ANALIZA I
Zadania domowe z ciągów liczbowych

Szanowni Państwo, w poniższych zadaniach numeracja podpunktów jest nieco dziwna. Skopiowałam je ze starych serii domowych usuwając niektóre fragmenty, żeby nie było za dużo. Numeracji nie uporządkowałam, żeby zachować zgodność ze wskazówkami i rozwiązaniami. Zadań jest i tak dużo - może przyda się praca zespołowa?

Zadanie 1. Wykazać, że:
(a) \(\lim_{n \to \infty} \left(\frac{100}{n^{100}} + n^{99} - n \right) = \frac{1}{100}; \)
(b) \(\lim_{n \to \infty} \left(n + 4 \sqrt{n^2 + n} - 2 \sqrt{n^2 - n} - 3 \sqrt{n^2 - 2n} \right) = \frac{5}{4}; \)
(c) \(\lim_{n \to \infty} \left(\sqrt{n^2 + \sqrt{n^5}} - \sqrt{n^2 + \sqrt{n^3}} \right) = \frac{1}{4}; \)
(d) \(\lim_{n \to \infty} \left(\sqrt{n + \sqrt{n} - \sqrt{n - \sqrt{n}}} \right) = 1; \)
(e) \(\lim_{n \to \infty} \left(\frac{\sqrt{5a^{2n}} + 4a^n + 3}{a} \right) \) dla \(a \in \mathbb{R}; \)
(f) \(\lim_{n \to \infty} \left(n^7 + 7 \right)^{-\frac{7}{2}} \left((n + 2)^{100} - n^{100} - 200n^{99} \right) = 30 \sqrt{22}; \)
(g) \(\lim_{n \to \infty} \left(3 + x \right)^n + (1 - x)^n = 2 + |1 + x| \) dla \(x \in \mathbb{R}; \)
(h) \(\lim_{n \to \infty} \left(\frac{p_1 a_1^{n+1} + \ldots + p_r a_r^{n+1}}{p_1 a_1^n + \ldots + p_r a_r^n} \right) = \max\{a_1, \ldots, a_r\} \) oraz \(\lim_{n \to \infty} \sqrt{p_1 a_1^n + \ldots + p_r a_r^n} = \max\{a_1, \ldots, a_r\} \),
jeśli \(r \in \mathbb{N} \) i liczby \(p_i, a_i \) są dodatnie;
(i) \(\lim_{n \to \infty} \left(\sqrt{2^n} - \frac{2}{\sqrt{2^n}} \right) = \frac{1}{2}; \)
(j) \(\lim_{n \to \infty} 2^{-n} \left(1 + \frac{1}{n} \right) \left(1 + \frac{2}{n} \right) \ldots \left(1 + \frac{n}{n} \right) = 0; \)
(k) \(\lim_{n \to \infty} \left(\frac{1}{n} \left(1 + \frac{1}{n} \right) \left(1 + \frac{2}{n} \right) \ldots \left(1 + \frac{n}{n} \right) \right) = +\infty; \)
(l) \(\lim_{n \to \infty} n^{\frac{1}{n+1} n^{\frac{1}{n}} - n^{\frac{1}{n}} \ln n} = +\infty; \)
(m) \(\lim_{n \to \infty} \frac{3^n - 1}{3^n + \frac{1}{3}} \ldots \frac{2^n - 1}{2^n + \frac{1}{2}} = \frac{2}{3}; \)
(n) \(\lim_{n \to \infty} \sqrt[4]{1^4 + 2^4 + \ldots + n^4} = 1; \)

Wskazówki: (h),(j),(k),(t) Wykorzystać twierdzenie o trzech ciągach; (m),(n) Obliczyć \(\lim_{n \to \infty} x^{n+1} / x^n \); (s) Uprościć wzór na \(x^n \).

Zadanie 2. Zbadać ograniczoność i wyznaczyć kresy zbiorów:
\(\{ x^{2x+1} : x \in \mathbb{R} \}; \quad \{ 2^x + 2^{1-x} : x \in \mathbb{R} \}; \)
\(\{ n^2 : n \in \mathbb{N} \}; \quad \{ \frac{m}{n(m+n)} : m, n \in \mathbb{N} \}. \)

Zadanie 3. Zbadać zbieżność ciągu \((x_n) \), ewentualnie obliczyć granicę:
(d) \(x_n = \cos \frac{2\pi n^2}{2n+1}; \)
(e) \(x_n = \cos \frac{2\pi n}{n+3}; \)
(f) \(x_n = \sin \pi \sqrt{n^2 + n + 1}; \)
(g) \(x_n = \tg\left(\frac{\pi}{2} \sqrt{n(n+1)} \right); \)
(i) \(x_n = \frac{\lfloor 2n \rfloor!!}{(2n+1)!!}; \)

(j) \(x_n = (2 - \sqrt{10})^n \).

Zadanie 4. Zbadać zbieżność ciągu określonego rekurencyjnie:

(a) \(x_0 > 0 \) dane, \(x_{n+1} = \frac{x_n + 2}{x_n + 1} \);
(b) \(x_0 > 2 \) dane, \(x_{n+1} = 5 - \frac{6}{x_n} \);
(c) \(x_0 = 0 \), \(x_{n+1} = \sqrt{2 - x_n} \);
(d) \(x_0 \in [1, 2] \) dane, \(x_{n+1} = x_n(x_n - 1) \);
(e) \(x_0 \in [-1, 1] \) dane, \(x_{n+1} = \frac{10}{1 + x_n^2} \).

Wskazówki: (a),(b),(d) osc.; (b) \(|x_{n+2} - 1| \leq \frac{1}{2}|x_n - 1| \); (c) monotoniczny; (e),(j) rosnący; (f) osc.; zacząć od \(x_0 \in [0, 1] \); zauważyć, że \(g([0, 1]) \subset [0, 1] \) i \(g(x) \leq x \) na \([0, 1]\); (g),(k) malejący; (h) obliczyć \(g := f \circ f \); (i) \(\forall n : |x_n| \leq 1 \) lub \(x_n \geq 5 \).

Rozwiązania: (a),(g) \(l = \sqrt{2} \); (b),(j),(d) \(l = 1 \); (c) \(l = 3 \); (e) \(l = 2 \); (f) \(l = 0 \); (h) zbieżny \iff \(x_0 = \frac{1}{2} \) lub \(x_0 = 1 \); (i) rozbieżny; (k) \(l = \sqrt{3} \).

Zadanie 5. Wykazać, że jeśli \(\forall n \in \mathbb{N} : x_{n+N} = x_n \), tzn. ciąg \((x_n) \) jest okresowy, to
\[
\lim_{n \to \infty} \frac{x_1 + \ldots + x_n}{n} = \frac{x_1 + \ldots + x_N}{N}.
\]

Sprawdzić, że ciąg \((x_1 + \ldots + x_n - ns) \), gdzie \(s := \frac{1}{N} \sum_{k=1}^{N} x_k \), jest okresowy, a więc ograniczony.