convex sets and in particular in FROG. 

A projection maps the current guess for the waveform to the 

closest point in the constraint set. 

2

( , ) ( , ) exp( )FROG sigI E t i t dtt t  

The 

Solution! 

Initial guess 

for Esig(t,t)  

Set of Esig(t,t) that satisfy the 

nonlinear-optical constraint: 

Esig(t,t)  E(t) |E(t–t)|2 

Set of Esig(t,t) that satisfy 

the data constraint: 



A few more slides on phase retrieval 

at the end of the lecture notes 



Ultrashort pulses measured using FROG 

FROG 

Traces 

 

 

 

 

 

Retrieved 

pulses 

Data courtesy of Profs. Bern Kohler and Kent Wilson, UCSD. 



Second-harmonic-generation FROG 

SHG 
crystal 

Pulse to be 
measured 

Variable  
delay, t 

Camera 

Spec- 

trometer 

Beam 
splitter 

E(t) 

E(t–t) 

Esig(t,t)= E(t)E(t-t) 

2

( , ) ( , )exp( )FROG sigI E t i t dt t t 




 

SHG FROG is the most sensitive version of FROG. 

SHG FROG is simply a spectrally resolved 

autocorrelation. 



SHG FROG 

Time (t) 0 t 
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SHG FROG is also a spectrogram, but its interpretation is more complex. 

( , ) ( ) ( )sigE t E t E tt t 

)(E t

( , )sigE t t

)(E t t

The gate  

  pulse is  

    complex! 



SHG FROG traces are symmetrical with 

respect to delay. 
F

re
q
u
e
n
c
y
 

F
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q
u
e
n
c
y
 

Time 

Delay 

Negatively chirped              Unchirped              Positively chirped 

SHG FROG has an ambiguity in the direction of time, but it can be 

removed. 
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Delay 

SHG FROG traces for complex pulses 
F

re
q
u
e
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c
y
 

Delay 



SHG FROG Measurements of a 4.5-fs Pulse 

Baltuska,  

Pshenichnikov,  

and Weirsma, 

J. Quant. Electron.,  

35, 459 (1999). 



Pulse retrieval remains equivalent 

to the 2D phase-retrieval problem. 

Many interactions have been used, e.g., polarization rotation in a fiber. 

Generalizing FROG to arbitrary nonlinear-optical interactions 

2

( , ) ( , )exp( )FROG sigI E t i t dt t t 




 



When a known reference pulse is available:  

Cross-correlation FROG (XFROG) 

ESF(t,t )  E(t)Eg(t t )

The XFROG trace 

(a spectrogram): 

Unknown pulse Camera E(t) 

Eg(t–t) 

SFG crystal 

Lens 
Known 
pulse 

If a known pulse is available (it need not be shorter), then it can be 
used to fully measure the unknown pulse.  In this case, we perform 
sum-frequency generation, and measure the spectrum vs. delay. 

2

( , ) ( ) ( ) exp( )XFROG gI E t E t i t dt t t 




  

Spectro- 

meter 

XFROG completely determines the intensity and phase of the unknown 
pulse, provided that the gate pulse is not too long or too short. 
If a reasonable known pulse exists, use XFROG, not FROG. 

Linden, et al., Opt. Lett., 24, 569 (1999). 



Example of XFROG measure-

ment: microstructure-fiber 

ultrabroadband continuum. 

The continuum 
has many 
applications, from 
medical imaging 
to metrology. 

 

It’s important to 
measure it. 



Measuring the continuum with XFROG 

2

( , ) ( ) ( ) exp( )XFROG c gI E t E t i t dt t t 





  

We angle-dither the crystal to increase the phase-matching bandwidth.  

It’s better to gate a complicated pulse with a simple (known) one. 

Sum-

frequency-

generation 

(SFG) 

crystal 

Camera 

Spec- 

trometer 

Gate pulse 

Variable  
delay, t 

Continuum 

Off-axis  

paraboloid mirror 

 gE t t

 cE t

     sig c g,E t E t E tt t 



XFROG measurement of the continuum 

Measured Retrieved 

XFROG error 

= 0.012 

While the large-scale structure of each trace is identical, the measured 

trace lacks the fine-scale structure of the retrieved trace. 

8192 x 8192 

trace! 

Measured over 

1011 shots. 



Wave mixing for CW and pulsed fields 



type I and type II in KDP 



Poor Man's FROG – the first prototype 



PM FROG – does it actually do the job? 

C. Radzewicz, P. Wasylczyk, J. S. Krasiński, A Poor Man’s FROG, Optics Comm. 186, 329 (2000)  



GRating-Eliminated No-nonsense Observation 

of Ultrafast Incident Laser Light E-fields 
(GRENOUILLE) 

C. Radzewicz, P. Wasylczyk, and J. S. Krasinski, Opt. Comm. 2000. 

P. O’Shea, M. Kimmel, X. Gu and R. Trebino, Optics Letters, 2001. 

2 key innovations: 

A single optic that 

replaces the entire 

delay line, 

and a thick SHG 

crystal that 

replaces both the 

thin crystal and 

spectrometer. 

GRENOUILLE 

FROG 



Very thin crystal creates broad SH spectrum in all directions. 

           Standard autocorrelators and FROGs use such crystals.  

Very 

Thin 

SHG 

crystal 

Thin crystal creates narrower SH spectrum in 

          a given direction and so can’t be used 

                    for autocorrelators or FROGs. 

Thin 

SHG 

crystal 

Thick crystal begins to  

           separate colors. 

Thick 

SHG crystal Very thick crystal acts like  

a spectrometer!  Why not replace the  

spectrometer in FROG with a very thick crystal? Very 

thick crystal 

Suppose white light with a large divergence angle impinges on an SHG 

crystal. The SH generated depends on the angle. And the angular width 

of the SH beam created varies inversely with the crystal thickness. 

The thick crystal 



Lens images position in crystal  
(i.e., delay, t) to horizontal  

position at camera 

Top 
view 

Side 
view 

Cylindrical 

lens 

Fresnel 

Biprism 

Thick 

SHG 

Crystal 

Imaging Lens 

FT Lens 

Yields a complete single-shot FROG.  Uses the standard FROG algorithm.  

Never misaligns. Is more sensitive. Measures spatio-temporal distortions! 

Camera 

Lens maps angle (i.e., 
wavelength) to vertical 

position at camera 

GRENOUILLE Beam Geometry 



Testing 

GRENOUILLE 
GRENOUILLE FROG 

M
e
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Retrieved pulse in the time and frequency domains 

Read more 

about 

GRENOUILLE 

in the cover 

story of OPN, 

June 2001 

Compare a 

GRENOUILLE 

measurement of a 

pulse with a tried-

and-true FROG 

measurement of the 

same pulse: 



Disadvantages of GRENOUILLE 

Its low spectral resolution 

limits its use to pulse 

lengths between ~ 20 fs 

and ~ 1 ps. 

 

Like other single-shot 

techniques, it requires 

good spatial beam quality. 

Improvements on the horizon: 

Inclusion of GVD and GVM in FROG code to extend the range of 

operation to shorter and longer pulses. 



PM FROG on the market (aka GRENOUILLE, Swamp Optics) 



If Esig(t,t) is the 1D Fourier transform with respect to W of some new 

signal field,               , then: 

So we must invert this integral equation and solve for 

 

This integral-inversion problem is the 2D phase-retrieval problem, 

for which the solution exists and is (essentially) unique. 

And simple algorithms exist for finding it. 

2

ˆ( , ) ( , ) exp( )FROG sigI E t i t i dt d t  t W   W W

and 

The input pulse, E(t), is easily obtained from 

Consider FROG as a two-dimensional 

phase-retrieval problem. 

2

( , ) ( , ) exp( )FROG sigI E t i t dt t t  

ˆ ˆ( , ) : ( ) ( ,0)sig sigE t E t E tW 

ˆ ( , ).sigE t W

ˆ ( , )sigE t W

2

2

2

ˆ ( ,0) ( ) ( ) exp( (0) )

( ) ( )

( ) ( )

( )

sigE t E t E t i d

E t E t d

E t E d t

E t

t t t

t t

t t t t

 

 

     











1D Phase Retrieval:  Suppose we measure S() and desire E(t), where:  

Given S(kx,ky), there is essentially one solution for E(x,y)!!! 

It turns out that it’s possible to retrieve the 2D spectral phase! 
. 

Given S(), there are infinitely many solutions  

for E(t).  We lack the spectral phase. 

2D Phase Retrieval:  Suppose we measure S(kx,ky) and desire E(x,y): 

These results are related to the Fundamental Theorem of Algebra. 

2

( ) ( ) exp( )S E t i t dt 




 

2

( , ) ( , ) exp( )x y x yS k k E x y ik x ik y dxdy
 

 

   

1D vs. 2D Phase Retrieval 

Stark,  

Image Recovery, 

Academic Press, 

1987. 

We assume that  

of finite extent. 
E(t) and E(x,y) are  



The Fundamental Theorem of Algebra states that all polynomials can be 

factored: 

 

             fN-1 z
N-1 +  fN-2 z

N-2 + … +  f1 z + f0    =    fN-1 (z–z1 ) (z–z2 ) … (z–zN–1)  

 

The Fundamental Theorem of Algebra fails for polynomials of two 

variables.  Only a set of measure zero can be factored. 

 

                         fN-1,M-1 y
N-1 zM-1 +  fN-1,M-2 y

N-1
 z

M-2 + … + f0,0    =   ? 

 

 

Why does this matter? 

 

The existence of the 1D Fundamental Theorem of Algebra implies that 

1D phase retrieval is impossible. 

 

The non-existence of the 2D Fundamental Theorem of Algebra implies 

that 2D phase retrieval is possible. 

Phase Retrieval and the Fundamental Theorem of Algebra 



The Fourier transform {F0 , … , FN-1} of a discrete 1D data set, { f0 , …, fN-

1}, is: 

1 1

0 0

N N

imk m

k m m

m m

F f e f z

 



 

   where z = e–ik 

The Fundamental Theorem of Algebra states that any polynomial, 

fN-1z
N-1 + … + f0 , can be factored to yield: fN-1 (z–z1 ) (z–z2 ) … (z–zN–1)  

So the magnitude of the Fourier transform of our data can be written: 

|Fk|  =  | fN-1  (z–z1 ) (z–z2 ) … (z–zN–1) | where z = e–ik 

Complex conjugation of any factor(s) leaves the magnitude unchanged, 

but changes the phase, yielding an ambiguity!  So 1D phase retrieval is 

impossible! 

1D Phase Retrieval & the Fundamental Theorem of Algebra 

polynomial! 



The Fourier transform {F0,0 , … , FN-1,N-1} of a discrete 2D data set, 

{ f0,0 , …, fN-1,N-1}, is: 

1 1 1 1

, , ,

0 0 0 0

N N N N

imk ipq m p

k q m p m p

m p m p

F f e e f y z

   

 

   

    

where  y = e–ik 

and      z = e–iq 

But we cannot factor polynomials of two variables.  So we can only 

complex-conjugate the entire expression (yielding a trivial ambiguity). 

Only a set of polynomials of measure zero can be factored. 

So 2D phase retrieval is possible!  And the ambiguities are very sparse. 

2D Phase Retrieval and the Fundamental 

Theorem of Algebra 

Polynomial of 2 variables! 


