Quantum Field Theory
on
LQC Bianchi Spacetimes

Andrea Dapor, Jerzy Lewandowski, Yaser Tavakoli

Stockholm, 6th July 2012
Quantum Field Theory on LQC Bianchi Spacetimes

Andrea Dapor,
Jerzy Lewandowski,
Yaser Tavakoli

Outline

1 Introduction

2 QFT and Effective Geometry

3 Next Order
Quantum Field Theory on LQC Bianchi Spacetimes
Andrea Dapor, Jerzy Lewandowski, Yaser Tavakoli

Outline

Introduction

QFT and Effective Geometry

Next Order
Deformed mass-shell constraint:

\[p^2 = E^2 \left[1 + \xi \frac{E^\alpha}{E_{pl}^\alpha} \right] \]
Lorentz Violation

Deformed mass-shell constraint:

\[p^2 = E^2 \left[1 + \xi \frac{E^\alpha}{E_{pl}^\alpha} \right] \]

Measured velocity:

\[v = \frac{dE}{dp} = 1 - \xi \frac{E^\alpha}{E_{pl}^\alpha} \]

Deviation from "conventional" speed of light (\(c = 1 \)): GRB?
Lorentz Violation

Deformed mass-shell constraint:

\[p^2 = E^2 \left[1 + \xi \frac{E^\alpha}{E_{Pl}^\alpha} \right] \]

Measured velocity:

\[v = \frac{dE}{dp} = 1 - \xi \frac{E^\alpha}{E_{Pl}^\alpha} \]

Deviation from ”conventional” speed of light \((c = 1)\): GRB?

QFT on QFRW [Ashtekar, Kaminski, Lewandowski (2009)]
Lorentz Violation

Deformed mass-shell constraint:

$$p^2 = E^2 \left[1 + \xi \frac{E^\alpha}{E_{pl}^\alpha} \right]$$

Measured velocity:

$$v = \frac{dE}{dp} = 1 - \xi \frac{E^\alpha}{E_{Pl}^\alpha}$$

Deviation from "conventional" speed of light ($c = 1$): GRB?

QFT on QFRW [Ashtekar, Kaminski, Lewandowski (2009)]

- Compare QFT on ECS and semiclassical limit of QFT on QS
Lorentz Violation

Deformed mass-shell constraint:

\[p^2 = E^2 \left[1 + \xi \frac{E^\alpha}{E_{Pl}^\alpha} \right] \]

Measured velocity:

\[v = \frac{dE}{dp} = 1 - \xi \frac{E^\alpha}{E_{Pl}^\alpha} \]

Deviation from "conventional" speed of light \((c = 1)\): GRB?

QFT on QFRW [Ashtekar, Kaminski, Lewandowski (2009)]

- Compare QFT on ECS and semiclassical limit of QFT on QS
- Effective metric \(\tilde{g}_{\mu\nu}\), independent of \(\vec{k}\): no L-violation
Lorentz Violation

Deformed mass-shell constraint:

\[p^2 = E^2 \left[1 + \xi \frac{E^\alpha}{E_{Pl}^\alpha} \right] \]

Measured velocity:

\[v = \frac{dE}{dp} = 1 - \xi \frac{E^\alpha}{E_{Pl}^\alpha} \]

Deviation from ”conventional” speed of light \((c = 1)\): GRB?

QFT on QFRW [Ashtekar, Kaminski, Lewandowski (2009)]

- Compare \textit{QFT on ECS} and \textit{semiclassical limit of QFT on QS}
- Effective metric \(\tilde{g}_{\mu\nu}\), independent of \(\tilde{k}\): no L-violation
- FRW is conformally flat
Lorentz Violation

Deformed mass-shell constraint:

\[p^2 = E^2 \left[1 + \xi \frac{E^\alpha}{E_{pl}^\alpha} \right] \]

Measured velocity:

\[v = \frac{dE}{dp} = 1 - \xi \frac{E^\alpha}{E_{Pl}^\alpha} \]

Deviation from ”conventional” speed of light \((c = 1)\): GRB?

QFT on QFRW [Ashtekar, Kaminski, Lewandowski (2009)]

- Compare \textit{QFT on ECS} and \textit{semiclassical limit of QFT on QS}
- Effective metric \(\tilde{g}_{\mu\nu}\), independent of \(\tilde{k}\): no L-violation
- FRW is conformally flat

Solution: consider more gravitational dof’s: \textit{Bianchi I}.

Introduction

Quantum Field Theory on LQC Bianchi Spacetimes

Andrea Dapor, Jerzy Lewandowski, Yaser Tavakoli
Quantum Bianchi I Spacetime

\[g_{\mu\nu}dx^\mu dx^\nu = -dt^2 + \sum_{i=1}^{3} a_i^2(t)(dx^i)^2 \]
Quantum Bianchi I Spacetime

\[g_{\mu\nu} dx^\mu dx^\nu = -dt^2 + \sum_{i=1}^{3} a_i^2(t)(dx^i)^2 \]

Ashtekar variables: \(A_i^a = c_i \delta^a_i \) and \(E_a^i = p_i \delta_a^i \).

\[p_1 = a_2 a_3, \quad p_2 = a_3 a_1, \quad p_3 = a_1 a_2 \]
Quantum Field Theory on LQC Bianchi Spacetimes

Andrea Dapor, Jerzy Lewandowski, Yaser Tavakoli

Introduction

QFT and Effective Geometry

Next Order

Quantum Bianchi I Spacetime

\[g_{\mu\nu} dx^\mu dx^\nu = -dt^2 + \sum_{i=1}^{3} a_i^2(t)(dx^i)^2 \]

Ashtekar variables: \(A_i^a = c_i \delta_i^a \) and \(E_i^a = p_i \delta_i^a \).

\[
p_1 = a_2 a_3, \quad p_2 = a_3 a_1, \quad p_3 = a_1 a_2
\]

\(\Rightarrow \mathcal{H}_{geo} \) spanned by \(\hat{p}_i \)-eigenstates \(|\tilde{\lambda} \rangle := |\lambda_1, \lambda_2, \lambda_3 \rangle \)
Quantum Bianchi I Spacetime

\[g_{\mu\nu} dx^\mu dx^\nu = -dt^2 + \sum_{i=1}^{3} a_i^2(t)(dx^i)^2 \]

Ashtekar variables: \(A_i^a = c_i \delta_i^a \) and \(E_a^i = p_i \delta_i^a \).

\[p_1 = a_2 a_3, \quad p_2 = a_3 a_1, \quad p_3 = a_1 a_2 \]

\(\Rightarrow \mathcal{H}_{geo} \) spanned by \(\tilde{p}_i \)-eigenstates \(|\tilde{\lambda}\rangle := |\lambda_1, \lambda_2, \lambda_3\rangle \)

\[-i\hbar \partial_T \Psi_0(T, \tilde{\lambda}) = \hat{H}_0 \Psi_0(T, \tilde{\lambda})\]
Real scalar field ϕ

$$L_\phi = \frac{1}{2}(g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi - m^2 \phi^2)$$
Real Scalar Field

Real scalar field ϕ

$$\mathcal{L}_\phi = \frac{1}{2} (g^{\mu \nu} \partial_\mu \phi \partial_\nu \phi - m^2 \phi^2)$$

Mode decomposition:

$$H_{\phi}(T) = \sum_{\vec{k} \in \mathcal{L}} H_{\vec{k}}(T)$$

where $H_{\vec{k}}$ is Hamiltonian of a h.o.
Quantum Field Theory on LQC Bianchi Spacetimes
Andrea Dapor, Jerzy Lewandowski, Yaser Tavakoli

Introduction

QFT and Effective Geometry

Next Order

Single mode \vec{k}:

$$\mathcal{H}_{kin}^{(\vec{k})} = \mathcal{H}_{\vec{k}} \otimes \mathcal{H}_{geo}, \quad \hat{C}_{(\vec{k})} = \hat{H}_{\vec{k}} + \hat{C}_{geo}$$
Single mode \vec{k}:

$$\mathcal{H}^{(\vec{k})}_{kin} = \mathcal{H}_{\vec{k}} \otimes \mathcal{H}_{geo}, \quad \mathcal{C}^{(\vec{k})} = \hat{H}_{\vec{k}} + \hat{C}_{geo}$$

$$-i\hbar \partial_T \Psi(T, \vec{\lambda}, q_{\vec{k}}) = \left[\hat{H}_0 - \hat{H}_0^{-\frac{1}{2}} \hat{H}_{\vec{k}} \hat{H}_0^{-\frac{1}{2}} \right] \Psi(T, \vec{\lambda}, q_{\vec{k}})$$
Single mode \vec{k}:

\[
\mathcal{H}^{(\vec{k})}_{\text{kin}} = \mathcal{H}_{\vec{k}} \otimes \mathcal{H}_{\text{geo}}, \quad \mathcal{C}^{(\vec{k})} = \hat{H}_{\vec{k}} + \hat{C}_{\text{geo}}
\]

\[
-i\hbar \partial_T \Psi(T, \vec{\lambda}, q_{\vec{k}}) = \left[\hat{H}_0 - \hat{H}_0^{-\frac{1}{2}} \hat{H}_{\vec{k}} \hat{H}_0^{-\frac{1}{2}} \right] \Psi(T, \vec{\lambda}, q_{\vec{k}})
\]

We want to extract an equation for matter only.
QFT on QS

Single mode \vec{k}:

$$H_{kin}(\vec{k}) = H_{\vec{k}} \otimes H_{geo}, \quad \hat{C}(\vec{k}) = \hat{H}_{\vec{k}} + \hat{C}_{geo}$$

$$-i\hbar \partial_T \Psi(T, \vec{\lambda}, q_{\vec{k}}) = \left[\hat{H}_0 - \frac{1}{2} \hat{H}_{\vec{k}} \hat{H}_0 \right] \Psi(T, \vec{\lambda}, q_{\vec{k}})$$

We want to extract an equation for matter only.
\Rightarrow Take the ”classical geometry” limit.
Single mode \vec{k}:

$$\mathcal{H}_{\text{kin}}(\vec{k}) = \mathcal{H}_{\vec{k}} \otimes \mathcal{H}_{\text{geo}}, \quad \mathcal{C}(\vec{k}) = \hat{H}_{\vec{k}} + \hat{C}_{\text{geo}}$$

$$-i\hbar \partial_T \Psi(T, \vec{\lambda}, q_{\vec{k}}) = \left[\hat{H}_0 - \hat{H}_{\vec{k}}^{-\frac{1}{2}} \hat{H}_{\vec{k}} \hat{H}_0^{-\frac{1}{2}} \right] \Psi(T, \vec{\lambda}, q_{\vec{k}})$$

We want to extract an equation for matter only.
⇒ Take the ”classical geometry” limit.

Test field approximation:

$$\Psi(T, \vec{\lambda}, q_{\vec{k}}) = \Psi_0(T, \vec{\lambda}) \otimes \psi(T, q_{\vec{k}}), \quad -i\hbar \partial_T \Psi_0 = \hat{H}_0 \Psi_0$$
Single mode \vec{k}:

$$\mathcal{H}^{(\vec{k})}_{kin} = \mathcal{H}^\vec{k}_{kin} \otimes \mathcal{H}_{geo}, \quad \mathcal{C}^{(\vec{k})} = \mathcal{H}^\vec{k} + \mathcal{C}_{geo}$$

$$-i\hbar \partial_T \Psi(T, \vec{\lambda}, q_{\vec{k}}) = \left[\hat{H}_0 - \hat{H}_0^{-\frac{1}{2}} \hat{H}^\vec{k} \hat{H}_0^{-\frac{1}{2}} \right] \Psi(T, \vec{\lambda}, q_{\vec{k}})$$

We want to extract an equation for matter only.
⇒ Take the ”classical geometry” limit.

Test field approximation:

$$\Psi(T, \vec{\lambda}, q_{\vec{k}}) = \Psi_0(T, \vec{\lambda}) \otimes \psi(T, q_{\vec{k}}), \quad -i\hbar \partial_T \Psi_0 = \hat{H}_0 \Psi_0$$

⇒

$$i\hbar \partial_T \psi = \langle \hat{H}^{-\frac{1}{2}}_0 \hat{H}^\vec{k} \hat{H}_0^{-\frac{1}{2}} \rangle_{\Psi_0(T, \vec{\lambda})} \psi = \langle \hat{H}^{-\frac{1}{2}}_0 \hat{H}^\vec{k}(T) \hat{H}_0^{-\frac{1}{2}} \rangle_0 \psi =$$

$$= \frac{1}{2} \left[\langle \hat{H}_0^{-1} \rangle_0 \hat{p}_{\vec{k}}^2 + \sum_{i=1}^3 \langle \hat{H}_0^{-\frac{1}{2}} \hat{p}_i \hat{H}_0^{-\frac{1}{2}} \hat{H}_0^{-\frac{1}{2}} \rangle_0 m_i^2 \right] \hat{q}_{\vec{k}}^2 \psi$$
Effective ”classical” spacetime (ECS) of the Bianchi I form:

\[\bar{g}_{\mu\nu}dx^\mu dx^\nu = -\tilde{N}^2 dT^2 + |\bar{p}_1\bar{p}_2\bar{p}_3| \sum_{i=1}^{3} \frac{(dx^i)^2}{\bar{p}_i^2} \]
Effective ”classical” spacetime (ECS) of the Bianchi I form:

$$\bar{g}_{\mu\nu}dx^\mu dx^\nu = -\bar{N}^2 dT^2 + |\bar{p}_1\bar{p}_2\bar{p}_3| \sum_{i=1}^{3} \frac{(dx^i)^2}{\bar{p}_i^2}$$

Single mode \vec{k}:

$$\mathcal{H}_{\vec{k}} = L^2(\mathbb{R}, dq_{\vec{k}})$$
QFT on ECS

Effective ”classical” spacetime (ECS) of the Bianchi I form:

\[\tilde{g}_{\mu\nu} dx^\mu dx^\nu = -\tilde{N}^2 dT^2 + |\tilde{p}_1\tilde{p}_2\tilde{p}_3| \sum_{i=1}^{3} \frac{(dx^i)^2}{\tilde{p}_i^2} \]

Single mode \(\vec{k} \):

\[\mathcal{H}_{\vec{k}} = L^2(\mathbb{R}, dq_{\vec{k}}) \]

\[i\hbar \partial_T \psi(T, q_{\vec{k}}) = \frac{\tilde{N}}{2 \sqrt{|\tilde{p}_1\tilde{p}_2\tilde{p}_3|}} \left[\tilde{p}_{\vec{k}}^2 + \left(\sum_{i=1}^{3} (\tilde{p}_i k_i)^2 + |\tilde{p}_1\tilde{p}_2\tilde{p}_3| m^2 \right) \tilde{q}_{\vec{k}}^2 \right] \psi(T, q_{\vec{k}}) \]
Quantum Field Theory on LQC Bianchi Spacetimes

Andrea Dapor, Jerzy Lewandowski, Yaser Tavakoli

Introduction

QFT and Effective Geometry

Next Order

Comparison

QFT on QS:

\[i\hbar \partial_T \psi = \frac{1}{2} \left[\langle \hat{H}_0^{-1} \rangle_0 \hat{p}_k^2 + \left(\sum_{i=1}^{3} \langle \hat{H}_0^{-\frac{1}{2}} \hat{p}_i \hat{H}_0^{-\frac{1}{2}} \rangle_0 \hat{k}_i^2 + \langle \hat{H}_0^{-\frac{1}{2}} [\hat{p}_1 \hat{p}_2 \hat{p}_3] \hat{H}_0^{-\frac{1}{2}} \rangle_0 m^2 \right) \hat{q}_k^2 \right] \psi \]
Comparison

QFT on QS:

\[
\begin{align*}
\frac{i\hbar}{2} \partial_T \psi &= \frac{1}{2} \left[\langle \hat{H}_0^{-1} \rangle_0 \hat{p}_k^2 + \left(\sum_{i=1}^{3} \langle \hat{H}_0^{-\frac{1}{2}} \hat{p}_i \hat{H}_0^{-\frac{1}{2}} \rangle_0 k_i^2 + \langle \hat{H}_0^{-\frac{1}{2}} | \hat{p}_1 \hat{p}_2 \hat{p}_3 | \hat{H}_0^{-\frac{1}{2}} \rangle_0 m^2 \right) \hat{q}_k^2 \right] \psi
\end{align*}
\]

QFT on ECS:

\[
\begin{align*}
\frac{i\hbar}{2} \partial_T \psi &= \frac{\tilde{N}}{2 \sqrt{|\tilde{p}_1 \tilde{p}_2 \tilde{p}_3|}} \left[\hat{p}_k^2 + \left(\sum_{i=1}^{3} (\tilde{p}_i k_i)^2 + |\tilde{p}_1 \tilde{p}_2 \tilde{p}_3| m^2 \right) \hat{q}_k^2 \right] \psi
\end{align*}
\]
Comparison

QFT on QS:

\[i\hbar \partial_T \psi = \frac{1}{2} \left[\langle \hat{H}_0^{-1} \rangle_0 \hat{p}_k^2 + \left(\sum_{i=1}^{3} \langle \hat{H}_0^{-\frac{1}{2}} \hat{p}_i \hat{H}_0^{-\frac{1}{2}} \rangle_0 k_i^2 + \langle \hat{H}_0^{-\frac{1}{2}} [\hat{p}_1 \hat{p}_2 \hat{p}_3 | \hat{H}_0^{-\frac{1}{2}} \rangle_0 m^2 \right) \hat{q}_k^2 \right] \psi \]

QFT on ECS:

\[i\hbar \partial_T \psi = \frac{\tilde{N}}{2 \sqrt{|\tilde{p}_1 \tilde{p}_2 \tilde{p}_3|}} \left[\hat{p}_k^2 + \left(\sum_{i=1}^{3} (\tilde{p}_i k_i)^2 + |\tilde{p}_1 \tilde{p}_2 \tilde{p}_3| m^2 \right) \hat{q}_k^2 \right] \psi \]

\[\Rightarrow \text{effective metric:} \]

\[\tilde{g}_{\mu\nu} dx^\mu dx^\nu = \langle \hat{H}_0^{-1} \rangle_0^{1/2} \left(\prod_{i=1}^{3} \langle \hat{H}_0^{-\frac{1}{2}} \hat{p}_i^2 (T) \hat{H}_0^{-\frac{1}{2}} \rangle_0 \right)^{1/2} \times \]

\[\times \left[-dT^2 + \sum_{i=1}^{3} \frac{1}{\langle \hat{H}_0^{-1} \rangle_0 \langle \hat{H}_0^{-\frac{1}{2}} \hat{p}_i^2 (T) \hat{H}_0^{-\frac{1}{2}} \rangle_0} (dx^i)^2 \right] \]
QFT on QS:

\[
i\hbar \partial_T \psi = \frac{1}{2} \left[\langle \hat{H}_0^{-1} \rangle_0 \hat{p}_k^2 + \left(\sum_{i=1}^{3} \langle \hat{H}_0^{-\frac{1}{2}} \hat{p}_i \hat{H}_0^{-\frac{1}{2}} \rangle_0^2 k_i^2 + \langle \hat{H}_0^{-\frac{1}{2}} |\hat{p}_1 \hat{p}_2 \hat{p}_3| \hat{H}_0^{-\frac{1}{2}} \rangle_0 m^2 \right) \hat{q}_k^2 \right] \psi
\]

QFT on ECS:

\[
i\hbar \partial_T \psi = \frac{\bar{N}}{2 \sqrt{\bar{p}_1 \bar{p}_2 \bar{p}_3}} \left[\hat{p}_k^2 + \left(\sum_{i=1}^{3} (\bar{p}_i k_i)^2 + |\bar{p}_1 \bar{p}_2 \bar{p}_3| m^2 \right) \hat{q}_k^2 \right] \psi
\]

\Rightarrow \text{effective metric:}

\[
\bar{g}_{\mu\nu} dx^\mu dx^\nu = \langle \hat{H}_0^{-1} \rangle_0^{1/2} \left(\prod_{i=1}^{3} \langle \hat{H}_0^{-\frac{1}{2}} \hat{p}_i^2 (T) \hat{H}_0^{-\frac{1}{2}} \rangle_0 \right)^{1/2} \times
\]

\[
\times \left[-dT^2 + \sum_{i=1}^{3} \frac{1}{\langle \hat{H}_0^{-1} \rangle_0 \langle \hat{H}_0^{-\frac{1}{2}} \hat{p}_i^2 (T) \hat{H}_0^{-\frac{1}{2}} \rangle_0} (dx^i)^2 \right]
\]

Dispersion relation for mode \(\vec{k} \) on the background \(\bar{g}_{\mu\nu} \) gives

\[
\nu = 1
\]
Quantum Field Theory on LQC Bianchi Spacetimes
Andrea Dapor, Jerzy Lewandowski, Yaser Tavakoli

Outline

1 Introduction
2 QFT and Effective Geometry
3 Next Order
Atomic B-O

\[-i\hbar \partial_t \Psi = \hat{H} \Psi = [T_n + \hat{H}_e] \Psi\]
Quantum Field Theory on LQC Bianchi Spacetimes

Andrea Dapor, Jerzy Lewandowski, Yaser Tavakoli

Introduction

QFT and Effective Geometry

Next Order

Atomic B-O

\[-i\hbar \partial_t \Psi = \hat{H}\Psi = [\hat{T_n} + \hat{H}_e]\Psi\]

- heavy dof’s: nucleus position, \(n\)
Atomic B-O

\[-i\hbar \partial_t \Psi = \hat{H} \Psi = [\hat{T}_n + \hat{H}_e] \Psi\]

- heavy dof’s: nucleus position, \(n\)
- light dof’s: electron position, \(e\)
Atomic B-O

\[-i\hbar \partial_t \Psi = \hat{H}\Psi = [\hat{T}_n + \hat{H}_e]\Psi\]

- heavy dof’s: nucleus position, \(n\)
- light dof’s: electron position, \(e\)

On the (Coulomb) background, solve the eigenequation for \(\hat{H}_e\):

\[\hat{H}_e \chi_i(e) = \epsilon_i(n) \chi_i(e)\]
Atomic B-O

\[-i\hbar \partial_t \Psi = \hat{H} \Psi = [\hat{T}_n + \hat{H}_e] \Psi\]

- heavy dof’s: nucleus position, \(n \)
- light dof’s: electron position, \(e \)

On the (Coulomb) background, solve the eigenequation for \(\hat{H}_e \):

\[\hat{H}_e \chi_i(e) = \epsilon_i(n) \chi_i(e)\]

Substitute back, and solve the eigenequation for \(\hat{H} \):

\[\Phi_\alpha = \sum_i \varphi_{i,\alpha}(n) \chi_i(e), \quad [\hat{T}_n + \epsilon_i(n)] \varphi_{i,\alpha}(n) = E_\alpha \varphi_{i,\alpha}(n)\]
Atomic B-O

\[-i\hbar \partial_t \Psi = \hat{H}\Psi = [\hat{T}_n + \hat{H}_e]\Psi \]

- heavy dof’s: nucleus position, \(n \)
- light dof’s: electron position, \(e \)

On the (Coulomb) background, solve the eigenequation for \(\hat{H}_e \):

\[\hat{H}_e \chi_i(e) = \epsilon_i(n) \chi_i(e) \]

Substitute back, and solve the eigenequation for \(\hat{H} \):

\[\Phi_\alpha = \sum_i \varphi_{i,\alpha}(n) \chi_i(e), \quad [\hat{T}_n + \epsilon_i(n)]\varphi_{i,\alpha}(n) = E_\alpha \varphi_{i,\alpha}(n) \]

The ”corrected” state of the system:

\[\Psi_0 = \sum_\alpha c_\alpha \Phi_\alpha^0 \quad \rightarrow \quad \Psi = \sum_\alpha c_\alpha \Phi_\alpha = \sum_{i,\alpha} c_\alpha \varphi_{i,\alpha} \chi_i \]
Cosmological B-O

\[-i\hbar \partial_T \Psi = \left[\frac{1}{2} \hat{H}_0^2 - \hat{H}_k \right] \Psi\]
Cosmological B-O

\[-i\hbar \partial_{\vec{T}} \Psi = \left[\frac{1}{2} \hat{H}_0^2 - \hat{H}_k \right] \Psi\]

- heavy dof’s: geometry, \(\lambda \)
Cosmological B-O

\[-i\hbar \partial T \Psi = \left[\frac{1}{2} \hat{H}_0^2 - \hat{H}_k \right] \Psi\]

- heavy dof’s: geometry, \(\lambda\)
- light dof’s: matter, \(q_k\)
Cosmological B-O

\[-i\hbar \partial_{\overline{T}} \Psi = \left[\frac{1}{2} \hat{H}_0^2 - \hat{H}_k \right] \Psi\]

- heavy dof’s: geometry, \(\lambda \)
- light dof’s: matter, \(q_{\vec{k}} \)

On the background \(\Psi_0 \), solve the eigenequation for \(\hat{H}_k \):

\[\hat{H}_k \chi_i(q_{\vec{k}}) = \epsilon_i(p) \chi_i(q_{\vec{k}})\]
Quantum Field Theory on LQC Bianchi Spacetimes

Andrea Dapor, Jerzy Lewandowski, Yaser Tavakoli

Introduction
QFT and Effective Geometry
Next Order

Cosmological B-O

\[-i\hbar \partial_T \Psi = \left[\frac{1}{2} \hat{H}_0^2 - \hat{H}_k \right] \Psi\]

- heavy dof’s: geometry, \(\lambda\)
- light dof’s: matter, \(q_{k}\)

On the background \(\Psi_0\), solve the eigenequation for \(\hat{H}_k\):

\[\hat{H}_k \chi_i(q_{k}) = \epsilon_i(p) \chi_i(q_{k})\]

Substitute back:

\[\Phi_\alpha = \sum_i \varphi_{i,\alpha}(\lambda) \chi_i(q_{k}), \quad \left[\frac{1}{2} \hat{H}_0^2 + \epsilon_i(\hat{p}) \right] \varphi_{i,\alpha}(\lambda) = E_\alpha \varphi_{i,\alpha}(\lambda)\]
Cosmological B-O

\[-i\hbar \partial_{\bar{T}} \Psi = \left[\frac{1}{2} \widehat{H}_0^2 - \widehat{H}_k \right] \Psi\]

- heavy dof’s: geometry, \(\lambda\)
- light dof’s: matter, \(q_{\vec{k}}\)

On the background \(\Psi_0\), solve the eigenequation for \(\widehat{H}_k\):

\[\widehat{H}_k \chi_i(q_{\vec{k}}) = \epsilon_i(p) \chi_i(q_{\vec{k}})\]

Substitute back:

\[\Phi_{\alpha} = \sum_i \varphi_{i,\alpha}(\lambda) \chi_i(q_{\vec{k}}), \quad \left[\frac{1}{2} \widehat{H}_0^2 + \epsilon_i(\hat{p}) \right] \varphi_{i,\alpha}(\lambda) = E_{\alpha} \varphi_{i,\alpha}(\lambda)\]

The ”corrected” state of the system:

\[\Psi_0 = \sum_{\alpha} c_{\alpha} \Phi_{\alpha}^0 \rightarrow \Psi = \sum_{\alpha} c_{\alpha} \Phi_{\alpha} = \sum_{i,\alpha} c_{\alpha} \varphi_{i,\alpha} \chi_i\]
Lorentz violation

\[\Psi = \Psi_0 \otimes \psi + \delta \Psi \]

where

\[\delta \Psi = \sum_{i, \alpha, \beta \neq \alpha} c_\alpha \frac{\langle \Phi^0_\beta | \epsilon_i (\hat{p}) | \Phi^0_\alpha \rangle}{E^0_\beta - E^0_\alpha} \Phi^0_\beta \chi_i \]
Lorentz violation

\[\Psi = \Psi_0 \otimes \psi + \delta \Psi \]

where

\[\delta \Psi = \sum_{i,\alpha,\beta \neq \alpha} c_\alpha \frac{\langle \Phi_0^0 | \epsilon_i(\hat{p}) | \Phi_0^0 \rangle}{E_\beta^0 - E_\alpha^0} \Phi_\beta^0 \chi_i \propto k \]
Lorentz violation

\[\Psi = \Psi_0 \otimes \psi + \delta \Psi \]

where

\[\delta \Psi = \sum_{i, \alpha, \beta \neq \alpha} c_{\alpha} \frac{\langle \Phi_0^0 | \epsilon_i(\hat{p}) | \Phi_0^0 \rangle}{E_0^0 - E_0^0} \Phi_0^0 \chi_i \propto k \]

\[\Rightarrow \text{"corrected" effective metric:} \]

\[\bar{g}_{\mu\nu} dx^\mu dx^\nu = -(1 + \xi k \ell_P^2) \langle \hat{p}^2 \rangle^{3/2} \bar{T}^2 + \langle \hat{p}^2 \rangle^{1/2} \sum_i (dx^i)^2 \]
Lorentz violation

\[\Psi = \Psi_0 \otimes \psi + \delta \Psi \]

where

\[\delta \Psi = \sum_{i, \alpha, \beta \neq \alpha} c_\alpha \frac{\langle \Phi^0_\beta | \epsilon_i(\hat{p}) | \Phi^0_\alpha \rangle}{E^0_\beta - E^0_\alpha} \Phi^0_\beta \chi_i \propto k \]

⇒ ”corrected” effective metric:

\[\bar{g}_{\mu \nu} dx^\mu dx^\nu = -(1 + \xi k \ell_{Pl})^2 \langle \hat{p}^2 \rangle^{3/2} dT^2 + \langle \hat{p}^2 \rangle^{1/2} \sum_i (dx^i)^2 \]

Dispersion relation for mode \(\tilde{k} \) on the background \(\bar{g}_{\mu \nu} \) gives

\[\nu = 1 + \frac{\xi}{2} k \ell_{Pl} \]
Lorentz violation

\[\Psi = \Psi_0 \otimes \psi + \delta \Psi \]

where

\[\delta \Psi = \sum_{i, \alpha, \beta \neq \alpha} c_\alpha \frac{\langle \Phi_0^0 | \epsilon_i(\hat{p}) | \Phi_0^0 \rangle}{E_\beta^0 - E_\alpha^0} \Phi_0^0 \chi_i \propto k \]

⇒ ”corrected” effective metric:

\[\bar{g}_{\mu\nu} dx^\mu dx^\nu = -(1 + \xi k \ell_{Pl})^2 \langle \hat{p}^2 \rangle^{3/2} d\tilde{T}^2 + \langle \hat{p}^2 \rangle^{1/2} \sum_i (dx^i)^2 \]

Dispersion relation for mode \(\vec{k} \) on the background \(\bar{g}_{\mu\nu} \) gives

\[v = 1 + \frac{\xi}{2} k \ell_{Pl} \]

Lorentz violation around \(E \sim E_{Pl} \) (GRB bound: \(\sim 10^{-2} E_{Pl} \)).
Conclusions

What we saw:

• first steps toward QFT on Bianchi LQC spacetimes
• concept of “effective geometry” felt by quanta of matter
• no L-violation in Bianchi I case at 0th order (test field approx.)
• possible L-violation when backreaction is taken into account

What next:

• try to include massive fields
• refine the QFT part: consider an infinite number of modes
• check the validity of B-O scheme, and explicitly compute ξ
Conclusions

What we saw:

• first steps toward QFT on Bianchi LQC spacetimes
Conclusions

What we saw:

• first steps toward QFT on Bianchi LQC spacetimes
• concept of ”effective geometry” felt by quanta of matter
Conclusions

What we saw:

- first steps toward QFT on Bianchi LQC spacetimes
- concept of ”effective geometry” felt by quanta of matter
- no L-violation in Bianchi I case at 0th order (*test field approx.*)
Conclusions

What we saw:

- first steps toward QFT on Bianchi LQC spacetimes
- concept of ”effective geometry” felt by quanta of matter
- no L-violation in Bianchi I case at 0th order (test field approx.)
- possible L-violation when backreaction is taken into account
Conclusions

What we saw:

- first steps toward QFT on Bianchi LQC spacetimes
- concept of ”effective geometry” felt by quanta of matter
- no L-violation in Bianchi I case at 0th order (*test field approx.*)
- possible L-violation when backreaction is taken into account

What next:

- try to include massive fields
- refine the QFT part: consider an infinite number of modes
- check the validity of B-O scheme, and explicitly compute ξ
Conclusions

What we saw:

- first steps toward QFT on Bianchi LQC spacetimes
- concept of ”effective geometry” felt by quanta of matter
- no L-violation in Bianchi I case at 0th order (test field approx.)
- possible L-violation when backreaction is taken into account

What next:

- try to include massive fields
Conclusions

What we saw:

• first steps toward QFT on Bianchi LQC spacetimes
• concept of ”effective geometry” felt by quanta of matter
• no L-violation in Bianchi I case at 0th order (*test field approx.*)
• possible L-violation when backreaction is taken into account

What next:

• try to include massive fields
• refine the QFT part: consider an infinite number of modes
Conclusions

What we saw:

- first steps toward QFT on Bianchi LQC spacetimes
- concept of ”effective geometry” felt by quanta of matter
- no L-violation in Bianchi I case at 0th order (test field approx.)
- possible L-violation when backreaction is taken into account

What next:

- try to include massive fields
- refine the QFT part: consider an infinite number of modes
- check the validity of B-O scheme, and explicitly compute ξ