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Introduction

Introductory and historical remarks

Clifford (1878) introduced his ‘geometric algebras’ as a generalization of Grassmann alge-
bras, complex numbers and quaternions. Lipschitz (1886) was the first to define groups
constructed from ‘Clifford numbers’ and use them to represent rotations in a Euclidean
space. É. Cartan discovered representations of the Lie algebras son(C) and son(R), n > 2,
that do not lift to representations of the orthogonal groups. In physics, Clifford algebras
and spinors appear for the first time in Pauli’s nonrelativistic theory of the ‘magnetic elec-
tron’. Dirac (1928), in his work on the relativistic wave equation of the electron, introduced
matrices that provide a representation of the Clifford algebra of Minkowski space. Brauer
and Weyl (1935) connected the Clifford and Dirac ideas with Cartan’s spinorial represen-
tations of Lie algebras; they found, in any number of dimensions, the spinorial, projective
representations of the orthogonal groups.

Clifford algebras and spinors are implicit in Euclid’s solution of the Pythagorean equation
x2 − y2 + z2 = 0 which is equivalent to(

y − x z
z y + x

)
= 2

(
p
q

) (
p q

)
(1)

so that x = q2 − p2, y = p2 + q2, z = 2pq. If the numbers appearing in (1) are real, then
this equation can be interpreted as providing a representation of a vector (x, y, z) ∈ R3, null
with respect to a quadratic form of signature (1, 2), as the ‘square’ of a spinor (p, q) ∈ R2.
The pure spinors of Cartan (1938) provide a generalization of this observation to higher
dimensions.

Multiplying the square matrix in (1) on the left by a real, 2× 2 unimodular matrix, on
the right by its transpose, and taking the determinant, one arrives at the exact sequence of
group homomorphisms

1→ Z2 → SL2(R) = Spin0
1,2 → SO0

1,2 → 1.

Multiplying the same matrix by

ε =

(
0 −1
1 0

)
(2)
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on the left and computing the square of the product, one obtains(
z x+ y

x− y −z

)2

= (x2 − y2 + z2)

(
1 0
0 1

)
.

This equation is an illustration of the idea of representing a quadratic form as the square
of a linear form in a Clifford algebra. Replacing y by iy one arrives at complex spinors, the
Pauli matrices

σx =

(
0 1
1 0

)
, σy = iε, σz =

(
1 0
0 −1

)
,

Spin3 = SU2, etc.
This article reviews Clifford algebras, the associated groups and their representations,

for quadratic spaces over complex or real numbers. These notions have been generalized by
Chevalley (1954) to quadratic spaces over arbitrary number fields.

Notation

If S is a vector space over K = R or C, then S∗ denotes its dual, i.e. the vector space over
K of all K-linear maps from S to K. The value of ω ∈ S∗ on s ∈ S is sometimes written
as 〈s, ω〉. The transpose of a linear map f : S1 → S2 is the map f ∗ : S∗2 → S∗1 defined
by 〈s, f ∗(ω)〉 = 〈f(s), ω〉 for every s ∈ S1 and ω ∈ S∗2 . If S1 and S2 are complex vector
spaces, then a map f : S1 → S2 is said to be semi-linear if it is R-linear and f(is) = −if(s).
The complex conjugate of a finite-dimensional complex vector space S is the complex vector
space S̄ of all semi-linear maps from S∗ to C. There is a natural semi-linear isomorphism
(complex conjugation) S → S̄, s 7→ s̄ such that 〈ω, s̄〉 = 〈s, ω〉 for every ω ∈ S∗. The
space ¯̄S can be identified with S and then ¯̄s = s. The spaces (S̄)∗ and S∗ are identified. If
f : S1 → S2 is a complex-linear map, then there is the complex conjugate map f̄ : S̄1 → S̄2

given by f̄(s̄) = f(s) and the Hermitian conjugate map f †
def
= f̄ ∗ : S̄∗2 → S̄∗1 . A linear map

A : S → S̄∗ such that A† = A is said to be Hermitian. K(N) denotes, for K = R, C or H,
the set of all N by N matrices with elements in K.

Real, complex and quaternionic structures

A real structure on a complex vector space S is a complex-linear map C : S → S̄ such that
C̄C = idS. A vector s ∈ S is said to be real if s̄ = C(s). The set ReS of all real vectors is a
real vector space; its real dimension is the same as the complex dimension of S.

A complex-linear map C : S → S̄ such that C̄C = − idS defines on S a quaternionic
structure; a necessary condition for such a structure to exist is that the complex dimension
m of S be even, m = 2n, n ∈ N. The space S with a quaternionic structure can be made
into a right vector space over the field H of quaternions. In the context of quaternions, it is
convenient to represent the imaginary unit of C as

√
−1. Multiplication on the right by the
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quaternion unit i is realized as the multiplication (on the left) by
√
−1. If j and k = ij are

the other two quaternion units and s ∈ S, then one puts sj = C̄(s̄) and sk = (si)j.
A real vector space S can be complexified by forming the tensor product C⊗RS = S⊕ iS.
The realification of a complex vector space S is defined here as the real vector space having

S as its set of vectors so that dimR S = 2 dimC S. The complexification of a realification of
S is the ‘double’ S ⊕ S of the original space.

Inner product spaces and their groups

Definitions: quadratic and symplectic spaces

A bilinear map B : S×S → K on a vector space S over K is said to make S into an inner
product space. To save on notation, one writes also B : S → S∗ so that 〈s, B(t)〉 = B(s, t)
for all s, t ∈ S. The group of automorphisms of an inner product space,

Aut(S,B) = {R ∈ GL(S)|R∗ ◦B ◦R = B},

is a Lie subgroup of the general linear group GL(S). An inner product space (S,B) is said
here to be quadratic (resp., symplectic) if B is symmetric (resp., anti-symmetric and non-
singular). A quadratic space is characterized by its quadratic form s 7→ B(s, s). For K = C,
a Hermitian map A : S → S̄∗ defines a Hermitian scalar product A(s, t) = 〈s̄, A(t)〉.

An orthogonal space is defined here as a quadratic space (S,B) such that B : S → S∗

is an isomorphism. The group of automorphisms of an orthogonal space is the orthogonal
group O(S,B). The group of automorphisms of a symplectic space is the symplectic group
Sp(S,B). The dimension of a symplectic space is even. If S = K2n is a symplectic space over
K = R or C, then its symplectic group is denoted by Sp2n(K). Two quaternionic symplectic
groups appear in the list of spin groups of low-dimensional spaces:

Sp2(H) = {a ∈ H(2)|a†a = I}

and
Sp1,1(H) = {a ∈ H(2)|a†σza = σz}.

Here a† denotes the matrix obtained from a by transposition and quaternionic conjugation.

Contractions, frames and orthogonality

From now on, unless otherwise specified, (V, g) is a quadratic space of dimension m. Let
∧V =⊕m

p=0∧p V be its exterior (Grassmann) algebra. For every v ∈ V and w ∈ ∧V there
is the contraction g(v)yw characterized as follows. The map V × ∧V → ∧V , (v, w) 7→
g(v)yw, is bilinear; if x ∈ ∧p V , then g(v)y(x ∧ w) = (g(v)yx) ∧ w + (−1)px ∧ (g(v)yw)
and g(v)y v = g(v, v).

A frame (eµ) in a quadratic space (V, g) is said to be a quadratic frame if µ 6= ν implies
g(eµ, eν) = 0.
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For every subset W of V there is the orthogonal subspace W⊥ containing all vectors that
are orthogonal to every element of W .

If (V, g) is a real orthogonal space, then there is an orthonormal frame (eµ), µ = 1, . . . ,m,
in V such that k frame vectors have squares equal to −1, l frame vectors have squares equal
to 1 and k + l = m. The pair (k, l) is the signature of g. The quadratic form g is said to
be neutral if the orthogonal space (V, g) admits two maximal totally null subspaces W and
W ′ such that V = W ⊕W ′. Such a space V is 2n-dimensional, either complex or real with
g of signature (n, n). A Lorentzian space has maximal totally null subspaces of dimension 1
and a Euclidean space, characterized by a definite quadratic form, has no null subspaces of
positive dimension. The Minkowski space is a Lorentzian space of dimension 4.

If (V, g) is a complex orthogonal space, then an orthonormal frame (eµ), µ = 1, . . . ,m,
can be chosen in V so that, defining gµν = g(eµ, eν), one has gµµ = (−1)µ+1 and, if µ 6= ν,
then gµν = 0.

If A : S → S̄∗ is a Hermitian isomorphism, then there is a (pseudo)unitary frame (eα)
in S such that the matrix Aᾱβ = A(eα, eβ) is diagonal, has p ones and q minus ones on the
diagonal, p + q = dimS. If p = q, then A is said to be neutral. A is definite if either p or
q = 0.

Algebras

Definitions

An algebra overK is a vector spaceA overK with a bilinear mapA×A → A, (a, b) 7→ ab,
which is distributive with respect to addition. The algebra is associative if (ab)c = a(bc)
holds for all a, b, c ∈ A. It is commutative if ab = ba for all a, b ∈ A. An element 1A is the
unit of A if 1Aa = a1A = a holds for every a ∈ A.

From now on, unless otherwise specified, the bare word algebra denotes a finite-dimen-
sional, associative algebra over K = R or C, with a unit element. If S is an N -dimensional
vector space over K, then the set EndS of all endomorphisms of S is an N2-dimensional
algebra over K, the product being defined by composition; if f, g ∈ EndS, then one writes
fg instead of f ◦ g; the unit of EndS is the identity map I. By definition, homomorphisms
of algebras map units into units. The map K → A, a 7→ a1A is injective and one identifies
K with its image in A by this map so that the unit can be represented by 1 ∈ K ⊂ A. A set
B ⊂ A is said to generate A if every element of A can be represented as a linear combination
of products of elements of B. For example, if V is a vector space over K, then its tensor
algebra

T (V ) =⊕∞
p=0⊗p V

is an (infinite-dimensional) algebra over K generated by K ⊕ V . The algebra of all N by
N matrices with entries in an algebra A is denoted by A(N). Its unit element is the unit
matrix I. In particular, R(N), C(N) and H(N) are algebras over R. The algebra R(2) is
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generated by the set {σx, σz}. As a vector space, the algebra R(2) is spanned by the set
{I,σx, ε, σz}.

The direct sum A⊕B of the algebras A and B over K is an algebra over K such that its
underlying vector space is A×B and the product is defined by (a, b) · (a′, b′) = (aa′, bb′) for
every a, a′ ∈ A and b, b′ ∈ B. Similarly, the product in the tensor product algebra A ⊗K B
is defined by

(a⊗ b) · (a′ ⊗ b′) = aa′ ⊗ bb′. (3)

For example, if A is an algebra over R, then the tensor product algebra R(N) ⊗R A is
isomorphic to A(N) and

K(N)⊗K K(N ′) = K(NN ′) (4)

for K = R or C and N,N ′ ∈ N. There are isomorphisms of algebras over R:

C⊗R C = C⊕ C
C⊗R H = C(2)

H⊗R H = R(4).

(5)

An algebra over R can be complexified by complexifying its underlying vector space; it
follows from (5) that C(2) is the complex algebra obtained by complexification of the real
algebra H.

The center of an algebra A is the set

Z(A) = {a ∈ A | ab = ba ∀ b ∈ A}.

The center is a commutative subalgebra containing K. An algebra over K is said to be
central if its center coincides with K. The algebras R(N) and H(N) are central over R. The
algebra C(N) is central over C, but not over R.

Simplicity and representations

Let B1 and B2 be subsets of the algebra A. Define B1B2 = {b1b2 | b1 ∈ B1, b2 ∈ B2}. A
vector subspace B of A is said to be a left (resp., right) ideal of A if AB ⊂ B (resp, BA ⊂ B).
A two-sided ideal—or simply an ideal—is a left and right ideal. An algebra A 6= {0} is said
to be simple if its only two-sided ideals are {0} and A.

For example, the algebras R(N) and H(N) are simple over R; the algebra C(N) is simple
when considered as an algebra over both R and C; every associative, finite-dimensional
simple algebra over R or C is isomorphic to one of them.

A representation of an algebra A over K in a vector space S over K is a homomorphism
of algebras ρ : A → EndS. If ρ is injective, then the representation is said to be faithful . For
example, the regular representation ρ : A → EndA of an algebraA, defined by ρ(a)b = ab for
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all a, b ∈ A, is faithful. A vector subspace T of the vector space S carrying a representation
ρ of A is said to be invariant for ρ if ρ(a)T ⊂ T for every a ∈ A; it is proper if distinct from
both {0} and S. For example, a left ideal of A is invariant for the regular representation.
Given an invariant subspace T of ρ one can reduce ρ to T by forming the representation
ρT : A → EndT , where ρT (a)s = ρ(a)s for every a ∈ A and s ∈ T . A representation is
irreducible if it has no proper invariant subspaces.

A linear map F : S1 → S2 is said to intertwine the representations ρ1 : A → EndS1 and
ρ2 : A → EndS2 if Fρ1(a) = ρ2(a)F holds for every a ∈ A. If F is an isomorphism, then the
representations ρ1 and ρ2 are said to be equivalent , ρ1 ∼ ρ2. The following two propositions
are classical:

(A) (i) An algebra over K is simple if, and only if, it admits a faithful irreducible repre-
sentation in a vector space over K. Such a representation is unique, up to equivalence.
(ii) The complexification of a central simple algebra over R is a central simple algebra over
C.

For real algebras, one often considers complex representations, i.e. representations in
complex vector spaces. Two such representations ρ1 : A → EndS1 and ρ2 : A → EndS2 are
said to be complex-equivalent if there is a complex isomorphism F : S1 → S2 intertwining the
representations; they are real-equivalent if there is an isomorphism among the realifications
of S1 and S2, intertwining the representations. For example, C, considered as an algebra over
R, has two complex-inequivalent representations in C: the identity representation and its
complex conjugate. The realifications of these representations, given by i 7→ ε and i 7→ −ε,
respectively, are real-equivalent: they are intertwined by σz. The real algebra H, being
central simple, has only one, up to complex equivalence, representation in C2: every such
representation is equivalent to the one given by

i 7→ σx/
√
−1, j 7→ σy/

√
−1, k 7→ σz/

√
−1.

This representation extends to an injective homomorphism of algebras i : H(N) → C(2N)
which is used to define the quaternionic determinant of a matrix a ∈ H(N) as detH(a) =
det i(a) so that detH(a) > 0 and detH(ab) = detH(a) detH(b) for every a, b ∈ H(N). In
particular, if q ∈ H and λ, µ ∈ R, then detH(q) = q̄q and

detH

(
λ q
−q̄ µ

)
= (λµ+ q̄q)2. (6)

There are quaternionic unimodular groups SLN(H) = {a ∈ H(N)|detH(a) = 1}. For exam-
ple, the group SL1(H) is isomorphic to SU2 and SL2(H) is a non-compact, 15-dimensional
Lie group, one of the spin groups in 6 dimensions.
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Antiautomorphisms and inner products

An automorphism of an algebra A is a linear isomorphism α : A → A such that α(ab) =
α(a)α(b). An invertible element c ∈ A defines an inner automorphism Ad(c) ∈ GL(A),
Ad(c)a = cac−1. Complex conjugation in C, considered as an algebra over R, is an auto-
morphism that is not inner. An antiautomorphism of an algebra A is a linear isomorphism
β : A → A such that β(ab) = β(b)β(a) for all a, b ∈ A. An (anti)automorphism β is
involutive if β2 = id. For example, conjugation of quaternions defines an involutive antiau-
tomorphism of H.

Let ρ : A → EndS be a representation of an algebra with an involutive antiauto-
morphism β. There is then the contragredient representation ρ̌ : A → EndS∗ given by
ρ̌(a) = (ρ(β(a)))∗. If, moreover, A is central simple and ρ is faithful irreducible, then there is
an isomorphism B : S → S∗ intertwining ρ and ρ̌ which is either symmetric, B∗ = B, or anti-
symmetric, B∗ = −B. It defines on S the structure of an inner product space. This structure
extends to EndS: there is a symmetric isomorphism B⊗B−1 : EndS → (EndS)∗ = EndS∗

given, for every f ∈ EndS, by (B ⊗B−1)(f) = BfB−1.
Let K× = K r {0} be the multiplicative group of the field K. Given a simple algebra A

with an involutive antiautomorphism β, one defines N(a) = β(a)a and the group

G(β) = {a ∈ A | N(a) ∈ K×}.

Let ρ : A → EndS be the faithful irreducible representation as above, then, for a ∈ A and
s, t ∈ S, one has

B(ρ(a)s, ρ(a)t) = N(a)B(s, t).

If a ∈ G(β) and λ ∈ K×, then λa ∈ G(β) and the norm N satisfies N(λa) = λ2N(a). The
inner product B is invariant with respect to the action of the group

G1(β) = {a ∈ G(β) | N(a) = 1.}

(B) Let A be a central simple algebra over K with an involutive antiautomorphism β and
a faithful irreducible representation ρ so that

ρ̌(a) = Bρ(a)B−1.

The map h : A×A → K defined by

h(a, b) = Tr ρ(β(a)b)

is bilinear, symmetric and non-degenerate. The map ρ is an isometry of the quadratic space
(A, h) on its image in the quadratic space (EndS,B ⊗B−1).
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Graded algebras

Definitions

An algebra A is said to be Z-graded (resp., Z2-graded) if there is a decomposition of the
underlying vector space A = ⊕p∈ZAp (resp. A = A0 ⊕ A1) such that ApAq ⊂ Ap+q. In a
Z2-graded algebra it is understood that p+q is reduced mod 2. If a ∈ Ap, then a is said to be
homogeneous of degree p. The exterior algebra ∧V of a vector space V is Z-graded. Every
Z-graded algebra becomes Z2-graded when one reduces the degree of every element mod 2.
A graded isomorphism of graded algebras is an isomorphism that preserves the grading.

A Z2-grading of A is characterized by the involutive automorphism α such that, if a ∈ Ap,
then α(a) = (−1)pa. From now on, grading means Z2-grading unless otherwise specified.
The elements of A0 (resp., A1) are said to be even (resp., odd). It is often convenient to
denote the graded algebra as

A0 → A. (7)

Given such an algebra overK andN ∈ N, one constructs the graded algebraA0(N)→ A(N).
Two graded algebras over K, A0 → A and A′0 → A′ are said to be of the same type if there
are integers N and N ′ such that the algebras A0(N) → A(N) and A′0(N ′) → A′(N ′) are
graded isomorphic. The property of being of the same type is an equivalence relation in the
set of all graded algebras over K.

Given an algebra A, one constructs two ‘canonical’ graded algebras as follows:
(i) the double algebra

A → A⊕A

graded by the ‘swap’ automorphism, α(a1, a2) = (a2, a1) for a1, a2 ∈ A;
(ii) the algebra

A⊕A → A(2)

is defined by declaring the diagonal (resp., antidiagonal) elements of A(2) to be even (resp.,
odd).

The real algebra R(2) has also another grading, given by the involutive automorphism α
such that α(a) = εaε−1, where a ∈ R(2) and ε is as in (2). In this case, (7) reads

C→ R(2).

There are also graded algebras over R

R→ C, C→ H and H→ C(2).

The grading of the last algebra can be defined by declaring the Pauli matrices and iI to be
odd.
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Super Lie algebras

A super Lie algebra is a graded algebra A such that the product (a, b) 7→ [a, b] is super
anticommutative, [a, b] = −(−1)pq[b, a], and satisfies the super Jacobi identity,

[a, [b, c]] = [[a, b], c] + (−1)pq[b, [a, c]]

for every a ∈ Ap, b ∈ Aq and c ∈ A. To every graded associative algebra A there corresponds
a super Lie algebra GLA: its underlying vector space and grading are as in A and the
product, for a ∈ Ap and b ∈ Aq, is given as the supercommutator [a, b] = ab− (−1)pqba.

Super centrality and graded simplicity

A graded algebra A over K is supercentral if Z(A) ∩ A0 = K. The algebra R → C is
supercentral, but the real ungraded algebra C is not central.

A subalgebra B of a graded algebra A is said to be a graded subalgebra if B = B ∩A0⊕
B ∩ A1. A graded ideal of A is an ideal that is a graded subalgebra. A graded algebra
A 6= {0} is said to be graded simple if it has no graded ideals other than {0} and A. The
double algebra of a simple algebra is graded simple, but not simple.

The graded tensor product

Let A and B be graded algebras; the tensor product of their underlying vector spaces
admits a natural grading, (A ⊗ B)p = ⊕q Aq ⊗ Bp−q. The product defined in (3) makes
A ⊗ B into a graded algebra. There is another ‘super’ product in the same graded vector
space given by

(a⊗ b) · (a′ ⊗ b′) = (−1)pqaa′ ⊗ bb′

for a′ ∈ Ap and b ∈ Bq. The resulting graded algebra is referred to as the graded tensor prod-
uct and denoted by A⊗̂B. For example, if V and W are vector spaces, then the Grassmann
algebra ∧(V ⊕W ) is isomorphic to ∧V ⊗̂∧W .

Clifford algebras

Definitions; the universal property and grading

The Clifford algebra associated with a quadratic space (V, g) is the quotient algebra

C̀ (V, g) = T (V )/J (V, g), (8)

where J (V, g) is the ideal in the tensor algebra T (V ) generated by all elements of the form
v ⊗ v − g(v, v)1T (V ), v ∈ V .

The Clifford algebra is associative with a unit element denoted by 1. One denotes by κ the
canonical map of T (V ) onto C̀ (V, g) and by ab the product of two elements a, b ∈ C̀ (V, g)
so that κ(P ⊗ Q) = κ(P )κ(Q) for P,Q ∈ T (V ). The map κ is injective on K ⊕ V and
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one identifies this subspace of T (V ) with its image under κ. With this identification, for all
u, v ∈ V , one has

uv + vu = 2g(u, v).

Clifford algebras are characterized by their universal property described in proposition

(C) Let A be an algebra with a unit 1A and let f : V → A be a Clifford map, i.e. a
linear map such that f(v)2 = g(v, v)1A for every v ∈ V . There then exists a homomorphism
f̂ : C̀ (V, g) → A of algebras with units, an extension of f , so that f(v) = f̂(v) for every
v ∈ V .

As a corollary, one obtains

(D) If f is an isometry of (V, g) into (W,h), then there is a homomorphism of algebras
C̀ (f) : C̀ (V, g)→ C̀ (W,h) extending f so that there is the commutative diagram

C̀ (V, g)
C̀ (f)−−−→ C̀ (W,h)x x

V −−−→
f

W

For example, the isometry v 7→ −v extends to the involutive main automorphism α of
C̀ (V, g), defining its Z2-grading:

C̀ (V, g) = C̀ 0(V, g)⊕ C̀ 1(V, g).

The algebra C̀ (V, g) admits also an involutive canonical antiautomorphism β characterized
by β(1) = 1 and β(v) = v for every v ∈ V .

The vector space structure of Clifford algebras

Referring to proposition (D), let A = End(∧V ) and, for every v ∈ V and w ∈ ∧V , put
f(v)w = v ∧ w + g(v)yw, then f : V → End(∧V ) is a Clifford map and the map

i : C̀ (V, g)→ ∧V (9)

given by i(a) = f̂(a)1∧V is an isomorphism of vector spaces. This proves

(E) As a vector space, the algebra C̀ (V, g) is isomorphic to the exterior algebra ∧V .
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If V is m-dimensional, then C̀ (V, g) is 2m-dimensional. The linear isomorphism (9)
defines a Z-grading of the vector space underlying the Clifford algebra: if i(ak) ∈ ∧k V , then
ak is said to be of Grassmann degree k. Every element a ∈ C̀ (V, g) decomposes into its
Grassmann components, a =

∑
k∈Z ak. The Clifford product of two elements of Grassmann

degrees k and l decomposes as follows: akbl =
∑

p∈Z(akbl)p, and (akbl)p = 0 if p < |k − l| or
p ≡ k − l + 1 mod 2 or p > m− |m− k − l|.

One often uses (9) to identify the vector spaces ∧V and C̀ (V, g); this having been done,
one can write, for every v ∈ V and a ∈ C̀ (V, g),

va = v ∧ a+ g(v)y a, (10)

so that [v, a] = 2g(v)y a, where [ , ] is the supercommutator. It defines a super Lie algebra
structure in the vector space K ⊕ V . The quadratic form defined by g need not be non-
degenerate; for example, if it is the zero form, then (10) shows that the Clifford and exterior
multiplications coincide and C̀ (V, 0) is isomorphic, as an algebra, to the Grassmann algebra.

Complexification of real Clifford algebras

(F) If (V, g) is a real quadratic space, then the algebras C⊗ C̀ (V, g) and C̀ (C⊗ V,C⊗ g)
are isomorphic, as graded algebras over C.

From now on, through the end of the article, one assumes that (V, g) is an
orthogonal space over K = R or C.

The Clifford algebra associated with the orthogonal space Cm is denoted by C̀ m. The
Clifford algebra associated with the orthogonal space (Rk+l, g), where g is of signature (k, l),
is denoted by C̀ k,l, so that C⊗ C̀ k,l = C̀ k+l. The algebra C̀ k,l is a real form of the complex
algebra C̀ k+l.

Relations between Clifford algebras in spaces of adjacent dimensions

Consider an orthogonal space (V, g) over K and the one-dimensional orthogonal space
(K,h1), having a unit vector w ∈ K, h1(w,w) = ε, where ε = 1 or −1. The map
V 3 v 7→ vw ∈ C̀ 0(V ⊕ K, g ⊕ h1) satisfies (vw)2 = −εg(v, v) and extends to the iso-
morphism of algebras C̀ (V,−εg)→ C̀ 0(V ⊕K, g ⊕ h1). This proves

(G) There are isomorphisms of algebras: C̀ m → C̀ 0
m+1 and C̀ k,l → C̀ 0

k+1,l.

Consider the orthogonal space (K2, h) with a neutral h such that, for λ, µ ∈ K, one has
〈(λ, µ), h(λ, µ)〉 = λµ. The map

K2 → K(2), (λ, µ) 7→
(

0 λ
µ 0

)
11



has the Clifford property and establishes the isomorphisms represented by the horizontal
arrows in the diagram

C̀ (K2, h) −−−→ K(2)x x
C̀ 0(K2, h) −−−→ K ⊕K.

(11)

(H) If (K2, h) is neutral and (V, g) is over K, then the algebra C̀ (V ⊕ K2, g ⊕ h) is
isomorphic to the algebra C̀ (V, g)⊗K(2). Specifically, there are isomorphisms

C̀ k+1,l+1 = C̀ k,l⊗R(2)

C̀ m+2 = C̀ m⊗C(2).
(12)

The Chevalley theorem and the Brauer–Wall group

If (V, g) and (W,h) are quadratic spaces over K, then their sum is the quadratic space
(V ⊕W, g⊕h) characterized by g⊕h : V ⊕W → V ∗⊕W ∗ so that (g⊕h)(v, w) = (g(v), h(w)).
By noting that the map V ⊕W 3 (v, w) 7→ v ⊗ 1 + 1 ⊗ w ∈ C̀ (V, g)⊗̂ C̀ (W,h) has the
Clifford property, Chevalley proved

(I) The algebra C̀ (V ⊕W, g ⊕ h) is isomorphic to the algebra C̀ (V, g)⊗̂ C̀ (W,h).

The type of the (graded) algebra C̀ (V ⊕W, g⊕ h) depends only on the types of C̀ (V, g)
and C̀ (W,h). The Chevalley theorem (I) shows that the set of types of Clifford algebras
over K forms an Abelian group for a multiplication induced by the graded tensor product.
The unit of this Brauer–Wall group of K is the type of the algebra C̀ (K2, h) described in
(11); for a full account with proofs see Wall (1963).

The volume element and the centers

Let e = (eµ) be an orthonormal frame in (V, g). The volume element associated with e is

η = e1e2 . . . em.

If η′ is the volume element associated with another orthonormal frame e′ in the same or-
thogonal space, then either η′ = η (e and e′ are of the same orientation) or η′ = −η (e and
e′ are of opposite orientation). For K = C one has η2 = 1; for K = R and g of signature
(k, l) one has

η2 = (−1)
1
2
(k−l)(k−l+1). (13)

It is convenient to define ι ∈ {1, i} so that η2 = ι2. For every v ∈ V one has vη = (−1)m+1ηv.
The structure of the centers of Clifford algebras is as follows:

12



(J) If m is even, then Z( C̀ (V, g)) = K and Z( C̀ 0(V, g)) = K ⊕Kη.
If m is odd, then Z( C̀ (V, g)) = K ⊕Kη and Z( C̀ 0(V, g)) = K.
The graded algebra C̀ (V, g) is supercentral for every m.

The structure of Clifford algebras

The complex case

Using (4) one obtains from (11) and (12) the isomorphisms of algebras

C̀ 0
2n+1 = C̀ 2n = C(2n), (14)

C̀ 2n+1 = C̀ 0
2n+2 = C(2n)⊕ C(2n), (15)

for n = 0, 1, 2, . . .. Therefore, there are only two types of complex Clifford algebras, repre-
sented by C→ C⊕ C and C⊕ C→ C(2): the Brauer–Wall group of C is Z2.

The real case

In view of proposition (I) and C̀ 1,1 = R(2), the algebra C̀ k,l is of the same type as
C̀ k−l,0 if k > l and of the same type as C̀ 0,l−k if k < l. Since C̀ k,l ⊗̂ C̀ l,k = C̀ k+l,k+l, the
type of C̀ l,k is the inverse of the type of C̀ k,l. The algebra C̀ 0

4,0 → C̀ 4,0 is isomorphic to
H⊕H→ H(2). Indeed, if x = (x1, x2, x3, x4) ∈ R4 ⊂ C̀ 4,0, and q = ix1 +jx2 +kx3 +x4 ∈ H,
then an isomorphism is obtained from the Clifford map f ,

f(x) =

(
0 q
−q̄ 0

)
. (16)

In view of (13), the volume element η satisfies η2 = 1. By replacing −q̄ with q̄ in (16), one
shows that C̀ 0,4 is also isomorphic to H(2). The map R4 × Rk+l → H(2) ⊗ C̀ k,l given by
(x, y) 7→ f(x) ⊗ 1 + f(η) ⊗ y has the Clifford property and establishes the isomorphism of
algebras C̀ k+4,l = H⊗ C̀ k,l. Since, similarly, C̀ k,l+4 = H⊗ C̀ k,l, one obtains the isomorphism

C̀ k+4,l = C̀ k,l+4 .

Therefore,
C̀ k+8,l = C̀ k+4,l+4 = C̀ k,l+8 = C̀ k,l⊗R(16),

and the algebras C̀ k,l, C̀ k+8,l and C̀ k,l+8 are all of the same type. This double periodicity
of period 8 is subsumed by saying that real Clifford algebras can be arranged on a ‘spinorial
chessboard’. The type of C̀ 0

k,l → C̀ k,l depends only on k− l mod 8; the eight types have the
following low-dimensional algebras as representatives: C̀ 1,0, C̀ 2,0, C̀ 3,0, C̀ 4,0= C̀ 0,4, C̀ 0,3,
C̀ 0,2 and C̀ 0,1. The Brauer–Wall group of R is Z8, generated by the type of C̀ 0

1,0 → C̀ 1,0,

i.e. by R→ C. Bearing in mind the isomorphism C̀ k,l = C̀ 0
k+1,l and abbreviating C→ R(2)

13



to C→ R, etc., one can arrange the types of real Clifford algebras in the form of a ‘spinorial
clock’:

R 7−−−→ R⊕ R 0−−−→ R

6

x y1

C C

5

x y2

H ←−−−
4

H⊕H ←−−−
3

H

(17)

(K) Recipe for determining C̀ 0
k,l → C̀ k,l:

(i) find the integers µ and ν such that k − l = 8µ+ ν and 0 6 ν 6 7;
(ii) from the spinorial clock, read off A0

ν
ν−→ Aν and compute the real dimensions, dimA0

ν =
2τ0

and dimAν = 2τ ;

(iii) form C̀ 0
k,l = A0

ν(2
1
2
(k+l−1−τ0)) and C̀ k,l = Aν(2

1
2
(k+l−τ)).

The spinorial clock is symmetric with respect to the reflection in the vertical line through
its center; this is a consequence of the isomorphism of algebras C̀ k,l+2 = C̀ l,k⊗R(2).

Note that the ‘abstract’ algebra C̀ k,l carries, in general, less information than the Clifford
algebra defined in (8), which contains V as a distinguished vector subspace with the quadratic
form v 7→ v2 = g(v, v). For example, the algebras C̀ 8,0, C̀ 4,4 and C̀ 0,8 are all graded
isomorphic.

Theorem on simplicity

From general theory (Chevalley 1954) or by inspection of (14), (15) and (17), one has

(L) Let m be the dimension of the orthogonal space (V, g) over K.
If m is even (resp., odd), then the algebra C̀ (V, g) (resp., C̀ 0(V, g)) over K is central

simple.
If K = C and m is odd (resp., even), then the algebra C̀ (V, g) (resp., C̀ 0(V, g)) is the

direct sum of two isomorphic complex central simple algebras.
If K = R and m is odd (resp., even), then the algebra C̀ (V, g) (resp., C̀ 0(V, g)) when

η2 = 1 is the direct sum of two isomorphic central simple algebras and when η2 = −1 is
simple with a center isomorphic to C.

14



Representations

The Pauli, Cartan, Dirac and Weyl representations

Odd dimensions

Let (V, g) be of dimension m = 2n + 1 over K. From propositions (A) and (L) it
follows that the central simple algebra C̀ 0(V, g) has a unique, up to equivalence, faithful and
irreducible representation in the complex 2n-dimensional vector space S of Pauli spinors. By
putting σ(η) = ιI it is extended to a Pauli representation σ : C̀ (V, g) → EndS. Given an
orthonormal frame (eµ) in V , Pauli endomorphisms (matrices if S is identified with C2n

) are
defined as σµ = σ(eµ) ∈ EndS. The representations σ and σ ◦ α are complex-inequivalent.
For K = C none of them is faithful; their direct sum is the faithful Cartan representation of
C̀ (V, g) in S⊕S. For K = R and 1

2
(k− l−1) even, the representations σ and σ ◦α are real-

equivalent and faithful. Computing β(η) one finds that the contragredient representation σ̌
is equivalent to σ for n even and to σ ◦ α for n odd.
Even dimensions

Similarly, for (V, g) of dimension m = 2n over K, the central simple algebra C̀ (V, g) has
a unique, up to equivalence, faithful and irreducible representation γ : C̀ (V, g) → EndS
in the 2n-dimensional complex vector space S of Dirac spinors. The Dirac endomorphisms
(matrices) are γµ = γ(eµ). Put Γ = ιγ(η) so that Γ 2 = I: the matrix Γ generalizes the
familiar γ5. The Dirac representation γ restricted to C̀ 0(V, g) decomposes into the sum
γ+ ⊕ γ− of two irreducible representations in the vector spaces

S± = {s ∈ S|Γs = ±s}

of Weyl (chiral) spinors. The elements of S+ are said to be of opposite chirality with respect
to those of S−. The transpose Γ ∗ defines a similar split of S∗. The representations γ+ and
γ− are never complex-equivalent, but they are real-equivalent and faithful for K = R and
1
2
(k − l) odd.

The representations γ ◦ α and γ̌ are both equivalent to γ. It is convenient to describe
simultaneously the properties of the transpositions of the Pauli and Dirac matrices; let ρµ be
either the Pauli matrices for V of dimension 2n+1 or the Dirac matrices for V of dimension
2n. There is a complex isomorphism B : S → S∗ such that

ρ∗µ = (−1)nBρµB
−1. (18)

In the case of the Dirac matrices, the factor (−1)n in (18) implies that this equation holds
also for Γ in place of ρµ. The isomorphism B preserves (resp., changes) the chirality of Weyl
spinors for n even (resp., odd). Every matrix of the form Bγµ1 . . . γµp , where

1 6 µ1 < · · · < µp 6 2n, (19)
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is either symmetric or antisymmetric, depending on p and the symmetry of B. A simple
argument, based on counting the number of such products of one symmetry, leads to the
equation

B∗ = (−1)
1
2

n(n+1)B

valid in dimensions 2n and 2n+ 1.

Inner products on spinor spaces

Let S be the complex vector space of Dirac or Pauli spinors associated with (V, g) over
K. The isomorphism B : S → S∗ defines on S an inner product B(s, t) = 〈s, B(t)〉, s, t ∈ S,
which is orthogonal for m ≡ 0, 1, 6 or 7 mod 8 and symplectic for m ≡ 2, 3, 4 or 5 mod 8.
For m ≡ 0 mod 4, this product restricts to an inner product on the spaces of Weyl spinors
that is orthogonal for m ≡ 0 mod 8 and symplectic for m ≡ 4 mod 8. For m ≡ 2 mod 4,
the map B defines the isomorphisms B± : S± → S∗∓.

Example

One of the most often used representations γ : C̀ 3,1 → C(4) is given by the Dirac matrices

γ1 =

(
0 σx

−σx 0

)
, γ2 =

(
0 σy

−σy 0

)
,

γ3 =

(
0 σz

−σz 0

)
, γ4 =

(
0 I
I 0

)
.

(20)

Charge conjugation and Majorana spinors

Throughout this section and next one assumes K = R so that, given a representation
ρ : C̀ (V, g) → EndS, one can form the complex (“charge”) conjugate representation ρ̄ :
C̀ (V, g) → End S̄ defined by ρ̄(a) = ρ(a) and the Hermitian conjugate representation ρ† :
C̀ (V, g)→ End S̄∗, where ρ†(a) = ρ̌(a).

Even dimensions

The representations γ̄ and γ are equivalent: there is an isomorphism C : S → S̄ such
that

γ̄µ = CγµC
−1. (21)

The automorphism C̄C is in the commutant of γ; it is, therefore, proportional to I and, by
a change of scale, one can achieve C̄C = I for k − l ≡ 0 or 6 mod 8 and C̄C = −I for
k − l ≡ 2 or 4 mod 8.

The spinor sc = C−1s̄ ∈ S is the charge conjugate of s ∈ S. If ψ : V → S is a solution of
the Dirac equation

(γµ(∂µ − iqAµ)− κ)ψ = 0

16



for a particle of electric charge q, then ψc is a solution of the same equation with the opposite
charge. Since

Γ̄ = ι2CΓC−1,

charge conjugation preserves (resp., changes) the chirality of Weyl spinors for 1
2
(k − l) even

(resp., odd).
If C̄C = I, then

ReS = {s ∈ S|sc = s}
is a real vector space of dimension 2n, the space of Dirac–Majorana spinors. The represen-
tation γ is real: restricted to ReS and expressed with respect to a frame in this space, it is
given by real 2n by 2n matrices. For k − l ≡ 0 mod 8 the representations γ+ and γ− are
both real: in this case there are Weyl–Majorana spinors.

Odd dimensions

Computing σ(η) one finds that the conjugate representation σ̄ is equivalent to σ (resp.,
σ ◦ α) if η2 = 1 (resp., η2 = −1). There is an isomorphism C : S → S̄ such that

σ̄µ = (−1)
1
2
(k−l+1)CσµC

−1 (22)

and C̄C = I (resp., C̄C = −I) for k− l ≡ 1 or 7 mod 8 (resp., k− l ≡ 3 or 5 mod 8). For
k − l ≡ 1 mod 8, the restriction of the Pauli representation to C̀ 0

k,l is real and the Pauli
matrices are pure imaginary; for k− l ≡ 7 mod 8, the Pauli representations of C̀ k,l are both
real and so are the Pauli matrices, In both these cases there are Pauli–Majorana spinors.

Hermitian scalar products and multivectors

For m = k + l odd and C as in (22), the map A = B̄C : S → S̄∗ intertwines the representa-
tions σ† and σ (resp., σ ◦ α) for k even (resp., odd),

σ†µ = (−1)kAσµA
−1.

By rescaling of B, the map A can be made Hermitian. The corresponding Hermitian form
s 7→ A(s, s) is definite if, and only if, k or l = 0; otherwise, it is neutral.

For m = k + l even, the representations γ† and γ are equivalent and one can define a
Hermitian isomorphism A : S → S̄∗ so that

γ†µ = AγµA
−1. (23)

The isomorphism A′ = AΓ intertwines the representations γ† and γ ◦α; it can also be made
Hermitian by rescaling. The Hermitian form A(s, s) is definite for k = 0 and A′(s, s) is defi-
nite for l = 0; otherwise, these forms are neutral. For example, in the familiar representation
(20), one has A = γ4, a neutral form.

17



Given two spinors s and t ∈ S and an integer p such that 0 6 p 6 m = 2n, one defines a
p-vector with components

Aµ1...µp(s, t) = 〈s̄, Aγµ1 . . . γµpt〉, (24)

where the indices are as in (19). The Hermiticity of A and (23) imply

Aµ1...µp(s, t) = (−1)
1
2

p(p−1)Aµ1...µp(t, s).

In view of Γ † = (−1)kAΓA−1, the map A defines, for k even, a non-degenerate Hermitian
scalar product on the spaces S± whereas A(s, t) = 0 if s and t are Weyl spinors of opposite
chiralities. For k odd, A changes the chirality.

The Radon–Hurwitz numbers

(M) For every integer m > 0, the algebra C̀ m,0 has an irreducible real representation ρ of
dimension 2χ(m), where χ(m) is the mth Radon–Hurwitz number given by

m = 1 2 3 4 5 6 7 8

χ(m) = 1 2 2 3 3 3 3 4

and χ(m + 8) = χ(m) + 4. The matrices ρµ ∈ R(2χ(m)), µ = 1, . . . ,m, defining these
representations satisfy

ρµρν + ρνρµ = −2δµνI

and can be chosen so as to be antisymmetric. In all dimensions other than m ≡ 3 mod 4
the representations are faithful.

For m ≡ 2 and 4 mod 8 (resp., m ≡ 1, 3 and 5 mod 8) the representations ρ are the
realifications of the corresponding Dirac (resp., Pauli) representations. In dimensions m ≡ 0
and 6 mod 8 (resp., m ≡ 7 mod 8) the Dirac (resp., Pauli) representations themselves are
real.

Inductive construction of representations

An inductive construction of the Pauli representations

σ : C̀ n−1,n → R(2n−1), n = 1, 2, . . . ,

and of the Dirac representations

γ : C̀ n,n → R(2n), n = 1, 2, . . . ,
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is as follows.
(i) In dimension 1, put σ1 = 1.

(ii) Given σµ ∈ R(2n−1), µ = 1, . . . , 2n− 1, define

γµ =

(
0 σµ

σµ 0

)
for µ = 1, . . . , 2n− 1,

and

γ2n =

(
0 −I
I 0

)
.

(iii) Given γµ ∈ R(2n),µ = 1, . . . , 2n, define σµ = γµ for µ = 1, . . . , 2n, and σ2n+1 = γ1 . . . γ2n

so that, for n > 0,

σ2n+1 =

(
I 0
0 −I

)
.

All entries of these matrices are either 0, 1 or −1; therefore, they can be used to construct
representations of Clifford algebras of orthogonal spaces over any commutative field of char-
acteristic 6= 2.

By induction, one has σ∗µ = (−1)µ+1σµ. Therefore, the isomorphisms appearing in (18)
are B = γ2γ4 . . . γ2n for both m = 2n and 2n+ 1.

By multiplying some of the matrices σµ or γµ by the imaginary unit one obtains complex
representations of the Clifford algebras associated with quadratic forms of other signatures.
For example, in dimension 3, (σ1, iσ2, σ3) are the Pauli matrices. In dimension 4, multiplying
γ2 by i one obtains the Dirac matrices for g of signature (1, 3), in the ‘chiral representation’:

γ1 =

(
0 σx

σx 0

)
, γ2 =

(
0 σy

σy 0

)
,

γ3 =

(
0 σz

σz 0

)
, γ4 =

(
0 −I
I 0

)
.

(25)

To obtain the real Majorana representation one uses the following fact:

(N) If the matrix C ∈ R(2n) is such that C2 = I and (21) holds, then the matrices
(I + iC)γµ(I + iC)−1, µ = 1, . . . , 2n, are real.

For the matrices (25) one can take C = γ1γ3γ4 to obtain

γ′1 =

(
0 σx

σx 0

)
, γ′2 =

(
I 0
0 −I

)
,

γ′3 =

(
0 σz

σz 0

)
, γ′4 =

(
0 −I
I 0

)
.
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The real representations described in proposition (M) can be obtained by the following di-
rect inductive construction. Consider the following 7 real antisymmetric and anticommuting
8 by 8 matrices

ρ1 = σz ⊗ I ⊗ ε
ρ2 = σz ⊗ ε⊗ σx

ρ3 = σz ⊗ ε⊗ σz

ρ4 = σx ⊗ ε⊗ I
ρ5 = σx ⊗ σx ⊗ ε
ρ6 = σx ⊗ σz ⊗ ε
ρ7 = ε⊗ I ⊗ I

(26)

For m = 4, 5, 6 and 7 the matrices ρ1, . . . , ρm generate the representations of C̀ m,0 in R8. The
8 matrices θµ = σx⊗ρµ, µ = 1, . . . , 7, and θ8 = ε⊗ I⊗ I⊗ I give the required representation
of C̀ 8,0 in R16. Dropping the first factor in ρ1, ρ2, ρ3 one obtains the matrices generating
a representation of C̀ 3,0 in R4, etc. The symmetric matrix Θ = θ1 . . . θ8 = σz ⊗ I ⊗ I ⊗ I
anticommutes with all the θs and Θ2 = I. If the matrices ρµ ∈ R(2χ(m)) correspond to a
representation of C̀ m,0, then the m+8 matrices Θ⊗ρ1, . . . , Θ⊗ρm, θ1⊗I, . . . , θ8⊗I generate
the required representation of C̀ m+8,0.

Vector fields on spheres and division algebras

It is known that even-dimensional spheres have no nowhere vanishing tangent vector
fields. All such fields on odd-dimensional spheres can be constructed with the help of the
representation ρ described in proposition (M). Given a positive even integer N , let m be the
largest integer such that N = 2χ(m)p, where p is an odd integer. Consider the unit sphere
SN−1 = {x ∈ RN |‖x‖ = 1} of dimension N − 1. For v ∈ Rm, put ρ′(v) = ρ(v) ⊗ I, where
I ∈ R(p) is the unit matrix. Since ρ(v) is antisymmetric, so is the matrix ρ′(v) ∈ R(N).
Therefore, for every x ∈ SN−1, the vector ρ′(v)x is orthogonal to x. The map x 7→ ρ′(v)x
defines a vector field on SN−1 that vanishes nowhere unless v = 0: the (N−1)-sphere admits
a set of m tangent vector fields which are linearly independent at every point. Using methods
of algebraic topology, it has been shown that this method gives the maximum number of
linearly independent tangent vector fields on spheres.

If m = 1, 3 or 7, then m + 1 = 2χ(m) and, for these values of m, the sphere Sm is
parallelizable. Moreover, one can then introduce in Rm+1 the structure of an algebra Am as
follows. Put ρ0 = I. If e0 ∈ Rm+1 is a unit vector and eµ = ρµ(e0), then (e0, e1, . . . , em) is an
orthonormal frame in Rm+1. The product of x =

∑m
µ=0 xµeµ and y =

∑m
µ=0 yµeµ is defined

to be
x · y =

∑m
µ,ν=0 xµyνρµ(eν)
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so that e0 is the unit element for this product. Defining Rex = x0e0, Imx = x − Rex,
x̄ = Re x − Im x one has x̄ · x = e0‖x‖2 and x̄ · (x · y) = (x̄ · x) · y so that x · y = 0 implies
x = 0 or y = 0: Am is a normed algebra without zero divisors. The algebras A1 and A3 are
isomorphic to C and H, respectively, and A7 is, by definition, the algebra O of octonions
discovered by Graves and Cayley. The algebra O is non-associative; its multiplication table
is obtained with the help of (26).

Spinor groups

Let (V, g) be a quadratic space over K. If u ∈ V is not null, then it is invertible as an
element of C̀ (V, g) and the map v 7→ −uvu−1 is a reflection in the hyperplane orthogonal to
u. The orthogonal group O(V, g) = O(V,−g) = {R ∈ GL(V )|R∗ ◦ g ◦ R = g} is generated
by the set of all such reflections. A spinor group G is a subset of C̀ (V, g) that is a group
with respect to multiplication induced by the product in the algebra, with a homomorphism
ρ : G → GL(V ) whose image contains the connected component SO0(V, g) of the group of
rotations of (V, g). In the case of real quadratic spaces, one considers also spinor groups that
are subsets of C ⊗ C̀ (V, g) with similar properties. By restriction, every representation of
C̀ (V, g) or C⊗ C̀ (V, g) gives spinor representations of the spinor groups it contains.

Pin groups

It is convenient to define a unit vector v ∈ V ⊂ C̀ (V, g) to be such that v2 = 1 for V complex
and v2 = 1 or −1 for V real. The group Pin(V, g) is defined as consisting of products of

all finite sequences of unit vectors. Defining now the twisted adjoint representation Ãd by
Ãd(a)v = α(a)va−1, one obtains the exact sequence

1→ Z2 → Pin(V, g)
Ãd−→ O(V, g)→ 1. (27)

If dimV is even, then the adjoint representation Ad(a)v = ava−1 also yields an exact se-
quence like (27); if it is odd, then the image of Ad is SO(V, g) and the kernel is the four-
element group {1,−1, η,−η}.

Given an orthonormal frame (eµ) in (V, g) and a ∈ Pin(V, g), one defines the orthogonal
matrix R(a) = (Rν

µ(a)) by

Ãd(a)eµ = eνR
ν
µ(a). (28)

If (V, g) is complex, then the algebras C̀ (V, g) and C̀ (V,−g) are isomorphic; this induces
an isomorphism of the groups Pin(V, g) and Pin(V,−g). If V = Cm, then this group is
denoted by Pinm(C). If V = Rk+l and g is of signature (k, l), then one writes Pin(V, g) =
Pink,l. A similar notation is used for the groups spin, see below.
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Spin groups

The spin group Spin(V, g) = Pin(V, g)∩ C̀ 0(V, g) is generated by products of all sequences of
an even number of unit vectors. Since the algebras C̀ 0(V, g) and C̀ 0(V,−g) are isomorphic,
so are the groups Spin(V, g) and Spin(V,−g). Since α(a) = a for a ∈ Spin(V, g), the twisted
adjoint representation reduces to the adjoint representation and yields the exact sequence

1→ Z2 → Spin(V, g)
Ad−→ SO(V, g)→ 1. (29)

For V = Cm, the spin group is denoted by Spinm(C). Since Spinm(C) ⊂ G1(β), the bilinear
form B is invariant with respect to the action of this group.

Spin 0 groups

The connected component Spin0(V, g) of the group Spin(V, g) coincides with Spin(V, g) if
either the quadratic space (V, g) is complex or real and kl = 0. In signature (k, l), the
connected group Spin0

k,l is generated in C̀ 0
k,l by all products of the form u1 . . . u2pv1 . . . v2q

such that u2
i = −1 and v2

j = 1. The connected groups Spinm.0 and Spin0,m are isomorphic

and denoted by Spinm. Since Spin0
k,l ⊂ G1(β), the Hermitian form A and the bilinear form

B are invariant with respect to the action of this group. Moreover, for k+ l even, from (24)
and (28) there follows the transformation law of multivectors formed from pairs of spinors,

Aµ1...µp(γ(a)s, γ(a)t) =

Aν1...νp(s, t)R
ν1
µ1

(a−1) . . . Rνp
µp

(a−1).

Consider Spin0(V, g) and assume that either V is complex of dimension > 2 or real with
k or l > 2. There then are two unit orthogonal vectors e1, e2 ∈ V such that (e1e2)

2 = −1.
The vector u(t) = e1 cos t+ e2 sin t is obtained from e1 by rotation in the plane span{e1, e2}
by the angle t ∈ R. The curve t 7→ e1u(t), 0 6 t 6 π, connects the elements 1 and
−1 of Spin0(V, g). Its image in SO0(V, g), i.e. the curve t 7→ Ad(e1u(t)), 0 6 t 6 π, is
closed: Ad(1) = Ad(−1). This fact is often expressed by saying that “a spinor undergoing
a rotation by 2π changes sign”. There is no homomorphism—not even a continuous map—
f : SO0(V, g)→ Spin0(V, g) such that Ad ◦f = id.

Spin c groups

For the purposes of physics, to describe charged fermions, and in the theory of the Seiberg–
Witten invariants, one needs the spinc groups that are spinorial extensions of the real or-
thogonal groups by the group U1 of ‘phase factors’. Assume V to be real and g of signature
(k, l) so that the sequence (29) can be written as

1→ Z2 → Spink,l → SOk,l → 1.

22



Define the action of Z2 = {1,−1} in Spink,l×U1 so that (−1)(a, z) = (−a,−z). The quotient
(Spink,l×U1)/Z2 = Spinc

k,l yields the extensions

1→ U1 → Spinc
k,l → SOk,l → 1

and
1→ Spink,l → Spinc

k,l → U1 → 1.

For example, Spin3 = SU2 and Spinc
3 = U2.

Spin groups in dimensions 6 6

The connected components of spin groups associated with orthogonal spaces of dimension
6 6 are isomorphic to classical groups. They can be explicitly described starting from the
following observations.

Consider the four-dimensional vector space (of twistors) T over K, with a volume element
vol ∈ ∧4 T . The six-dimensional vector space V = ∧2 T has a scalar product g defined by
g(u, v) vol = 2u ∧ v for u, v ∈ V . The quadratic form g(u, u) is the Pfaffian, Pf(u). If
u ∈ V is represented by the corresponding isomorphism T ∗ → T and a ∈ EndT , then
Pf(aua∗) = det aPf(u). The last formula shows Spin0(V, g) = SL(T ) so that Spin6(C) =
SL4(C). For K = R, the Pfaffian is of signature (3, 3) so that Spin0

3,3 = SL4(R). A non-null
vector v ∈ V defines a symplectic form on T ∗. The five-dimensional vector space v⊥ ⊂ V
is invariant with respect to the symplectic group Sp(T ∗, v) = Spin0(v⊥,Pf |v⊥). This shows
Spin5(C) = Sp4(C) and Spin0

2,3 = Sp4(R). Spin groups for other signatures in real dimensions
6 and 5 are obtained by considering appropriate real subspaces of C6 and C5, respectively.
For example, (6) is used to show Spin0

1,5 = SL2(H).
Spin groups in dimensions 4 and lower are similarly obtained from the observation that det

is a quadratic form on the four-dimensional space K(2) and C̀ 0(K(2), det) = K(2)⊕K(2).

The complex spin groups

Spin2(C) = C×,

Spin3(C) = SL2(C),

Spin4(C) = SL2(C)× SL2(C),

Spin5(C) = Sp4(C),

Spin6(C) = SL4(C).
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The real, compact spin groups

Spin2 = U1,

Spin3 = SU2,

Spin4 = SU2× SU2,

Spin5 = Sp2(H),

Spin6 = SU4 .

The groups Spin0
k,l for 1 6 k 6 l and k + l 6 6

Spin0
1,1 = R,

Spin0
1,2 = SL2(R),

Spin0
1,3 = SL2(C),

Spin0
2,2 = SL2(R)× SL2(R),

Spin0
1,4 = Sp1,1(H),

Spin0
2,3 = Sp4(R),

Spin0
1,5 = SL2(H),

Spin0
2,4 = SU2,2,

Spin0
3,3 = SL4(R).
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