Homework problems # 1

- 1. Show that the Lorentz transformations are the only non-singular coordinate transformations $x \to x'$ that leave $d\tau^2$ invariant (non-singularity means that both $\partial x'^{\alpha}/\partial x^{\beta}$ and $\partial x^{\beta}/\partial x'^{\alpha}$ exists).
- 2. Prove that

$$\varepsilon^{\varepsilon\xi\kappa\lambda}\Lambda^{\alpha}_{\varepsilon}\Lambda^{\beta}_{\xi}\Lambda^{\gamma}_{\kappa}\Lambda^{\delta}_{\lambda}=\varepsilon^{\alpha\beta\gamma\delta}\,,$$

then show that $\varepsilon^{\alpha\beta\gamma\delta}$ is a contravariant Lorentz tensor which transforms into itself.

3. Derive the Lorentz covariant formula for the electromagnetic force acting on a charged particle:

$$f^{\alpha} = e F^{\alpha}_{\ \gamma} \frac{dx^{\gamma}}{d\tau} \,.$$