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ZADANIA Z MECHANIKI1

1Tu zamieszczam wszystkie zadania, także te, które sa֒ przerabiane na zaje֒ciach (rozwia֒zania tych
zadań sa֒ zamieszczone w dalszej cze֒ści tego pliku). Symbol R nie oznacza, że jest to zadanie “radzieckie”
(choć niektóre z nich takie sa֒) tylko coś innego.
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1 KINEMATYKA

Zadanie 1.1R

Dane sa֒ cztery wektory A, B, C oraz D. Wyrazić wielkość

(A × B) · (C × D)

przez same iloczyny skalarne tych wektorów. Przedstawić wektor

(A × B) × (C × D)

w postaci kombinacji liniowej wyrażeń, z których wyste֒puje tylko po jednym iloczynie
wektorowym dwu wektorów.

Zadanie 1.2R

Dany jest tor r = r(λ), gdzie λ jest jakimś parametrem. Wiadomo, że przy dowolnej
wartości λ

r· dr
dλ

= 0 oraz r× dr

dλ
= 0 .

Pokazać, że tor taki jest po prostu punktem (tzn. że r(λ) jest sta lym wektorem).

Zadanie 1.3R

Dany jest uk lad wspó lrze֒dnych (x, y) na p laszczyźnie oraz okra֒g o promieniu R i środku
w punkcie (0, 0). Dana jest też prosta p styczna do okre֒gu, która toczy sie֒ po nim bez
poślizgu. (Bez poślizgu to znaczy, że jeśli w dwu różnych chwilach czasu zaznaczymy i
na okre֒gu i na prostej punkty styczności, to odleg lość mie֒dzy tymi punktami na prostej
be֒dzie równa d lugości  luku pomie֒dzy punktami styczności na okre֒gu). Biegunowy ka֒t α
wyznaczaja֒cy punkt styczności prostej p z okre֒giem zmienia sie֒ z czasem: α = α(t). W
chwili t = 0 prosta ta przechodzi przez punkt (R, 0), tj. α(0) = 0. Punkt A prostej ma w
chwili t = 0 wspó lrze֒dne (R, yA). Znaleźć jego wspó lrze֒dne w dowolnej chwili czasu.

Zadanie 1.4R

Wyprowadzić wzory na sk ladowe wektorów pre֒dkości i przyspieszania we wspó lrze֒dnych
biegunowych (r, ϕ) na p laszczyźnie i we wspó lrze֒dnych sferycznych (r, θ, ϕ) w przestrzeni
trójwymiarowej.

Zadanie 1.5R

Podać (tj. wyprowadzić) wzory na wszystkie trzy kartezjańskie sk ladowe Li wektora (or-
bitalnego) momentu pe֒du cza֒stki o masie m wyrażone przez: a) zmienne (i ich pochodne
po czasie) ρ, φ, z cylindrycznego uk ladu wspó lrze֒dnych, b) zmienne (i ich pochodne) r,
θ, φ sferycznego uk ladu wspó lrze֒dnych. W obu przypadkach podać także wzory na L2.
Podać także sk ladowe wektora L w bazach wersorów er, eϕ, ez oraz er, eθ, eϕ zwia֒zanych
z tymi uk ladami wspó lrze֒dnych wyrażone przez zmienne tychże uk ladów.
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Zadanie 1.6R

W uk ladzie kartezjańskim tensor elastycznych odkszta lceń cia la ma sk ladowe

Uij(x) =
1

2

(

∂ui(x)

∂xj
+
∂uj(x)

∂xi

)

,

gdzie ui(x) to sk ladowe wektora przemieszczeń. Rozpatruja֒c cia lo p laskie moga֒ce od-
kszta lcać sie֒ tylko w p laszczyźnie xy ≡ x1x2 wyprowadzić sk ladowe tensora odkszta lceń
w uk ladzie cylindrycznym wyrażaja֒c je oczywíscie przez pochodne po zmiennych r i ϕ
sk ladowych wektora przemieszczeń w tymże uk ladzie.2

Zadanie 1.7R

Wyprowadzić wzory wyrażaja֒ce wspó lczynniki rozk ladu wektora pre֒dkości v, wektora
przyspieszenia a oraz pochodnej po czasie ȧ wektora przyspieszenia na trzy ortonormalne
wektory

t ≡ dr

dl
, n ≡ ρ

dt

dl
, |n| = 1 , oraz b ≡ t × n ,

(dl v = |v|,jest tu różniczka֒ d lugości toru), przez szybkość v = |v|, promień ρ (lokalnej)
krzywizny toru, ich pochodne po czasie oraz skre֒cenie (torsje֒) τ . Promień ρ krzywizny i
skre֒cenie τ sa֒ zdefiniowane zwia֒zkami

dt

dl
=

1

ρ
n ,

dn

dl
= α t + τ b .

Wspó lczynnik γ w drugim zwia֒zku nie jest niezależny od ρ i τ i trzeba go wyznaczyć.3

Zadanie 1.8R

P laska kolista tarcza obraca sie֒ wokó l prostopad lej do niej osi ze sta la֒ pre֒dkościa֒ ka֒towa֒
ω. Od środka tarczy rusza żuczek4 i poda֒ża ku jej brzegowi ze sta la֒ pre֒dkościa֒ v0 skiero-
wana֒ wzd luż promienia tarczy. Jak wygla֒da ruch żuczka w nieruchomym kartezjańskim

2Wystarczy zaja֒ć sie֒ przypadkiem dwuwymiarowym, żeby zobaczyć, jak to robić. Rachunki sa֒ dość
żmudne, a przypadek trzech wymiarów nic od strony koncepcyjnej by nie wniós l; wzory w trzech wymia-
rach w uk ladach cylindrycznym i sferycznym można znaleźć w Teorii spre֒żystości Landaua i Lifszyca (tom
VII ich s lawetnego Kursu fizyki teoretycznej). Zauważmy jeszcze, że tensor jest obiektem geometrycznym.
Jeśli ograniczamy sie֒ do ortogonalnych uk ladów krzywoliniowych i pos lugujemy unormowanymi wekto-
rami bazowymi zwia֒zanymi z takim uk ladem, można tensor odkszta lceń U traktować jak “biwektor”

U =
1

2

(→

∇⊗ u + u⊗ ←

∇
)

.

∇ jest tu “wektorem” gradientu, a strza lka nad nim pokazuje, w która֒ strone֒ dzia la zwia֒zane z nim
różniczkowanie.

3Parametryzacja krzywej jej d lugościa֒ l jest dla matematyków “kanoniczna”. Ich naogó l intere-
suje naste֒puja֒ce zagadnienie: maja֒c zadane ρ i τ jako funkcje d lugości, zrekonstruować sama֒ krzywa֒
(oczywíscie ρ i τ wyznaczaja֒ krzywa֒ tylko dok ladnościa֒ do jej dowolnego przesunie֒cia i dowolnego ob-
rotu jako ca lości).

4Żuczek gnojarek z muszka֒ plujka֒ na grzbiecie, zgodnie z posenka֒ “Muszka plujka i żuczek gnojarek//
stanowili dość dobrana֒ pare֒...”
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uk ladzie (którego pocza֒tek pokrywa sie֒ ze środkiem tarczy)? Znaleźć nastepnie w tym
nieruchomym uk ladzie:
a) wzory zadaja֒ce ruch we wspó lrze֒dnych biegunowych (r, ϕ),
b) równanie toru, po którym porusza sie֒ punkt (zarówno we we wspó lrze֒dnych bieguno-
wych jak i kartezjańskich),
c) sk ladowe radialna֒ i transwersalna֒ wektorów pre֒dkości (v) i przyspieszenia (a), tzn.
rzuty tych wektorów na wersory er i eϕ uk ladu biegunowego,
d) |v| oraz |a|,
e) wektory styczny t i normalny n do toru ruchu w każdym jego punkcie (zob. Zada-
nie 1.1), oraz sk ladowe at ≡ a · t i an ≡ a · n wektora przyspieszenia a,
f) zależność promienia krzywizny toru ρ od czasu (i sprawdzić tym samym zwia֒zek
an = v2/ρ),
g) d lugość toru zakreślanego przez żuczka w nieruchomym uk ladzie w funkcji czasu t.

Zadanie 1.9R

Wiedza֒c, że podczas p laskiego ruchu cza֒stki ka֒t pomie֒dzy kierunkiem jej wektora wodza֒cego
r i wektorem jej pre֒dkości v jest sta ly (i równy α) znaleźć we wspó lrze֒dnych biegunowych:
a) wzór na tor cza֒stki,
b) d lugość toru w funkcji po lożenia cza֒stki.
Przyja֒ć jako warunki pocza֒tkowe ϕ(0) = 0 i r(0) = r0. Zależność szybkości |v(t)| od
czasu może być dowolna.

Zadanie 1.10R

Wyznaczyć tor, po jakim powinien z pre֒dkościa֒ wie֒ksza֒ of pre֒dkości dźwie֒ku lecieć sa-
molot, by do obserwatora stoja֒cego na ziemi dźwie֒k silnika samolotu dochodzi l z ca lego
toru w tej samej chwili.

Zadanie 1.11R

Znaleźć i przedyskutować tor i ruch psa, który goni zaja֒ca uciekaja֒cego z pre֒dkościa֒ v
po prostej. Pies biegnie z pre֒dkościa֒ c taka֒, że jest ona stale skierowana w strone֒ zaja֒ca.
Zbadać kiedy pies zaja֒ca dogoni i podać punkt i chwile֒ z lapania szaraka.
Wskazówka: Wybrać uk lad wspó lrze֒dnych kartezjańskich xy tak, by w chwili pocza֒tkowej
t = 0 pies by l w pocza֒tku uk ladu, a zaja֒c w punkcie (a, 0); prosta po której ucieka zaja֒c
jest wtedy prosta֒ x = a. Wykazać, że zachodzi zwia֒zek

dy

dx
=

1

a− x







−y +
v

c

∫ x

0

dx

√

1 +

(

dy

dx

)2







,

i sta֒d, różniczkuja֒c, uzyskać różniczkowe równanie wyznaczaja֒ce tor.

Zadanie 1.12R

Lustro wody w studni obniża sie֒ ze sta la֒ pre֒dkościa֒ w. W chwili t = 0, gdy lustro wody
znajdowa lo sie֒ na pewnej nieznanej g le֒bokości, do studni upuszczono (tzn. puszczono z
zerowa֒ pre֒dkościa֒ pocza֒tkowa֒) kamień. Odg los pluśnie֒cia tego kamienia o lustro wody
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dotar ldo spuszczaja֒cego kamień w chwili t1. Po czasie T od upuszczenia pierwszego
kamienia upuszczono drugi kamień, odg los pluśnie֒cia którego dotar ldo spuszczaja֒cego go
w chwili T + t2. Przyjmuja֒c, że (sta la) pre֒dkość dźwie֒ku w powietrzu jest równa vs (i
znana) obliczyć na podstawie podanych danych pre֒dkość w opadania lustra wody.

Zadanie 1.13

Nad punktem P na ziemi z samolotu leca֒cego na sta lej wysokości H z pre֒dkościa֒ v

wyskoczy l spadochroniarz i otworzy l spadochron po czasie t1, na ziemi zaś wyla֒dowa lpo
czasie t2 (od opuszczenia samolotu). Zak ladaja֒c, że od otwarcia spadochronu spada l on
ze sta la֒ pre֒dkościa֒ u znaleźć:
1) pre֒dkość samolotu wzgle֒dem skoczka w funkcji czasu
2) odleg lość samolot-skoczek w funkcji czasu
3) ruch skoczka wzgle֒dem punktu P .
(Wszystkie te wielkości wygodnie jest przedstawić graficznie).

Zadanie 1.14R

Ustawione na ziemi dzia lo może wystrzeliwać pociski o pocza֒tkowej szybkości v w pod
dowolnym katem w stosunku do p laszczyzny horyzontu i w dowolnym kierunku azymu-
talnym. Pomijajac wp lyw si ly Coriolisa wyznaczyć równanie powierzchni ograniczaja֒cej
obszar, do każdego punktu którego pocisk może dotrzeć.

Zadanie 1.15R

Punkt porusza sie֒ ze sta la֒ szybkościa֒ v po leża֒cej w p laszczyźnie (x, y) krzywej o równaniu
y(x) = (2/3)ax3/2 (a > 0). Podać zależność od czasu wspó lrze֒dnych x i y jego po lożenia
przyjmua֒ć, że x(0) = 0. Podać kartezjańskie sk ladowe wektora v pre֒dkości i wektora a

przyspieszenia punktu oraz sk ladowe przyspieszenia styczna֒ i normalna֒ do toru. Wyzna-
czyć także promień ρ krzywizny toru punktu jako funkcji jej d lugości l.

Zadanie 1.16R

Turysta wchodzi na górke֒, której zbocze wznosi sie֒ zgodnie ze wzorem z(x) =
√
ax, gdzie

a > 0, przy czym sk ladowa jego pre֒dkości w kierunku pionowym jest sta la i równa u.
Oblicz czas, po którym turysta rozpoczynaja֒c z punktu o x = 0 dotrze do schroniska
znajduja֒cego sie֒ na zboczu na wysokości h. Podaj wspó lrze֒dne (x, z) po lożenia turysty w
każdej chwili czasu a także jego pre֒dkość i przyspieszenie. Jaka֒ droge֒ pokona docieraja֒c
do schroniska? Wyznacz także krzywizne֒ zbocza jako funkcje֒ wysokości z.

2 CA LKOWANIE RÓWNAŃ RUCHU

Zadanie 2.1R

Punkt materialny o masie m porusza sie֒ ruchem jednostajnym, tj. ze sta la֒ wartościa֒
pre֒dkości |v|, po okre֒gu o promieniu R0 (okra֒g po lożony jest horyzontalnie). Na punkt
ten dzia la si la oporu Fop = −κv oraz inna zewne֒trzna si la F pozwalaja֒ca punktowi
utrzymywać sta la֒ pre֒dkość. Znaleźć prace֒ jaka֒ wykonuje si la oporu Fop podczas jednego
obiegu punktu wokó l okre֒gu. Jaka֒ prace֒ wykonuje wtedy si la zewne֒trzna F? Przyjmuja֒c
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naste֒pnie, że si la oporu znika, obliczyć prace֒, jaka֒ wykonać musi zewne֒trzna si la F, by
spowodować zmiane֒ z R0 na R1 promienia okre֒gu, po którym kra֒ży masa m.

Zadanie 2.2R

Cia lu o masie m nadano pre֒dkość u skierowana֒ pod ka֒tem α do powierzchni ziemi.
Przyjmuja֒c, że istotna jest tylko pozioma sk ladowa si ly oporu, która jest proporcjonalna
do poziomej sk ladowej pre֒dkości cia la, znaleźć zasie֒g takiego rzutu ukośnego w funkcji
ka֒ta α. Pokazać, że odleg lość w kierunku poziomym przebyta przez cia lo do momentu
osia֒gnie֒cia przez nie maksymalnej wysokości jest wie֒ksza od po lowy zasie֒gu.

Zadanie 2.3R

Po równi pochy lej o ka֒cie nachylenia do poziomu równym α zsuwa sie֒ klocek o masie
m, na który dzia la si la oporu F = −mκv. Znaleźć po lożenia klocka w funkcji czasu
jeśli w chwili t = 0 znajdowa l sie֒ on na wysokości h. Sprawdzić, że w granicy κ → 0
dostaje sie֒ “szkolne” rozwia֒zanie. Obliczyć strate֒ energii mechanicznej (kinetycznej plus
potencjalnej) w funkcji czasu i porównać ja֒ z praca֒ wykonana֒ przez si le֒ oporu.

Zadanie 2.4R

Pocisk o masie m i skierowanej horyzontalnie (w stosunku do pola grawitacji g) pre֒dkości
v0 wpada do akwarium wype lnionego ge֒sta֒ ciecza֒, w której dzia la nań si la oporu Fop =
−κv (κ > 0. Znaleźć po lożenie punktu (g le֒bokość, na jakiej sie֒ on znajduje), w którym
pocisk uderzy w przeciwleg la֒ ścianke֒ akwarium odleg la֒ od punktu wlotu o d.

Zadanie 2.5R

Na cia lo o masie m i pre֒dkości pocza֒tkowej v(0) = v0 dzia la tylko si la oporu

Fop = −κ|v|α v

|v| , κ, α > 0 .

Zbadać, jak czas trwania takiego ruchu i jego zasie֒g zależa֒ od wyk ladnika α.

Zadanie 2.6R

Zbadać możliwe ruchy jednowymiarowego oscylatora harmonicznego z t lumieniem be֒da֒ce
rozwia֒zaniami równania

mẍ + 2γ ẋ+ kx = 0 ,

gdzie γ > 0, k > 0 (czynnik 2 w drugim wyrazie zosta l wprowadzony dla rachunkowej
wygody). Rozpatrzyć wszystkie możliwe przypadki.

Zadanie 2.7R

Pokazać, że tor ruchu dwuwymiarowego izotropowego oscylatora harmonicznego, czyli
leża֒cy na p laszczyźnie tor ruchu cza֒stki o masie m poddanej dzia laniu si ly spre֒żystej
F = −mω2r jest elipsa֒. Jaki warunek musza֒ spe lniać cze֒stości ω1 i ω2 nieizotropowego
trójwymiarowego oscylatora o sile F = −m(ω2

1xex + ω2
2yey + ω2

3zez), by tor jego ruchu
by l krzywa֒ zamknie֒ta֒?
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Zadanie 2.8R

Znaleźć ruch jednowymiarowego oscylatora harmonicznego o masie m, sta lej spre֒żystości
k = mω2

0 i wspó lczynniku si ly t lumia֒cej 2γ = 2mλ pobudzanego si la֒ zewne֒trzna֒ o har-
monicznej zależności od czasu

F (t) = F0 cos(Ωt + δ) .

Przedyskutować zależność amplitudy wychyleń oscylatora od cze֒stości Ω si ly wymu-
szaja֒cej oraz korelacje֒ maksimów wychyleń oscylatora z maksimami si ly. Zak ladaja֒c, że
λ 6= 0 i że ruch trwa już dostatecznie d lugo, by zależność ruchu od warunków pocza֒tkowych
sta la sie֒ nieistotna (tj. że t ≫ 1/λ), obliczyć uśredniona֒ po okresie si ly wymuszaja֒cej
moc przekazywana֒ przez nia֒ oscylatorowi i zbadać jej zależność od cze֒stości Ω. Co sie֒
dzieje z ta֒ pobierana֒ przez oscylator energia֒?

Zadanie 2.9R

Dokonuja֒c odpowiednich przybliżeń w ścis lym wzorze na zależność od czasu po lożenia
rozpatrywanego w zadaniu 2.8 oscylatora (i przyjmuja֒c, że faza δ si ly wymuszajacej jest
równa zeru) przedyskutować jakościowo charakter jego ruchu w różnych reżimach (tj. dla
różnych stosunków wielkości ω0, Ω i λ), jeśli w chwili t = 0 oscylator spoczywa lw swoim
po lożeniu równowagi (x(0) = 0, ẋ(0) = 0). W szczególności rozpatrzyć przypadek bez
t lumienia (λ = 0), oraz przypadki 0 < λ≪ |ω0 − Ω| i |ω0 − Ω| ≪ λ.

Zadanie 2.10R

Podać zależność od czasu wychylenia oscylatora harmonicznego o wspó lczynniku t lumienia
λ równym dok ladnie jego cze֒stości w lasnej ω0 (tzn. o sile oporu Fop = −2mω0ẋ) pobu-
dzanego si la֒ harmoniczna֒ F (t) = F0 cos Ωt, który w chwili t = 0 spoczywa l w po lożeniu
x = 0. Jak wygla֒da ruch w granicy r ≡ Ω/ω0 = 0 ? Uzasadnić, że gdy r ≫ 1 (cze֒stość
si ly wymuszaja֒cej bardzo duża w porównaniu z cze֒stościa֒ w lasna֒) najwie֒ksze wychyle-
nie oscylatora jest proporcjonalne do 2/r2. Jak pocza֒tkowo, tj. dla ω0t ≪ 1, narasta
wychylenie oscylatora, gdy r = 1?

Zadanie 2.11R

Podać rozwia֒zanie równania ruchu jednowymiarowego oscylatora harmonicznego o masie
m, cze֒stości ω0 i wspó lczynniku t lumienia 2γ = 2mλ pobudzanego si la֒ F (t) o dowolnej
zależności od czasu.

Zadanie 2.12R

Znaleźć i przedyskutować ruch jednowymiarowego niet lumionego oscylatora harmonicz-
nego o masie m, cze֒stości ω0 pobudzanego si la֒ F (t) postaci
a) F (t) = F0 exp(−κt) z κ > 0,
b) F (t) = (t/T )F0 dla 0 ≤ t ≤ T i F (t) = 0 dla t > T ,
jeśli w chwili t = 0 oscylator znajdowa lsie֒ w spoczynku w po lożeniu równowagi. W
szczególności, powiedzieć, jak wychylenie oscylatora zmienia sie֒ z czasem pocza֒tkowo, tj.
gdy, w przypadku pierwszej si ly, κt≪ 1 i ω0t ≪ 1 i ω0t≪ 1, w przypadku drugiej. Jaka
jest amplituda wychyleń po dostatecznie d lugim czasie w zależności od wartości stosunku
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κ/ω0 w przypadku pierwszej si ly? Napisać wychylenie jako funkcje֒ czasu dla t > T w
przypadku drugiej si ly.

Zadanie 2.13R

Obliczyć prace֒ W jaka֒ nad niet lumionym jednowymiarowym oscylatorem harmonicznym
o cze֒stości ω0 wykona w cia֒gu ca lego czasu swego nań dzia lania si la postaci

F (t) = F0 exp

(

− t2

τ 2

)

.

Rozpatrzyć przypadki: a) gdy w t → −∞ (tj. przed w la֒czeniem sie֒ si ly) oscylator
by l w ca lkowitym spoczynku, oraz b) gdy w t → −∞ ruch oscylatora by ldany wzorem
x(t) = A cos(ω0t + ϕ). Jaka w przypadku oscylatora pocza֒tkowo spoczywaja֒cego jest
praca W , gdy ω0τ ≪ 1, a jaka, gdy ω0τ ≫ 1? Czy można to intuicyjnie zrozumieć? Jak
można w drugim przypadku zrozumieć to, że praca W może być ujemna?
Wskazówka: Wykorzystuja֒c metody ca lkowania funkcji zmiennej zespolonej można uza-
sadnić, że

∫ ∞

−∞
dt exp

(

−(t + ia)2

τ 2

)

= τ
√
π ,

innymi s lowy, przesunie֒cie w funkcji exp(−t2/τ 2) zmiennej ca lkowania o liczbe֒ urojona֒
nie zmienia wartości ca lki.

Zadanie 2.14R

Rozwia֒zuja֒c równanie Newtona z si la֒ Lorentza F = q(E + v × B), przedyskutować
ruch cza֒stki o  ladunku elektrycznym q i masie m w sta lych i jednorodnych, wzajem-
nie prostopad lych polach: elektrycznym E i magnetycznym B, w zależności od pre֒dkości
pocza֒tkowej v0 cza֒stki. Sprawdzić otrzymane rozwia֒zanie r(t) w przypadku znikania pola
magnetycznego lub elektrycznego. Przedyskutować także wszystkie możliwe typy rzutów
toru cza֒stki na p laszczyzne֒ prostopad la֒ do pola magnetycznego w zależności od rzutu
pre֒dkości cza֒stki na te֒ p laszczyzne֒ w chwili wybranej za pocza֒tkowa֒.

Zadanie 2.15R

Znaleźć tor cza֒stki o  ladunku q i masie m poruszaja֒cej sie֒ w sta lym i jednorodnym polu
magnetycznym B = ezB w ośrodku, w którym dzia la na nia֒ si la oporu F = −m κ v.
Pokazać, że rzut na p laszczyzne֒ prostopad la֒ do kierunku pola magnetycznego krzywej
zakreślanej przez cza֒stke֒ w trakcie ruchu jest spirala֒, tj. okre֒giem, którego promień R
maleje z czasem. Otrzymać także (z dok ladnościa֒ do sta lej proporcjonalności) zależność
R(t) rozpatruja֒c straty energii cza֒stki powodowane wyste֒powaniem si ly oporu.
Wskazówka: Równania ruchu w p laszczyźnie prostopad lej do pola magnetycznego naj-
 latwiej rozwia֒zać wprowadzaja֒c zmienna֒ zespolona֒ ξ = x+ iy.

Zadanie 2.16R

Cza֒stka o masie m i  ladunku elektrycznym q znajduje sie֒ w jednorodnych polach: magne-
tycznym B = ezB (B > 0) i elektrycznym, którego wektor E o sta lej d lugości obraca sie֒
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L X = L x

y

z

B ekran

Rysunek 1: Ekran ustawiony za obszarem pola magnetycznego.

ze sta la֒ pre֒dkościa֒ ka֒towa֒ Ω równa֒ co do wartości cze֒stości cyklotronowej ωB ≡ qB/m w
p laszczyźnie prostopad lej do pola magnetycznego: E = E (ex cos Ωt + ey sin Ωt). Znaleźć
ruch tej cza֒stki, jeśli w chwili t = 0 pozostawa la ona w spoczynku (v(0) = 0). Rozpatrzyć
przypadki Ω = ωB oraz Ω = −ωB. Sprawdzić, że w granicy B → 0 (ωB → 0) otrzymane
rozwia֒zania maja֒ w laściwa֒ (czyli jaka֒?) granice֒. W obu przypadkach naszkicować tor
ruchu cza֒stki i podać jakościowe wyt lumaczenie.
Wskazówka: Bez straty ogólności można przyja֒ć, że r(0) = 0.

Zadanie 2.17R

Sta le jednorodne pole magnetyczne B = ezB rozcia֒ga sie֒ tylko w obszarze, w którym
0 ≤ x ≤ L. W pole to w punkcie r = 0 wpada bardzo szybka cza֒stka o  ladunku
elektrycznym q i pre֒dkości v = exv0, v0 > 0. Jakie sa֒ wspó lrze֒dne punktu, w którym
cza֒stka ta uderzy w ekran ustawiony prostopadle do osi x i przecinaja֒cy ja֒ w x = X > L
(zob. rysunek 1)?

Zadanie 2.18R

Nadlatuja֒ce z różnymi (ale dość dużymi) pre֒dkościami v0 = exv0 (v0 > 0) cza֒stki o
masie m i  ladunku elektrycznym q wpadaja֒ w punkcie r = 0 w obszar dzia lania sta lych
i jednorodnych pól magnetycznego B = −ezB i elektrycznego E = ezE (B > 0, E > 0).
Szerokość obszaru, w którym wyste֒puja֒ pola wynosi L (wzd luż osi x; w kierunkach y
i z pola rozcia֒gaja֒ sie֒ nieograniczenie). Zak ladaja֒c, iż cza֒stki sa֒ dostatecznie szybkie,
pokazać, że punkty, w których uderza֒ one w prostopad ly do osi x ekran ustawiony w
odleg lości d+L od pocza֒tku uk ladu wspó lrze֒dnych utworza֒ parabole֒ o kszta lcie zależa֒cym
od stosunku q/m. (W ten sposób w roku 1913 J.J. Thomson wykaza l istnienie izotopów
neonu o liczbach masowych A = 20 i A = 22).

Zadanie 2.19R

 Lódź podwodna o ca lkowitej masie m jest nape֒dzana silnikiem o sta lej mocy P . Opór
stawiany przez wode֒ można w przybliżeniu wyrazić si la֒ F = −κv, gdzie v jest pre֒dkościa֒
 lodzi. Zak ladaja֒c, że pre֒dkość  lodzi w chwili t = 0 by la równa zeru znaleźć jej pre֒dkość i
po lożenie w dowolnej chwili t. Znaleźć też czas, po którym osia֒gnie ona pre֒dkość równa֒
po lowie maksymalnie możliwej (tj. po lowie pre֒dkości granicznej). Jaka be֒dzie pre֒dkość
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 lodzi po d lugim czasie, jeśli wystartowa la ona z pre֒dkościa֒ wie֒ksza֒ od pre֒dkości granicz-
nej? Jak przebyta droga s przyrasta z czasem dla dużych czasów t?

Zadanie 2.20R (Autorstwa A. Szymachy)
W cylindrycznym naczyniu (o przekroju poprzecznym A) zamknie֒tym moga֒cym poru-
szać sie֒ bez tarcia t loczkiem o masie m, znajduje sie֒ N cza֒stek jednoatomowego gazu
doskona lego (o równaniu stanu p V = NkBT i sta lym cieple w laściwym cV ). Pocza֒tkowa
obje֒tość gazu wynosi V0. Znaleźć zależność od czasu po lożenia t loczka przy adiabatycz-
nym rozpre֒żaniu sie֒ gazu.
Uwaga: Zadanie to daje sie֒ rozwia֒zać ścísle do końca!

Zadanie 2.21R

Punktowa masa m porusza sie֒ pionowo w polu grawitacyjnym g. Si la oporu dzia laja֒ca
na nia֒ jest dana wzorem F = −λ|v|v. Znaleźć zależność pre֒dkości i po lożenia masy m od
czasu w przypadku, gdy jej ruch rozpocza֒ l sie֒ z zerowa֒ pre֒dkościa֒ na pewnej wysokości.
Podać jak zmieniaja֒ sie֒ te wielkości na samym pocza֒tku ruchu i po dostatecznie d lugim
czasie. Przedyskutować jakościowo także przypadki niezerowej pre֒dkości pocza֒tkowej i
jej dwu możliwych kierunków (w góre֒ i w dó l).

Zadanie 2.22R

Udowodnić, że gdy punktowa cza֒stka o masie m porusza sie֒ w polu si ly o potencjale

V (r) = −κ
r
− F·r ,

gdzie F jest sta lym wektorem, sta lymi ruchu sa֒ wielkości: ca lkowita energia E cza֒stki,
L·F oraz

A = F·(v × L) − κ

r
F·r +

1

2
(F×r)2 .

Zadanie 2.23R

Cza֒stka o masie m i  ladunku elektrycznym q porusza sie֒ w sta lym i jednorodnym polu
magnetycznym B. Różniczkuja֒c po czasie wielkość B · L, gdzie L jest momentem pe֒du
cza֒stki, znaleźć wielkość, która pozostaje sta la w takim ruchu. Zapisać te֒ wielkość we
wspó lrze֒dnych cylindrycznych o osi z równoleg lej do pola magnetycznego B. Wyrazić ja֒
jawnie przez warunki pocza֒tkowe ruchu (tj. przez r(0) i v(0)). Wykorzystuja֒c jej sta lość
oraz jeszcze jedna֒ zachowana֒ wielkość znaleźć ruch.

Zadanie 2.24R

Cza֒stka o  ladunku elektrycznym q i masie m porusza sie֒ w polu magnetycznym

B = g
r

r3
=

g

r2
er ,

wytwarzanym przez monopol magnetyczny. Pokazać, że wektor

Q = mr×v − qg
r

r
,
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jest podczas jej ruchu sta ly. Wybieraja֒c oś z uk ladu kartezjańskiego w kierunku wek-
tora Q i obliczaja֒c iloczyny skalarne Q z wersorami er, eθ i eϕ zwia֒zanymi z uk ladem
wspó lrze֒dnych sferycznych, pokazać, że w polu monopola magnetycznego cza֒stka porusza
sie֒ po stożku scharakteryzowanym przez sta ly ka֒t θ = θ0. Wykorzystuja֒c to, że pole
magnetyczne nie wykonuje pracy, znaleźć równanie r = r(ϕ) toru cza֒stki oraz zależność
jej po lożenia od czasu.

Zadanie 2.25R

Pos luguja֒c sie֒ Feynmanowskim modelem atomu jako na ladowango elektronu o masie
m uwia֒zanego spre֒żynka֒ (o wspó lczynniku spre֒żystości mω2

0) do nieruchomego ja֒dra,
wyjaśnić jakościowo, dlaczego po umieszczeniu atomu w sta lym i jednorodnym polu ma-
gnetycznym B w kierunku równoleg lym do tego pola obserwuje sie֒ promieniowanie o
dwóch różnych cze֒stościach (jakich), a w kierunku doń prostopad lym - promieniowanie o
trzech różnych cze֒stościach.
Wskazówka: Pamie֒tać, że przyspieszany  ladunek elektryczny promieniuje; rejestrowany
w chwili t wektor pola elektrycznego takiego promieniowania jest dany wzorem (w tym
kretyńskim uk ladzie SI)

E(t, r) = − 1

4πε0

a⊥(t− r/c)

c2 r
,

gdzie r jest odleg lościa֒ od przyspieszaja֒cego  ladunku, a⊥ zaś jest rzutem jego chwilowego
przyspieszenia, obliczonym w chwili wcześniejszej, t − r/c, niż chwila obserwacji t, na
kierunek prostopad ly do kierunku, z którego  ladunek jest obserwowany.

3 RUCH JEDNOWYMIAROWY -

WYKORZYSTANIE ZACHOWANIA ENERGII

Zadanie 3.1R

Znaleźć jednowymiarowy ruch cza֒stki o masie m w potencjale Morse’a

V (x) = V0
(

e−2αx − 2 e−αx
)

, V0, α > 0.

W przypadku ruchu z ujemna֒ ca lkowita֒ energia֒ E wyznaczyć jego okres. Pokazać, że
gdy ε ≡ V0 − |E| ≪ V0, ruch jest w przybliżeniu harmoniczny i sprawdzić, że cze֒stość
tego ruchu harmonicznego (czyli także okres) można znaleźć rozwijaja֒c potencja l wokó l
minimum. W przypadku E > 0, pokazać, że dla t → ±∞ ruch jest niemal ruchem
jednostajnym. Podać odpowiadaja֒ca֒ tej granicy asymptotyczna֒ postać x(t).

Zadanie 3.2R

Znaleźć jednowymiarowy ruch cza֒stki o masie m w potencjale

V (x) = − V0

ch2(x/a)
.
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W przypadku ruchu z ujemna֒ ca lkowita֒ energia֒ E wyznaczyć jego okres. Pokazać, że gdy
ε ≡ V0−|E| ≪ V0, ruch jest w przybliżeniu harmoniczny i sprawdzić że cze֒stość tego ruchu
harmonicznego (czyli także okres) można znaleźć rozwijaja֒c potencja l wokó l minimum.
W przypadku E > 0 pokazać, że dla t → ∞ ruch jest niemal ruchem jednostajnym.
Podać asymptotyczna֒ postać x(t), jeśli x(0) = 0 i v(0) = v0 > 0. Czy ruch o E > 0 od
x = −b do x = b (np., gdy b ≫ a, czyli gdy “przestrzeliwujemy” cza֒stke֒ przez obszar
dzia lania potencja lu) trwa d lużej, czy krócej niż ruch (z ta֒ sama֒ pre֒dkościa֒ w punkcie
x = −b) przy braku potencja lu?

Zadanie 3.3R

Znaleźć jednowymiarowy ruch w potencjale V (x) = −V0 x4 cza֒stki o masie m i zerowej
ca lkowitej energii. Przyja֒ć, że x(0) = x0 > 0 i rozpatrzyć przypadki ẋ(0) ≡ v0 > 0 i < 0.

Zadanie 3.4R

Zbadać, jak wygla֒da jednowymiarowy ruch cza֒stki o masie m i ca lkowitej energii E w
potencjale V (x) w pobliżu punktu zwrotnego.

Zadanie 3.5R

Zbadać, jak czas dochodzenia masy m o ca lkowitej energii E poruszaja֒cej sie֒ w jednym
wymiarze w potencjale V (x) do punktu zwrotnego x0 po lożonego blisko punktu xe (po
przeciwnej stronie x0, niż ta, po której porusza sie֒ masa m), w okolicy którego poten-
cja lmożna przybliżyć wzorem V (x) = V (xe) − Gn(x − xe)

n + . . . , z Gn > 0 zależy od
różnicy V (xe) −E ≡ ε. Rozpatrzyć przypadki n = 2 i n > 2.

Zadanie 3.6R

Znaleźć w pierwszym przybliżeniu zmiane֒ δT okresu T jednowymiarowego ruchu cza֒stki
o masie m spowodowana֒ ma la֒ zmiana֒ δV (x) wia֒ża֒cego te֒ cza֒stke֒ w ograniczonym ob-
szarze potencja lu V (x), przy niezmienionej ca lkowitej energii E ruchu. Zak ladamy tu,
że zmiana δV (x) potencja lu nie zmienia jakościowo charakteru ruchu (cza֒stka nadal
pozostaje uwie֒ziona w ograniczonym obszarze). Obliczyć w tym przybliżeniu δT , gdy
V (x) = 1

2
mω2x2, a δV (x) = 1

4
mβ x4, gdzie β > 0. Sprawdzić ten wynik na przyk ladzie

potencja lu z Zadania 3.2

Zadanie 3.7R

Znaleźć zmiane֒ δT okresu T jednowymiarowego ruchu cza֒stki o masie m spowodowana֒
ma la֒ zmiana֒ δV (x) = 1

3
mγx3 potencja lu V (x) = 1

2
mω2x2 wia֒żacego cza֒stke֒ w ograniczo-

nym obszarze przy niezmienionej ca lkowitej energii mechanicznej E ruchu. Wykorzystuja֒c
ten wynik znaleźć pierwsza֒ poprawke֒ (tj. poprawke֒ proporcjonalna֒ do energii E ruchu),
o która֒ różni sie֒ okres ruchu w potencjale Morse’a (Zadanie 3.1) od okresu ruchu w poten-
cjale oscylatora harmonicznego o odpowiedniej cze֒stości i porównać wynik z poprawka֒
otrzymana֒ z odpowiedniego rozwinie֒cia okresu wyznaczonego ze ścis lego rozwia֒zania.
Wyrazić także zmiane֒ δT okresu, gdy potencja l jest dok ladnie równy V (x) + δV (x) w
postaci nieskończonego szeregu i przypadku potencja lu ścísle równego 1

2
mω2x2 + 1

3
mγ x3

powiedzieć, kiedy ten szereg jest zbieżny.
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Zadanie 3.8R

Wykorzystuja֒c zachowanie energii mechanicznej znaleźć wzór wyrażaja֒cy w sposób przy-
bliżony zależność od czasu po lożenia cza֒stki o masie m poruszaja֒cej sie֒ w potencjale
V (x) = 1

2
mω2x2 + 1

3
mγ x3 z energia֒ ca lkowita֒ E i znajduja֒cej sie֒ w t = 0 w x = 0.

Ograniczyć sie֒ do przybliżenia pierwszego rze֒du w ma lym (z za lożenia) parametrze γ.
Sprawdzić otrzymane przybliżone rozwia֒zanie wstawiaja֒c je do odpowiedniego równania
ruchu.

Zadanie 3.9R

Stosuja֒c zwyk ly rachunek zaburzeń, tj. podstawiaja֒c do równania Newtona rozwia֒zanie
w postaci szeregu x(t) = x0(t)+δx(t)+O(γ2) z δx(t) proporcjonalnym do γ i przyrównuja֒c
do siebie wyrazy z tymi samymi pote֒gami γ po obu stronach równości, znaleźć z dok ladnoś-
cia֒ do pierwszego rze֒du w γ przybliżony wzór wyrażaja֒cy zależność od czasu po lożenia
cza֒stki o masie m poruszaja֒cej sie֒ w potencjale V (x) = 1

2
mω2x2 + 1

3
mγ x3 z energia֒

ca lkowita֒ E i znajduja֒cej sie֒ w t = 0 w x = 0. Porównać wynik z otrzymanym metoda֒ z
Zadania 3.8.

Zadanie 3.10R

Znaleźć ruch p laskiego wahad la sferycznego, tj. masym zawieszonej w polu g na nieważkim
sztywnym pre֒cie o d lugości l, moga֒cym obracać sie֒ w ustalonej p laszczyźnie pionowej, jeśli
wiadomo, że w najniższym po lożeniu jego energia kinetyczna Tkin jest równa 2mgl. Jaki
jest okres T ruchu, gdy w najniższym po lożeniu Tkin ≫ 2mgl?

Zadanie 3.11

Korzystaja֒c z ca lki pierwszej energii otrzymać ogólny wzór wyrażaja֒cy okres jednowy-
miarowego ruchu masy m w potencjale V (x) = 1

2
kx2n, gdzie k > 0, a n = 1, 2, . . . , przez

funkcje֒ Γ(x).
Wskazówka:

∫ 1

0

dξ ξa−1(1 − ξ)b−1 =
Γ(a)Γ(b)

Γ(a + b)
.

Zadanie 3.12R

Cza֒stka o masie m nadlatuje z nieskończoności, gdzie ma pre֒dkość v, i zderza sie֒ centralnie
(tzn. ca ly ruch odbywa sie֒ wzd luż jednej prostej) ze spoczywaja֒ca֒ pocza֒tkowo druga֒
cza֒stka֒ o takiej samej masie. Cza֒stki odpychaja֒ sie֒ za pośrednictwem si ly o potencjale

V (x1, x2) = V (|x1 − x2|) =
|κ|

|x1 − x2|n
.

Jaka be֒dzie minimalna odleg lość mie֒dzy cza֒stkami? Wyznaczyć po lożnie punktu do
którego dotrze nadlatuja֒ca cza֒stka.
Wskazówka: Rozpatrzyć nadlatywanie cza֒stki ze skończonej odleg lości R i dopiero po-
tem zbadać istnienie granicy R = ∞.
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Zadanie 3.13R

Odwo luja֒c sie֒ do zachowania energii ruchu wzgle֒dnego i innych zasad dynamiki, w prze-
dyskutować jakościowo, co sie֒ dzieje gdy w sytuacji takiej jak w poprzednim Zadaniu
cza֒stka be֒daca pocza֒tkowo w spoczynku ma mase֒ M różna֒ od masy m cza֒stki nadla-
tuja֒cej z nieskończoności (gdzie mia la pre֒dkość v). Obliczyć na jaka֒ minimalna֒ odleg lość
cza֒stki zbliża֒ sie do siebie?

Zadanie 3.14

Punktowa masa m porusza sie֒ w jednowymiarowym potencjale danym wzorem

V (x) = V0 tg2(x/a) ,

w którym V0 > 0. Znaleźć zależność jej po lożenia od czasu i pokazać, że ruch przy ma lych
wychyleniach z (oczywistego) po lożenia równowagi ma charakter drgań harmonicznych,
których cze֒stość można także wyznaczyć bez znajomości rozwia֒zywania ścis lego równania
ruchu.
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4 RUCH UK LADÓW O ZMIENNEJ MASIE

Zadanie 4.1R

Na odkryta֒ p laska֒ kolejowa֒ platforme֒ o masie M0 poruszaja֒ca sie֒ poziomo po prostym
torze z pre֒dkościa֒ V0 zaczyna w chwili t = 0 walić śnieg (pada on prostopadle do po-
wierzchni platformy) w tempie µ kilogramów na sekunde֒. Jak z czasem be֒dzie sie֒ teraz
zmieniać pre֒dkość platformy, jeśli:
a) kolejarz (jego masa jest wliczona w M0) zmiata ca ly osiadaja֒cy śnieg w bok (nadaja֒c
mu jaka֒ś pre֒dkość prostoapd la֒ wzgle֒dem platformy)?
b) zmiata ca ly osiadaja֒cy śnieg, ale do ty lu, nadaja֒c mu pre֒dkość w wzgle֒dem platformy?
c) śnieg osiada, a kolejarz smacznie śpi?

Zadanie 4.2R

Rakieta wznosi sie֒ pionowo z Ziemi wyrzucaja֒c gaz ze sta la֒ pre֒dkościa֒ w do ty lu wzgle֒dem
siebie samej. Masa rakiety zmienia sie֒ wskutek tego zgodnie ze wzorem m(t) = m0 −
κ t, gdzie κ jest sta la֒. Znaleźć zależność po lożenia rakiety od czasu, jeśli jej pre֒dkość
pocza֒tkowa, w chwili t = 0, by la równa v0.

Zadanie 4.3R (pomys lu A. Szymachy)
Wyprowadzić wzór Cio lkowskiego v(t) = −w ln(M(t)/M(0)) wyrażaja֒cy zależność pre֒d-
kości rakiety rozpe֒dzaja֒cej sie֒ w próżni (z dala od wszelkich si l zewne֒trznych) wskutek
odrzutu gazu od stanu spoczynku od jej (zmieniaja֒cej sie֒ z czasem) masy, przyjmuja֒c,
że gazy sa֒ wyrzucane impulsami, a z każdym impulsem rakieta traci 1/(n + 1) cze֒ść
swojej aktualnej masy. Przyja֒ć, że gaz jest odrzucany z pre֒dkościa֒ w wzgle֒dem rakiety
skierowana֒ przeciwnie do pre֒dkości rakiety.

Zadanie 4.4R

Na stole leży sznur o ca lkowitej d lugości l. Pocza֒tkowo 1/4 jego d lugości zwisa z krawe֒dzi
sto lu pionowo w dó l. Wspó lczynnik tarcia (dynamicznego) sznura o stó l wynosi f . Po
jakim czasie sznur zsunie sie֒ ca lkowicie ze sto lu?
Uwaga: Choć nie jest to konieczne, w celach szkoleniowych dobrze jest tu potraktować
ruch sznura jak ruch dwu poduk ladów (zwisaja֒cy kawa lek sznura i kawa lek pozostaja֒cy
na stole) o zmiennych masach i wypisać równania ruchu obu tych poduk ladów.

Zadanie 4.5R(z Bia lkowskiego)
Wyprowadzić i przedyskutować wzór na zależność od czasu pre֒dkości kropli spadaja֒cej w
ziemskim polu grawitacyjnym g. Kropla spadaja֒c albo paruje (jeśli spada w próżni) albo
para wodna z otoczenia kondensuje na niej. Przyja֒ć, że szybkość zmiany z czasem masy
kropli jest proporcjonalna do jej aktualnego promienia5 (traktujemy krople֒ jak kulke֒ i
zak ladamy sta lość ge֒stości wody ja֒ tworza֒cej), a także iż dzia la na nia֒ si la oporu (gdy
spada w powietrzu) proporcjonalna do jej szybkości i do aktualnego promienia. Przyja֒ć

5W istocie, gdy kropla spada w próżni, szybkość zmiany jej masy jest proporcjonalna do pola jej
powierzchni, czyli do r2; gdy zaś para z otoczenia kondensuje na niej, szybkość zmiany masy jest mniej
wie֒cej ∝ r3/2, gdy pre֒dkość kropli jest niewielka i mniej wie֒cej ∝ r1/2 przy wie֒kszych pre֒dkościach.
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też, że tracona lub zyskiwana przez krople֒ woda ma zerowa֒ pre֒dkość wzgle֒dem ośrodka,
w którym kropla spada.

Zadanie 4.6R

W stoja֒cy pocza֒tkowo samochód o masie M uderzaja֒ poruszaja֒ce sie֒ poziomo wzgle֒dem
ziemi z pre֒dkościa֒ u pi lki, które od samochodu odbijaja֒ sie֒ ca lkowicie spre֒żyście również
w kierunku poziomym. Pi lki maja֒ mase֒ m i sa֒ wyrzucane w kierunku samochodu na tyle
cze֒sto, że można przyja֒ć iż w uk ladzie zwiaza֒nym z ziemia֒ tworza֒ one strumień masy
σ (kg/s). Znaleźć pre֒dkość i po lożenie samochodu w funkcji czasu. Jakie be֒da֒ pre֒dkość
i po lożenie samochodu w funkcji czasu, jeśli pi lki zamiast odbijać sie֒ od niego be֒da֒ do
niego wpadać i pozostawać w nim?

Zadanie 4.7R (autor: K. Meissner)
Wyprowadzić relatywistyczny analog wzoru Cio lkowskiego (Zadania 4.2 i 4.3) wyrażaja֒cy
zależność pre֒dkości rakiety (wzgle֒dem uk ladu odniesienia, w którym ona pocza֒tkowo
spoczywa la) rozpe֒dzaja֒cej sie֒ w próżni (z dala od wszelkich si l zewne֒trznych) wskutek
odrzutu gazu od stanu spoczynku od jej (zmieniaja֒cej sie֒ z czasem) masy, przyjmuja֒c,
że gazy sa֒ wyrzucane z rakiety z pre֒dkościa֒ w wzgle֒dem rakiety (tj. w uk ladzie z nia֒
zwia֒zanym) skierowana֒ przeciwnie do pre֒dkości rakiety. Pokazać, że relatywistyczny wzór
przechodzi we wzór Cio lkowskiego. Jaka֒ ma on postać, gdy wyrzucanym gazem jest gaz
fotonów (silnik fotonowy)?
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5 RÓWNANIA NEWTONA

W UK LADACH NIEINERCJALNYCH

Zadanie 5.1R

Dany jest zmieniaja֒cy sie֒ z czasem wektor b(t). Powia֒zać jego pochodne obliczone w
dwu różnych uk ladach odniesienia O i O′. Uk lady te maja֒ wspólny pocza֒tek i obracaja֒
sie֒ wzgle֒dem siebie wokó l wspólnej osi z = z′. Ka֒t jaki tworzy oś x′ uk ladu O′ z osia֒ x
uk ladu O jest pewna֒ funkcja֒ czasu ϕ(t).
Uwaga: Żaden z tych uk ladów nie jest wyróżniony. W szczególności żaden z nich nie
musi być uk ladem inercjalnym.

Zadanie 5.2R

Znaleźć ca lke֒ pierwsza֒ równania “Newtona” (tj. równania z si lami bezw ladności) wyzna-
czaja֒cego ruch masy m w uk ladzie nieinercjalnym O′ obracaja֒cym sie֒ wzgle֒dem uk ladu
inercjalnego O ze sta la֒ pre֒dkościa֒ ka֒towa֒ ω tak, że wektor  la֒cza֒cy środek uk ladu iner-
cjalnego ze środkiem uk ladu nieinercjalnego pozostaje sta ly, gdy si ly niebezw ladnościowe
w uk ladzie nieinercjalnym sa֒ potencjalne, a ewentualne wie֒zy, jakim poddana jest masa
m, sa֒ w tymże uk ladzie niezależne od czasu. Znaleźć zwia֒zek tej ca lki pierwszej z energia֒
mechaniczna֒ masy m mierzona֒ w uk ladzie inercjalnym.

Zadanie 5.3R

Przedyskutować jakościowo wp lyw si l odśrodkowej i Coriolisa na ruch (w pobliżu po-
wierzchni Ziemi) masy m wzgle֒dem nieinercjalnego uk ladu odniesienia maja֒cego pocza֒tek
w punkcie o szerokości geograficznej ϕ na powierzchni obracaja֒cej sie֒ Ziemi.

Zadanie 5.4R

Z wieży o wysokości h = 125 m stoja֒cej na równiku spuszczono swobodnie kamień o masie
m. Jak daleko upadnie on od podstawy wieży? Pomina֒ć wszystkie możliwe si ly oporu.
Rozwia֒zać ten problem w uk ladzie zwia֒zanym z Ziemia֒ oraz w uk ladzie inercjalnym,
którym Ziemia (wraz z wieża֒) sie֒ obraca.

Zadanie 5.5R

Stosuja֒c rachunek zaburzeń (albo inaczej, zasade֒ Banacha) podać rozwinie֒cie ogólnego
rozwia֒zania r = r(t) równania Newtona wyznaczaja֒cego ruch punktu materialnego w
nieinercjalnym uk ladzie odniesienia zwia֒zanym z powierzchnia֒ Ziemi s luszne w przypadku
ruchów krótkotrwa lych, w trakcie których ma lym pozostaje bezwymiarowy czynnik ωt (ω
jest tu pre֒dkościa֒ ka֒towa֒ obrotu Ziemi.

Zadanie 5.6R

Korzystaja֒c z wyprowadzonego w Zadaniu 5.5 rozwinie֒cia

r(t) = r0 + v0 t+
1

2
g t2 − ω t×

(

v0 t+
1

3
g t2
)

+ O(ω2t2),

w którym r0 i v0 sa֒ odpowiednio pocza֒tkowym po lożeniem i pocza֒tkowa֒ pre֒dkościa֒, ω
wektorem pre֒dkości ka֒towej obrotu Ziemi, a g polem cia֒żenia, zbadać spadek swobodny
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kamienia z wieży o wysokości h stoja֒cej na szerokości geograficznej6 ϕ i znaleźć odchylenie
kamienia od podstawy wieży.

Zadanie 5.7R

Korzystaja֒c z przybliżonego wzoru wyprowadzonego w Zadaniu 5.5 napisać explicite
wzory na zależność od czasu sk ladowych wektora po lożenia w przypadku rzutu ukośnego
pod ka֒tem α do poziomu w kierunku na Wschód (tj. w sytuacji, gdy równoleg la do Ziemi
sk ladowa pre֒dkości pocza֒tkowej v0 skierowana jest dok ladnie wzd luż równoleżnika) w
punkcie o szerokości geograficznej ϕ na obracaja֒cej sie֒ Ziemi. Znaleźć różnice֒ zasie֒gów
(tj. odleg lości punktu upadku od punktu wyrzucenia) takiego rzutu na obracaja֒cej sie֒ i
nieobracaja֒cej sie֒ Ziemi (tj. poprawke֒ do zasie֒gu spowodowana֒ si la֒ Coriolisa). Objaśnić
jakościowo pochodzenie poszczególnych przyczynków tej poprawki. Czy można tak dobrać
ka֒t α, by si la Coriolisa nie spowodowa la zmiany zasie֒gu?
Uwaga: We wszystkich wyrażeniach uwzgle֒dniać tylko wyrazy liniowe w pre֒dkości ka֒towej
obrotu Ziemi.

Zadanie 5.8R

Rakiety V2, którymi w czasie II Wojny Światowej ostrzeliwany by l Londyn, przebywa ly
droge֒ s = 300 km i na skutek dzia lania si ly Coriolisa doznawa ly odchylenia d = 3700 m (w
która֒ strone֒?). Zak ladaja֒c, że wystrzeliwane by ly one z równoleg la֒ do ziemi pre֒dkościa֒
v0 skierowana֒ wzd luż po ludnika (najpewniej po ludnika 0) i pomijaja֒c wp lyw różnych si l
oporu dzia laja֒cych na nie, znaleźć czas ich lotu. Przyja֒ć, że szerokość geograficzna miejsca
wystrzelenia i Londynu by l a mniej wie֒cej ta sama i wynosi la 52o.

Zadanie 5.9R (Wahad lo Foucault, takie jak u U. Eco)
Znaleźć w przybliżeniu ma lych wychyleń od po lożenia równowagi ruch wahad la Foucault
(tj. cie֒żarka) o masie m zawieszonego na (w przybliżeniu) nieważkiej i nierozcia֒gliwej
lince o d lugości ℓ nad punktem na powierzchni Ziemi (nad posadzka֒ paryskiego Panteonu)
znajduja֒cym sie֒ na szerokości geograficznej ϕ.

Zadanie 5.10 (Twierdzenie Larmora)R

Pokazać, że jeśli cza֒stka o masie m wykonuje ruch r(t) pod wp lywem jakiej́s zadanej si ly
zewne֒trznej F, to po zmianie si ly

F → F + εmv × k ,

gdzie k jest sta lym wektorem, a |ε| ≪ 1, tor ruchu r(t) w pierwszym przybliżeniu (tj.
z dok ladnościa֒, w której uwzgle֒dnia sie֒ tylko efekty rze֒du ε) zacznie sie֒ obracać. Jak
zmieni sie֒ wtedy energia kinetyczna (a wie֒c i energia ca lkowita) cza֒stki?
W przypadku, gdy εmk = qB, gdzie B jest sta lym i jednorodnym polem magnetycznym,
stwierdzenie be֒da֒ce przedmiotem tego zadania jest treścia֒ tzw. twierdzenia Larmora.

6Korzystaja֒cym z podre֒cznika G. Bia lkowskiego przypominam, że przyje֒ lo sie֒ liczyć szerokość geo-
graficzna֒ od równika (a nie od bieguna pó lnocnego).
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Rysunek 2: Masa na wiruja֒cej p laszczyźnie.

Zadanie 5.11R

Znaleźć ruch cza֒stki o masie m po znajduja֒cej sie֒ na obracaja֒cej sie֒ Ziemi, na szerokości
geograficznej ϕ p laszczyźnie prostopad lej do (lokalnego) kierunku pionu. Na cza֒stke֒
dzia la si la oporu Fop = −mκv, si la przycia֒gania Ziemskiego oraz si la reakcji pod loża.
Zak ladaja֒c, że w chwili t = 0 cza֒stka znajduje sie֒ w r(0) = 0 i ma pre֒dkość v0 skie-
rowana֒ na po ludnie, znaleźć jej po lożenie w kierunku równoleżnikowym w chwili, gdy
jej pre֒dkość wskutek dzia lania si ly oporu spad la do po lowy swej pocza֒tkowej wartości.
Uwzgle֒dnić tylko wyrazy liniowe w pre֒dkości ka֒towej ω Ziemi. Odtworzyć rozwia֒zanie
uzyskane przez bezpośrednie ca lkowanie równań ruchu (i rozwinie֒cie wyników do wy-
razów liniowych wzgle֒dem ω) stosuja֒c rozwinie֒cie wokó l rozwia֒zania z zerowa֒ pre֒dkościa֒
ka֒towa֒ obrotu Ziemi.

Zadanie 5.12R

Ma la kulka o masie m, wykonana z materia lu o ge֒stości ρkulki opada na dno naczynia
wype lnionego ciecza֒ o ge֒stości ρcieczy (ρcieczy < ρkulki). W naczyniu dzia la na kulke֒ si la
oporu F = −mκv. Znaleźć ruch tej kulki uwzgle֒dniaja֒c si le֒ Coriolisa i si le֒ wyporu, jeśli
v(0) = 0. Ograniczyć sie֒ w rozwia֒zaniu do wyrazów liniowych w pre֒dkości ka֒towej ω
Ziemi. W która֒ strone֒ spadaja֒c kulka odchyli sie֒ od pionu? Znaleźć wielkość tego od-
chylenia w chwili, gdy pre֒dkość kulki osia֒gne֒ la po lowej swej wartości granicznej (jakiej?).
Zbadać granice֒ κ→ 0 rozwia֒zania.

Zadanie 5.13R

Punkt materialny o masie m może sie֒ przemieszczać po g ladkiej p laszczyźnie, która wiruje
w polu grawitacyjnym g wokó l przechodza֒cej przez nia֒ poziomej (w stosunku do g) osi z
pre֒dkościa֒ ka֒towa֒ ω (zob. Rysunek 2). Pomijajac wp lyw obrotu Ziemi podać równania
Lagrange’a pierwszego rodzaju wyznaczaja֒ce ruch masy m w uk ladzie wspó lrze֒dnych
zwia֒zanych z p laszczyzna֒, rozwia֒zać je i opisać jakościowo charakter ruchu rozpatruja֒c
zarówno przypadek wie֒zów jednostronnych jak i dwustronnych. Znaleźć si le֒ reakcji i
podać przyk lad warunków pocza֒tkowych prowadza֒cych (jeśli wie֒zy sa֒ jednostronne) do
oderwania sie֒ masy m od p laszczyzny. Czy możliwy jest ruch masy m w ograniczonym
obszarze p laszczyzny?
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Rysunek 3: Klocek (zaznaczony linia֒ kropkowana֒) moga֒cy przemieszczać sie֒ w
wydra֒żeniu (o prostoka֒tnym przekroju) wiruja֒cej belki.

Zadanie 5.14R

Belka ma wzd luż ca lej swojej d lugości prostoka֒tne wydra֒żenie. Belka ta wiruje z pre֒dkościa֒
ka֒towa֒ ω wokó l osi prostopad lej do wewne֒trznego wydra֒żenia i przechodza֒cej przez jej ko-
niec. W wydra֒żeniu znajduje sie֒ prostoka֒tny klocek o masie m, który może sie֒ przemiesz-
czać wzd luż wydra֒żenia (zob. rysunek 3). Znaleźć ruch klocka wzd luż osi x, uwzgle֒dniaja֒c
si ly Coriolisa i odśrodkowa֒ (w uk ladzie obracaja֒cym sie֒ wraz z belka֒) i wspó lczynnik µ
(µ0) dynamicznego (statycznego) tarcia klocka o ścianki wydra֒żenia. Jak duża może być
pre֒dkość ka֒towa, by klocek spoczywaja֒cy w x0 6= 0 nie zosta l wprawiony w ruch? Prze-
dyskutować jakościowo możliwe rodzaje ruchu. Sprawdzić granice֒ ω → 0 uzyskanego
rozwia֒zania.

Zadanie 5.15

Wewna֒trz rurki o prostoka֒tnym przekroju (wymiarów 2R×2R) obracaja֒cej sie֒ wokó l osi z
(równoleg lej do kierunku pola grawitacyjnego) z pre֒dkościa֒ ka֒towa֒ ω znajduje sie֒ kulisty
koralik o masie m i promieniu R zaczepiony do osi obrotu spre֒żynka֒. Spre֒żynka ma
zerowa֒ d lugość swobodna֒, tj. si la przycia֒gaja֒ca koralik do osi obrotu dana jest wzorem
Fr = −kr, gdzie r jest odleg lościa֒ od osi. Wskutek chropowatości ścianek rurki na koralik
dzia la dodatkowo si la tarcia dynamicznego Ftarcie = −µ|Fnac|v/|v|, gdzie Fnac jest si la֒ z
jaka֒ koralik naciska na ścia֒nke֒ rurki. Znaleźć ruch koralika wzd luż osi rurki uwzgle֒dniaja֒c
także si le֒ odśrodkowa֒ i si le֒ Coriolisa.
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6 ZASADA d’ALEMBERTA

I RÓWNANIA LAGRANGE’A I-go RODZAJU

Zadanie 6.1R (Raz zobaczyć wie֒zy nieholonomiczne)
Znaleźć wie֒zy, którym poddany jest uk lad sk ladaja֒cy sie֒ z dwóch kó l o takich samych
promieniach a po la֒czonych osia֒ o ustalonej d lugości b i tocza֒cych sie֒ bez poślizgu po
be֒da֒cym p laska֒ powierzchnia֒ pod lożu. Każde z kó l może obracać sie֒ na osi niezależnie
od drugiego.

Zadanie 6.2R

Klocek o masie m traktowany jak punkt materialny zsuwa sie֒ po szorstkiej powierzchni
równi pochy lej w ziemskim polu g. Wspó lczynniki statycznego i dynamicznego tarcia
klocka o równie֒ sa֒ równe odpowiednio µ0 i µ. Zak ladaja֒c, że w chwili t = 0 klocek
spoczywa l na równi znaleźć jego ruch w zależności od ka֒ta α nachylenia równi.

Zadanie 6.3R

Na p laskiej powierzchni sto lu leży klin o masie M , ka֒cie nachylenia α i wysokości górnej
krawe֒dzi h. Po klinie, wskutek dzia lania skierowanego pionowo w dó l pola grawitacyjnego
g, może zsuwać sie֒ klocek o masie m. Pomie֒dzy klockiem a klinem wyste֒puje si la tarcia
dynamicznego równa co do wartości sile nacisku klocka na na klin razy wspó lczynnik µ1.
Podobna si la tarcia, o wspó lczynniku µ2 wyste֒puje pomie֒dzy klinem a sto lem. Pos luguja֒c
sie֒ równaniami Newtona z wie֒zami (czyli równaniami Lagrange’a I-go rodzaju) znaleźć
si ly reakcji pomie֒dzy klinem a klockiem oraz pomie֒dzy klinem a sto lem w sytuacji, gdy
klocek zaczyna zsuwać sie֒ z klina. Znaleźć jawne wzory na si ly reakcji i przyspieszenia,
gdy µ1 = µ2 = 0.

Zadanie 6.4R

Punkt materialny o masie m może poruszać sie֒ po wewne֒trznej stronie ustawionej pionowo
(tj. tak, że jedna z jej średnic jest równoleg la do ziemskiego pola grawitacyjnego g)
nieruchomej obre֒czy o promieniu R (zob. rysunek 4). Pomijaja֒c tarcie napisać równania
ruchu uwzgle֒dniaja֒ce si le֒ reakcji wie֒zów. Traktuja֒c te wie֒zy jak jednostronne, znaleźć
zależność si ly ich reakcji od po lożenia punktu na obre֒czy, jeśli w najniższym po lożeniu
punkt mia l liniowa֒ pre֒dkość v0. Jaka musi być minimalna pre֒dkość v0 aby punkt nigdy
nie oderwa l sie֒ od obre֒czy? Znaleźć ruch i jego cze֒stość w przybliżeniu ma lych wychyleń
z po lożenia równowagi. W przypadku, gdy ca lkowita energia jest akurat wystarczaja֒ca
do osia֒gnie֒cia przez mase֒ m najwyższego punktu toru, znaleźć zależność jej po lożenia na
obre֒czy od czasu. (Czy jednostronne wie֒zy pozwola֒ mu osia֒gna֒ć ten punkt?) Rozpatrzyć
także przypadek, gdy masa m porusza sie֒ bez tarcia po zewne֒trznej stronie obre֒czy
i znaleźć punkt, w którym puszczona swobodnie (z zerowa֒ pre֒dkościa֒) z najwyższego
punktu obre֒czy oderwie sie֒ ona od niej.
Wskazówka: Najwygodniej jest użyć uk ladu biegunowego.

Zadanie 6.5R

Jaka֒ pre֒dkość należy w najniższym punkcie obre֒czy nadać masie m z Zadania 6.4, aby
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Rysunek 4: Masa m ślizgaja֒ca sie֒ po wewnetrznej powierzchni g ladkiej obre֒czy.

mog la ona, nie odrywaja֒c sie֒ od obre֒czy, osia֒gna֒ć jej punkt najwyższy, jeśli wspó lczynnik
tarcia dynamicznego masy m o obre֒cz jest równy µ?
Wskazówka: Napisać równanie wyrażaja֒ce straty energii kinetycznej masy m przy jej
przemieszczaniu sie֒ po obre֒czy od ϕ do ϕ+dϕ na skutek wykonywania nad nia֒ (ujemnej)
pracy przez si le֒ grawitacji i si le֒ tarcia.

Zadanie 6.6R

Punkt materialny o masie m porusza sie֒ w p laszczyźnie xz w polu si ly cie֒żkości g = g ez
po g ladkiej cykloidzie zadanej (parametrycznie) równaniami

x = a (ϕ− sinϕ) ,

z = a (1 − cosϕ) ,

gdzie 0 < ϕ < 2π. Znaleźć ruch tego punktu pos luguja֒c sie֒ równaniem Lagrange’a
pierwszego rodzaju (ograniczyć sie֒ do ruchów, w trakcie których punkt nie opuszcza
cykloidy albo przyja֒ć, że wie֒zy sa֒ dwustronne). Wyznaczyć si le֒ reakcji jako funkcje֒
parametru ϕ. Rozwia֒zać także problem korzystaja֒c z zachowania energii. Wyprowadzić
równanie wyznaczaja֒ce ten sam ruch korzystaja֒c z równania Lagrange’a drugiego rodzaju.

Zadanie 6.7R

Punkt materialny o masie m zsuwa sie֒ w polu grawitacyjnym maja֒cym kierunek osi
z (g = −ezg) po górnej cze֒ści paraboli zadanej wzorem z2 = ax (ruch jest p laski).
Przyjmuja֒c, że ruch rozpocza֒ l sie֒ z wysokości z = h, na której pre֒dkość punktu by la równa
zeru, sprowadzić problem znalezienia ruchu (tj. po lożenia masy m na paraboli w funkcji
czasu) do kwadratury, znaleźć si le֒ reakcji w funkcji po lożenia i równanie wyznaczaja֒ce
miejsce, w którym punkt oderwie sie֒ od paraboli. Podać wspó lrze֒dna֒ z punktu oderwania
sie֒, gdy h = 7

2
a.

Wskazówka: Pamie֒tać, że si la reakcji nie wykonuje (jeśli wie֒zy sa֒, tak jak tu, niezależne
od czasu) pracy, w zwia֒zku z czym energia mechaniczna jest podczas ruchu sta la.

Zadanie 6.8R

Punktowa masa m poruszaja֒ca sie֒ w polu si ly cieżkości g = −g ez jest zmuszona do
pozostawania na linii śrubowej zadanej wzorami x = R cosϕ, y = R sinϕ, z = aϕ.
Napisać równania Lagrange’a I-go rodzaju wyznaczaja֒ce jej ruch oraz si ly reakcji. Znaleźć
po lożenie masy m w przestrzeni w funkcji czasu korzystaja֒c z odpowiedniego równania
Lagrange’a II-go rodzaju i wykorzystać te֒ informacje֒ do wyznaczenia si l reakcji. Naste֒pnie
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Rysunek 5: Dwie masy na pre֒tach po la֒czone poprzeczka֒.

otrzymać te same rezultaty pos luguja֒c sie֒ wzorami Freneta (Zadanie 1.7), wyznaczajac
“przy okazji” promień ρ krzywizny i skre֒cenie τ linii śrubowej. Zak ladamy, że si ly oporu
(tarcia) nie wyste֒puja֒.

Zadanie 6.9R

Tor skateboardowy ma kszta lt paraboli o równaniu z = x2/a (a > 0). Zawodnik zjeżdza
po nim w dó l (w polu si ly cie֒żkości (g = −g ez), rozpoczynaja֒c zjazd z zerowa֒ pre֒dkościa֒
w punkcie (−a, a). Traktuja֒c skateboardziste֒ jak punkt materialny sprowadzić do kwa-
dratury problem wyznaczenia zależności jego po lożenia od czasu oraz obliczyć jaka si la
reakcji be֒dzie nań dzia lać w najniższym punkcie toru.

Zadanie 6.10R

W polu grawitacyjnym g na nitce zaczepionej do sufitu wisi masa m1. Do masy m1

przyczepiona jest nieważka spre֒żynka o d lugości swobodnej l0 i wspó lczynniku spre֒żystości
k. Na drugim końcu spre֒żynki wisi masa m2. W chwili t = 0 nitke֒, na której wisia la
masa m1 przecie֒to. Znaleźć późniejszy ruch tego uk ladu.

Zadanie 6.11R

Pos luguja֒c sie֒ zasada֒ Lagrange’a prac wirtualnych znaleźć po lożenie równowagi w polu
grawitacyjnym g  lańcucha sk ladaja֒cego sie֒ z n segmentów w kszta lcie odcinków po la֒czonych
jedne z drugimi przegubowo. Każdy z segmentów ma mase֒ m i d lugość 2a. Jeden ko-
niec  lańcucha jest zaczepiony na sta le, a na drugi dzia la skierowana poziomo si la F . Jak
zmieni sie֒ rozwia֒zanie, gdy wektor si ly dzia laje֒cej na koniec  lańcucha be֒dzie tworzy l z
kierunkiem horyzontalnym ka֒t β? W otrzymanych rozwia֒zaniach przej́sć do granicy, w
której liczba segmentów  lańcucha staje sie֒ nieskończona przy ustalonej jego d lugości L.

Zadanie 6.12R

Dwie masy, m1 i m2, moga֒ przemieszczać sie֒ po paraboli o równaniu z = 1
2
ax2 w polu si ly

cie֒żkości g = ezg (oś z jest skierowana w dó l). Masy po la֒czone sa֒ nierozcia֒gliwa֒ nicia֒ o
d lugości l, która uk lada sie֒ na paraboli (inaczej mówia֒c, odleg lość mie֒dzy masami liczona
po paraboli wynosi zawsze l). Korzystaja֒c z zasady prac wirtualnych Lagrange’a znaleźć
po lożenie równowagi uk ladu tych dwóch mas.
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Rysunek 6: Dwie masy ślizgaja֒ce sie֒ po pre֒tach w polu g po la֒czone spre֒żynka֒.

Zadanie 6.13R

Masa m1 może ślizgać sie֒ (bez tarcia) po prostej równoleg lej do kierunku pola grawita-
cyjnego g, a masa m2 po przecinaja֒cej sie֒ z tamta֒ drugiej prostej nachylonej do pionu
pod ka֒tem 45o. Obie masy sa֒ po la֒czone nieważkim sztywnym pre֒tem d lugości l (rys. 5).
Napisać równania Lagrange’a wyznaczaja֒ce ruch tych mas i znaleźć wynikaja֒ce z nich
po lożenia równowagi. Znaleźć także te same po lożenia równowagi stosuja֒c zasade֒ prac
wirtualnych Lagrange’a. Zbadać skrajne przypadki m2 ≫ m1 i m2 ≪ m1.

Zadanie 6.14

Podać równania Lagrange’a pierwszego rodzaju wyznaczaja֒ce ruch uk ladu dwu mas, m1

i m2, ślizgaja֒cych sie֒ bez tarcia w polu g po dwu prostopad lych do siebie pre֒tach (każdy
z nich jest skierowany w dó l pod ka֒tem 45o w stosunku do pionu) i po la֒czonych nieważka֒
spre֒żynka֒ o wspó lczynniku spre֒żystości k i pomijalnie ma lej d lugości swobodnej (zob. ry-
sunek 6). Wyznaczyć po lożenia równowagi tego uk ladu i si ly reakcji. Rozwia֒zać równania
ruchu. Rozwia֒zać także to samo zadanie, gdy pre֒ty, po których ślizgaja֒ sia֒ masy wiruja֒
z pre֒dkościa֒ ka֒towa֒ ω wokó l pionowej osi zaznaczonej na rysunku 6 linia֒ kropkowana֒.

Zadanie 6.15R

Punkt materialny o masie m zsuwa sie֒ bez tarcia po zewne֒trznej powierzchni sfery o
promieniu R znajduja֒cej sie֒ w polu grawitacyjnym g. Sprowadzić problem rozwia֒zania
równań wyznaczaja֒cych ruch masy po sferze do kwadratur (tj. do wykonania ca lki).
Znaleźć zależność si ly reakcji wie֒zów od po lożenia masy na sferze (dla dowolnych wa-
runków pocza֒tkowych) i punkt w którym oderwie sie֒ ona od sfery (jeśli wie֒zy sa֒ jedno-
stronne). Wyznaczyć jawnie ten punkt, gdy masa m zsuwa sie֒ bez pre֒dkości pocza֒tkowej
z samego wierzcho lka sfery.

Zadanie 6.16R

Punkt materialny o masie m porusza sie֒ po stożku o ka֒cie rozwarcia 2α i osi równoleg lej
do pola g. Wypisać uwzgle֒dniajace si ly reakcji równania ruchu wyznaczaja֒ce ruch masy
m i sprowadzić ich rozwia֒zanie do kwadratur. Przedyskutować jakościowo charakter ru-
chu w zależności od ka֒ta α. Jakie warunki musza֒ być spe lnione, by masa m oderwa la
sie֒ od stożka? Jeśli w jakimś przypadku możliwy jest ruch o charakterze okresowych
zmian odleg lości masy od wierzcho lka stożka, wyznaczyć cze֒stość takich oscylacji, gdy ich
amplituda jest niewielka.
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Rysunek 7: Ma lpka Fiki-Miki wspinaja֒ca sie֒ po linie.

Zadanie 6.17R

Punkt materialny o masie m może poruszać sie֒ po powierzchni nieskończonego walca o
promieniu R, który jest nachylony pod ka֒tem α do pionu wyznaczanego przez pole g.
Napisać równania Lagrange’a I-go rodzaju i znaleźć si le֒ reakcji wie֒zów dzia laja֒ca֒ na ten
punkt.

Zadanie 6.18R

Punktowa masa m porusza sie֒ po paraboloidzie obrotowej zadanej (w zmiennych cylin-
drycznych) równaniem z = r2/2a (a > 0) w polu si ly cie֒żkości g. Zbadać możliwy jej
ruch korzystaja֒c z równań Lagrange’a I-go rodzaju, tj. przedyskutować jakościowo cha-
rakter ruchu w zależności od jego globalnych charakterystyk (tj. wielkości zachowanych,
których wartości sa֒ wyznaczane przez konkretne warunki pocza֒tkowe). Jaki jest zakres
zmienności wspó lrze֒dnej z (albo r) punktu? Czy możliwy jest ruch o charakterze ścísle
oscylacyjnym? Czy możliwy jest ruch po okre֒gu (na ustalonej wysokości z)? Jeśli tak, to
jaki jest okres obiegu paraboloidy dooko la? Wyznaczyć si le֒ reakcji w funkcji globalnych
charakterystyk ruchu oraz po lożenia punktu na stożku. Czy gdy paraboloida jest skie-
rowana w dó l, tj. gdy a < 0, punkt zaczynaja֒cy spadek z jej wierzcho lka bez pre֒dkości
pocza֒tkowej oderwie sie֒ od niej?

Zadanie 6.19

Punkt materialny o masie m porusza sie֒ po przecie֒ciu g ladkiej sfery o promieniu a z g ladka֒
pozioma֒ p laszczyzna֒ poruszaja֒ca֒ sie֒ w góre֒ i w dó l zgodnie z zależnościa֒ z = a sinωt w
jednorodnym polu grawitacyjnym g = −g ez. Napisać równania Lagrange’a I-go rodzaju
tego uk ladu i rozwia֒zać je. Znaleźć si ly reakcji wie֒zów.

Zadanie 6.20R

Masa m zsuwa sie֒ w polu g po p laszczyźnie równi nachylonej do poziomu pod ka֒tem
α. Pre֒dkość masy m może być skierowana dowolnie w stosunku kierunku najszybszego
spadku. Wspó lczynnik tarcia dynamicznego (statycznego) masy m o równie֒ wynosi µ (µ0).
Napisać równania wyznaczaja֒ce ruch masy m, gdy pocza֒tkowa predkość ma nieznikaja֒ca֒
poprzeczna֒ (w stosunku do równi) sk ladowa֒ i sprowadzić je do kwadratur. Sprawdzić
granice֒ µ = 0 rozwia֒zania.
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Zadanie 6.21R

Na stole (oczywíscie w ziemskim polu grawitacyjnym g) stoi klocek o masie M , do którego
przyczepiona jest lina. Jeden koniec liny zwisa w dó l przez krawe֒dź sto lu. Po zwisaja֒cym
kawa lku liny wspina sie֒ ma lpka Fiki-Miki o masie m. Porusza sie֒ ona tak, iż jej odleg lość
od ustalonego punktu na linie (np. jej swobodnego końca) jest zadana֒ funkcja֒ f(t) (zob.
rys. 7). Mie֒dzy klockiem a sto lem wyste֒puje si la tarcia o wspó lczynnikach µstat (tarcie
statyczne) i µdyn (tarcie dynamiczne). jaki warunek musi być spe lniony, by podczas
wspinania sie֒ ma lpki klocek pozostawa lw spoczynku? Obliczyć przyspieszenie, z jakim
klocek be֒dzie sie֒ przybliżać do krawe֒dzi sto lu oraz przyspieszenie ma lpki wzgle֒dem ziemi
w sytuacji, gdy znaleziony warunek bezruchu klocka nie jest spe lniony.

Otrzymać to samo przyspieszenie pos luguja֒c sie֒ formalizmem równań Lagrange’a dru-
giego rodzaju w sytuacji, gdy tarcie nie wyste֒puje.

Zadanie 6.22R

Rozpatrzmy oscylator utworzony z masy m zawieszonej na nierozcia֒gliwej, nieważkiej nici
o d lugości l w polu g. Pokazać bezpośrednim rachunkiem, rozpatruja֒c ma le wychylenia
z po lożenia równowagi, że jeśli nić be֒dzie nieskończenie powoli ścia֒gana w punkcie jej
zaczepienia przez zewne֒trzna֒ si le֒, to wielkość E/ω, tj. stosunek ca lkowitej energii ruchu
do cze֒stości nie ulega zmianie (jest tzw. niezmiennikiem adiabatycznym).
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7 ZAGADNIENIA WARIACYJNE

Zadanie 7.1R

Znaleźć leża֒cy ca lkowicie w p laszczyźnie xy tor promienia świat la wpadaja֒cego (od strony
ujemnych x-ów) w punkcie (x, y) = (0, 0) pod ka֒tem α0 w stosunku do osi x do ośrodka,
w którym wspó lczynnik za lamania zależy od g le֒bokości x jak n(x) =

√
1 + ax. Oprzeć

sie֒ raz na prawie Snella, a drugi raz na zasadzie Fermata mówia֒cej, że promień świat la
mie֒dzy dwoma punktami biegnie po takiej drodze, że czas przelotu jest minimalny.7

Przypomnienie: W ośrodku o wspó lczynniku za lamania n pre֒dkość świat la (lokalna)
jest równa c/n.

Zadanie 7.2R

Znaleźć p laski tor promienia świetlnego w ośrodku o wspó lczynniku za lamania n(x, y) =
p/x biegna֒cego pomiedzy dwoma punktami A i B po lożonymi w pó lprzestrzeni x > 0.
Podać pe lne równanie toru, gdy A = (1, 0), B = (2, 1). Przedyskutować także jakościowo
istnienie rozwia֒zania dla dowolnych dwóch punktów A 6= B leża֒cych w pó lp laszczyźnie
x > 0. Co sie֒ dzieje, gdy oba punkty leża֒ na tej samej wysokości nad osia֒ x (tzn. maja֒
takie same wspó lrze֒dne y-owe)?

Zadanie 7.3R

Wysokość zaspy śnieżnej zalegaja֒cej na pó lp laszczyźnie x > 0 jest proporcjonalna do
√
x.

Wzd luż jakiej krzywej y(x) powinien ísć przekop o ustalonej (pomijalnie ma lej szerokości)
 la֒cza֒cy dwa ustalone punkty A i B (leża֒ce w tej pó lp laszczyźnie), by ilość śniegu, jaka֒
trzeba odgarna֒ć by la jak najmniejsza?

Zadanie 7.4

Wysokość zaspy śnieżnej jest proporcjonalna do
√
y. Wzd luż jakiej krzywej należy prowa-

dzić przekop  la֒cza֒cy punkty (xA, yA) i (xB, yB) (po lożone w pierwszej ćwiartce uk ladu)
by ilość śniegu jaka֒ należy odgarna֒ć by l a minimalna? (Zak ladamy, że szerokość przekopu
jest infinitezymalnie ma la.)

Zadanie 7.5R

Jaki jest kszta lt maja֒cej minimalne pole powierzchni obrotowej rozpie֒tej na dwóch równo-
leg lych do siebie nawzajem ko lach o promieniach R1 i R2, których środki leża֒ na tej samej
prostej i sa֒ oddalone od siebie o 2L?

Zadanie 7.6

Dwa pierścienie o promieniach R1 iR2, odleg le od siebie o L i ustawione tak, że p laszczyzny
ograniczanych przez nie okre֒gów sa֒ do siebie równoleg le, po la֒czone sa֒ b lona֒ mydlana֒.
Znaleźć kszta lt powierzchni b lony wiedza֒c, że odpowiada ona minimum energii potencjal-
nej, która jest proporcjonalna do pola powierzchni b lony.

7Naprawde֒ świat lo biegnie to takim torze, że czas przelotu jest ekstremalny.
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Rysunek 8: Wahadlo zaczepione do obracaja֒cej sie֒ obre֒czy.

Zadanie 7.7R (Problem brahistochrony)
Po jakiej krzywej leża֒cej w p laszczyźnie xz powinna w polu grawitacyjnym g = −g ez
zsuwać sie֒ (maja֒ca zerowa֒ pre֒dkość pocza֒tkowa֒) masa m zaczynaja֒ca ruch w punkcie
A = (0, h), by w jak najkrótszym czasie dotrzeć do
a) punktu B = (b, 0),
b) pionowej prostej o równaniu x = b > 0?

Zadanie 7.8R

Korzystaja֒c z rachunku wariacyjnego znaleźć najkrótsza֒ droge֒  la֒cza֒ca֒ na p laszczyźnie
xy dwa ustalone punkty A = (xA, yA) i B = (xB, yB). Rozwia֒zać problem w zmiennych
kartezjańskich i biegunowych. Rozwia֒zać ten sam problem (w zmiennych kartezjańskich)
w przestrzeni o d wymiarach.

Zadanie 7.9R

Dwa punkty A i B leża֒ w pó lprzestrzeni y > 0. Wykorzystuja֒c zasade֒ Fermata wyzna-
czyć tor po jakim biegnie pomie֒dzy punktami A i B promień świetlny, jeśli wspó lczynnik
za lamania n = c/py (tj. v = py, p > 0). Wyznaczyć i narysować tor w przypadku,
gdy oba punkty, A i B, maja֒ taka֒ sama֒ wspó lrze֒dna֒ y-owa֒: yA = yB = d, a odleg lość
pomie֒dzy ich rzutami na p laszczyzne֒ y = 0 wynosi 2d. W tym przypadku obliczyć także
czas przelotu promienia od A do B.
Uwaga: Należy podać matematyczny argument, że tor promienia leży ca lkowicie w
p laszczyźnie przechodza֒cej przez oba te punkty.

Zadanie 7.10R (Zasada Fermata “more geometrico”)
Z zasady Fermata otrzymać równanie charakteryzuja֒ce w sposób geometryczny trajektorie֒
promienia świetlnego w ośrodku o zmiennym wspó lczynniku za lamania n = n(x, y, z).

Zadanie 7.11R

Wyznaczyć kszta lt  lańcucha (o bardzo krótkich ogniwach albo nierozcia֒gliwej jednorodnej
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Rysunek 9: Dwa klocki na dwu-klinie.

liny) o d lugości L i sta lej ge֒stości ρ masy na jednostke֒ d lugości umocowanego swoimi
końcami w dwóch różnych punktach A i B nad ziemia֒ i swobodnie zwisaja֒cego (bez
dotykania ziemi) w polu si ly cie֒żkości g.

Zadanie 7.12R

Jak powinna zmieniać sie֒ z czasem pre֒dkość pojazdu, który, rozpe֒dzaja֒c sie֒ od zerowej
pre֒dkości, ma w zadanym czasie T przebyć po linii prostej dystans 2L (i zatrzymać sie֒
po jego przebyciu), żeby zminimalizować dyskomfort jego pasażerów powodowany z jego
przyspieszaniem i hamowaniem? Za miare֒ dyskomfortu przyja֒ć ca lke֒ wzd luż przebywanej
drogi z kwadratu przyspieszenia.
Wskazówka: Sparametryzować droge֒ przebyta֒ odleg lościa֒ i uwzgle֒dnić zadany czas T
przejazdu jako dodatkowy warunek.

Zadanie 7.13R

Rozwia֒zać problem 7.12 w sposób przybliżony minimalizuja֒c funkcjona l dyskomfortu bez-
posŕednio, postuluja֒c wielomianowa֒ postać zależności przebywanej drogi od czasu. Dla
prostoty ograniczyć sie֒ do wielomianów stopnia nie wyższego niż czwarty.

Zadanie 7.14R

Wytyczyć w górnej pó lp laszczyźnie krzywa֒ o d lugości 2l,  la֒cza֒ca֒ punkty (−a, 0) i (a, 0) i
obejmuja֒ca֒ jak najwie֒ksze pole (ograniczone ta֒ krzywa֒ i osia֒ x). Przedyskutować, kiedy
problem ten ma rozwia֒zanie i jak ono wygla֒da w przypadkach granicznych.

Zadanie 7.15R

Korzystaja֒c z rachunku wariacyjnego znaleźć najkrótsza֒ droge֒ leża֒ca֒ na powierzchni
bocznej walca o promieniu R  la֒cza֒ca֒ punkty A = (R, 0, 0) i B = (0, R, h). Rozwia֒zać
problem raz wykorzystuja֒c technike֒ mnożników Lagrange’a oraz drugi raz, przechodza֒c
do zmiennych zgodnych z wie֒zami. Uwzgle֒dnić także role֒ topologii walca.

Zadanie 7.16R

Korzystaja֒c z rachunku wariacyjnego wykazać, że geodetyka֒ (tj.krzywa֒ o najmniejszej
d lugości) na sferze (o promieniu R)  la֒cza֒ca֒ dwa zadane punkty sfery jest wycinek ko la
wielkiego (tj. krzywej powsta lej z przecie֒cia tej sfery p laszczyzna֒ przechodza֒ca֒ przez jej
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środek) przechodza֒cego przez te dwa punkty.
Wskazówka: Używaja֒c wspó lrze֒dnych sferycznych szukać rozwia֒zania jako funkcji φ =
φ(θ). W otrzymanym na końcu równaniu przej́sć do wspó lrze֒dnych kartezjańskich i za-
uważyć, że jest to równanie postaci zx + by + cz = 0 wyznaczaja֒ce p laszczyzne֒ prze-
chodza֒ca֒ przez środek sfery.

Zadanie 7.17R

Napisać równania wyznaczaja֒ce bieg promienia świetlnego padaja֒cego pod ka֒tem α na
powierzchnie֒ kuli o promieniu R, we wne֒trzu której wspó lczynnik za lamania n zmienia
sie֒ zgodnie ze wzorem n = (R/r)a. Otrzymać tor promienia jawnie w przypadkach, gdy
a = 1 i a = 2. Jeśli promień dociera do środka kuli, obliczyć po jakim czasie sie֒ to stanie.

Zadanie 7.18R

Po jakiej zamknie֒tej krzywej p laskiej zawartej w p laszczyźnie Oxy powinien poruszać sie֒
przez czas T punkt, którego pre֒dkość jest zadana֒ funkcja֒ czasu v = v(t), aby zakreślona
przezeń krzywa ogranicza la obszar o najwie֒kszym możliwym polu?
Wskazówka: Wykorzystać wzór wyrażaja֒cy pole powierzchni obszaru ograniczonego
dana֒ krzywa֒ przez ca lke֒ z jakiej́s jedno-formy po tej krzywej.

Zadanie 7.19R

Podać równanie Eulera-Lagrange’a odpowiadaja֒ce problemowi wariacyjnemu

δJ [f ] = δ

∫ ξ2

ξ1

dξ J (ξ, f, f ′, f ′′) = 0 ,

o ustalonych końcach, tj. δf(ξ1) = δf(ξ2) = 0 oraz δf ′(ξ1) = δf ′(ξ2) = 0. Zastosować
naste֒pnie uzyskany wynik do ca lki dzia lania

I[q] =

∫ t2

t1

dtL(q, q̇, q̇̇ ) ,

z funkcja֒ Lagrange’a postaci

L(q, q̇, q̈) = −1

2
mq q̈ − V (q) .

Czy w tym przypadku dodatkowe warunki δq̇(t1) = δq̇(t2) = 0 sa֒ konieczne?
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8 RÓWNANIA LAGRANGE’A II-go RODZAJU

Zadanie 8.1R

P laskie wahad lo o d lugości l i masie m (tj. masa m zawieszona na sztywnym, w przy-
bliżeniu nieważkim, pre֒cie) jest zaczepione w punkcie umiejscowionym na okre֒gu o pro-
mieniu R, który obraca sie֒ z pre֒dkościa֒ ka֒towa֒ ω wokó l osi prostopad lej do kierunku pola
si ly cie֒żkości g (zob. rysunek 8). Przyjmuja֒c, że wahad lo pozostaje zawsze w p laszczyźnie
wyznaczanej przez okra֒g (czyli, że jego ruch jest p laski) napisać lagragian tego uk ladu i
otrzymać zeń równanie wyznaczaja֒ce ruch masy m.

Zadanie 8.2R

Pokazać, że równanie ruchu cza֒stki o masie m w uk ladzie nieinercjalnym (primy nad
wielkościami zdefiniowanymi wzgle֒dem uk ladu nieinercjalnego zosta ly tu pominie֒te)

ma = F −m

(

atr +
dω

dt
× r + 2ω × v + ω × (ω × r)

)

,

jeśli tylko rzeczywista si la F jest potencjalna (lub wynika z jakiegoś potencja lu uogólnonego)
wynikaja֒ z lagrangianu z odpowiednio dobranym (uogólnionym) potencja lem zależnym od
pre֒dkości ka֒towej ω.

Zadanie 8.3R

Pokazać bezpośrednim rachunkiem,8 że równania Eulera-Lagrange’a zachowuja֒ swoja֒ po-
stać przy dowolnych zamianach qa(t) = qa(s1, . . . sN , t), a = 1, . . . , N zmiennych uogólnionych
(s1(t), . . . , sN(t) sa֒ nowymi zmiennymi).

Zadanie 8.4R

Rozpatrzmy punkt materialny o masie m poddany dzia laniu si ly F = F(t), która jest
niezależna od po lożenia. Translacje przestrzenne sa֒ oczywistymi symetriami tego pro-
blemu (jeśli r = r(t) jest jakimś rozwia֒zaniem rówanania Newtona, to jest nim także
r′(t) = r(t) + a). Mimo to, pe֒d p cza֒stki nie jest sta la֒ ruchu. Wyjaśnić to (pozorne)
pogwa lcenie zwia֒zku symetrii z prawami zachowania.
Zadanie 8.5

Czy w sytuacji takiej jaka jest przedmiotem Zadania 8.4 galileuszowskie pchnie֒cie jest
symetria֒ uk ladu? jeśli jest, to znaleźć odpowiadaja֒ca֒ jej wielkość zachowana֒ korzystaja֒c
z twierdzenia Noether i pokazać wykorzystuja֒c równania ruchu, że jest ona rzeczywíscie
sta la֒ ruchu.

Zadanie 8.6R

Pre֒t nachylony pod ka֒tem α do pionu (wyznaczanego przez pole grawitacyjne g) wiruje z
pre֒dkościa֒ ka֒towa֒ ω wokó l przechodza֒cej przezeń pionowej osi (zakreślaja֒c w ten sposób
powierzchnie֒ stanowia֒ca֒ dwie cze֒ści stożka o ka֒cie rozwarcia α). Po pre֒cie, pozostaja֒c

8Że jest to prawda, wynika już z samego wyprowadzenia równań Lagrange’a drugiego rodzaju z zasady
d’Alemberta, w którym po prostu wyraża sie֒ kartezjańskie sk ladowe wektorów po lożenia ri(t) mas uk ladu
przez dowolnie zdefiniowane (byle zgodne z wie֒zami holonomicznymi) wspó lrze֒dne uogólnione qi.
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Rysunek 10: Masa m ślizgaja֒ca sie֒ po g ladkim pre֒cie po la֒czona spre֒żynka֒ z nieruchomym
punktem P .

stale na nim, ślizga sie֒ bez tarcia koralik o masie m. Zak ladamy też (nie interesuja֒c
sie֒ tym, jak to by mia lo być technicznie możliwe), że koralik może przechodzić przez
oś obrotu. Wypisać funkcje֒ Lagrange’a koralika oraz wynikaja֒ce z niej jego równanie
ruchu. Znaleźć i przedyskutować charakter ruchu koralika w zależności od wartości ka֒ta
α i warunków pocza֒tkowych (koralik w t = 0 nad punktem przecie֒cia sie֒ pre֒ta z osia֒ lub
pod nim, etc. Czy w przypadku, gdy α = π

2
możliwe sa֒ takie warunki pocza֒tkowe, by

koralik asymptotycznie zbliża l sie֒ do osi obrotu?

Zadanie 8.7R

Koralik o masie m może ślizgać sie֒ bez tarcia po pre֒cie odchylonym od pionu (wyzna-
czanego przez pole cieżkośi g) o ka֒t α i wiruja֒cym ze sta la֒ pre֒dkościa֒ ka֒towa֒ ω wokó l
przechodza֒cej przezeń pionowej osi, tak jak w Zadaniu 8.6. Dodatkowo koralik jest zacze-
piony do (nacia֒gnie֒tej na pre֒t) spre֒żyny o wspó lczynniku spre֒żystości k i pomijalnie ma lej
d lugości swobodnej, która jest umocowana w do pre֒ta w punkcie oddalonym o l od tego
punktu pre֒ta, przez który przechodzi oś obrotu (zob. rysunek ??). Zbadać ruch uk ladu
w zależności od wartości parametrów ω, k, l warunków pocza֒tkowych. Jak zmieni lby
sie֒ lagrangian uk ladu, gdyby spre֒żyna by la umocowana w punkcie przecie֒cia pre֒ta z osia֒
obrotu a mia la za to d lugość swobodna֒ równa֒ l?

Zadanie 8.8R

Klin o masie M , ka֒cie nachylenia α i wysokości górnej krawe֒dzi h może przesuwać sie֒
bez tarcia po p laskiej powierzchni. Po klinie, wskutek dzia lania skierowanego pionowo
w dó l pola si ly cie֒żkości g, może zsuwać sie֒ bez tarcia klocek o masie m. Znaleźć ruch
tego uk ladu wykorzystuja֒c równania Lagrange’a drugiego rodzaju. Porównać wynik z
otrzymanym w Zadaniu 6.3 w granicy µ1 = µ2 = 0.

Zadanie 8.9R

Klin o masie M i przekroju poprzecznym w kszta lcie trójka֒ta wysokości h maja֒cego
ka֒ty nachylenia ramion do poziomu równe α i β może przemieszczać sie֒ bez tarcia po
p laskiej poziomej (w stosunku do pola g) powierzchni. Po jego bocznych p laszczyznach,
po la֒czone nierozcia֒gliwa֒ i nieważka֒ linka֒ d lugości l, moga֒ przesuwać sie֒ dwa klocki o
masach m1 (ta od strony ka֒ta α) i m2 (zob. rysunek 9). Napisać lagrangian i równania
wyznaczaja֒ce p laskorównoleg ly ruch tego uk ladu. Zak ladaja֒c, że w chwili pocza֒tkowej
masa m1 znajduje sie֒ w najwyższym po lożeniu (na wysokości h nad podstawa֒ klina)
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Rysunek 11: “Waciak” (czyli regulator Watta).

obliczyć czas jej zjazdu do najniższego po lożenia, przyjmuja֒c, że m1 > m2 i α > β (i że
d lugość linki to umożliwia). Obliczyć także odleg lość o jaka֒ przesunie sie֒ przy tym klin.

Zadanie 8.10R

Dwie masy m1 i m2 po la֒czone sztywnym pre֒tem o d lugości l i pomijalnie ma lej masie
ślizgaja֒ sie֒ w pionowym polu g po dwóch przecinaja֒cych sie֒ (wie֒c wyznaczaja֒cych pewna֒
p laszczyźne֒) prostych nachylonych do poziomu pod ka֒tem π/4. Napisać lagrangian i
odpowiadaja֒ce mu równania Eulera-Lagrange’a. Znaleźć po lożenie równowagi uk ladu i
cze֒stość ma lych drgań wokó l tego po lożenia.

Zadanie 8.11R

Masa m może bez poślizgu przemieszczać sie֒ po poziomej osi i jest po la֒czona (nieważka֒)
spre֒żynka֒ o d lugości swobodnej l0 i wspó lczynniku spre֒żystości k z nieruchomym punktem
P . Napisać lagrangian tego uk ladu pokazanego na rysunku 10 i znaleźć cze֒stości jego
ma lych drgań wokó l po lożeń równowagi trwa lej. Rozpatrzyć przypadki a > l0 i a < l0.

Zadanie 8.12R

Koralik o masie m porusza sie֒ po okre֒gu o promieniu R (wie֒zy dwustronne), którego
jedna ze średnic jest równoleg la do ziemskiego pola cia֒żenia g. Okra֒g ten obraca sie֒
wokó l tejże średnicy z pre֒dkościa֒ ka֒towa֒ ω. Napisać lagrangian tego uk ladu i wynikaja֒ce
z niego równanie Lagrange’a IIgo rodzaju wyznaczaja֒ce ruchu koralika. Sprowadzić jego
rozwia֒zanie do kwadratur wykorzystuja֒c ca lke֒ pierwsza֒ (czy jest nia֒ ca lkowita energia
mechaniczna koralika?). Znaleźć jego po lożenia równowagi i przedyskutować ich cha-
rakter (równowaga trwa la lub nietrwa la) w zależności od wartości pre֒dkości ka֒towej ω.
Wyznaczyć cze֒stości ma lych drgań koralika wokó l po lożeń równowagi trwa lej.

Zadanie 8.13R

Napisać równania wyznaczaja֒ce ruch uk ladu sk ladaja֒cego sie֒ z dwóch mas, z których
jedna, m1, ślizga sie֒ bez tarcia po poziomym pre֒cie, a druga, m2 jest z tamta֒ po la֒czona
nieważkim pre֒tem o d lugości l i może wahać sie֒ w p laszczyźnie wyznaczanej przez pole
si ly cie֒żkości g i pre֒t (rysunek ??). Znaleźć ruch uk ladu w przybliżeniu ma lych odchyleń
z po lożenia równowagi.

Zadanie 8.14R
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Rysunek 12: Koralik na okregu o promieniu R wiruja֒cym wokó l osi przechodza֒cej przez
punkt na obwodzie. Pokazana jest sugerowana definicja zmiennej dynamicznej ϕ.

Masa m jest zawieszona w polu g na nieważkim sztywnym pre֒cie o d lugości l. Górny
koniec tego pre֒ta, czyli punkt w którym zawieszone jest utworzone z pre֒ta i masy m
wahad lo, porusza sie֒ horyzontalnie, wzd lóż osi x ruchem harmonicznym o amplitudzie a
i cze֒stości ω. Napisać równanie wyznaczaja֒ce ruch wahad la (masy m) i rozwia֒zać je w
sposób przybliżony, zak ladaja֒c (jako warunki pocza֒tkowe), że w chwili, gdy jego ruchome
zawieszenie ma maksymalna֒ pre֒dkość zwisa lo ono swobodnie. Rozpatrzyć przypadek,
gdy ω2 → g/l. Czy otrzymane rozwia֒zanie pozostaje wtedy s luszne dla dowolnie d lugiego
czasu? Podać też przybliżone rozwia֒zanie stosowalne przez jakís czas po t = 0 w sytuacji,
gdy ω0 ≫ |ω − ω0| 6= 0.

Zadanie 8.15R (“Waciak”)
Znaleźć ruch “waciaka”, czyli regulatora Watta. Jest to ustrojstwo pokazane na rysunku
11: wokó l pionowej osi (w polu g) na wychodza֒cych ze znajduja֒cego sie֒ na sta lej wy-
sokości pierścienia A, symetrycznie po lożonych ruchomych ramionach o d lugości l wiruja֒
z ustalona֒ pre֒dkościa֒ ka֒towa֒ ω dwie masy m pola֒czone kolejna֒ para֒ ramion o d lugości
l z mogacym przesuwać sie֒ po osi w góre֒ i w dó l obcia֒żaja֒cym pierścieniem o masie
M . Napisać lagrangian waciaka i wynikaja֒ce zeń ścis le równanie ruchu. Znaleźć stabilne
po lożenie równowagi i ruch uk ladu w przybliżeniu ma lych wychyleń z po lożenia równowagi
trwa lej.

Zadanie 8.16R

Masa m może ślizgać sie֒ bez tarcia po okre֒gu o promieniu R wiruja֒cym ze sta la֒ pre֒dkościa֒
ka֒towa֒ ω wokó l punktu O po lożonego na jego obwodzie. Z punktem tym masa m
jest po la֒czona nieważka֒ spre֒żyna֒ o d lugości swobodnej l i wspó lczynniku spre֒żystości
k. (Okra֒g wiruje w p laszczyźnie prostopad lej do pola grawitacyjnego - zob. rysunek
12). Napisać lagrangian tego uk ladu i wynikaja֒ce zeń równanie ruchu masy m. Znaleźć
po lożenia równowagi i cze֒stości ma lych drgań masy m wokó l po lożenia równowagi trwa lej.
Jakie warunki musza֒ spe lniać parametry R, l i ω, by ϕ = 0 by lo po lożeniem równowagi
trwa lej? Znaleźć także ca lke֒ pierwsza֒ (sta la֒ ruchu) równania Eulera-Lagrange’a - czy
jest to energia? - i sprowadzić jego rozwiazanie do kwadratur. Rozwijaja֒c odpowiedni
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Rysunek 13: Dwie masy po la֒czone linka֒.

potencja lefektywny masy m wokó l jego minimów uzyskać te same wnioski, które wynikaja֒
z linearyzacji równania Eulera-Lagrange’a.

Zadanie 8.17R

Punkt materialny o masie m moga֒cy poruszać sie֒ bez tarcia po g ladkiej poziomej (w sto-
sunku do pola g) p laszczyźnie jest po la֒czony linka֒ (nieważka֒ i nierozcia֒gliwa֒) o d lugości
l przechodza֒ca֒ przez otwór w p laszczyźnie z druga֒ masa֒ M , która może poruszać sie֒
tylko wzd luż pionowej prostej. W chwili t = 0 masa m znajduje sie֒ w odleg lości R od
otworu i ma pre֒dkość v0 skierowana֒ prostopadle do linki, a pre֒dkość masy M jest równa
zeru (zob. rysunek 13). Napisać lagrangian tego uk ladu i sprowadzić wynikaja֒ce zeń
równania wyznaczaja֒ce zależność po lożenia elementów uk ladu od czasu do kwadratur.
Na tej podstawie opisać ruch jakościowo, czyli m.in. powiedzieć, czy może on być okre-
sowy. Wyznaczyć także minimalna֒ odleg lość Rmin, na jaka֒ masa m może sie֒ zbliżyć do
otworu. Jaka֒ zmiane֒ wprowadzi loby odrzucenie warunku, że pre֒dkość pocza֒tkowa v0 jest
prostopad la do nici?

Zadanie 8.18R

Pos luguja֒c sie֒ równaniami Lagrange’a II-go rodzaju zbadać ruch masy m zmuszonej
do pozostawiania na stożku (wie֒zy dwustronne) o ka֒cie rozwarcia 2α, którego oś jest
równoleg la do pola grawitacyjnego g. Przedyskutować ruch jakościowo w zależności od
ka֒ta α. Jeśli w jakimś zakresie ka֒ta α możliwy jest ruch quasi-okresowy (tj. taki, przy
którym zmiany odleg lości masy od czubka stożka sa֒ okresowe), znaleźć jego cze֒stość, w
przybliżeniu ma lych amplitud oscylacji.

Zadanie 8.19R

Pos luguja֒c sie֒ równaniami Lagrange’a II-go rodzaju napisać równania wyznaczaja֒ce ruch
masy m pozostaja֒cej stale na powierzchni obrotowej zadanej wzorem z = (x2 + y2)2/4a3

(a > 0 jest sta la֒ o wymiarze d lugości), której oś symetrii jest równoleg la do ziemskiego
pola cia֒żenia g = −g ez. Sprowadzić rozwia֒zanie zagadnienia do “kwadratury”, tj.
do jednej ca lki i przedyskutować jakościowo charakter możliwego ruchu wykorzystuja֒c
poje֒cie potencja lu efektywnego. W przybliżeniu ma lych odychyleń zmiennej radialnej od
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Rysunek 14: Dwie masy na pre֒tach po la֒czone spre֒żynkami.

po lożenia minimum tego potencja lu wyznaczyć okres oscylacji masy m wokó l niego oraz
zależność od czasu w tej sytuacji pre֒dkości ka֒towej, z jaka֒ masa m okra֒ża oś z.

Zadanie 8.20R

Napisać lagrangian cza֒stki o masie m i  ladunku elektrycznym q poruszaja֒cej sie֒ w sta lym
i jednorodnym polu magnetycznym B = ezB, wprowadzaja֒c zmienne cylindryczne w
p laszczyźnie prostopad lej do pola magnetycznego. Wykorzystuja֒c ca lki pierwsze sprowa-
dzić rozwia֒zanie do kwadratury i znaleźć zależność po lożenia cza֒stki od czasu przyjmuja֒c,
że r(0) = 0 i v(0) = vx0 ex + vy0 ey.
Wskazówka: Wybrać odpowiednio potencja l wektorowy A pola magnetycznego.

Zadanie 8.21R

Sta le pole magnetyczne o symetrii cylindrycznej, B = ez B(r), gdzie r =
√

x2 + y2, jest
zlokalizowane w obszarze, którego rzut na p laszczyzne֒ xy jest ko lem o promieniu R. Pole
to jest takie, że

∫

z=0

ds·B = 0 .

Pokazać, że jeśli cza֒stka o  ladunku elektrycznym q startuja֒ca z punktu r = 0 i pozo-
staja֒ca stale w p laszczyźnie xy opuszcza obszar pola (tzn. obszar r < R), to w chwili
przekraczania granicy (tj., gdy r = R) pola jej pre֒dkość jest skierowana radialnie. Podać
warunek, jaki musi spe lniać pre֒dkość v0 cza֒stki w r = 0, by mog la ona opuścić obszar
pola.
Wskazówka: wykorzystać wielkości, które pozostaja֒ sta le podczas ruchu cza֒stki.

Zadanie 8.22R

Czy możliwy jest jednowymiarowy (tj. wzd luż jakiej́s krzywej) ruch oscylacyjny punkto-
wego  ladunku q o masie m w polu elektrycznym wytwarzanym przez nieruchomy punktowy
dipol elektryczny p (wektor p ma wartość bezwzgle֒dna֒ równa֒ iloczynowi dodatniego  la-
dunku Q i odleg lości d dziela֒cej ten  ladunek i  ladunek ujemny −Q i jest skierowany od
 ladunku ujemnego do dodatniego; dipol punktowy powstaje w granicy d → 0, Q → ∞ z
Qd = |p| ≡ p = const. > 0)?
Wskazówka: Spróbować znaleźć takie rozwia֒zanie równań ruchu zapisanych we wspó l-
rze֒dnych sferycznych (z osia֒ z wybrana֒ wzd luż wektora p), które ma znikaja֒ca sk ladowa֒
momentu pe֒du w kierunku p.
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Rysunek 15: Po la֒czone dwa ruchome pre֒ty. Pokazane sa֒ możliwe zmienne uogólnione.

Zadanie 8.23R

Cza֒stka o masie m i  ladunku elektrycznym q porusza sie֒ w polu magnetycznym

B =
g

r2
er ,

wytwarzanym przez monopol (g jest  ladunkiem magnetycznym monopola). Napisać la-
grangian wyznaczaja֒cy ruch cza֒stki wykorzystuja֒c wspó lrze֒dne sferyczne. Znaleźć równa-
nie toru cza֒stki i zależność jej po lożenia od czasu.

Zadanie 8.24R

Napisać lagrangian sferycznego wahad la, tj. masy m na sztywnym nierozcia֒gliwym drucie
o d lugości l zawieszonego na wysokości h = l nad Ziemia֒ na szerokości geograficznej φ
uwzgle֒dniaja֒c dobowy obrót Ziemi. Wypisać ścis le równania ruchu (Eulera-Lagrange’a)
i znaleźć ich rozwia֒zanie w przybliżeni ma lych wychyleń z po lożenia równowagi.
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9 MA LE DRGANIA UK LADÓW Z LOŻONYCH

Zadanie 9.1R

W przybliżeniu ma lych wychyleń z po lożenia równowagi znaleźć ruch pokazanego na ry-
sunku 14 uk ladu dwóch mas m moga֒cych ślizgać sie֒ bez tarcia po dwu pre֒tach  la֒cza֒cych
sie֒ pod ka֒tem π/3 (pre֒ty leża֒ w p laszczyźnie prostopad lej do pola g, czyli pole to jest tu
nieistotne) i po la֒czonych jedna z drugóraz każda z osobna z punktem z la֒czenia sie֒ pre֒tów
jednakowymi spre֒żynkami o d lugościach swobodnych l0 i wspó lczynnikach spre֒żystości k.
Znaleźć wspó lrze֒dne normalne. Podać przyk lad warunków pocza֒tkowych, przy których
wzbudzony zostanie tylko mod drgań o wyższej cze֒stości.

Zadanie 9.2R

Masa m1 może poruszać sie֒ jedynie po paraboli o równaniu z = x2/2a. Z masa֒ ta֒
nieważkim sztywnym pre֒tem o d lugości l jest po la֒czona masa m2, która może poruszać
sie֒ jedynie w p laszczyźnie xz. Ca ly uk lad znajduje sie֒ w polu si ly cie֒żkości g = −g ez.
Napisać lagrangian i wynikaja֒ce z niego równania ruchu uk ladu. Znaleźć po lożenie
równowagi trwa lej i cze֒stości ma lych drgań wokó l niego w przypadku, gdy l = a i
m1 = 3m2. Zidentyfikować w tym przypadku wspó lrze֒dne normalne. Podać zależność
po lożeń obu mas od czasu jeśli w chwili t = 0 masa m1 spoczywa la w po lożeniu x = 0, a
pre֒t  la֒cza֒cy ja֒ z masa m2 by l odchylony od pionu o ka֒t α.

Zadanie 9.3R

Napisać lagrangian uk ladu z lożonego z dwu jednakowych mas m podwieszonych jedna do
drugiej na dwu jednakowych nieważkich spre֒żynkach o d lugości swobodnej l i wspó lczynniku
spre֒żystości k w polu si ly cie֒żkości g (ruch mas może zachodzić tylko wzd luż pionowej
prostej bo np. zarówno masy, jak i spre֒żyny ślizgaja֒ sie֒ bez tarcia po pionowym pre֒cie).
Znaleźć po lożenie równowagi tego uk ladu, cze֒stości drgań w lasnych wokó l tego po lożenia
i odpowiadaja֒ce im mody normalne drgań. Podać przyk ladowe warunki pocza֒tkowe, przy
których wzbudzeniu ulega tylko mod drgań o wyższej cze֒stości. Jak wygla֒da dalszy ruch
uk ladu jeśli znienacka, w trakcie wykonywania drgań, górna spre֒żyna pe֒knie (np. w
momencie, gdy jest maksymalnie - dla danych drgań - rozcia֒gnie֒ta)?

Zadanie 9.4R

Nieważki pre֒t o d lugości l zakończony masa֒ m przymocowany jest (w polu si ly cie֒żkości
g) do sufitu tak, że może obracać sie֒ tylko w jednej p laszczyźnie. W po lowie jego d lugości
przyczepiony jest doń drugi taki sam pre֒t, który również może obracać sie֒ w tej samej co
tamten p laszczyźnie9 (zobacz rysunek 15). Napisać lagrangian tego uk ladu i wynikaja֒ce
z niego równania ruchu. Znaleźć po lożenie równowagi trwa lej. Przyjmuja֒c, że wychylenia
obu pre֒tów z tego po lożenia sa֒ niewielkie, znaleźć cze֒stości drgań oraz odpowiadaja֒ce
im mody normalne i wspó lrze֒dne normalne. Podać przyk lad warunków pocza֒tkowych
wzbudzaja֒cych tylko mod drgań o niższej cze֒stości.

9Problem jest akademicki, wie֒c oba pre֒ty swobodnie mijaja֒ sie֒ w powietrzu podczas wykonywania
ruchu.
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Rysunek 16: Dwa sprze֒żone wahad la przy ścianie.

Zadanie 9.5R

Znaleźć cze֒stości w lasne i mody normalne ma lych drgań uk ladu dwu jednakowy mas m
podwieszonych na dwu jednakowych nieważkich pre֒tach o d lugości l do sufitu. Punkty
podwieszenia sa֒ odleg le od siebie o odleg lość l, która jest równa d lugości swobodnej
spre֒żyny o wspó lczynniku spre֒żystości k  la֒cza֒cej obie kulki. Dodatkowo, jedna z kulek jest
po la֒czona taka֒ sama֒ spre֒żyna֒ z pionowa֒ ściana֒ również odleg la֒ o l od punktu zawieszenia
pierwszej kulki (zobacz rysunek 16).

Zadanie 9.6R

Z dwu końców belki o masie M i d lugości 2a moga֒cej swobodnie przesuwać sie֒ poziomo
(w polu g) po nieważkich rolkach zwisaja֒ dwa jednakowe sztywne, nieważkie pre֒ty o
d lugościach l zakończone masami m każdy. Masy te sa֒ ze soba֒ po la֒czone spre֒żyna֒ o
wspó lczynniku spre֒żystości k i d lugości swobodnej 2a (zobacz rysunek 17). Napisać ścis ly
lagrangian tego uk ladu a naste֒pnie wyeliminować z niego stopnie swobody zwia֒ane z
ruchem uk ladu jako ca lości. W otrzymanym efektywnym lagrangianie dokonać przy-
bliżenia odpowiadaja֒cego ma lym drganiom dwu wahade l. Znaleźć w tym przybliżeniu
ruch uk ladu.

Zadanie 9.7R

Napisać równania ruchu, i podać ich najogólniejsze rozwia֒zanie, uk ladu trzech jednako-
wych mas ślizgaja֒cych sie֒ bez tarcia po okre֒gu o promieniu R, po la֒czonych jednako-
wymi spre֒żynkami o d lugościach swobodnych l = πR/2 i wspó lczynnikach spre֒żystości k
(spre֒żynki sa֒ też nawleczone na okra֒g, który jest umieszczony horyzontalnie - pole si ly
cie֒żkości nie odgrywa tu żadnej roli). Znaleźć cze֒stości w lasne i odpowiadaja֒ce im mody
normalne drgań. Podać jawnie zamiane֒ zmiennych wyrażaja֒ca֒ wybrane wspó lrze֒dne
uogólnione przez wspó lrze֒dne normalne. Rozwia֒zać ten sam problem eliminuja֒c sto-
pień swobody odpowiadaja֒cy jednostajnemu obieganiu okre֒gu przez wszystkie trzy masy.
Pokazać jawnie, że otrzymuje sie֒ w ten sposób rozwia֒zanie równoważne otrzymanemu
pierwsza֒ metoda֒.

Zadanie 9.8R

Dwa atomy A o masie mA i jeden atom B o masie mB tworza֒ liniowa֒ cza֒steczke֒ A-
B-A. Oddzia lywanie sa֒siednich atomów modelujemy si la֒ spre֒żysta֒ o wspó lczynniku
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Rysunek 17: Dwa wahad la podwieszone do ruchomej platformy.

spre֒żystości k. Przyjmuja֒c, że atomy moga֒ przemieszczać sie֒ tylko wzd luż osi cza֒steczki
znaleźć najogólniejsza֒ postać rozwia֒zania równań ich ruchu. Wyznaczyć cze֒stości drgań
tego uk ladu i podać wspó lrze֒dne normalne. Zilustrować graficznie odpowiednie mody
drgań. Naste֒pnie zastosować do tego uk ladu procedure֒ eliminacji stopnia swobody od-
powiadaja֒cego (jednowymiarowemu) ruchowi cza֒steczki jako ca lości, napisać odpowiedni
zredukowany lagrangian i rozwia֒zać wynikaja֒ce z niego równania ruchu. Czy otrzymuje
sie֒ w ten sposób to samo rozwia֒zanie, co pierwsza֒ metoda֒?

Zadanie 9.9R

Napisać najogólniejsze rozwia֒zanie równań ruchu uk ladu sk ladaja֒cego sie֒ z czterech, pa-
rami równych (równe sa֒ masy przeciwleg le), mas ślizgaja֒cych sie֒ bez tarcia po okre֒gu o
promieniu R i po la֒czonych jednakowymi spre֒żynkami o d lugościach swobodnych l = πR/2
i wspó lczynnikach spre֒żystości k (spre֒żynki sa֒ też nawleczone na okra֒g, którego średnice
sa prostopad le do pola si ly cie֒żkości g - si la ta nie odgrywa tu zatem żadnej roli). Znaleźć
cze֒stości w lasne i odpowiadaja֒ce im mody normalne drgań (zilustrować rysunkami odpo-
wiadaja֒ce tym modom przemieszczenia mas). Podać przyk lad warunków pocza֒tkowych
prowadza֒cych do wzbudzenia tylko drgań o najwyższej cze֒stości.

Zadanie 9.10R

Znaleźć mody drgań i odpowiadaja֒ce im cze֒stości uk ladu N jednakowych masmmoga֒cych
ślizgać sie֒ bez tarcia po prostym pre֒cie i po la֒czonych jednakowymi spre֒żynkami o wspó l-
czynnikach spre֒żystości κ i d lugościach swobodnych l. Odleg lość mie֒dzy ściankami, do
których zamocowane sa֒ skrajne spre֒żyny jest równa (N + 1) l.

Zadanie 9.11R

Znaleźć cze֒stości i mody drgań uk ladu N jednakowych mas m ślizgaja֒cych sie֒ po okre֒gu
o promieniu R po la֒czonych jednakowymi spre֒żynkami o d lugościach swobodnych l =
2πR/N i wspó lczynnikach spre֒żystości k (spre֒żynki sa֒ nacia֒gnie֒te na okra֒g; pole cie֒żkości
nie odgrywa roli - okra֒g leży horyzontalnie). Znaleźć mody normalne tego uk ladu. Po-
kazać, że dla N = 3 wyprowadzone wzory sprowadzaja֒ sie֒ do wyniku otrzymywanego
bezpośrednio dla przypadku trzech mas (Zadanie 9.7).

Zadanie 9.12R

Wyznaczyć cze֒stości drgań pod lużnych uk ladu 2N jednakowych mas m moga֒cych ślizgać
sie֒ bez tarcia po poziomym pre֒cie i po la֒czonych ze soba֒ i z odleg lymi jedna od dru-
giej o (2N + 1)l ściankami spre֒żynkami o d lugościach swobodnych l i wspó lczynnikach
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spre֒żystości naprzemian kA i kB. Wykazać, że otrzymane wzory na cze֒stości drgań i wy-
chylenia mas z po lożeń równowagi przechodza֒ w granicy kA = kB = k w te otrzymanew
zadaniu 9.10.

Zadanie 9.13R

Rozpatrzyć cza֒steczke֒ zbudowana֒ z dwu różnych atomów o masach mA i mB oddzia luja֒-
cych ze soba֒ si la֒ spre֒żysta֒ o wspó lczynniku k zależna֒ tylko od odleg lości mie֒dzy atomami
A i B. Si la ta znika, gdy atomy sa֒ od siebie odleg le o l. Stosuja֒c metode֒ elimina-
cji stopni swobody zwia֒zanych z ruchem translacyjnym oraz obrotami, znaleźć cze֒stość
drgań w lasnych cza֒steczki. Rozwia֒zać naste֒pnie ścísle problem ruchu takich dwu atomów
wyrażaja֒c ich lagrangian przez wektor R po lożenia środka masy oraz wektor r = rA−rB i
znaleźć wzory pozwalaja֒ce wyznaczyć cze֒stość ma lych drgań ścísle. Czym uzyskany w ten
sposób wynik różni sie֒ od otrzymanego metoda֒ eliminacji translacyjnych i rotacyjnych
stopni swobody?

Zadanie 9.14R

Pos luguja֒c sie֒ metoda֒ eliminacji translacyjnych i rotacyjnych stopni swobody znaleźć
mody w lasne drgań i odpowiadaja֒ce im cze֒stości cza֒steczki zbudowanej z trzech iden-
tycznych atomów tworza֒cych w po lożeniu równowagi (w stanie niewzbudzonym, mówia֒c
je֒zykiem mechaniki kwantowej) trójka֒t równoboczny o bokach d lugości l. Atomy trak-
tujemy tu jak punktowe masy m, a si ly je wia֒ża֒ce (których prawdziwym źród lem sa֒
oddzia lywania elektromagnetyczne) jak zwyk le spre֒żynki o d lugościach swobodnych l i
wspó lczynnikach spre֒żystości κ.
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10 RUCHY W POLACH SI L CENTRALNYCH

Zadanie 10.1R

Masa m porusza sie֒ w polu si ly centralnej Fr(r) po torze zamknie֒tym o równaniu

r(ϕ) = a (1 + cosϕ) .

Znaleźć postać powoduja֒cej ten ruch si ly centralnej Fr(r). Obliczyć także czas obiegu
centrum przycia֒gaja֒cego przez mase֒ m

Zadanie 10.2R

Wyznaczyć postać si ly centralnej powoduja֒cej ruch punktu po masie m po spirali hiper-
bolicznej danej równaniem

r(ϕ) =
a

ϕ
.

Znaleźć także zależność ϕ = ϕ(t). Czy otrzymany wzór na si le֒ nie wygla֒da dziwnie? Jeśli
tak, poszukać wyjaśnienia rozwia֒zuja֒c Zadanie 10.14.

Zadanie 10.3R

Masa m porusza sie֒ w polu si ly centralnej o potencjale

V (r) = − κ

rα
.

Czy może ona poruszać sie֒ po stabilnej orbicie ko lowej, jeśli α = 5? Jeśli α = 1
2
?

Zadanie 10.4R

Wykazać metodami geometrii analitycznej, że wzór

r(ϕ) =
p

±1 + ε cosϕ
,

w którym parametr ε jest z definicji nieujemny (tak wybrany jest sposób odmierzania
ka֒ta ϕ), rzeczywíscie zadaje znane z geometrii krzywe stożkowe: elipse֒ (gdy 0 ≤ ε < 1 i
znak +), hiperbole֒ (gdy ε > 1, oba znaki) i parabole֒ (gdy ε = 1 i znak +). Wyprowadzić
w ten sposób zwia֒zki mie֒dzy różnymi charakterystykami tych krzywych (np. mie֒dzy
d lugościami a i b pó losi elipsy, parametrami p i ε oraz odleg lościa֒ 2c mie֒dzy dwoma
ogniskami elipsy i suma֒ 2f odleg lości dowolnego punktu na elipsie od jej ognisk).

Zadanie 10.5R

Wiedza֒c, że torami ruchu masy m w polu si ly centralnej o potencjale V (r) = −κ/r (κ > 0
- si la przyciagaja֒ca, κ < 0 - odpychaja֒ca) sa֒ krzywe stożkowe: okra֒g, elipsa, parabola
lub hiperbola, wyprowadzić zwia֒zki mie֒dzy różnymi charakterystykami elipsy i hiperboli:
(c, f), (a, b) i (p, ε) bez jawnego wyprowadzania (jak w Zadaniu 10.4) zwia֒zków mie֒dzy
równaniami w uk ladzach kartezjańskim i biegunowym. Powia֒zać te charakterystyki z
momentem pe֒du L i ca lkowita֒ energia֒ mechaniczna֒ E cza֒stki. W przypadku ruchu po
elipsie wyprowadzić z otrzymanych zwia֒zków trzecie prawo Keplera.
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planeta duża polosa [j.a.] okres T [s] stosunek T 2/a3 [s2/m3]
Merkury 0.387099 7.600344 × 106 2.97457 × 10−19

Wenus 0.723332 1.94 × 107 2.97461 × 10−19

Ziemia 1 3.15576 × 107 2.97462 × 10−19

Mars 1.523691 5.94 × 107 2.97463 × 10−19

Jowisz 5.202803 3.74 × 108 2.97179 × 10−19

Saturn 9.55884 9.30 × 108 2.97377 × 10−19

Uran 19.1819 2.66 × 109 2.97457 × 10−19

Neptun 30.0578 5.20 × 109 2.97442 × 10−19

Pluton 39.44 7.82 × 109 2.97466 × 10−19

Tablica 1: Orbity planet Uk ladu S lonecznego. j.a.= 1.4959787066 × 1011 m.

Zadanie 10.6R

Wyprowadzić wzory zadaja֒ce (w sposób uwik lany) zależność od czasu po lożenia masy
m poruszaja֒cej sie֒ w potencjale V (r) = −κ/r (κ > 0 - si la przyciagaja֒ca, κ < 0 -
odpychaja֒ca) we wszystkich możliwych przypadkach: ruchu po elipsie (możliwym przy
κ > 0), ruchu po hiperboli (trzeba tu odróżnić przypadki ruchu po ga le֒zi hiperboli bliższej
centrum si ly, co zachodzi, gdy κ > 0 i po ga le֒zi dalszej, gdy κ < 0) oraz w przypadku
ruchu po paraboli (możliwym tylko, gdy κ > 0).

Zadanie 10.7R

Wykazać, że wektor A (zwany wektorem Lenza)

A = v×L +
β

r
r ,

z odpowiednio dobrana֒ sta la֒ β jest sta ly podczas ruchu masy m w potencjale

V (r) = −κ
r
.

Wykorzystuja֒c sta lość A podać wzór wyznaczaja֒cy tor, po którym porusza sie֒ masa m,
wyrażaja֒c wyste֒puja֒ce w tym wzorze sta le przez jej ca lkowita֒ energie֒ i moment pe֒du.

Zadanie 10.8R

Wyt lumaczyć widoczne w tabeli 1 odste֒pstwo od trzeciego prawa Keplera, jakie wykazuja֒
planety Jowisz i Saturn.

Zadanie 10.9R

Pierwszy lot suborbitalny odby l sie֒ w roku 1961. Kabina Merkury zosta la wystrzelona
z Ziemi i poruszaja֒c sie֒ po elipsie osia֒gne֒ la maksymalna֒ wysokość h = 185 km (nad
powierzchnia֒ Ziemi). Wyla֒dowa la w odleg lości (liczonej po powierzchni Ziemi) s = 480
km od punktu startu. Znaleźć parametry p i ε elipsy, po której porusza la sie֒ kabina.
Obliczyć także czas trwania jej lotu.
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Zadanie 10.10R

Z powierzchni Ziemi wystrzelono pod ka֒tem α (w stosunku do powierzchni Ziemi) rakiete֒
z pre֒dkościa֒ v0 (mniejsza֒ od pierwszej pre֒dkości kosmicznej). Jaki jest zasie֒g jej lotu (tj.
liczona po powierzchni Ziemi odleg lość od punku wystrzelenia do punktu upadku)? Dla
jakiego ka֒ta α zasie֒g jest najwie֒kszy? Pokazać, że gdy v20 ≪ GMZ/RZ , otrzymuje sie֒
znany zasie֒g rzutu ukośnego w polu si ly cie֒żkości g. Jak wygla֒da orbita, gdy v0 da֒ży do
pierwszej pre֒dkości kosmicznej?

Zadanie 10.11R

Masa m spada z odleg lości R (gdzie ma zerowa֒ pre֒dkość) na centrum keplerowskiej si ly
przycia֒gaja֒cej o potencjale

V (r) = −κ
r
, κ > 0 ,

Obliczyć czas, po którym masa m spadnie na centrum.

Zadanie 10.12R

Sztuczny satelita porusza sie֒ (z wy la֒czonymi silnikami) po orbicie ko lowej o promieniu
R1 wokó l Ziemi. W pewnym punkcie A toru, w la֒cza na (pomijalnie krótki) moment
silniki i jego pre֒dkość zwie֒ksza sie֒ lub zmniejsza sie֒ o ∆v w kierunku prostopad lym do
promienia orbity. W ten sposób pojazd przechodzi na orbite֒ eliptyczna֒. Pokazać, że
punkt A jest apogeum lub perygeum tej orbity eliptycznej. Jaka musi być wartość |∆v|
by pojazd móg l w ten sposób osia֒gna֒ć wysokość R2 (i przej́sć na nowa֒ orbite֒ ko lowa֒
w la֒czaja֒c ponownie na pomijalnie krótki czas silniki i dopasowuja֒c odpowiednio do niej
swoja֒ pre֒dkość transwersalna֒)?

Zadanie 10.13R (tzw. Problem Bertranda)
Udowodnić, że tylko w potencja lach V (r) = −|κ|/r oraz V (r) = 1

2
|k|r2 wszystkie ruchy

ograniczone z L 6= 0 zachodza֒ po torach zamknie֒tych.10

Zadanie 10.14R

Rozpatrzyć ruch masy m w polu przycia֒gaja֒cej si ly centralnej o potencjale V (r) =
−|β|/r2. Wszystkie możliwe przypadki takiego ruchu, w zależności od ca lkowitego mo-
mentu pe֒du L i ca lkowitej energii E ruchu, usystematyzować i przedyskutować, przede
wszystkim jakościowo, ale opieraja֒c sie֒ w każdym z przypadków na wzorach zadaja֒cych
tor (tj. zależność r = r(ϕ)) oraz zależność po lożenia od czasu (ϕ = ϕ(t) i ewentual-
nie r = r(t)). Jeśli dla jakichś wartości energii E i momentu pe֒du L możliwy jest ruch
kończa֒cy sie֒ spadkiem na centrum si ly, obliczyć czas po jakim masa m na nie spadnie,
jeśli chwili t = 0 znajdujduje sie֒ w skończonej odeń odleg lości r(t = 0) = r0. Pokazać
także, że otrzymane wzory daja֒, gdy |β| → 0, to, czego należa loby sie֒ spodziewać (czyli
co?).

10Ruchy, w których L = 0 zachodza֒ wzd luż prostej przechodza֒cej przez centrum si ly; jeśli V (r) ma
“do lek” (albo do lki), to każdy ruch w takim do lku jest okresowy - zobacz zadania w rozdzia lu 3 - i jego
tor jest trywialnie “zamknie֒ty”.
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Zadanie 10.15R

Masa m porusza sie֒ w polu si ly centralnej o potencjale

V (r) = −|κ|
r4
.

W chwili t = 0 masa ta znajduje sie֒ w odleg lości |r0| = r0 od przycia֒gaja֒cego centrum,
przy czym wektor jej pre֒dkości v0 jest prostopad ly do wektora wodza֒cego r0 i ma wartość
taka֒, że ca lkowita energia mechaniczna ruchu E = 0. Wyznaczyć tor, po którym porusza la
i be֒dzie sie֒ poruszać masa m. Czy spadnie ona na przycia֒gaja֒ce ja֒ centrum si ly? Jeśli
tak, obliczyć czas po jakim to nasta֒pi. Przedyskutować także możliwość przed lużenia
toru masy m poza punkt r = 0.

Zadanie 10.16R

Masa m porusza sie֒ w polu si ly centralnej zadanej potencja lem

V (r) = −|κ|
r3
,

przy czym ca lkowita energia mechaniczna tego ruchu E = 0. Znaleźć zależność po lożenia
masy m od czasu, w przypadku, gdy jej moment pe֒du L jest równy zeru. W przypadku,
gdy L > 0, znaleźć i naszkicować tor ruchu masy m oraz podać równania wyznaczaja֒ce
jej po lożenie w funkcji czasu, jeśli w chwili t = 0 by la ona w punkcie maksymalnie (przy
E = 0 i zadanym L > 0) odleg lym od centrum. Obliczyć czas jej spadku na centrum i
przedyskutować możliwość przed lużenia toru takiego ruchu poza r = 0.

Zadanie 10.17

W polu si ly centralnej o potencjale

V (r) =
|κ|
r

− β

r2
,

porusza sie֒ masa m, o ca lkowitej energii E i momencie pe֒du L takim, że β > L2/2m.
Zak ladaja֒c, że energia E jest taka, że masa spada na centrum, znaleźć tor jej ruchu
i obliczyć czas, po jakim spadnie ona na centrum, jeśli w chwili pocza֒tkowej by la w
odleg lości r0 odeń. Jeśli moment pe֒du L cza֒stki jest taki, że β < L2/2m, to nadlatuja֒ca
masa oddala sie֒ do nieskończoności. Czy jej tor ma wtedy punkt przegie֒cia? Jeśli tak, to
co go wyznacza?

Zadanie 10.18R

Masa m porusza sie֒ w polu potencjalnej przyciagaja֒cej si ly centralnej o potencjale

V (r) = − κ

rα
, κ > 0 , α > 0 .

W chwili t = 0 znajduje sie֒ one w odleg lości r0 > 0 od przycia֒gaja֒cego ja֒ centrum.
Zbadać, w zależności od wyk ladnika α i globalnych charakterystyk ruchu masy m (mo-
mentu pe֒du L, ca lkowitej energii E i od znaku jej pre֒dkości radialnej vr(0) = ṙ(0) w
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chwili pocza֒tkowej), czy spadnie ona na przycia֒gaja֒ce ja֒ centrum. Kiedy przy takim
spadku okra֒ży ona centrum nieskończenie wiele razy? Ile zaś razy masa m okra֒ży cen-
trum przy oddalaniu sie֒ do nieskończoności, gdy warunki pocza֒tkowe sa֒ takie, że ucieczka
taka nasta֒pi?

Zadanie 10.19R

Zapisać rozwia֒zanie kartezjańskich równań ruchu dwuwymiarowego izotropowego oscyla-
tora harmonicznego o masie m i cze֒stości ω we wspó lrze֒dnych biegunowych i otrzymać
równanie toru, wyrażone przez ca lkowita֒ energie֒ mechaniczna֒ oscylatora i jego moment
pe֒du oraz wzór na r2(t). Odtworzyć naste֒pnie równanie toru oraz wzór na r2(t) ca lkuja֒c
podane w Przypomnieniu wzory w laściwe dla ruchu w polu si l centralnych.

Zadanie 10.20R

Satelita o masie m porusza sie֒ wokó l Ziemi po orbicie ko lowej o promieniu r0. Oprócz
si ly grawitacji dzia la nań dodatkowo si la oporu Fop = −λvn−1v (v = |v|). Przyjmuja֒c, że
energia tracona przezeń w trakcie każdego obiegu jest bardzo ma la w porównaniu z jego
ca lkowita֒ energia֒ kinetyczna֒ (tak iż można przyja֒ć że si la oporu powoduje jedynie ma la֒
zmiane֒ promienia orbity), obliczyć czas, po którym spadnie on na Ziemie֒.

Zadanie 10.21R

Zgodnie z prawami elektrodynamiki klasycznej  ladunek elektryczny q poruszaja֒c sie֒ z
przyspieszeniem promieniuje i traci energie֒. Wypromieniowana (czyli stracona) w prze-
dziale dt czasu energia dE jest dana (w tym nienormalnym uk ladzie SI) wzorem

dE = −2

3

q2

4πε0c3
a2(t) dt .

Przyjmuja֒c że spowodowana promieniowaniem strata energii elektronu na bohrowskiej or-
bicie ko lowej11 w atomie wodoropodobnym (jeden elektron kra֒ża֒cy wokó l ja֒dra o  ladunku
Ze) jest ma la, oszacować czas życia takiego rza֒dzonego prawami fizyki klasycznej atomu
(tj. czas po którym elektron spad lby na ja֒dro).

Zadanie 10.22R

Pos luguja֒c sie֒ mechanika֒ newtonowska֒ obliczyć jak zmienia sie֒ z czasem cze֒stotliwość ν
fal grawitacyjnych (rejestrowanych na Ziemi przez detektory LIGO) emitowanych przez
uk lad dwóch czarnych dziur o masach M1 i M2 wiruja֒cych wokó l swojego środka masy,
jeśli wiadomo, że cze֒stość 2πν emitowanych fal jest równa podwojonej pre֒dkości ka֒towej
ω ich obrotów, a moc P wypromieniowywana przez taki uk lad jest dana wzorem

P = αGaI2ωbcd ,

w którym α = 32/5, c jest pre֒dkościa֒ świat la, a I jest momentem bezw ladności wzgle֒dem
osi obrotu uk ladu dwóch czarnych dziur. Wyk ladniki a, b i d w podanym wzorze na P

11Jak wiadomo N. Bohr by l z matematyki noga (wielkość Bohra leża la w czymś zupe lnie innym)
i konstruuja֒c swój model atomu by l w stanie rozpatrzyć jedynie orbity ko lowe; eliptyczne musia l już
opracować A. Sommerfeld. Tu jednak jest to okoliczność szcze֒śliwa, gdyż przyje֒ta֒ tu metode֒ można
zastosować w zasadzie tylko do orbit ko lowych.
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trzeba ustalić na podstawie analizy wymiarowej. Przyja֒ć, że środek masy uk ladu czarnych
dziur pozostaje w spoczynku w uk ladzie, w którym emitowane przezeń promieniowanie
jest rejestrowane, a ruch wzgle֒dny czarnych dziur odbywa sie֒ po orbicie ko lowej.

Zadanie 10.23R

Masa m porusza sie֒ w polu centralnej si ly przycia֒gaja֒cej o potencjale V (r) maja֒c ujemna֒
energie֒. Ruch odbywa sie֒ wie֒c w ograniczonym obszarze: odleg lość masy m od centrum
zmienia sie֒ od pewnej wartości minimalnej r− do maksymalnej r+. Pomie֒dzy dwoma
kolejnymi po lożeniami minimalnego oddalenia od centrum si ly masa zakreśla ka֒t ∆ϕ
(równy 2π, gdy V (r) = −κ/r). Wyprowadzić wzór pozwalaja֒cy obliczyć zmiane֒ (w
przypadku keplerowskich orbit zmiana ta nazywa sie֒ precesja֒ orbity) δ(∆ϕ) powodowana֒
zmiana֒ potencja lu z V (r) na V (r) + δV (r). Potraktować δV (r) jak ma le zaburzenie i
ograniczyć sie֒ do efektów pierwszego rze֒du. Otrzymany wzór sprawdzić na przyk ladzie
V (r) + δV (r) = −κ/r + β/r2 (zmiane֒ δ(∆ϕ) można wtedy obliczyć ścísle). Przy okazji,
korzystaja֒c z analizy wymiarowej, oszacować rza֒d wielkości precesji (sumarycznej zmiany
δ(∆ϕ) po stu latach - taka֒ wielkość podaja֒ źród la stronomiczne) orbity Merkurego (o
a = 0.387 j.a., ε = 0.21, obieganej przezeń w T = 88 dni) powodowana֒ efektami relaty-
wistycznymi - efekty te modyfikuja֒ nieco potencja l keplerowski o cz lony, które powinny
znikać, gdy pre֒dkość świat la c da֒ży do nieskończoności (analiza wymiarowa nie pozwala
rozdzielić efektów szczególnej i ogólnej teorii wzgle֒dności).

Zadanie 10.24R

Obliczyć szybkość precesji orbity masy m o ca lkowitej energii ruchu E < 0 jakie by
spowodowa lo odste֒pstwo postaci

V (r) = − |κ̃|
r1+σ

, |σ| ≪ 1 ,

potencja lu si ly centralnej od ścísle keplerowskiej. Przez szybkość precesji należy tu rozu-
mieć stosunek zmiany δ(∆ϕ) pod wp lywem zaburzenia potencja lu ścićle keplerowskiego
przez σ 6= 0 ka֒ta ∆ϕ, jaki masa m zakreśla pomie֒dzy kolejnymi po lożeniami maksy-
malnego oddalenia od centrum si ly, do okresu obiegu orbity w niezaburzonym potencjale
keplerowskim.
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11 ROZPRASZANIE I PRZEKROJE CZYNNE

Zadanie 11.1R

Obliczyć różniczkowy i ca lkowity przekrój czynny elastycznego rozpraszania sztywnej kuli
o promieniu r na unieruchomionej kuli o promieniu R.

Zadanie 11.2R

Obliczyć przekrój czynny σzderz(E) na zderzenie z planeta֒ o promieniu R i masie M me-
teorytu (traktowanego jak punkt) o masie m nadlatuja֒cego z nieskończoności i maja֒cego
energie֒ E.

Zadanie 11.3R

Jaki jest przekrój czynny σspadku(E) na spadek na centrum przycia֒gaja֒cej si ly centralnej
o potencjale

V (r) = −|κ|
rn

,

masy m w zależności od jej energii E i od wyk ladnika n > 0 ?

Zadanie 11.4R

Tworza֒ce jednorodny strumień cza֒stki maja֒ce w nieskończoności pre֒dkość v∞ (tj. usta-
lona֒ energie֒ E) równoleg la֒ do osi x rozpraszaja֒ sie֒ w polu si ly o potencjale

V (r) =
|κ|
r
.

Wyznaczyć obszar niedoste֒pny dla tych cza֒stek.

Zadanie 11.5R

Tworza֒ce jednorodny strumień ma le (można je traktować jak punktowe) meteoryty leca֒ w
kierunku Ziemi maja֒c w nieskończoności pre֒dkość v∞ (tj. ustalona֒ energie֒ E) równoleg la֒
do osi x be֒da֒cej zarazem przed lużeniem (np. w kierunku pó lnocnym) osi Ziemi. Jakie
szerokości geograficzne na Ziemi sa֒ “bezpieczne” (tzn. meteoryty nie moga֒ tam spaść)?

Zadanie 11.6R

Masa m nadlatuje z nieskończoności, rozprasza sie֒ w polu zachowawczej si ly centralnej o
potencjale

V (r) =
|κ|
r

+
β

r2
,

i oddala sie֒ ponownie do nieskończoności. Jaki ka֒t tworza֒ wektor pre֒dkości pocza֒tkowej
(tj. w t = −∞) i końcowej (w t = +∞) masy m, jeśli ca lkowita jej energia jest równa E,
a momement pe֒du L. Rozpatrzyć przypadki β > 0 i β < 0, uwzgle֒dniaja֒c też możliwość
2mβ/L2 < −1.

Zadanie 11.7R
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Traktuja֒c zmiane֒ pe֒du cza֒stki rozpraszaja֒cej sie֒ na ustalonym centrum si ly (niekoniecz-
nie centralnej, ale takiej, że ruch cza֒stki jest p laski, tj. jej tor leży w jednej p laszczyźnie)
o potencjale V (r) jak wielkość ma la֒ pierwszego rze֒du (tego samego, co sam potencja l)
wyprowadzić ogólny wzór na przekrój czynny rozpraszania pod ma lymi ka֒tami. W przy-
padku rozpraszania w polu si ly centralnej wyprowadzić ten sam wzór robia֒c odpowiednie
przybliżenia w standardowych wyrażeniach.

Zadanie 11.8R

Obliczyć różniczkowy przekrój czynny rozpraszania cza֒stki o masie m i energii E (lub,
równoważnie, pre֒dkości v∞ w nieskończoności) w polu si ly centralnej o potencjale

V (r) = −κ
r
.

Rozpatrzyć przypadki si ly przycia֒gaja֒cej (κ > 0) i odpychaja֒cej (κ < 0). Jaki jest
ca lkowity przekrój czynny rozpraszania w takim potencjale? Odtworzyć otrzymany róż-
niczkowy przekrój czynny rozpraszania pod ma lymi ka֒tami pos luguja֒c sie֒ ogólna֒ przy-
bliżona֒ metoda֒ obliczania przekroju czynnego w tej granicy z zadania 11.7.

Zadanie 11.9R

Obliczyć różniczkowy przekrój czynny rozpraszania cza֒stek o masie m w polu odpy-
chaja֒cej si ly centralnej o potencjale

V (r) =
|β|
r2
.

Jaki jest ca lkowity przekrój czynny takiego rozpraszania? Odtworzyć postać różniczkowego
przekroju czynnego rozpraszania pod infinitezymalnie ma lymi ka֒tami metoda֒ z zadania
11.7.

Zadanie 11.10R

Obliczyć różniczkowy przekrój czynny rozpraszania cza֒stek o masie m w polu przycia֒gaja֒cej
si ly centralnej o potencjale

V (r) = −|β|
r2

.

Czy wioda֒cy wyraz otrzymanego różniczkowego przekroju czynnego rozpraszania pod
infinitezymalnie ma lymi ka֒tami można odtworzyć metoda֒ z zadania 11.7?

Zadanie 11.11R

Obliczyć różniczkowy przekrój czynny rozpraszania cza֒stki o masie m w polu impulsowej
si ly centralnej o potencjale w be֒da֒cym sferycznie symetryczna֒ “studnia֒” o promieniu R

V (r) =

{

−|V0| gdy r < R
0 gdy r > R

.

Otrzymać zwia֒zek ka֒ta rozproszenia z parametrem zderzenia dwiema różnymi metodami:
raz metoda֒ “optyczno-geometryczna֒” wprowadzaja֒c wspó lczynnik “za lamania” cza֒stki
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na granicy studni potencja lu, a drugi raz korzystaja֒c z ogólnego wzoru na ka֒t ϕmax.
Obliczyć12 ca lkowity przekrój czynny ca lkuja֒c dσ/dΩ po ca lym, ka֒cie bry lowym.

Zadanie 11.12R

Obliczyć różniczkowy przekrój czynny rozpraszania cza֒stki o masie m w polu impulsowej
si ly centralnej o potencjale be֒da֒cym sferycznie symetrycznym “garbem”

V (r) =

{

|V0| gdy r < R
0 gdy r > R

.

Obliczyć ca lkowity przekrój czynny ca lkuja֒c dσ/dΩ po ka֒cie bry lowym i pokazać, że ma
on wartość zgodna֒ z oczekiwana֒ (czyli jaka֒?).

Zadanie 11.13R

Na powierzchnie֒ obrotowa֒ zadana֒ wypukla֒ funkcja֒ ρ = f(z) (gdzie ρ2 = x2 + y2),
równolegle do osi z pada strumień cza֒stek o masie m i ca lkowitej energii E. Cza֒stki
odbijaja֒ sie֒ od powierzchni doskonale spre֒żyście. Zak ladaja֒c, że powierzchnia ta jest wy-
puk la, wyrazić różniczkowy przekrój czynny rozpraszania przez funkcje֒ f i jej pochodne
(obliczone w odpowiednim punkcie). Podać przekrój czynny w jawnej postaci w sytu-
acji, gdy f(z) = A(z/a)α, zak ladaja֒c (dla wypuk lości), że α > 1. Dobieraja֒c wyk ladnik
α, znaleźć taka֒ funkcje֒ f(z), że przekrój czynny rozpraszania na niej be֒dzie mia l taka֒
sama֒ zależność od ka֒ta rozproszenia, jak przekrój rutherfordowski rozpraszania cza֒stek
na ladowanych na nieruchomym na ladowanym centrum. Czy ta sama powierzchnia może
“symulować” rutherfordowskie rozpraszanie dla każdej wartości energii?

Zadanie 11.14R

Obliczyć przekrój czynny wzbudzenia pocza֒tkowo nieruchomego trójwymiarowego izotro-
powego oscylatora harmonicznego (o środku w punkcie r = 0 i cze֒stości w lasnej ω) do
energii pomie֒dzy E i E+dE przez przelatuja֒ca֒ bardzo szybka֒ cza֒stke֒ o pre֒dkości v, jeśli
oddzia luje ona z oscylatorem si la֒, której potencja l jest dany wzorem

V (r,R) = −V0 exp
{

−κ2(r − R)2
}

,

w którym r jest wychyleniem oscylatora, a R po lożeniem przelatuja֒cej cza֒stki. Dokonać
przybliżenia polegaja֒cego na przyje֒ciu, że |r| ≪ |R| i pominie֒ciu odchylenia toru cza֒stki
od prostoliniowego (cza֒stka szybka).

Zadanie 11.15R

Dwie (nierelatywistyczne) cza֒stki o masach m1 i m2 oddzia luja֒ce tylko ze soba֒ nawza-
jem, z których ta o masie m2 pocza֒tkowo spoczywa (tj. w chwili t = −∞) w uk ladzie
zwia֒zanym z laboratorium, a druga nadlatuje z nieskończoności z pre֒dkościa֒ równa֒ v1L

(też w t = −∞), rozpraszaja֒ sie֒ na sobie elastycznie (tzn. bez strat energii mechanicznej)
i rozlatuja֒ do nieskończoności. Wyrazić ka֒ty θ1L i θ2L pod jakimi (w stosunku do kierunku

12Albo przynajmniej powiedzieć, ile powinien on wynosoć, jeśli ca lka, która֒ trzeba wykonać jest zbyt
przerażaja֒ca.
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Rysunek 18: Dwa po la֒czone przegubowo pre֒ty.

wyznaczanego przez v1L) w uk ladzie laboratorium rozleca֒ sie֒ one do nieskończoności przez
ka֒t ϑ ich rozproszenia w uk ladzie środka ich masy.

Zadanie 11.16R

Kula o masie m1 i promieniu r1 nadlatuje z nieskończoności i odbija sie֒ doskonale spre֒żyście
od pocza֒tkowo nieruchomej (w uk ladzie laboratoryjnym) kuli o masie m2 i promieniu r2.
Znaleźć różniczkowy przekrój czynny tego rozpraszania wyrażaja֒c go zarówno przez ka֒t
θ1L rozproszenia kuli o masie m1 jak też i przez ka֒t θ2L pod jakim w stosunku do kierunku
wyznaczanego przez wektor pocza֒tkowej pre֒dkości padaja֒cej kuli odlatuje kula o masie
m2. Rozpatrzyć przypadki m1 < m2, m1 > m2 i m1 = m2. We obu przypadkach obliczyć
ca lkowity przekrój czynny wykonuja֒c ca lkowanie po ka֒tach bezpośrednio i pokazać, że
jest on równy, tyle ile być powinien (czyli ile?).
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Rysunek 19: Kula o promieniu R z kulistym wydra֒żeniem o promieniu r.

12 BRY LA SZTYWNA

Zadanie 12.1R

Wyprowadzić wzory na sk ladowe (chwilowej) pre֒dkości ka֒towej ω w uk ladzie odniesienia
zwia֒zanym z obracaja֒ca֒ sie֒ bry la֒ sztywna֒, którego orientacja wzgle֒dem uk ladu nierucho-
mego (inercjalnego), maja֒cego z nim wspólny pocza֒tek jest wyznaczona przez zdefinio-
wane standardowo przez trzy ka֒ty Eulera ϕ, θ i ψ (trzy“trzy ruchy  lapki”).

Zadanie 12.2R (Twierdzenie Steinera)
Podać wzór wyrażaja֒cy tensor I(O) momentu bezw ladności bry ly sztywnej wzgle֒dem
punktu O przez tensor I(CM) tejże bry ly wzgle֒dem jej środka masy.

Zadanie 12.3R

Znaleźć tensor Î(O) momentu bezw ladności jednorodnej p laskiej p lytki o kszta lcie pro-
stoka֒tnego trójka֒ta maja֒cego przyprostoka֒tne o d lugościach R i h i mase֒ M wzgle֒dem
punktu O be֒da֒cego wierzcho lkiem ka֒ta prostego. P lytke֒ należy potraktować jak dwuwy-
miarowy rozk lad masy, ale sam tensor Î(O) charakteryzuje ja֒ jako bry le֒ w trzech wymia-
rach.

Zadanie 12.4R

Znaleźć tensor Î(O) momentu bezw ladności jednorodnego stożka o masie M , promie-
niu podstawy R i wysokości h wzgle֒dem punktu O be֒da֒cego środkiem jego podstawy.
Naste֒pnie wykorzystuja֒c twierdzenie Steinera, otrzymać tensor momentu bezw ladności
wzgle֒dem środka masy stożka.

Zadanie 12.5R

Podać sk ladowe tensora momentu bezw ladności I(CM) (wzgle֒dem środka masy) jednorod-
nej bry ly o ca lkowitej masie M be֒da֒cej kula֒ o promieniu R z pustym kulistym wydra֒żeniem
o promieniu r < R, które jest styczne z jej powierzchnia֒, tak jak na rysunku 19.

Zadanie 12.6R

Pokazać, że ruch środka masy jednorodnej kuli o promieniu R i masie M tocza֒cej sie֒ bez
poślizgu po poziomej (w stosunku do pola si ly cie֒żkości g) p laszczyźnie pod dzia laniem
sta lej si ly F skierowanej poziomo wzd luż prostej przechodza֒cej przez środek kuli jest
taki sam, jak punktu materialnego o tej samej masie pod wp lywem sta lej poziomej si ly
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Rysunek 20: Walec wtaczaja֒cy sie֒ na próg.

F ′ = αF . Znaleźć wspó lczynnik proporcjonalności α.

Zadanie 12.7R

W górna֒ krawe֒dź sześcianu o obje֒tości l3 i masie M spoczywaja֒cego na p laszczyźnie (w
polu si ly cie֒żkości g) uderza kulka o masie m leca֒ca poziomo z pre֒dkościa֒ v prostopad la֒
do tej krawe֒dzi. Przyjmuja֒c, że jej zderzenie z sześcianem jest doskonale spre֒żyste i
kulka odbija sie֒ tak, że odlatuje wzd luż tej samej prostej, wzd luż której nadlecia la, a
dolna krawe֒dź sześcianu, przeciwleg la do tej, w od której odbija sie֒ kulka, jest unieru-
chomiona tak, że sześcian może sie֒ tylko wokó l niej obracać (odrywaja֒c dolna֒ ściane֒ od
pod loża), znaleźć pre֒dkość ka֒towa֒ takiego obrotu sześcianu po odbiciu sie֒ odeń kulki.
Podać równania wyznaczaja֒ce ruch sześcianu po odbiciu i sprowadzić jego rozwia֒znie do
kwadratury. Jaka musi być minimalna pre֒dkość kulki, by sześcian obróci l sie֒ ca lkowicie,
tzn. o ka֒t π/2 ?

Zadanie 12.8R

Znaleźć energie֒ kinetyczna֒ uk ladu dwu po la֒czonych przegubowo pre֒tów o masie m i
d lugości l każdy. Koniec lewego pre֒ta jest unieruchomiony w punkcie A (pre֒t może sie֒
tylko obracać wokó l A), a koniec B prawego pre֒ta może tylko przesuwać sie֒ po ustalonej
prostej przechodza֒cej przez punkt A (rysunek 18).

Zadanie 12.9R

Znaleźć energie֒ kinetyczna֒ niejednorodnego walca o masie M i promieniu R tocza֒cego sie֒
bez poślizgu po p laszczyźnie. Środek masy walca jest odleg ly o a od jego osi, a oś g lówna
jego tensora bezw ladności I(CM) (z za lożenia znanego) jest równoleg la do osi walca.

Zadanie 12.10R

Znaleźć energie֒ kinetyczna֒ ma lego jednorodnego walca o masie m i promieniu a tocza֒cego
sie֒ bez poślizgu po wewne֒trznej powierzchni nieruchomego dużego walca o promieniu R
(R > a). Osie obu walców sa֒ do siebie stale równoleg le.

Zadanie 12.11R

Znaleźć energie֒ kinetyczna֒ jednorodnego stożka o ca lkowitej masie M , ka֒cie rozwarcia 2α
i wysokości h taczaja֒cego sie֒ bez poślizgu po p laszczyźnie w taki sposób, że jego czubek
pozostaje stale w tym samym punkcie p laszczyzny. Naste֒pnie, przyjmuja֒c, że p laszczyzna
ta jest do pionu (wyznaczanego przez pole si ly cie֒żkości) nachylona pod ka֒tem β, napisać
równanie wyznaczaja֒ce ruch stożka po p laszczyźnie.

54



Zadanie 12.12R

Jednorodny walec o masie M i promieniu R toczy sie֒ bez poślizgu po p laszczyźnie sto lu
z pre֒dkościa֒ ka֒towa֒ ω. Tocza֒c sie֒ dociera do progu o wysokości h, którego krawe֒dź jest
równoleg la do osi walca (patrz rysunek 20). Jakie warunki musi spe lniać ruch walca, by
walec wtoczy l sie֒ na próg? Jaka jest jego pre֒dkość ka֒towa po wtoczeniu sie֒ na próg?

Zadanie 12.13R

Jednorodna bry la w kszta lcie stożka o wysokości h i promieniu podstawy również h obraca
sie֒ ze sta la֒ pre֒dkościa֒ ka֒towa֒ ω wokó l osi z pokrywaja֒cej sie֒ z tworza֒ca֒ stożka. Jakie
si ly FA i FB musza֒ na nia֒ dzia lać, jeśli sa֒ one przy lożone w dwu punktach: A be֒da֒cym
wierzcho lkiem stożka i zarazem pocza֒tkiem inercjalnego uk ladu odniesienia oraz w punkcie
B po lożonym na brzegu podstawy stożka, którym styka sie֒ ona z osia֒ z?

Zadanie 12.14R

P laska p lytka o kszta lcie równoramiennego trójka֒ta prostoka֒tnego maja֒cego przypro-
stoka֒tne o d lugości a i mase֒ M obraca sie֒ ze sta la֒ pre֒dkościa֒ ka֒towa֒ ω wokó l pionowej
(w stosunku do pola si ly cie֒żkości g) osi be֒da֒cej jedna֒ z przyprostoka֒tnych tak, iż wierz-
cho lek A p lytki be֒da֒cy ka֒tem prostym jest dolnym jej punktem oparcia a punkt B na
drugim końcu tej przyprostoka֒tnej górnym. Oprócz si ly cie֒żkości, na p lytke֒ dzia laja֒ w
punktach A i B si ly reakcji. Jaka musi być wartość |ω| pre֒dkości ka֒towej, by znika la
horyzontalna sk ladowa si ly reakcji w punkcie A? Czy sk ladowe pionowe obu si l reakcji
można wyznaczyć bezwzgle֒dnie?

Zadanie 12.15R

Pó lwalec o promieniu R i masie M wykonany z jednorodnego kawa lka materia lu może
toczyć sie֒ bez poślizgu po poziomej w stosunku do pola g powierzchni i tym samym wy-
konywać ma le drgania wokó l po lożenia równowagi. Wypisać równanie ruchu pó lwalca i
znaleźć cze֒stość jego ma lych drgań. Problem rozwia֒zać zarówno pos luguja֒c sie֒ równaniami
Lagrange’a II-go rodzaju, jak też i metoda֒ “newtonowska֒”.

Zadanie 12.16R

Jednorodny cienki pre֒t o masie m i d lugości l po lożono na nieruchomej walcowatej po-
wierzchni o promieniu a tak, że środek pre֒ta jest zarazem punktem styku obu cia l a sam
pre֒t jest prostopad ly do osi walca. (Ca ly uk lad znajduje sie֒ w polu grawitacyjnym g).
Zak ladaja֒c, że poślizg pre֒ta nie wyste֒puje, napisać ścis le równanie wyznaczaja֒ce jego
ruch korzystaja֒c z metody lagrangeowskiej. Stosujac standardowe przybliżenia znaleźć
cze֒stość ma lych drgań w jakie można wprawić pre֒t nieznaczne wychylaja֒c go z po lożenia
równowagi. Odtworzyć także ścis le równanie ruchu korzystaja֒c z metody newtonowskiej.

Zadanie 12.17R

Blok o masie M maja֒cy walcowate wydra֒żenie o promieniu R może ślizgać sie֒ bez tar-
cia po g ladkiej poziomej (w stosunku do pola g) p laszczyźnie w kierunku prostopad lym
do osi wydra֒żenia. W wydra֒żeniu znajduje sie֒ jednorodny pre֒t o masie m i d lugości
2l (l < R). Pre֒t ten może ślizgać sie֒ bez tarcia po ściankach wydra֒żenia pozostaja֒c
stale prostopad lym do osi wydra֒żenia (zob. rysunek 21). Ograniczaja֒c sie֒ do ruchów
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Rysunek 21: Pre֒t o masie m i d lugości 2l < 2R w walcowym wydra֒żeniu o promieniu R
w bloku o masie M na g ladkim stole.

p laskich napisać lagrangian tego uk ladu oraz wynikaja֒ce z niego ścis le równania jego ru-
chu. Sprowadzić ich rozwia֒zanie do kwadratur wykorzystuja֒c ca lki pierwsze. Znaleźć
ruch uk ladu w przybliżeniu ma lych odchyleń pre֒ta od pozycji poziomej (wzgle֒dem pola
g). W tym przybliżeniu podać zależność od czasu wszystkich wybranych wspó lrze֒dnych
uogólnionych.

Zadanie 12.18R

Końce jednorodnego pre֒ta maja֒cego d lugość 2l i mase֒ m moga֒ ślizgać sie֒ bez tarcia po
nieważkiej obre֒czy o promieniu R > l. Obre֒cz ta wiruje ze sta la֒ pre֒dkościa֒ ka֒towa֒ ω
wokó l swojej średnicy równoleg lej do pola a si ly cie֒żkości g. Napisać lagrangian tego
uk ladu i równania ruchu. Sprowadzić rozwia֒zanie do kwadratur wykrzystuja֒c ca lke֒
pierwsza֒. Znaleźć po lożenia równowagi pre֒ta i cze֒stości ma lych drgań wokó l po lożeń
równowagi trwa lej.

Zadanie 12.19R

Jednorodny walec o promieniu a i masie m stacza sie֒ bez poślizgu w polu si ly cie֒żkości
g z dużego ca lkowicie unieruchomionego walca o promieniu b. Osie obu walców pozo-
staja֒ ca ly czas wzajemnie równoleg le (i prostopad le do pola g). Znaleźć zależność si ly
reakcji dzia laja֒cej na ma ly walec od strony dużego walca i punkt, w którym oderwie sie֒
on od dużego walca, jeśli zaczyna staczać sie֒ praktycznie bez pre֒dkości pocza֒tkowej z
najwyższego po lożenia.

Zadanie 12.20R

Obre֒cz o promieniu R i masie M stoi na horyzontalnej (w stosunku do pola si ly cie֒żkości
g) p laszczyźnie tak, że jedna z jej średnic jest równoleg la pola g. Do obre֒czy tej w punk-
cie, który znajduje sie֒ na wysokości R nad p laszczyzna֒ przyczepiono nagle punktowy
cie֒żarek o masie m (np. kulke֒ z plasteliny) tak, że obre֒cz zaczyna sie֒ obracać i prze-
mieszczać. Jak duży musi być wspó lczynnik µst tarcia statycznego obre֒czy o p laszczyzne֒
by nie wysta֒pi l poślizg? Napisać także lagrangian wyznaczaja֒cy toczenie sie֒ obcia֒żonej
obre֒czy bez poślizgu. Podać równanie wyznaczaja֒ce ruch obcia֒żonej obre֒czy w przypadku
niewysta֒pienia poślizgu.
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Rysunek 22: Pre֒t upadaja֒cy na pozioma֒ p laszczyzne֒, o która֒ opiera sie֒ stale jednym
swoim końcem.

Zadanie 12.21R

Jednorodny pre֒t o masie m, d lugości 2a i pomijalnie ma lym przekroju poprzecznym upada
na pozioma֒ (w stosunku do pola si ly cie֒żkości g) p laszczyzne֒ stale ślizgaja֒c sie֒ po niej
(ca lkowicie bez tarcia) jednym ze swych końców (rysunek 22). Jak pre֒dkość środka masy
pre֒ta i si la reakcji pod loża zależa֒ od wysokości h, na jakiej środek masy pre֒ta znajduje
sie֒ nad p laszczyzna֒, jeśli pocza֒tkowo znajdowa lon sie֒ w spoczynku na wysokości h0 < a?

Zadanie 12.22R

Znaleźć ruch w ziemskim polu grawitacyjnym g ba֒ka o masie M i symetrii obrotowej,
którego czubek leża֒cy na osi symetrii pozostaje unieruchomiony w ustalonym punkcie
p laszczyzny (czyli ruch tzw. ba֒ka symetrycznego podpartego). Wykorzystuja֒c odpowied-
nio zdefiniowany potencja l efektywny przedyskutować jakościowo charakter ruchu ba֒ka.
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13 FORMALIZM HAMILTONOWSKI I RÓWNANIE

HAMILTONA-JACOBIEGO

Zadanie 13.1R

Podać hamiltonian uk ladu, którego lagrangian ma ogólna֒ postać

L(q, q̇, t) =
1

2

∑

ij

Tij(q, t) q̇
iq̇j +

∑

i

ai(q, t) q̇
i − V (q, t) ,

zak ladaja֒c, że symetryczna macierz Tij(q, t) jest odwracalna. Korzystaja֒c z wyniku wy-
pisać jawnie hamiltoniany cza֒stki o masie m poruszaja֒cej sie֒ w potencjale V (r) wyrażone
w zmiennych cylindrycznych i sferycznych. Podać (w zmiennych kartezjańskich) hamil-
tonian cza֒stki o masie m i  ladunku elektrycznym q oddzia luja֒cej z zewne֒trznymi polami
elektrycznym i magnetycznym. Wypisać także hamiltonian ba֒ka symetrycznego podpar-
tego rozpatrywanego w zadaniu 12.22.

Zadanie 13.2R

Napisać hamiltonian cza֒stki swobodnej o masie m wyrażony przez zmienne (i sprze֒żone
z nimi kanonicznie pe֒dy) zdefiowane w uk ladzie obracaja֒cym sie֒ wzgle֒dem uk ladu iner-
cjalnego z (chwilowa֒) pre֒dkościa֒ ka֒towa֒ ω.

Zadanie 13.3R

Stosuja֒c równania kanoniczne Hamiltona rozwia֒zać problem ruchu cza֒stki o masie m i
 ladunku elektrycznym q w sta lym, jednorodnym polu magnetycznym B = ezB.

Zadanie 13.4R

Rozwia֒zać równania kanoniczne wynikaja֒ce z hamiltonianu

H =
p2

2m
+

1

2
mω2q2 + λ

(

p2

2m
+

1

2
mω2q2

)2

,

w którym λ jest pewna֒ sta la֒. Czy uk lad, którego jest to hamiltonian, jest oscylatorem
harmonicznym o cze֒stości ω?

Zadanie 13.5R

Znaleźć hamiltonian oscylatora harmonicznego o masie m i cze֒stości ω otrzymany w wy-
niku przekszta lcenia kanonicznego do nowych zmiennych Q i P zadawanego przez funkcje֒
tworza֒ca֒

W (q, Q) =
1

2
mωq2ctgQ .

Rozwia֒zać nowe równania kanoniczne i znaleźć w ten sposób ruch uk ladu.
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Zadanie 13.6R

Stosuja֒c przekszta lcenie kanoniczne z zadania 13.5 otrzymać przybliżone rozwia֒zanie
problemu oscylatora harmonicznego, którego cze֒stość ω wolno zmienia sie֒ z czasem:
ω(t) ≈ ω0 + εt+ . . . przy czym |ε| ≪ ω2

0.

Zadanie 13.7R

Hamiltonian uk ladu o jednym stopniu swobody ma postać

H =
p2

2m
+

1

2
mω2q2 + αq3 + βqp2 .

W przekszta lceniu kanonicznym do nowych zmiennych Q i P zadanym funkcja֒ tworza֒ca֒

S(q, P ) = qP + a q2P + bP 3 ,

dobrać sta le a i b tak, by z przekszta lconego hamiltonianu H̄(Q,P ) usuna֒ć wyrazy an-
harmoniczne pierwszego rze֒du w α i β. Przybliżaja֒c naste֒pnie H̄(Q,P ) przez hamilto-
nian oscylatora (w zmiennych Q i P ) podać przybliżone rozwia֒zanie ruchu wyj́sciowego
uk ladu, tj. przybliżona֒ funkcje֒ q(t), zak ladaja֒c, że w trakcie ruchu α|q| ≪ mω2 i
β|q| ≪ 1/m. Porównać je z przybliżonym rozwia֒zaniem, które można przymać stosuja֒c
rachunek zaburzeń do równania Eulera-Lagrange’a otrzymanego z lagrangianu odpowia-
daja֒cego wyj́sciowemu hamiltonianowi.

Zadanie 13.8R

Stosuja֒c do Hamiltonianu

H =
p2

2m
+

1

2
mω2q2 + β q4 .

jednowymiarowego osylatora harmonicznego o masie m i cze֒stości ω zaburzonego cz lonem
anharmonicznym zadane funkcja֒ tworza֒ca֒

S(q, P ) = qP + a q3P + b qP 3 ,

przekszta lcenie kanoniczne do nowych zmiennych Q i P znaleźć zależność zmiennej q od
czasu. Za lożyć, iż odchylenia q od po lożenia równowagi q = 0 sa֒ na tyle ma le (βq2(t) ≪
mω2), że można sie֒ ograniczyć do poprawek pierwszego rze֒du wzgle֒dem β. Czy otrzymane
w ten sposób przybliżone rozwia֒zanie jest lepsze od otrzymywanego przy zastosowaniu
rachunku zaburzeń do równania Lagrange’a?
Wskazówka: Dobrać sta le a i b tak, by z nowy hamiltonian H̄(Q,P ) mia l postać analo-
giczna֒ do hamiltonianu z zadania 13.4.

Zadanie 13.9R

W zwia֒zkach

x = a
(

Q2 −
√

2Q1 sinP1

)

, px = b
(

P2 +
√

2Q1 cosP1

)

,

y = a
(

−P2 +
√

2Q1 cosP1

)

, py = b
(

Q2 +
√

2Q1 sinP1

)

,
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dobrać sta le a i b tak, by by lo to przekszta lcenie kanoniczne od zmiennych (x, y, px, py)
do nowych zmiennych (Q1, Q2, P1, P2). Podać jawna֒ postać jego funkcji tworza֒cej. Wy-
korzystuja֒c to przekszta lcenie sprowadzić hamiltonian cza֒stki o masie m i  ladunku elek-
trycznym q poruszaja֒cej sie֒ w sta lym i jednorodnym polu magnetycznym B = ezB do
prostej postaci i rozwia֒zuja֒c równania kanoniczne w nowych zmiennych znaleźć zależność
po lożenia cza֒stki od czasu, tj. zależność od czasu zmiennych x i y.

Zadanie 13.10R

Na przyk ladzie jednowymiarowego ruchu cza֒stki o masie m poddanej dzia laniu sta lej i
jednorodnej si ly F , której to cza֒stki lagrangianem jest wyrażenie

L =
1

2
mq̇2 + q F ,

pokazać, że transformacje od zmiennych q(t), p(t) do Q(t) = q(t+ τ), P (t) = p(t+ τ) oraz
od zmiennych q(t), p(t) do Q(t) = q0, P (t) = p0 (tu q0 i p0 sa֒ warunkami pocza֒tkowymi w
chwili t0) sa֒ kanoniczne. Znaleźć funkcje tworza֒ce tych przekszta lceń i pokazać formalnie,
że w pierwszym przypadku H̄(Q,P ) = H(q, p), a w drugim H̄(Q,P ) = 0.

Zadanie 13.11R

Na przyk ladzie ruchu jednowymiarowego oscylatora harmonicznego o masie m i cze֒stości
ω pokazać, że transformacje od zmiennych naturalnych q(t), p(t) do Q(t) = q(t − τ),
P (t) = p(t − τ) oraz od zmiennych q(t), p(t) do Q(t) = Q, P (t) = P (tu Q i P sa֒
warunkami pocza֒tkowymi w chwili t = 0) sa֒ kanoniczne. Znaleźć funkcje tworza֒ce tych
przekszta lceń i pokazać formalnie, że w pierwszym przypadku H̄(Q,P ) = H(q, p), a w
drugim H̄(Q,P ) = 0.

Zadanie 13.12R

Pos luguja֒c sie֒ równaniem Hamiltona-Jacobiego znaleźć tor ruchu oraz zależność po lożenia
od czasu masy m poruszaja֒cej sie֒ w sta lym i jednorodnym polu si ly cie֒żkości g.

Zadanie 13.13R

Rozwia֒zuja֒c równanie Hamiltona-Jacobiego w zmiennych kartezjańskich znaleźć ruch
dwuwymiarowego izotropowego oscylatora harmonicznego o masie m i cze֒stości ω.

Zadanie 13.14R

Znaleźć ruch dwuwymiarowego izotropowego oscylatora harmonicznego o masie m i cze֒sto-
ści ω, rozwia֒zuja֒c równanie Hamiltona-Jacobiego w zmiennych biegunowych. Sca lkować
równanie toru i wykazać, że tor jest elipsa֒ o środku w centrum si ly przycia֒gaja֒cej. Wy-
znaczyć d lugość pó losi elipsy w funkcji energii ruchu i momentu pe֒du.

Zadanie 13.15R

Rozwia֒zuja֒c równanie Hamiltona-Jacobiego znaleźć ruch cza֒stki o  ladunku elektrycznym
q i masie m w równoleg lych do siebie nawzajem, sta lych i jednorodnych polach elektrycz-
nym E = Eel ez, i magnetycznym B = B ez. Odtworzyć w ten sposób wynik znany z
ca lkowania równania Newtona (zadanie 2.18).
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Zadanie 13.16R

Rozwia֒zuja֒c równanie Hamiltona-Jacobiego znaleźć ruch cza֒stki o  ladunku elektrycznym
q i masie m we wzajemnie do siebie prostopad lych, sta lych i jednorodnych polach elek-
trycznym E = Eel ey, i magnetycznym B = B ez. Odtworzyć w ten sposób wynik znany
z ca lkowania równania Newtona (zadanie 2.14).

Zadanie 13.17R

Rozwia֒zuja֒c równanie Hamiltona-Jacobiego znaleźć ruch cza֒stki (tj. tor cza֒stki i równania
wyznaczaja֒ce zależność jej po lożenia od czasu) o masie m w polu si ly centralnej o poten-
cjale (κ > 0)

V (r) = −κ
r
.

W przypadku ruchu w ograniczonym obszarze przestrzeni wyrazić pó losie elipy be֒da֒cej
torem przez sta le ruchu: ca lkowita֒ energie֒ E i moment pe֒du L.

Zadanie 13.18R

Rozwia֒zuja֒c równanie Hamiltona-Jacobiego w dwóch wymiarach znaleźć ruch w polu si ly
(niecentralnej) o potencjale

V (r) =
a·r
r3

,

w którym a jest sta lym wektorem, cza֒stki o masie m nadlatuja֒cej z nieskończoności, gdzie
ma ona pre֒dkość v∞ antyrównoleg la֒ do wektora a i parametr zderzenia równy b. Znaleźć
także różniczkowy przekrój czynny rozpraszania takich cza֒stek (tzn. nadlatuja֒cych z
kierunku, w którym wskazuje wektor a) pod ma lymi ka֒tami w przybliżeniu dużych energii
i/lub dużych parametrów zderzenia. Czy ten przekrój czynny można otrzymać z ogólnej
metody (zadanie 11.7) znajdywania przekroju czynnego rozpraszania pod ma lymi ka֒tami?
Otrzymać także w tym samym reżimie przekrój czynny rozpraszania cza֒stek o masie m
na potencjale

V (r, θ) =
a cos2 θ

r2
,

przy padaniu z kierunku θ = 0 i porównać z wynikiem otrzymywanym z ogólnej metody
z zadania 11.7.

Zadanie 13.19R

Wykorzystuja֒c metode֒ Hamiltona-Jacobiego znaleźć przekrój czynny spadku na centrum
si ly o potencjale

V (r) =
a·r
r3

,

w zależności od energii nadlatuja֒cych cza֒stek o masie m i od ka֒ta α jaki ich pre֒dkość w
nieskończoności tworzy z kierunkiem wyznaczanym przez sta ly wektor a.
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Zadanie 13.20R

Pole magnetyczne zadane przez potencja l wektorowy

A =
1

2
r B(z) eϕ ,

w którym eϕ jest jednym z wersorów zwia֒zanych z uk ladem wspó lrze֒dnych walcowych,
rozcia֒ga sie֒ w obszarze −a ≤ z ≤ a (tzn. funkcja B(z) znika poza tym przedzia lem).
Pos luguja֒c sie֒ metoda֒ Hamiltona-Jacobiego znaleźć punkt na osi z w którym zognisko-
wane zostana֒ elektrony rozpoczynaja֒ce bieg z punktu na osi z o wspó lrze֒dnej z0 ≪ −a i
pozostaja֒ce przez ca ly czas blisko osi z.

Zadanie 13.21R

Zbadać przyosiowe ogniskowanie cza֒stek takie jak w zadaniu 13.20 przez pole magnetyczne
o potencjale wektorowym (zadanym w ca lej przestrzeni)

A =
1

2
r B(z) eϕ ,

jeśli

B(z) =
B0

1 + κ2z2
.

Zadanie 13.22R

Lagrangian uk ladu o trzech stopniach swobody ma postać:

L =
1

2
Mij ẋiẋj −

1

2
Vij xixj ,

gdzie

M = m





1 0 1
0 1 1
1 1 2



 , V = mω2





1 0 0
0 1 0
0 0 1



 .

Rozwia֒zać równania Eulera-Lagrange’a i znaleźć ruch tego uk ladu. Przej́sć do sformu lowa-
nia kanonicznego, znaleźć wszystkie wie֒zy i skonstruować hamiltonian zachowuja֒cy wie֒zy
w trakcie ewolucji. Pokazać, że ruch otrzymany jako rozwia֒zanie równań kanonicznych
jest tym samym, co otrzymany jako rozwia֒zanie równań Eulera-Lagrange’a.

Zadanie 13.23R

Udowodnić, że nawias Poissona {F, G}PB Poissona wielkości F i G obliczony w zmiennych
(qi, pi) jest taki sam, jak obliczony w zmiennych (Qi, Pi) powia֒zanych z wyj́sciowymi
przekszta lceniem kanonicznym.
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CZE֒ŚĆ (CHYBA PRAWIE WSZYSTKO) TEGO, CO BY LO NA ĆWICZENIACH
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α
x

y

xo

yo

x′

y′

Rysunek 23: Trzy uk lady wspó lrze֒dnych.

1. KINEMATYKA

Zadanie 1.3

Dany jest uk lad wspó lrze֒dnych (x, y) na p laszczyźnie oraz okra֒g o promieniu R i środku
w punkcie (0, 0). Dana jest też prosta p styczna do okre֒gu, która toczy sie֒ po nim bez
poślizgu. (Bez poślizgu to znaczy, że jeśli w dwu różnych chwilach czasu zaznaczymy i
na okre֒gu i na prostej punkty styczności, to odleg lość mie֒dzy tymi punktami na prostej
be֒dzie równa d lugości  luku pomie֒dzy punktami styczności na okre֒gu). Biegunowy ka֒t α
wyznaczaja֒cy punkt styczności prostej p z okre֒giem zmienia sie֒ z czasem: α = α(t). W
chwili t = 0 prosta ta przechodzi przez punkt (R, 0), tj. α(0) = 0. Punkt A prostej ma w
chwili t = 0 wspó lrze֒dne (R, yA). Znaleźć jego wspó lrze֒dne w dowolnej chwili czasu.

Rozwia֒zanie:

Wyraźmy najpierw wspó lrze֒dne kartezjańskie (x, y) dowolnego punktu na p laszczyźnie
xy przez jego wspó lrze֒dne (x0, y0) w uk ladzie, który ma z nieruchomym uk ladem wspólny
pocza֒tek i jest obrócony o ka֒t α przeciwnie do wskazówek zegara:

x = x0 cosα− y0 sinα ,

y = x0 sinα+ y0 cosα .

Poprawność tego wzoru nietrudno sprawdzić: gdy α = π
2

powinno być x0 = y i y0 = −x.
Naste֒pnie wyrażamy wspó lrze֒dne (x0, y0) przez wspó lrze֒dne (x′, y′) uk ladu przesunie֒tego
o R wzd luż osi x0

x = (x′ +R) cosα− y′ sinα ,

y = (x′ +R) sinα + y′ cosα .

(x′, y′) jest uk ladem o pocza֒tku O′ leża֒cym na okre֒gu o promieniu R. Prosta p w mo-
mencie, gdy jest do tego okre֒gu styczna w O′, pokrywa sie֒ z osia֒ y′. Jeśli prosta ta z
po lożenia zajmowanego w t = 0 przetoczy la sie֒ bez poślizgu stale pozostaja֒c styczna֒ do
okre֒gu w O′, to punkt A przesuna֒ l sie֒ w kierunku punktu styczności prostej z okre֒giem
(lub od niego oddali l - zależnie od tego, czy yA > 0, czy yA < 0 i od tego, w która֒ strone֒
po okre֒gu przetacza sie֒ prosta p) o odleg lość Rα. Przyjmuja֒c, że ka֒t α rośnie przeciwnie
do kierunku ruchu wskazówek zegara, zauważamy, że w uk ladzie (x′, y′) punkt A ma po
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przetoczeniu sie֒ wspó lrze֒dne (0, yA − Rα). Sta֒d, w wyj́sciowym uk ladzie kartezjańskim
xy jego wspó lrze֒dnymi be֒da֒

x(t) = R cosα(t) − (yA − Rα(t)) sinα(t) ,

y(t) = R sinα(t) + (yA −Rα(t)) cosα(t) .

Zależność α(t) może być, oczywíscie, dowolna.
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Zadanie 1.4

Wyprowadzić wzory na sk ladowe wektorów pre֒dkości i przyspieszania we wspó lrze֒dnych
biegunowych (r, ϕ) na p laszczyźnie i we wspó lrze֒dnych sferycznych (r, θ, ϕ) w przestrzeni
trójwymiarowej.

Rozwia֒zanie:

Ze wspó lrze֒dnymi kartezjańskimi x, y i z stowarzyszone sa֒ ustalone jednostkowe wektory
(wersory) ex, ey, ez. Wektory po lożenia r, pre֒dkości v i przyspieszenia a zapisane jako
kombinacje liniowe tych wersorów wyrażaja֒ sie֒ oczywistymi wzorami

r = ex x+ ey y + ez z ,

v = ex ẋ+ ey ẏ + ez ż ,

a = ex ẍ+ ey ÿ + ez z̈ .

Uk lad wspó lrze֒dnych biegunowych na p laszczyźnie zadaja֒ wzory

x = r cosϕ ,

y = r sinϕ .

Ze wspó lrze֒dnymi tymi stowarzyszone sa֒ wersory er i eϕ, które zmieniaja֒ sie֒ od punktu
do punktu. (Należa loby wie֒c pisać er(x, y) i eϕ(x, y) lub er(ϕ) i eϕ(ϕ) - w istocie wersory
zależa֒ tylko od ka֒ta ϕ.) Sporza֒dzaja֒c odpowiedni rysunek (i rozpatruja֒c przypadki ϕ = 0
i ϕ = π

2
)  latwo jest zobaczyć, że13

er = ex cosϕ+ ey sinϕ ,

eϕ = −ex sinϕ+ ey cosϕ .

Wzory te  latwo odwrócić i otrzymać

ex = er cosϕ− eϕ sinϕ ,

ey = er sinϕ + eϕ cosϕ .

Oczywíscie każdy wektor można zapisać albo w bazie wersorów kartezjańskich ex, ey,
albo w bazie wersorów er, eϕ w odpowiednim punkcie.14 Piszemy zatem (wprowadzaja֒c
oczywiste skrótowe oznaczenia)

r = ex r cosϕ+ ey r sinϕ

= (ercϕ − eϕsϕ) rcϕ + (ersϕ + eϕcϕ) rsϕ = er r ,

13Dalej zobaczymy, że wzory takie można zawsze otrzymać bezpośrednio ze wzorów definiuja֒cych krzy-
woliniowe (tu biegunowe) wspó lrze֒dne.

14Na pozór wersory er, eϕ zdefiniowane w dowolnym punkcie stanowia֒ baze֒, w której można roz lożyć
dowolny wektor, np. wektor pre֒dkości odpowiadaja֒cy innemu po lożeniu. Jednak przy bardziej geome-
trycznym spojrzeniu okazuje sie֒, że gdyby zajmować sie֒ ruchem na dowolnej tzw. rozmaitości, to z
każdym punktem takiej rozmaitości stowarzyszona jest naprawde֒ inna przestrzeń wektorowa. I to ele-
mentami przestrzeni wektorowej w laściwej dla danego punktu rozmaitości - tzw. przestrzeni stycznej
do rozmaitości w tym punkcie - sa֒ wektory pre֒dkości i przyspieszenia zdefiniowane w danym punkcie
rozmaitości. Wektory te, mo żna zatem rozk ladać tylko na bazowe wektory przestrzeni stycznej w laściwej
dla danego punktu rozmaitości przestrzeni stycznej.
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jak też można sie֒ by lo spodziewać. Analogicznie

v = ex (ṙcϕ − rϕ̇sϕ) + ey (ṙsϕ + rϕ̇cϕ)

= (ercϕ − eϕsϕ) (ṙcϕ − rϕ̇sϕ)

+ (ersϕ + eϕcϕ) (ṙsϕ + rϕ̇cϕ) = er ṙ + eϕ rϕ̇ .

Sk ladowa r-owa pre֒dkości jest oczywista - gdyby ruch odbywa l sie֒ wzd luż promienia tylko,
jego pre֒dkość w tym kierunku by laby w oczywisty sposób równa ṙ. Podobnie oczywista
jest sk ladowa ϕ-fowa: rϕ̇ jest po prostu pre֒dkościa֒ liniowa֒ zwia֒zana֒ z ruchem po okre֒gu
o promieniu r. Wreszcie

a = ex
(

r̈cϕ − 2ṙϕ̇sϕ − rϕ̈sϕ − rϕ̇2cϕ
)

+ ey
(

r̈sϕ + 2ṙϕ̇cϕ + rϕ̈cϕ − rϕ̇2sϕ
)

= (ercϕ − eϕsϕ)
(

r̈cϕ − 2ṙϕ̇sϕ − rϕ̈sϕ − rϕ̇2cϕ
)

+ (ersϕ + eϕcϕ)
(

r̈sϕ + 2ṙϕ̇cϕ + rϕ̈cϕ − rϕ̇2sϕ
)

= er
(

ṙ̇ − rϕ̇2
)

+ eϕ (2ṙϕ̇ + rϕ̈) .

Znów wie֒kszość wyrazów wyste֒puja֒cych w końcowym wzorze jest oczywista: r̈ jest przy-
spieszeniem ruchu wzd luż promienia, −rϕ̇2 jest przyspieszeniem dośrodkowym w ruchu
po okre֒gu o promieniu r, a rϕ̈ jest liniowym przyspieszeniem zwia֒zanym z przyspiesza-
niem ruchu po okre֒gu o promieniu r. Jedynie wyrazu 2ṙϕ̇ nie można  latwo otrzymać na
podstawie rozpatrywania takich szczególnych postaci ruchu.

Zauważmy też, że powyższe wzory można by by lo otrzymać nieco inaczej, gdyby naj-
pierw znaleźć pochodne po czasie wersorów er(ϕ) i eϕ(ϕ). To zaś jest  latwe (wersory ex
i ey jako sta le, nie podlegaja֒ różniczkowaniu):

d

dt
er =

d

dt
(excϕ + eysϕ) = −ϕ̇sϕ (ercϕ − eϕsϕ)

+ϕ̇cϕ (ersϕ + eϕcϕ) = eϕϕ̇ ,

d

dt
eϕ =

d

dt
(−exsϕ + eycϕ) = −ϕ̇cϕ (ercϕ − eϕsϕ)

−ϕ̇sϕ (ersϕ + eϕcϕ) = −erϕ̇ .

Można (i w laściwe należy) ugólnić te wzory tak, by nie wyste֒powa la w nich zależność
od czasu; należy po prostu pytać, jak zmieniaja֒ sie֒ wersory przy przej́sciu od punktu o
wspó lrze֒dnych (r, ϕ) do sa֒siedniego o wspó lrze֒dnych (r+ dr, ϕ+ dϕ). Zmiany te sa֒ dane
przez

∂

∂r
er = 0 ,

∂

∂ϕ
er = eϕ ,

∂

∂r
eϕ = 0 ,

∂

∂ϕ
eϕ = −er .

Maja֒c te wzory można już pre֒dkość i przyspieszenie znaleźć “na piechote֒”:

v =
d

dt
(er r) = er ṙ + ėr r = er ṙ + eϕ rϕ̇ ,

67



i podobnie

a =
d

dt
(er ṙ + eϕ rϕ̇) = er ṙ̇ + eϕ ṙϕ̇+ eϕ (ṙϕ̇+ rϕ̇̇ ) − eϕ rϕ̇

2

= er
(

ṙ̇ − rϕ̇2
)

+ eϕ (2ṙϕ̇+ rϕ̇̇ ) ,

tak jak i poprzednim sposobem.

W przypadku uk ladu wspó lrze֒dnych sferycznych zadnych wzorami

x = r sin θ cosϕ ≡ rsθcϕ ,

x = r sin θ sinϕ ≡ rsθsϕ ,

x = r cos θ ≡ rcθ ,

trudniej jest graficznie zobaczyć, że

er = exsθcϕ + eysθsϕ + ezcθ ,

eθ = excθcϕ + eycθsϕ − ezsθ ,

eϕ = −exsϕ + eycϕ .

Wzory te można jednak natychmiast dostać wspomnianym już sposobem, który przed-
stawimy niżej. Aby je odwrócić, tj. wyrazić ex, ey, ez przez wersory er, eθ, eϕ, mnożymy
pierwsze z wypisanych wyżej równań przez sθ (cθ), drugie przez cθ (sθ), dodajemy (odejmu-
jemy) je do (od) siebie i zestawiamy z trzecim, otrzymuja֒c uk lad (ostatnie z poprzednich
równań teraz napisane zosta lo jako środkowe)

er sθ + eθ cθ = excϕ + eysϕ ,

eϕ = −exsϕ + eycϕ ,

er cθ − eθ sθ = ez ,

który już  latwo rozwiazać ze wzgledu na ex i ey (ez już jest). Ostatecznie

ex = ersθcϕ + eθcθcϕ − eϕsϕ ,

ey = ersθsϕ + eθcθsϕ + eϕcϕ ,

ez = er cθ − eθ sθ .

Można traz standardowym sposobem znaleźć pochodne wersorów er, eθ, eϕ po ka֒tach
θ i ϕ (jest miej wie֒cej jasne, że ich pochodne po r musza֒ znikać). Obliczymy, żeby by lo
sprawniej, pochodne zupe lne po czasie (wektory mnoża֒ce ṙ, θ̇ i ϕ̇ be֒da֒ wtedy pochodnymi
różniczkowanych wersorów po wspó lrzednych r, θ i ϕ):

d

dt
er = ex

(

θ̇cθcϕ − ϕ̇sθsϕ

)

+ ey

(

θ̇cθsϕ + ϕ̇sθcϕ

)

+ ez

(

−θ̇sθ
)

= (ersθcϕ + eθcθcϕ − eϕsϕ)
(

θ̇cθcϕ − ϕ̇sθsϕ

)

+ (ersθsϕ + eθcθsϕ + eϕcϕ)
(

θ̇cθsϕ + ϕ̇sθcϕ

)

+ (er cθ − eθ sθ)
(

−θ̇sθ
)

= eθ θ̇ + eϕ ϕ̇sθ ,
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d

dt
eθ = ex

(

−θ̇sθcϕ − ϕ̇cθsϕ

)

+ ey

(

−θ̇sθsϕ + ϕ̇cθcϕ

)

+ ez

(

−θ̇cθ
)

= (ersθcϕ + eθcθcϕ − eϕsϕ)
(

−θ̇sθcϕ − ϕ̇cθsϕ

)

+ (ersθsϕ + eθcθsϕ + eϕcϕ)
(

−θ̇sθsϕ + ϕ̇cθcϕ

)

+ (er cθ − eθ sθ)
(

−θ̇cθ
)

= −er θ̇ + eϕ ϕ̇cθ ,

i wreszcie

d

dt
eϕ = ex (−ϕ̇cϕ) + ey (−ϕ̇sϕ)

= (ersθcϕ + eθcθcϕ − eϕsϕ) (−ϕ̇cϕ)

+ (ersθsϕ + eθcθsϕ + eϕcϕ) (−ϕ̇sϕ)

= −er ϕ̇sθ − eθ ϕ̇cθ .

Sta֒d bezpośrednio odczytujemy pochodne wektorów er, eθ i eϕ po ka֒tach

∂

∂r
er = 0 ,

∂

∂θ
er = eθ ,

∂

∂ϕ
er = eϕ sθ ,

∂

∂r
eθ = 0 ,

∂

∂θ
eθ = −er ,

∂

∂ϕ
eθ = eϕ cθ ,

∂

∂r
eϕ = 0 ,

∂

∂θ
eϕ = 0 ,

∂

∂ϕ
eϕ = −er sθ − eθ cθ .

Można teraz  latwo napisać wzory na pre֒dkość i przyspieszenie:15

v =
d

dt
(er r) = er ṙ + eθ rθ̇ + eϕ rϕ̇sθ ,

a =
d

dt

(

er ṙ + eθ rθ̇ + eϕ rϕ̇sθ

)

= er

(

r̈ − rθ̇2 − rϕ̇2s2θ

)

+ eθ

(

rθ̈ + 2ṙθ̇ − rϕ̇2sθcθ

)

+ eϕ

(

rϕ̈sθ + 2ṙϕ̇sθ + 2rθ̇ϕ̇cθ

)

.

Znów cze֒ść wyrazów daje sie֒ prosto zintepretować: cz lon −rθ̇2 w sk ladowej ar jest
oczywíscie przyspieszeniem dośrodkowym ruchu po wielkim kole (po po ludniku), a cz lon
rθ̈ w sk ladowej aθ jest przyspieszeniem liniowym takiego ruchu; ruch po równoleżniku

15W popularnym u nas (przynajmniej na naszym warszawskim Wydziale Fizyki) podre֒czniku mechaniki
autorstwa G. Bia lkowskiego wzory na sk ladowe przyspieszenia (wzór 2.12 s. 44) sa֒ podane z b ledami: w
sk ladowej ar brak czynnika s2θ, a w sk ladowej aθ opuszczony zosta l ostatni cz lon z ϕ̇2.
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daje też przyspieszenie dośrodkowe, ale promień równoleżnika zależy od ka֒ta θ i jest
równy rsθ - przyspieszenie to jest jednak skierowane do środka leża֒cego w p laszczyźnie
równoleżnikowej (a nie ku pocza֒tkowi uk ladu) i wobec tego rozk lada sie֒ z czynnikiem sθ na
kierunek er i z czynnikiem cθ na kierunek eθ - co wyjaśnia pochodzenie ostatnich cz lonów
sk ladowych ar i aθ; wreszcie, pierwszy cz lon sk ladowej aϕ jest oczywistym przyspieszeniem
liniowym ruchu po równoleżniku.

Można to troche֒ uogólnić i znacznie uprościć znajdywanie sk ladowych pre֒dkości w
uk ladzie krzywoliniowym. Niech ξ1, ξ2, ξ3 be֒da֒ trzema wspó lrze֒dnymi krzywoliniowego
uk ladu. Oznacza to, że dane sa֒ wzory

x = x(ξ1, ξ2, ξ3) ,

y = y(ξ1, ξ2, ξ3) ,

z = z(ξ1, ξ2, ξ3) .

W naturalny sposób z uk ladem takim stowarzyszone sa֒ trzy wektory i1, i2, i3, dane
wzorem16

ij(ξ) = ea
∂xa

∂ξj
,

gdzie x1 ≡ x, x2 ≡ y, x3 ≡ z, a e1 ≡ ex, e2 ≡ ey, e3 ≡ ez, sa֒ trzema kartezjańskimi wer-
sorami tworza֒cymi uk lad ortonormalny: (ea|eb) ≡ ea ·eb = δab. Wektory ij sa֒, jak  latwo
zrozumieć, styczne do krzywych wytyczanych w trójwymiarowej przestrzeni, gdy zmienia
sie֒ tylko parametr ξj przy ustalonych pozosta lych dwu pozosta lych ξ. W ogólnym przy-
padku wektory te nie tworza֒ uk ladu ortonormalnego: macierz ich iloczynów skalarnych

(ij|ik) =
∂xa

∂ξj
∂xb

∂ξk
(ea|eb) =

∂xa

∂ξj
∂xa

∂ξk
,

definiuje tensor metryczny gjk(ξ):

gjk(ξ) ≡ (ij |ik) =
∂xa

∂ξj
∂xa

∂ξk
.

Tensor ten jest w ogólnym przypadku niediagonalny. W trójwymiarowej przestrzeni ist-
nieje jednak 11 uk ladów wspó lrze֒dnych krzywoliniowych (wśród nich cylindryczny, sfe-
ryczny, paraboliczny, etc.), wyróżniaja֒cych sie֒ tym, że stowarzyszone z nimi wektory i1,
i2, i3 sa֒ (w każdym punkcie) wzajemnie prostopad le. Tensor metryczny ma wie֒c w tych
uk ladach postać

gjk(ξ) = h2j (ξ) δjk .

Wspó lczynniki hi nazywaja֒ sie֒ wspó lczynnikami Lamé. W takich uk ladach krzywolinio-
wych można stworzyć  latwo stowarzyszone z nim wektory ej(ξ), j = 1, 2, 3 stanowia֒ce

16Jak zwykle obowia֒zuje tu konwencja sumacyjna wujka Albercika i po wskaźnikach powtarzaja֒cych
sie֒ na dwu różnych poziomach (na górze i na dole) jest zawsze domyślne sumowanie.
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w każdym punkcie uk lad ortonormalny (baze֒ ortonormalna֒). Wystarczy tylko podzielić
dane w sposób naturalny wektory ij przez ich d lugości hj:

ej =
ij

hj
.

Dowolny wektor V (“zaczepiony” w danym punkcie, tzn. należa֒cy do przestrzeni stycznej
w tym punkcie) można roz lożyć albo w bazie tworzonej przez wektory ij, albo w bazie
tworzonej przez wektory ej:

V = ijV
j
(ik)

= ejV
j
(ek)

≡ ejV̄
j .

(Dwie pierwsze postacie wektora V sa֒ tu zapisane w notacji z mojego s lynnego skryptu do
algebry; ostatnia postać jest wzie֒ta z Gravitation and Cosmology S. Weinberga.) Jasne
jest wiec, że V̄ j ≡ V j

(ek)
= hjV

j
(ik)

. W przypadku uk ladu sferycznego ξ1 = r, ξ2 = θ,

ξ3 = ϕ, sk ladowymi wektorów ir, iθ, iϕ w bazie wersorów kartezjańskich (ex, ey, ez) sa֒




sθcϕ
sθsϕ
cθ



 ,





rcθcϕ
rcθsϕ
−rsθ



 ,





−rsθsϕ
rsθcϕ

0



 ,

ska֒d hr = 1, hθ = r, hϕ = rsθ i wektory er, eθ, eϕ, sa֒ dane przez unormowanie tych wypi-
sanych wyżej (tj. podzielenie każdego z nich przez odpowiedni czynnik h), czyli wzorami,
które zosta ly wypisane już wcześniej “spod dużego palucha” (a w istocie wykorzystuja֒c
w laśnie podany tu sposób).

Sk ladowe wektora pre֒dkości w bazie ortonormalnej17 tworzonej przez wektory ej sto-
warzyszone z jednym z owych 11 uk ladów krzywoliniowych można teraz otrzymać bez
żadnych rachunków:18

v = eaẋ
a = ea

∂xa

∂ξj
dξj

dt
= ij

dξj

dt
=
∑

j

ej

(

hj
dξj

dt

)

.

Tak wie֒c w uk ladzie sferycznym vr = hrṙ = ṙ, vθ = hθθ̇ = rθ̇ i vϕ = hϕϕ̇ = rsθϕ̇. Jak
widać, nie wymaga to odwracania wzorów wia֒ża֒cych wersory ej wersorami kartezjańskimi
ea.

Zasadne jest pytanie, czy ta sama metoda upraszcza znalezienie sk ladowych krzywo-
liniowych wektora przyspieszenia. Niestety nie za bardzo. Zobaczmy:

a = eaẍ
a = ea

d

dt

(

∂xa

∂ξj
dξj

dt

)

= ea

(

∂2xa

∂ξj∂ξk
ξ̇j ξ̇k +

∂xa

∂ξj
ξ̈j
)

.

17Przypomnijmy jednak, że to jest tylko takie da֒żenie do wygody oraz si la przyzwyczajenia, które
powoduja֒, że w problemach fizycznych jakie rozpatruje sie֒ w mechanice korzysta sie֒ na ogó l z baz orto-
normalnych - w istocie baza֒ może być dowolny uk lad liniowo niezależnych wektorów rozpinaja֒cych ca la֒
przestrzeń wektorowa֒. Dlatego na zaawansowanym poziomie, np. w Ogólnej teorii wzgle֒dności, jako
bazy używa sie֒ bardziej “naturalnych” wektorów ij .

18Po ostatniej równości piszemy tu jawnie znak sumy, bo wprowadzenie czynników Lamé zak lóca kon-
wencje֒ sumacyjna֒ Einsteina - wskaźnik j po którym biegnie suma powtarza sie֒ trzykrotnie.
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Z drugiego cz lonu w nawiasie daje sie֒ tak jak poprzednio wycia֒gna֒ć przed nawias macierz
∂xa/∂ξj , która w po la֒czeniu z wektorem ea da wektor ij , ale z pierwszego cz lonu nie.
Wszystko co można zrobić, to napisać

a =
∑

j

ejhj

(

∂ξj

∂xa
∂2xa

∂ξi∂ξk
ξ̇iξ̇k + ξ̈j

)

.

Macierz ∂ξj/∂xa stoja֒ca w pierwszym cz lonie jest odwrotna do macierzy Da
j ≡ ∂xa/∂ξj :

∂ξj

∂xa
∂xb

∂ξj
= δba ,

∂xa

∂ξi
∂ξj

∂xa
= δji .

Otrzymany wzór na āj (używaja֒c notacji Weinberga) zgadza sie֒ z tym, co już wiemy
w przypadku uk ladu sferycznego: kawa lki z druga֒ pochodna֒ ξj maja֒ tam postać hj ξ̈

j

(bez sumowania po j). Widać też, że jeśli kartezjańskie wspó lrze֒dne xa po lożenia sa֒
nieliniowymi funkcjami wspó lrze֒dnych ξj, we wzorach na āj musza֒ wysta֒pić cz lony z
iloczynami pierwszych pochodnych wspó lrze֒dnych ξj. Jawne ich otrzymanie jest jednak
pracoch lonne. Po pierwsze trzeba odwrócić macierz Da

j . To jeszcze daje sie֒ w miare֒
 latwo zrobić. Wprawdzie jest to macierz zmiany bazy  la֒cza֒ca baze֒ ortonormalna֒ z baza֒
nieortonormalna֒, ij = eaD

a
j (ij = ea[R(ea←ij)]

a
j w notacji z mojego skryptu do algebry)

ale, w przypadku owych 11 specjalnych uk ladów wspó lrze֒dnych, baza ij wia֒że sie֒ prosto
(bo tylko przez wspó lczynniki Lamé) z baza֒ ortonormalna֒ ej. Zatem (sumowanie jest tu
po a, ale nie po j!)

ej = ea

(

∂xa

∂ξj
1

hj

)

≡ ea
(

Da
jh
−1
j

)

,

a stoja֒ca tu w nawiasie macierz zmiany bazy R (lub [R(ea←ej)]
a
j w mojej algebraicznej

notacji) jako  la֒cza֒ca ze soba֒ dwie bazy ortonormalne musi być macierza֒ ortogonalna֒ i jej
odwrotność R−1 jest dana po prostu przez transpozycje֒: R−1 = RT . Zatem

ea = ej[R
T ]ja = ij

(

h−1j [RT ]ja
)

.

Stoja֒ca tu w nawiasach okra֒g lych macierz jest w laśnie szukana֒ macierza֒ [D−1]i a odwrotna֒
do Da

i.
W przypadku uk ladu sferycznego macierz R jest macierza֒ stworzona֒ z postawionych

“na sztorc” sk ladowych (w bazie wersorów kartezjańskich) wektorów er, eθ i eϕ. Biora֒c jej
transpozycje֒ i naste֒pnie przemnażaja֒c j-ty wiersz macierzy RT przez h−1j otrzymujemy

D−1 =





sθcϕ sθsϕ cθ
cθcϕ/r cθsϕ/r −sθ/r

−sϕ/(rsθ) cϕ/(rsθ) 0



 .

Jak  latwo sprawdzić, jest to rzeczywíscie macierz odwrotna do

D =





sθcϕ rcθcϕ −rsθsϕ
sθsϕ rcθsϕ rsθcϕ
cθ −rsθ 0



 .
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Można teraz spróbować otrzymać sk ladowe przyspieszenia w uk ladzie sferycznym.

ar = hr

(

r̈ + sθcϕ
∂2x

∂ξi∂ξl
ξ̇iξ̇l + sθsϕ

∂2y

∂ξi∂ξl
ξ̇iξ̇l + cθ

∂2z

∂ξi∂ξl
ξ̇iξ̇l
)

.

Ponieważ hr = 1 daje to (od razu uwzgle֒dniamy, że xrr = yrr = zrr = 0)

ar = r̈ + sθcϕ

(

2xrθṙθ̇ + 2xrϕṙϕ̇+ 2xθϕθ̇ϕ̇+ xθθ θ̇
2 + xϕϕϕ̇

2
)

+sθcϕ

(

2yrθṙθ̇ + 2yrϕṙϕ̇+ 2yθϕθ̇ϕ̇+ yθθθ̇
2 + yϕϕϕ̇

2
)

+cθ

(

2zrθṙθ̇ + 2zrϕṙϕ̇+ 2zθϕθ̇ϕ̇+ zθθθ̇
2 + zϕϕϕ̇

2
)

.

Jak widać nie jest to bardzo przyjemne... Ale cierpliwie różniczkuja֒c możemy doj́sć do
celu:

ar = r̈ + sθcϕ

(

2cθcϕṙθ̇ − 2sθsϕṙϕ̇− 2rcθsϕθ̇ϕ̇− rsθcϕθ̇
2 − rsθcϕϕ̇

2
)

+ sθcϕ

(

2cθsϕṙθ̇ + 2sθcϕṙϕ̇+ 2rcθcϕθ̇ϕ̇− rsθsϕθ̇
2 − rsθsϕϕ̇

2
)

+ cθ

(

−2sθ ṙθ̇ − rcθθ̇
2
)

,

i po posk ladaniu wszystkiego do kupy otrzymać

ar = r̈ − rθ̇2 − rs2θϕ̇
2 .

Otrzymanie aθ i aϕ ta metoda֒ pozostawimy już czytelnikowi.

Najszybszy jednak sposób otrzymania przyspieszeń w dowolnym krzywoliniowm uk la-
dzie wspó lrze֒dnych polega na odwo laniu sie֒ do równań Lagrange’a II-go rodzaju: po-
nieważ otrzymanie wzorów na pre֒dkości jest, jak wynika z przeprowadzonych wyżej rozwa-
żań, bardzo proste, wystarczy wyrazić przez nie energie֒ kinetyczna֒ T = 1

2
mv2 i napisać

lagrangian cza֒stki swobodnej L = T ; wyprowadzone z niego równania Eulera - Lagrange’a
dadza֒ natychmiast szukane wzory na przyspieszenia. Np. w uk ladzie sferycznym

L =
1

2
m
(

ṙ2 + r2θ̇2 + r2ϕ̇2 sin2 θ
)

,

i równania Eulera - Lagrange’a maja֒ postać

mr̈ = m(rθ̇2 + rϕ̇2 sin2 θ),

m(r2θ̈ + 2rṙθ̇) = mr2ϕ̇2 sin θ cos θ

m(r2ϕ̈ sin2 θ + 2rṙϕ̇ sin2 θ + 2r2ϕ̇ θ̇ sin θ cos θ) = 0 .

Ponieważ sa֒ to równania ruchu cza֒stki swobodnej, ma = 0, sk ladowe przyspieszenia musza֒
być proporcjonalne do wyrażeń, które sie֒ dostaje po przeniesieniu wszystkich cz lonów
na jedna֒ strone֒ i podzieleniu przez m. W ustaleniu czynników proporcjnalności można
sie֒ pos lużyć analiza֒ wymiarowa֒ (przyspieszenia musza֒ mieć wymiar [L][T ]−2 i pewnym
wyczuciem (fizycznym zdrowym rozsa֒dkiem). Drugie z wypisanych wyżej równań daje
aθ po podzieleniu przez czynnik r (analiza wymiarowa); trzecie zaś po podzieleniu przez
r sin θ (cz lon z ϕ̈ musi dawać zwia֒zane ze zmiana ϕ̇ przespieszenie styczne do równoleżnika
o promieniu r sin θ).
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Zadanie 1.9

Wiedza֒c, że podczas p laskiego ruchu cza֒stki ka֒t pomie֒dzy kierunkiem jej wektora wodza֒cego
r i wektorem jej pre֒dkości v jest sta ly (i równy α) znaleźć we wspó lrze֒dnych biegunowych:
a) wzór na tor cza֒stki,
b) d lugość toru w funkcji po lożenia cza֒stki.
Przyja֒ć jako warunki pocza֒tkowe ϕ(0) = 0 i r(0) = r0. Zależność szybkości |v(t)| od
czasu może być dowolna.

Rozwia֒zanie:

Jeśli r = r er jest wektorem wodza֒cym (czyli wektorem po lożenia), a v = ṙ er + rϕ̇ eϕ,
wektorem pre֒dkości, to cosinus ka֒ta α pomie֒dzy nimi jest równy

cosα =
r·v
|r||v| =

ṙ
√

ṙ2 + r2ϕ̇2
.

Sta֒d (pamie֒taja֒c, że ṙ/ϕ̇ = dr/dϕ) otrzymujemy natychmiast równanie różniczkowe wy-
znaczaja֒ce tor w postaci r = r(ϕ):

1

r

dr

dϕ
= ctgα .

Warto tu sie֒ zastanowić nad znakiem (po drodze podnosilísmy coś do kwadratu i wycia֒gali
pierwiastek - znak móg l sie֒ zgubić). Jest on jednak poprawny: jeśli 0 < α < π

2
, to wektor

pre֒dkości jest tak skierowany, że odleg lość r powinna rosna֒ć ze wzrostem ϕ i rzeczywíscie
kotangens jest wtedy dodatni;19 gdy −π

2
< α < 0, to r rośnie ale wtedy, gdy ϕ maleje

(ka֒t ϕ jest liczony przeciwnie do kierunku ruchu wskazówek zegara) i rzeczywíscie ctg jest
wtedy ujemny. Z kolei, gdy π

2
< α < π, to r maleje, gdy ka֒t rośnie i ctg jest ujemny, tak

jak powinien. Rozwia֒zaniem uzyskanego równania różniczkowego jest spirala

r(ϕ) = r(ϕ0) exp {(ϕ− ϕ0)ctgα} .
Gdy chodzi o d lugość toru, to widać (patrz przypis niżej) że wystarczy rozpatrzyć tylko
przypadki 0 < α < π

2
, kiedy to tor jest spirala֒ rozwijaja֒ca֒ sie֒ i jego d lugość rośnie ze

wzrostem ϕ nieograniczenie, oraz przypadek π
2
< α < π, gdy tor jest zacieśniaja֒ca֒ sie֒

spirala֒ i powinien mieć skończona֒ d lugość nawet wtedy, gdy ϕ → ∞. Przyjmuja֒c wie֒c,
że ϕ̇ > 0 obliczmy d lugość toru s(t) jako funkcje֒ czasu przechodza֒c po drodze do s(ϕ(t))

s(t) =

∫ t

0

dt′|v(t′)| =

∫ t

0

dt′
√

v2r (t
′) + v2ϕ(t′) =

∫ t

0

dt′
√

ṙ2 + r2ϕ̇2

=

∫ t

0

dt′ ϕ̇

[

(

dr

dϕ

)2

+ r2

]1/2

=

∫ ϕ(t)

ϕ0

dϕ

[

(

dr

dϕ

)2

+ r2

]1/2

=

∫ ϕ(t)

ϕ0

dϕ
[

r2ctg2α + r2
]1/2

=
1

sinα

∫ ϕ(t)

ϕ0

dϕ r(ϕ) ,

19A co, gdy −π
2 < α < 0 ? Powinno być tak samo, tzn. odleg lość r też powinna rosna֒ć, bo na rysunku

sytuacja wygla֒da tak samo, ale ctgα jest w tm zakresie ka֒tów ujemny... No tak, ale wtedy ze wzrostem
r ka֒t ϕ nie rośnie, tylko maleje wie֒c równanie znów jest poprawne!

74



gdzie skorzystalísmy ze zwia֒zku 1 + ctg2α = 1/ sin2 α i wzoru na dr/dϕ. Ca lkuja֒c otrzy-
mujemy

s(t) =
r(ϕ0)

sinα

∫ ϕ(t)

ϕ0

dϕ e(ϕ−ϕ0)ctgα =
r(ϕ0)

cosα
e(ϕ−ϕ0)ctgα

∣

∣

∣

∣

ϕ(t)

ϕ0

=
r(ϕ0)

cosα

[

e(ϕ(t)−ϕ0)ctgα − 1
]

,

Wzór można uprościć przyjmuja֒c, że ϕ0 = 0. ctgα jest dodatni, gdy 0 < α < π
2

i d lugość
toru jest wtedy nieograniczona, gdy ka֒t ϕ rośnie nieograniczenie. Jeśli zaś ctgα < 0 (czyli,
gdy π

2
< α < π), d lugość toru jest skończona, gdy ϕ→ ∞:

s(∞) = −r(ϕ0)

cosα
,

(oczywíscie, gdy π
2
< α < π to cosα < 0 i d lugość toru jest dodatnia). Przypadek α = π

2

jest szczególny: odleg lość r pozostaje sta la, równa r(ϕ0). D lugość toru jest oczywíscie
nieskończona jeśli ϕ rośnie nieograniczenie, ale jeśli rozpatrzyć d lugość toru od ϕ0 do
ϕ = ϕ0 + 2π, to w granicy α → π

2
uzyskany wzór daje oczywíscie s = 2πr(ϕ0):

s(ϕ = 2π) = lim
α→π/2

r(ϕ0)

cosα

[

1 + 2πctgα +
1

2
(2πctgα)2 + · · · − 1

]

= 2πr(ϕ0) .

Wreszcie przypadki α = 0 lub π sa֒ szczególne w tym znaczeniu, że wektor pre֒dkości jest
skierowany wzd luż wektora wodza֒cego i ka֒t ϕ pozostaje sta ly.20 Nie można wie֒c w tym
przypadku napisać równania toru w postaci r = r(ϕ). Możliwy jest tylko parametryczny
opis toru (naturalnym parametrem jest tu czas) r = r(t), ϕ = ϕ(t) = const = ϕ0.

20Dobrze jest przepisać uzyskane równanie różniczkowe w (zalecanej przeze mnie na Matmie II) postaci
dr tgα = r dϕ. Wtedy widać, że gdy α = 0 lub π, zmiana r nie pocia֒ga za soba֒ zmiany ka֒ta ϕ.
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Zadanie 2.5

Na cia lo o masie m i pre֒dkości pocza֒tkowej v(0) = v0 dzia la tylko si la oporu

Fop = −κ|v|α v

|v| , κ, α > 0 .

Zbadać, jak czas trwania takiego ruchu i jego zasie֒g zależa֒ od wyk ladnika α.

Rozwia֒zanie:

Ponieważ na cia lo dzia la tylko jedna si la, która ma zawsze ten sam kierunek, co chwilowa
pre֒dkość cia la (i przeciwny do niej zwrot), dobrze jest wybrać oś x w kierunku v0. Problem
staje sie֒ wtedy jednowymiarowy i redukuje sie֒ dorozwia֒zywania równania

mv̇(t) = −κvα(t) , czyli v̇(t) = − κ

m
vα(t) ,

z warunkami pocza֒tkowymi v(0) = v0 (v0 > 0) oraz, bez straty ogólności, x(0) = 0.
Rozdzielenie zmiennych prowadzi do ca lki

∫ v(t)

v0

dv

vα
= − κ

m
t ,

która, jako ca lka z funkcji pote֒gowej, jeśli α 6= 1, daje

1

1 − α

[

v1−α(t) − v1−α0

]

= − κ

m
t ,

czyli, po “odkre֒ceniu”,

v(t) = v0

[

1 + (α− 1)
κ

m
vα−10 t

] 1
1−α

.

Wynik dla α = 1, która to wartość α jest, jak widać, wyróżniona (uzasadnione jest
wie֒c nazwanie jej wartościa֒ krytyczna֒), można dostać albo obliczaja֒c bezpośrednio ca lke֒
z α = 1, albo, co jest bardziej kszta lca֒ce, dokonuja֒c w powyższym wzorze przej́scia
granicznego α → 1:

v(t) = v0 lim
α→1

[

1 + (α− 1)
κ

m
vα−10 t

]
1

1−α

= v0 lim
α→1

exp

{

1

1 − α
ln
[

1 + (α− 1)
κ

m
vα−10 t

]

}

= v0 lim
α→1

exp

{

1

1 − α

[

(α− 1)
κ

m
t− 1

2
(α− 1)2

κ2

m2
t2 + . . .

]}

= v0 e
−(κ/m)t ,

(Pod logarytmem można już by lo spokojnie po lożyć vα−10 = 1).
Z otrzymanych wzorów tych widać, że jeśli α < 1, to czas trwania ruchu jest skończony:

cia lo zatrzymuje sie֒ po czasie

tmax =
m

κ

v1−α0

1 − α
> 0 .
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Zasie֒g ruchu, jest w takim przypadku, rzecz jasna, skończony.
Jeśli zaś α ≥ 1, to ruch trwa wiecznie (co nie znaczy jeszcze, jak zobaczymy niżej, że

zasie֒g jego jest nieskończony) i asymptotycznie v(t) ∝ 1/t
1

α−1 (lub v(t) ∝ e−(κ/m)t, gdy α =
1). Wynik ten może na pierwszy rzut oka wydawać sie֒ dziwny: przecież wydaje sie֒, że dla
wie֒kszych wartości α si la oporu jest wie֒ksza! I istotnie tak jest, ale dla dużych pre֒dkości;21

jednak dla kwestii, czy si la oporu spowoduje ca lkowite zatrzymanie sie֒ cia la, decyduja֒ca
jest wielkość si ly oporu dla pre֒dkości ma lych, nie zaś dużych, a w sposób oczywisty
jeśli (v/vchar) < 1, gdzie vchar jest jaka֒s predkościa֒ charakterystyczna֒, to (v/vchar)

α1 >
(v/vchar)

α2 , gdy α1 < α2.

Zależność przebytej drogi x od czasu jest dana ca lka֒

x(t) =

∫ t

0

dt′ v(t′) = v0

∫ t

0

dt′
(

1 − t′

τ

)
1

1−α

,

gdzie wielkość τ ≡ (m/κ)(v1−α0 /(1 − α)) = tmax jest, gdy α < 1, tożsama z czasem
trwania ruchu tmax, dla α > 1 zaś |τ | jest po prostu pewnym czasem charakterystycznym.
Otrzymujemy sta֒d

x(t) = v0τ

∫ t/τ

0

dξ (1 − ξ)
1

1−α = v0τ
−1

1 + 1
1−α

(1 − ξ)1+
1

1−α

∣

∣

∣

t/τ

0

= v0τ
1 − α

2 − α

[

1 −
(

1 − t

τ

)
2−α
1−α

]

=
m

κ

v2−α0

2 − α

[

1 −
(

1 − t

τ

)
2−α
1−α

]

.

Ze wzoru tego od razu widać, że 2 jest druga֒ krytyczna֒ wartościa֒ wyk ladnika α. Oczywíscie
jeśli α < 1, zasie֒g d jest skończony i wynosi

d = x(tmax) =
m

κ

v2−α0

2 − α
.

Otrzymany wzór na x(t) pozostaje s luszny także przy α = 1 (gdy ruch trwa wiecznie),
co można sprawdzić albo ca lkuja֒c bezpośrednio wzór na v(t) z α = 1, lub też dokonuja֒c

21Jak zawsze, aby orzec, czy wielkość wymiarowa jest duża, czy ma la, trzeba powiedzieć, w porównaniu
z czym. W zwia֒zku z tym zauważmy, że wymiar wspó lczynnika κ w podanym wzorze na si le֒ oporu zmienia
sie֒ z α; aby operować wspó lczynnikiem o wymiarze niezależnym od α, należy wzór ten zapisać w postaci

Fop = −κ′ |v|
α

vαchar

v

|v| ,

w której κ′ ≡ κvαchar ma już wymiar [M][L][T]−2 niezależny od α. Pojawia sie֒ wtedy pre֒dkość charakte-
rystyczna vchar i to porównanie z nia֒ decyduje, czy pre֒dkość v(t) jest duża czy ma la.
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przej́scia granicznego we wzorze na x(t):

x(t) =
m

κ
v0 lim

α→1

{

1 −
[

1 − (1 − α)
κ

m
vα−10 t

]
2−α
1−α

}

=
m

κ
v0 lim

α→1

{

1 − exp

(

2 − α

1 − α
ln
[

1 − (1 − α)
κ

m
vα−10 t

]

)}

=
m

κ
v0
(

1 − e−(κ/m)t
)

.

co dla t = ∞ daje dα=1 = (m/κ)v0. Zasie֒g ruchu pozostaje skończony aż do α = 2, gdyż
dla 1 < α < 2 wyk ladnik (2 − α)/(1 − α) jest ujemny podobnie jak i τ i, gdy t→ ∞,

x(t) =
m

κ

v2−α0

2 − α

{

1 − 1

[1 + (t/|τ |)]α−2
1−α

}

−→ m

κ

v2−α0

2 − α
.

Dla α = 2 wzór na x(t) jest osobliwy i konieczne jest znowu przej́scie graniczne

x(t) =
m

κ
lim
α→2

v2−α0

2 − α

{

1 −
(

1 +
t

|τ |

)
2−α
1−α

}

=
m

κ
lim
α→2

v2−α0

2 − α

{

1 − exp

[

2 − α

1 − α
ln

(

1 +
t

|τ |

)]}

.

Po rozwinie֒ciu funkcji exponens otrzymujemy sta֒d

x(t) =
m

κ
ln

(

1 +
t

|τ |

)

=
m

κ
ln
(

1 +
κ

m
v0t
)

.

Zasie֒g jest wie֒c wtedy nieskończony: przebyta droga rośnie wolno, jak logarytm czasu,
ale jednak rośnie nieograniczenie. Oczywíscie zasie֒g jest też nieskończony dla wszystkich
α > 2 i wtedy rośnie już z czasem pote֒gowo:

x(t) =
m

κ

v2−α0

α− 2

[

(

1 +
t

|τ |

)
α−2
α−1

− 1

]

→ const.×
(

t

|τ |

)
α−2
α−1

.
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Zadanie 2.21

Punktowa masa m porusza sie֒ pionowo w polu grawitacyjnym g. Si la oporu dzia laja֒ca
na nia֒ jest dana wzorem F = −λ|v|v. Znaleźć zależność pre֒dkości i po lożenia masy m od
czasu w przypadku, gdy jej ruch rozpocza֒ l sie֒ z zerowa֒ pre֒dkościa֒ na pewnej wysokości.
Podać jak zmieniaja֒ sie֒ te wielkości na samym pocza֒tku ruchu i po dostatecznie d lugim
czasie. Przedyskutować jakościowo także przypadki niezerowej pre֒dkości pocza֒tkowej i
jej dwu możliwych kierunków (w góre֒ i w dó l).

Rozwia֒zanie:

Jeśli masa m porusza sie֒ w dó l, a tak be֒dzie w przypadku zerowej pre֒dkości pocza֒tkowej,
to równanie wyznaczaja֒ce zależność jej pre֒dkości od czasu ma postać

dv

dt
= g − κv2 , κ ≡ λ

m
.

Oś z uk ladu odniesienia, wzd luż której odbywa sie֒ ruch zosta la tu skierowana w dó l.
Równanie to można sca lkować rozdzielaja֒c zmienne

∫ t

0

dt =

∫ v(t)

v0

dv

g − κv2
=

1

g

∫ v(t)

v0

dv

1 − (
√

κ/g v)2
=

1√
gκ

∫ η(t)

η0

dη

1 − η2
.

Wprowadzona tu zosta la zmienna η = v
√

κ/g. Ca lke֒ wykonuje sie֒ rozk ladaja֒c wyrażenie
podca lkowe na UAMki proste:22

∫ t

0

dt =
1

2
√
gκ

(

∫ η(t)

η0

dη

1 + η
+

∫ η(t)

η0

dη

1 − η

)

=
1

2
√
gκ

[ln(1 + η) − ln |1 − η| ]η(t)η0
,

co prowadzi do wzoru

ln

(

1 + η

|1 − η|

)

= 2
√
gκ t + 2∆0 ,

w którym 2∆0 ≡ ln(1 + η0)− ln |1− η0|. Aby wywik lać sta֒d zależność pre֒dkości od czasu,
trzeba zdecydować (z powodu wyste֒powania pod logarytmen modu lu), czy wartość η
jest wie֒ksza, czy mniejsza od 1. Jeśli ruch zacza֒ l sie֒ od zerowej pre֒dkości pocza֒tkowej,
to, przynajmniej przez jakís czas (ale zaraz zobaczymy, że zawsze) wartość η pozostaje
mniejsza od 1. Zatem w takim przypadku

1 + η

1 − η
= exp(2

√
gκ t+ 2∆0) ,

i po odwik laniu dostajemy

v(t) =

√

g

κ
th(

√
gκ t + ∆0) .

22Korzystaja֒c w razie konieczności z porad specjalistów z Uniwersytetu Adama Mickiewicza w Pozna-
niu.
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Wzór ten pokazuje, że jeśli pocza֒tkowa pre֒dkość v0 by la równa zeru ba֒dź dodatnia
ale mniejsza od pre֒dkości (nazwijmy ja֒ graniczna֒) vgr ≡

√

g/κ, be֒dzie ona z czasem
rosna֒ć dochodza֒c do vgr asymptotycznie (oczywíscie fizycznie wcześniej masa m wyrżnie
w ziemie֒), ale nigdy jej nie przekroczy. Jest to oczywiste z samej postaci wyj́sciowego
równania różniczkowego, którego prawa strona zeruje sie֒ przy v = vgr - wartość ta jest
tzw. punkem sta lym równania; ponieważ równanie to jest pierwszego rze֒du (czyli wy-
maga tylko jednego warunku pocza֒tkowego), rozwia֒zanie v(t) = vgr dzieli przestrzeń
pozosta lych rozwia֒zań na dwie klasy: w jednej klasie zawsze v(t) > vgr, w drugiej zaś
v(t) < vgr. Gdyby pre֒dkość pocza֒tkowa v0 by la dodatnia i wie֒ksza od vgr, “zdejmuja֒c”
modu l w przekszta lceniach powyżej trzeba by zamiast 1 − η napisać η − 1 i w rezultacie
otrzymalibyśmy jako rozwia֒zanie

v(t) =

√

g

κ

1

th(
√
gκ t + ∆0)

.

Pre֒dkość v(t) dochodzi laby wtedy do pre֒dkości granicznej od góry.

Zak ladaja֒c, że v0 = 0, znajdziemy teraz po lożenie masy m w funkcji czasu:

z(t) = z0 +

∫ t

0

dt′ v(t′) = z0 +

√

g

κ

∫ t

0

dt′
sh(

√
gκ t′)

ch(
√
gκ t′)

= z0 +
1

κ
ln[ch(

√
gκ t)] .

Gdy czas da֒ży do nieskończoności, pre֒dkość staje sie֒ równa vgr i wzór ten powinien dawać
liniowy przyrost drogi z czasem. Jest tak rzeczywíscie:

z(t) − z0 =
1

κ
ln

[

1

2

(

e
√
gκ t + e−

√
gκ t
)

]

≈
√

g

κ
t− 1

κ
ln 2 .

Ujemna sta la bierze sie֒ z tego, że masa m nie porusza sie֒ ca ly czas pre֒dkościa֒ vgr; wy-
nika sta֒d pewna strata dystansu (reprezentowana w laśnie przez czynnik −(1/κ) ln 2) w
stosunku do cia la, które od pocza֒tku porusza loby sie֒ z pre֒dkościa֒ vgr od t = 0.

Możemy też sprawdzić, jak przebyta przez mase֒ m droga przyrasta zaraz po starcie,
tj. dla czasów bliskich zeru. Argument ξ ≡ √

gκt funkcji kosinus hiperboliczny jest wtedy
ma ly (≪ 1) i korzystaja֒c ze wzorów na rozwinie֒cie funkcji cosh i rozwinie֒cie logarytmu
mamy

z(t) − z0 =
1

κ
ln

(

1 +
1

2
ξ2 +

1

24
ξ4 + . . .

)

,

(rozwiniecie kosinusa hiperbolicznego jest takie jak kosinusa, tylko wszystkie znaki sa
dodatnie, co wynika z tego, że cos(iξ) = chξ) i teraz korzystaja֒c z rozwinie֒cia ln(1 + ε) =
ε− 1

2
ε2 + . . . mamy

z(t) − z0 =
1

κ

{

1

2
ξ2 +

1

24
ξ4 + · · · − 1

2

(

1

2
ξ2 + . . .

)2
}

=
1

κ

(

1

2
ξ2 − 1

12
ξ4 + . . .

)

.

80



Tak wie֒c, gdy t≪ 1/
√
gκ,

z(t) − z0 =
1

2
gt2 − 1

12
g2κt4 + . . .

W pierwszym przybliżeniu, kiedy pre֒dkość jest jeszcze niewielka, si la oporu nie gra roli
(jest znikoma) i w pierwszym przybliżeniu masa m spada swobodnie, “po szkolnemu”; w
naste֒pnym przybliżeniu dochodzi poprawka opóźniaja֒ca spadek, proporcjonalna do t4.

Przy okazji warto zobaczyć, jak ten sam wynik dla t ≪ 1/
√
gκ można uzyskać

rozwia֒zuja֒c wyjsciowe równanie różniczkowe metoda֒ Banacha. Zapiszmy równanie w
postaci

dv

dt
= g − κv2 ,

i potraktujmy ca la֒ jego prawa֒ strone֒ jak zaburzenie (oczywíscie żeby tak można by lo
zrobić ma la musi być pre֒dkość pocza֒tkowa v0). Pierwszym przybliżeniem rozwia֒zania,
czyli rozwia֒zaniem zerowego rze֒du jest v(0)(t) = v0 (po prostu!). Naste֒pnie szukamy
rozwia֒zania pierwszego rze֒du, v(1)(t), ca lkuja֒c powyższe równanie z prawa֒ strona֒ obli-
czona֒ z rozwia֒zania zerowego rze֒du:

dv(1)(t)

dt
= g − κ(v(0))2 ,

co da

v(1)(t) = v0 +
(

g − κv20
)

t .

Naste֒pnie szukamy rozwia֒zania drugiego rze֒du obliczaja֒c prawa֒ strone֒ ze znalezionego
wyżej rozwia֒zania rze֒du pierwszego

dv(2)(t)

dt
= g − κ

[

v0 +
(

g − κv20
)

t
]2
,

itd. K lada֒c dla prostoty v0 = 0 mamy tu równanie

dv(2)(t)

dt
= g − κg2t2 ,

którego rozwia֒zaniem jest

v(2)(t) = gt− 1

3
κg2t3 ,

i które po sca lkowaniu jeszcze raz da otrzymane już wyżej przybliżenie z(t), które jest
s luszne, gdy t≪ 1/

√
gκ.

Na koniec zauważmy jeszcze, że gdyby pre֒dkość pocza֒tkowa v0 by la ujemna (skiero-
wana w góre֒), należa loby rozwia֒zywać równanie

dv

dt
= g + κv2 ,
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Równanie to nie ma punktu sta lego, ale przy v0 < 0, dyktuje ono wzrost v(t) od v0 do zera.
W chwili t, w której pre֒dkość stanie sie֒ równa zeru równanie to przestaje obowia֒zywać
i należy od tego momentu rozwia֒zywać poprzednie równanie z warunkiem pocza֒tkowym
v = 0.
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Zadanie 2.6

Zbadać możliwe ruchy jednowymiarowego oscylatora harmonicznego z t lumieniem be֒da֒ce
rozwia֒zaniami równania

mẍ + 2γ ẋ+ kx = 0 ,

gdzie γ > 0, k > 0 (czynnik 2 w drugim wyrazie zosta l wprowadzony dla rachunkowej
wygody). Rozpatrzyć wszystkie możliwe przypadki.

Rozwia֒zanie:

Równanie

ẍ + 2λ ẋ+ ω2
0x = 0 ,

gdzie λ ≡ γ/m, ω2
0 ≡ k/m jest różniczkowym równaniem liniowym drugiego rze֒du.

Zgodnie z ogólnymi zasadami powinno ono mieć dwa liniowo niezależne rozwia֒zania,
a najogólniejsze rozwia֒zanie jest kombinacja֒ liniowa֒ tych dwu rozwia֒zań z dowolnymi
wspó lczynnikami. Wyste֒puja֒ w nim zatem dwie sta le dowolne. Zgodnie z tradycja֒ fi-
zyczna֒ przekazana֒ nam w Feynmana wyk ladach z Fizyki, rozwia֒zań szukamy w postaci

z(t) = eiαt ,

tj. szukamy funkcji spe lniaja֒cej wypisane wyżej równanie ale przyjmuja֒cej wartości ze-
spolone. Ponieważ równanie jest liniowe o rzeczywistych wspó lczynnikach, spe lniać je
be֒dzie osobno zarówno cze֒ść rzeczywista jak i urojona zespolonego rozwia֒zania z(t) i
która֒kolwiek z nich można wzia֒ć jako rozwia֒zanie wyj́sciowego rzeczywistego równania.
Podstawiaja֒c ten tzw. Ansatz (liczba mnoga die Ansätze, gdyby ktoś nie wiedzia l) do
rozwia֒zywanego równania otrzymujemy warunek na α (czyli inaczej równanie charakte-
rystyczne tego równania liniowego)

−α2 + 2iλα + ω2
0 = 0 .

Rozwia֒zaniami tego warunku sa֒

α± = iλ±
√

ω2
0 − λ2 .

Zatem ogólnym zespolonym rozwia֒zaniem jest

z(t) = C1 e
−λt+i

√
ω2
0−λ2 t + C2 e

−λt−i
√
ω2
0−λ2 t .

C1,2 sa֒ dwiema dowolnymi zespolonymi sta lymi. Jeśli ω2
0 − λ2 < 0, tj. jeśli wyk ladniki

eksponensów sa֒ czysto rzeczywiste, wzie֒cie cze֒ści rzeczywistej (lub urojonej) x(t) zespo-
lonego rozwia֒zania z(t) sprowadza sie֒ po prostu do wzie֒cia ReC1 i ReC2 (ImC1 i ImC2)
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jako dwu sta lych rzeczywistych. Gdy zaś ω2
0−λ2 > 0, aby wydzielić cze֒ść rzeczywista֒ (lub

urojona֒) tego rozwia֒zania, wygodniej jest, przedefiniowuja֒c sta le, przepisać je w postaci23

z(t) = C e−λt+i
√
ω2
0−λ2 t + C

∗ e−λt−i
√
ω2
0−λ2 t

+B e−λt+i
√
ω2
0−λ2 t − B

∗ e−λt−i
√
ω2
0−λ2 t .

Pierwsza linia tak zapisanego zespolonego rozwia֒zania z(t) jest czysto rzeczywista, a druga
czysto urojona. Zatem jako rozwia֒zanie rzeczywiste x(t) możemy wzia֒ć np. Rez(t), czyli

x(t) = e−λt
(

C e+i
√
ω2
0−λ2 t + C

∗ e−i
√
ω2
0−λ2 t

)

.

Powyższe rozwia֒zanie x(t) zależy, tak jak powinno, od dwóch sta lych dowolnych, którymi
sa֒ cze֒ść rzeczywista i cze֒ść urojona C.

Tak wie֒c, w zależności od wzajemnego stosunku ω2
0 i λ2, możliwe sa֒ trzy przypadki

• Gdy ω2
0 > λ2, rozwia֒zanie można zapisać w postaci

x(t) = e−λt (A cosωt+B sinωt) ,

gdzie A = C + C∗ = 2ReC, B = i(C− C∗) = −2ImC, a ω ≡
√

ω2
0 − λ2.

• Gdy ω2
0 < λ2, piszemy

√

ω2
0 − λ2 = −iκ oraz (w pierwotnej formie rozwia֒zania z C1

i C2) ReC1 = 1
2
(A+B), ReC2 = 1

2
(A−B), co sprowadza cze֒ść rzeczywista֒ Re z(t)

rozwia֒zania do postaci

x(t) = e−λt (A ch κt +B shκt) .

• Gdy ω2
0 = λ2, dwa znalezione rozwia֒zania staja֒ sie֒ wzajemnie proporcjonalne czyli

liniowo zależne i trzeba znaleźć jeszcze jedno liniowo niezależne rozwia֒zanie, gdyż
inaczej ogólne rozwia֒zania zależa loby tylko od jednej tylko (rzeczywistej) sta lej do-
wolnej, co nie pozwala loby spe lnić warunków pocza֒tkowych (z ogólnej teorii równań
różniczkowych wiadomo, że najogólniejsze rozwia֒zanie musi mieć dwie sta le do-
wolne). Okazuje sie֒, że ogólnym rozwia֒zaniem jest wtedy

x(t) = e−λt (A+B t) .

Że jest to istotnie rozwia֒zanie, można sprawdzić wstawiaja֒c je do wyj́sciowego
równania (w którym należy po lożyć ω2

0 = λ2).24 Wynik ten, jak zobaczymy niżej,
można też otrzymać dokonuja֒c odpowiedniego przej́scia granicznego.

23Choć nie jest to do niczego potrzebne, zanotujmy, że C1 = C+B, C2 = C∗−B∗ czyli C = 1
2 (C1+C∗2),

a B = 1
2 (C1 − C∗2).

24Istotnie: ẋ̇ +2λẋ+λ2x = e−λt(λ2A−2λB+λ2Bt)+2λe−λt(−λA+B−λBt)+λ2 e−λt(A+Bt) = 0.
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Dowolne sta le rzeczywiste A i B w powyższych ogólnych rozwia֒zaniach sa֒ wyznaczone
przez zadane warunki pocza֒tkowe. Jeśli sa֒ nimi

x(0) = x0 , ẋ(0) = v0 ,

to, jak  latwo sprawdzić,

x(t) = e−λt
[

x0 cosωt+
v0 + λx0

ω
sinωt

]

,

x(t) = e−λt [x0 + (v0 + λx0) t] ,

x(t) = e−λt
[

x0 chκt +
v0 + λx0

κ
sh κt

]

,

gdy, odpowiednio, ω2
0 > λ2, ω2

0 = λ2 i ω2
0 < λ2.

Maja֒c rozwia֒zania dla dwóch skrajnych przypadków zależne od warunków pocza֒tko-
wych  latwo zobaczyć, że rozwia֒zanie w przypadku ω2

0 = λ2 można otrzymać przez przej́scie
graniczne. Np. biora֒c w pierwszym rozwia֒zaniu granice֒ ω → 0 (czyli ω2

0 → λ2) widzimy,
że cosωt→ 1, a drugi wyraz w tej granicy daje

lim
ω→0

v0 + λx0
ω

sinωt = (v0 + λx0) t ,

i otrzymujemy rozwia֒zanie dla przypadku ω2
0 = λ2. W podobny sposób można to

rozwia֒zanie otrzymać w granicy κ → 0 z trzeciego rozwia֒zania. Przej́scia granicznego
można dokonać dopiero po wyrażeniu sta lych dowolnych przez warunki pocza֒tkowe, gdyż,
jak widać, wspó lczynniki tych liniowo niezależnych rozwia֒zań nie pozostaja֒ sta le przy
zmienianiu ω lub κ.

Tylko w przypadku, gdy ω2
0 > λ2, tj. gdy si la oporu nie jest zbyt duża, ruch wykazuje

charakter quasi-periodyczny: kolejne zera funkcji x(t) (przechodzenie oscylatora przez
po lożenie równowagi) wyste֒puja֒ regularnie, w odste֒pach czasu ∆t = 1

2
T , gdzie T = 2π/ω.

Kolejne maksima funkcji |x(t)| wyste֒puja֒ zaś, gdy ẋ(t) = 0 i sa֒ nieco przesunie֒te w
stosunku do po lożeń, jakie mia lyby przy niewyste֒powaniu si ly oporu. Np. jeśli (dla
prostoty) x0 = 0 i x(t) = (v0/ω)e−λt sinωt, maksymalne wychylenia, tj. maksymalne
wartości |x(t)| przypadaja֒ w tych momentach, w których znika ẋ(t), czyli gdy

e−λt(ω cosωt− λ sinωt) = 0 ,

tj., w których tg ωt = ω/λ; jeśli si la oporu jest s laba, λ ≪ ω, przypadaja֒ one niemal
dok ladnie wtedy, kiedy ωt = π/2 + nπ; jeśli zaś λ ∼ ω lub λ > ω, chwile te sa֒ nieco
wcześniejsze (co zrozumia le, bo si la oporu powoduje wcześniejsze wytracenie pre֒dkości).

W przypadku, gdy ω2
0 < λ2 (a x0 = 0) wychylenie oscylatora x(t) jest tylko jednego

znaku (zależnego od znaku pre֒dkości pocza֒tkowej v0) i |x(t)| ma tylko jedno maksimum
wyste֒puja֒ce w chwili, gdy ẋ(t) = 0, czyli gdy

th(κt) =
κ

λ
≡ 1

λ

√

λ2 − ω2
0 < 1 .

Jest bowiem jasne, iż równanie to ma tylko jedno rozwia֒zanie.
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θ

Rysunek 24: Obrót uk ladu wspó lrze֒dnych o ka֒t θ.

Zadanie 2.7

Pokazać, że tor ruchu dwuwymiarowego izotropowego oscylatora harmonicznego, czyli
leża֒cy na p laszczyźnie tor ruchu cza֒stki o masie m poddanej dzia laniu si ly spre֒żystej
F = −mω2r jest elipsa֒. Jaki warunek musza֒ spe lniać cze֒stości ω1 i ω2 nieizotropowego
trójwymiarowego oscylatora o sile F = −m(ω2

1xex + ω2
2yey + ω2

3zez), by tor jego ruchu
by l krzywa֒ zamknie֒ta֒?

Rozwia֒zanie:

Równania ruchu dwuwymiarowego izotropowego oscylatora

ẍ+ ω2x = 0 , ÿ + ω2y = 0 ,

naj latwiej rozwia֒zać wprowadzaja֒c zmienna֒ zespolona֒ ξ = x+iy. Rozwia֒zaniem równania
ξ̈ + ω2ξ = 0 jest wtedy

ξ(t) = A+e
iωt + A−e

−iωt = |A+|eiωt+iδ+ + |A−|e−iωt+iδ− = eiθ
(

|A+|eiωt+iδ + |A−|e−iωt−iδ
)

,

przy czym zespolone sta le ca lkowania A± zależa֒ od warunków pocza֒tkowych. W ostat-
nim kroku fazy δ+ i δ− sta lych A± zosta ly zapisane w formie δ+ = θ + δ, δ− = θ − δ.
Podstawiaja֒c naste֒pnie |A±| = 1

2
(A± B), można wyrażenie w nawiasie napisać jako

A

2

(

eiωt+iδ + e−iωt−iδ
)

+ i
B

2i

(

eiωt+iδ − e−iωt−iδ
)

= A cos(ωt+ δ) + iB sin(ωt+ δ) .

Możemy teraz zinterpretować to jako ξ′ ≡ x′(t) + iy′(t), gdyż jeśli uk lad O′ jest wzgle֒dem
uk ladu O obrócony o ka֒t θ tak, jak na rysunku 24, to x = x′ cos θ− y′ sin θ, y = x′ sin θ+
y′ cos θ, czyli w laśnie ξ = eiθξ′. Zatem w uk ladzie obróconym o ka֒t θ tor jest dany
równaniem (x′/A)2 + (y′/B)2 = 1, które jest w laśnie równaniem elipsy.

Jeśli rozwia֒zanie nieizotropowego oscylatora zapisać w postaci x(t) = Ax cos(ω1t+δx),
y(t) = Ay cos(ω2t + δy), z(t) = Az cos(ω3t + δz), to jest jasne, że tor be֒dzie krzywa֒
zamknie֒ta֒, gdy można dobrać wielokrotności okresów ruchów wzd luż poszczególnych osi
tak, by by ly sobie równe, czyli gdy istnieje okres T taki, że

ωiT = 2πni , i = 1, 2, 3.

Tor be֒dzie wie֒c krzywa֒ zamknie֒ta֒, gdy ω1 : ω2 : ω3 = n1 : n2 : n3.
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Zadanie 2.8

Znaleźć ruch jednowymiarowego oscylatora harmonicznego o masie m, sta lej spre֒żystości
k = mω2

0 i wspó lczynniku si ly t lumia֒cej 2γ = 2mλ pobudzanego si la֒ zewne֒trzna֒ o har-
monicznej zależności od czasu

F (t) = F0 cos(Ωt + δ) .

Przedyskutować zależność amplitudy wychyleń oscylatora od cze֒stości Ω si ly wymu-
szaja֒cej oraz korelacje֒ maksimów wychyleń oscylatora z maksimami si ly. Zak ladaja֒c, że
λ 6= 0 i że ruch trwa już dostatecznie d lugo, by zależność ruchu od warunków pocza֒tkowych
sta la sie֒ nieistotna (tj. że t ≫ 1/λ), obliczyć uśredniona֒ po okresie si ly wymuszaja֒cej
moc przekazywana֒ przez nia֒ oscylatorowi i zbadać jej zależność od cze֒stości Ω. Co sie֒
dzieje z ta֒ pobierana֒ przez oscylator energia֒?

Rozwia֒zanie:

Równanie Newtona, wyznaczaja֒ce ruch oscylatora ma postać

ẍ+ 2λẋ+ ω2
0x =

F0

m
cos(Ωt+ δ) .

Jego najogólniejsze rozwia֒zanie jest suma֒ najogólniejszego rozwia֒zania równania jedno-
rodnego (tj. powyższego równania z si la F (t) równa֒ zeru) oraz jakiegokolwiek rozwia֒zania
(tzw. rozwia֒zania szczególnego) powyższego równania z si la֒ F (t). Najogólniejsze rozwia֒-
zania (w zależności od wzajemnego stosunku λ do ω0) równania jednorodnego zosta ly
znalezione w Zadaniu 2.6. Znaleźć rozwia֒zanie szczególne jest najprościej przepisuja֒c
powyższe równania w zmiennej zespolonej z(t) i modyfikuja֒c jego prawa֒ strone֒:

z̈ + 2λż + ω2
0z =

F0

m
ei(Ωt+δ) .

Ponieważ równanie to jest liniowe, a wspó lczynniki prawej jego strony sa֒ rzeczywiste,
cze֒ść rzeczywista z(t) be֒dzie spe lniać w laśnie to równanie, które chcemy rozwia֒zać (cze֒ść
urojona z(t) be֒dzie zaś spe lniać równanie z si la֒ F (t) = F0 sin(Ωt + δ)). Podstawiamy
naste֒pnie do tego równania

z(t) = A eiΩt ,

z amplituda֒ A be֒da֒ca֒ liczba֒ zespolona֒ i widzimy, że jest ono spe lnione, jeśli

A =
F0

m

eiδ

ω2
0 − Ω2 + 2iλΩ

.

Szczególne (niezależne od żadnych sta lych dowolnych) rozwia֒zanie wyj́sciowego równania
ma zatem postać

xsz(t) = Re

(

F0

m

ei(Ωt+δ)

ω2
0 − Ω2 + 2iλΩ

)

=
F0

m

1
√

(ω2
0 − Ω2)2 + 4λ2Ω2

cos(Ωt+ δ − ϕ) .
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ϕ jest faza֒ mianownika ω2
0 −Ω2 + 2iλΩ =

√

(ω2
0 − Ω2)2 + 4λ2Ω2 eiϕ zespolonej amplitudy.

Jest ona dana wzorem

tgϕ =
2λΩ

ω2
0 − Ω2

,

albo, co wygodniejsze, bo nie wymaga zmieniania ga le֒zi arcusa tangensa przy przecho-
dzeniu przez Ω2 = ω2

0, wzorami

cosϕ =
ω2
0 − Ω2

√

(ω2
0 − Ω2)2 + 4λ2Ω2

, sinϕ =
2λΩ

√

(ω2
0 − Ω2)2 + 4λ2Ω2

.

Ponieważ, jak widać, sinϕ jest nieujemny, faza ϕ należy do przedzia lu [0, π].
Alternatywna֒ (ale równoważna֒) postać rozwia֒zania szczególnego uzyskujemy pisza֒c

xsz(t) = Re

(

F0

m

ω2
0 − Ω2 − 2iλΩ

(ω2
0 − Ω2)2 + 4λ2Ω2

ei(Ωt+δ)
)

=
F0

m

1

(ω2
0 − Ω2)2 + 4λ2Ω2

[

(ω2
0 − Ω2) cos(Ωt + δ) + 2λΩ sin(Ωt + δ)

]

.

Wprawdzie pe lne rozwia֒zanie równania ruchu wymaga dodania do znalezionego tu
rozwia֒zania szczególnego równania niejednorodnego jeszcze ogólnego rozwia֒zania równania
jednorodnego zależnego od dwóch dowolnych sta lych (dopiero wtedy można narzucić
na rozwia֒zanie warunki pocza֒tkowe - zobacz Zadanie 2.9), to, jeśli tylko si la oporu
(wspó lczynnik λ) nie znika, efekty tego ogólnego rozwia֒zania, a z nim zależność ruchu
od warunków pocza֒tkowych, be֒da֒ z czasem maleć do dowolnie ma lej wielkości. Roz-
patruja֒c ruch oscylatora w chwilach t ≫ λ−1, można sie֒ ograniczyć wtedy do badania
samego szczególnego rozwia֒zania równania niejednorodnego, gdyż x(t) ≈ xszcz(t).

Zatem gdy t ≫ λ−1, amplituda A drgań oscylatora (czyli maksymalne wychylenie)
jest równa

A(Ω) =
F0

m

1
√

(ω2
0 − Ω2)2 + 4λ2Ω2

.

Gdy si la oporu nie jest zbyt duża, amplituda ma maksimum w punkcie, w którym mianow-
nik ma minimum, a jeszcze lepiej, tam, gdzie minimum ma wyrażenie pod pierwiastkiem
czyli tam, gdzie znika pochodna po x funkcji f(x) = (x− ω2

0)2 + 4λ2x, tj. przy cze֒stości
Ωr =

√

ω2
0 − 2λ2, zwanej cze֒stościa֒ rezonansowa֒. Cze֒stość ta, jak widać, jest niższa niż

cze֒stość w lasna ω0 oscylatora. Oczywíscie, gdy ω2
0 ≤ 2λ2, amplituda A(Ω) jest monoto-

nicznie maleja֒ca֒ funkcja֒ cze֒stości Ω. Wykres amplitudy wychyleń oscylatora jako funkcji
cze֒stości si ly wymuszajacej jest pokazany na lewym panelu rysunku 25. W obu przypad-
kach, zarówno, gdy ω2

0 ≤ 2λ2, jak i gdy ω2
0 > 2λ2, amplituda spada do zera, gdy Ω → ∞:

oscylator maja֒cy bezw ladność (m 6= 0) nie zda֒ża reagować znacza֒cym wychyleniem na
naste֒puja֒ce niemal natychmiast po sobie pochodza֒ce od si ly pchnie֒cia w przeciwnych
kierunkach. Gdy Ω = 0, rozwia֒zanie xszcz(t) redukuje sie֒ do sta lej xszcz = (F0/mω

2
0) cos δ,
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Rysunek 25: Po lewej: wykres amplitudy wychyleń oscylatora (w jednostkach F0/mω
2
0)

w funkcji cze֒stości Ω si ly wymuszaja֒cej dla λ/ω0 = 0.2 (krzywa niebieska z wyraźnym
maksimum) i 0.75 (krzywa czerwona). Po prawej: wykres fazy ϕ w funkcji Ω/ω0 oscylatora
dla λ/ω0 = 0.5 (krzywa niebieska) i 0.1 (krzywa czerwona).

co odpowiada spoczynkowi oscylatora w punkcie przesune֒tym w stosunku do centrum si ly
spre֒żystej; si la spre֒żysta Fspr = −mω2

0xszcz jest w tym po lożeniu równoważona przez si le֒
zewne֒trzna֒ F0 cos δ.

Faza ϕ zadaje opóźnienie maksymalnych wychyleń oscylatora w stosunku do maksy-
malnych wartości si ly pobudzaja֒cej (jeśli si la ta ma maksimum w chwili tF , to wychylenie
maksymalne wyste֒puje w chwili tF + ϕ/Ω). Faza ta, jak wynika z podanego wzoru, jest
bardzo ma la, gdy cze֒stość Ω si ly pobudzaja֒cej jest ma la (w stosunku do λ) - oscylator
mimo dzia lania si ly oporu, “nada֒ża” za si la֒ pobudzaja֒ca֒. Przy Ω = ω0 faza ϕ jest równa
π/2 (w chwilach, gdy si la jest maksymalna, wychylenie oscylatora zeruje sie֒) i da֒ży do π,
gdy Ω → ∞ (oscylator jest wtedy z si la֒ w przeciwfazie). Zależność fazy ϕ od t lumienia
λ ilustruje prawy panel rysunku 25. Przy λ = 0 zależność fazy ϕ od cze֒stości Ω si ly
degeneruje sie֒ do ϕ = 0, gdy Ω < ω0 i do ϕ = π, jeśli Ω > ω0. Rozwia֒zanie xszcz(t)
pozostaje jednak cia֒g la֒ funkcja֒ Ω (co widać z przytoczonej wyżej alternatywnej formy
rozwia֒zania) i przybiera wtedy postać

xsz(t) =
F0

m

1

|ω2
0 − Ω2| lim

tgϕ→0
cos(Ωt+ δ) cosϕ =

F0

m

1

ω2
0 − Ω2

cos(Ωt + δ) .

Trzeba jednak pamie֒tać, że gdy λ = 0, rozpatrywanie samego tylko rozwia֒zania szczególne-
go traci sens, bo zależna od sta lych dowolnych (czyli od warunków pocza֒tkowych) cze֒ść
pe lnego rozwia֒zania nie zanika z czasem.

Ponieważ w stanie ustalonym (gdy zanik la już pamie֒ć uk ladu o warunkach pocza֒tko-
wych) ruch uk ladu jest okresowy, można obliczyć średnia֒ (po okresie T = 2π/Ω) moc
pobierana֒ przezeń od si ly wymuszaja֒cej F (t). Chwilowa jej moc jest równa PF (t) =
F (t)ẋ(t), a uśredniona jest dana ca lka֒

PF =
1

T

∫ T

0

dt ẋ(t)F (t) .
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Bez straty ogólności przyjmiemy tu δ = 0. Wówczas

F (t) = F0 cos Ωt , ẋ(t) = −F0

m

Ω
√

(ω2
0 − Ω2)2 + 4λ2Ω2

sin(Ωt− ϕ) .

Potrzebna֒ ca lke֒ oblicza sie֒ najszybciej, gdy fukcje trygonometryczne zostana֒ zapisane
przez eksponensy:

P F = − F 2
0

Tm

Ω
√

(ω2
0 − Ω2)2 + 4λ2Ω2

∫ T

0

dt sin(Ωt− ϕ) cos Ωt

= − F 2
0

Tm

Ω
√

(ω2
0 − Ω2)2 + 4λ2Ω2

1

4i

∫ T

0

dt
[

eiΩt−iϕ − e−iΩt+iϕ
][

eiΩt + e−iΩt
]

= − F 2
0

Tm

Ω
√

(ω2
0 − Ω2)2 + 4λ2Ω2

T

4i

(

e−iϕ − eiϕ
)

=
F 2
0

2m

Ω
√

(ω2
0 − Ω2)2 + 4λ2Ω2

sinϕ .

Mimo iż chwilowa moc pobierana przez oscylator od si ly wymuszaja֒cej może być ujemna
(ẋ(t) ∝ sin(Ωt+ δ − ϕ) może być przeciwnego znaku niż F (t) ∝ cos(Ωt+ δ)), uśredniona
po okresie moc pobierana jest zawsze dodatnia bo, jak już zauważylísmy, faza ϕ należy
do przedzia lu [0, π]. Po podstawieniu tu wzoru na faze֒

sinϕ =
2λΩ

√

(ω2
0 − Ω2)2 + 4λ2Ω2

,

otrzymujemy

P =
F 2
0

m

λΩ2

(ω2
0 − Ω2)2 + 4λ2Ω2

.

Moc pobierana (średnio w okresie) przez oscylator jest ma la przy ma lych cze֒stościach
Ω si ly wymuszaja֒cej i spada również do zera, gdy cze֒stość ta staje sie֒ bardzo duża (w
porównaniu z cze֒stościa֒ w lasna֒ ω0 oscylatora). Maksimum osia֒ga, jak  latwo sprawdzić
szukaja֒c maksimum funkcji

f(x) =
x

(x− ω2
0)

2 + 4λ2x
,

przy Ω = ω0 (a nie przy cze֒stości rezonansowej, jak można by sa֒dzić) i jest tam równa
P

max

F = F 2
0 /4mλ. Oczywíscie, ponieważ ruch oscylatora jest stanem ustalonym, pobierana

przezeń od si ly wymuszaja֒cej moc musi w ca lości być tracona wskutek dzia lania si ly
oporu. Istotnie, chwilowa moc tej si ly, dana wzorem Pλ(t) = −2λmẋ2(t) (jak widać jest
ona zawsze ujemna - si la oporu w każdej chwili, a nie tylko w średniej, powoduje strate֒
energii oscylatora), po uśrednieniu po okresie

P λ = −2λm

T

∫ T

0

dt ẋ2(t) = −2λm

T

F 2
0

m2

Ω2

(ω2
0 − Ω2)2 + 4λ2Ω2

∫ T

0

dt sin2(Ωt− ϕ) ,

ponieważ średnia po okresie funkcji sin2 jest równa 1
2

(regu la, która֒ warto pamie֒tać), jest

dok ladnie równa wzie֒tej z przeciwnym znakiem uśrednionej mocy PF .
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Zadanie 2.9

Dokonuja֒c odpowiednich przybliżeń w ścis lym wzorze na zależność od czasu po lożenia
rozpatrywanego w zadaniu 2.8 oscylatora (i przyjmuja֒c, że faza δ si ly wymuszajacej jest
równa zeru) przedyskutować jakościowo charakter jego ruchu w różnych reżimach (tj. dla
różnych stosunków wielkości ω0, Ω i λ), jeśli w chwili t = 0 oscylator spoczywa lw swoim
po lożeniu równowagi (x(0) = 0, ẋ(0) = 0). W szczególności rozpatrzyć przypadek bez
t lumienia (λ = 0), oraz przypadki 0 < λ≪ |ω0 − Ω| i |ω0 − Ω| ≪ λ.

Rozwia֒zanie:

Aby zbadać zachowanie sie֒ oscylatora w różnych reżimach trzeba najpierw wypisać kom-
pletne rozwia֒zanie uwzgle֒dniaja֒ce warunki pocza֒tkowe x(0) = 0, ẋ(0) = 0, które ozna-
czaja֒, że w chwili t = 0, gdy si la pobudzaja֒ca jest maksymalna, oscylator znaduje sie֒
w w spoczynku w po lożeniu równowagi. Przyjmiemy też, że ω2

0 > λ2, czyli że t lumienie
oscylatora jest s labe. Ogólna postać zależnego od dwu sta lych dowolnych rozwia֒zania jest
naste֒puja֒ca (przypomnijmy, że ω =

√

ω2
0 − λ2):

x(t) = e−λt (A cosωt+B sinωt)

+
F0/m

(ω2
0 − Ω2)2 + 4λ2Ω2

[

(ω2
0 − Ω2) cos Ωt + 2λΩ sin Ωt

]

.

Przyje֒te warunki pocza֒tkowe, x(0) = 0, ẋ(0) = 0 prowadza֒ do równań

A+
F0

m

ω2
0 − Ω2

(ω2
0 − Ω2)2 + 4λ2Ω2

= 0 ,

−λA+ ωB +
F0

m

2λΩ2

(ω2
0 − Ω2)2 + 4λ2Ω2

= 0 .

Ich rozwia֒zaniami sa֒

A =
F0

m

Ω2 − ω2
0

(ω2
0 − Ω2)2 + 4λ2Ω2

, B = − F0

mω

λ(Ω2 + ω2
0)

(ω2
0 − Ω2)2 + 4λ2Ω2

.

Pe lne rozwia֒zanie z przyje֒tymi warunkami pocza֒tkowymi ma wie֒c postać:

x(t) =
F0/m

(ω2
0 − Ω2)2 + 4λ2Ω2

{

(ω2
0 − Ω2)

(

cos Ωt− e−λt cosωt
)

+2λΩ

(

sin Ωt− Ω2 + ω2
0

2Ωω
e−λt sinωt

)}

.

Można teraz zbadać różne przypadki.

1) Zbadajmy najpierw ruch w przypadku, gdy t lumienie nie wyste֒puje, tj., gdy λ = 0
(wtedy ω = ω0). Wypisane wyżej rozwia֒zanie redukuje sie֒ wtedy do

x(t) =
F0/m

ω2
0 − Ω2

(cos Ωt− cosω0t) .
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Rysunek 26: Wychylenia (w jednostkach F0/mω
2
0) oscylatora bez t lumienia (λ = 0)

pobudzanego si la֒ harmoniczna֒ F (t) = F0 cos((ω0 + ε)t) w funkcji ω0t. Po lewej: ε/ω0 =
−0.05; ścis ly wzór - linia niebieska; wzór przybliżony - linia czerwona. Po prawej w
przypadku ścis lego rezonansu Ω = ω0.

Szczególnie interesuja֒cy jest przypadek ruchu wymuszanego przez si le֒ o cze֒stości Ω bliskiej
cze֒stości w lasnej ω0 oscylatora. W przekszta lconej25 postaci powyższego wzoru26

x(t) = − 2F0/m

(ω0 + Ω)(ω0 − Ω)
sin

(

Ω − ω0

2
t

)

sin

(

Ω + ω0

2
t

)

,

można, gdy Ω = ω0 + ε ≈ ω0, zasta֒pić ω0 + Ω przez 2ω0. Daje to

x(t) ≈ F0

mω0ε
sinω0t sin

(

εt

2

)

.

Wychylenie oscylatora zmienia sie֒ wtedy niemal periodycznie, jak sinω0t, ale amplituda
jest modulowana przez wolnozmienny czynnik sin(1

2
εt). Zachowanie to ilustruje lewy panel

25Wykorzystujemy tu wzór

cosα− cosβ = −2 sin

(

α− β

2

)

sin

(

α+ β

2

)

,

(nie trzeba go szukać po Internetach... wystarczy pamie֒tać, że taki wzór istnieje i ma w jednej funkcji
po lowe֒ sumy ka֒tów, a w drugiej po lowe֒ różnicy; ponieważ po lewej kosinusy nie maja֒ w zapisie przez
eksponensy czynnika i w mianowniku, po lewej musi być albo iloczyn dwóch sinusów, albo dwóch kosi-
nusów (żeby nie by lo i w mianowniku) ale lewa strona zmienia znak przy zamianie α↔ β, wie֒c to musza֒
byś sinusy, a ogólny znak  latwo dopasować k lada֒c np. α = 0 i β = π, czy coś takiego.

26Alternatywnie można by próbować od razu po lożyć Ω = ω0 + ε, pisza֒c

cos((ω0 + ε)t) − cosω0t = cosω0t cos εt− sinω0t sin εt− cosω0t ,

i użyć argumentu, że cos εt ≈ 1, dzie֒ki czemu pierwszy i ostatni cz lon sie֒ zredukuja֒ i zostanie tylko
− sinω0t sin εt. Takie przybliżenie jest jednak s luszne tylko dla czasów t takich, że |εt| ≪ 1 i dość szybko
sie֒ za lamuje. W rezultacie otrzymany w ten sposób wzór daje dwukrotnie krótszy okres modulacji
(Tmod = 2π/ε zamiast Tmod = 4π/ε). Ścis la֒ granice֒ Ω = ω0 otrzymuje sie֒, oczywíscie, poprawna֒.

92



rysunku 26. W granicy ścis lego rezonansu, gdy Ω = ω0 otrzymuje sie֒

x(t) ≈ F0

2mω2
0

ω0t sinω0t .

Amplituda wychyleń narasta wtedy z czasem liniowo (zob. prawy panel rysunku 26).

2) Drugi przypadek to sytuacja, gdy λ ≪ |Ω − ω0| ≪ ω0. T lumienie jest s labe, ale
niezerowe, a odchylenie cze֒stości si ly wymuszaja֒cej od cze֒stości w lasnej oscylatora jest
zawsze wie֒ksze niż parametr λ (granicy |Ω − ω0| → 0 w tym reżimie nie można zatem
osia֒gna֒ć).

W tym przypadku w pe lnym rozwia֒zaniu można opuścić cz lony z sinusami (bo sa֒
proporcjonalne do parametru λ, który może być dowolnie ma ly) i zasta֒pić ω przez ω0:

x(t) ≈ F0/m

(ω2
0 − Ω2)2 + 4λ2Ω2

(ω2
0 − Ω2)

(

cos Ωt− e−λt cosω0t
)

.

Ponadto można pomina֒ć czynnik λ2Ω2 w mianowniku i, wprowadzaja֒c ε = Ω + ω0, spro-
wadzić powyższy wzór do

x(t) ≈ −F0/m

2ω0ε

(

cosω0t cos εt− sinω0t sin εt− e−λt cosω0t
)

.

Żeby  latwiej dostrzec jakościowy charakter ruchu, dobrze jest wyrażenie w nawiasie przed-
stawić w postaci A(t) cos(ω0t+ϕ(t)), tj. w postaci ruchu harmonicznego z (wolno) zmienna֒
z czasem amplituda֒ i (wolno) zmienna֒ z czasem faza֒. Przypuszczamy bowiem, że po do-
statecznie d lugim czasie ruch oscylatora powinien sie֒ jakoś ustabilizować. Trzeba zatem
tak dobrać A(t) i ϕ(t), by

A(t) cosϕ(t) = cos εt− e−λt ,

A(t) sinϕ(t) = sin εt .

 Latwo zobaczyć, że rozwia֒zaniem tego problemu sa֒

A(t) =
√

1 − 2e−λt cos εt+ e−2λt , tgϕ(t) =
sin εt

cos εt− e−λt
.

Zatem

x(t) ≈ −F0/m

2ω0ε

√

1 − 2e−λt cos εt+ e−2λt cos(ω0t+ ϕ(t)) .

Amplituda wychylenia da֒ży, gdy t→ ∞ do F0/2mω0ε, ale “po drodze” wykazuje lokalne
maksima i minima wypadaja֒ce, gdy

cos εt+
ε

λ
sin εt = e−λt .
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Rysunek 27: Wychylenia (w jednostkach F0/mω
2
0) oscylatora z t lumieniem pobudzanego

si la֒ harmoniczna֒ F (t) = F0 cos((ω0 + ε)t) w funkcji ω0t. Po lewej: ε/ω0 = −0.05,
λ/ω0 = 0.01; linie czerwona i zielona pokazuja֒ przebieg moduluja֒cego czynnika A(t)/2|ε|.
Po prawej: ε/ω0 = −0.01, λ/ω0 = 0.2; linie czerwona i zielona pokazuja֒ przebieg modu-
luja֒cego czynnika A(t)/2λ. Wykresy zosta ly otrzymane z przybliżonych wzorów podanych
w tekście; optycznie nie różnia֒ sie֒ jednak od otrzymywanych ze ścis lego rozwia֒zania.

Maksima te, z których najwyższe jest pierwsze, moga֒, jeśli |ε/λ| ≫ 1, znacznie prze-
kraczać asymptotyczna֒ wartość amplitudy, co widać, gdy sie֒ ja֒ zapisze eliminuja֒c z niej
czynnik e−λt z pomoca֒ wypisanego wyżej warunku wyznaczaja֒cego ekstremum:

Amax/min =

√

1 − cos2 εt+
ε2

λ2
sin2 εt .

Typowa֒ zależność od czasu wychylenia oscylatora w tym reżimie pokazuje lewy panel
rysunku 27.

3) Trzeci przypadek zachodzi, gdy |ω0 − Ω| ≪ λ≪ ω0, co oznacza, że t lumiony oscylator
jest bardzo blisko rezonansu (i granice֒ ścis lego rezonansu można osia֒gna֒ć). W tym przy-
padku w pe lnym rozwia֒zaniu można pomina֒ć cz lony z kosinusami (bo sa֒ mnożone przez
ω2
0 − Ω2, a zostawić należy te z sinusami. Ponadto, w mianowniku na przedzie można

po prostu po lożyć ω2
0 = Ω2 i przybliżyć przez 1 czynnik (Ω2 + ω2

0)/2Ωω. Po po lożeniu
Ω = ω0 + ε otrzymuje sie֒ wtedy

x(t) ≈ F0/m

2λω0

(

sinω0t cos εt+ cosω0t sin εt− e−λt sinωt
)

.

Jeśli jeszcze w ostatnim sinusie przybliżyć ω przez ω0, to można z pomoca֒ takiej samej
sztuczki, jak w poprzednim przypadku przedstawić przybliżone rozwia֒zanie w postaci

x(t) ≈ F0/m

2λω0
A(t) sin(ω0t + ϕ(t)) ,

w której A(t) i ϕ(t) sa֒ dane tymi samymi wzorami, co w poprzednim przypadku (można
tu jednak pod pierwiastkiem po lożyć ε = 0, co sprowadzi ca ly czynnik moduluja֒cy A(t)
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do 1 − e−λt). Typowa֒ zależność od czasu wychylenia oscylatora w tym reżimie pokazuje
prawy panel rysunku 27.

W sytuacji, gdy λ ∼ |Ω−ω0| trudno jest napisać jakieś przybliżenie ścis lego rozwia֒zania,
które by czyni lo charakter ruchu  latwo widocznym. Niemniej porównuja֒c oba panele ry-
sunku 27 można oczekiwać, że przy przechodzeniu of λ≪ |Ω−ω0| do |Ω−ω0| ≪ λ przez
reżim, w którym λ ∼ |Ω − ω0|, “falowania” obwiedni (krzywych czerwonej i zielonej)
powinny po prostu maleć.
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Zadanie 2.11

Podać rozwia֒zanie równania ruchu jednowymiarowego oscylatora harmonicznego o masie
m, cze֒stości ω0 i wspó lczynniku t lumienia 2γ = 2mλ pobudzanego si la֒ F (t) o dowolnej
zależności od czasu.

Rozwia֒zanie:

Najogólniejsze rozwia֒zanie równania

ẍ+ 2λẋ + ω2
0x = f(t) ,

gdzie f(t) = F (t)/m, ma postać sumy z dowolnymi wspó lczynnikami dwu liniowo nie-
zależnych rozwa֒zań x1(t) i x2(t) równania jednorodnego (z f(t) = 0) i jakiegokolwiek (tzw.
szczególnego) rozwia֒zania równania niejednorodnego. Gdyby to by lo równanie pierwszego
rze֒du, szczególne rozwia֒zanie równania niejednorodnego można by by lo znaleźć metoda֒
uzmiennienia sta lej w rozwia֒zaniu równania jednorodnego. Tu jednak mamy do czynienia
z równaniem drugiego rze֒du i jeśli przyjmiemy, że

xszcz(t) = C1(t)x1(t) + C2(t)x2(t) ,

to po wstawieniu tego xsz(t) do wyj́sciowego równania otrzymamy

C̈1x1 + 2Ċ1ẋ1 + C1ẍ1 + 2λ(Ċ1x1 + C1ẋ1) + ω2
0C1x1 +

C̈2x2 + 2Ċ2ẋ2 + C2ẍ2 + 2λ(Ċ2x2 + C2ẋ2) + ω2
0C2x2 = f(t) .

Nawet po wykorzystaniu tego, że x1 i x2 spe lniaja֒ równanie jednorodne pozostaje jedno
różniczkowe równanie na dwie nieznane funkcje (C1 i C2), i to równanie drugiego rze֒du z
zależnymi od czasu wspó lczynnikami:

C̈1x1 + 2Ċ1ẋ1 + 2λĊ1x1 +

C̈2x2 + 2Ċ2ẋ2 + 2λĊ2x2 = f(t) .

Z k lopotu wybawia nas to, że wystarczy znaleźć jedno jakiekolwiek rozwia֒zanie równania
niejednorodnego. Możemy wie֒c narzucić na C1 i C2 jakieś dodatkowe warunki pozwalaja֒ce
uprościć powyższe równanie. Okazuje sie֒, że w laściwa֒ sztuczka֒ jest zaża֒danie, by C1 i C2

nie by ly od siebie niezależne, lecz by spe lnia ly zwia֒zek

Ċ1 x1 + Ċ2 x2 = 0 .

Zwia֒zek taki oznacza, że także

C̈1x1 + Ċ1ẋ1 + C̈2x2 + Ċ2ẋ2 = 0 .

Wykorzystanie narzuconego warunku upraszcza równanie do równania pierwszego rze֒du:

Ċ1 ẋ1 + Ċ2 ẋ2 = f(t) .
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Narzucony zwia֒zek pozwala ponadto uzyskać zamknie֒te równania na C1 i C2: podsta-
wiaja֒c do powyższego równania

Ċ2 = −x1
x2
Ċ1 , lub Ċ1 = −x2

x1
Ċ2 ,

otrzymujemy dwa równania

Ċ1 =
x2

ẋ1x2 − x1ẋ2
f(t) ,

Ċ2 =
x1

ẋ2x1 − x2ẋ1
f(t) ,

które już  latwo sca lkować.27

W przypadku rozpatrywanego równania, dwoma liniowo niezależnymi rozwia֒zaniami
równania jednorodnego sa֒28

x1(t) = e−λt cosωt , x2(t) = e−λt sinωt , ω =
√

ω2
0 − λ2 ,

i  latwo znaleźć, że ẋ1x2 − x1ẋ2 = −ωe−2λt. Po wstawieniu tych rozwia֒zań do powyższych
wzorów znajdujemy, że

C1 = − 1

ω

∫ t

dτ
F (τ)

m
eλτ sinωτ ,

C2 =
1

ω

∫ t

dτ
F (τ)

m
eλτ cosωτ ,

Zatem szczególne rozwia֒zanie równania niejednorodnego ma postać

xszcz(t) = − 1

ω
e−λt cosωt

∫ t

dτ
F (τ)

m
eλτ sinωτ

+
1

ω
e−λt sinωt

∫ t

dτ
F (τ)

m
eλτ cosωτ .

Dolne granice ca lek sa֒ tu dowolne - różne ich wybory daja֒ funkcje C1(t) i C2(t) różnia֒ce
sie֒ o sta le, co daje rozwia֒zania xszcz(t) różnia֒ce sie֒ od siebie o pewna֒ kombinacje֒ li-
niowa֒ rozwia֒zań x1(t) i x2(t) równania jednorodnego. Ponieważ pe lne (najogólniejsze)
rozwia֒zanie wyj́sciowego równania ma postać

x(t) = A1 e
−λt cosωt+ A2 e

−λt sinωt− 1

ω
e−λt cosωt

∫ t

dτ
F (τ)

m
eλτ sinωτ

+
1

ω
e−λt sinωt

∫ t

dτ
F (τ)

m
eλτ cosωτ

= A1 e
−λt cosωt+ A2 e

−λt sinωt+
1

ω

∫ t

dτ
F (τ)

m
e−λ(t−τ) sin[ω(t− τ)] ,

27Przy okazji: wspólny mianownik tych wyrażeń nazywa sie֒ wrońskianem od Józefa Marii Hoene
Wrońskiego - polskiego fizyka, matematyka i filozofa, jednego z przedstawicieli polskiego mesjanizmu.
Pamie֒tamy: Mickiewicz, Towiański i te sprawy. Zob. Görgy Spiro “Mesjasze”. Choć, jak twierdzi Mi losz
(w “Ziemi Ulro”), Hoene-Wroński “wierszoklety i jego mistycznej bandy” nie znosi l...

28Ograniczamy sie֒ tu do przypadku ω2
0 > λ2 - zob. Zadanie 2.6
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wie֒c wybór dolnych granic ca lek (czy też jednej ca lki, w ostatnim wariancie wzoru, który
zak lada, że dolne granice obu ca lek sa֒ takie same) sprowadza sie֒ do przedefiniowania
dowolnych sta lych A1 i A2, które wyznacza sie֒ z warunków pocza֒tkowych. Jeśli warunki
pocza֒tkowe sa֒ zadane np. w t = 0, to wygodnym wyborem dolnych granic ca lek jest zero,
gdyż wówczas29 x(0) = A i ẋ(0) = ωB − λA.

Innym sposobem uzyskania tego rozwia֒zania jest sprowadzenie wyj́sciowego równania
różniczkowego drugiego rze֒du (z niejednorodnościa֒) do uk ladu dwu równań liniowych
pierwszego rze֒du z niejednorodnościa֒. Do znalezienia rozwia֒zania szczególnego równania
niejednorodnego można wtedy zastosować zwyk la֒ metode֒ (już nie wymagaja֒ca֒ sztuczek z
wrońskianami) uzmienniania sta lej, której role֒ gra wtedy dwuwymiarowy wektor. (Sposób
ten jest przedstawiony w moim skrypcie do analizy).

Jeszcze jedna֒ ważna֒ metoda֒ znalezienia rozwia֒zania szczególnego jest metoda wy-
korzystuja֒ca funkcje֒ Greena. W przypadku rozpatrywanego równania jest to funkcja
G(t− t′) spe lniaja֒ca równanie

G̈+ 2λĠ+ ω2
0G = δ(t− t′) ,

w którym funkcja po prawej stronie jest delta֒ Diraca, czyli “funkcja֒”30 równa֒ zeru
wsze֒dzie oprócz punktu t = t′, w którym przyjmuje ona wartość nieskończona֒, tak iż
dla dowolnego a > 0

∫ a

−a
dt δ(t) = 1 , lub inaczej :

∫ a

−a
dt h(t) δ(t) = h(0) .

Rozwia֒zanie xszcz(t) równania ẍ+ 2λẋ+ ω2
0x = f(t) jest wtedy dane wzorem

xszcz(t) =

∫ ∞

−∞
dt′G(t− t′) f(t′) .

Rzeczywíscie: dzia laja֒c na obie strony tej równości operatorem różniczkowym d2/dt2 +
2λd/dt+ω2

0 dostajemy po lewej odpowiednie pochodne xszcz, a po prawej, wprowadziwszy
ten operator pod znak ca lki i zadzia lawszy nim na G(t− t′), dostajemy pod ca lka֒ po dt′

iloczyn δ(t− t′)f(t′); zgodnie z podana֒ wyżej w laściwościa֒ funkcji delta, ca lka da wtedy
f(t). Aby znaleźć taka֒ funkcje֒ Greena wygodnie jest zapisać ja֒ w postaci transformaty

29Różniczkowanie xszcz(t) po t daje dwa wyrazy, ale oba one przy takim wyborze dolnej granicy ca lki
znikaja֒ w t = 0: jeden bierze sie֒ z różniczkowania po t funkcji podca lkowej - wyraz ten znika ponieważ
górna֒ granice֒ ca lki k ladziemy potem równa֒ zeru - a drugi z różniczkowania po t w górnej garnicy ca lki;
w wyniku tej operacji dostajemy funkcje֒ podca lkowa֒ wzie֒ta֒ w punkcie, który by l górna֒ granica֒ ca lki, a
to znów da zero, bo sinω(t− t) = 0.

30Ścísle rzecz biora֒c delta Diraca jest dystrybucja֒, tj. funkcjona lem liniowym F [h(t)] na przestrzeni
funkcji h(t), czyli mówia֒c je֒zykiem praktycznym, maszynka֒, do której wrzuca sie֒ funkcje֒ h(t) i otrzymuje
w rezultacie liczbe֒ wed lug przepisu, który jest liniowy wzgle֒dem funkcji h(t). Przepis F [h(t)] = h(0)
definiuje delte֒ Diraca jako taka֒ w laśnie dystrybucje֒.
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Fouriera31 z nieznana֒ na razie funkcja֒ G̃(Ω):

G(t− t′) =

∫ ∞

−∞

dΩ

2π
G̃(Ω) e−iΩ(t−t′) .

Ponieważ

δ(t− t′) =

∫ ∞

−∞

dΩ

2π
e−iΩ(t−t′) ,

równanie na funkcje֒ G(t− t′) przyjmuje postać

(

d2

dt2
+ 2λ

d

dt
+ ω2

0

)
∫ ∞

−∞

dΩ

2π
G̃(Ω) e−iΩ(t−t′) =

∫ ∞

−∞

dΩ

2π
e−iΩ(t−t′) ,

czyli, po “wjechaniu” z operatorem różniczkowym pod ca lke֒ i zadzia laniu nim na funkcje֒
eksponens,

∫ ∞

−∞

dΩ

2π
G̃(Ω) (ω2

0 − Ω2 − 2iλΩ) e−iΩ(t−t′) =

∫ ∞

−∞

dΩ

2π
e−iΩ(t−t′) .

Widać, że równanie be֒dzie spe lnione, jeśli

G̃(Ω) = − 1

Ω2 − ω2
0 + 2iλΩ

≡ − 1

[Ω + iλ +
√

ω2
0 − λ2 ][Ω + iλ−

√

ω2
0 − λ2 ]

.

Dopóki λ 6= 0, osobliwości mianownika znajduja֒ sie֒ poza osia֒ rzeczywista֒, po której bie-
gnie ca lkowanie po dΩ. Leża֒ one pod nia֒32 w punktach Ω± = −iλ±

√

ω2
0 − λ2 ≡ −iλ±ω

p laszczyzny zespolonej zmiennej Ω. Umożliwia to jawne obliczenie ca lki metoda֒ residuów.

31PonieważG jest funkcja֒ zmiennej maja֒cej interpretacje֒ czasu, przedstawiamy ja֒ jako ca lke֒ z minusem
w wyk ladniku funkcji eksponens. Transformaty Fouriera funkcji zmiennych przestrzennych, np. ψ(x),
przedstawiamy zaś w postaci ca lek z plusem w wyk ladniku:

ψ(x) =

∫

d3k

(2π)3
ψ̃(k) eik·x .

Konwencja w przypadku funkcji zmiennych przestrzennych x jest uzasadniona interpretacja֒ transformaty
Fouriera w mechanice kwantowej: reprezentuje one rozk lad funkcji falowej ψ(x) cza֒stki reprezentuja֒cej
kwantowomechaniczny stan tejże na funkcje falowe eik·x stanów be֒da֒cych stanami w lasnymi operatora
pe֒du, który ma postać P̂ = −i~∇; funkcja eik·x jest funkcja֒ w lasna֒ tego operatora z wartościa֒ w lasna֒
~k. Odwrotny znak wyk ladnika w przypadku funkcji zmiennej maja֒cej interpretacje֒ czasu bierze sie֒
oczywíscie ze Szczególnej Teorii Wzgle֒dności: wyk ladnik funkcji e−iΩt+ik·x jest, jeśli ~Ω i ~k transformuja֒
sie֒ przy przej́sciu do innego uk ladu odniesienia tak jak energia i pe֒d, niezmiennikiem. Wreszcie czynniki
2π w mianownikach ca lek sa֒ jak najbardziej w laściwe w kontekście fizyki statystycznej: d3k/(2π)3 jest
obje֒tościa֒ elementarnej komórki przestrzeni pe֒dowej. Tak wie֒c wszystkie inne konwencje w jakich mate-
matycy, a niestety cze֒sto i fizycy, zapisuja֒ transformaty Fouriera (inne znaki w wyk ladnikach, czynniki
2π w innych miejscach lub, horrendum!, jakieś

√
2π) powinny być przez studentów fizyki wytupane i

wybuczane!
32Jak sie֒  latwo zorientować, jest tak także i wtedy, gdy λ2 > ω2

0 , tj. gdy ω jest wielkościa֒ urojona֒.
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Zgodnie z lematem Jordana,33 gdy t− t′ > 0, kontur ca lkowania należy domkna֒ć dużym
pó lokre֒giem w dolnej pó lp laszczyźnie (ca lka po tylko tym pó lokre֒gu znika w granicy nie-
skończonego jego promienia). Oba punkty osobliwe, w których funkcja podca lkowa ma
bieguny proste, leża֒ wewna֒trz tego konturu. Otrzymujemy wtedy wyrażenie

−2πi

2π

{−e−λ(t−t′) e−iω(t−t′)
2ω

+
−e−λ(t−t′) eiω(t−t′)

−2ω

}

które można zwina֒ć do sinusa. Jeśli zaś t − t′ < 0 kontur ca lkowania należy domkna֒ć
dużym pó lokre֒giem w górnej pó lp laszczyźnie. Ponieważ wewna֒trz konturu ca lkowania
niema w tym przypadku żadnych osobliwości, ca lka daje zero. Zatem

G(t− t′) = θ(t− t′)
1

ω
e−λ(t−t

′) sinω(t− t′) .

Funkcja θ(t− t′) Heviside’a jest równa 1, gdy t− t′ > 0 i zero, gdy t− t′ < 0.
Rozwia֒zanie szczególne jest wie֒c dane przez

xszcz(t) =

∫ ∞

−∞
dt′ θ(t− t′)

F (t′)

mω
e−λ(t−t

′) sinω(t− t′) =

∫ t

−∞
dt′

F (t′)

mω
e−λ(t−t

′) sinω(t− t′) .

Funkcja θ(t− t′) “obcina” górna֒ granice֒ ca lki po dt′. Rozwia֒zanie to odpowiada znalezio-
nemu poprzednio w przypadku szczególnego wyboru (−∞) dolnej granicy wyste֒puja֒cej
tam ca lki.34

33Zob. mój skrypt z ca lkami zespolonymi.
34Warto tu jeszcze uczynić naste֒puja֒cy komentarz. Jeśli λ 6= 0, czyli gdy w uk ladzie wyste֒puje

t lumienie powoduja֒ce asymetrie֒ wzgle֒dem zmiany kierunku czasu, tj. nieodwracalność ruchu (pusz-
czony od ty lu film z nagranym takim ruchem ukaże ruch, który w sposób oczywisty jest “niefizyczny”
i funkcja xwspak(t) = xszcz(−t) go reprezentuja֒ca nie spe lnia równania ruchu ẍ + 2λẋ + ω2

0x = f(−t)).
Funkcja Greena jest w takim przypadku ca lkowicie przyczynowa. Wyraża sie֒ to funkcja֒ θ(t − t′) równa֒
zeru gdy t < t′: na xszcz(t) w chwili t dane ca lka֒

xszcz(t) =

∫ ∞

−∞

dt′G(t− t′) f(t′) ,

wp lywa tylko przebieg si ly f(t′) w chwilach wcześniejszych od t.
Jeśli λ = 0, funkcja podca lkowa we wzorze na funkcje֒ G(t− t′) ma osobliwości na osi rzeczywistej, czyli

na drodze ca lkowania. Aby znaleźć G(t−t′), trzeba nadać ca lce sens, podaja֒c jakís sposób ominie֒cia tych
osobliwości. Sposobów jest kilka: można np. przesuna֒ć oba bieguny infinitezymalnie pod oś rzeczywista֒,
co da przyczynowa֒ fukcje֒ Greena, tak jak wtedy, gdy λ 6= 0. Można też przesuna֒ć oba nad oś, co da
funkcje֒ antyprzyczynowa֒, równa֒ zeru gdy t > t′ - wartość xszcz(t) w chwili t be֒dzie wtedy wyznaczona
przez zachowanie sie֒ si ly w przysz lości, ale ponieważ równanie ruchu jest teraz niezmiennicze wzgle֒dem
odwrócenia czasu, przysz lość jest nieodróżnialna od przesz lości. Można wreszcie przesuna֒ć jeden biegun
pod oś, a drugi nad; prowadzi to do tzw. feynmanowskiej funkcji Greena, szeroko wykorzystywanej
w kwantowej teorii pola (propagator feynmanowski!). Oczywíscie wszystkie funkcje Greena uzyskane z
różnych przepisów spe lniaja֒ równanie G̈ + ω2

0G = δ(t − t′) - różnia֒ sie֒ one o jakieś rozwia֒zanie ∆G
równania jednorodnego ∆G̈+ ω2

0∆G = 0.
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Rozwia֒zanie z funkcja֒ Greena można także otrzymać mniej “apriorycznie”, argumen-
tuja֒c, że każda֒ si le֒ F (t) można przedstawić w postaci superpozycji si lo różnych harmo-
nicznych zależnościach od czasu, czyli po prostu w postaci ca lki Fouriera

F (t)

m
=

∫ ∞

−∞

dΩ

2π

F̃ (Ω)

m
e−iΩt .

Amplitudy F̃ (Ω)/m sa֒ dane przez odwrotna֒ transformate֒:

F̃ (Ω)

m
=

∫ ∞

−∞
dt
F (t)

m
eiΩt .

Ponieważ funkcja F (t) jest rzeczywista, zespolone amplitudy F̃ (Ω) spe lniaja֒ zwia֒zek
F̃ ∗(Ω) = F̃ (−Ω). Z Zadania 2.8 znamy już rozwia֒zanie równania

z̈ + 2λż + ω2
0z =

F̃ (Ω)

m
e−iΩt .

Ma ono postać:

z(t,Ω) =
F̃ (Ω)

m

1

ω2
0 − Ω2 − 2iλΩ

e−iΩt .

(w porównaniu z Zadaniem 2.8 zosta l tu zmieniony znak Ω). Rozwia֒zanie równania z
dowolna֒ si la֒ F (t)/m musi wie֒c być, dzie֒ki liniowości, superpozycja֒ takich rozwia֒zań, tj.
ca lka֒ po Ω:

zszcz(t) =

∫ ∞

−∞

dΩ

2π

F̃ (Ω)

m

1

ω2
0 − Ω2 − 2iλΩ

e−iΩt .

Wstawiaja֒c tu transformate֒ F̃ (Ω)/m si ly wyrażona֒ przez ca lke֒ z samej si ly F (t) i zamie-
niaja֒c kolejność ca lkowań otrzymujemy35

xszcz(t) =

∫ ∞

−∞
dt′

F (t′)

m

∫ ∞

−∞

dΩ

2π

1

ω2
0 − Ω2 − 2iλΩ

eiΩt
′

e−iΩt ,

co jest tym samym, co dostalísmy metoda֒ funkcji Greena. Aby to zobaczyć, wystarczy
napisać

xszcz(t) =

∫ ∞

−∞
dt′

F (t′)

m

∫ ∞

−∞

dΩ

2π

−e−iΩ(t−t′)

[Ω + iλ−
√

ω2
0 − λ2 ][Ω + iλ+

√

ω2
0 − λ2 ]

,

i wykonać ca lke po dΩ metoda֒ residuów, by otrzymać (ω ≡
√

ω2
0 − λ2)

xszcz(t) =

∫ ∞

−∞
dt′

F (t′)

mω
θ(t− t′) e−λ(t−t

′) sin[ω(t− t′)] .

35Powinnísmy tu jeszcze wzia֒ć cze֒ść rzeczywista֒: xszcz(t) =Re(zszcz(t)), ale jak  latwo sie֒ zorientować
(co potwierdza wynik końcowy), ponieważ F̃ ∗(Ω) = F̃ (−Ω), rozwia֒zanie zszcz(t) jest już samo z siebie
rzeczywiste.
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Zadanie 2.14

Rozwia֒zuja֒c równanie Newtona z si la֒ Lorentza F = q(E + v × B), przedyskutować
ruch cza֒stki o  ladunku elektrycznym q i masie m w sta lych i jednorodnych, wzajem-
nie prostopad lych polach: elektrycznym E i magnetycznym B, w zależności od pre֒dkości
pocza֒tkowej v0 cza֒stki. Sprawdzić otrzymane rozwia֒zanie r(t) w przypadku znikania pola
magnetycznego lub elektrycznego. Przedyskutować także wszystkie możliwe typy rzutów
toru cza֒stki na p laszczyzne֒ prostopad la֒ do pola magnetycznego w zależności od rzutu
pre֒dkości cza֒stki na te֒ p laszczyzne֒ w chwili wybranej za pocza֒tkowa֒.

Rozwia֒zanie:

Rówananie Newtona determinuja֒ce ruch cza֒stki ma (w tym nienormalnym uk ladzie SI)
postać

m
d2

dt2
r(t) = q (E + v(t)×B) .

Aby rozpisać je na poszczególne sk ladowe, wybieramy (zgodnie z wielowiekowa֒ tradycja֒)
oś z kartezjańskiego uk ladu odniesienia tak, by pokrywa la sie֒ z kierunkiem pola magne-
tycznego, a oś y kierujemy wzd luż pola elektrycznego:

E = eyE , B = ezB .

Ponieważ pola E i B sa֒ sta le i jednorodne, możemy, bez straty ogólności, wybrać pocza֒tek
tego uk ladu odniesienia w punkcie, w którym cza֒stka znajduje sie֒ w chwili t = 0. Wa-
runkami pocza֒tkowymi sa֒ wie֒c

r(0) = r0 = 0 , oraz ṙ(0) = v0 .

Je??li v(t) = exẋ + ey ẏ + ez ż, to

v(t)×B =

∣

∣

∣

∣

∣

∣

ẋ ẏ ż
0 0 B
ex ey ez

∣

∣

∣

∣

∣

∣

= exB ẏ − eyB ẋ .

Rozpisane na sk ladowe równanie Newtona ma wie֒c postać

ẋ̇ = ωB ẏ ,

ẏ̇ = −ωBẋ+ ωB
E

B
,

ż̇ = 0 .

Zosta lo tu wprowadzone tradycyjne oznaczenie tzw. cze֒stości cyklotronowej

ωB ≡ qB

m
.

Ponieważ trzecie równanie jest niezależne od dwu pierwszych, jego rozwia֒zanie jest oczy-
wiste (uwzgle֒dniamy tu, że z(0) = 0): z(t) = vz0t. Zauważmy przy tym, że zadanie można
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by loby uogólnić odrzucaja֒c warunek prostopad lości pól E i B: można by wtedy przyja֒ć
E i B: można by wtedy przyja֒ć B = ezB i E = eyE + ezE

z; dwa pierwsze równania
wyznaczaja֒ce ruch cza֒stki w p laszczyźnie xy pozosta lyby wtedy bez zmian, a trzecie
przybra loby postać z̈ = qEz/m, nadal niezależna֒ od dwu pozosta lych i rozwia֒zaniem jego
by laby funkcja z(t) = vz0t + (qEz/2m)t2.

Dwa pierwsze równania można rozwia֒zać kilkoma sposobami. Tu podamy dwa z nich.

Sposób pierwszy: Drugie z równań, ÿ = −ωBẋ + ωB(E/B), można przepisać w postaci

d

dt

(

ẏ + ωBx− ωB
E

B
t

)

= 0 ,

z której wynika, iż

ẏ(t) + ωBx(t) − ωB
E

B
t = Cy .

Sta la֒ Cy można natychmiast wyznaczyć z warunków pocza֒tkowych obliczaja֒c lewa֒ strone֒
powyższej równości dla t = 0. Ponieważ x(0) = 0, znajdujemy w ten sposób Cy = vy0 .
Podstawiaja֒c teraz tak znalezione ẏ(t) do pierwszego równania, otrzymujemy zamknie֒te
równanie różniczkowe drugiego rze֒du na x(t)

ẋ̇ + ω2
Bx = ω2

B

E

B
t+ ωBv

y
0 .

Jest to oczywíscie równanie oscylatora harmonicznego o cze֒stości ωB poddanego dzia laniu
zależnej od czasu “si ly pobudzaja֒cej” F (t) = m(ω2

B(E/B)t+ωBv
y
0). Ponieważ jednak owa

si la jest od czasu zależna liniowo, by loby ma lo praktyczne korzystać z wyprowadzonego
w Zadaniu 2.11 ogólnego rozwia֒zania tego równania. (Ale jak ktoś chce, to prosze֒ bardzo
- to może być pożyteczne ćwiczenie.) Zamiast tego lepiej pos lużyć sie֒ tu znana֒ sztuczka֒
i przepisać to równanie w zmodyfikowanej postaci

d2

dt2

(

x− E

B
t− vy0

ωB

)

+ ω2
B

(

x− E

B
t− vy0

ωB

)

= 0,

czyli w postaci ξ̈ + ω2
Bξ = 0 z ξ(t) = x(t) − (E/B)t− (vy0/ωB), w której rozwi??zanie jest

ju?? oczywiste: ξ(t) = A cosωBt +D sinωBt, czyli

x(t) =
vy0
ωB

+
E

B
t + A cosωBt+D sinωBt .

Warunki pocza֒tkowe x(0) = 0, ẋ(0) = vx0 pozwalaja֒ od razu wyznaczyć sta le A i D:
A = −vy0/ωB, D = vx0/ωB −E/BωB, co prowadzi do

x(t) =
E

B
t +

vy0
ωB

(1 − cosωBt) +
1

ωB

(

vx0 −
E

B

)

sinωBt .
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Maja֒c już jawne rozwia֒zanie x(t), można teraz wrócić do równania na y(t):

ẏ(t) = vy0 + ωB
E

B
t− ωBx(t) .

Wstawiaja֒c tu znalezione x(t), otrzymujemy równanie

d

dt
y = vy0 cosωBt−

(

vx0 −
E

B

)

sinωBt ,

które już jest  latwo sca lkować. Zauważmy jednak, że po prawej stronie tego równania
nie wyste֒puje cz lon liniowy w t. Oznacza to, że vy(t) = ẏ(t) nie rośnie liniowo z czasem,
mimo, że to w laśnie w tym kierunku (na p laszczyźnie xy) na cza֒stke֒ dzia la sta la si la
pochodza֒ca od pola elektrycznego E! Ca lkuja֒c powyższe równanie, otrzymujemy

y(t) = C +
vy0
ωB

sinωBt+
1

ωB

(

vx0 −
E

B

)

cosωBt ,

a sta la֒ ca lkowania C ustalamy z warunku y(0) = 0: C = −(vx0 − E/B)/ωB.

Sposób drugi: Dwa równania

ẍ− ωBẏ = 0 ,

ÿ + ωBẋ = ωB
E

B
,

po pomnożeniu drugiego przez i dodajemy do siebie stronami. Wprowadzamy przy tym
zespolona֒ zmienna֒

ξ(t) = x(t) + iy(t) ,

na która֒ w ten sposób otrzymujemy równanie

ξ̈ + iωB ξ̇ = iωB
E

B
.

Równanie to przepisujemy w równoważnej postaci

d2

dt2

(

ξ − E

B
t

)

+ iωB
d

dt

(

ξ − E

B
t

)

= 0 .

Na zespolona֒ zmienna֒ η(t) ≡ ξ(t) − (E/B)t mamy zatem równanie

d

dt
(η̇ + iωBη) = 0 , czyli η̇ + iωBη = C .

Ma ono oczywiste rozwia֒zanie

η(t) = −i C
ωB

+ D e−iωBt .
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Sta֒d

ξ(t) ≡ x(t) + iy(t) =
E

B
t− i

C

ωB
+ D (cosωBt− i sinωBt) .

Zespolone sta le C i D wyznaczamy teraz z warunków pocza֒tkowych ξ(0) = 0 oraz ξ̇(0) =
vx0 + ivy0 . Daje to równania

−i C
ωB

+ D = 0 ,

E

B
− iωBD = vx0 + ivy0 ,

czyli

D =
i

ωB

(

−E
B

+ vx0 + ivy0

)

, C = −E
B

+ vx0 + ivy0 .

Obydwiema metodami dostajemy zatem te same rozwia֒zania

x(t) =
E

B
t+

vy0
ωB

(1 − cosωBt) +
1

ωB

(

vx0 −
E

B

)

sinωBt ,

y(t) =
vy0
ωB

sinωBt+
1

ωB

(

vx0 −
E

B

)

(−1 + cosωBt) ,

z(t) = vz0t .

Od razu zauważmy, iż z rozwia֒zania tego wynika, że jeśli vy0 = 0, a vx0 = E/B, to rzut
cza֒stki na p laszczyzne֒ xy przemieszcza sie֒ ruchem jednostajnym prostoliniowym wzd luż
osi x ze sta la֒ pre֒dkościa֒ v = ex(E/B). Jest to możliwe, gdyż si la qv × B ma wtedy
dok ladnie kierunek si ly qE, te֒ sama֒ co ona wartość, ale przeciwny zwrot. Si ly te wie֒c
ca lkowicie sie֒ równoważa֒.

W ramach kontroli poprawności uzyskanego rozwia֒zania zbadamy jeszcze inne przy-
padki graniczne.

• B = 0. W tym przypadku powinnísmy (na p laszczyźnie xy) otrzymać ruch jedno-
stajnie przyspieszony w kierunku osi y i jednostajny w kierunku osi x. Pamie֒taja֒c,
że ωB ∝ B, rozwijamy funkcje sinωBt i cosωBt i bierzemy granice֒ ωB → 0:

x(t) =
E

B
t +

vy0
ωB

(

1 − 1 +
1

2
ω2
Bt

2 + . . .

)

+
1

ωB

(

vx0 −
E

B

)

(ωBt+ . . . )

=
E

B
t + vx0 t−

E

B
t+ O(ωBt

2) −→ vx0 t .

i podobnie

y(t) =
vy0
ωB

(ωBt+ . . . ) +
1

ωB

(

vx0 −
E

B

)

(−1 + 1 − 1

2
ω2
Bt

2 + . . . )

= vy0t+
1

2

E

BωB
ω2
Bt

2 + O(ωBt) −→ vy0t +
qE

2m
t2 .
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• E = 0. Rozwia֒zania (na p laszczyźnie xy) redukuja֒ sie֒ w tym przypadku do

x(t) =
vy0
ωB

(1 − cosωBt) +
vx0
ωB

sinωBt ,

y(t) =
vy0
ωB

sinωBt+
vx0
ωB

(−1 + cosωBt) .

Pozwalaja one znaleźć tor ruchu cza֒stki (przenosimy wyrazy bez funkcji trygono-
metrycznych na lewa֒ strona֒, podnosimy oba tak otrzymane równania stronami do
kwadratu i dodajemy stronami do siebie):

(

x− vy0
ωB

)2

+

(

y +
vx0
ωB

)2

=
vx20 + vy20

ω2
B

.

Torem ruchu jest wie֒c w tym przypadku okra֒g o promieniu R = m|v0⊥|/q|B|,
gdzie v0⊥ jest prostopad la֒ do pola magnetycznego sk ladowa֒ pre֒dkości pocza֒tkowej.
Po lożenie środka okre֒gu zależy od wartości sk ladowych vx0 i vy0 . D lugość |v0⊥| tej
pre֒dkości nie ulega w trakcie ruchu zmianie, gdyż dzia laja֒ca na  ladunek si la wy-
twarzana przez pole magnetyczne, be֒da֒c zawsze prostopad la do chwiliwej predkości
 ladunku, nie wykonuje pracy:

WB =

∫

dtv(t)·FB =

∫

dtv(t)·(qv×B) = 0 .

Okresem obiegu cza֒stki po okre֒gu jest T = 2π/ωB. Jeśli sk ladowa vz0 pre֒dkości
pocza֒tkowej nie jest zerowa (ale pole elektryczne E nie ma sk ladowej wzd luż pola
B), cza֒stka porusza sie֒ po linii śrubowej (której rzutem na p laszczyzne֒ xy jest
okra֒g) o skoku l = vz0T . Jeśli zaś pole elektryczne E ma niezerowa֒ sk ladowa֒ wzd luż
pola B, skok linii śrubowej rośnie liniowo z czasem.

W ogólnym przypadku, gdy niezerowe sa֒ oba pola ruch cza֒stki na p laszczyźnie xy jest
z lożeniem ruchu po okre֒gu z dryfem w kierunku osi x z pre֒dkościa֒ równa֒ Vdryf = ex(E/B).
Aby sie֒ o tym przekonać można, tak jak w przypadku zerowego pola E, dodać stronami
podniesione do kwadratu równania, co da

(

x− E

B
t− vy0

ωB

)2

+

(

y +
1

ωB

(

vx0 −
E

B

))2

=
vy

2

0

ω2
B

+
1

ω2
B

(

vx0 −
E

B

)2

.

Otrzymany zwia֒zek x z y nie jest wprawdzie równaniem toru w ścis lym sensie, gdyż czas t
nie zosta l zeń ca lkowicie wyeliminowany, ale pozwala przekonać sie֒ o s luszności powyższej
interpretacji: przedstawia on bowiem okra֒g, któreg środek przesuwa sie֒ równolegle do osi
x ze sta la֒ pre֒dkościa֒ Vdryf = ex(E/B).

Jakościowo (i dość nieprecyzyjnie) powstawanie dryfu można zrozumieć tak. Jeśli
cza֒stka na ladowana (dodatnio) porusza sie֒ w p laszczyźnie xy po okre֒gu zgodnie z ruchem
wskazówek zegara, to w okolicach “godz. 9” jest przyspieszana przez pole elektryczne, a
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w okolicach “godz. 3” jest przez to pole opóźniana. W rezultacie, w okolicach “godz. 12”,
gdy porusza sie֒ w prawo ma wie֒ksza֒ pre֒dkość niż w okolicach “godz. 6”, gdy porusza sie֒
w lewo. Skutkiem tego w czasie obiegania ca lego okre֒gu przemieści sie֒ troche֒ w prawo.

Ten sam wniosek można także otrzymać, jak teraz pokażemy, rozpatruja֒c ten ruch
wzgle֒dem uk ladu poruszaja֒cego sie֒ w kierunku osi x z odpowiednio dobrana֒ pre֒dkościa֒.
Równanie Newtona m a = Fmech jest niezmiennicze wzgle֒dem transformacji Galileusza,
przy czym wyste֒puja֒ce w nim zwyk le si ly “mechaniczne” Fmech (zaliczaja֒c do takich
również si ly grawitacji traktowanej po newtonowsku, czyli nierelatywistycznie) sa֒ takie
same w dwu uk ladach poruszaja֒cych sie֒ jeden wzgle֒dem drugiego z pre֒dkościa֒ V. Si ly
elektromagnetyczne zachowuja֒ sie֒ jednak w zasadzie inaczej, gdyż teoria Maxwella jest
niezmiennicza wzgle֒dem transformacji Lorentza, a nie Galileusza. W zwia֒zku z tym, aby
dowiedzieć sie֒, jakie pola elektromagnetyczne E′(t′, r′) i B′(t′, r′) wyste֒puja֒ w uk ladzie
poruszaja֒cym sie֒, gdy w uk ladzie nieruchomym wyste֒puja֒ pola E(t, r) i B(t, r), przyto-
czymy tu dla bezpieczeństwa pe lne relatywistyczne wzory i “przykroimy” je do ma lych
wzgle֒dnych pre֒dkości V. Wzory te (w uk ladzie SI) maja֒ postać:

E′ = γ(E + V×B) − γ2

1 + γ

V

c

(

V

c
·E
)

,

B′ = γ

(

B − V

c
×E

c

)

− γ2

1 + γ

V

c

(

V

c
·B
)

,

gdzie γ = 1/
√

1 − V 2/c2. Po lewej stronie pola E′ i B′ sa֒ tu wzie֒te w czasoprzestrzen-
nym punkcie (t′, r′), a pola E i B po prawej stronie w punkcie (t, r) zwia֒zanym z (t′, r′)
transformacja֒ Lorentza (ponieważ w naszym problemie pola sa֒ sta le i jednorodne, jest to
tu nieistotne). Z dok ladnościa֒ do wyrazów ma lych, gdy |V|/c ≪ 1 (a γ ≈ 1) można te
wzory przybliżyć przez

E′ ≈ E + V×B , B′ ≈ B ,

a czas t′ utożsamić z t. W uk ladzie poruszaja֒cym sie֒ z pre֒dkościa֒ V równanie Newtona
be֒dzie mia lo zatem postać (v′ jest pre֒dkościa cza֒stki w primowanym uk ladzie odniesienia)

m
d

dt′
v′ ≈ m

d

dt
v′ = q(E′ + v′×B′) ≈ q(E + V×B + v′×B) .

Ponieważ po praawej stronie v′+V ≈ v, wiec rzeczywíscie w rozpatrywanym przybliżeniu
prawa strona równania Newtona nie zmienia sie֒ (tj. si la jest taka sama, jak w uk ladzie
pierwotnym bo wyste֒puja֒ca w sile Lorentza pre֒dkość v jest ta֒, jaka֒ cza֒stka mia la w
tamtym uk ladzie). Jeśli wybierzemy

V =
E×B

|B|2 ,

to wówczas (ogólnie)

V×B = −E + B
(E·B)

|B|2 .
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Przy prostopad lych (w wyj́sciowym uk ladzie odniesienia) polach E i B drugi cz lon w
powyższym wzorze znika i w uk ladzie poruszaja֒cym sie֒ z pre֒dkościa֒ V o wartości |V| =
E/B pole E zostaje wyeliminowane i ruch, jak już to analizowalísmy, jest ruchem po
okre֒gu.

Przeanalizujemy teraz charakter toru cza֒stki na p laszczyźnie xy w zależności od jej
pre֒dkości pocza֒tkowej. Aby uprościć to zadanie, przyjmiemy, że vy0 = 0. Nie ogranicza to
ogólności, gdyż pre֒dkość

ẏ(t) = vy0 cosωBt +

(

E

B
− vx0

)

sinωBt ,

nieuchronnie zeruje sie֒ co jakís czas (równanie ẏ(t) = 0 ma nieskończenie wiele rozwia֒zań,
bo funkcja tgωBt jest okresowa i przyjmuje wszystkie możliwe wartości od −∞ do +∞).
Zatem wybór vy0 = 0 jest w gruncie rzeczy wyborem chwili od której liczony jest czas t.
Przy tym uproszczeniu, równania, które trzeba analizować, to36

x(t) =
E

B
t+

1

ωB

(

vx0 −
E

B

)

sinωBt ,

y(t) =
1

ωB

(

vx0 −
E

B

)

(−1 + cosωBt) .

Możemy teraz rozpatrzyć różne przypadki (zgodnie z tym, co powiedzielísmy wyżej, przy-
padki te wyczerpuja֒ zbiór wszystkich możliwości ruchu w skrzyżowanych polach B i E;
każdy ruch jest klasyfikowany pod lug wartości, jaka֒ przyjmuje x-owa sk ladowa pre֒dkości
w chwili, gdy zeruje sie֒ jej y-kowa sk ladowa).

• vx0 = 0. Rozwia֒zania upraszczaja֒ sie֒ do

x(t) =
E

B
t− E

BωB
sinωBt ,

y(t) =
E

BωB
(1 − cosωBt) .

Tor ruchu jest w tym przypadku najpospolitsza֒ cykloida֒. Jest to krzywa p laska
jaka֒ zakreśla punkt na obwodzie ko la tocza֒cego sie֒ po p laszczyźnie. Jest wie֒c to
cia֒g z lekka sp laszczonych  luków opartych na prostej y = 0 (zmienna y nigdy nie
jest ujemna) - coś jak warszawskie Arkady Kubickiego (zob. lewy panel rysunku
28); dwa sa֒siednie  luki w miejscu stykania sie֒ ze soba֒ i z prosta֒ tworza֒ dziubek.
Charakter zmiany wspó lrze֒dnych x i y w okolicach takich dziubków można wydobyć
patrza֒c na powyższe wzory w granicy t ∼ 0:

x(t) ≈ E

6B
ω2
Bt

3 , y(t) ≈ E

2B
ωBt

2 .
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Rysunek 28: Rzut na p laszczyzne֒ xy toru cza֒stki na ladowanej dodatnio poruszaja֒cej sie֒
w skrzyżowanych polach elektrycznym i magnetycznym E = Eey, B = Bez , (E,B > 0).
Po lożenia x i y sa֒ tu mierzone w jednostkach E/BωB. Po lewej: vx0 = 0 - torem sa֒ Arkady
Kubickiego. Po prawej: vx0 = −0.4 (w jednostkach E/B).

Wynika z tych przybliżeń, że gdy t rośnie od zera, rosna֒ zarówno x jak i y, ale y
rośnie szybciej - sta֒d ostrość “dziubków” (dzie֒ki periodyczności ruchu w zmiennej
y, ten sam charakter ma przechodzenie przez kolejne “dziubki”).

• vx0 < 0. Rozwijaja֒c ścis ly wzór na x(t) wokó l t = 0 znajdujemy, że x(t) ≈ vx0 t
- dla ma lych dodatnich t wspó lrze֒dna x jest ujemna, czyli w swoim ruchu wzd luż
osi x punkt przez chwile֒ sie֒ cofa (w chwili t = 0 punkt jest w x = 0). Jest to
jednak efekt chwilowy (wiemy, że w sumie wyste֒puje dryf do przodu i że jest on
niezależny od wartości vx0 ). Ponadto, ponieważ vx0 < 0, zmienna y nigdy nie jest
ujemna. Wynika sta֒d, że “dziubki” arkad Kubickiego wyg ladzaja֒ sie֒, tj. przechodza֒
w precelki. Oczywíscie w punktach najwie֒kszego wzniesienia, tj. tam, gdzie ẏ = 0
i y > 0, czyli gdy cosωBt = −1 (ωBt = π(2n + 1)), pre֒dkość w kierunku osi
x nie znika, ẋ = 2(E/B) − vx0 > 0 (na dole zaś, gdy ẏ = 0 i x = 0, tj. gdy
cosωBt = 1 dla ωBt = 2nπ, jak już stwierdzilísmy, pre֒dkość w tym kierunku jest
ujemna, ẋ = vx0 < 0). Wielkość precelków oraz maksymalny ich zasie֒g w kierunku
y sa֒ oczywíscie tym wie֒ksze, im bardziej ujemna jest wartość vx0 (gdy −vx0 ≫ E/B
rzut toru przypomina raczej kolejne okre֒gi nieznacznie tylko przesunie֒te wzgle֒dem
siebie w kierunku dryfu).

• 0 < vx0 < E/B. W tym przypadku zmienna y(t) nadal nigdy nie jest ujemna, (bo
vx0 −E/B < 0) i narasta, gdy t >∼ 0 jak

y(t) ≈ 1

2

(

E

B
− vx0

)

ωBt + . . . ,

W punktach o y = 0 (czyli, gdy cosωBt = 1) ẋ = vx0 > 0; także w punktach
najwyższego wzniesienia nad oś x-ów (gdy cosωBt = −1) ẋ = 2(E/B) − vx0 >
0 (w istocie predkość ẋ(t) jest stale dodatnia i zmienia sie֒ w zakresie od vx0 do
2(E/B)−vx0 ). Najwyższe wzniesienie, czyli maksymalna wartość y(t) maleje jednak
ze wzrostem vx0 i, gdy vx0 = E/B, staje sie֒ ono równe zeru, y(t) ≡ 0 - ruch przechodzi
wtedy w analizowany już dryf.

36Najlepiej mierzyć vx0 w jednostkach E/B, x i y w jednostkach E/BωB, a czas w jednostkach 1/ωB;
wtedy wzory, które analizujemy maja֒ postać x = t+ (v − 1) sin t, y = (1 − v)(1 − cos t).
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Rysunek 29: Rzut na p laszczyzne֒ xy toru cza֒stki na ladowanej dodatnio poruszaja֒cej sie֒
w skrzyżowanych polach elektrycznym i magnetycznym E = Eey, B = Bez , (E,B > 0).
Po lożenia x i y sa֒ tu mierzone w jednostkach E/BωB. Po lewej: vx0 = 0.3 (w jednostkach
E/B) - dziubki Arkad Kubickiego sie֒ wyg ladzaja֒. Po prawej: vx0 = 1.3 (w jednostkach
E/B) - wyg ladzone arkady przesuwaja֒ sie֒ poniżej osi y.

• E/B < vx0 < 2(E/B). W tym przypadku z kolei zmienna y(t) nigdy nie jest
dodatnia, pre֒dkość ẋ(t) jest też stale dodatnia. Jakościowo ruch wygla֒da podobnie
jak w poprzednim przypadku, tj. dla 0 < vx0 < E/B, tylko wyg ladzone “coko ly”
arkad sa֒ poniżej osi y i sa֒ przesunie֒te w prawo. Dok ladniej: tory odpowiadaja֒ce
0 < vx0 < E/B i E/B − vx0 sa֒ wzgle֒dem siebie przesunie֒te o 2E/BωB wzd luż osi y
i o πE/BωB wzd luż osi x.

• vx0 = 2(E/B). W tym przypadku powstaja֒ dziubki w punktach o minimalnej (mak-
symalnie ujemnej) wartości zmiennej y(t), czyli tam, gdzie ẏ = 0 i y < 0 - pre֒dkość
ẋ jest tam równa zeru (oczywíscie ẋ = vx0 tam, gdzie ẏ = 0 i y = 0). Tor wie֒c
przypomina znów Arkady Kubickiego, tylko przesunie֒te w dó l o −2(E/B)/ωB i w
prawo o πE/BωB.

• vx0 > 2(E/B). Tor ponownie robi precelki, tj. ẋ < 0 tam, gdzie ẏ = 0 i y < 0.

Ścísle rzecz biora֒c tylko krzywa “Arkady Kubickiego” nazywa sie֒ cykloida֒; krzywe
wyg ladzone i te z precelkami nosza֒ inna֒ zawi la֒ nazwe֒, która mi ulecia la z g lowy. Wszyst-
kie te krzywe można jednak otrzymać jako tory wytyczane na p laszczyźnie przez punkt
znajduja֒cy sie֒ na kole tocza֒cym sie֒ bez poślizgu po prostej równoleg lej do osi x. Jeśli
ko lo toczy sie֒ po osi x, a punkt znajduje sie֒ na jego obwodzie, dostajemy cykloide֒ (“Ar-
kady Kubickiego”). Jeśli punkt jest bliżej środka ko la, otrzymujemy wyg ladzone coko ly
arkad. Wreszcie, gdy punkt jest dalej od środka ko la niż obwód, który toczy sie֒ po prostej,
dostajemy precelki.
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Przypomnienie

Jeśli si la F wyste֒puja֒ca w równaniu Newtona

d

dt
mv = F ,

wyznaczaja֒cym ruch jednej cza֒stki jest potencjalna, tj.

F = −∇V (x) ,

i potencja l V (x) nie zależy jawnie od czasu, to

0 = v·
(

d

dt
mv − F

)

=
d

dt

(

1

2
mv2

)

+
dr

dt
·∇V (x) =

d

dt

(

1

2
mv2

)

+
d

dt
V (x) .

Sta֒d równanie Newtona ma w takim przypadku ca lke֒ pierwsza֒

1

2
mv2 + V (x) = E .

Sta la E jest energia֒ ca lkowita֒ (kinetyczna֒ plus potencjalna֒). W przypadku ruchu jedno-
wymiarowego wykorzystanie tej ca lki - tzw. ca lki pierwszej energii - sprowadza problem
znalezienia ruchu do kwadratury (tj. do wykonania jednej ca lki):

√

2

m

∫

dt = ±
∫

dx
√

E − V (x)
,

Znak ± jest znakiem pre֒dkości. Ruch może sie odbywać tylko w obszarze, w którym
E ≥ V (x). Punkty xi, w których zachodzi równość V (xi) = E nazywaja֒ sie֒ punktami
zwrotnymi. Cza֒stka poruszaja֒ca sie֒ w kierunku takiego punktu nie może go przekroczyć:
albo po doj́sciu doń znak jej pre֒dkości zmienia sie֒ na przeciwny i zaczyna sie֒ ona odeń
oddalać (należy przy tym naogó l “re֒cznie” zmienić znak w powyższym wzorze), albo
dociera do tego punktu zwrotnego dopiero w granicy t → ∞. Z kolei punkty x0, w
których V ′(x0) = 0 (ogólniej, punkty x0, w których ∇V (x) = 0) sa֒ punktami równowagi
- znika z nich si la dzia laja֒ca na cza֒stke֒. Jeśli V ′′(x0) > 0 (forma kwadratowa ∂i∂jV jest
w x0 dodatnio określona), punkt x0 jest punktem równowagi trwa lej.

W mechanice lagrangeowskiej, jeśli uk lad ma jeden stopień swobody, tzn. do podania
jego po lożenia potrzebna jest tylko jedna wspó lrze֒dna uogólniona q(t), a jego lagrangian
L = L(q, q̇) nie zależy jawnie od czasu, wykorzystanie ca lki pierwszej, jaka֒ jest “hamilto-
nian” (który cze֒sto, choć nie zawsze, jest ca lkowita֒ energia֒ mechaniczna֒ uk ladu mierzona֒
w uk ladzie inercjalnym)

q̇
∂L

∂q̇
− L = h = const ,

pozwala sprowadzić rozwia֒zanie problemu do podobnej kwadratury.
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Cze֒sto również w przypadku uk ladów o wie֒kszej liczbie stopni swobody istnienie in-
nych wielkości zachowanych (sta lych ruchu) pozwala sprowadzić rozwia֒zanie problemu do
kwadratury. Typowym przyk ladem jest tu ruch masy m w polu si ly centralnej (zob. roz-
dzia l 10), tj. si ly potencjalnej F(r) = −∇V (r) = −er(dV (r)/dr), której potencja l zależy
tylko od r = |r|. Uk lad taki ma a priori 3 stopnie swobody; sta lość w tym przypadku
wektora momentu pe֒du L = mr× ṙ pozwala jednak ograniczyć ruch do p laszczyzny (dwa
stopnie swobody), a sta lość jego sk ladowej prostopad lej do tej p laszczyzny pozwala wyeli-
minować jeszcze jedna֒ zmienna֒ i z pomoca֒ ca lki pierwszej energii sprowadzić rozwia֒zanie
do kwadratury. Sta lości momentu pe֒du L dowodzi sie֒ różniczkuja֒c go po czasie:

dL

dt
= m

d

dt
(r × ṙ) = m (ṙ × ṙ + r × r̈) = m r × r̈ ,

i wykorzystuja֒c równanie ruchu mr̈ = F. Ponieważ r × F, gdy F = −er(dV/dr), otrzy-
mujemy że L̇ = 0.

112



-1 1 2 3 4 5
αx

-1.0

-0.5

0.5

1.0

1.5

2.0

V (x)

Rysunek 30: Krzywa niebieska: potencja l Morse’a V (x) (na pionowej osi od lożono V/V0).
Przecie֒cie tej krzywej z linia֒ zielona֒ (odpowiadaja֒ca֒ V = E > 0) wyznacza punkt zwrotny
x−, a jej przecie֒cia z linia֒ czerwona֒ (V = E < 0) wyznacza punkty zwrotne x− i x+.

Zadanie 3.1

Znaleźć jednowymiarowy ruch cza֒stki o masie m w potencjale Morse’a

V (x) = V0
(

e−2αx − 2 e−αx
)

, V0, α > 0.

W przypadku ruchu z ujemna֒ ca lkowita֒ energia֒ E wyznaczyć jego okres. Pokazać, że
gdy ε ≡ V0 − |E| ≪ V0, ruch jest w przybliżeniu harmoniczny i sprawdzić, że cze֒stość
tego ruchu harmonicznego (czyli także okres) można znaleźć rozwijaja֒c potencja l wokó l
minimum. W przypadku E > 0, pokazać, że dla t → ±∞ ruch jest niemal ruchem
jednostajnym. Podać odpowiadaja֒ca֒ tej granicy asymptotyczna֒ postać x(t).

Rozwia֒zanie:

Ruch może sie֒ odbywać jedynie w obszarze, w którym E > V (x). Punkty zwrotne x∓, w
których E = V (x∓), znajdujemy, podstawiaja֒c z = e−αx, z równości E/V0 = z2 − 2z:

z∓ = 1 ±
√

1 + E/V0 .

Ponieważ zmienna z = e−αx musi być dodatnia, dwa rozwia֒zania istnieja֒ tylko, gdy E < 0,
tj. gdy

√

1 + E/V0 < 1; Jeśli E ≥ 0, rozwia֒zaniem jest tylko z−. Znajdujemy wie֒c, że

eαx∓ =
1

1 ±
√

1 + E/V0
=

1 ∓
√

1 + E/V0
−E/V0

,

czyli:

x− =
1

α
ln

(

√

V 2
0 + V0E − V0

E

)

, gdy E ≥ 0 ,

x∓ =
1

α
ln

(

V0 ∓
√

V 2
0 − V0|E|
|E|

)

, gdy E < 0 .
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Gdy E = 0, wzie֒cie granicy daje x− = −(1/α) ln 2 (punkt x+ istnieja֒cy, gdy E → 0−,
ucieka wtedy do +∞).

Dzie֒ki zasadzie zachowania energii, zależność x(t) wyznaczana przez równanie New-
tona (które jest równaniem drugiego rze֒du) jest, ponieważ badany ruch jest jednowymia-
rowy, dana jedna֒ ca lka֒

√

2

m
(t− t0) = ±

∫ x(t)

x(t0)

dx
√

E − V (x)
= ±

∫ x(t)

x(t0)

dx
√

E − V0(e−2αx − 2e−αx)
.

Znaki ± odpowiadaja֒ dwu możliwym kierunkom pre֒dkości ẋ(t). Znalezione wyżej punkty
zwrotne sa֒ punktami, w których zeruje sie֒ wyrażenie pod pierwiastkiem. Wyznaczaja֒
one dopuszczalne zakresy ca lkowania (wybory x(t0) i x(t)). Po podstawieniu y = eαx

otrzymujemy (przechodzimy tu dla wygody do ca lki nieoznaczonej traktuja֒c t0 jak sta la֒
ca lkowania)

√

2

m
(t− t0) = ± 1

α

∫

dy
√

Ey2 + 2V0y − V0
.

Oczywíscie domyślnie zakres ca lkowania w zmiennej y pozostaje nadal ograniczony do
obszaru, w którym wyrażenie pod pierwiastkiem jest nieujemne.

Zbadamy najpierw ruch zachodza֒cy z E > 0, gdy jest tylko jeden punkt zwrotny x−.
Wprowadzaja֒c oznaczenie a ≡ V0/E > 0, przepisujemy ostatnia֒ równość w postaci

√

2α2E

m
(t− t0) = ±

∫

dy
√

y2 + 2ay − a
= ±

∫

dz√
z2 − b2

,

po dokonaniu w ca lce podstawienia

z = y + a b2 ≡ a + a2 .

Ca lka jest standardowa. Po przeskalowaniu zmiennej, ξ = z/b, podstawiamy ξ = chθ i
otrzymujemy:37

√

2α2E

m
(t− t0) = ±Arch

(z

b

)

≡ ± ln

(

z

b
+

√

z2

b2
− 1

)

.

37Równoważność dwu postaci wyniku  latwo ustalić: jeśli Arch ξ = θ, to ch θ = ξ, a zatem, przy
oznaczeniu t ≡ eθ,

1

2

(

t+
1

t

)

= ξ , czyli t2 − 2ξt+ 1 = 0 .

Sta֒d (Arch ξ)± = θ± = ln(ξ ±
√

ξ2 − 1 ). Sa֒ oczywíscie dwa rozwia֒zania, gdyż funkcja ch θ jest funkcja֒

parzysta֒;  latwo wie֒c zobaczyć, że θ− = −θ+, bo ln(ξ +
√

ξ2 − 1) + ln(ξ −
√

ξ2 − 1) = ln 1 = 0. Tym
samym w rozwia֒zaniu wyżej można wzia֒ć dowolne z tych dwu rozwia֒zań, bo i tak przed ca lym wyrażeniem
wyste֒puje ±.
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Odwik luja֒c i wracaja֒c do zmiennej y mamy sta֒d

y + a =
√
a+ a2 ch

(
√

2α2E

m
(t− t0)

)

.

Pamie֒taja֒c, że a = V0/E, a y = exp(αx), otrzymujemy ostatecznie ruch w postaci

x(t) =
1

α
ln

{

V0
E

[

−1 +

√

1 +
E

V0
ch

(
√

2α2E

m
(t− t0)

)]}

.

Widać, że x(t0) = x−, tj. w chwili t = t0 cza֒stka osia֒ga punkt zwrotny i w tejże chwili, co
także widać, ẋ(t0) = 0 - pre֒dkość zeruje sie֒, gdyż w punkcie zwrotnym musi ona zmienić
znak na przeciwny. Widać też, że dla dużych wartości |t−t0| funkcja ch(

√

2α2E/m(t−t0))
staje sie֒ niemal czysta֒ funkcja֒ 1

2
exp(

√

2α2E/m |t − t0|), a zatem (−1 można pomina֒ć,
gdy kosinus hiperboliczny jest duży)

x(t) ≈
√

2E

m
|t− t0| +

1

α
ln

(

1

2

√

V 2
0

E2
+
V0
E

)

, gdy |t− t0| ≫
1

α

√

m

2E
.

Ruch przechodzi wtedy w ruch jednostajny. W taki sam sposób ruch jednostajny (dla
wszystkich czasów) daje granica α → ∞, w której zanika potencja l V (x).

W przypadku ruchu o E < 0 przekszta lcamy zwia֒zek ca lkowy (taki sam, jak poprzed-
nio) w zwia֒zek

√

2α2|E|
m

(t− t0) = ±
∫

dy
√

2ay − a− y2
,

którym teraz parametr a = V0/|E|. Zatem
√

2α2|E|
m

(t− t0) = ±
∫

dz√
b2 − z2

,

gdzie teraz z = y − a i b2 = a2 − a, przy czym wcia֒ż b2 > 0, gdyż a > 1 (ruch może
zachodzić tylko tam, gdzie |E| < V0). Ponownie traktuja֒c t0 jak sta la֒ ca lkowania możemy
przyja֒ć, że ca lka daje funkcje֒ arccos i po prostych przekszta lceniach otrzymujemy (dzie֒ki
parzystości funkcji cosinus znaki ± daja֒ to samo), że

z = y − a =
√
a2 − a cos

(
√

2α2|E|
m

(t− t0)

)

,

czyli ostatecznie

x(t) =
1

α
ln







V0 +
√

V 2
0 − V0|E| cos

(

√

2α2|E|/m (t− t0)
)

|E|







.
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Zależność po lożenia od czasu jest okresowa. Okresem T ruchu jest38

T ≡ 2π

ω
= 2π

√

m

2|E|α2
.

Ruch nie jest wie֒c harmoniczny, bo jego cze֒stość zależy od ca lkowitej energii (w ru-
chu harmonicznym cze֒stość jest niezależna od energii), czyli od amplitudy odchyleń od
po lożenia równowagi, którym tu jest punkt x = 0 (punkt, w którym znika pierwsza po-
chodna V (x)).  Latwo zobaczyć, że punkty, w których zeruje sie֒ ẋ(t) (w punktach tych
sinus znika, a cosinus jest równy ∓1) pokrywaja֒ sie֒ z wyznaczonymi wcześniej punktami
zwrotnymi x∓.

Gdy wychylenia z po lożenia równowagi x = 0 sa֒ niewielkie, tj. gdy ε ≡ V0−|E| ≪ V0,
ruch staje sie֒ w przybliżeniu harmoniczny, a okres takiego ruchu jest w przybliżeniu równy

T = 2π

√

m

2α2V0

(

1 − ε

V0

)−1/2
≈ 2π

√

m

2α2V0

(

1 +
ε

2V0

)

.

Pierwszy (g lówny) wyraz w cze֒stości ω = 2π/T można oczywíscie znaleźć rozwijaja֒c
potencja l V (x) wokó l po lożenia równowagi

V (x) = −V0 +
1

2
2V0α

2x2 − V0α
3x3 +

7

12
V0α

4x4 + . . .

i przyrównuja֒c 2V0α
2 do mω2. Sposób obliczenia poprawki do okresu zależnej od energii

ε jest treścia֒ Zadania 3.7. Oczywíscie, gdy wychylenia sa֒ ma le, ścis le rozwia֒zanie można
przybliżyć naste֒puja֒co

x(t) =
1

α
ln







1 +
√

ε/V0 cos
(

√

2α2V0/m (t− t0)
)

1 − ε/V0







=

√

ε

α2V0
cos
(

√

2α2V0/m (t− t0)
)

+ O(ε) .

Widać, że zależność amplitudy A drgań jest, tak jak powinna być, zwia֒zana z ca lkowita֒
energia֒ mechaniczna֒ ruchu ε (w której energia potencjalna jest liczona od “dna” poten-
cja lu) wzorem A =

√

2ε/mω2.

38Argument cosinusa można wie֒c zapisać w postaci (2π/T )(t − t0), z której widać, że przy n ∈ Z,
x(t0 + nT ) = x+, a x(t0 + (2n+ 1)T/2) = x−.
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Zadanie 3.6

Znaleźć w pierwszym przybliżeniu zmiane֒ δT okresu T jednowymiarowego ruchu cza֒stki
o masie m spowodowana֒ ma la֒ zmiana֒ δV (x) wia֒ża֒cego te֒ cza֒stke֒ w ograniczonym ob-
szarze potencja lu V (x), przy niezmienionej ca lkowitej energii E ruchu. Zak ladamy tu,
że zmiana δV (x) potencja lu nie zmienia jakościowo charakteru ruchu (cza֒stka nadal
pozostaje uwie֒ziona w ograniczonym obszarze). Obliczyć w tym przybliżeniu δT , gdy
V (x) = 1

2
mω2x2, a δV (x) = 1

4
mβ x4, gdzie β > 0. Sprawdzić ten wynik na przyk ladzie

potencja lu z Zadania 3.2

Rozwia֒zanie:

Jeśli x1 i x2 sa֒ punktami zwrotnymi ruchu okresowego cza֒stki w potencjale V (x), to

T

2
=

√

m

2

∫ x2

x1

dx
√

E − V (x)
,

a po zmianie potencja lu

T + δT

2
=

√

m

2

∫ x2+δx2

x1+δx1

dx
√

E − V (x) − δV (x)
.

Przy zmianie potencja lu (przy ustalonej energii E ruchu) przesunie֒ciu ulegaja֒ w ogólności
także punkty zwrotne. Zatem

δT

2
=

√

m

2

{

∫ x2+δx2

x1+δx1

dx
√

E − V (x) − δV (x)
−
∫ x2

x1

dx
√

E − V (x)

}

≡
√

m

2

(

F [x1 + δx1, x2 + δx2, V + δV ] − F [x1, x2, V ]

)

.

W pierwszym przybliżeniu zmiane֒ δT powinno sie֒ dać otrzymać z tego wzoru dokonuja֒c
rozwinie֒cia pierwszej ca lki wokó lV (x), x1 oraz x2.

Konieczny tu jest pewien komentarz. Mamy do czynienia z rozwijaniem nie funkcji,
lecz funkcjona lu, czyli odwzorowania z przestrzeni funkcji V (x) w R. W istocie bowiem
(przy ustalonej energii ruchu) x1,2 = x1,2[V ]. Zatem bardziej prawid lowy by lby zapis
F [x1 + δx1, x2 + δx2, V + δV ] = F̃ [V + δV ], a rozwijanie należa loby wie֒c tu rozumieć w
sensie funkcjonalnym:

F̃ [V + δV ] − F̃ [V ] =

∫ x2

x1

dx δV (x)
δF̃ [V ]

δV (x)

=

∫ x2

x1

dx δV (x)

{

δF [x1, x2, V ]

δV (x)
+
∂F [x1, x2, V ]

∂x1

δx1[V ]

δV (x)
+
∂F [x1, x2, V ]

∂x2

δx2[V ]

δV (x)

}

.

Z praktycznego punktu widzenia można jednak potraktować F [x1, x2, V ] jak “funkcjo-
funkcjona l”, tj. funkcje֒ x1 i x2 oraz funkcjona l V (x) i rozwijać w tych trzech zmiennych
niezależnie (zawsze, jeśli to konieczne, można na końcu odpowiednio skorelować zmiany
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δx1 i δx2 ze zmiana֒ δV (x)). Okaże sie֒ bowiem, że (przy odpowiednim potraktowaniu -
zob. niżej) przesunie֒cia δx1,2 punktów zwrotnych nie wp lywaja֒ na zmiane֒ okresu T .

Zgodnie z powyższymi uwagami, chcia loby sie֒ zatem napisać:

F [x1 + δx1, x2 + δx2, V + δV ] − F [x1, x2, V ]

= δx1
∂F

∂x1

∣

∣

∣

∣

x1,x2,V

+ δx2
∂F

∂x2

∣

∣

∣

∣

x1,x2,V

+

∫ x2

x1

dx δV (x)
∂

∂V

1√
E − V

∣

∣

∣

∣

x1,x2,V

+ . . .

Pojawia sie֒ tu jednak k lopot:

δx1
∂F

∂x1

∣

∣

∣

∣

x1,x2,V

= − δx1
1

√

E − V (x1)
,

(pochodna funkcji F po x1 be֒da֒cym dolna֒ granica֒ ca lki jest po prostu równa minus funkcji
podca lkowej obliczonej w x równym x1. Ale w tym punkcie w laśnie E − V (x) = 0! Tak
samo nieskończoność da wyraz z pochodna֒ F po x2. Konieczny jest wie֒c jakís chwyt, bo
oczywíscie wyj́sciowe wyrażenie na δT jest zupe lnie “zdrowe” i żadne nieskończoności w
nim nie wyste֒puja֒.

Chwyt polega na napisaniu wzoru na δT w naste֒pujacy sposób:

δT

2
= 2

√

m

2

∂

∂E

{
∫ x2+δx2

x1+δx1

dx
√

E − V (x) − δV (x) −
∫ x2

x1

dx
√

E − V (x)

}

≡ 2

√

m

2

∂

∂E

(

G[x1 + δx1, x2 + δx2, V + δV ] −G[x1, x2, V ]

)

.

Zysk jest podwójny: po pierwsze nie wysta֒pia֒ teraz nieskończoności, a po drugie

δx1
∂G

∂x1

∣

∣

∣

∣

x1,x2,V

= −δx1
√

E − V (x1) = 0 .

Tak samo znika przyczynek do δT od przesunie֒cia punktu x2! Otrzymujemy zatem prosty
wzór:

δT

2
= −

√

m

2

∂

∂E

∫ x2

x1

dx
δV (x)

√

E − V (x)
.

Wzór ten można zapisć inaczej, dokonuja֒c zamiany zmiennych x = x0(t), gdzie x0(t) jest
po prostu funkcja֒ zadaja֒ca֒ ruch cza֒stki od x1 w t = 0 do x2 w t = T/2 w potencjale
niezaburzonym V (x), i korzystaja֒c z tego, że

√

m

2

dx0(t)
√

E − V (x0(t))
= dt .

Po takiej zamianie zmiennych otrzymujemy wzór

δT

2
= − ∂

∂E

∫ T/2

0

dt δV (x0(t)) ,
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lub

δT = − ∂

∂E

∮

dt δV (x0(t)) ,

gdzie kó leczko na ca lce oznacza ca lkowanie po ca lym okresie T ruchu niezaburzonego (ta
druga, bardziej ozdobna postać wzoru jest jednak ma lo użyteczna praktycznie).

W przypadku, gdy V (x) = 1
2
mω2x2, a δV (x) = 1

4
mβx4 ruch x0(t) cza֒stki o masie

m i ustalonej energii E w potencjale V (x) od x1 = −
√

2E/mω2 do x2 = +
√

2E/mω2

(punkty zwrotne wyznaczone przez równość V (x1,2) = E) jest dany wzorem

x0(t) = −
√

2E/mω2 cosωt .

Zatem

δT

2
= − ∂

∂E

∫ π/ω

0

dt
1

4
mβ

4E2

m2ω4
cos4 ωt = −2βE

mω5

∫ π

0

dθ cos4 θ .

Ca lka daje
∫ π

0

dθ cos4 θ =
1

16

∫ π

0

dθ
(

eiθ + e−iθ
)4

=
3π

8
,

(po podniesieniu nawiasu do czwartej pote֒gi niezerowy wynik daje tylko ca lka ze środkowego
wyrazu 6 ei0; pozosta le wyrazy daja֒ ca lki po pe lnym okresie, które znikaja֒) i

δT = −3πβE

2mω5
.

Można też wykonać bezpośrednio ca lke֒ we wzorze

δT

2
= −

√

m

2

∂

∂E

1

4
mβ

∫ x2

x1

dx
x4

√

E − V (x)
.

Mathematica daje39

∫

dx
x4

√

E − 1
2
mω2x2

= − 1

2m2ω4
x

√

E − 1

2
mω2x2

(

3 +mω2x2
)

+
3E2

√
2m5/2ω5

arctg





x
√

mω2/2
√

E − 1
2
mω2x2



 .

Przy obliczeniu tego wyrażenia w granicach x2 i x1 pierwszy cz lon daje zero, a argument
arctg jest równy odpowiednio +∞ i −∞ i po prostych przekszta lceniach otrzymuje sie֒
ten sam wynik, co poprzednio. Bez Mathematici wymaga to jednak sporo cierpliwości...

39Pewnie po odpowiednim przeskalowaniu bestia i tak podstawia y = sin θ, tylko potem wraca do
wyj́sciowej zmiennej...
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Wynik ten można sprawdzić na przyk ladzie potencja lu

V (x) = − V0

ch2(x/a)
= −V0 +

1

2

2V0
a2

x2 − 2V0
3a4

x4 + . . .

badanego w Zadaniu 3.2. Z porównania widać, że należy przyja֒ć ω =
√

2V0/ma2 oraz
β = −(8V0/3ma

4). Podstawienie do otrzymanego wzoru na zmiane֒ okresu daje

δT = −3πE

2m

(

− 8V0
3ma4

)

m2a4

4V 2
0

√

ma2

2V0
=
πE

V0

√

ma2

2V0
,

co (po utożsamieniu E z ε) jest dok ladnie poprawka֒ do okresu otrzymana֒ w Zadaniu 3.2
z rozwia֒zania ścis lego.
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Zadanie 3.7

Znaleźć zmiane֒ δT okresu T jednowymiarowego ruchu cza֒stki o masie m spowodowana֒
ma la֒ zmiana֒ δV (x) = 1

3
mγx3 potencja lu V (x) = 1

2
mω2x2 wia֒żacego cza֒stke֒ w ograniczo-

nym obszarze przy niezmienionej ca lkowitej energii mechanicznej E ruchu. Wykorzystuja֒c
ten wynik znaleźć pierwsza֒ poprawke֒ (tj. poprawke֒ proporcjonalna֒ do energii E ruchu),
o która֒ różni sie֒ okres ruchu w potencjale Morse’a (Zadanie 3.1) od okresu ruchu w poten-
cjale oscylatora harmonicznego o odpowiedniej cze֒stości i porównać wynik z poprawka֒
otrzymana֒ z odpowiedniego rozwinie֒cia okresu wyznaczonego ze ścis lego rozwia֒zania.
Wyrazić także zmiane֒ δT okresu, gdy potencja l jest dok ladnie równy V (x) + δV (x) w
postaci nieskończonego szeregu i przypadku potencja lu ścísle równego 1

2
mω2x2 + 1

3
mγ x3

powiedzieć, kiedy ten szereg jest zbieżny.

Rozwia֒zanie:

W przypadku poprawki δV (x) = 1
3
mγx3 do potencja lu oscylatora harmonicznego trzeba

ścis ly wzór na zmiane֒ δT/2 (po lowy) okresu z Zadania 3.6 rozwina֒ć do drugiego rze֒du.
Istotnie, pierwsza poprawka w tym przypadku znika:

δT

2
= − ∂

∂E

∫ π/ω

0

dt
1

3
mγ

(

2E

mω2

)3/2
(

− cos3 ωt
)

∝
∫ π

0

dθ cos3 θ = 0 .

Spróbujemy wie֒c napisać ogólny wzór na rozwinie֒cie poprawki δT/2 do po lowy okresu
wed lug pote֒g δV . Rozwinie֒cie to powinno mieć ogólna֒ postać:

δT

2
=
∞
∑

n=1

∫ x2

x1

dx fn(x)(δV (x))n .

Aby ustalić postać wspó lczynnika fn(x), trzeba znów wykazać sie֒ sprytem. Przepisujemy
mianowicie ścis ly wzór

δT

2
=

√

m

2

{

∫ x2+δx2

x1+δx1

dx
√

E − V (x) − δV (x)
−
∫ x2

x1

dx
√

E − V (x)

}

,

w równoważnej formie40

δT

2
=

2n

(2n− 1)!!

√

m

2

∂n

∂En

{
∫ x2+δx2

x1+δx1

dx [E − V (x) − δV (x)]
2n−1

2 −
∫ x2

x1

dx [E − V (x)]
2n−1

2

}

,

i naste֒pnie rozwijaja֒c wyrażenie w nawiasie klamrowym do n-tego rze֒du w la֒cznie bie-
rzemy z niego tylko wyraz, w którym wyste֒puje n-ta pote֒ga δV (pozosta le wyrazy odrzu-
camy). Tak jak poprzednio (Zadanie 3.6) branie n-tego wyrazu rozwinie֒cia tego wzoru w
przyrostach δV oraz δx1,2 (tzn. branie takich wyrazów, w których suma pote֒g δx1, δx2 i

δV jest równa n) wymaga obliczania [E − V (x)]
2k−1

2 , z 1 ≤ k ≤ n− 1 w punkcie x = x1

40(2n− 1)!! = (2n− 1) · (2n− 3) · · · · · 3 · 1, jak by ktoś nie wiedzia l...
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lub x = x2, co zawsze daje zero i zostaje zawsze tylko ten jeden wyraz,41 w którym jest
(−δV )n. n-ty zaś , szukany, wyraz rozwinie֒cia funkcjonalnego w δV daje42

G[V + δV ] = . . .
1

n!

∫ x2

x1

dy1 δV (y1)· · ·
∫ x2

x1

dyn δV (yk)
δnG[V ]

δV (y1) . . . δV (yn)
+ . . .

Znaleziony w ten sposób wyraz wykorzystujemy w wypisanym wyżej wzorze na rozwinie֒cie
δT/2 wed lug pote֒g δV . Prowadzi to natychmiast do wzoru (druga֒ jego postać otrzymuje
sie֒ dokonuja֒c takiego samego podstawienia, jak w Zadaniu 3.6)

δT

2
=

√

m

2

∑

n=1

(−1)n

n!

∂n

∂En

∫ x2

x1

dx
[δV (x)]n
√

E − V (x)

=
∑

n=1

(−1)n

n!

∂n

∂En

∫ T/2

0

dt [δV (x0(t))]
n .

wyrażaja֒cego ca lkowita֒ zmiane֒ okresu, tj. δT = T [V + δV ] − T [V ], w postaci nie-
skończonego szeregu. Szereg ten oczywíscie może być niezbieżny: np. w rozważanym tu
przypadku poprawki δV (x) = 1

3
mγx3 do V (x) = 1

2
mω2x2, musi on być rozbieżny dla ener-

gii E wyższych od pewnej krytycznej energii Ecr (be֒da֒cej funkcja֒ m, ω i γ), gdyż poprawka
δV zmienia globalny charakter potencja lu - nie rośnie on już do +∞ w obu kierunkach -
co umożliwia cza֒stce o energii wyższej niż Vmax ≡ V (xmax) + δV (xmax) = mω6/6γ2, gdzie
xmax = −ω2/γ, ucieczke֒ do nieskończoności; ruch cza֒stki o takiej energii nie jest okresowy
i pytanie o poprawke֒ δT nie ma już wtedy sensu (zob. rysunek 31). Oznacza to także,
że już dla E bliskich Ecr, kiedy to, jak wiadomo z Zadań 3.4 i 3.5 okres T rośnie do nie-
skończoności, szereg może nie być zbieżny; mog loby też sie֒ zdarzyć tak, że dla wszystkich
wartości energii szereg ten jest tylko szeregiem asymptotycznym.

Biora֒c wyraz z n = 2 (jak ustalilísmy, wyraz z n = 1 daje tu zero), otrzymujemy

δT

2
=

1

2

∂2

∂E2

∫ π/ω

0

dt
1

9
m2γ2

(

2E

mω2

)3

cos6 ωt =
1

2

6

9
Em2γ2

8

m2ω7

∫ π

0

dθ cos6 θ .

Ogólnie (ca lke֒ obliczamy, tak jak w Zadaniu 3.6)
∫ π

0

dθ cos2k θ =
π

22k

(

2k
k

)

=
π

22k

(2k)!

k!k!
,

∫ π

0

dθ cos2k+1 θ = 0 .

41Wyższe wyrazy rozwinie֒cia tego wzoru, tj. te z pote֒gami δV wyższymi niż n-ta be֒da֒ już osobliwe.
Na tym polega w laśnie sztuczka: aby znaleźć wyraz z (δV )n rozwijamy wzór z n-ta֒ pochodna֒ po energii
E.

42Korzystamy tu ze standardowego wzoru rachunku funkcjonalnego

δG[V ]

δV (y)
=

δ

δV (y)

∫ x2

x1

dxG(V (x)) =

∫ x2

x1

dx
∂G(V )

∂V

∣

∣

∣

∣

V=V (x)

δV (x)

δV (y)

=

∫ x2

x1

dx
∂G(V )

∂V

∣

∣

∣

∣

V=V (x)

δ(x− y) =
∂G(V )

∂V

∣

∣

∣

∣

V =V (y)

.
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Rysunek 31: Potencja ly V (x) = 1
2
mω2x2 (krzywa niebieska) i V (x) = 1

2
mω2x2 (krzywa

pomarańczowa). Na pionowej osi od lożono V (x)/(mω2/2). Poziomymi liniami: zielona֒ i
czerwona֒ zaznaczono dwie mol̇iwe ca lkowite energie E ruchu: dla pierwszej szereg, którym
wyraża sie֒ poprawka do okresu może być zbieżny; dla drugiej, równej Ecr już nie.

Ca lka z cos6 θ wynosi wie֒c 5π/16 i ostatecznie

δT =
5

3

πγ2E

mω7
=

5π

18

E

ωVmax
.

Potencja l Morse’a

V (x) = V0
(

e−2αx − 2 e−αx
)

= −V0 +
1

2
(2V0α

2)x2 − (V0α
3)x3 +

7

12
V0α

4x4 + . . . ,

z Zadania 3.1 odpowiada potencja lowi oscylatora harmonicznego o ω =
√

2V0α2/m z po-
prawkami (w pierwszym nietrywialnym przybliżeniu) δ3V (x) = 1

3
mγx3 z γ = −3V0α

3/m
oraz δ4V (x) = 1

4
mβx4 z β = 7V0α

4/3m. Nietrudno sie֒ zorientować, że zarówno po-
prawka δ3V (x) w użyta drugim rze֒dzie rozwinie֒cia wzoru na δT/2 (rozpatrywanego w
tym Zadaniu) jak i poprawka δ4V (x) użyta w pierwszym rze֒dzie tegoż rozwinie֒cia daja֒
poprawke֒ proporcjonalna֒ do pierwszej pote֒gi E, czyli tego samego rze֒du, i musza֒ zatem
być uwzgle֒dnione razem.

δT =
πE

mω5

(

5

3

γ2

ω2
− 3

2
β + . . .

)

=
πE

mω5

(

5 · 9

6
− 7

2

)

V0α
4

m
=
πE

V0

√

m

2V0α2
.

Zgadza sie֒ to dok ladnie (po utożsamieniu E z ε) z rozwinie֒ciem ścis lego wzoru na okres
ruchu w potencjale Morse’a. W rozpatrywanym tu przypadku wiemy z rozwia֒zania
ścis lego, że okres T można rozwina֒ć w szereg zbieżny dla wszystkich ε < V0 (jest to
rozwinie֒cie funkcji (1− ε/V0)

−1/2). Zatem także szereg otrzymywany z rozwinie֒cia wzoru
na δT/2 be֒dzie zbieżny, z tym, że w kolejnych rze֒dach trzeba by uwzgle֒dniać wszystkie
wyrazy daja֒ce dana֒ pote֒ge֒ E (tj. ε), których jest coraz wie֒cej (pochodza֒ one z ca lek z
[δ3V (x) + δ4V (x) + δ5V (x) + . . . ]n; do wyrazu z dana֒ pote֒ga֒ E rozwinie֒cia δT przyczynki
wnosza֒ ca lki z różnymi n i różnymi iloczynami δkV (x)).
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W przypadku potencja lu równego ścísle 1
2
mω2x2+ 1

3
mγx3 rozwia֒zanie ścis le nie istnieje

ale można zato wypisać ogólny wyraz rozwinie֒cia wzoru na δT/2. Po pierwsze, jest jasne,
że w rozwinie֒ciu tym znikaja֒ wszystkie wyrazy z nieparzystymi n, gdyż

∫ π

0

dθ cos3nθ = 0 ,

jeśli n nie jest parzyste. Zatem

δT

2
=
∑

k=1

1

(2k)!

∂2k

∂E2k

(mγ

3

)2k
(

2E

mω2

)3k
1

ω

∫ π

0

dθ cos6k θ

=
π

ω

∑

k=1

(6k)!

k!(2k)!(3k)!

(

γ2E

72mω6

)k

.

Aby oszacować k-ty wyraz dla dużych k korzystamy ze wzoru Stirlinga43

ln(n!) ≈ n lnn− n .

Daje on tu

(6k)!

k!(2k)!(3k)!
≈ exp(k ln 432).

Tak wie֒c wyrazy szeregu maja֒ postać

π

ω

(

432
γ2E

72mω6

)k

.

Jest wie֒c to (dla dużych k, żeby wzorek Stirlinga by l s luszny) szereg geometryczny, który
jest zbieżny tylko, gdy

E <
72mω6

432γ2
=
mω6

6γ2
,

tj. dok ladnie wtedy, gdy energia nie przekracza Vmax.

43Wzór Stirlinga jest jednym z tych, które fizyk musi pamie֒tać przez ca le życie. Na nim opiera sie֒
bowiem znaczna cze֒ść równowagowej fizyki statystycznej.
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Zadanie 3.12

Cza֒stka o masie m nadlatuje z nieskończoności, gdzie ma pre֒dkość v, i zderza sie֒ centralnie
(tzn. ca ly ruch odbywa sie֒ wzd luż jednej prostej) ze spoczywaja֒ca֒ pocza֒tkowo druga֒
cza֒stka֒ o takiej samej masie. Cza֒stki odpychaja֒ sie֒ za pośrednictwem si ly o potencjale

V (x1, x2) = V (|x1 − x2|) =
|κ|

|x1 − x2|n
.

Jaka be֒dzie minimalna odleg lość mie֒dzy cza֒stkami? Wyznaczyć po lożnie punktu do
którego dotrze nadlatuja֒ca cza֒stka.

Rozwia֒zanie

Niech x1 i x2 be֒da֒ po lożeniami cza֒stek na prostej. W chwili pocza֒tkowej, t0, x1(t0) =
−R (do granicy R = ∞ przejdziemy na końcu), x2(t0) = 0, ẋ1(t0) = v, a ẋ2(t0) = 0.
Przechodzimy naste֒pnie do zmiennych

X(t) =
1

m1 +m2
(m1x1(t) +m2x2(t)) =

1

2
(x1(t) + x2(t)) ,

y(t) = x2(t) − x1(t) ,

tak iż (bo m1 = m2 = m)

x1(t) = X(t) − 1

2
y(t) ,

x2(t) = X(t) +
1

2
y(t) .

W zmiennych X i y równania ruchu cza֒stek maja֒ postać

2mẌ = 0 ,
m

2
ÿ = − d

dy
V (|y|) .

Z pierwszego wynika, że

X(t) = X(t0) + Ẋ(t0)(t− t0) = −1

2
R +

1

2
v(t− t0) .

Drugie ma ca lke֒ pierwsza֒, która֒ jest energia ruchu wzgle֒dnego:

1

2

m

2
ẏ2 +

|κ|
|y|n = E = const. =

m

4
v2 +

|κ|
Rn

.

Ponieważ ẋ1 = Ẋ − 1
2
ẏ, nadlatuja֒ca cza֒stka zatrzyma sie֒ (ẋ1 = 0), gdy Ẋ = 1

2
ẏ, czyli

(bo Ẋ = const. = 1
2
v), gdy ẏ = v.

Ze wzoru wyrażaja֒cego zachowanie energii ruchu wzgle֒dnego wynika, że ẏ = v tylko,
gdy |y| = R. Warunek ten jest, oczywíscie, spe lniony, w chwili t0, gdy x1 = −R, a
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x2 = 0. Ponieważ naste֒pnie, jak można sobie wyobrazić, y maleje do pewnej minimalnej
odleg lości ymin, a potem, gdy druga masa nabierze pre֒dkości, y zaczyna znów rosna֒ć i
warunek |y| = R jest znów spe lniony w pewnej chwili t∗: y(t∗) = R. Czas t∗ − t0 zmiany
y od wartości R poprzez ymin do R jest dany ca lka֒

t∗ − t0 = 2

∫ R

ymin

dy
√

v2 + 4|κ|
mRn − 4|κ|

myn

,

gdzie

ymin =

(

mv2

4|κ| +
1

Rn

)−1/n
.

Wprowadzaja֒c zmienna֒ ξ = y/ymin ca lke֒ można przepisać w postaci

t∗ − t0 =
2ymin

√

v2 + 4|κ|
mRn

∫ R/ymin

1

dξ√
1 − ξ−n

.

Zatem po lożenie nadlatuja֒cej cza֒stki w momencie, gdy sie֒ ona zatrzyma, jest dane przez

x1(t∗) = X(t∗) −
1

2
y(t∗) = −1

2
R +

v

2
(t∗ − t0) −

1

2
y(t∗)

= −R +
v

√

v2 + 4|κ|
mRn

ymin

∫ R/ymin

1

dξ√
1 − ξ−n

.

Aby przej́sć do granicy R = ∞, przepisujemy ten wynik w postaci

x1(t∗) = −R +
v

√

v2 + 4|κ|
mRn

ymin

{

∫ R/ymin

1

dξ

(

1√
1 − ξ−n

− 1

)

+
R

ymin

− 1

}

= R





v
√

v2 + 4|κ|
mRn

− 1



+
v ymin

√

v2 + 4|κ|
mRn

{

−1 +

∫ R/ymin

1

dξ

(

1√
1 − ξ−n

− 1

)

}

.

W granicy R = ∞ pierwszy wyraz znika, jeśli n > 1, a istnienie skończonej granicy ca lki
w drugim cz lonie zależy od wyk ladnika44 n:

1√
1 − ξ−n

− 1 =

√
ξn −

√
ξn − 1√

ξn − 1
=

1√
ξn − 1

1√
ξn +

√
ξn − 1

∼ 1

2ξn
.

Zatem gdy n > 1, ca lka jest zbieżna w granicy R = ∞. Gdy n ≤ 1 ca lka jest rozbieżna i
również pierwszy wyraz nie znika (jest on skończony, gdy n = 1 i rozbieżny, gdy n < 1).

44Używamy tu standardowej sztuczki: a− b = (a2 − b2)/(a+ b).

126



Oznacza, to, że nadlatuja֒c z nieskończoności cza֒stka nie zatrzyma sie֒ nigdy; jeśli zaś
n > 1, zatrzyma sie֒ ona w po lożeniu

xstop = ymin

{

−1 +

∫ ∞

1

dξ

(

1√
1 − ξ−n

− 1

)}

.

Gdy n = 2 ca lka daje sie֒  latwo obliczyć (trzeba tylko ja֒ zregularyzować, biora֒c jako jej
górna֒ granice֒ R i przechodza֒c do granicy R = ∞ dopiero na koniec) i otrzymuje sie֒
xstop = 0. Jeśli jednak 1 < n 6= 2, numeryczne ca lkowanie daje xstop 6= 0.
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Przypomnienie

Równanie ruchu cia la (traktowanego jak punkt materialny), którego masa m = m(t)
zmienia sie֒ z czasem wed lug zadanego z góry prawa można otrzymać na podstawie
naste֒puja֒cego prostego rozumowania. Niech w chwili t cia lo ma mase֒ m i pre֒dkość v, a
dodatkowy, infinitezymalny kawa lek masy dm pre֒dkość u (obie te pre֒dkości sa֒ mierzone
w pewnym uk ladzie inercjalnym). Po up lywie czasu dt kawa lek masy dm zlepia sie֒45 z
cia lem, które ma teraz mase֒ m + dm i pre֒dkość v + dv. Zmiana ca lkowitego pe֒du tego
uk ladu (którym jest cia lo oraz do lacza֒jacy sie֒ doń kawa lek masy) jest wie֒c równa

dp = (m + dm)(v + dv) −mv − dmu

= mdv + (v − u) dm+ O(dmdv)

≡ mdv − w dm ,

gdzie w = u−v jest pre֒dkościa֒ kawa lka masy dm w uk ladzie spoczynkowym cia la. Zgod-
nie z druga֒ zasada֒ dynamiki Newtona, obliczona wyżej zmiana pe֒du ca lego uk ladu musi
być spowodowana pope֒dem Fdt zewne֒trznej si ly dzia laja֒cej na rozpatrywany uk lad (cia lo
plus kawa lek masy). Zatem, po podzieleniu zwia֒zku wyrażaja֒cego te֒ równość stronami
przez dt otrzymuje sie֒

m
dv

dt
+
dm

dt
v − dm

dt
u = F ,

czyli

d

dt
(m(t) v(t)) = F +

dm(t)

dt
u ,

lub, w drugim wariancie,

m(t)
d

dt
v(t) = F +

dm(t)

dt
w .

Oba te wzory sa֒ poprawne. Zależnie od tego, czy pre֒dkość mas do la֒czaja֒cych sie֒ do
poruszaja֒cego sie֒ cia la jest podana (musi być to określone z góry) wzgle֒dem uk ladu
inercjalnego, czy wzgle֒dem samego cia la, bardziej użyteczny jest jeden ba֒dź drugi wzór.

Jeśli do masy m o pre֒dkości v do la֒czaja֒ sie֒ w odcinku czasu dt dwie masy dm1 i
dm2 o pre֒dkościach u1 i u2 (wzgle֒dem uk ladu inercjalnego), to analogiczne rozumowanie
doprowadzi do równania

m(t)
d

dt
v(t) = F +

dm1(t)

dt
(u1 − v) +

dm2(t)

dt
(u2 − v) ,

które należy rozwia֒zywać z warunkiem dm/dt = d(m1+m2)/dt, czyli m(t) = m0+m1(t)+
m2(t).

45Jeśli masa cia la maleje z czasem, to dm < 0.
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Zadanie 4.2

Rakieta wznosi sie֒ pionowo z Ziemi wyrzucaja֒c gaz ze sta la֒ pre֒dkościa֒ w do ty lu wzgle֒dem
siebie samej. Masa rakiety zmienia sie֒ wskutek tego zgodnie ze wzorem m(t) = m0 −
κ t, gdzie κ jest sta la֒. Znaleźć zależność po lożenia rakiety od czasu, jeśli jej pre֒dkość
pocza֒tkowa, w chwili t = 0, by la równa v0.

Rozwia֒zanie:

Wybierzmy uk lad odniesienia o osi z skierowanej w góre֒. Problem sprowadza sie֒ wtedy
do rozwia֒zania równania różniczkowego (ponieważ w jest pre֒dkościa֒ gazów wzgle֒dem
rakiety, a nie wzgle֒dem uk ladu inercjalnego, zależna od czasu masa stoi przed pochodna֒
po czasie pre֒dkości, czyli przed ż̇ ):

m(t)ż̇ = −m(t) g − w
dm(t)

dt
.

czyli, po wykorzystaniu podanego prawa zmiany masy,

ż̇ = −g +
w κ

m0 − κt
.

Proste sca lkowanie stronami tego równania daje

ż = A− gt− w ln(m0 − κ t) .

Z warunku pocza֒tkowego ż(0) = v0 znajdujemy sta la֒ ca lkowania: A = v0 + w lnm0.
Zatem

v(t) = ż(t) = v0 − gt− w ln

(

1 − κ

m0
t

)

.

Przy t bliskim zeru, gdy v0 = 0 (rakieta startuje), v(t) ≈ (wκ/m0 − g) t. Warunkiem
startu, jest wie֒c, by w > m0g/κ. (To samo wynika z ża֒dania, by w t = 0 przyspieszenie
z̈, czyli prawa strona wyj́sciowego równania ruchu, by lo dodatnie.)

Kolejne ca lkowanie daje

z(t) = z0 + v0t−
1

2
gt2 − w

∫ t

0

dt′ ln

(

1 − κ

m0
t′
)

,

czyli46

z(t) = z0 + v0t−
1

2
gt2 + w

m0

κ

{(

1 − κ

m0
t

)

ln

(

1 − κ

m0
t

)

+
κ

m0
t

}

.

Oczywíscie wzór jest s luszny, dopóki m(t) = m0 − κt > 0. W przypadku prawdziwej
rakiety, zanim m(t) zmaleje znacza֒co, przestaje obowia֒zywać przybliżenie wzorem Fgraw =
−mg si ly grawitacyjnego przycia֒gania przez Ziemie֒.

46
∫

dξ ln ξ = ξ(−1 + ln ξ)+ const.
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Wzór na pre֒dkość rakiety, gdy porusza sie֒ ona poza zasie֒giem pól przycia֒gania i
rozpe֒dza wskutek odrzutu gazów od pre֒dkości zero

ż(t) ≡ v(t) = −w ln

(

1 − κ

m0
t

)

= −w ln
m(t)

m0
,

jest znany jako wzór Cio lkowskiego - zapoznanego rosyjskiego prekursora astronautyki.
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Zadanie 4.3

Wyprowadzić wzór Cio lkowskiego v(t) = −w ln(M(t)/M(0)) wyrażaja֒cy zależność pre֒d-
kości rakiety rozpe֒dzaja֒cej sie֒ w próżni (z dala od wszelkich si l zewne֒trznych) wskutek
odrzutu gazu od stanu spoczynku od jej (zmieniaja֒cej sie֒ z czasem) masy, przyjmuja֒c,
że gazy sa֒ wyrzucane impulsami, a z każdym impulsem rakieta traci 1/(n + 1) cze֒ść
swojej aktualnej masy. Przyja֒ć, że gaz jest odrzucany z pre֒dkościa֒ w wzgle֒dem rakiety
skierowana֒ przeciwnie do pre֒dkości rakiety.

Rozwia֒zanie:

Rozpatrzmy rakiete֒ maja֒ca֒ w danej chwili mase֒ (n + 1)∆m w chwilowym uk ladzie od-
niesienia z nia֒ zwia֒zanym. W uk ladzie tym jej pe֒d jest równy zeru i zeru musi też być
równy sumaryczny pe֒d rakiety o masie n∆m, która uzyska la pre֒dkość ∆vr po wyrzuceniu
masy ∆m z pre֒dkościa֒ ∆vg. Zatem

n∆m∆vr − ∆m∆vg = 0 ,

∆vr + ∆vg = w .

Drugie równanie wyraża to, że wyrzucony gaz ma wzgle֒dem rakiety pre֒dkość w. Z tych
dwóch równań otrzymujemy wniosek, że

∆vr =
w

n+ 1
.

Możemy teraz rozpatrzyć kolejne etapy tracenia masy przez rakiete֒ maja֒ca֒ pocza֒tkowo
mase֒ M0. Po pierwszym impulsie ma ona mase֒ M1 i w uk ladzie inercjalnym (w którym
pocza֒tkowo spoczywa la) pre֒dkość v1:

M1 =
n

n + 1
M0 , v1 = 1 · w

n + 1
.

Po drugim, ma mase֒ M2 i w uk ladzie inercjalnym pre֒dkość v2:

M2 =
n

n+ 1
M1 =

(

n

n + 1

)2

M0 , v2 = 2 · w

n+ 1
.

Po k-tym etapie:

Mk =

(

n

n+ 1

)k

M0 , vk = k · w

n+ 1
.

Zatem k = (n+ 1)vk/w i możemy napisać

Mk =

[

(

n

n + 1

)(n+1)
]vk/w

M0 ≡
[(

1 +
1

n

)(

1 +
1

n

)n]−vk/w
M0 .

Przechodza֒c do granicy n→ ∞ otrzymujemy sta֒d

Mk = M0 e
−vk/w , czyli v(M) = −w ln

M

M0

,
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czyli wzór Cio lkowskiego. Wzór ten wyprowadzony zosta l także w Zadaniu 4.2, przez
ca lkowanie równania Newtona przy za lożeniu pewnej konkretnej zależności M(t) masy
rakiety od czasu. Ponieważ w podanym tu rozumowaniu czas nie odgrywa żadnej roli
(impulsy gazu moga֒ naste֒pować w dowolnych momentach), wyprowadzenie to pokazuje,
że wzór Cio lkowskiego nie zależy od konkretnej postaci zależności M(t). Wniosek ten
można oczywíscie otrzymać także z równania Newtona

M(t)
dv(t)

dt
= −w dM(t)

dt
,

przepisuja֒c je w formie

M(t)
dv(t)

dt

dt

dM(t)
≡ M

dv

dM
= −w ,

i ca lkuja֒c je z warunkiem pocza֒tkowym v(M0) = 0.
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Zadanie 4.5 (z Bia lkowskiego)
Wyprowadzić i przedyskutować wzór na zależność od czasu pre֒dkości kropli spadaja֒cej w
ziemskim polu grawitacyjnym g. Kropla spadaja֒c albo paruje (jeśli spada w próżni) albo
para wodna z otoczenia kondensuje na niej. Przyja֒ć, że szybkość zmiany z czasem masy
kropli jest proporcjonalna do jej aktualnego promienia47 (traktujemy krople֒ jak kulke֒ i
zak ladamy sta lość ge֒stości wody ja֒ tworza֒cej), a także iż dzia la na nia֒ si la oporu (gdy
spada w powietrzu) proporcjonalna do jej szybkości i do aktualnego promienia. Przyja֒ć
też, że tracona lub zyskiwana przez krople֒ woda ma zerowa֒ pre֒dkość wzgle֒dem ośrodka,
w którym kropla spada.

Rozwia֒zanie:

Ponieważ zak ladamy, że szybkość zmiany masy jest proporcjonalna do promienia r kropli,
a przy sta lej ge֒stości wody masa kropli jest proporcjonalna do r3, przeto jawny wzór
wyrażaja֒cy mase֒ kropli w funkcji czasu jest rozwia֒zaniem równania

dm

dt
= αm1/3 ,

przy czym wspó lczynnik α może być dodatni (gdy para z powietrza kondensuje na kropli)
lub ujemny (gdy kropla paruje i masa jej maleje). Rozwia֒zaniem jest

m(t) =

(

m
2/3
0 +

2

3
α t

)3/2

.

Jeśli przyjmujemy że pre֒dkość traconej przez krople֒ (przy la֒czanej do niej) materii ma
zerowa֒ pre֒dkość wzgle֒dem ośrodka oraz że si la oporu jest proporcjonalna do pre֒dkości i
promienia, czyli do m1/3, to do rozwia֒zania jest równanie (kierujemy oś z w do l, tak iż
g = ezg)

d

dt
(mv) = mg − γ m1/3 v ,

które zapiszemy w postaci

v̇ +

(

ṁ

m
+ γ m−2/3

)

v ≡ v̇ + v f(t) = g .

Funkcja f(t) jest jawnie dana wzorem:

f(t) =
γ + α

m
2/3
0 + 2

3
α t

.

47W istocie, gdy kropla spada w próżni, szybkość zmiany jej masy jest proporcjonalna do pola jej
powierzchni, czyli do r2; gdy zaś para z otoczenia kondensuje na niej, szybkość zmiany masy jest mniej
wie֒cej ∝ r3/2, gdy pre֒dkość kropli jest niewielka i mniej wie֒cej ∝ r1/2 przy wie֒kszych pre֒dkościach.
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Równanie jest liniowe z niejednorodnościa֒, można wie֒c doń zastosować standardowa֒ tech-
nike֒ uzmienniania sta lej. Rozwia֒zujemy najpierw równanie jednorodne, które po rozdzie-
leniu zmiennych daje

dv

v
= −f(t) dt ,

i ma jako rozwia֒zanie

vog(t) = v0 exp

(

−
∫

dt f(t)

)

.

Zaste֒puja֒c sta la֒ ca lkowania v0 nieznana֒ funkcja֒ a(t) i wstawiaja֒c tak uzyskana֒ funkcje֒
vszcz(t) do wyj́sciowego równania niejednorodnego, dostajemy na a(t) równanie

ȧ = g exp

(
∫

dt f(t)

)

.

Sta֒d, po sca lkowaniu, znajdujemy a(t) i dostajemy najogólniejsze rozwia֒zanie równania
niejednorodnego w postaci

v(t) = e−
∫ t

0
dτ f(τ)

[

v0 + g

∫ t

0

dτ e
∫ τ

0
dξ f(ξ)

]

.

Granice ca lek zosta ly tak wybrane, że sta la v0 ma sens pre֒dkości pocza֒tkowej (w chwili
t = 0) kropli. Wygla֒da to skomplikowanie, ale można z tym powalczyć.

∫ t

0

dτ f(τ) = (γ + α)

∫ t

0

dτ

m
2/3
0 + 2

3
α τ

=
3

2

(

1 +
γ

α

)

ln

(

1 +
2

3

α t

m
2/3
0

)

.

Zatem

exp

(
∫ τ

0

dξ f(ξ)

)

=

(

1 +
2

3

α τ

m
2/3
0

)
3
2(1+ γ

α)

≡ (1 + aτ)b .

Ida֒c dalej,

∫ t

0

dτ e
∫ τ

0
dξ f(ξ) =

∫ t

0

dτ (1 + aτ)b =
1

a(1 + b)

[

(1 + at)b+1 − 1
]

.

 La֒cza֒c wszystko razem i przyjmuja֒c, że pre֒dkość pocza֒tkowa znika, tj. k lada֒c v0 = 0,
otrzymujemy

v(t) =
g

a(1 + b)

1

(1 + at)b
{

(1 + at)b+1 − 1
}

=
g

a(1 + b)

{

1 + at− 1

(1 + at)b

}

,
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Rysunek 32: Pre֒dkość w (jednostkach gm
2/3
0 /|α|) spadaja֒cej i paruja֒cej kropli (krzywa

czerwona) i spadaja֒cej kropli, na której zachodzi kondensacja (krzywa niebieska) w funkcji

czasu (w jednostkach |α|/m2/3
0 ) bez si ly oporu (γ/|α| = 0). Po lewej: t ≪ 1 - krzywa

zielona pokazuje predkość spadku bez parowania i kondensacji. Po prawej: t≫ 1 - krzywa
zielona pokazuje zależność asymptotyczna֒.

czyli ostatecznie

v(t) =
3g

5α + 3γ







m
2/3
0 +

2

3
α t−m

2/3
0

[

1 +
2

3

α t

m
2/3
0

]− 3
2(1+ γ

α)






.

Zbadajmy najpierw zachowanie pre֒dkości tuż po starcie. Rozwijamy w tym celu
powyższy wzór w szereg wzgle֒dem t

(1 + at)−b = exp[−b ln(1 + at)] = 1 − bat +
1

2
b(b+ 1)a2t2 + . . .

Wspó lczynniki sa֒ równe

b a = m
−2/3
0 (α + γ) ,

b(b+ 1) a2 =
1

3
m
−4/3
0 (α + γ)(5α+ 3γ) .

Wstawiaja֒c to rozwinie֒cie do uzyskanego wyżej wzoru, otrzymujemy

v(t) =
3g

5α+ 3γ

{

m
2/3
0 +

2

3
α t−m

2/3
0

[

1 −m
−2/3
0 (α + γ) t

+
1

6
m
−4/3
0 (α + γ)(5α + 3γ) t2 + . . .

]}

,

czyli, po uproszczeniach

v(t) ≈ gt− g

2m
2/3
0

(α+ γ) t2 .
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Rysunek 33: Pre֒dkość w (jednostkach gm
2/3
0 /|α|) spadaja֒cej i paruja֒cej kropli (krzywa

czerwona) i spadaja֒cej kropli, na której zachodzi kondensacja (krzywa niebieska) w funkcji

czasu (liczonego w jednostkach |α|/m2/3
0 ), gdy wystepuje si la oporu (γ/|α| = 0.5). Po

lewej: t≪ 1 - krzywa zielona pokazuje predkość spadku bez parowania i kondensacji. Po
prawej: t≫ 1 - krzywa zielona pokazuje zależność asymptotyczna֒ (dla t→ ∞).

Widać sta֒d, że jeśli α + γ > 0, szybkość kropli najpierw rośnie liniowo z czasem (tak jak
gdyby jej masa nie zmienia la sie֒, a si ly oporu nie by lo) a naste֒pnie spada.

Z pe lnego wzoru widać też, że przy braku si ly oporu (γ = 0) i kondensacji (α > 0)
pre֒dkość kropli asymptotycznie rośnie jak 2

5
gt. Si la oporu modyfikuje ten asymptotyczny

wzrost pre֒dkości do 2αgt/(5 + 3γ/α).
Przy parowaniu zaś (α = −|α| < 0) i braku oporu wzór przybiera postać

v(t) =
3g

5|α|m
2/3
0







2|α|
3m

2/3
0

t +

(

1 − 2|α|t
3m

2/3
0

)−3/2

− 1







.

Widać z niej, że kropla w skończonym czasie ca lkowicie wyparowuje, osia֒gaja֒c w tym
samym momencie nieskończona֒ pre֒dkość. Jest to oczywíscie nierealistyczne. Z kolei jeśli
si la oporu jest znaczna, tak iż γ > |α| (tak, iż we wzorze na v(t) wyk ladnik ostatniego
cz lonu w nawiasie kre֒conym jest dodatni), pre֒dkość kropli w momencie wyparowania jest
równa zeru. Zależność pre֒dkości kropli w różnych sytuacjach pokazuja֒ wykresy 32 i 33.

Jeśli α = 0 (masa kropli nie zmienia sie֒) wzór na v(t) przepisujemy w postaci

v(t) =
gm

2/3
0

γ
lim
α→0

{

1 − exp

[

−3

2

(

1 +
γ

α

)

ln

(

1 +
2

3

αt

m
2/3
0

)]}

,

z której już widać, że otrzymany wzór przechodzi w otrzymany w dla pionowej sk ladowej
pre֒dkości w zadaniu 2.4 przy utożsamieniu γ/m

1/3
0 ze wspó lczynnikiem κ/m (trzeba tylko

uwzglednić że oś z tu jest skierowana przeciwnie niż tam). Przy t → ∞ predkość v(t)

da֒ży do gm
2/3
0 /γ, co jest oczywiste, bo jest to punkt sta ly równania v̇ = g − γm

2/3
0 .
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Przypomnienie

Dwaj obserwatorzy z uk ladów odniesienia O i O′ charakteryzuja֒ zmienność w czasie
wektorów r(t) i r′(t) po lożenia punktu P (zob. lewy rysunek 34). Wektory te spe lniaja֒
oczywista֒ równość (która֒, jak każda֒ równość wektorowa֒, można rozpisać na sk ladowe w
dowolnym uk ladzie odniesienia, czyli np. w O lub w O′).

r(t) = r0(t) + r′(t) ,

gdzie r0(t) jest (zmieniaja֒cym sie֒ z czasem) wektorem  la֒cza֒cym pocza֒tki uk ladów O i
O′. Ponieważ jest to równość dwóch wektorów, wie֒c zachodzi także zwia֒zek

dr(t)

dt
=
dr0(t)

dt
+
dr′(t)

dt
.

Oczywíscie dr(t)/dt ≡ v(t) jest wektorem pre֒dkości punktu P mierzonej przez obserwa-
tora w O. Jeśli jednak widziany z O uk lad O′ obraca sie֒ wokó l osi przechodza֒cej przez
jego pocza֒tek z pre֒dkościa֒ ka֒towa֒ ω, wektor dr′(t)/dt nie jest tożsamy z wektorem v′

pre֒dkości mierzonej w O′. Aby to sobie uzmys lowić wystarczy rozpatrzyć przypadek, gdy
punkt P pozostaje w ustalonym po lożeniu wzgle֒dem O′: mimo iż wtedy v′ = 0, pochodna
dr′(t)/dt 6= 0, gdyż widziany z O wektor r′ zmienia sie֒ wraz z obrotem ca lego uk ladu O′.

Rozpatruja֒c infinitezymalne zmiany wektorów zachodza֒ce w infinitezymalnym od-
cinku czasu dt możemy napisać równość:

dr = dr0 + d′r′ + (dr′)rot .

d′r′ jest zmiana֒ wektora r′ widziana֒ przez obserwatora w O′ (który uważa, że to osie jego
uk ladu sie֒ nie zmieniaja֒; wobec tego d′r′ = 0, wtedy gdy punkt P nie zmienia po lożenia
wzgle֒dem O′), wektor zaś (dr′)rot jest w laśnie zmiana֒ r′ widziana֒ z O, uwarunkowana֒ w
ca lości obrotem O′ wzgle֒dem O. Zmiana ta jest, jak  latwo zrozumieć, równa

(dr′)rot = dθ × r′ ,

gdzie dθ jest wektorem reprezentuja֒cym infinitezymalny obrót o ka֒t dθ uk ladu O′ wzgle֒dem
O w przedziale czasu dt (zatem dθ = ωdt). Wektor ten ma kierunek chwilowej osi ob-
rotu. Otrzymujemy zatem wniosek, że gdy uk lad O′ obraca sie֒ wzgle֒dem O wokó l osi
przechodza֒cej przez jego pocza֒tek

dr

dt
=
dr0
dt

+
d′r′

dt
+ ω × r′ .

Powyższy wzór pozostaje prawdziwy, nawet jeśli oś wokó l której obraca sie֒ uk lad O′
nie przechodzi przez jego pocza֒tek. Aby sie֒ o tym przekonać wprowadzamy pomocniczy
uk lad O′′ o pocza֒tku leża֒cym na osi, wokó l której obraca sie֒ O′ i osiach stale równoleg lych
do odpowiadaja֒cych im osi uk ladu O′ (zob. prawy rysunek 34). Mamy wtedy wektorowy
zwia֒zek

r = r′′0 + r′′ ,
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Rysunek 34: Lewy rysunek: Uk lady odniesienia O i O′. Z punktu widzenia obserwatora
w uk ladzie O uk lad O′ obraca sie֒ wokó l osi zaznaczonej linia֒ przerywana֒ z pre֒dkościa֒
ka֒towa֒ ω. Obaj obserwatorzy: w O i O′ charakteryzuja֒ zmienność w czasie wektora
po lożenia punktu P odpowiednio wektorami r, dr/dt, d2r/dt2 oraz r′, d′r′/dt, d

′2r′/dt2.
Prawy rysunek: Pomocniczy uk lad O′′ wprowadzany w sytuacji, gdy uk lad O′ obraca sie֒
wokó l osi nieprzechodza֒cej przez jego pocza֒tek. (Dla przejrzystości, wektory r′, takie
same, jak na lewym rysunku, nie zosta ly tu uwidocznione).

w którym r′′ jest wektorem wodza֒cym punktu P w uk ladzie O′′. Wobec tego, zgodnie z
poprzednim rozumowaniem możemy napisać

dr = dr′′0 + d′′r′′ + dθ × r′′ .

Wykorzystujemy naste֒pnie równość r′′ = r′0 + r′:

dr = dr′′0 + d′′(r′0 + r′) + dθ × r′0 + dθ × r′ .

Ponieważ jednak uk lady O′′ i O′ sa֒ ze soba֒ na sztywno zwia֒zane, d′′r′0 = 0 (wektor r′0
widziany z uk ladu O′′ nie zmienia sie֒). Co wie֒cej, d′′r′ = d′r′, gdyż osie O′′ i O′ sa֒
nawzajem do siebie stale równoleg le i zmiana wektora r′ widziana z obu tych uk ladów
jest takim samym wektorem. Wreszcie, wyraz dθ × r′0 po dodaniu do dr′′0 daje po prostu
przesunie֒cie wzgle֒dem O pocza֒tku uk ladu O′, czyli dr0. Otrzymujemy zatem ponownie
ten sam wzór, który można także zapisać jako (Vtr jest pre֒dkościa֒ ruchu poste֒powego O′
mierzona֒ w O)

v = Vtr + v′ + ω × r′ .

Z tych rozważań wynika też naste֒puja֒cy wniosek. Jeśli wektor b  la֒czy punkt P1 (o
wektorach wodza֒cych r1 i r′1 wzgle֒dem odpowiedno O i O′) z punktem P2 (o wektorach
wodza֒cych r2 i r′2), czyli jeśli b = r2 − r1 = r′2 − r′1, to odejmuja֒c stronami wzory  la֒cza֒ce
ze soba֒ pochodne w obu uk ladach otrzymamy ważny wzór (por. Zadanie 5.1)

db

dt
=
d′b

dt
+ ω × b .
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Wzór wia֒ża֒cy ze soba֒ przyspieszenia punktu P mierzone w obu uk ladach dostajemy
wykorzystuja֒c powyższy zwia֒zek (wyrazy w nawiasach sa֒ pochodnymi d/dt):

a ≡ dv

dt
=
dVtr

dt
+

(

d′v′

dt
+ ω × v′

)

+
dω

dt
× r′ + ω ×

(

d′r′

dt
+ ω × r′

)

≡ atr + a′ +
dω

dt
× r′ + 2ω × v′ + ω × (ω × r′) .

Zgodnie ze wzorem wiaża֒cym pochodne dowolnego wektora b obliczane w uk ladach ob-
racaja֒cych sie֒ jeden wzgle֒dem drugiego z pre֒dkościa֒ ka֒towa֒ ω, dω/dt = d′ω/dt.

Ważne jest także, by zdawać sobie sprawe֒ z tego, że powyższe zwia֒zki mie֒dzy pochod-
nymi wektorów sa֒ s luszne dla dowolnych dwu uk ladów O i O′. W szczególności żaden z
nich nie musi być uk ladem inercjalnym. Jeśli jednak uk lad O jest uk ladem inercjalnym,
to zwyk le prawo Newtona (tj. równanie ma = F) obowia֒zuje tylko w tym uk ladzie. W
uk ladzie O′, który jest wtedy (z konieczności, jeśli ω 6= 0) uk ladem nieinercjalnym, można
jednak stosować “prawo Newtona” zmodyfikowane o fikcyjne “si ly bezw ladności”:

ma′ = F −m

(

atr +
dω

dt
× r′ + 2ω × v′ + ω × (ω × r′)

)

.
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Zadanie 5.1

Dany jest zmieniaja֒cy sie֒ z czasem wektor b(t). Powia֒zać jego pochodne obliczone w
dwu różnych uk ladach odniesienia O i O′. Uk lady te maja֒ wspólny pocza֒tek i obracaja֒
sie֒ wzgle֒dem siebie wokó l wspólnej osi z = z′. Ka֒t jaki tworzy oś x′ uk ladu O′ z osia֒ x
uk ladu O jest pewna֒ funkcja֒ czasu ϕ(t).
Uwaga: Żaden z tych uk ladów nie jest wyróżniony. W szczególności żaden z nich nie
musi być uk ladem inercjalnym.

Rozwia֒zanie:

Jeśli dane sa֒ dwa różne uk lady odniesienia O i O′, to dowolny wektor b można rozpisać
na wersory i jednego i drugiego uk ladu:

b = exbx + eyby + ezbz = e′xb
′
x + e′yb

′
y + e′zb

′
z .

Wiedza֒c, że wersory obu uk ladów sa֒ ze soba֒ powia֒zane wzorami

ex = e′x cosϕ(t) − e′y sinϕ(t) ,

ey = e′x sinϕ(t) + e′y cosϕ(t) ,

i ez = e′z (wzory te  latwo sprawdzić robia֒c odpowiedni rysunek i rozpatruja֒c przypadki,
gdy ϕ = 0 i ϕ = π/2) można też napisać

b = [bx cosϕ(t) + by sinϕ(t)] e′x + [−bx sinϕ(t) + by cosϕ(t)] e′y + bze
′
z .

Oznacza to po prostu, że b′x = bx cosϕ(t) + by sinϕ(t), a b′y = −bx sinϕ(t) + by cosϕ(t).
Pochodna֒ wektora b obliczona֒ w uk ladzie O

db

dt
= exḃx + eyḃy + ez ḃz ,

(obserwator w O, różniczkuja֒c wektor, uważa, że to osie ei nie zmieniaja֒ sie֒ z czasem),
która jest pewnym wektorem, również można rozpisać na wersory uk ladu O′, otrzymuja֒c

db

dt
= [ḃx cosϕ(t) + ḃy sinϕ(t)] e′x + [−ḃx sinϕ(t) + ḃy cosϕ(t)] e′y + ḃze

′
z .

Jeśli jednak obliczymy pochodna֒ wektora b w uk ladzie O′, to otrzymamy

d′b

dt
= e′xḃ

′
x + e′yḃ

′
y + e′z ḃ

′
z

=
db

dt
+ ω[−bx sinϕ(t) + by cosϕ(t)] e′x + ω[−bx cosϕ(t) − by sinϕ(t)] e′y .

Dodatkowe wyrazy proporcjonalne do ω ≡ ϕ̇(t) biora֒ sie֒ sta֒d, że w uk ladzie O′, oprócz
zmienności z czasem sk ladowych wektora b w bazie ei, uwzgle֒dniona jest także zmiana
wektora b spowodowana tym, że same wersory ei obracaja֒ sie֒ wzgle֒dem uk ladu O′ (ob-
serwator w O′ uważa, że to jego osie e′i sa֒ nieruchome!). Wprowadzaja֒c wektor pre֒dkości
ka֒towej ω = ω ez = ω e′z można sprawdzić, że dodatkowe wyrazy daja֒ sie֒ zapisać jako
−ω × b. Sta֒d

d′b

dt
=
db

dt
− ω×b lub

db

dt
=
d′b

dt
+ ω×b .
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Zadanie 5.2

Znaleźć ca lke֒ pierwsza֒ równania “Newtona” (tj. równania z si lami bezw ladności) wyzna-
czaja֒cego ruch masy m w uk ladzie nieinercjalnym O′ obracaja֒cym sie֒ wzgle֒dem uk ladu
inercjalnego O ze sta la֒ pre֒dkościa֒ ka֒towa֒ ω tak, że wektor  la֒cza֒cy środek uk ladu iner-
cjalnego ze środkiem uk ladu nieinercjalnego pozostaje sta ly, gdy si ly niebezw ladnościowe
w uk ladzie nieinercjalnym sa֒ potencjalne, a ewentualne wie֒zy, jakim poddana jest masa
m, sa֒ w tymże uk ladzie niezależne od czasu. Znaleźć zwia֒zek tej ca lki pierwszej z energia֒
mechaniczna֒ masy m mierzona֒ w uk ladzie inercjalnym.

Rozwia֒zanie:

Po pomnożeniu skalarnie stronami przez v′ ogólne równanie “Newtona” w uk ladzie nie-
inercjalnym O′ (uwzgle֒dniaja֒ce si ly bezw ladnościowe), zapisane tu w przypadku, gdy
predkość ka֒towa֒ ω jest sta la

m
d′v′

dt
= F + FR −m (atr + 2ω × v′ + ω × (ω × r′)) ,

(d′ oznacza tu pochodna֒ obliczana֒ w uk ladzie nieinercjalnym, a FR reprezentuje si ly
reakcji ewentualnych wie֒zów) można zapisać w postaci

d′

dt

(

1

2
mv′2

)

= F·v′ −matr ·v′ −m[ω×(ω×r′)]·v′ .

Jeśli wektor  la֒cza֒cy środek uk ladu inercjalnego O ze środkiem uk ladu nieinercjalnego
O′ pozostaje sta ly, to atr = 0. Za lożenie, że wie֒zy, jakim poddana jest masa m, sa֒ w
uk ladzie O′ niezależne od czasu (co naogó l oznacza, że w uk ladzie inercjalnym sa֒ one od
czasu zależne!) oznacza, że FR ·v′ = 0. Si la Coriolisa, jak wynika z jej postaci, również
jest do v′ prostopad la. Ostatni cz lon po prawej stronie można przekszta lcić wykorzystuja֒c
tożsamości wektorowe:

[ω×(ω×r′)]·v′ = (v′×ω)·(ω×r′) = −1

2

d′

dt
(ω×r′)

2
.

Jeśli wie֒c si la F nie zależy jawnie od czasu i F = −∇
′V (r′), istnieje ca lka pierwsza

1

2
mv′2 + V (r′) − 1

2
m (ω×r′)

2 ≡ T ′ + V + V ′odsr = h = const.

Pierwszy wyraz, T ′, reprezentuje energie֒ kinetyczna֒ masy m mierzona֒ w uk ladzie nie-
inercjalnym, a ostatni, V ′odsr, coś co można nazwać potencjalna֒ energia֒ si ly odśrodkowej.
Zauważmy też, że wobec tego iż wielkość h jest skalarem,

d

dt
h =

d′

dt
h = 0 ,

- wielkość h pozostaje sta la także w uk ladzie inercjalnym. Nie jest ona jednak, jak poka-
zujemy niżej, tożsama z ca lkowita֒ energia֒ ruchu mierzona֒ w uk ladzie inercjalnym.
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Energie֒ kinetyczna֒ T = 1
2
mv2 mierzona֒ w uk ladzie inercjalnym O można oczywíscie

wyrazić przez pre֒dkość v′ mierzona֒ w uk ladzie O′ korzystaja֒c ze zwia֒zku v = v′ + vtr +
ω × r′. Zatem jeśli uk lad O′ wiruje tylko wzgle֒dem O wokó l wspólnego pocza֒tku obu
uk ladów (tzn. vtr = 0) to48

E = T ′ + V +
1

2
m(ω×r′)2 +mv′ ·(ω×r′) = h+m(ω × r′)2 +mv′ ·(ω × r′) .

Wielkość zachowana h nie jest wie֒c w takiej sytuacji tożsama z energia֒ E mierzona֒ w
uk ladzie inercjalnym, która naogó l nie jest sta la. Wynika to z tego, że wie֒zy, które nie
sa֒ sta le w uk ladzie inercjalnym (nie sa֒ skleronomiczne), naogó l wykonuja֒ nad uk ladem
prace֒.

Jeśli dodatkowo r′ = r (pocza֒tki uk ladów: inercjalnego O i nieinercjalnego O′ stale sie֒
pokrywaja֒), to ca lkowita energia E masy m mierzona w uk ladzie O i wielkość zachowana
h sa֒ ze soba֒ zwiazane relacja֒

E = h+ ω ·L ,

w ktŕej L = mr × v = mr′ × (v′ + ω × r′). Jest to oczywíscie ten sam wniosek, który
otrzymuje sie֒ przy okazji twierdzenia Larmora (Zadanie 5.10).

48Energia potencjalna V jest w obu uk ladach, inercjalnym i nieinercjalnym, ta sama. Jest to bowiem
np. energia rozcia֒gnie֒tej spre֒żyny, czy energia grawitacyjna, których wartości nie zależa֒ od zmiennych
użytych do określenia po lożenia masy m.
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Zadanie 5.3

Przedyskutować jakościowo wp lyw si l odśrodkowej i Coriolisa na ruch (w pobliżu po-
wierzchni Ziemi) masy m wzgle֒dem nieinercjalnego uk ladu odniesienia maja֒cego pocza֒tek
w punkcie o szerokości geograficznej ϕ na powierzchni obracaja֒cej sie֒ Ziemi.

Rozwia֒zanie:

W zwia֒zanym z powierzchnia֒ Ziemi nieinercjalnym uk ladzie odniesienia O′ w równaniu
Newtona oprócz si l rzeczywistych takich jak si la przycia֒gania Ziemi i inne, trzeba uwzgle֒dnić
także si ly pozorne (si ly bezw ladności):

m
d2r′

dt2
≡ ma′ = Freal −m

[

atr +
dω

dt
×r′ + 2ω×d′r′

dt
+ ω×(ω×r′)

]

= Freal −m [atr + ω̇ ×r′ + 2ω×v′ + ω×(ω×r′)] .

atr jest tu przyspieszeniem punktu O′ wzgle֒dem punktu O (zob. rysunek 35). Ich
wzgle֒dna pre֒dkość vtr jest oczywíscie równa vtr = ω × R. Wynika to także natych-
miast z ogólnego wzoru (zob. Przypomnienie) wia֒ża֒cego obliczane w różnych uk ladach
pochodne wektorów

vtr =
dR

dt
=
d′R

dt
+ ω×R ,

i faktu, że d′R/dt = 0 - widziany z uk ladu O′ wektor R pozostaje sta ly. Z kolei

atr =
dvtr

dt
=
dω

dt
×R + ω×dR

dt
=
dω

dt
×R + ω×(ω×R) .

Jeśli pomina֒ć znikomo ma la֒ zależność od czasu pre֒dkości ka֒towej ω obrotu Ziemi,
równanie pseudo-Newtona ruchu masy m wzgle֒dem uk ladu O′ można przyja֒ć w postaci

m
d2r′

dt2
= Fgraw + Finne −m

[

ω×(ω×R) + 2ω×dr′

dt
+ ω×(ω×r′)

]

= Fgraw + Finne −m

[

ω×(ω×r) + 2ω×dr′

dt

]

,

gdzie r = R + r′. Druga postać tego równania pokazuje, że dzia laja֒ca na mase֒ m “si la
odśrodkowa”49 zależy, tak jak by sie֒ należa lo spodziewać, od odleg lości masy m od rze-
czywistej osi obrotu Ziemi, czyli od osi z uk ladu O. W praktyce, tj. dla zwykle rozpa-
trywanych ruchów przy powierzchni Ziemi, |r′| ≪ |R|, wiec w równaniu można zasta֒pić
r przez R.

49Jak u W.B. Yeatsa w “The Second Coming”: “Turning and turning in the widening gyre, the falcon
cannot hear the falconer. Things fall apart; the center cannot hold; Mere anarchy is loosed upon the
world,...” albo: “Coraz to szersze zataczajac kre֒gi sokó l nie slyszy g losu sokolnika. Rzeczy pryskaja֒,
cie֒żar środka s labnie nad światem huczy anarchia krwia֒ ciemna֒.” (“Drugie Przyj́scie”.)

143



ϕ
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ω z′

r′
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O

O′

ω

ϕ

g

δg

geff

Rysunek 35: Po lewej: ruch punktu P rozpatrywany wzgle֒dem zwia֒zanego z obracaja֒ca֒
sie֒ Ziemia֒ nieinercjalnego uk ladu odniesienia maja֒cego pocza֒tek w punkcie o szerokości
geograficznej ϕ na powierzchni Ziemi. Po prawej: Uwzgle֒dnienie si ly odśrodkowej przez
wprowadzanie lokalnego pola si ly cie֒żkości geff .

Najpierw sie֒ zajmiemy si la֒ cie֒żkości, która zawsze dzia la na cia la poruszaja֒ce sie֒ w
pobliżu powierzchni Ziemi. Ma ona postać

Fgraw(r) = −GMZ
mr

|r|3 ≈ −GMZ

|R|2
R

|R|m
[

1 + O
( |r′|
|R|

)]

,

gdzie zastosowalísmy rozwinie֒cie s luszne, gdy |r′| ≪ |R|. Czynnik

GMZ

|R|2 =
6.67 × 10−11 m3 s−2kg−1 · 5.97 × 1024 kg

(6.378 × 106 m)2
≈ 10

m

s2
,

to s lynne “szkolne” g (z samych pote֒g widać, że g ≈ 10) tu bedace jednak wektorem:

g = − GMZ

|R|2
R

|R| ≡ −g ez′ .

Jeśli wie֒c w ca lym badanym ruchu |r′(t)| ≪ |R|, można korzystać z przybliżenia

Fgraw = mg = −mg ez′ .

W zasadzie g lówna֒ cze֒ść si ly odśrodkowej −mω× (ω× r) ≈ −mω× (ω×R) można
uwzgle֒dnić wprowadzaja֒c efektywne lokalne (tj. zależne od szerokości geograficznej) pole
si ly cie֒żkości geff (zob. prawy rysunek 35):

geff(r) = g − ω×(ω×r) ≈ g − ω×(ω×R) ≡ g + δg .

Wartość poprawki δg zależy od szerokości geograficznej:

|δg| ≈ |ω×(ω×R)| = ω2R cosϕ .
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Ponieważ

ω =
2π

T
=

2π

24 · 3600 s
≈ 7.3 × 10−5 s−1 ,

wie֒c

|δg| ≈ (7.3 × 10−5 s−1)2 · 6.378 × 106 m cosϕ ≈ 3.3 × 10−2 m · s−2 cosϕ .

Pole geff ma sk ladowa֒ radialna֒ (tj. skierowana֒ wzd luż wersora ez′ w przeciwnym niż
on kierunku) o wartości (zob. prawy rysunek 35)

|(geff)rad| = |g| − |δg| cosϕ = |g| − ω2R cos2 ϕ ,

oraz sk ladowa֒ horyzontalna֒ (tj. równoleg la֒ do powierzchni Ziemi) o wartości

|(geff)hor| = |δg| sinϕ = ω2R cosϕ sinϕ .

Przy spadku swobodnym sk ladowa horyzontalna geff powoduje ma le odchylenie spadaja-
cego cia la w kierunku równika (tj. w kierunku po ludniowym na pó lkuli pó lnocnej).

Poprawka δg jest jednak co do wartości tego samego rze֒du, co zmiana wartości g
spowodowana odste֒pstwem Ziemi od ścísle kulistego kszta ltu (Ziemia jest na biegunach
troche֒ sp laszczona - ma kszta lt troche֒ taki, jak pi lka, na której usiad l mís): różnica pola
g mierzonego na biegunie i na równiku

|gbiegun| − |grownik| ≈ 5 × 10−2 m · s−2 ,

wie֒c jeśli pomija sie֒ ten drugi efekt, nie ma sensu zaste֒powanie g przez geff .
Z praktycznego punktu widzenia znacznie ważniejsza jest si la Coriolisa

FCor = −2mω×v′ = 2mv′×ω .

Przy spadku swobodnym cia la na powierzchnie֒ Ziemi, ponieważ Ziemia obraca sie֒ na
wschód (i jak mówia֒ w Kacapii, “potomu so lnce woschodit na Wostokie”), si la Coriolisa
powoduje jego odchylenie na wschód (wbrew temu, co można w pierwszej chwili mniemać
- proste wyjaśnienie tego jest treścia֒ Zadania 5.4). Jeśli pre֒dkość v′ jest skierowana
horyzontalnie (stycznie do powierzchni Ziemi) to wygodnie jest roz lożyć pre֒dkość ka֒towa֒
ω Ziemi na cze֒ść prostopad la֒ i cze֒ść równoleg la֒ do powierzcni Ziemi:

v′×ω = v′×ω⊥ + v′×ω‖ ,

przy czym |ω⊥| = ω sinϕ, |ω‖| = ω cosϕ. Pierwszy skladnik daje wtedy si le֒ powoduja֒ca֒
na pó lkuli pó lnocnej skre֒canie na prawo (na lewo na pó lkuli po ludniowej), co wyjaśnia,
dlaczego brzegi rzek p lyna֒cych na pó lnoc podmywaja֒ bardziej prawe brzegi; drugi skladnik
przy ruchu na wschód zmniejsza geff (bo v′ dodaje sie֒ wtedy do ruchu obrotowego samej
Ziemi).
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Zadanie 5.4

Z wieży o wysokości h = 125 m stoja֒cej na równiku spuszczono swobodnie kamień o masie
m. Jak daleko upadnie on od podstawy wieży? Pomina֒ć wszystkie możliwe si ly oporu.
Rozwia֒zać ten problem w uk ladzie zwia֒zanym z Ziemia֒ oraz w uk ladzie inercjalnym,
którym Ziemia (wraz z wieża֒) sie֒ obraca.

Rozwia֒zanie:

W uk ladzie obracaja֒cym sie֒ wraz z Ziemia֒, którego pocza֒tek umieszczamy u podstawy
wieży, oś z kierujemy “w niebo”, a oś x na wschód, równanie “Newtona”, które trzeba
rozwia֒zać z warunkiem pocza֒tkowym r(0) = ezh, ṙ(0) ≡ v(0) = 0, ma postać:50

m
d2r

dt2
= mg − 2mω×v −mω×(ω×r) .

W przyje֒tym uk ladzie odniesienia ω = eyω. Ponieważ czas tsp spadku kamienia, czyli czas

trwania ruchu, nie może sie֒ wiele różnić od danego “szkolnym wzorem” tsp =
√

2h/g, wie֒c
w powyższym równaniu ostatni wyraz daje ma le efekty (drugiego rze֒du w ma lej wielkości
ωtsp ≪ 1) i można go pomina֒ć. Rozwia֒zujemy zatem równanie

m
d2r

dt2
= mg − 2mω×v ,

które rozpisane na sk ladowe daje

ẍ = −2ωż ,

ÿ = 0 ,

z̈ = 2ωẋ− g .

Środkowe z tych równań jest trywialne i, uwzgle֒dniaja֒c warunki pocza֒tkowe, daje y(t) =
0. Z kolei ca lkuja֒c stronami pierwsze z tych równań i dobieraja֒c sta la֒ ca lkowania tak, by
dla t = 0, tj. wtedy, gdy z(0) = h, by lo ẋ(0) = 0, znajdujemy

ẋ = 2ω(h− z) .

Wstawiaja֒c tak wyrażone ẋ do trzeciego równania otrzymujemy

z̈ = −g + 4ω2(h− z) .

Ponieważ zdecydowalísmy sie֒ pomijać wyrazy z ω2, rozwia֒zanie tego równania da z(t) =
h− 1

2
gt2, jak w szkole. Sta֒d widzimy, że rzeczywíscie z dok ladnościa֒ do efektów liniowych

w ω (a przy pominie֒ciu efektów kwadratowych), czas spadku wyznaczony przez z(tsp) = 0,

jest równy tsp =
√

2h/g. Wykorzystuja֒c znalezione z(t) w równaniu na x(t)

ẋ = 2ω(h− z) = ωgt2 ,

50Oznaczanie wielkości w uk ladzie nieinercjalnym symbolami z primem zosta lo tu zarzucone.
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po sca lkowaniu otrzymujemy

x(t) =
1

3
gωt3 .

Odchylenie d kamienia od podstawy wieży wynosi zatem

d = x(tsp) =
1

3
gω

2h

g

√

2h

g
= 0, 5 cm .

Ponieważ d > 0, kamień odchyla sie֒ w kierunku wschodnim, a nie, jak by można oczekiwać
na podstawie naiwnego rozumowania, że w trakcie lotu kamienia, to raczej Ziemia z wieża֒
na niej obróci sie֒ na Wschód.

Ten na pierwszy rzut oka dziwny wynik można lepiej rozumieć rozpatruja֒c ruch w
uk ladzie inercjalnym, w którym Ziemia z wieża֒ na niej sie֒ obraca. Ponieważ ruch zachodzi
w p laszczyźnie równikowej, wygodnie jest wprowadzić w tej p laszczyźnie uk lad biegunowy
(r, ϕ) tak, by w t = 0 wierzcho lek wieży (czyli kamienia) mia l wspó lrze֒dne r(0) = R+ h,
gdzie R jest promieniem Ziemi (pocza֒tek uk ladu inercjalnego umieszczamy w środku
Ziemi, aby jej ruch obrotowy mia l prosta֒ postać), ϕ(0) = 0. Równanie Newtona rozpisane
w uk ladzie biegunowym, mar = Fr, maϕ = Fϕ to dwa równania:

m(r̈ − rϕ̇2) = −mg ,
m(rϕ̈+ 2ṙϕ̇) = 0 .

Drugie równanie, po pomnożeniu obu stron przez r, daje sie֒ zwina֒ć do51

d

dt
(mr2ϕ̇) = 0 , czyli mr2ϕ̇ = L = const. ,

i wyraża, jak  latwo zrozumieć, zachowanie z-owej sk ladowej momentu pe֒du (ponieważ
jedyna dzia laja֒ca na kamień w uk ladzie inercjalnym si la jest centralna, moment pe֒du

51Innym sposobem doj́scia do tego samego wniosku jest zapisanie tego równania w postaci

−2
ṙ

r
=
ϕ̇̇

ϕ̇
≡ 1

ϕ̇

dϕ̇

dt
,

i sca lkowanie go stronami

−2

∫ r(t)

r(0)

dr

r
=

∫ ϕ̇(t)

ϕ̇(0)

d(ϕ̇)

ϕ̇
,

co daje

ln[ϕ̇(t)/ϕ̇(0] = −2 ln[r(t)/r(0)] ,

czyli mr2(t)ϕ̇(t) = mr2(0)ϕ̇(0).
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kamienia jest sta la֒ ruchu; w uk ladzie biegunowym, jawnie widoczna jest jednak tylko
sta lość Lz ≡ L). Zatem z równania tego możemy wyznaczyć ϕ̇ i wstawić do pierwszego:

mṙ̇ − L2

mr3
= −mg ,

Standardowym sposobem radzenia sobie z tym równaniem jest pomnożenie obu jego stron
przez ṙ i zwinie֒cie do

d

dt

(

1

2
mṙ2 +

L2

2mr2
+mgr

)

= 0 ,

czyli do równości wyrażaja֒cej sta lość ca lkowitej energii kamienia. Równanie to bedzie ba-
dane w zadaniach dotycza֒cych ruchu w polu grawitacyjnym. Tu uprościmy sobie zadanie,
przyjmuja֒c, co znajdzie swoje uzasadnienie niżej, że L2 ∼ ω2 i wobec tego, cz lon ten w
rówaniu na r można pomina֒ć. Po szkolnym sca lkowaniu daje ono wtedy

r(t) = r(0) + ṙ(0) − 1

2
gt2 = (R + h) − 1

2
gt2 .

Sta֒d, czas spadku, wyznaczony równościa֒ r(tsp) = R, jest równy, jak poprzednio tsp =
√

2h/g.
Maja֒c r(t) można znaleźć ϕ(t):

ϕ(t) =

∫ t

0

dt′L

mr2(t′)
=
L

m

∫ t

0

dt′

[R + h− 1
2
gt′2]2

.

Ca lke֒ te֒ można wyliczyć ścísle, ale by lby to zbyteczny trud: ponieważ R + h ≫ gt2sp,
możemy rozwina֒ć funkcje֒ podca lkowa֒

ϕ(t) =
L

m(R + h)2

∫ t

0

dt′
(

1 +
gt′2

R + h
+ . . .

)

=
L

m(R + h)2
t+

1

3

gL

m(R + h)3
t3 + . . .

Aby wyznaczyć L, zauważamy, że w chwili pocza֒tkowej kamień znajduja֒cy sie֒ na wierz-
cho lku wieży ma niezerowa֒ pre֒dkość w kierunku eϕ, równa֒ (R + h)ω. Zatem L =
mr2(0)ω = m(R + h)2ω i

ϕ(t) = ωt+
1

3

ω

R + h
gt3 .

Trzeba jednak pamia֒tać, że w czasie, gdy kamień spada l z wieży, jej podstawa obróci la
sie֒ z wraz Ziemia֒ o ka֒t ϕZ = ωtsp. Biora֒c to pod uwage֒, odleg lość, w jakiej od wieży
upadnie kamień wynosi

d = R (ϕ(tsp) − ϕZ) =
1

3

Rω

R + h
gt3sp ≈ 1

3
gωt3sp .
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Widać że przyczyna֒ odchylenia kamienia na Wschód jest naprawde֒ to, że w uk ladzie
inercjalnym ma on w momencie rozpocze֒cia spadania wie֒ksza֒ pre֒dkość w tymże kierunku,
niż podstawa wieży.
Zadanie 5.5

Stosuja֒c rachunek zaburzeń (albo inaczej, zasade֒ Banacha) podać rozwinie֒cie ogólnego
rozwia֒zania r = r(t) równania Newtona wyznaczaja֒cego ruch punktu materialnego w
nieinercjalnym uk ladzie odniesienia zwia֒zanym z powierzchnia֒ Ziemi s luszne w przypadku
ruchów krótkotrwa lych, w trakcie których ma lym pozostaje bezwymiarowy czynnik ωt (ω
jest tu pre֒dkościa֒ ka֒towa֒ obrotu Ziemi.

Rozwiazanie:

W przypadku ruchów krótkotrwa lych, o ma lym zasie֒gu, w których |r′(t)| ≪ R (R jest tu
promieniem Ziemi), można ogólne równanie

ma′ = mg −m

(

atr +
dω

dt
×r′ + 2ω×v′ + ω×(ω×r′)

)

+ Finne ,

(s luszne w dowolnym uk ladzie nieinercjalnym) uprościć do (zob. Zadanie 5.3)

ma′ = mgeff − 2mω×v′ + Finne ,

poprzez wcia֒gnie֒cie w lokalne pole geff efektów przyspieszenia atr = ω × (ω × R) (w
którym R jest wektorem  la֒cza֒cym środek Ziemi z pocza֒tkiem uk ladu nieinercjalnego na
jej powierzchni) i pominie֒cie pozosta lych efektów przyspieszenia odśrodkowego reprezen-
towanych przez wyraz ω × (ω × r′). Pomina֒ć też można wyraz z pochodna֒ ω po czasie.

Jeśli si ly inne niż grawitacyjne nie wystepuja֒ (tj. jeśli Finne = 0) i jeśli przyjmiemy,
że w obszarze, w którym zachodzi ruch geff jest sta lym wektorem, do sca lkowania jest
równanie (pomijamy odta֒d primy)

d2r(t)

dt2
= geff − 2ω×dr(t)

dt
,

z warunkami pocza֒tkowymi r(0) = r0, v(0) = v0, które raz ca lkuje sie֒ natychmiast daja֒c

dr(t)

dt
= v0 + gefft− 2ω×(r(t) − r0) .

Jest to zwyk le liniowe równanie różniczkowe pierwszego rze֒du z niejednorodnościa֒, przy
czym jednorodna jego cze֒ść jest postaci

d(r − r0)

dt
= A·(r − r0) .

(A jest tu macierza֒ liniowego odwzorowania wektora w jego iloczyn wektorowy z wekto-
rem −2ω zapisana oczywíscie w bazie wektorów ex, ey i ez). Można by loby je sca lkować
ścísle, rozwia֒zuja֒c najpierw równanie jednorodne i potem uzmienniaja֒c sta la֒. Otrzymane
rozwia֒zanie by loby jednak dość skomplikowane i uwzgle֒dnia loby także wyrazy rze֒du ω2t2,
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ω3t3, które, wobec pominie֒cia wyżej cz lonu odśrodkowego ω × (ω × r′), sa֒ bez znaczenia
(pominie֒te w równaniu wyrazy powoduja֒ efekty tego samego rze֒du). Zamiast tego najwy-
godniej jest zastosować rachunek zaburzeń. Numerujemy wie֒c rozwia֒zania wed lug rze֒dów
przybliżenia oznaczaja֒c rozwia֒zanie n-tego rze֒du r(n)(t) i przyjmuja֒c, że r(0)(t) = r0
(pierwszym przybliżeniem ruchu jest oczywíscie bezruch!). Rozwia֒zanie (n+ 1)-go rze֒du
znajdujemy rozwia֒zuja֒c równanie

dr(n+1)(t)

dt
= v0 + gefft− 2ω×(r(n)(t) − r0) ,

którego prawa strona jest już jawna֒ funkcja֒ t, co umożliwia  latwe rozwia֒zanie go. Po-
nieważ r(0)(t) = r0, jako równanie wyznaczaja֒ce r(1)(t) otrzymujemy

dr(1)(t)

dt
= v0 + gefft .

Sta֒d oczywíscie

r(1)(t) = r0 + v0t +
1

2
gefft

2 .

Z kolei wykorzystanie r(1)(t) prowadzi do równania na r(2)(t) postaci

dr(2)(t)

dt
= v0 + gefft− 2ω×(r(1)(t) − r0)

= v0 + gefft− 2ω×v0t− ω×gefft
2 .

Po sca lkowaniu go otrzymujemy

r(2)(t) = r0 + v0t +
1

2
gefft

2 − ωt×(v0t +
1

3
gefft

2) .

Przybliżenie r(t) ≈ r(2)(t) jest już (dla wie֒kszości praktycznych zastosowań) wystar-
czaja֒co dok ladne. Aby to zobaczyć, znajdziemy jeszcze r(3)(t) ca lkuja֒c równanie:

dr(3)(t)

dt
= v0 + gefft− 2ω×v0t− ω×gefft

2 + 2ωt×
(

ωt× (v0t +
1

3
gefft)

)

.

Otrzymujemy z niego

r(3)(t) = r0 + v0t +
1

2
gefft

2 − ωt× (v0t +
1

3
gefft

2) + 2ωt×
(

ωt× (
1

3
v0t+

1

12
gefft

2)

)

.

Widać wie֒c, że w wyrazach pojawiaja֒cych sie֒ w rozwia֒zaniach kolejnych rze֒dów wyste֒puja֒
coraz wyższe pote֒gi bezwymiarowego czynnika ωt. Rachunek zaburzeń daje wie֒c roz-
winie֒cie pe lnego rozwia֒zania, które można by by lo uzyskać sposobem podanym wyżej)
wed lug pote֒g ωt. Ponieważ w r(3)(t) wyste֒puja֒ wyrazy z (ωt)2, a w samym rozwia֒zywanym
równaniu pominie֒ty zosta l cz lon z przyspieszeniem odśrodkowym be֒da֒cy tego w laśnie
rze֒du, jest jasne, że należy sie֒ ograniczyć do rozwia֒zania r(2)(t).
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Zadanie 5.6

Korzystaja֒c z wyprowadzonego w Zadaniu 5.5 rozwinie֒cia

r(t) = r0 + v0 t+
1

2
g t2 − ω t×

(

v0 t+
1

3
g t2
)

+ O(ω2t2),

w którym r0 i v0 sa֒ odpowiednio pocza֒tkowym po lożeniem i pocza֒tkowa֒ pre֒dkościa֒, ω
wektorem pre֒dkości ka֒towej obrotu Ziemi, a g polem cia֒żenia, zbadać spadek swobodny
kamienia z wieży o wysokości h stoja֒cej na szerokości geograficznej52 ϕ i znaleźć odchylenie
kamienia od podstawy wieży.

Rozwia֒zanie:

Wprowadzamy uk lad odniesienia o pocza֒tku w podstawie wieży, którego oś z jest skie-
rowana w góre֒, oś x na po ludnie, a oś y na wschód. W uk ladzie tym wektor pre֒dkości
ka֒towej Ziemi ma postać ω = ω(−ex cosϕ + ez sinϕ), wektorem pre֒dkości pocza֒tkowej
jest v0 = 0, a r0 = hez. Aby skorzystać z wyprowadzonego w Zadaniu 5.5 przybliżonego
rozwia֒zania równania Newtona

r(t) ≈ r0 + v0t+
1

2
gefft

2 − ωt×(v0t+
1

3
gefft

2) ,

uwzle֒dniaja֒cego w pierwszym rze֒dzie efekty niezerowej pre֒dkości ka֒towej Ziemi, obli-
czamy iloczyn wektorowy ω z geff = −gez:

ω×geff = ω g

∣

∣

∣

∣

∣

∣

ex ey ez
− cosϕ 0 sinϕ

0 0 −1

∣

∣

∣

∣

∣

∣

= −ey ω g cosϕ .

Ponieważ v0 = 0, otrzymujemy

r(t) ≈ r0 +
1

2
gefft

2 +
1

3
gωt3 cosϕ ey ,

czyli, po rozpisaniu na sk ladowe,




x(t)
y(t)
z(t)



 =





0
0
h



 +
t2

2





0
0
−g



+
1

3
gωt3





0
cosϕ

0



 .

Z ostatniej linii odczytujemy, że w tym przybliżeniu obrót Ziemi nie wp lywa na czas
spadku kamienia:

tsp =
√

2h/g .

Ponieważ x(t) ≡ 0, kamień odchyla sie֒ na Wschód o odleg lość

d = y(tsp) =
1

3
gωt3sp cosϕ .

Modulo czynnik szerokości geograficznej cosϕ, jest to ten sam wynik, co w Zadaniu 5.4.
52Korzystaja֒cym z podre֒cznika G. Bia lkowskiego przypominam, że przyje֒ lo sie֒ liczyć szerokość geo-

graficzna֒ od równika (a nie od bieguna pó lnocnego).
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mg

T

z

x

α

ω

ϕ
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y
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y′

θ

Rysunek 36: Po lewej: Wahad lo Foucault zawieszone nad obracaja֒ca֒ sie֒ powierzchnia֒
Ziemi i wychylone w kierunku osi x. ϕ jest ka֒tem szerokości geograficznej (zdefiniowanej
normalnie). Po prawej: Obrót uk ladu wspó lrze֒dnych o ka֒t θ.

Zadanie 5.9 (Wahad lo Foucault, takie jak u U. Eco)
Znaleźć w przybliżeniu ma lych wychyleń od po lożenia równowagi ruch wahad la Foucault
(tj. cie֒żarka) o masie m zawieszonego na (w przybliżeniu) nieważkiej i nierozcia֒gliwej
lince o d lugości ℓ nad punktem na powierzchni Ziemi (nad posadzka֒ paryskiego Panteonu)
znajduja֒cym sie֒ na szerokości geograficznej ϕ.

Rozwia֒zanie:

Ponieważ ruch wahad la może trwać dowolnie d lugo i bezwymiarowy czynnik ωt nie musi
być ma ly, nie można tu korzystać z wyprowadzonego w Zadaniu 5.5 rozwinie֒cia rozwia֒zania
wed lug pote֒g tego czynnika. Trzeba inaczej rozwia֒zać równanie ruchu wahad la, które w
nieinercjalnym uk ladzie zwia֒zanym z obracaja֒ca֒ sie֒ Ziemia֒ ma postać53

m
d2r

dt2
= mg + T − 2mω×dr

dt
−mω×(ω×r) .

r jest tu wektorem po lożenia cie֒żarka (wzgle֒dem uk ladu zwia֒zanego z powierzchnia֒ Ziemi;
wyraz −mω×(ω×R) jest w la֒czony do g), a T jest si la֒ nań dzia laja֒ca֒ ze strony linki.
Ostatni cz lon po prawej stronie jak zwykle pominiemy, bo jest on proporcjonalny do ω2

i jest ma ly w porównaniu z zachowanymi przy typowych wartościach |r| ∼ 1 m, |ṙ| ∼ 1
m/s bo ω ≈ 10−4 s−1. Wybieraja֒c uk lad o pocza֒tku w punkcie na Ziemi, nad którym
zawieszono wahad lo i kieruja֒c jego oś z w góre֒, a oś x na po ludnie możemy jawnie rozpisać
si ly. W tak obranym uk ladzie

ω × v = ω

∣

∣

∣

∣

∣

∣

ex ey ez
− cosϕ 0 sinϕ
vx vy vz

∣

∣

∣

∣

∣

∣

= −exvyω sinϕ+ eyω(vx sinϕ+ vz cosϕ) − ezvyω cosϕ.

W przybliżeniu ma lych odchyleń od pionu, czyli od po lożenia równowagi, ruch można
przybliżyć przez ruch p laski, tj. przyja֒ć, że z ≈ const i vz ≈ 0. Bilans si l w sytuacji, w

53Wszystkie wielkości sa֒ tu obliczane w uk ladzie nieinercjalnym wie֒c primy pomijamy.
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której y = 0, a x 6= 0 (wahad lo wychylone dok ladnie w kierunku na po ludnie) wygla֒da
wtedy tak (zob. lewy Rysunek 36):

F sum
x = 2mvyωz − T sinα ,

F sum
z = 2mvyω cosϕ−mg + T cosα .

Wprowadzone tu zosta lo u latwiaja֒ce zapis oznaczenie

ωz ≡ ω sinϕ .

Ponieważ zak ladamy, że z ≈ const, wie֒c sk ladowa z-owa F sum
z wypadkowej si ly musi

znikać. Stad,

T =
mg − 2mvyω cosϕ

cosα
,

a zatem

F sum
x = 2mvyωz −mg tgα+ 2mvyω cosϕ tgα .

Trzeci wyraz w F sum
x można pomina֒ć, gdyż, be֒da֒c (w przyje֒tym przybliżeniu ma lych

wychyleń) proporcjonalnym i do ω i do tgα ≪ 1 jest on tu ma la֒ wielkościa֒ drugiego
rze֒du. Ponadto w przybliżeniu ma lych wychyleń, |α| ≪ 1,

tgα ≈ sinα =
x

ℓ
.

Uogólniaja֒c te rozważania do sytuacji, gdy zarówno x, jak i y sa֒ niezerowe możemy
wypisać równania wyznaczaja֒ce ruch cie֒żarka w p laszczyźnie xy:

ẍ+ ω2
0x = 2ωzẏ ,

ÿ + ω2
0y = −2ωzẋ .

Wprowadzilísmy tu oznaczenie ω2
0 ≡ g/ℓ. Najprościej rozwia֒zuje sie֒ te równania prze-

chodza֒c do zespolonej zmiennej ξ ≡ x + iy. W tej zmiennej staja֒ sie֒ one jednym jedno-
rodnym równaniem liniowym drugiego rze֒du

ξ̇˙ + ω2
0ξ + 2iωz ξ̇ = 0 .

Szukamy rozwiazania w postaci ξ(t) = Aeiλt, co daje równanie charakterystyczne na λ

−λ2 − 2ωzλ+ ω2
0 = 0 ,

którego pierwiastkami sa֒ λ± = −ωz±Ω, gdzie Ω ≡
√

ω2
0 + ω2

z . Najogólniejsze rozwia֒zanie
ma zatem postać

ξ(t) ≡ x(t) + iy(t) = e−iωzt
(

A+ e
iΩt + A− e

−iΩt) .
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Zanim obliczymy cze֒ści rzeczywista֒ i urojona֒ prawej strony, dobrze jest sie֒ zastanowić
nad czynnikiem e−iωzt. Jeśli ξ = x+ iy jest (zespolonym) po lożeniem punktu w uk ladzie
xy, to, jak  latwo zobaczyć (zob. Rysunek 36), z jego (zespolonym) po lożeniem ξ′ = x′+iy′

w uk ladzie obróconym wzgle֒dem xy przeciwnie do kierunku ruchu wskazówek zegara o ka֒t
θ, wia֒że sie ono wzorem ξ = eiθξ′. Zatem w uk ladzie, który obraca lby sie֒ w kierunku (na
pó lkuli pó lnocnej, gdzie sinϕ > 0, czyli ωz > 0) zgodnym z kierunkiem obrotu wskazówek
zegara ruch rzutu wahad la na p laszczyzne֒ by lby dany przez

ξ′(t) ≡ x′(t) + iy′(t) = A+ e
iΩt + A− e

−iΩt.

Wiadomo, że torem w uk ladzie tym jest w ogólności elipsa (zob. Zadanie 2.7), której
kszta lt zależy od sta lych A± = A± + iB± (skrajnymi przypadkami sa֒ prosta i okra֒g).
W uk ladzie xy zatem tor ten jako ca lość obraca sie֒ z pre֒dkościa֒ ka֒towa֒ ωz = ω sinϕ -
maksymalna֒ na biegunie i znikaja֒ca֒ na równiku.
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Zadanie 5.10 (Twierdzenie Larmora)
Pokazać, że jeśli cza֒stka o masie m wykonuje ruch r(t) pod wp lywem jakiej́s zadanej si ly
zewne֒trznej F, to po zmianie si ly

F → F + εmv × k ,

gdzie k jest sta lym wektorem, a |ε| ≪ 1, tor ruchu r(t) w pierwszym przybliżeniu (tj.
z dok ladnościa֒, w której uwzgle֒dnia sie֒ tylko efekty rze֒du ε) zacznie sie֒ obracać. Jak
zmieni sie֒ wtedy energia kinetyczna (a wie֒c i energia ca lkowita) cza֒stki?
W przypadku, gdy εmk = qB, gdzie B jest sta lym i jednorodnym polem magnetycznym,
stwierdzenie be֒da֒ce przedmiotem tego zadania jest treścia֒ tzw. twierdzenia Larmora.

Rozwia֒zanie:

Aby pokazać, że tor ruchu zacznie sie֒ obracać jako ca lość, czyli ulegać precesji, wystarczy
napisać równanie “Newtona” spe lniane przez cza֒stke֒ w uk ladzie nieinercjalnym obra-
caja֒cym sie֒ wzgle֒dem wyj́sciowego uk ladu (inercjalnego) z pre֒dkościa֒ ka֒towa֒ ω. Ma ono
postać

m
d′2r′

dt2
= F + εm(v′ + ω×r′)×k −m [2ω × v′ + ω×(ω×r′)] .

Skorzystalísmy tu ze zwia֒zku v = v′ + ω × r′  la֒cza֒cego ze soba֒ pre֒dkości cza֒stki w obu
uk ladach. Widać z tego równania, że jeśli dobierzemy uk lad nieinercjalny tak, by jego
pre֒dkość ka֒towa wzgle֒dem wyj́sciowego uk ladu inercjalnego by la równa

ω = −ε
2

k ,

to wyraz εmv′ × k zniesie sie֒ z cz lonem Coriolisa, a pozosta le wyrazy zależne od ω be֒da֒
rze֒du (ε/2)2, czyli be֒da֒ do pominie֒cia. W tak obracaja֒cym sie֒ uk ladzie równanie ruchu
cza֒stki

m
d2′r′

dt2
= F + O(ε2) .

pod dzia laniem zmodyfikowanej si ly ma formalnie te֒ sama֒ postać, co równanie ruchu ze
stara֒ si la֒ w wyj́sciowym uk ladzie inercjalnym. Rozwia֒zania tych równań r′(t) i r(t) be֒da֒
wie֒c dane ta֒ sama֒ (wektorowa֒) funkcja֒ czasu, t.j. rozwia֒zaniami be֒da֒ r′(t) = f(t) i r(t) =
f(t), pod warunkiem, że formalnie identyczne be֒da֒ warunki pocza֒tkowe. Przyjmuja֒c, że
dodatkowa si la w la֒czona zosta la w chwili t = 0 (tzn. obieraja֒c te֒ chwile֒ za pocza֒tek
liczenia czasu) możemy wybrać pocza֒tki obu uk ladów, inercjalnego i obracaja֒cego sie֒
w punkcie, w którym w tym w laśnie momencie znajdowa la sie֒ cza֒stka. Dzie֒ki temu
r(0) = 0 i r′(0) = 0. Co wie֒cej, ponieważ v(0) = v′(0) + ω×r′(0) = v′(0), warunki
pocza֒tkowe obu równań różniczkowych be֒da֒ formalnie identyczne i tor ruchu w uk ladzie
nieinercjalnym przy dzia laniu dodatkowej si ly εmv × k be֒dzie taki sam, jakim by l on
w uk ladzie inercjalnym w nieobecności si ly zaburzaja֒cej. Dowodzi to tego, że w tym
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przybliżeniu, tor cza֒stki w wyj́sciowym uk ladzie zacznie sie֒ obracać z pre֒dkościa֒ ka֒towa֒
równa֒ ω.

Jeśli cza֒stka ma  ladunek elektryczny q i po lożymy εmk = qB, to wynika z tego, że po
w la֒czeniu s labego pola magnetycznego tor jej ulegnie precesji zwanej precesja֒ Larmora o
pre֒dkości ka֒towej (zwanej cze֒stościa֒ Larmora) równej q|B|/2m.

Aby lepiej zrozumieć ten wynik możemy odwo lać sie֒ do Zadania 2.14, w którym ba-
dany by l ruch na ladowanej cza֒stki o masie m i  ladunku q (za lóżmy, że q > 0) w polu
elektrycznym E = eyE i magnetycznym B = ezB. Jeśli cza֒stka ma w punkcie r = 0

pre֒dkość v = exv
x
0 + eyv

y
0 , to, jak już wiemy z rozwia֒zania Zadania 2.14, be֒dzie sie֒ ona

poruszać po cykloidzie danej wzorami

x(t) =
E

B
t+

vy0
ωB

(1 − cosωBt) +
1

ωB

(

vx0 −
E

B

)

sinωBt ,

y(t) =
vy0
ωB

sinωBt +
1

ωB

(

vx0 −
E

B

)

(−1 + cosωBt) ,

czyli, przy t ∼ 0, (przypomnijmy, że ωB = qB/m) co w przybliżeniu, gdy |ωBt| ≪ 1, czyli
gdy można ograniczyć sie֒ do pierwszego rze֒du w ωB, daje

x(t) = vx0 t +
1

2
vy0ωBt

2 ,

y(t) = vy0t−
1

2

(

vx0 −
E

B

)

ωBt
2 .

Zgodnie zaś z rozważaniami przeprowadzonymi wyżej, jeśli pole magnetyczne jest s labe,
w uk ladzie obracaja֒cym sie֒ z pre֒dkościa֒ ka֒towa֒ ω = −(ε/2)k ≡ −(qB/2m) ez ruch
powinien pozostać ruchem prostoliniowym jednostajnie przyspieszonym w kierunku pola
elektrycznego. W uk ladzie tym zatem54 x′(t) ≈ vx0 t oraz y′(t) ≈ vy0 t+(qE/2m)t2. Ogólnie,
jeśli uk lad O′ jest obrócony (w kierunku przeciwnym do kierunku ruchu wskazówek
zegara) wzgle֒dem uk ladu O o ka֒t θ wokó l wspólnej osi z, to x = x′ cos θ − y′ sin θ,
y = x′ sin θ + y′ cos θ. Tu zatem, przechodza֒c do uk ladu nieobracaja֒cego sie֒, trzeba
po lożyć θ = −(qB/2m)t ≡ −(ωB/2)t, co da

x(t) ≈ vx0 t cos(−1

2
ωBt) −

(

vy0t+
qE

2m
t2
)

sin(−1

2
ωBt) ,

y(t) ≈ vx0 t sin(−1

2
ωBt) +

(

vy0t +
qE

2m
t2
)

cos(−1

2
ωBt),

54Znaki przybliżonej równości wynikaja֒ z tego, że w uk ladzie obracaja֒cym sie֒ kierunek pola elektrycz-
nego zmienia sie֒. Ponieważ interesuje nas ruch tuż po w la֒czeniu pola magnetycznego, kiedy kierunki osi
uk ladu obracaja֒cego sie֒ sa֒ wcia֒ż niemal takie, jak osi uk ladu inercjalnego, możemy zmiane֒ kierunku pola
elektrycznego pomina֒ć.
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czyli, po rozwinie֒ciu,

x(t) ≈ vx0 t(1 − . . . ) −
(

vy0t +
qE

2m
t2
)

(−1

2
ωBt+ . . . ) ,

y(t) ≈ vx0 t(−
1

2
ωBt+ . . . ) +

(

vy0t+
qE

2m
t2
)

(1 + . . . ).

Z dok ladnościa֒ do wyrazów liniowych w ωB zgadza sie֒ to z tym, co otrzymalísmy ze
ścis lego wzoru. Przyk lad ten pokazuje też, jak należy rozumieć twierdzenie Larmora:
jego zachodzenie z dok ladnościa֒ do pierwszego rze֒du w ε oznacza zarazem jego s luszność
tylko dla bardzo krótkich odcinków czasu t po w la֒czeniu zaburzenia. Niemniej rozumowa-
nie be֒da֒ce jego treścia֒ można “przed lużać” przechodza֒c do nowego punktu r, w którym
cza֒stka znajdzie sie֒ w uk ladzie inercjalnym chwile֒ później (punkt ten jest osia֒gany w
obecności zaburzenia ale można go w przybliżeniu wyznaczyć stosuja֒c twierdzenie Lar-
mora), przyjmuja֒c ten punkt za wspólny pocza֒tek nowych uk ladów: inercjalnego i ob-
racaja֒cego sie֒, i stosuja֒c ponownie twierdzenia Larmora, by znaleźć po lożenie cza֒stki w
chwili jeszcze troche֒ późniejszej itd.

Po w la֒czeniu si ly zaburzaja֒cej cza֒stka ma w uk ladzie inercjalnym pre֒dkość v(t) =
v′(t) + ω × r′(t), a pre֒dkość v′(t) jest w każdej chwili t taka sama, jak pre֒dkość vstara(t),
która֒ cza֒stka mia laby w uk ladzie inercjalnym bez dodatkowej si ly zaburzaja֒cej, v′(t) =
vstara(t). Zatem zmiana ∆T energii kinetycznej cza֒stki (mierzonej w wyj́sciowym uk ladzie
inercjalnym) spowodowana w la֒czeniem zaburzenia jest równa

∆T =
1

2
m(v′ + ω × r′)2 − 1

2
mv2

stara = mv′ ·(ω × r′) + O(ε2) .

Wykorzystaja֒c tożsamość wektorowa֒ v′·(ω×r′) = ω·(r′×v′), można te֒ zmiane֒ zapisać jako
∆T = ω ·L(t), gdzie, ponieważ v′ = vstara, a po lożenie r′(t) jest też identyczne z rstare(t),
L jest momentem pe֒du, jaki mia laby cza֒stka przy braku zaburzenia. Zatem zmiana
energii kinetycznej, a tym samym i ca lkowitej cza֒stki (np. cza֒stki kra֒ża֒cej jak elektron w
atomie wokó l ja֒dra) spowodowana w la֒czeniem pola magnetycznego jest proporcjonalna
do wartości tegoż pola i do rzutu momentu pe֒du cza֒stki na jego kierunek.

Historycznie, twierdzenie Larmora pozwoli lo H.A. Lorentzowi wyjaśnić odkryty przez
P. Zeemana efekt polegaja֒cy na rozszczepieniu linii widmowych atomu po umieszczeniu
tegoż atomu w sta lym polu magnetycznym. (Obaj ci holenderscy fizycy otrzymali na-
grode֒ Nobla za 1902 r.) Wyjaśnienie podane przez Lorentza stosuje sie֒ jednak tylko do
tzw. normalnego efektu Zeemana, który wyste֒puje tylko w niektórych atomach. Znacznie
cze֒ściej ma sie֒ do czynienia z tzw. anomalnym efektem Zeemana, którego wyjaśnienie
wymaga uwzglednienia spinu elektronuu.
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Przypomnienie

Ruch uk ladu N mas punktowych m(i) poddanych dzia laniu si l Fi (i = 1, . . . , N nume-
ruje te masy) może być ograniczony wie֒zami, tj. pewnymi dodatkowymi warunkami
na lożonymi na po lożenia i pre֒dkości cza֒stek. (Zwykle rozpatruje sie֒ tylko wie֒zy liniowo
zależne od pre֒dkości). Wie֒zy zależne tylko od po lożeń nazywa sie֒ holonomicznymi.
Niektóre z wie֒zów zależnych od pre֒dkości można sca lkować (albo bezpośrednio, albo z
pomoca֒ czynnika ca lkuja֒cego) i staja֒ sie֒ one wie֒zami holonomicznymi (zobacz Zadanie
6.1). Niżej be֒dziemy zajmować sie֒ tylko wie֒zami holonomicznymi.

Wie֒zy holonomiczne moga֒ mieć postać nierówności (tzw. wie֒zy jednostronne)

gl(r1, r2, . . . , rN , t) ≥ 0 , l = 1, . . . , r ,

i liczba r takich wie֒zów może być dowolnie duża (pod warunkiem, że wyznaczany przez
nie w Rn obszar doste֒pny jest niepusty), oraz moga֒ mieć postać równości (tzw. wie֒zy
dwustronne)

fk(r1, r2, . . . , rN , t) = 0 , k = 1, . . . , p .

Liczba p niezależnych i niesprzecznych wie֒zów dwustronnych55 nie może przekraczać 3N .
(Jeśli p = 3N , żaden ruch nie jest już możliwy - masy w danej chwili moga֒ znajdować
sie֒ tylko w punktach ca lkowicie wyznaczonych przez wie֒zy). Dane wie֒zy można przede-
finiować biora֒c ich ich kombinacje liniowe, bo istotna jest w zasadzie tylko 3N − p wy-
miarowa podrozmaitość R3N , która֒ one wyznaczaja֒ (możliwość ta staje sie֒ jednak troche֒
problematyczna, gdy wyste֒puja֒ si ly tarcia, których wartość jest zależna od si l reakcji).
Jeśli takie wie֒zy nie zależa֒ od czasu, nazywaja֒ sie֒ skleronomicznymi (zależne zaś od czasu
zwa֒ sie֒ reonomicznymi). Wie֒zy moga֒ być narzucone na po lożenia zdefiniowane wzgle֒dem
uk ladu inercjalnego lub nieinercjalnego (w tym drugim przypadku nawet gdy sa֒ one w
uk ladzie nieinercjalnym niezależne od czasu, zmieniaja֒ sie֒ w uk ladzie inercjalnym i dlatego
wykonuja֒ zwykle nad uk ladem prace֒).

Rozpatrzymy najpierw przypadek jednej cza֒stki poddanej dzia laniu zadanej (wypad-
kowej) si ly F. Możliwe sa֒ wówczas dwa rodzaje holonomicznych wie֒zów dwustronnych:
cza֒stka może być zmuszona do pozostawiania stale na pewnej powierzchni zadanej np.
równaniem

f(x, y, z, t) = 0 ,

lub do poruszania sie֒ po pewnej krzywej, która może być zadana dwoma niesprzecznymi
i niezależnymi równaniami

f1(x, y, z, t) = 0 , f2(x, y, z, t) = 0 ,

lub też zadana parametrycznie. Przyjmuje sie֒, że obecność wie֒zów powoduje konieczność
uzupe lnienia znanej (tj. zadanej) si ly F o dodatkowa֒ si le֒ reakcji FR, która zmusza cza֒stke֒

55Warunek niezależności i niesprzeczności wie֒zów można uja֒ć ścísle matematycznie ale nie be֒dziemy
tu tego robić, bo w typowych sytuacjach fizycznych jego spe lnianie jest w miare֒ oczywiste.

158



do pozostawiania na powierzchni wie֒zów. Równanie Newtona wyznaczaja֒ce jej ruch ma
wie֒c postać (a = r̈)

ma = F + FR .

Podstawowy postulat dynamiczny, uogólniaja֒cy wyniki doświadczeń g losi, że si la reakcji
FR jest prostopad la do powierzchni wie֒zów, czyli że można ja֒ zapisać w postaci

FR = λ(t)∇f(r, t) , lub FR = λ1(t)∇f1(r, t) + λ2(t)∇f2(r, t) ,

odpowiednio w pierwszej i w drugiej sytuacji. Postulat ten umożliwia znalezienie zarówno
samego ruchu (tj. funkcji r(t) wyznaczaja֒cej zgodne z wie֒zami po lożenie cza֒stki w każdej
chwili), jak też i si ly reakcji: oba uk lady

{

m r̈ = F(r, t) + λ∇f(r, t)
f(r, t) = 0

, lub







m r̈ = F(r, t) + λ1∇f1(r, t) + λ2∇f2(r, t)
f1(r, t) = 0
f2(r, t) = 0

,

maja֒ tyle równań ile jest w nich niewiadomych (si la F musi być zadana jawnie z góry
jako funkcja czasu, po lożenia i ewentualnie pre֒dkości cza֒stki, ale si la reakcji nie).

Jeśli równania wie֒zów nie zależa֒ jawnie od czasu (wie֒zy sa֒ skleronomiczne), wyrażenie
dr · FR = λ dr ·∇f lub λ1dr ·∇f1 + λ2 dr ·∇f2 jest równe zeru. Wynika to natychmiast
z zupe lnego zróżniczkowania po czasie funkcji f(r(t), t) = 0 (lub funkcji f1(r(t), t) = 0 i
f2(r(t), t) = 0)

d

dt
f(r(t), t) = ṙ·∇f(r(t), t) +

∂

∂t
f(r(t), t) = 0 .

Jeśli pochodna cza֒stkowa po czasie jest równa zeru (funkcja f nie zależy jawnie od czasu),
zwia֒zek ten oznacza w laśnie prostopad lość różniczki dr przemieszczenia cza֒stki i gra-
dientu f , czyli także si ly FR. (W drugim przypadku rozumowanie jest analogiczne). W
przypadku, gdy wie֒zy sa֒ zadane w uk ladzie inercjalnym oznacza to, że si la reakcji nie
wykonuje pracy; nie musi to być s luszne, gdy sa֒ one zadane wzgle֒dem uk ladu nieiner-
cjalnego (w takim przypadku rozpatrywane tu pochodne po czasie oznaczaja֒ pochodne
liczone wzgle֒dem uk ladu nieinercjalnego zob. Przypomnienie w poprzednim rozdziale).

Gdy wie֒zy zależa֒ od czasu, moga֒ wykonywać prace֒, gdyż rzeczywiste przemieszczenie
cza֒stki nie jest już naogó l styczne do chwilowej powierzchni wie֒zów (czyli przemieszczenie
to nie musi już być prostopad le do si ly reakcji).

Jeśli si la F jest potencjalna (tzn. jeśli F = −∇V (r)), wówczas zmiane֒ energii mecha-
nicznej T +V , spowodowana֒ zmiennościa֒ wie֒zów w czasie, można wyrazić wzorem (droga
ca lkowania Γ biegnie po torze cza֒stki od r(t0) do r(t))

T (t) + V (t) = T (t0) + V (t0) +

∫

Γ

dr·FR = T (t0) + V (t0) −
∫ t

t0

dt′ λ(t′)
∂

∂t′
f(r(t′), t′) ,

(i analogicznie w drugim przypadku) gdzie wykorzystana zosta la wypisana wyżej tożsamość
wynikaja֒ca ze zróżniczkowania równania wie֒zów po czasie.
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W przypadku cza֒stki zmuszonej do pozostawania na ustalonej krzywej, która nie zależy
od czasu najprościej jest równanie Newtona z si la֒ reakcji zrzutować na wektor styczny do
tej krzywej t:

ma·t = (F + FR)·t = F·t .

Ponieważ a ·t = at = l̈ (l jest tu d lugościa֒ krzywej mierzona֒ od jakiegoś ustalonego jej
punktu - zob. Zadanie 1.7), po wyrażeniu Ft ≡ F·t przez l i l̇, otrzymuje sie֒ na funkcje֒
l(t) zamknie֒te równanie

ml̈ = Ft(l, l̇, t) ,

wyznaczaja֒ce po lożenie cza֒stki na krzywej. Jego rozwia֒zanie daje kompletna֒ informacje֒ o
po lożeniu cza֒stki w przestrzeni z każdej chwili. Dodatkowymi równaniami pozwalaja֒cymi
wyznaczyć si ly reakcji sa֒ rzuty równania Newtona na dwa wektory n i b prostopad le do
krzywej (w danym jej punkcie). Ponieważ a · b = 0, a a · n ≡ an = mv2/ρ (zob.
Zadanie 1.7), mamy sta֒d dwie równości

mv2

ρ
= Fn + FRn , Fb + FRb = 0 .

Pierwsza z nich mówi po prostu, że rzut na kierunek n sumy si ly reakcji i si ly zewne֒trznej
musi powodować (znane ze szko ly) przyspieszenie dośrodkowe (n wyznacza kierunek w
którym leży środek okre֒gu o promieniu ρ lokalnie przybliżaja֒cego tor). Druga zaś mówi,
że si ly w kierunku, w którym przyspieszenie nie ma sk ladowej, musza֒ sie֒ równoważyć.

Aby sformu lować prawa dynamiki uk ladów sk ladaja֒cych sie֒ z wielu mas, wygodnie jest
podać najpierw nieco zmienione sformu lowanie omówionych wyżej praw wyznaczaja֒cych
ruch pojedynczej cza֒stki. W przypadku ruchu po powierzchni f(r, t) = 0, uk lad równań

{

m r̈(t) = F(r, t) + λ∇f(r, t)
f(r, t) = 0

,

jest mianowicie równoważny uk ladowi






(m r̈(t) − F(r, t))·δr = 0
f(r, t) = 0

δr·∇f(r, t) = 0
.

W drugim sformu lowaniu, zwanym zasada֒ d’Alemberta, wyste֒puje wektor δr przemiesz-
czenia wirtualnego zgodnego z wie֒zami. Zasada d’Alemberta mówi, iż rzeczywisty ruch
r(t) jest taki, że pierwsze równanie jest spe lnione dla wszystkich przemieszczeń wirtual-
nych δr zgodnych z wie֒zami.56 Jej wynikanie z pierwszego uk ladu równań jest oczywiste:
jeśli pomnożymy skalarnie pierwsze równanie przez ortogonalny do ∇f(r, t), ale poza

56Zgodne z wie֒zami przemieszczenie wirtualne δr nie jest tożsame z przemieszczeniem rzeczywistym
dr(t) = v(t)dt: jest ono możliwym a priori przemieszczeniem sie֒ cza֒stki w sytuacji “zamrożenia” wie֒zów,
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tym dowolny wektor δr, otrzymamy pierwsze równanie zasady d’Alemberta. Wynika-
nie zaś z zasady d’Alemberta pierwszego uk ladu równań uzyskuje sie֒ stosuja֒c metode֒
mnożnika(ów) Lagrange’a: mnożymy ostatnie równanie przez funkcje֒ λ(t) i dodajemy
stronami do pierwszego, co daje

(mẍ− Fx − λ∂xf) δx+ (mÿ − Fy − λ∂yf) δy + (mz̈ − Fz − λ∂zf) δz = 0 .

Równość δr ·∇f(r, t) = 0 wyznacza np. δx w funkcji pozosta lych sk ladowych δy i
δz przemieszczenia wirtualnego, które pozostaja֒ wobec tego ca lkowicie dowolne. W
zwia֒zku z tym, dowolna֒ na razie funkcje֒ λ(t) wybieramy tak, by zapewnić zerowanie
sie֒ wspó lczynnika przy (zależnej od δy i δz) sk ladowej δx w powyższej równości. Aby
wie֒c by la ona spe lniona, znikać musza֒ także wspó lczynniki w nawiasach przy niezależnych
sk ladowych δy i δz przemieszczenia. Otrzymuje sie֒ w ten sposób jako wniosek konieczność
zerowania sie֒ każdego z wyrażeń w nawiasach z osobna, czyli zachodzenia pierwszego
równania w pierwszym sformu lowaniu.

Przeniesienie zasady d’Alemberta na przypadek cza֒stki poruszaja֒cej sie֒ po krzywej
zadanej dwoma równaniami f1(r, t) = 0, f2(r, t) = 0 jest oczywiste. Przyjmuje ona wtedy
postać







(m r̈(t) − F(r, t))·δr = 0
f1(r, t) = 0 , f2(r, t) = 0

δr·∇f1(r, t) = 0 , δr·∇f2(r, t) = 0
.

W tym przypadku równość pierwsza jest w ruchu rzeczywistym spe lniona dla wszyst-
kich wektorów δr przemieszczeń wirtualnych spe lniaja֒cych dwa warunki (a nie jeden)
zgodności z wie֒zami. Zasada ta wynika w oczywisty sposób z podanego już wcześniej
prawa ruchu po krzywej; wynikanie zaś tamtego prawa z zasady d’Alemberta wykazuje
sie֒ w podobny sposób, jak w przypadku ruchu po powierzchni (warunki zgodności δr z
wie֒zami wyznaczaja֒ np. δx i δy w funkcji δz, ale sa֒ teraz dwa mnożniki Lagrange’a
λ1(t) i λ2(t), które pozwalaja֒ wyzerować wspó lczynniki przy tych zależnych sk ladowych
przemieszczenia, a z dowolności δz wynika konieczność znikania i trzeciego wspó lczynnika.

Podsumowuja֒c te rozważania: ruch rzeczywisty zachodzi pod wp lywem zadanej z góry
si ly F i si ly reakcji FR, której praca na przemieszczeniach wirtualnych zgodnych z wie֒zami
znika.57

Prawo dynamiki wyznaczaja֒ce ruch uk ladu N mas m(i), na każda֒ z których dzia la
si la F(i), i = 1, . . . , N , (be֒da֒ca wypadkowa֒ dzia laja֒cej na te֒ cza֒stke֒ si ly zewne֒trzne֒j

tzn. przyje֒cia ich postaci z chwili t. Jeśli wie֒zy zależa֒ od czasu, rzeczywiste przemieszczenie dr cza֒stki
w przestrzeni jest z lożeniem jej przemieszczenia wzd luż wie֒zów z przemieszczeniem samych wie֒zów wy-
nikaja֒cym z ich zmienności w czasie. (Np. rzeczywiste przemieszczenie przestrzenne dr mrówki ida֒cej
po rozdymaja֒cym sie֒ balonie nie jest styczne do powierzchni balonu w ustalonej chwili czasu). Ponadto,
nawet jeśli wie֒zy nie zależa֒ od czasu, wektor δr reprezentuje wszystkie możliwe przemieszczenia styczne
do powierzchni wie֒zów, podczas gdy przemieszczenie dr jest, przy ustalonych warunkach poczatkowych,
jednoznacznie wyznaczone przez zadana֒ si le֒ zewne֒trzna֒ F.

57W przypadku wie֒zów zdefiniowanych wzgle֒dem uk ladu nieinercjalnego należy to stwierdzenie rozu-
mieć w sensie znikania iloczynów δr · FR w tymże uk ladzie.
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i si l wywieranych na te֒że cza֒stke֒ ze strony pozosta lych N − 1 cza֒stek) i poddanych
(dwustronnym) wie֒zom holonomicznym fk(r(i), . . . , r(N), t) = 0, k = 1, . . . , p (p < 3N)
formu luje sie֒ naste֒puja֒co. Tak jak w przypadku jednej cza֒stki, istnienie wie֒zów powoduje,
że na każda֒ z cza֒stek dzia la dodatkowa si la reakcji FR(i), wobec czego ruch i-tej cza֒stki
jest wyznaczony przez równanie Newtona m(i)r̈(i) = F(i) + FR(i) oraz równania wie֒zów
fk(r(i), . . . , r(N), t) = 0, k = 1, . . . , p. Ponadto przyjmuje sie֒ - i to jest g lówny postulat
dynamiczny - że suma prac wszystkich si l reakcji na zgodnych z wie֒zami przemieszczeniach
wirtualnych δr(i) jest zawsze równa zeru:

N
∑

i=1

FR(i) ·δr(i) = 0 .

Należy zauważyć, że postulat ten nie wynika bezpośrednio (tj. bez rozpatrywania mikro-
skopowych mechanizmów powstawiania wie֒zów) z praw Newtona. Jego s luszność jest po-
twierdzana przez zgodność wniosków otrzymywanych na jego podstawie z doświadczeniem.

Przyje֒ty tu postulat można w zwarty sposób uja֒ć w postaci zasady d’Alemberta. Aby
nadać jej ogólna֒ postać, wprowadza sie֒ poje֒cie 3N wymiarowej przestrzeni konfiguracyjnej
uk ladu, której osiami kartezjańskimi sa֒ kolejne sk ladowe wektorów po lożeń cza֒stek:

ξ1 = x(1) , ξ
2 = y(1) , ξ

3 = z(1) , ξ
4 = x(2) , . . . ξ3N = z(N) .

Wprowadzamy też (nieco sztucznie) 3N mas mi, które trójkami sa֒ równe masom praw-
dziwych cza֒stek (m1 = m2 = m2 = m(1), m4 = m5 = m6 = m(2), itd.). W podobny
sposób zapisujemy też si ly zadane F(i):

F 1 = F x
(1) , F

2 = F y
(1) , F

3 = F z
(1) , F

4 = F x
(2) , . . . , F 3N = F z

(N) .

W tej notacji zasada d’Alemberta wynikaja֒ca z przyje֒tego postulatu g losi, iż rzeczywisty
ruch ξ(t) uk ladu w przestrzeni konfiguracyjnej jest taki, że

3N
∑

i=1

(mi ξ̈
i(t) − F i) δξi = 0 ,

dla wszystkich zgodnych z wie֒zami wirtualnych przemieszczeń δξi w przestrzeni konfigu-
racyjnej, tj. przemieszczeń ograniczonych warunkami58

3N
∑

i=1

∂fk(ξ
1, . . . , ξ3N , t)

∂ξi
δξi = 0 , k = 1, . . . , p.

Warunki te, plus p równań wie֒zów fk(ξ
1, . . . , ξ3N , t) = 0, k = 1, . . . , p, wyznaczaja֒ (razem

z warunkami pocza֒tkowymi, które musza֒ być zgodne z wie֒zami) ruch uk ladu. W zapisie

58Tak jak w przypadku jednej cza֒stki, rzeczywiste, tj. realizowane w trakcie ruchu, przemieszczenie
jest jednym z możliwych przemieszczeń wirtualnych tylko wtedy, gdy wie֒zy nie zależa֒ od czasu.
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operuja֒cym po lożeniami ri poszczególnych cza֒stek powyższe warunki na przemieszczenia
zgodne z wie֒zami można napisać jako

N
∑

j=1

δr(j) ·∇(j)fk(r(1), . . . , r(N), t) = 0 , k = 1, . . . , p .

Symbol ∇(j) oznacza tu “wektor” (∂/∂x(j), ∂/∂y(j), ∂/∂z(j)).

Od podanej tu zasady d’Alemberta można z kolei przej́sć do uk ladu równań Lagrange’a
pierwszego rodzaju pos luguja֒c sie֒ technika֒ mnożników Lagrange’a. Wprowadzamy w tym
celu p funkcji λk(t) (po jednej na każde równanie wie֒zów) i dodajemy p warunków na
przesunie֒cia wirtualne δξi, każdy pomnożony przez odpowiadaja֒ca֒ mu funkcje֒ λk(t) do
warunku prostopad lości (w przestrzeni konfiguracyjnej) wektora m ξ̈(t) − F do wszyst-
kich dopuszczalnych przesunie֒ć wirtualnych δξ. Stosuja֒c dalej znane już rozumowanie z
dobieraniem mnożników Lagrange’a λk(t), otrzymujemy równanie Lagrange’a pierwszego
rodzaju

m ξ̈(t) = F + FR ,

(wektor po lewej stronie należy rozumieć w ten sposób, że każda sk ladowa ξ̈i(t) jest
pomnożona przez odpowiednia֒ mase֒ mi), w którym (uogólniona) si la reakcji FR jest dana
przez

FR = λ1(t)∇ξf1(ξ, t)+ . . .+λp(t)∇ξfp(ξ, t) ,

gdzie ∇ξ jest 3N -wymiarowym “wektorem” o sk ladowych ∂/∂ξ1, . . . , ∂/∂ξ3N . To samo

wyrażone przez zwyk le wektory po lożeń cza֒stek oznacza, że spe lniaja֒ one równania New-
tona z dodatkowymi si lami reakcji

m(i)r̈(i)(t) = F(i) + FR(i)) , i = 1, . . . , N ,

i równania wie֒zów fk(r(1), . . . , r(N), t) = 0, a si ly reakcji sa֒ dane przez

FR(j) = λ1(t)∇(j)f1(r(1), . . . , r(N), t)+ . . .+λp(t)∇(j)fp(r(1), . . . , r(N), t) .

W przypadku wie֒zów niezależnych od czasu zasade֒ d’Alemberta można też zasto-
sować do wyznaczania po lożeń równowagi uk ladu N mas m(i). tj. rozwia֒zań równań
ruchu (odpowiadaja֒cych szczególnym zgodnym z wie֒zami warunkom pocza֒tkowym na
po lożenia i zerowym pre֒dkościom pocza֒tkowym), które nie zależa֒ od czasu. Sprowadza
sie֒ to do po lożenia równych zeru przyspieszeń r̈(i) (lub, w notacji ogólnej, ξ̈) i obliczenia

si l FR(i) (jeśli zależa֒ one od pre֒dkości cza֒stek) dla zerowych pre֒dkości ṙ(i) (lub ξ̇). Za-
sada d’Alemberta (kt??ra - żeby by lo wszystko bardziej po francusku popla֒tane - w tym
szczególnym przypadku nazywa sie֒ zasada֒ prac wirtualnych Lagrange’a) mówi zatem,
że po lożeniami równowagi uk ladu N mas m(i) poddanych p skleronomicznym wie֒zom
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fk(r(1), . . . , r(N)) = 0 i dzia laniu zadanych si l F(i) moga֒ być takie po lożenia r
(0)
(i) , przy

których suma prac si l zadanych na zgodnych z wie֒zami przemieszczeniach wirtualnych
δr(i) (przemieszczeniach w stosunku do po??ożeń r

(0)
(i) ) jest równan zeru

N
∑

i=1

δr(i) ·F(i) = 0 .

W notacji ogólnej warunek ten na po lożenie równowagi ξ(0) przyjmuje zaś postać

3N
∑

i=1

δξiF i = 0 ,

w której si ly F i sa֒ wzie֒te dla ξ̇i = 0 i ξi = ξi(0), a przemieszczenia δξi spe lniaje֒ p wypisa-

nych wcześniej warunków prostopad lości (w 3N wymiarowej przestrzeni konfiguracyjnej)
do powierzchni wie֒zów.
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Rysunek 37: Po la֒czone osia֒ o ustalonej d lugości b dwa ko la (oba o promieniu a) tocza֒ce
sie֒ bez poślizgu po p laskim pod lożu (widok z góry). Każde z kó l może obracać sie֒ na osi
niezależnie od drugiego. Pre֒dkość ka֒towa θ̇ jest skierowana (gdy θ̇ > 0) do góry.

Zadanie 6.1 (Raz zobaczyć wie֒zy nieholonomiczne)
Znaleźć wie֒zy, którym poddany jest uk lad sk ladaja֒cy sie֒ z dwóch kó l o takich samych
promieniach a po la֒czonych osia֒ o ustalonej d lugości b i tocza֒cych sie֒ bez poślizgu po
be֒da֒cym p laska֒ powierzchnia֒ pod lożu. Każde z kó l może obracać sie֒ na osi niezależnie
od drugiego.

Rozwia֒zanie:

Niech θ be֒dzie ka֒tem nachylenia osi  la֒cza֒cej ko la w stosunku do osi x (zob. rysunek 37).
Brak poślizgu oznacza, że chwilowe pre֒dkości punktów styczności obu kó l z pod lożem
sa֒ równe zeru. Każda z tych pre֒dkości jest wypadkowa֒ trzech niezależnych ruchów. W
przypadku punktu 1 (punkt styczności z pod lożem górnego ko la) ruchami tymi sa֒: ruch
poste֒powy środka geometrycznego ca lego uk ladu, obrót ko la wokó l osi  la֒cza֒cej ko la oraz
obrót wokó l osi pionowej przechodza֒cej prostopadle przez środek osi  la֒cza֒cej ko la. W
infinitezymalnym odcinku czasu dt ruchy te daja֒ naste֒puja֒ce przemieszczenia punktu
1 odpowiednio wzd luż osi poziomej: dx, −a sin θ dφ1 oraz −1

2
b sin θ dθ i pionowej: dy,

a cos θ dφ1 oraz 1
2
b cos θ dθ (jeśli φ̇1 > 0, to pre֒dkość punktu styczności z pod lożem pierw-

szego ko la wynikaja֒ca z jego obrotu wokó l poziomej osi jest skierowana ukośnie w góre֒ i
w lewo podobnie jak (gdy θ̇ > 0) pre֒dkość tego punktu wynikaja֒ca z obrotu uk ladu wokó l
osi pionowej; czynniki sin θ i cos θ daja֒ rzuty odpowiednich wektorów przemieszczeń na oś
pozioma֒ i pionowa֒). Aby chwilowa pre֒dkość punktu 1 znika la, przemieszczenia te musza֒
wzajemnie sie֒ znosić. Daje to dwa warunki

dx− a sin θ dφ1 − (b/2) sin θ dθ = 0 ,

dy + a cos θ dφ1 + (b/2) cos θ dθ = 0 .

Rozpatruja֒c analogicznie przemieszczenia punktu 2 dostajemy dwa naste֒pne warunki

dx− a sin θ dφ2 + (b/2) sin θ dθ = 0 ,

dy + a cos θ dφ2 − (b/2) cos θ dθ = 0 .

Po podzieleniu przez dt, wypisane wyżej warunki be֒da֒  la֒czyć po lożenia i pre֒dkości.
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Mnoża֒c pierwsze i trzecie równanie przez cos θ a drugie i czwarte przez sin θ i dodaja֒c
je parami do siebie (tzn. pierwsze do drugiego, a trzecie do czwartego), znajdujemy, że
obie pary równań daja֒ te same wie֒zy nieholonomiczne

cos θ dx+ sin θ dy = 0 .

Naste֒pnie mnożymy pierwsze i trzecie równanie przez sin θ a drugie i czwarte przez cos θ
i odejmujemy od pierwszego drugie, a od trzeciego czwarte otrzymuja֒c

sin θ dx− cos θ dy − a dφ1 − (b/2) dθ = 0 ,

sin θ dx− cos θ dy − a dφ2 + (b/2) dθ = 0 .

Wreszcie biora֒c sume֒ i różnice֒ tych dwu równań otrzymujemy drugie równanie wie֒zów
nieholonomicznych

sin θ dx− cos θ dy = (a/2)(dφ1 + dφ2) ,

oraz jedno równanie wie֒zów ad(φ1−φ2) = −bdθ, które daje wie֒zy holonomiczne, jako że
może być przedstawione w postaci sca lkowanej

θ = C +
a

b
(φ2 − φ1) .

Aby mieć pewność, że pozosta le wie֒zy nie sa֒ holonomiczne, trzeba pokazać jeszcze, że
formy różniczkowe

w1(x, y, θ) ≡ cos θ dx+ sin θ dy ,

w2(x, y, θ, φ) ≡ sin θ dx− cos θ dy − a dφ ,

(gdzie φ ≡ 1
2
(φ1 + φ2)) nie maja֒ czynników ca lkuja֒cych. Jest na sprawdzenie tego odpo-

wiedni patent (zob. np. moje notatki do ćwiczeń z termodynamiki). Tu jednak jest to
oczywiste.

Jeśli ko la by lyby po la֒czone osia֒ na sztywno, tzn. gdyby dφ1 = dφ2 (dodatkowe wie֒zy
holonomiczne), to zmiana ka֒ta θ nie by laby, jak widać z warunku θ = C, możliwa (bez
poślizgu). W takiej sytuacji wie֒zy nieholonomiczne w1(x, y, θ) = 0 i w2(x, y, θ, φ) = 0
staja֒ sie֒ holonomiczne

w1(x, y, θ) ≡ d(x cos θ + y sin θ) ,

w2(x, y, θ, φ) ≡ d(x sin θ − y cos θ − aφ) ,

i oznaczaja֒ po prostu, że x′ ≡ x cos θ + y sin θ =const, a y′ ≡ −x sin θ + y cos θ = −a(φ+
φ0), gdzie x′, i y′ sa֒ wspó lrze֒dnymi uk ladu obróconego o ka֒t θ wzgle֒dem pierwotnego, a
φ0 jest sta lym ka֒tem. Drugi z tych zwia֒zków oznacza po prostu (co jest jasne z rysunku
37), że ko la po la֒czone osia֒ tocza֒ sie֒, gdy φ̇ > 0, w kierunku ujemnym osi y′.

166



Zadanie 6.3

Na p laskiej powierzchni sto lu leży klin o masie M , ka֒cie nachylenia α i wysokości górnej
krawe֒dzi h. Po klinie, wskutek dzia lania skierowanego pionowo w dó l pola grawitacyjnego
g, może zsuwać sie֒ klocek o masie m. Pomie֒dzy klockiem a klinem wyste֒puje si la tarcia
dynamicznego równa co do wartości sile nacisku klocka na na klin razy wspó lczynnik µ1.
Podobna si la tarcia, o wspó lczynniku µ2 wyste֒puje pomie֒dzy klinem a sto lem. Pos luguja֒c
sie֒ równaniami Newtona z wie֒zami (czyli równaniami Lagrange’a I-go rodzaju) znaleźć
si ly reakcji pomie֒dzy klinem a klockiem oraz pomie֒dzy klinem a sto lem w sytuacji, gdy
klocek zaczyna zsuwać sie֒ z klina. Znaleźć jawne wzory na si ly reakcji i przyspieszenia,
gdy µ1 = µ2 = 0.

Rozwia֒zanie:

Jeśli oś z jest skierowana do góry, oś x w prawo, a górna krawe֒dź klina jest na prawo od
jego najniższego punktu, to oznaczaja֒c wspó lrze֒dne klina (X,Z), a te klocka (x, z) (zob.
rysunek 38) otrzymujemy naste֒puja֒ce dwa równania wie֒zów:59

f1(X,Z, x, z) ≡ z + (X − x) tgα− Z − h = 0 ,

f2(X,Z, x, z) ≡ Z = 0 .

Pierwsze wyraża fakt, że klocek leży na powierzchni klina, a drugie, fakt, że klin leży
na stole. Równaniami Lagrange’a I-go rodzaju (czyli po prostu równaniami Newtona z
uwzgle֒dnionymi si lami reakcji i równaniami wie֒zów) sa֒

MẌ = λ1tgα− s1µ1λ1 − s2µ2λ2 ,

MZ̈ = −Mg − λ1 − s1µ1λ1 tgα + λ2 ,

m ẍ = − λ1 tgα+ s1µ1λ1 ,

m z̈ = −mg + λ1 + s1µ1λ1 tgα ,

uzupe lnione o równania f1(x, z,X, Z) = 0 i f2(x, z,X, Z) = 0. Aby uwzgle֒dnić si ly tarcia,
napisalísmy tu po prostu wektory prostopad le do wektorów si l reakcji stosuja֒c zwyk ly trick
polegaja֒cy na zamianie miejscami sk ladowych wektora si ly reakcji i zmianie znaku jednej
z nich. s1 i s2 sa֒ znakami zwia֒zanymi z kierunkami pre֒dkości. Si ly tarcia zosta ly zapisane
tak, że s1 = s2 = +1, gdy klocek zsuwa sie֒ z klina (klocek jedzie wzgle֒dem klina w
lewo, a klin w prawo). W ogólności jednak, w chwili t = 0 klin może mieć (gdy warunki
pocza֒tkowe sa֒ odpowiednio dobrane) pre֒dkość V (o dowolnym znaku) wzgle֒dem sto lu, a
klocek też może mieć dowolna֒ pre֒dkość v wzgle֒dem klina (o znaku si ly tarcia decyduje
wzgle֒dna pre֒dkość stykaja֒cych sie֒ powierzchni klina i klocka). Dalej przyjmujemy, że
aktualy ruch jest taki, iż s1 = s2 = +1.

Aby rozwia֒zać te równania (znaleźć si ly reakcji) wyznaczamy z drugiego równania
λ2 algebraicznie (bo z f2 ≡ Z = 0 wynika też, że Z̈ = 0) i wstawiamy do pierwszego.

59Pierwsze z nich otrzymujemy naste֒puja֒co: wspó lrzedne klocka (x, z) musza֒ spe lniać równanie prostej
która֒ stanowi górna krawe֒dź klina; zatem z = x tgα+C; sta la֒ C ustalamy ża֒daja֒c, by punkt (X,Z + h)
(tj. najwyższy punkt klina) też leża l na tej tej prostej.
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Rysunek 38: Klocek zsuwaja֒cy sie֒ z szorstkiego klina, który może przesuwać sie֒ po szorst-
kim pod lożu. Definicje zmiennych.

Naste֒pnie dwakroć różniczkujemy po czasie f1 = 0 uzyskuja֒c zwia֒zek

z̈ = (ẍ− Ẍ) tgα ,

do którego podstawiamy naste֒pnie drugie pochodne z, x i X z wypisanych wyżej równań
Newtona. Daje to równanie

−g +
λ1
m

=

[

−λ1
m

tgα− λ1
M

(tgα− µ1) + µ2g +
λ1
M

(1 + µ1tgα)µ2

]

tgα ,

z którego można wyznaczyć λ1. Maja֒c λ1 obliczamy λ2 i maja֒c już jawne prawe strony
równań Newtona ca lkujemy je, by znaleźć X(t), x(t) i z(t).

Ponieważ w ogólnym przypadku µ1 6= 0 i µ2 6= 0 wzory sa֒ ma lo przejrzyste, podamy
wzór na λ1 i przyspieszenia, w sytuacji, gdy µ1 = µ2 = 0. Mnożniki λ1 i λ2 (si ly reakcji)
nie zależa֒ wtedy od kierunku ruchu klocka i klina:

λ1 =
mg

1 +
(

1 + m
M

)

tg2α
, λ2 = Mg − λ1 .

Wstawienie λ1 do wzorów na Ẍ i ẍ daje

Ẍ = −m

M
ẍ =

mg tgα

M + (M +m) tg2α
=
mg sinα cosα

M +m sin2 α
.

Widać, że Ẍ = 0, gdy α = 0 (klocek leży na p laskiej powierzchni) lub, gdy α = π/2
(klocek spada po pionowej ścianie). Poza tym, Ẍ → 0, gdy m/M → 0 (pch la zjeżdżaja֒ca
na nartach po zadzie s lonia, nie powoduje zauważalnego przemieszczenia Tra֒balskiego,
nawet gdyby sta l on na lodzie na  lyżwach). Wreszcie60

z̈ = −g +
λ1
m

= −g(m+M) sin2 α

M +m sin2 α
.

Należy tu zauważyc, że wyprowadzaja֒c ogólne równania (uwzgle֒dniaja֒ce si ly tarcia)
najpierw obliczylísmy gradienty równań wie֒zów, a dopiero potem wykorzystywalísmy te

60Dobrze jest sprawdzić, że jest to to samo, co (ẍ− Ẍ) tgα.
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równania. Powstaje wie֒c pytanie, co by by lo, gdyby przed obliczaniem gradientów wzia֒c
zamiast podanych równań wie֒zów ich kombinacje liniowe? Np. można by by lo dodać
drugie równanie do pierwszego, skutkiem czego w pierwszym nie wyste֒powa laby zmienna
Z. Można  latwo sprawdzić, że przy niewyste֒powaniu si l tarcia końcowe wzory na ẍ, z̈ i
Ẍ by lyby niezmienione (choć zmieni lyby sie֒ końcowe wyrażenia na λ1 i λ2). Jednak po
takiej zmianie równań wie֒zów nie otrzymalibyśmy w pierwotnym równaniu na Z̈ wyrazów
proporcjonalnych do λ1, a zatem nie moglibyśmy uwzgle֒dnić wp lywu tarcia mie֒dzy klinem
i klockiem na ruch klina. Gdy wyste֒puja֒ si ly tarcia wybór równań wie֒zów musi być wie֒c
zgodny z fizycznymi oczekiwaniami, co do si l reakcji (brzmi to enigmatycznie, ale nie
wiem, czy można to jakoś ścíslej uja֒ć).
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Zadanie 6.4

Punkt materialny o masie m może poruszać sie֒ po wewne֒trznej stronie ustawionej pionowo
(tj. tak, że jedna z jej średnic jest równoleg la do ziemskiego pola grawitacyjnego g)
nieruchomej obre֒czy o promieniu R (zob. rysunek 39). Pomijaja֒c tarcie napisać równania
ruchu uwzgle֒dniaja֒ce si le֒ reakcji wie֒zów. Traktuja֒c te wie֒zy jak jednostronne, znaleźć
zależność si ly ich reakcji od po lożenia punktu na obre֒czy, jeśli w najniższym po lożeniu
punkt mia l liniowa֒ pre֒dkość v0. Jaka musi być minimalna pre֒dkość v0 aby punkt nigdy
nie oderwa l sie֒ od obre֒czy? Znaleźć ruch i jego cze֒stość w przybliżeniu ma lych wychyleń
z po lożenia równowagi. W przypadku, gdy ca lkowita energia jest akurat wystarczaja֒ca
do osia֒gnie֒cia przez mase֒ m najwyższego punktu toru, znaleźć zależność jej po lożenia na
obre֒czy od czasu. (Czy jednostronne wie֒zy pozwola֒ mu osia֒gna֒ć ten punkt?) Rozpatrzyć
także przypadek, gdy masa m porusza sie֒ bez tarcia po zewne֒trznej stronie obre֒czy
i znaleźć punkt, w którym puszczona swobodnie (z zerowa֒ pre֒dkościa֒) z najwyższego
punktu obre֒czy oderwie sie֒ ona od niej.

Rozwia֒zanie:

Wybierzmy uk lad biegunowy tak, by ka֒t ϕ = 0 odpowiada l najniższemu po lożeniu punktu
na obre֒czy, tj. tak, że oś x jest skierowana w dó l, a oś y w prawo (zob. rysunek 39).
Ka֒t ϕ rośnie wtedy w kierunku przeciwnym do ruchu wskazówek zegara. Pola cia֒żenia
rozpisane na wersory er i eϕ ma wtedy postać

g = er g cosϕ− eϕ g sinϕ .

W uk ladzie biegunowym równanie wie֒zów jest trywialne:

f(r, ϕ) = r −R = 0 .

Zatem równania Newtona uwzgle֒dniaja֒ce si le֒ reakcji maja֒ postać

m (r̈ − rϕ̇2) = mg cosϕ+ λ ,

m (2ṙϕ̇+ rϕ̈) = −mg sinϕ .

Po wykorzystaniu wie֒zów upraszczaja֒ sie֒ one do

−mRϕ̇2 = mg cosϕ+ λ ,

mR ϕ̈ = −mg sinϕ .

Ponieważ równanie wie֒zów zosta lo już w nich uwzgle֒dnione, stanowia֒ one kompletny
uk lad równań wyznaczaja֒cych ruch masy m oraz czynnik λ (i tym samym si le֒ reakcji).
W przypadku, gdy nie wyste֒puje tarcie, można skorzystać z zachowania energii mecha-
nicznej (si la reakcji be֒da֒c stale prostopad la do przesunie֒cia masy m, nie wykonuje pracy).
Przyjmuja֒c, że energia potencjalna równa sie֒ zeru w najniższym punkcie obre֒czy, mamy61

1

2
m (R ϕ̇)2 +mgR (1 − cosϕ) = E .

61To samo można oczywíscie otrzymać z drugiego równania Newtona mnoża֒c je obustronnie przez Rϕ̇
i zwijaja֒c do pe lnej pochodnej każda֒ z jego stron.
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Rysunek 39: Masa m ślizgaja֒ca sie֒ po wewne֒trznej powierzchni obre֒czy.

Sta֒d

ϕ̇2 =
2E − 2mgR(1 − cosϕ)

mR2
.

Wstawiaja֒c to do radialnego równania Newtona znajdujemy, że

λ = −2E

R
+ 2mg − 3mg cosϕ .

Jeśli w najniższym punkcie obre֒czy masa m ma pre֒dkość v0, czyli, gdy E = 1
2
mv20,

λ = −mv
2
0

R
+ 2mg − 3mg cosϕ .

W najniższym punkcie obre֒czy (ϕ = 0) si la reakcji (jest ona równa po prostu λ) jest
ujemna i równa co do wartości cie֒żarowi masy m zwie֒kszonemu o si le֒ odśrodkowa֒:

λ = −mv
2
0

R
−mg .

Aby masa m nie oderwa la sie֒, λ nie może zmienić znaku (punkt oderwania jest tam,
gdzie λ = 0, tj. tam, gdzie znika si la reakcji) dla żadnego ka֒ta ϕ. Nak lada to warunek

−mv
2
0

R
+ 2mg − 3mg cosϕ < 0 ,

który jest spe lniony dla wszystkich ka֒tów ϕ jeśli

v20 > 5gR .

Ten sam wynik można także dostać z ża֒dania, by w najwyższym punkcie toru (ϕ = π)
si la odśrodkowa by la wcia֒ż wie֒ksza niż si la cia֒żenia, tj. ża֒daja֒c, by

mv2(ϕ = π)

R
> mg .

Istotnie: z zasady zachowania energii

1

2
mv2(ϕ = π) + 2mgR =

1

2
mv20 ,
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znajdujemy, że mv2(ϕ = π) = mv20 − 4mgR, a sta֒d warunek

mv20 − 4mgR > mgR .

Prowadzi to do tego samego warunku na v0, co uzyskany poprzednio.

Zależność od czasu ka֒ta ϕ można otrzymać z zachowania energii. Po rozdzieleniu
zmiennych daje ono zwia֒zek

√

2

mR2

∫ t

0

dt = ±
∫ ϕ(t)

ϕ0

dϕ
√

E −mgR(1 − cosϕ)
.

Jeśli wychylenia masy m z po lożenia ϕ = 0 sa֒ niewielkie, można w funkcji podca lkowej
po prawej rozwina֒ć cosinus:

√

2

mR2
(t− t0) = ± 1√

E

∫ ϕ(t)

ϕ0

dϕ
√

1 −
(

ϕ
√

mgR/2E
)2

=

√

2

mgR
arccos

(
√

mgR

2E
ϕ

)

.

czyli

√

mgR

2E
ϕ(t) = cos

(
√

g

R
(t− t0)

)

.

Daje to ruch harmoniczny o cze֒stości ω2 = g/R i amplitudzie A =
√

2E/mgR =
√

2E/mgRω2, jak należa lo sie֒ spodziewać.

Z kolei, gdy masa m ma w najniższym punkcie obre֒czy energie֒ akurat równa֒ E =
2mgR, zależność po lożenia od czasu daje sie֒ otrzymać z ca lki ścísle (zak ladamy, że masa
m przemieszcza sie֒ po obre֒czy w prawo, czyli że ϕ̇ > 0, oraz że ϕ(0) = 0)

√

2

mR2

∫ t

0

dt =

∫ ϕ(t)

0

dϕ
√

mgR(1 + cosϕ)
=

√

2

mgR

∫ 1
2
ϕ(t)

0

d(ϕ/2)

cos(ϕ/2)
.

Ca lka jest wykonalna (wystarczy funkcje֒ podca lkowa֒ zapisać w formie cos(ϕ/2)/(1 −
sin2(ϕ/2)], podstawić u = sin(ϕ/2) i roz lożyć na UAMki proste) i daje

√

g

R
t =

1

2
ln

(

1 + sin(ϕ/2)

1 − sin(ϕ/2)

)

,

co po rozwik laniu wzgle֒dem ϕ prowadzi do wzoru

ϕ(t) = 2 arcsin(thωt) .

Ze wzoru tego widać, że gdyby wie֒zy by ly dwustronne (tj. gdyby masa m nie mog la ode-
rwać sie֒ od obre֒czy), najwyższy punkt obre֒czy, ϕ = π, by lby osia֒gany po nieskończonym
czasie. Jeśli jednak wie֒zy sa֒ jednostronne masa m oderwie sie֒ od obre֒czy wcześniej,
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gdyż wartość v20 = 4gR jest mniejsza od znalezionej wcześniej najmniejszej pre֒dkości
umożliwiaja֒cej osia֒gnie֒cie najwyższego punktu obre֒czy przy wie֒zach jednostronnych.

W przypadku, gdy punkt zsuwa sie֒ po zewne֒trznej stronie obre֒czy z jej najwyższego
punktu bez pre֒dkości pocza֒tkowej, pe lna energia E ruchu jest równa E = 2mgR i
zależność λ (si ly reakcji) od ka֒ta ϕ jest dana wzorem

λ = −2mg − 3mg cosϕ .

Oderwanie sie֒ masy m nasta֒pi wtedy, gdy cosϕ = −2/3.
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Zadanie 6.5

Jaka֒ pre֒dkość należy w najniższym punkcie obre֒czy nadać masie m z Zadania 6.4, aby
mog la ona, nie odrywaja֒c sie֒ od obre֒czy, osia֒gna֒ć jej punkt najwyższy, jeśli wspó lczynnik
tarcia dynamicznego masy m o obre֒cz jest równy µ?

Rozwia֒zanie:

Gdy wyste֒puje si la tarcia FT ma ona, gdy, powiedzmy ϕ̇ > 0, postać FT = µλ(ϕ) eϕ.
Można zatem napisać równanie wyrażaja֒ce straty energii kinetycznej masy m przy jej
przemieszczaniu sie֒ po obre֒czy od ϕ do ϕ+dϕ na skutek wykonywania nad nia֒ (ujemnej)
pracy przez si le֒ grawitacji i si le֒ tarcia:

dEkin(ϕ) = mg·dr + FT ·dr .

Ponieważ z powodu wie֒zów dr = d(r er) = R der = eϕR dϕ (zob. Zadanie 1.4), g =
g(er cosϕ−eϕ sinϕ), a z radialnej sk ladowej równania Newtona (zob. rozwia֒zania Zadania
6.4), która nie ulega modyfikacji, gdy wystepuje tarcie

λ(ϕ) = −mg cosϕ−mRϕ̇2 = −mg cosϕ− 2

R
Ekin(ϕ) ,

(mnożnik λ jest ujemny, gdy ruch zaczyna sie֒ z po lożenia ϕ = 0 z niezerowa֒ energia֒
kinetyczna֒, dlatego FT = µλ(ϕ) eϕ ma w laściwy zwrot) równanie to ma postać

dEkin(ϕ) = −mgRdϕ sinϕ− µ

(

mg cosϕ+
2

R
Ekin(ϕ)

)

Rdϕ ,

czyli

dEkin

dϕ
+ 2µEkin = −mgR (sinϕ+ µ cosϕ) .

Jego rozwia֒zanie jest suma֒ ogólnego rozwia֒zania Ehom
kin (ϕ) = C e−2µϕ równania jednorod-

nego i szczególnego rozwia֒zania równania niejednorodnego, którego szukamy w postaci
Einhom

kin (ϕ) = A(ϕ) e−2µϕ. Daje to

A(ϕ) = −mgR
∫

dϕ e2µϕ (sinϕ+ µ cosϕ) = − mgR

1 + 4µ2

[

3µ sinϕ− (1 − 2µ2) cosϕ
]

e2µϕ .

Sta֒d spe lniaja֒ce warunek Ekin(0) = 1
2
mv20 rozwia֒zanie równania różniczkowego ma postać

Ekin(ϕ) =
1

2
mv20 e

−2µϕ − mgR

1 + 4µ2

[

(1 − 2µ2) e−2µϕ + 3µ sinϕ− (1 − 2µ2) cosϕ
]

.

Z rozwia֒zania Zadania 6.4 wiadomo też, że warunkiem, by masa dotar la do punktu o ϕ = π
jest niezerowanie sie֒ wcześniej czynnika λ, czyli [−mg cosϕ− (2/R)Ekin(ϕ)]ϕ=π < 0, tj.

mg − mv20
R

e−2πµ +
2mg

1 + 4µ2

[

(1 − 2µ2) e−2πµ + (1 − 2µ2)
]

< 0 .

Warunek ten (silniejszy niż Ekin(ϕ = π) > 2mgR) daje przy µ = 0 (brak tarcia) v20 > 5gR,
jak poprzednio.
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Zadanie 6.6

Punkt materialny o masie m porusza sie֒ w p laszczyźnie xz w polu si ly cie֒żkości g = g ez
po g ladkiej cykloidzie zadanej (parametrycznie) równaniami

x = a (ϕ− sinϕ) ,

z = a (1 − cosϕ) ,

gdzie 0 < ϕ < 2π. Znaleźć ruch tego punktu pos luguja֒c sie֒ równaniem Lagrange’a
pierwszego rodzaju (ograniczyć sie֒ do ruchów, w trakcie których punkt nie opuszcza
cykloidy albo przyja֒ć, że wie֒zy sa֒ dwustronne). Wyznaczyć si le֒ reakcji jako funkcje֒
parametru ϕ. Rozwia֒zać także problem korzystaja֒c z zachowania energii. Wyprowadzić
równanie wyznaczaja֒ce ten sam ruch korzystaja֒c z równania Lagrange’a drugiego rodzaju.

Rozwia֒zanie:

W przyje֒tym uk ladzie odniesienia g = gez, g > 0 (oś z jest skierowana “w dó l”). Ponieważ
ruch odbywa sie֒ po ustalonej krzywej parametryzowanej ka֒tem ϕ, aby podać po lożenie
punktu, wystarczy podać zależność ka֒ta ϕ od czasu (zob. Przypomnienie). W tym celu,
a także by wyeliminować nieznana֒ (na razie) si le֒ reakcji, rzutujemy równanie Lagrange’a
I-go rodzaju (czyli równanie Newtona z si la֒ reakcji) na wektor t styczny do toru:62

ma·t = (m·g + FR)·t ,

co, ponieważ si la reakcji FR jest prostopad la do toru, daje równanie

ml̇˙ = mg·t .

Aby wykorzystać równanie w tej postaci, musimy znaleźć jawna֒ postać wektora t. W tym
celu należy powia֒zać dl z dϕ. Z infinitezymalnego Pitagorasa, dl2 = dx2 + dz2 mamy:

(

dl

dϕ

)2

=

(

dx

dϕ

)2

+

(

dz

dϕ

)2

= a2(1 − cosϕ)2 + a2 sin2 ϕ = 4a2 sin2 ϕ

2
.

Ponieważ sin(ϕ/2) > 0, gdy 0 < ϕ < 2π, wie֒c dl/dϕ = 2a sin(ϕ/2). Zatem

t =
dr

dl
=
dr

dϕ

(

dl

dϕ

)−1
=

1

2a sin(ϕ/2)

(

a(1 − cosϕ)
a sinϕ

)

=

(

sin(ϕ/2)
cos(ϕ/2)

)

.

62Przypomnijmy tu potrzebne wzorki (zob. Zadanie 1.7):

t ≡ dr

dl
=

1

v

dr

dt
≡ v

v
,

bo różniczka d lugości krzywej dl = vdt, tj. v = l̇. Sta֒d v = v t, a przyspieszenie

a = v̇ t + v ṫ = l̈t +
v2

ρ
n .

n jest jednostkowym wektorem prostopad lym do toru skierowanym do środka lokalnej krzywizny tegoż.
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Otrzymujemy zatem prosto wygla֒dajace równanie

l̈ = g cos
ϕ

2
.

Zgodnie z ogólna֒ metodologia֒ (zob. Przypomnienie) należa loby teraz wyrazić ϕ w lewej
stronie tego równania przez l. Można to  latwo zrobić ca lkuja֒c otrzymany wyżej zwia֒zek
dl = 2a sin(ϕ/2)dϕ z warunkiem l(ϕ = 0) = 0, co da

cos
ϕ

2
= 1 − l

4a
,

i równanie różniczkowe wyznaczaja֒ce zależność l od czasu przyjmie postać równania oscy-
latora garmonicznego poddanego dzia laniu sta lej si ly

l̈ = − g

4a
l + g ,

którego rozwia֒zaniem jest l(t) = 4a+A sin(
√

g/4at+δ) - masa m na cykloidzie wykonuje

drgania ścísle harmoniczne o cze֒stości
√

g/4a i dowolnej (byle mniejszej niż 4a - by by l
to ruch po cykloidzie) amplitudzie A wokó l punktu na cykloidzie odleg lego o 4a od jej
pocza֒tku (jest to oczywíscie najniżej po lożony punkt cykloidy znajdujacy sie w po lowie
jej ca lkowitej d lugości równej, co można odczytać ze znalezionego wyżej zwia֒zku l z ϕ,
8a).

Ten sam wynik można też uzyskać przepisuja֒c równanie różniczkowe w zmiennej ξ =
cos(ϕ/2). Możemy bowiem napisać

l̇ =
dl

dt
=

dl

dϕ
ϕ̇ = 2a ϕ̇ sin

ϕ

2
= −4a

d

dt

(

cos
ϕ

2

)

.

Zatem po wprowadzeniu zmiennej ξ ≡ cos(ϕ/2), otrzymujemy po prostu równanie oscy-
latora

ξ̈ = − g

4a
ξ

W zmiennej ξ ruch jest zatem, tak jak poprzednio, ruchem harmonicznym: ξ(t) =
A cos(ωt + δ), gdzie ω2 = g/4a. Zadanie amplitudy A wyznacza też zakres zmienności
ϕ(t). Ponieważ ω od tego zakresu (amplitudy) nie zależy, ruch po cykloidzie jest (rzadkim)
przyk ladem ruchu drgaja֒cego ścísle izochronicznego.

Znajdziemy teraz si le֒ reakcji. Ma ona oczywíscie kierunek wektora n (jest doć propor-
cjonalna ze wspó lczynnikiem λ(t), który na razie jest nieznany), wie֒c najpierw znajdźmy
jawnie ten wektor.

1

ρ
n ≡ dt

dl
=
dt

dϕ

(

dl

dϕ

)−1
=

1

4a sin(ϕ/2)

(

cos(ϕ/2)
− sin(ϕ/2)

)

.

Ponieważ n2 = 1 z definicji, n jest w laśnie wypisanym tu wektorem, a wspó lczynnik
przed nim jest odwrotnościa֒ promienia krzywizny ρ krzywej; zatem ρ = 4a sin(ϕ/2). Aby
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znaleźć FR korzystamy, z tego, że FR = nFRn i rzutujemy równanie Newtona na wektor
n:

FRn = n·(ma −mg) =
mv2

ρ
+mg sin

ϕ

2
=

mv2

4a sin(ϕ/2)
+mg sin

ϕ

2
.

Zgadza sie֒ to z intuicja֒: si la reakcji musi zrównoważyć reprezentowana֒ przez “szkolne”
wyrażenie mv2/ρ (należy pamie֒tać, że promień krzywizny ρ jest promieniem okre֒gu przy-
bliżaja֒cego lokalnie tor) si le֒ odśrodkowa֒ (to sie֒ tak niepoprawnie mówi; naprawde֒, musi
dać si le֒ w przeciwna֒ strone֒, powoduja֒ca֒ zakrzywienie toru, czyli nadać masie m przyspie-
szenie dośrodkowe) i zrównoważyć prostopad la֒ do toru sk ladowa֒ si ly cie֒żkości. Podany
wzór nie daje jeszcze jawnie zależności FRn od czasu (a znaja֒c FRn(t) i n(t) można już
zależność λ(t) znaleźć; naogó l zreszta֒ ważna jest nie λ(t), lecz po prostu si la). W tym celu
trzeba by tu jawnie wstawić ϕ(t) odwik luja֒c cos(ϕ/2) = ξ(t) i wstawiaja֒c jawna֒ zależność
od czasu v(t) = l̇ = 2aϕ̇(t) sin(ϕ(t)/2). Można jednak, ponieważ si la mg ma potencja l
V = −mgz (oś z jest skierowana w dó l) wykorzystać zachowanie energii, by wyrazić si le֒
reakcji przez ca lkowita֒ energie֒ E ruchu i po lożenie masy na cykloidzie, tj. np. przez ϕ.
Daje to

1

2
mv2 = E +mgz = E +mga(1 − cosϕ) ,

wie֒c

FRn =
E +mga(1 − cosϕ)

2a sin(ϕ/2)
+mg sin

ϕ

2
.

Takie wyrażenie jest zwykle bardziej użyteczne: naogó l bowiem chcemy wiedzieć, jak si la
reakcji zależy od punktu (bo wtedy wiemy, jaka si la dzia la w tym miejscu na wie֒zy, co
może interesować inżynierów z punktu widzenia wytrzyma lości materia lu) i od globalnej
charakterystyki ruchu (takiej jak jego energia), a nie jak zależy ona od czasu.

Zachowanie energii można wykorzystać także do znalezienia samego ruchu. Wsta-
wiaja֒c do wypisanego wyżej wzoru v = 2aϕ̇ sin(ϕ/2) mamy

2ma2ϕ̇2 sin2 ϕ

2
≡ 8ma2

(

d

dt
cos

ϕ

2

)2

= E +mgz ≡ E + 2mga sin2 ϕ

2
.

Sta֒d, przechodza֒c znów do zmiennej ξ = cos(ϕ/2),

∫

dt = ±
∫

dξ
√

E+2mga
8ma2

− g
4a
ξ2
.

Wyste֒puje tu E ′ = E + 2mga, be֒da֒ca ca lkowita֒ energia֒ ruchu, wtedy, gdy energia po-
tencjalna jest mierzona, nie od poziomu z = 0, tylko od z = 2ma (oś z jest skierowana w
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dó l i V = −mgz), czyli od najniższego punktu cykloidy. Sca lkowanie tego zwia֒zku daje
oczywíscie

ξ(t) =

√

E + 2mga

8ma2ω2
cos(ωt+ δ) ,

z ω2 = g/4a, jak poprzednio.

To, że ruch jest ścísle izochroniczny (tj. jego okres nie zależy od amplitudy wychyleń)
jest szczególna֒ w laściwościa֒ ruchu po cykloidzie i zazwyczaj nie zachodzi dla innych
ruchów. Jest jednak jasne, że ruch polegaja֒cy na ma lych wahaniach wokó lnajniższego
punktu cykloidy (czy innej podobnej krzywej) można zawsze przybliżyć przez ruch har-
moniczny. Wobec tego na tym przyk ladzie pokażemy ogólny sposób wyznaczania cze֒stości
takich ma lych drgań. W tym celu w równaniu wyrażaja֒cym zachowanie energii rozdzia-
lamy zmienne i zapisujemy je w postaci

1√
2ma2

∫

dt = ±
∫

dϕ sin(ϕ/2)
√

E +mga(1 − cosϕ)
≡ ±

∫

dϕ sin(ϕ/2)
√

E − V (ϕ)
.

Po lożeniem równowagi, wokó l którego moga֒ zachodzić ma le drgania, jest punkt, w którym
V ′(ϕ) = −mga sinϕ = 0 i V ′′(ϕ) = −mga cosϕ > 0, czyli ϕ = π. Rozwijaja֒c V (ϕ) w
szereg Taylora wokó l ϕ = π i definiuja֒c zmienna֒ θ ≡ ϕ− π mamy

1√
2ma2

∫

dt ≈ ±
∫

dθ
√

E ′ − 1
2
mga θ2

.

Czynnik sin(ϕ/2) w liczniku ca lki po prawej stronie zosta l przybliżony przez swoja֒ wartość
w ϕ = π, a E ′ ≡ E + 2mga = E − V (π). Dalsze kroki sa֒ już oczywiste: otrzymujemy
sta֒d63

θ(t) ≡ ϕ(t) − π ≈
√

2E ′

mga
sin

(
√

g

4a
t + δ

)

,

co pokazuje, że cze֒stość ma lych drgań wokó l po lożenia równowagi jest równa
√

g/4a (co
w przypadku ruchu po cykloidzie jest oczywiste).

Warto wreszcie, zastosować do badanego ruchu równanie Lagrange’a drugiego rodzaju

d

dt

∂L

∂ϕ̇
=
∂L

∂ϕ
,

63Może sie֒ wydawać, że jest tu jakaś niezgodność z uzyskanym wyżej ścis lym rozwia֒zaniem, bo
wyrażenie pod pierwiastkiem mnoża֒cym cosinus nie jest takie jak poprzednio. Trzeba jednak zauważyć,
że w ścis lym rozwia֒zaniu do cosinusa jest proporcjonalna zmienna ξ(t) = cos(ϕ/2). Jednak po pod-
stawieniu (ϕ(t) = π + θ(t) z |θ(t))| ≪ 1, okaże sie֒, ponieważ cos((π + θ)/2) = − sin(θ/2) ≈ 1

2θ(t), że
zastosowanie do ścis lego rozwiazania przybliėnia ma lych wychyleń daje to samo.
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zapisane w naturalnej dla tego zagadnienia zmiennej uogólnionej, jaka֒ jest po prostu ka֒t
ϕ. Funkcje֒ Lagrange’a L = Tkin − V sk ladamy ze znalezionych już “kawa lków”

L = 2ma2ϕ̇2 sin2 ϕ

2
+mga(1 − cosϕ) .

Ponieważ nie zależy ona jawnie od czasu, wielkościa֒ zachowana֒ jest

h ≡ ϕ̇
∂L

∂ϕ̇
− L .

W rozpatrywanym tu przypadku sta la wielkość h jest po prostu równa Tkin+V . Utożsamienie
jej z ca lkowita֒ energia֒ ruchu E daje natychmiast wypisane wyżej rozwia֒zanie. Interesuja֒ce
jest jednak jawne wypisanie równania Eulera-Lagrange’a:

d

dt

(

4ma2ϕ̇ sin2 ϕ

2

)

= 2ma2ϕ̇2 sin
ϕ

2
cos

ϕ

2
+mga sinϕ .

Pierwszy wyraz po prawej stronie bierze sie֒ z różniczkowania po ϕ energii kinetycznej T .
Po jawnym obliczeniu pochodnej po czasie otrzymujemy

4ma2ϕ̇̇ sin2 ϕ

2
+ 4ma2ϕ̇2 sin

ϕ

2
cos

ϕ

2
= 2ma2ϕ̇2 sin

ϕ

2
cos

ϕ

2
+ 2mga sin

ϕ

2
cos

ϕ

2
.

Po po la֒czeniu podobnych wyrazów wyste֒puja֒cych po lewej i po prawej stronie (uwaga:
jest to dość typowe w sytuacji, gdy energia kinetyczna Tkin zależy także od zmiennych, a
nie tylko od ich pochodnych!) i po podzieleniu stronami przez 2ma2 sin(ϕ/2) (w punktach
ϕ = 0 i 2π, masa m opuszcza laby wie֒zy, dlatego takich możliwości tu nie dopuszczamy),
otrzymujemy

2ϕ̈ sin
ϕ

2
+ ϕ̇2 cos

ϕ

2
=
g

a
cos

ϕ

2
.

Nie jest sta֒d jednak  latwo dostrzec, że daje sie֒ to zapisać w znalezionej wcześniej postaci

−4
d2

dt2

(

cos
ϕ

2

)

=
g

a
cos

ϕ

2
.
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Zadanie 6.12

Dwie masy, m1 i m2, moga֒ przemieszczać sie֒ po paraboli o równaniu z = 1
2
ax2 w polu si ly

cie֒żkości g = ezg (oś z jest skierowana w dó l). Masy po la֒czone sa֒ nierozcia֒gliwa֒ nicia֒ o
d lugości l, która uk lada sie֒ na paraboli (inaczej mówia֒c, odleg lość mie֒dzy masami liczona
po paraboli wynosi zawsze l). Korzystaja֒c z zasady prac wirtualnych Lagrange’a znaleźć
po lożenie równowagi uk ladu tych dwóch mas.

Rozwia֒zanie:

Zasada prac wirtualnych w przypadku rozpatrywanego uk ladu mówi, że sumaryczna praca
δW wykonana przez zadane si ly rzeczywiste (a wie֒c nie si ly reakcji) dzia laja֒ce na uk lad
przy jego zgodnych z wie֒zami wirtualnych przesunie֒ciach δr1, δr2 z po lożenia równowagi
znika:

δW ≡ m1g·δr1 +m2g·δr2 = 0 .

Ponieważ uk lad jest p laski, wektory g, δr1 i δr2 można uważać za dwuwymiarowe:

g =

(

0
g

)

, δr1 =

(

δx1
δz1

)

, δr2 =

(

δx2
δz2

)

.

Wie֒zy, z którymi zgodne maja֒ być przesunie֒cia δr1, δr2 sa֒ dane wzorami

f1(r1, r2) = z1 −
1

2
ax21 = 0 ,

f2(r1, r2) = z2 −
1

2
ax22 = 0 ,

f3(r1, r2) =

∫ x2

x1

dx
√

1 + a2x2 − l = 0 .

Ostatnia równość wyraża to, że odleg lość od m1 do m2 liczona po paraboli64 wynosi l.
Przesunie֒cia zgodne sa֒ zgodne z wie֒zami, gdy

δr1 ·∇1fk(r1, r2) + δr2 ·∇2fk(r1, r2) = 0 , k = 1, 2, 3 .

Symbole ∇1 i ∇2 oznaczaja֒ tu gradienty liczone odpowiednio wzgle֒dem zmiennych r1 i
r2.

W notacji ogólnej (zob. Przypomnienie), wyste֒puja֒ tu cztery zmienne: (ξ1, ξ2, ξ3, ξ4) ≡
(x1, z1, x2, z2) stanowia֒ce parametryzacje֒ przestrzeni konfiguracyjnej uk ladu dwu mas.

64Infinitezymalna֒ d lugość  luku paraboli ds2 = (dx)2 + (dz)2 można, korzystaja֒c z równania paraboli
z = 1

2ax
2 sparametryzować x-em:

ds =
√

(dx)2 + (dz)2 = dx

√

(

dx

dx

)2

+

(

dz

dx

)2

= dx
√

1 + a2x2 .

Liczona po  luku paraboli odleg lość dwu punktów, których rze֒dne (a może odcie֒te? - ta prehistoryczna
terminologia!) sa֒ równe x1 i x2 jest wie֒c dana ca lka֒ z ds od x1 do x2.

180



Si la cie֒żkości dzia laja֒ca na uk lad jest dana wektorem X = (0, m1g, 0, m2g), dowolne
przesunie֒cia (niekoniecznie zgodne z wie֒zami) sa֒ reprezentowane czterowymiarowym wek-
torem δξ = (δx1, δz1, δx2, δz2), a warunek δW = X · δξ = 0 przyjmuje prosta֒ postać

m1g δz1 +m2g δz2 = 0 .

W tej notacji warunki

4
∑

j=1

∂fk(ξ1, . . . , ξ4)

∂ξj
δξj = 0 . k = 1, 2, 3 ,

zgodności z wie֒zami przesunie֒ć wirtualnych oznaczaja֒, że wektor (δx1, δz1, δx2, δz2) musi
być prostopad ly do czterowymiarowych wektorów gradientów65

(−ax1, 1, 0, 0) ,

(0, 0, −ax2, 1) ,

(−
√

1 + a2x21, 0,
√

1 + a2x22, 0) ,

każdej z trzech funkcji wie֒zów, czyli, że jego iloczyny skalarne z tymi wektorami musza֒
znikać.

Dalej wszystko jest już proste. Warunek δW = 0 po wykorzystaniu prostopad lości
wektora (δx1, δz1, δx2, δz2) do dwóch pierwszych gradientów (co koreluje δzi z δxi osobno
dla i = 1 i 2) przybiera postać

m1x1 δx1 +m2x2 δx2 = 0 .

Prostopad lość zaś (δx1, δz1, δx2, δz2) do trzeciego gradientu pozwala wyrazić np. δx2 przez
jedyna֒ niezależna֒ sk ladowa֒ tego wektora, za która֒ można wzia֒ć δx1. Zatem warunek
δW = 0 na przesunie֒ciach zgodnych z wie֒zami można zapisać jako

(

m1x1
√

1 + a2x21
+

m2x2
√

1 + a2x22

)

δx1 = 0 .

Wobec dowolności δx1, zerować sie֒ musi wyrażenie w nawiasie. Równaniami (nie latwymi
do jawnego rozwia֒zania) wyznaczaja֒cymi po lożenie równowagi uk ladu sa֒ wie֒c dwa równania:

m1x1
√

1 + a2x21
= − m2x2

√

1 + a2x22
,

∫ x2

x1

dx
√

1 + a2x2 = l .

65Jeśli traktujemy ca lke֒ od x1 do x2 wyste֒puja֒ca֒ w trzecim równaniu wie֒zów jak funkcje֒ jej granic
(czyli w notacji ogólnej funkcje֒ ξ1 ≡ x1 i ξ3 ≡ x2, niezależna֒ od ξ2 ≡ z1 i ξ4 ≡ z2), to pochodne tej funkcji
po x1 i x2 sa֒ równe funkcji podca lkowej wzie֒tej (z minusem dla pochodnej po x1 i z plusem dla pochodnej
po x2) odpowiednio w punkcie x1 i x2. Wynika to oczywíscie z tego, że f3(x1, z1, x2, z2) = F (x2)−F (x1),
gdzie F (x) jest funkcja֒ pierwotna֒ funkcji podca lkowej, tj. taka֒, że F ′(x) =

√
1 + a2x2.
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Podnosza֒c pierwsze z tych równań stronami do kwadratu, co da

m2
1x

2
1(1 + a2x22) = m2

2x
2
2 (1 + a2x21) ,

i wykorzystuja֒c wie֒zy f1 = 0 i f2 = 0 do wyrażenia x21 i x22 odpowiednio przez z1 i z2,
można to równanie przedstwić także w postaci

m2
1z1 −m2

2z2 = 2az1z2 (m2
2 −m2

1) .

Drugie z równań po obliczeniu wystepuja֒cej w nim ca lki66 przybiera postać

2 l = x2

√

1 + a2x22 − x1

√

1 + a2x21 + ln

(

ax2 +
√

1 + a2x22

ax1 +
√

1 + a2x21

)

.

Można ten uk lad równań (przyjmuja֒c 1/a za jednostke֒ d lugości: al → l, axi → xi, etc.)
przepisać w formie (trzeba tylko pamie֒tać, że x1 ≤ 0, wobec czego ax1 = −

√
2z1a czyli

teraz x1 = −
√

2z1)

m2
1z1 −m2

2z2 = 2z1z2 (m2
2 −m2

1) ,

2 l =
√

2z2(1 + 2z2) +
√

2z1(1 + 2z1) + ln

(√
1 + 2z2 +

√
2z2√

1 + 2z1 −
√

2z1

)

.

Równania te powinny mieć zawsze rozwia֒zania. Gdy m1 = m2 oczywiste jest, że
obie masy musza֒ wisieć symetrycznie, każda w odleg lości (liczonej po paraboli) l/2 od
wierzcho lka paraboli (z1 = z2, x1 = −x2). W drugim skrajnym przypadku m1 ≫ m2

(np. s loń i pch la) wyczucie fizyczne podpowiada, że rozwia֒zaniem be֒dzie z1 ≈ 0 (s loń
niemal na czubku paraboli) i masa m2 (pch la) niemal o l (licza֒c po paraboli) oddalona
od wierzcho lka, gdyż punkt z1 = 0 jest po lożeniem równowagi, gdy m2 = 0. W takim
przypadku uk lad równań można uprościć do

m2
1z1 −m2

2z2 ≈ −2z1z2m
2
1 ,

2 l ≈
√

2z2(1 + 2z2) + ln
(√

2z2 +
√

1 + 2z2
)

.

Drugie wyznacza wtedy z2 (funkcja z2 po prawej stronie rośnie monotonicznie od zera), a
drugie, gdy już z2 jest wyznaczone, daje iloczyn m2

1z1.
66Wprowadzaja֒c η = ax i nastepnie podstawiaja֒c η = sh θ znajdujemy, że

∫

dx
√

1 + a2x2 =
1

a

∫

dθ ch2θ =
1

4a

∫

dθ
(

e2θ + e−2θ + 2
)

=
1

8a

(

e2θ − e−2θ + 4θ
)

.

Ponieważ θ = ln(η +
√

1 + η2 ),
∫

dx
√

1 + a2x2 =
1

2a
ln(η +

√

1 + η2) +
1

8a

[

(

η +
√

1 + η2
)2

−
(

η +
√

1 + η2
)−2

]

=
1

2a
ln(η +

√

1 + η2) +
1

8a

[

(

η +
√

1 + η2
)2

−
(

η −
√

1 + η2
)2
]

=
1

2a
ln(η +

√

1 + η2 ) +
1

2a
η
√

1 + η2 ,
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Zadanie 6.11

Pos luguja֒c sie֒ zasada֒ Lagrange’a prac wirtualnych znaleźć po lożenie równowagi w polu
grawitacyjnym g  lańcucha sk ladaja֒cego sie֒ z n segmentów w kszta lcie odcinków po la֒czonych
jedne z drugimi przegubowo. Każdy z segmentów ma mase֒ m i d lugość 2a. Jeden ko-
niec  lańcucha jest zaczepiony na sta le, a na drugi dzia la skierowana poziomo si la F . Jak
zmieni sie֒ rozwia֒zanie, gdy wektor si ly dzia laje֒cej na koniec  lańcucha be֒dzie tworzy l z
kierunkiem horyzontalnym ka֒t β? W otrzymanych rozwia֒zaniach przej́sć do granicy, w
której liczba segmentów  lańcucha staje sie֒ nieskończona przy ustalonej jego d lugości L.

Rozwia֒zanie:

Wygodnie jest skierować oś z w dó l, tak by g = g ez. Przy ustalonym po lożeniu lewego
końca pierwszego jego segmentu, kszta lt jaki przybiera  lańcuch jest ca lkowicie wyznaczony
przez podanie ka֒tów α1, . . . , αn, jakie kolejne segmenty tworza֒ z osia֒ z. z-owa sk ladowa
zk po lożenia środka masy k-tego segmentu jest wtedy dana suma֒

zk =

k−1
∑

l=1

2a cosαl + a cosαk ,

a x-owa sk ladowa xB punktu do którego przy lożona jest si la F = exF suma֒

xB =

n
∑

l=1

2a sinαl .

Zasada prac wirtualnych mówi, że dla wszystkich zgodnych z wie֒zami wirtualnych prze-
sunie֒ć δrk = δxkex + δzkez z po lożenia równowagi zachodzi równość

n
∑

k=1

mg·δrk + F·δrB = 0 ,

czyli, że67

n
∑

k=1

mg

(

−
k−1
∑

l=1

2a δαl sinαl − a δαk sinαk

)

+ F

n
∑

k=1

2a δαk cosαk

≡
n
∑

k=1

δαk [−mga(2n− 2k + 1) sinαk + 2aF cosαk] = 0 .

67Druga linia warunku wynika z przegrupowania wyrazów w podwójnej sumie; rozpisuja֒c ja֒ jawnie
znajdujemy (kolejne linie odpowiadaja֒ kolejnym k, od 1 do n):

mga[ −δα1 sinα1

−2δα1 sinα1 −δα2 sinα2

−2δα1 sinα1 − 2δα2 sinα2 −δα3 sinα3

−2δα1 sinα1 − 2δα2 sinα2 − 2δα3 sinα3 −δα4 sinα4

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−2δα1 sinα1 . . . . . . − 2δαn−1 sinαn−1 −δαn sinαn].
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Sta֒d, ponieważ wszystkie δαk sa niezależne, wynika, że w po lożeniu równowagi

tgαk =
2F

mg(2n− 2k + 1)
.
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Zadanie 6.15

Punkt materialny o masie m zsuwa sie֒ bez tarcia po zewne֒trznej powierzchni sfery o
promieniu R znajduja֒cej sie֒ w polu grawitacyjnym g. Sprowadzić problem rozwia֒zania
równań wyznaczaja֒cych ruch masy po sferze do kwadratur (tj. do wykonania ca lki).
Znaleźć zależność si ly reakcji wie֒zów od po lożenia masy na sferze (dla dowolnych wa-
runków pocza֒tkowych) i punkt w którym oderwie sie֒ ona od sfery (jeśli wie֒zy sa֒ jedno-
stronne). Wyznaczyć jawnie ten punkt, gdy masa m zsuwa sie֒ bez pre֒dkości pocza֒tkowej
z samego wierzcho lka sfery.

Rozwia֒zanie:

Ruch masy m jest wyznaczony przez równania Lagrange’a I-go rodzaju. Oczywíscie naj-
wygodniej rozpatrywać to zagadnienie w uk ladzie wspó lrze֒dnych sferycznych (r, θ, ϕ), w
którym równaniem wie֒zów jest

f(r, θ, ϕ) = r −R = 0 .

Gradient funkcji f = r − R jest równy er. Wobec tego równania maja֒ postać

m (r̈ − rθ̇2 − rϕ̇2 sin2 θ) =−mg cos θ + λ ,

m (rθ̈ + 2 ṙθ̇ − rϕ̇2 sin θ cos θ) = mg sin θ ,

m (rϕ̈ sin θ + 2 ṙϕ̇ sin θ + 2 rθ̇ϕ̇ cos θ) = 0 .

Po wykorzystaniu równania wie֒zów, z którego wynika także, iż ṙ = 0 i r̈ = 0, równania
te upraszczaja֒ sie֒ do Po wykorzystaniu równania wie֒zów, z którego wynika także, iż

−mR (θ̇2 + ϕ̇2 sin2 θ) =−mg cos θ + λ ,

mR (θ̈ − ϕ̇2 sin θ cos θ) = mg sin θ ,

mR (ϕ̈ sin θ + 2 θ̇ϕ̇ cos θ) = 0 .

Pierwsze z tych równań wyznacza si le֒ reakcji (czyli mnożnik λ). Ostatnie zaś, jak zwykle,
gdy znika z-owa sk ladowa momentu si ly zewne֒trznej (tu si ly cie֒żkości), powinno ozna-
czać sta lość z-owej sk ladowej Lz momentu pe֒du masy m poruszaja֒cej sie֒ po sferze. I
rzeczywíscie, po pomnożeniu obu jego stron przez R sin θ, zwija sie֒ ono do

d

dt
(mR2ϕ̇ sin2 θ) ≡ dLz

dt
= 0 .

Wielkość Lz jest zatem sta la֒ ruchu wyznaczona֒ przez warunki pocza֒tkowe. Zatem

ϕ̇ =
Lz

mR2 sin2 θ
,

co pozwala wyeliminować ϕ̇ z pozosta lych równań. Po tym zabiegu przyjmuja֒ one postać

−mR
(

θ̇2 +
L2
z

m2R4 sin2 θ

)

= −mg cos θ + λ

mR

(

θ̈ − L2
z cos θ

m2R4 sin3 θ

)

= mg sin θ .
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Ponieważ wie֒zy sa֒ skleronomiczne (niezależne od czasu) i nie wykonuja֒ pracy, a si la
cie֒żkości jest potencjalna, druga֒ oprócz Lz sta la֒ wielkościa֒ powinna być energia mecha-
niczna. Że tak jest w istocie, można zobaczyć mnoża֒c obie strony drugiego z powyższych
równań przez Rθ̇: równanie to zwija sie֒ wtedy do dE/dt = 0, gdzie

E ≡ 1

2
m(Rθ̇)2 +mgR cos θ +

L2
z

2mR2 sin2 θ
≡ 1

2
m(Rθ̇)2 + Veff(θ) .

Wzór ten pozwala wyrazić θ̇2 przez ca lkowita֒ energie֒ ruchu i po lożenie masy m na sferze,
a tym samym, po wstawieniu θ̇2 do pierwszego z trzech równań, wyrazić przez te same
wielkości si le֒ reakcji, czyli mnożnik λ (FR = λ er). Prosty rachunek prowadzi do wzoru

λ = −2E

R
+ 3mg cos θ .

Si la reakcji nie zależy zatem od Lz. Nie zależy też ona od ka֒ta ϕ, co jednak jest prosta֒ kon-
sekwencja֒ symetrii uk ladu wzgle֒dem obrotów wokó losi z.68 Jeśli wie֒zy sa֒ jednostronne,
oderwanie sie֒ masy m od sfery naste֒puje w punkcie, w którym λ = 0. Np. jesli masa m
zaczyna zsuwać sie֒ bez pre֒dkości pocza֒tkowej z najwyższego punku na sferze, jej ca lkowita
energia jest równa E = mgR i oderwie sie֒ ona od sfery w punkcie, w którym69 cos θ = 2/3.

Zachowanie energii pozwala sprowadzić ruch “do kwadratur”: obliczywszy ca lke֒ we
wzorze

√

2

mR2
(t− t0) = ±

∫ θ(t)

θ(t0)

dθ
√

E − Veff(θ)
,

znajdziemy (przynajmniej w zasadzie) zależność ka֒ta θ od czasu, a naste֒pnie ca lka

ϕ(t) − ϕ(t0) =
Lz
mR2

∫ t

t0

dt′

sin2 θ(t′)
,

da zależność od czasu ka֒ta ϕ.
Jakościowo charakter ruchu, zw laszcza przy wie֒zach dwustronnych70 można określić

pos luguja֒c sie֒ wprowadzonym wyżej potencja lem efektywnym Veff(θ). Ponieważ gdy Lz 6=
68Oczywíscie dla konkretnych warunków pocza֒tkowych ka֒t ϕ po lożenia masy m na sferze jest, poprzez

zwia֒zki θ = θ(t) i ϕ = ϕ(t), jednoznacznie wyznaczony przez θ.
69Jest to oczywíscie, ponieważ ruch jest wtedy jednowymiarowy (por. uwaga na końcu zadania), ten

sam wynik, co w Zadaniu 6.4 o zsuwaniu sie֒ masy m po obre֒czy; jedyna różnica jest taka, że tu ka֒t θ jest
mierzony od najwyższego punktu sfery, a ka֒t ϕ w Zadaniu 6.4 od najniższego po lożenia obre֒czy, czyli
θ = π − ϕ, co wyjaśnia różnice֒ w znakach.

70Powoduja֒cych, ze masa m nie może opuścić sfery, tj. takich, że si la reakcji może mieć dowolny
znak (zerowanie sie֒ mnożnika λ nie oznacza wtedy oderwania sie֒, a jedynie zmiane֒ znaku si ly reakcji);
w przypadku wie֒zów jednostronnych si la reakcji musi mieć stale ten sam znak (dodatni, gdy masa m
nie może wpaść do wne֒trza sfery i ujemny, gdy nie może spaść na zewna֒trz, ale może spaść do wne֒trza
sfery) - wraz z ca lkowaniem wypisanych wzorów trzeba wtedy kontrolować mnożnik λ: jego zerowanie sie֒
oznacza oderwanie sie֒ masy m od sfery. Od tego momentu trzeba rozwia֒zywać równania bez si ly reakcji
z warunkami pocza֒tkowymi wyznaczonymi przez cia֒g lość po lożenia i pre֒dkości.
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Rysunek 40: Potencja l efektywny Veff(θ) w jednostkach mgR dla L2
z/m

2gR3 równego 0.05
(krzywa niebieska) i 0.5 (krzywa czerwona). Przecie֒cie krzywej wyznaczaja֒cej potencja l z
linia֒ zielona֒ (odpowiadaja֒ca֒ tu E = 1.8mgR) wyznacza możliwy zakres zmienności ka֒ta
θ podczas ruchu.

0, potencja l efektywny Veff → ∞ dla θ → 0 i π (czyli na końcach przedzia lu zmienności
ka֒ta θ), ruch może zachodzić wtedy tylko pomie֒dzy ka֒tami θmin i θmax wyznaczonymi
przez równanie (zob. rys. 40)

Veff(θmin,max) = E .

Ruch w zmiennej θ jest wie֒c (przy wie֒zach dwustronnych) ruchem z konieczności okreso-
wym, jak każdy ruch jednowymiarowy tego typu (zob. Zadania 3.1 i 3.2). W szczególności
możliwy jest ruch w trakcie którego zmienna θ oscyluje nieznacznie tylko wokó l wartości
θ0, dla której Veff(θ) przyjmuje minimalna֒ wartość. Ka֒t θ0 jest rozwia֒zaniem równania

V ′eff(θ) = − L2
z

mR2 sin3 θ

(

m2gR3

L2
z

sin4 θ + cos θ

)

= 0 .

Widać, że θ0 > π/2 (cosinus musi być ujemny), czyli ruch taki jest możliwy tylko po
dolnej po lowie sfery (gdy Lz → ∞, po lożenie dynamicznej równowagi zbliża sie֒ od do lu
do równika sfery). Można też znaleźć cze֒stość ma lych oscylacji zmiennej θ wokó l θ0.
Pisza֒c

Veff(θ) = Veff(θ0) +
1

2
V ′′eff(θ0) ξ

2 ,

gdzie ξ ≡ θ − θ0 (a V ′′eff(θ0) > 0, gdyż musi to by?? minimum) mamy ca lke֒ (E ′ =
E − Veff(θ0))

√

2

mR2
t+ C = ±

∫

dξ
√

E ′ − 1
2
V ′′eff(θ0) ξ2

= ±
√

2

V ′′eff(θ0)
arccos

(
√

V ′′eff(θ0)

2E ′
ξ

)

,

która jak zawsze daje ruch drgaja֒cy

θ(t) = θ0 + A cos(Ωt+ δ) ,
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o cze֒stości Ω =
√

V ′′eff(θ0)/mR2 i amplitudzie A =
√

2E ′/V ′′eff(θ0). Oscylacje te w zmiennej
θ nak ladaja֒ sie֒ na niemal jednostajny ruch obrotowy wokó l osi z:

ϕ(t) = ϕ0 +
Lz
mR2

∫ t

0

dt′

sin2[θ0 + A cos(Ωt+ δ)]

≈ ϕ0 +
Lz

mR2 sin2 θ0
t− 2Lz cos θ0

mR2 sin3 θ0

∫ t

0

dt′A cos(Ωt+ δ) .

Odste֒pstwo od jednostajnego ruchu obrotowego, ϕ(t) = ϕ0 +(Lz/mR
2 sin2 θ0) t, reprezen-

towane przez wyraz z ca lka֒ (która֒ można  latwo wykonać) jest niewielkie, gdyż amplituda
A musi być ma la, aby przybliżone rozwia֒zanie θ(t) mia lo sens.

Gdy Lz = 0, znika także ϕ̇ i ruch masy m staje sie֒ ruchem jednowymiarowym po
wielkim kole sfery scharakteryzowanym przez ϕ = ϕ0 =const.
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Przypomnienie

Funkcjona lem nazywamy urza֒dzenie (skrzynke֒) z wlotem i wylotem - do wlotu wrzuca sie֒
funkcje֒ (z jakiej́s określonej przestrzeni funkcyjnej, czyli określonego jakimís warunkami
zbioru funkcji), a z wylotu otrzymuje sie֒ w zamian liczbe֒ (w mechanice naogó lrzeczywista֒).
“Wlotów” może być zreszta֒ wie֒cej - wtedy trzeba wrzucić tyle funkcji, ile jest “wlotów”.
Tu be֒da֒ nas interesować funkcjona ly lokalne postaci

J [f ] =

∫ b

a

dξ J (ξ, f(ξ), f ′(ξ), . . . , f (n)(ξ)) ,

gdzie n - rza֒d najwyższej pochodnej funkcji, od której zależy funkcjona l jest skończony.71

Ograniczymy sie֒ też do funkcjona lów, w których funkcja J zależy tylko od samej funkcji
f (lub samych funkcji f1, . . . , fn - zobacz niżej) i jej pierwszej pochodnej f ′ (pierwszych
pochodnych f ′1, . . . , f

′
n).

Najprostsze zagadnienie wariacyjne. Szukamy takiej cia֒g lej funkcji f(ξ), określonej
na odcinku [a, b] i przyjmuja֒cej ustalone wartości f(a) = fa, f(b) = fb na jego końcach,
na której lokalny funkcjona l postaci

J [f ] =

∫ b

a

dξ J (ξ, f(ξ), f ′(ξ)) ,

gdzie J (x, y, z) jako funkcja trzech zmiennych ma cia֒g le pochodne cza֒stkowe do drugiego
rze֒du w la֒cznie, przyjmuje wartość stacjonarna֒, tzn. taka֒, że wariacja funkcjona lu J [f ],
czyli funkcjona l liniowy δJf [h] określony równościa֒

∆J [f ] =

∫ b

a

dξ {J (ξ, f + h, f ′ + h′) − J (ξ, f, f ′)} = δJf [h] +Rf [h] ,

w której funkcjona l Rf [h] be֒da֒cy “reszta֒” jest ma la֒ rze֒du wyższego niż pierwszy w h, tj.

lim
||h||→0

|Rf [h]|
||h|| = 0 ,

znika na wszystkich zachowuja֒cych ustalone wartości brzegowe funkcji f(ξ) jej waria-
cjach, tj. na funkcjach h(ξ) maja֒cych cia֒g la֒ pierwsza֒ pochodna֒ i spe lniaja֒cych warunki

71Funkcjona l zależny pochodnych dowolnie wysokiego rze֒du jest już nielokalny, tak jak nielokalne by
by ly funkcjona ly postaci

J [f ] =

∫ b

a

dξ

∫ b

a

dηX (ξ, η)f(ξ)f(η) ,

z jaka֒ś zadana֒ funkcja֒ X (ξ, η) czy

J [f ] =

∫ b

a

dξ J (ξ, f(ξ), f ′(ξ), . . . , f (n)(ξ))

[

∫ b

a

dξK(ξ, f(ξ), f ′(ξ), . . . , f (n)(ξ))

]−1

.
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h(a) = h(b) = 0. Znikanie wariacji δJf [h] jest warunkiem koniecznym (ale rzecz jasna,
nie dostatecznym), by na funkcji f(ξ) funkcjona l J [f ] mia l s labe72 ekstremum.

Standardowe rozumowanie prowadza֒ce do warunku, jaki musi spe lniać funkcja f(ξ),
by δJf [h] = 0 na zdefiniowanych wyżej funkcjach h(ξ), jest naste֒puja֒ce. Korzystaja֒c z
w laściwości funkcji J (x, y, z) rozwijamy ja֒ we wzorze na ∆J w szereg Taylora w przyro-
stach ∆x = 0, ∆y = h i ∆z = h′ wokó l x = ξ, y = f i z = f ′:

∆J =

∫ b

a

dξ

{

∂J
∂y

∣

∣

∣

∣

y=f

h(ξ) +
∂J
∂z

∣

∣

∣

∣

z=f ′

dh(ξ)

dξ
+ . . .

}

=

∫ b

a

dξ

{[

∂J
∂y

∣

∣

∣

∣

y=f

− d

dξ

∂J
∂z

∣

∣

∣

∣

z=f ′

]

h(ξ) +
d

dξ

[

∂J
∂z

∣

∣

∣

∣

z=f ′
h(ξ)

]

+ . . .

}

.

Wyrazy wypisane jawnie definiuja֒ w laśnie funkcjona l liniowy, czyli wariacje֒ δJf [h]. Ostatni
z nich przy warunkach na lożonych na funkcje h(ξ) znika. Zatem warunkiem znikania
δJf [h] na dowolnych różniczkowalnych takich funkcjach h(x) jest spe lnianie przez funkcje֒
f(ξ) różniczkowego równania

∂J
∂f

− d

dξ

∂J
∂f ′

= 0 ,

zwanego równaniem Eulera-Lagrange’a.
Równanie Eulera-Lagrange’a jest równaniem drugiego rze֒du, naogó l nieliniowym. Uprasz-

cza sie֒ ono znacznie w trzech naste֒puja֒cych przypadkach:

• J = J (ξ, f ′) - funkcja J nie zależy bezpośrednio od samej funkcji f . Wtedy

∂J
∂f ′

= C = const,

co sprowadza równanie Eulera-Lagrange’a do równania różniczkowego pierwszego
rze֒du.

• J = J (ξ, f) - funkcja J nie zależy bezpośrednio od pochodnej f ′ funkcji f . Wtedy

∂J
∂f

= 0 ,

czyli, wobec niewyste֒powania f ′ w J , równanie Eulera-Lagrange’a sprowadza sie֒
do równania algebraicznego na funkcje֒ f .

• J = J (f, f ′) - funkcja J nie zależy jawnie od zmiennej ca lkowania ξ. Wtedy, jeśli
f spe lnia równanie Eulera-Lagrange’a, to73

f ′
∂J
∂f ′

− J = h = const,

72S labe, tzn. w klasie cia֒g lych funkcji f na odcinku [a, b] z norma֒ zadana֒ przez ||f || = max|f(ξ)| +
max|f ′(ξ)|(b − a) dla a ≤ ξ ≤ b.

73Jako że ten przypadek wyste֒puje najcze֒ściej, dobrze jest sobie (w celu wbicia sobie wzoru w g lowe֒)
uprzytomnić, że wielkościa֒ sta la֒ jest w tym przypadku coś, co “prawie” jest hamiltonianem (który po-
jawi sie֒ dalej). Tak wie֒c gdy J nie zależy od ξ, powinna sie֒ natychmiast zapalać w g lowie lampka:
“hamiltonian”!
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co znów sprowadza równanie Eulera-Lagrange’a do równania różniczkowego pierw-
szego rze֒du. Że funkcja spe lniaja֒ca powyższe równanie pierwszego rze֒du spe lnia
również równanie Eulera-Lagrange’a  latwo sie֒ przekonać bezpośrednio: różniczkuja֒c
powyższe równanie stronami po ξ otrzymujemy

f ′′
∂J
∂f ′

+ (f ′)2
∂2J
∂f∂f ′

+ f ′f ′′
∂2J
∂(f ′)2

− f ′
∂J
∂f

− f ′′
∂J
∂f ′

= 0 .

Skrajne wyrazy sie֒ redukuja֒, a to co zostaje jest pomnożona֒ przez f ′ lewa֒ strona֒
jawnie rozpisanego równania Eulera-Lagrange’a.

Rozwia֒zanie równania Eulera-Lagrange’a zależy od dwu sta lych dowolnych, które po-
winny umożliwić spe lnienie warunków brzegowych narzuconych na funkcje֒ maja֒ca֒ być
ekstremala֒ funkcjona lu. Problem ten jest tu jednak troche֒ inny niż w zwyk lym przy-
padku, gdy narzuca sie֒ warunki na funkcje֒ i jej pochodna֒ w jednym i tym samym punkcie
- wtedy można sie֒ odwo lywać do twierdzeń o lokalym (w pobliżu tego punktu) istnieniu
rozwia֒zania. Tu zaś warunki wymagaja֒ istnienia rozwia֒zania globalnego na skończonym
obszarze. Ponadto funkcjona l może mieć ekstremale֒ nie be֒da֒ca֒ funkcja֒ różniczkowalna֒.
Pouczaja֒cy w tym wzgle֒dzie jest przyk lad ekstremali funkcjona lu

J [f ] =

∫ 1

−1
dx f 2(f ′ − 1)2,

określonego na funkcjach spe lniaja֒cych warunki f(−1) = 0, f(1) = 1. Odpowiadaja֒ce
temu zagadnieniu równanie Eulera-Lagrange’a sprowadza sie֒ - ponieważ funkcja podca lko-
wa nie zależy jawnie od x i można skorzystać ze sta lości “hamiltonianu” - do równania

df

dx
=

√

h+ f 2

f 2
.

Dwie sta le, h i C, od których zależy rozwia֒zanie

f(x) =
√

(x+ C)2 − h ,

daje sie֒ dobrać tak by funkcja f spe lnia la narzucone warunki: C = 1/4, h = 9/16. Jednak,
jak można sie֒ zorientować, funkcja f jest wtedy urojona na odcinku (−1, 1/2), a wie֒c nie
należy do klasy funkcji, w której szukamy ekstremali! Tymczasem przytomny rzut oka
na problem uświadamia, że ekstremala֒ odpowiadaja֒ca֒ globalnemu minimum funkcjona lu
jest funkcja

f(x) =

{

0 dla − 1 ≤ x ≤ 0
x dla 0 ≤ x ≤ 1

,

(bo wartości funkcjona lu na funkcjach rzeczywistych sa֒ zawsze nieujemne, a wartościa֒
funkcjona lu na tej funkcji jest zero). Jest to jednak funkcja nieróżniczkowalna (można
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jednak sprawdzić, że poza x = 0, jedynym punktem, w którym jej pochodne nie istnieja֒,
spe lnia ona równanie Eulera-Lagrange’a).

Pierwszym oczywistym uogólnieniem jest lokalny funkcjona lokreślony na funkcjach
zmiennej ξ ale przyjmuja֒cych wartości wektorowe, tj. J [f ] = J [f1, f2, . . . , fn]:

J [f1, f2, . . . , fn] =

∫ b

a

dξ J (ξ, f1, f2, . . . , fn, f
′
1, f

′
2, . . . , f

′
n).

Jego wariacja ma postać (licza֒c pochodne cza֒stkowe przy rozwijaniu w szereg Taylora
traktujemy J jak fukcje֒ 2n+ 1 niezależnych zmiennych x, yi, zi, i = 1, . . . , n):

δJ =

∫ b

a

dξ

{

n
∑

i=1

[

∂J
∂yi

∣

∣

∣

∣

yi=fi

− d

dξ

∂J
∂zi

∣

∣

∣

∣

zi=f ′i

]

hi(ξ) +
d

dξ

n
∑

i=1

[

∂J
∂z

∣

∣

∣

∣

zi=f ′i

hi(ξ)

]

+ . . .

}

.

Przy warunkach hi(a) = hi(b) = 0, i = 1, . . . , n, warunkiem koniecznym, by funkcja f(ξ)
by la s labym ekstremum funkcjona lu J [f ] jest spe lnianie przez jej sk ladowe fi(ξ) uk ladu n
sprze֒żonych równań Eulera-Lagrange’a

∂J
∂fi

− d

dξ

∂J
∂f ′i

= 0 , i = 1, . . . , n .

Podobnie jak w przypadku pojedynczej funkcji, jeśli J nie zależy od jakiej́s sk ladowej
fi, to i-te równanie ca lkuje sie֒ raz od razu; jeśli J nie zależy od f ′i , to odpowied-
nie równanie Eulera-Lagrange’a stanowi algebraiczny zwia֒zek mie֒dzy pochodnymi po-
zosta lych sk ladowych f ′j i funkcjami f1, . . . , fn; wreszcie, gdy J nie zależy od zmiennej
ca lkowania ξ, ca lka֒ pierwsza֒ uk ladu n równań Eulera-Lagrange’a jest “hamiltonian”:

n
∑

i=1

f ′i
∂J
∂f ′i

− J = C = const.

W tym przypadku jednak, jest to tylko jedno równanie pierwszego rze֒du, którym można
zwykle zasta֒pić jedno z równań Eulera-Lagrange’a; pozostaje wie֒c wcia֒ż kilka równań
drugiego rze֒du i problem nie jest tym samym jeszcze sprowadzony do kwadratur.

Uogólnienie na funkcje o wartościach wektorowych umożliwia także ogólniejsze potrak-
towanie zagadnień szukania ekstremów funkcjona lów zależa֒cych od jednej funkcji jednej
zmiennej: pozwala on mianowicie traktować funkcje f(ξ) jak krzywe na p laszczyźnie (ξ, f)
i zadawać je parametrycznie. Przyk lady sa֒ w zadaniach.

Drugim uogólnieniem jest badanie funkcjona lów funkcji wielu zmiennych ξ1, . . . , ξD
(moga֒cych także przyjmować wartości wektorowe)

I[f ] =

∫

Ω

dDξ I(ξ1, . . . , ξD, f, ∂1f, . . . , ∂Df) ,

gdzie dDξ ≡ ξ1 . . . dξD, ∂i ≡ ∂/∂ξi, a Ω jest pewnym ustalonym obszarem w przestrzeni
zmiennych ξi, na którego brzegu ∂Ω (tak fachowi geometrzy oznaczaja֒ brzeg zbioru Ω)
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funkcja f przyjmuje ustalone wartości. Szukaja֒c ekstremum I[f ] rozpatruje sie֒ wie֒c
wariacje δf(ξ1, . . . , ξk) takie, że δf |∂Ω = 0. Warunkiem znikania wariacji δI funkcjona lu
I jest by (sumy po i s?? domyślne)

∫

Ω

dDξ

{[

∂I
∂f

− ∂i
∂I

∂(∂if)

]

δf + ∂i

[

∂I
∂(∂if)

δf

]}

= 0 .

Ponieważ zgodnie z twierdzeniem Stokesa (zob. mój skrypt Differential Forms and Vector
Analysis) ostatni wyraz daje sie֒ napisać jako

∫

∂Ω

dsi
∂I

∂(∂if)
δf ,

(dsi jest różniczkowym elementem hiperpowierzchni ∂Ω; ca lka jest “strumieniem” pola
wektorowego - indeks i funkcji podca lkowej! - przez te֒ hiperpowierzchnie֒), jasne jest, że
znika on na mocy warunku narzuconego na wariacje δf . Zatem warunkiem, by funkcja
f(ξ1, . . . , ξk) by la s labym ekstremum funkcjona lu J , jest spe lnianie przez nia֒ równania
Eulera-Lagrange’a

∂I
∂f

− ∂i
∂I

∂(∂if)
= 0 ,

które jest cza֒stkowym równaniem różniczkowym drugiego rze֒du. Zagadnienia takie należa֒
do (klasycznej) teorii pola i nie be֒dziemy sie֒ tu nimi zajmować.

Tak jak w przypadku funkcji wielu zmiennych i ich ekstremów warunkowych można
też stawiać problem istnienia ekstremum warunkowego funkcjona lu. Można tu wyróżnić
dwie podklasy takich zagadnień:

• Problem istnienia ekstremum funkcjona lu

J [f ] =

∫ b

a

dξ J (ξ, f1, . . . , fn, f
′
1, . . . , f

′
n) ,

przy warunku, że ustalone wartości maja֒ mieć inne funkcjona ly

Ki[f ] =

∫ b

a

dξKi(xi, f1, . . . , fn, f
′
1, . . . , f

′
n) i = 1, . . . , r.

• Problem istnienia ekstremum funkcjona lu J [f ] takiego jak wyżej przy warunkach

gk(ξ, f1, . . . , fn, f
′
1, . . . , f

′
n) = 0 n = 1, . . . , r.

Oba rodzaje zagadnień rozwia֒zuje sie֒ metoda֒ mnożników Lagrange’a tj. szukaja֒c ekstre-
mum funkcjona lu

J̃ [f ] =

∫ b

a

dξ

[

J (ξ, f1, . . . , fn, f
′
1, . . . , f

′
n) −

∑

i

λiKi(ξ, f1, . . . , fn, f
′
1, . . . , f

′
n)

]

,
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w pierwszym przypadku i funkcjona lu

J̃ [f ] =

∫ b

a

dξ

[

J (ξ, f1, . . . , fn, f
′
1, . . . , f

′
n) −

∑

k

λk(ξ) gi(ξ, f1, . . . , fn, f
′
1, . . . , f

′
n)

]

,

w drugim przypadku. Różnica mie֒dzy nimi polega na tym, że w pierwszym przypadku
mnożniki λi sa֒ sta lymi, a w drugim przypadku sa֒ one funkcjami zmiennej ξ. Ten drugi
przypadek można też rozwia֒zywać inaczej, wprowadzaja֒c odpowiednie zmienne (tj. inne
funkcje gj , j = 1, . . . , n − r zamiast funkcji fi, i = 1, . . . , n), tak by narzucone wie֒zy
by ly już automatycznie spe lnione - mówimy, wtedy że nowe zmienne sa֒ zgodne z wie֒zami.
Na tym w laśnie polega zastosowanie formalizmu równań Lagrange’a drugiego rodzaju z
mechanice.
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Zadanie 7.1

Znaleźć leża֒cy ca lkowicie w p laszczyźnie xy tor promienia świat la wpadaja֒cego (od strony
ujemnych x-ów) w punkcie (x, y) = (0, 0) pod ka֒tem α0 w stosunku do osi x do ośrodka,
w którym wspó lczynnik za lamania zależy od g le֒bokości x jak n(x) =

√
1 + ax. Oprzeć

sie֒ raz na prawie Snella, a drugi raz na zasadzie Fermata mówia֒cej, że promień świat la
mie֒dzy dwoma punktami biegnie po takiej drodze, że czas przelotu jest minimalny.74

Przypomnienie: W ośrodku o wspó lczynniku za lamania n pre֒dkość świat la (lokalna)
jest równa c/n.

Rozwia֒zanie:

Prawo Snella mówi, że przechodza֒c z ośrodka 1 o (sta lym) n1 do drugiego ośrodka 2 o n2

(również sta lym) promień świat la za lamuje sie֒ w taki sposób, że

n1 sinα1 = n2 sinα2 ,

gdzie α1 i α2 sa֒ ka֒tami, jaki promień tworzy po dwu stronach z normalna֒ do granicy
ośrodków. Aby to prawo zastosować do ośrodka, w którym wsṕlczynnik n sie֒ zmienia z x,
trzeba pos lużyć sie֒ rozumowaniem granicznym i podzielić pó lp laszczyzne֒ x > 0 na pasy
o sta lych wspó lczynnikach n0 = 1 (dla x < 0), n1, n2, n3, itd. Do każdej z powsta lych w
ten sposób granic dwu ośrodków stosujemy prawo Snella: n1 sinα1 = n0 sinα0 = sinα0,
n2 sinα2 = n1 sinα1 = n0 sinα0, n3 sinα3 = n0 sinα0, itd. Widać, że w takim przypadku
po przej́sciu do granicy nieskończenie ge֒stego podzia lu pó lp laszczyzny x > 0 na pasy
otrzymamy

sinα(x) =
n0 sinα0

n(x)
=

sinα0

n(x)
.

Przerobienie sinusa α(x) na tangens da wie֒c równanie toru w postaci

dy(x)

dx
= tgα(x) =

√

sin2 α(x)

1 − sin2 α(x)
=

sinα0
√

n2(x) − sin2 α0

,

bo α(x) jest dok ladnie ka֒tem nachylenia krzywej y(x) po jakiej biegnie promień.

To samo równanie toru promienia można także uzyskać z zasady Fermata, która jest
ogólniejsza.75 Niech A (punkt wlotu promienia do ośrodka o zmiennym n) ma wspó lrze֒dne

74Naprawde֒ świat lo biegnie to takim torze, że czas przelotu jest ekstremalny.
75Prawo Snella wynika z niej niemal natychmiast: wystarczy wyobrazić sobie dwa punkty A i B jeden

nad granica֒ dwu ośrodków, w obszarze o sta lym n1 i drugi pod nia֒, w obszarze o sta lym n2; w obszarach
o sta lym n promień biegnie po prostej (co też wynika z zasady Fermata, gdyż jest to droga najkrótsza i
wobec sta lości n odpowiada ona najkrószemu czasowi przebiegu świat la mie֒dzy dwoma punktami) wie֒c
wystarczy obliczyć czas T (y) jego przebiegu od A do B jako funkcje֒ wspó lrze֒dnej y na osi be֒da֒cej granica֒
ośrodków punktu, w którym promień przechodzi z jednego ośrodka do drugiego; warunek minimalnego
czasu przelotu (tj. warunek by funkcja T (y) mia la w punkcie y minimum - do którego wypisania wystarcza
zwyk ly rachunek różniczkowy funkcji jednej zmiennej) przyjmuje dok ladnie postać prawa Snella.
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(0, 0), a jakís inny punkt B (w pó lp laszczyźnie x > 0) niech ma ma wspó lrze֒dne (x1, y1).
Czas przelotu od A do B po drodze γ dany wzorem

T [γ] =

∫ B

A

dl

v
,

jest wtedy funkcjona lem, który wed lug zasady Fermata przyjmuje wartość najmniejsza֒
na rzeczywistej drodze promienia świetlnego od A do B. Aby mu nadać jawna֒ postać
przyjmijmy, że drogi od A do B parametryzujemy x-em, czyli piszemy w postaci y = y(x).
Wtedy dl =

√

(dx)2 + (dy)2 = dx
√

1 + (y′)2 i (bo v = c/n)

T [γ] =

∫ x1

0

dx

c
n(x)

√

1 + (y′)2 .

Mamy tu przypadek, gdy funkcja podca lkowa w funkcjonale nie zależy od samej wario-
wanej funkcji, a tylko od jej pochodnej. Wobec tego równanie Eulera-Lagrange’a można
od razu raz sca lkować, co daje

n(x) y′
√

1 + (y′)2
= D = const.

Po rozwik laniu wzgle֒dem y′ dostajemy sta֒d równanie

dy

dx
=

D
√

n2(x) −D2
,

które daje po sca lkowaniu funkcje֒ y(x) zależna֒ od dwu sta lych dowolnych. Sta le te po-
winny być wyznaczone z warunku przebiegania otrzymanej krzywej przez punkty A =
(0, 0) i B = (x1, y1), tak jak tego w zasadzie wymaga zasada Fermata. Nic nie zabra-
nia jednak, gdy już równanie różniczkowe na tor zosta lo wyprowadzone, zasta֒pić drugi
warunek ża֒daniem, by ka֒t wpadania promienia do ośrodka o zmiennym n w punkcie A
by l równy α0. Oznacza to, że sta la֒ D trzeba wybrać równa֒ sinα0, bo wtedy nachylenie
krzywej w x = 0 be֒dzie takie jak trzeba (tzn. pochodna (dy/dx)x=0 be֒dzie równa tgα0, bo
n(0) = n0 = 1). Z takim warunkiem brzegowym otrzymujemy zatem to samo równanie,
co z prawa Snella.

Warto jeszcze zobaczyć, co by by lo, gdyby droge֒ γ sparametryzować nie x-em, a y-
kiem. W takim przypadku funkcjona l mia lby postać

T [γ] =

∫ x1

0

dy

c
n(x)

√

1 + (x′)2 ,

gdzie x′ ≡ (dx/dy). Funkcja podca lkowa J w funkcjonale by laby niezależna od zmiennej
ca lkowania i ca lka֒ pierwsza֒ równania Eulera-Lagrange’a, sprowadzaja֒ca֒ je do równanie
pierwszego rze֒du by lby “hamiltonian” tj.

x′
∂J
∂x′

−J = x′
n(x)x′

√

1 + (x′)2
− n(x) (1 + (x′)2)

√

1 + (x′)2
≡ −n(x)
√

1 + (x′)2
= h = const.
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Po rozwik laniu tego równania wzgle֒dem x′ ≡ dx/dy i narzuceniu, jak poprzednio warunku
(dx/dy)x=0 =ctg α0 (który wymaga, by h2 = sin2 α0) dostaje sie֒ sta֒d to samo równanie,
co poprzednio.

Jeśli n2(x) = 1+ax, proste sca lkowanie prowadzi (przy wyżej narzuconych na rozwia֒zanie
warunkach) do równania toru

y(x) =
2

a
sinα0

√

cos2 α0 + ax− sin 2α0

a
.

Sta la ca lkowania jest ustalona z warunku, by y(0) = 0. Gdy a > 0, wzór ten daje tor,
na którym y asymptotycznie, dla dużych x, rośnie proporcjonalnie do

√
x. Jeśli a < 0,

otrzymany wzór może obowia֒zywać tylko dla x < (1/|a|) cos2 α0. Przyczyne֒ tego  latwo
zobaczyć, jeśli sie֒ pamie֒ta, że równanie różniczkowe typu

dy

dx
= f(x, y) ,

w laściwie należy zapisywać w postaci

X(x, y) dx+ Y (x, y) dy = 0 ,

(gdzie X i Y sa֒ takie, że76 −X/Y = f(x, y)), która nie wyróżnia ani x ani y; równanie
takie wyznacza (przy ustalonych warunkach pocza֒tkowych) na p laszczyźnie krzywa֒, która֒
czasem da sie֒ zapisać jako y = y(x), czasem jako x = x(y), a czasem tylko parametrycznie.
Oczywíscie maja֒c rozwia֒zanie takiego równania w postaci y = y(x) możemy je “odkre֒cić”
i dostać x = x(y). W badanym tu przypadku toru promienia świetlnego, po takim
odkre֒ceniu, dostaniemy

x(y) =
a

4 sin2 α0

(

y +
sin 2α0

a

)2

− cos2 α0

a
.

Z postaci tej od razu widać, co sie֒ dzieje, gdy a < 0: promień świetlny wchodzi do ośrodka,
lecz stale zakre֒ca w lewo i po osia֒gnie֒ciu g le֒bokości x = (1/|a|) cos2 α0 zaczyna zawracać
spowrotem w kierunku osi y, czyli ku granicy ośrodków.

Wyt lumaczenie zakre֒cania toru promienia świetlnego odwo luja֒ce sie֒ do falowej natury
świat la jest proste: przy a < 0 pre֒dkość świat la w ośrodku równa c/n(x) wzrasta wraz z
g le֒bokościa֒ (ze wzrostem x); znaczy to że prawa strona frontu fali (jego “prawa noga”)
porusza sie֒ szybciej niż lewa; jest jasne że musi to powodować zakre֒canie frontu fali w
lewo.

76Przy danej funkcji f(x, y) funkcje X(x, y) i Y (x, y) nie sa֒ określone jednoznacznie: funkcje
g(x, y)X(x, y) i g(x, y)Y (x, y) daja֒ te֒ sama֒ funkcje֒ f(x, y). Niejednoznaczność ta (poza ewentualnie punk-
tami, w których funkcja g(x, y) znika) nie ma wp lywu na krzywe ca lkowe - krzywe te sa֒ bowiem określone
warunkiem - patrza֒c na to geometrycznie - znikania jedno-formy różniczkowej ω̂ = X(x, y)dx+Y (x, y)dy
na wektorach do nich stycznych; jeśli wie֒c zero daje na nich forma ω̂, to również zero daje forma
η̂ = g(x, y) ω̂. Odpowiednim doborem funkcji g(x, y) można sprawić, że ω̂ = dφ(x, y), co - jeśli jest
możliwe, a jest zawsze możliwe w R2, ale już niekoniecznie w RD o D > 2 - pozwala krzywe ca lkowe
przedstawić w postaci φ(x, y) = const. Forma ω̂ ma wtedy czynnik ca lkuja֒cy, czyli, zgodnie z pierwszym
twierdzeniem Carathéodory’ego, jest ca lkowalna.
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Zadanie 7.5

Jaki jest kszta lt maja֒cej minimalne pole powierzchni obrotowej rozpie֒tej na dwóch równo-
leg lych do siebie nawzajem ko lach o promieniach R1 i R2, których środki leża֒ na tej samej
prostej i sa֒ oddalone od siebie o 2L?

Rozwia֒zanie:

Pole powierzchni powsta lej przez obrót wokó l osi x krzywej y(x), takiej, że y(−L) = R1,
a y(L) = R2 jest dane wzorem77

P [y] =

∫ L

−L
dxP(y, y′) =

∫ L

−L
dx 2πy

√

1 + y′2 .

Ponieważ funkcja podca lkowa P nie zależy od x, ca lka֒ pierwsza֒ odpowiedniego równania
Eulera-Lagrange’a jest “hamiltonian” (czynnik 2π można spokojnie opuścić):

y′
∂P
∂y′

−P ≡ −y
√

1 + y′2
= −C = const.

Rozwik luja֒c te֒ równość wzgle֒dem y′ znajdujemy zwia֒zek
∫

dy
√

y2 − C2
= ± 1

C

∫

dx .

Znak ± jest znakiem pochodnej dy/dx, która, nawet przy ustalonym znaku sta lej C, może
być na jednym odcinku ujemna, a na innym dodatnia; dlatego trzeba go tu w zasadzie
uwzgle֒dniać jawnie. Podstawiaja֒c w ca lce po lewej y = C chθ znajdujemy78

y(x) = C ch

(

x +D

C

)

,

gdzie D jest druga֒ sta la֒ dowolna֒. Sta le C i D wyznaczamy z warunków y(−L) = R1,
y(L) = R2. Może istnieć jedno rozwia֒zanie, albo dwa albo może nie być żadnego.
Naj latwiej zobaczyć to w przypadku R1 = R2 ≡ R. Bez straty ogólności można też
przyja֒ć L = 1 (promień R mierzymy w jednostkach L - charakter rozwia֒zania zależy
tylko od stosunku R/L) Wtedy z symetrii wynika, że D = 0 i dwa równania staja֒ sie֒
jednym i tym samym warunkiem na C̃ ≡ 1/C

R =
ch(C̃)

C̃
.

Graficznie, na p laszczyźnie (C̃, z), rozwia֒zanie jest rze֒dna֒ (a może odcie֒ta֒? kto pamie֒ta
te dziwne nazwy?! ale chyba jednak odcie֒ta֒) punktu, w którym krzywa z = C̃−1ch(C̃)

77Uzasadnienie wzoru: jest to suma pól powierzchni prostoka֒tnych pasków, na jakie dziela֒ te֒ po-
wierzchnie֒ p laszczyzny prostopad le do osi x odleg le od siebie o dx: d lugościa֒ paska jest 2πy, a wysokościa֒
√

dx2 + dy2.
78Na szcze֒ście funkcja ch(x) jest parzysta i oba znaki, + i −, daja֒ to samo.
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Rysunek 41: Wykres funkcji C̃−1chC̃.

pokazana na rysunku 41 przecina sie֒ z pozioma֒ prosta֒ z = R. Jest wie֒c jasne, że gdyR jest
mniejsze od pewnej krytycznej wartości, niema żadnych punktów przecie֒cia i rozwia֒zanie
nie istnieje. Oznacza to, że w takiej sytuacji minimalne pole ma powierzchnia, która
“przykleja” sie֒ do kó l, na których jest rozpie֒ta i redukuje sie֒ do prostej  la֒cza֒cej ich
środki; pole takiej “powierzchni” jest równe π(R2

1 +R2
2) (w rozpatrywanym tu przypadku

2πR2), a krzywa y(x) jest nieróżniczkowalna; rozpatrywany funkcjona l nie ma ekstremali
(minimum) w klasie powierzchni zadanych krzywymi różniczkowalnymi. Jednoznaczne
rozwia֒zanie jest tylko wtedy, gdy R przyjmuje pewna֒ szczególna֒ wartość (przy jednej
szczególnej wartości stosunku R/L). Dla R wie֒kszych sa֒ zawsze dwa rozwia֒zania C̃1 i C̃2.
Naj latwiej sie֒ zorientować jak one wygla֒daja֒, gdy R ≫ 1 (R ≫ L). Jednym rozwia֒zaniem
równania R = C̃−1ch C̃ jest wtedy C̃ ≈ 1/R i odpowiadaja֒ca mu ekstremala funkcjona lu,
która֒ można zapisać w postaci

y(x) = R
chC̃x

chC̃
≈ R

ch(x/R)

ch(1/R)
,

schodzi tylko nieznacznie, ponieważ ch(x/R) <∼ 1, w dó l, poniżej wartości y = R. Rozwia֒-
zanie to jest oczywiste fizycznie i rzeczywíscie odpowiada najmniejszej powierzchni. Dru-
gim rozwia֒zaniem równania R = C̃−1ch C̃, gdy R ≫ 1, jest C̃ ≫ 1. Odpowiadaja֒cym
mu punktem stacjonarnym funkcjona lu jest wtedy funkcja (jej formalna postać jest taka
sama jak funkcji odpowiadaja֒cej, pierwszemu rozwiazaniu, której ktścis la postać jest wy-
pisana wyżej), która przy x ∼ 0, gdzie ch(C̃x) ≈ 1 wyrażnie “siada”. Przypuszczalnie
nie jest to maksimum (lokalne) funkcjona lu, bo jest oczywiste, że każda֒ powierzchnie֒
obrotowa֒ można nieco “pomarszczyć” zwie֒kszaja֒c dowolnie jej pole; trudno też sobie
wyobrazić, by rozwia֒zaniu temu odpowiada lo (lokalne) minimum; przypuszczalnie jest to
punkt siod lowy - ale dar “widzenia” takich rzeczy w przestrzeniach funkcji jest dany tylko
nielicznym, zaprawionym w analizie funkcjonalnej.
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Zadanie 7.7 (Problem brahistochrony)
Po jakiej krzywej leża֒cej w p laszczyźnie xz powinna w polu grawitacyjnym g = −g ez
zsuwać sie֒ (maja֒ca zerowa֒ pre֒dkość pocza֒tkowa֒) masa m zaczynaja֒ca ruch w punkcie
A = (0, h), by w jak najkrótszym czasie dotrzeć do
a) punktu B = (b, 0),
b) pionowej prostej o równaniu x = b > 0?

Rozwia֒zanie:

a) Jest to klasyczne zagadnienie brahistochrony. Minimalizujemy tu funkcjona l

T [γ] =

∫ B

A

dt =

∫ B

A

dl

v
,

który leża֒cej w p laszczyźnie xz krzywej γ  la֒cza֒cej punkty A = (0, h) i B = (b, 0)
przypisuje czas zsuwania sie֒ po niej masy m. Jeśli zapiszemy element d lugości  luku
dl = dx

√
1 + z′2, tj. sparametryzujemy krzywa֒ γ zmienna֒ x, to

T [γ] = T [z(x)] =

∫ b

0

dxT (x, z, z′) =

∫ b

0

dx

√

1 + z′2

2g(h− z)
,

po skorzystaniu z zachowanie energii mechanicznej

1

2
mv2 +mgz = mgh ,

aby wyrazić pre֒dkość v w zależności od wysokości z.
Ponieważ funkcja podca lkowa T (z, z′) w otrzymanym funkcjinale nie zależy jawnie od

zmiennej ca lkowania (tutaj: od x), wykorzystujemy “hamiltonian” jako ca lke֒ pierwsza֒
równania Eulera-Lagrange’a:

z′
∂T
∂z′

− T = h = const. czyli
−1

√

(z − h)(1 + z′2)
= − 1

C
= const.

(Sta la
√

2g zosta la upchnie֒ta w C: h = −1/C
√

2g). Po rozwik laniu wzgle֒dem z′ daje to
równanie różniczkowe pierwszego rze֒du79

z′ ≡ dz

dx
= −

√

C2

h− z
− 1 .

79Gdyby krzywa֒ sparametryzować zmienna֒ z, tj. gdyby napisać

T [γ] = T [x(z)] =

∫ 0

h

dz

√

1 + x′2

2g(h− z)
,

to funkcja podca lkowa T (z, x′) nie zależa laby od samej funkcji x(z) i otrzymywane równanie Eulera-
Lagange’a ca lkowa loby sie֒ natychmiast do

∂T
∂x′

≡ x′
√

2g(h− z)(1 + x′2)
=

1

C
√

2g
= const.,

co, po odwik laniu, dawa loby to samo dx/dz lub dz/dx.
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Wybrany tu zosta lznak minus, bo jest fizycznie oczywiste, że krzywa γ musi biec w dó l,
czyli pochodna funkcji z(x) musi być ujemna. Po rozdzieleniu zmiennych i podstawieniu
ξ = h− z otrzymujemy

x +D =

∫

dξ

√

ξ

C2 − ξ
= 2

∫

du
u2√

C2 − u2
= −2

∫

du
√
C2 − u2 + 2C2

∫

du√
C2 − u2

.

W kolejnych krokach podstawilísmy ξ = u2 i naste֒pnie przedstawilísmy u2 w liczniku jako
−(C2 − u2) + C2. Podstawiaja֒c z kolei u = C sin θ dostajemy

x +D = −2C2

∫

dθ cos2 θ + 2C2

∫

dθ = C2 (θ − sin θ cos θ) .

W wyj́sciowych zmiennych daje to uwik lane równanie krzywej

x +D = C2

(

arcsin

√

h− z

C2
−
√

h− z

C2

√

1 − h− z

C2

)

,

które nie jest specjalnie przejrzyste. Jedyne, co z niego widać, to to, że D = 0 (bo dla
z = h musi być x = 0).

Aby zobaczyć jaka֒ krzywa֒ wyznaczaja֒ te wzory, najlepiej cofna֒ć sie֒ do rozwia֒zania
w postaci

x =
C2

2
(2θ − sin 2θ) ,

z = h− ξ = h− C2 sin2 θ = h− C2

2
(1 − cos 2θ),

i wprowadzić parametry ϕ ≡ 2θ oraz R ≡ C2/2. Otrzymujemy wtedy krzywa֒ w postaci
parametrycznej,

x = R (ϕ− sinϕ) ,

z − h = −R (1 − cosϕ),

w której rozpoznajemy cykloide֒ (odwrócona֒ w dó l - zob. Zadania 2.14 i 6.6). Sta la֒
dowolna֒ jest tu R (bo sta la D już zosta la wyznaczona), ale gdy krzywa֒ zadajemy para-
metrycznie parametryzuja֒c ja֒ zmienna֒ ϕ ∈ [0, ϕk], trzeba także ustalić ϕk (parametr ϕ
zosta l wprowadzony w taki sposób, że ϕ = 0 odpowiada punktowi A); sa֒ jednak teraz do
spe lnienia dwa zwia֒zki:

b = R (ϕk − sinϕk) ,

h = R (1 − cosϕk) ,

które razem ustalaja֒ R i ϕk.
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b) Poszukamy teraz krzywej, po której “zjazd” pozwala dotrzeć w najkrótszym czasie do
prostej x = b. Można by to zagadnienie rozwia֒zać znajduja֒c z rozwia֒zania poprzedniego
problemu czas dotarcia do punktu (x, y) = (b, 0) jako fukcje֒ wysokości pocza֒tkowej h
i minimalizuja֒c naste֒pnie te֒ funkcje֒ wzgle֒dem h; nie jest to jednak  latwe do zrobienia,
gdyż krzywa minimalna przy ustalonym h jest zadana parametrycznie, a zakres [0, ϕk]
zmienności parametru ϕ jest wyznaczony równaniem przeste֒pnym. Zagadnienie można
jednak  latwo rozwia֒zać szukaja֒c ekstremum T (γ) na drogach γ maja֒cych jeden koniec
ustalony (punkt A), a drugi cze֒ściowo swobodny (nieustalona wspó lrze֒dna y punktu B).

Szukamy wtedy drogi γ, na której pochodna wariacyjna

δTγ [h] =

∫ b

0

dx

{(

∂T
∂z

− d

dx

∂T
∂z′

)

h(x) +
d

dx

[

∂T
∂z′

h(x)

]}

,

funkcjona lu T znika na wszystkich wariacjach h(x) drogi γ takich, że h(a) = 0, ale
moga֒cych przyjmować dowolna֒ wartość h(b) w x = b. Znikanie takie wymaga, by funkcja
z = z(x) zadaja֒ca droge֒ γ spe lnia la to samo równanie Eulera-Lagrange’a, co poprzednio,
ale by dodatkowo jeszcze

∂T
∂z′

∣

∣

∣

∣

x=b

≡ z′
√

2g(h− z)(1 + z′2)

∣

∣

∣

∣

∣

x=b

= 0 .

(Znikanie cz lonu brzegowego w x = 0 jest nadal zapewnione przez warunek h(0) = 0).
Sprowadza sie֒ to oczywíscie do warunku z′(b) = 0, który trzeba na lożyć dodatkowo na
uzyskane w pierwszym punkcie rozwia֒zania równania Eulera-Lagrange’a. Ponieważ dane
jest ono w postaci parametrycznej musimy napisać ten warunek w postaci

dz

dx

∣

∣

∣

∣

x=b

=
dz

dϕ

(

dx

dϕ

)−1
∣

∣

∣

∣

∣

ϕk

= 0 .

Sprowadza sie֒ wie֒c on do ża֒dania, by

sinϕk
1 − cosϕk

= 0 .

Ponieważ ϕk 6= 0, musi to być ϕk = π. Zatem z warunku b = R(ϕk − sinϕk), który
uprzednio (przy B = (b, 0)) wyznacza l ϕk, teraz znajdujemy, że szukana֒ krzywa֒ jest
przesunie֒ta w góre֒ i odwrócona cykloida o R = b/π (i ϕ ∈ [0, π])

x(ϕ) =
b

π
(ϕ− sinϕ) ,

z(ϕ) = h− b

π
(1 − cosϕ) .

Dochodzi ona do prostej x = b p lasko (bo (dz/dx)x=b = 0) na wysokości z = h− 2b/π.
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Zadanie 7.8 (Szkoleniowe, bo odpowiedź jest oczywista)
Korzystaja֒c z rachunku wariacyjnego znaleźć najkrótsza֒ droge֒  la֒cza֒ca֒ na p laszczyźnie
xy dwa ustalone punkty A = (xA, yA) i B = (xB, yB). Rozwia֒zać problem w zmiennych
kartezjańskich i biegunowych. Rozwia֒zać ten sam problem (w zmiennych kartezjańskich)
w przestrzeni o d wymiarach.

Rozwia֒zanie:

W dwóch wymiarach zadanie jest banalne: d lugość krzywej γ  la֒cza֒cej punkty A i B jest
dana funkcjona lem

J [γ] =

∫ B

A

dl =

∫ B

A

√

dx2 + dy2 =

∫ xB

xA

dx
√

1 + y′2 ,

który prowadzi, ponieważ funkcja podca lkowa nie zależy ani od x ani od y, do oczywistego
równania

dy

dx
= C = const,

ska֒d, jak należa lo sie֒ spodziewać, y(x) = Cx+D.

Wartość funkcjona lu J [γ] obliczona na danej drodze γ nie zależy od wyboru zmiennych.
W zmiennych walcowych np.

J [γ] =

∫

d(r cosϕ)

√

1 +

[

d(r sinϕ)

d(r cosϕ)

]2

=

∫

√

[d(r cosϕ)]2 + [d(r sinϕ)]2 ,

czyli, parametryzuja֒c krzywa֒ γ ka֒tem ϕ,

J [γ] =

∫

dϕJ (r, r′) =

∫

dϕ
√
r′2 + r2 .

Odpowiadaja֒ce tej postaci funkcjona lu równanie Eulera-Lagrange’a ma nieciekawa֒ postać

d

dϕ

r′√
r′2 + r2

=
r√

r′2 + r2
.

Na szcze֒ście funkcja podca lkowa J [γ] nie zależy od zmiennej ca lkowania ϕ, wie֒c sta la֒ jest
“hamiltonian”

r′
∂J
∂r′

−J = − r2√
r′2 + r2

= −C = const.

Po rozwik laniu wzgle֒dem r′ i rozdzieleniu zmiennych dostajemy sta֒d (± jest znakiem
pochodnej dr/dϕ, który a priori móg lby sie֒ zmieniać na krzywej przy ustalonym C)

±
∫

dϕ = C

∫

dr

r
√
r2 − C2

= C

∫

dr

r2
√

1 − C2

r2

.
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Standardowym chwytem jest tu podstawienie u = C/r, które daje

±(ϕ+ ϕ0) = −
∫

du√
1 − u2

= −arccosu .

Zatem u ≡ C/r = cos(ϕ+ ϕ0), czyli

C = r cosϕ cosϕ0 − r sinϕ sinϕ0 ≡ x cosϕ0 − y sinϕ0 ,

co oczywíscie jest równaniem prostej y = Ax +B z A = ctgϕ0 i B = −C/ sinϕ0.

W przestrzeni D wymiarowej, aby traktować symetrycznie wszystkie wspó lrze֒dne xi
najwygodniej jest przyja֒ć, że krzywa γ jest zadana parametrycznie xi = xi(ξ), przy czy,
parametr ξ ∈ [0, ξk] tak, iż xi(0) = xAi , xi(ξk) = xBi . D lugość drogi jest wtedy dana
funkcjona lem (kropki oznaczaja֒ pochodne po ξ)

J [γ] =

∫ ξk

0

dξ J (ẋ1, . . . , ẋD) =

∫ ξk

0

dξ
√

ẋ21 + · · · + ẋ2D .

Funkcjona l J [γ] jest niezmienniczy wzgle֒dem reparametryzacji krzywej (czyli mówia֒c
górnolotnie - prof. Meissner to uwielbia - wzgle֒dem dzia lania grupy dyffeomorfizmów),
tj. jeśli ξ = ξ(τ), to

x′i ≡
dxi
dτ

=
dxi
dξ

dξ

dτ
≡ ẋi

dξ

dτ
,

i, ponieważ dξ = dτ(dξ/dτ),

J [γ] =

∫ ξk

0

dξ
√

ẋ21 + · · · + ẋ2D =

∫ τk

τi

dτ
√

x′21 + · · · + x′2D ,

z 0 = ξ(τi), ξk = ξ(τk). Ma wie֒c on te֒ sama֒ postać80 (jeśli nie liczyć innych oznaczeń
pochodnych po ξ i po τ), niezależnie od wyboru parametryzacji krzywej.

Ponieważ J nie zależy od xi wszystkie równania Eulera-Lagrange’a daja֒ sie֒ raz
sca lkować prowadza֒c do uk ladu D równań:

ẋi
√

ẋ21 + · · · + ẋ2D
= Ci , i = 1, . . . , D .

Wynika z nich, ??e

dxi
dxj

=
Ci
Cj

≡ Cij = const,

80Należy to porównać z zamiana֒ zmiennych z kartezjańskich do walcowych, rozpatrywana֒ wyżej: tam
wartość funkcjona lu nie zależa la od wyboru zmiennych, ale sama postać funkcji podca lkowej by la inna.
Nie by la wie֒c to niezmienniczość (czyli symetria).
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dla ka??żdej pary indeksów i oraz j, czyli że dowolna wspó lrze֒dna xi wyraża sie֒ przez
dowolna֒ inna֒ wspó lrze֒dna֒ xj funkcja֒ liniowa֒ (w sensie szkolnym, a nie w ścis lym sen-
sie algebraicznym). Rozwia֒zaniem sa֒ wie֒c zwia֒zki xi(ξ) = βih(ξ) + αi, w których h(ξ)
jest dowolna֒ funkcja֒, co odpowiada dowolności parametryzacji krzywej (prostej). Sta le
ca lkowania Ci sa֒ wtedy równe Ci = βi/

√

β2
1 + · · · + β2

D. Zwia֒zki te, to oczywíscie para-
metryczna reprezentacja prostej.

Warto jeszcze zwrócić uwage֒ na “hamiltonian”, który, ponieważ funkcja podca lkowa
J w funkcjonale J [γ] nie zależy od ξ, powinien być sta la֒. Znajdujemy jednak, że

D
∑

i=1

ẋi
∂J
∂ẋi

− J ≡ 0 .

Hamiltonian tożsamościowo znika! Odpowiedzialny jest za to fakt, że funkcja podca lkowa
jest funkcja֒ jednorodna֒ rze֒du pierwszego pre֒dkości ẋi, tzn, ma w lasność (w rozpatrywa-
nym wyżej zagadnieniu funkcja J nie zależy od xi)

J (x1, . . . , xD, λẋ1, . . . , λẋD) = λJ (x1, . . . , xD, ẋ1, . . . , ẋD) .

Jeśli rówość te֒ zróżniczkuje sie֒ po λ i po loży λ = 1, otrzyma sie֒ zwia֒zek oznaczaja֒cy
znikanie “hamiltonianu” (jest to tzw. twierdzenie Eulera o funkcjach jednorodnych -
w termodynamice prowadzi ono do tzw. równania Gibbsa-Duhema). Jest to typowa
sytuacja, gdy funkcjona l jest niezmienniczy, tak jak tutaj, wzge֒dem reparametryzacji, bo
niezmienniczość taka wymaga w laśnie, by funkcja podca lkowa by la funkcja֒ jednorodna֒
rze֒du pierwszego pre֒dkości.
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Zadanie 7.11

Wyznaczyć kszta lt  lańcucha (o bardzo krótkich ogniwach albo nierozcia֒gliwej jednorodnej
liny) o d lugości L i sta lej ge֒stości ρ masy na jednostke֒ d lugości umocowanego swoimi
końcami w dwóch różnych punktach A i B nad ziemia֒ i swobodnie zwisaja֒cego (bez
dotykania ziemi) w polu si ly cie֒żkości g.

Rozwia֒zanie:

Wprowadźmy uk lad odniesienia o osi z skierowanej do góry i osi x skierowanej poziomo
wzd luż kierunku wyznaczanego przez punkty A i B zaczepienia końców  lańcucha. W
jednorodnym i sta lym polu grawitacyjnym g = −g ez  lańcuch przybiera kszta lt minima-
lizuja֒cy jego energie֒ potencjalna֒ E (przyjmujemy, że  lańcuch wisi już nieruchomo). Jest
ona dana ca lka֒

E =

∫ B

A

ds gρ z ,

w której ds jest elementem d lugości, a z wysokościa֒ w stosunku do (dowolnie wybra-
nego) poziomu, na której znajduje sie֒ infinitezymalny fragment  lańcucha o d lugości ds.
Jest wie֒c to funkcjona l E[γ] zależny od krzywej γ jaka֒ tworzy  lańcuch. Jeśli krzywa֒ te֒
sparametryzujemy zmienna֒ x, otrzymamy

E[γ] = gρ

∫ xB

xA

dx z(x)
√

1 + (z′(x))2 .

Szukamy zatem krzywej be֒dacej minumum tego funkcjona lu, albo - bo sta le g i ρ nie maja֒
wp lywu na to, jaki kszta lt  lańcucha jest optymalny - funkcjona lu (również oznaczonego
E)

E[γ] =

∫ xB

xA

dx z(x)
√

1 + (z′(x))2 .

Ponieważ jednak d lugość  lańcucha jest ustalona, minimum tego należy szukać w klasie
krzywych γ o ustalonej d lugości, czyli takich, że drugi funkcjona l L[γ]

L[γ] =

∫ xB

xA

dx
√

1 + (z′(x))2 ,

spe lnia warunek81 L[γ] = L.
W takiej sytuacji wprowadzamy (sta ly) mnożnik Lagrange’a λ i szukamy ekstremum

pomocniczego funkcjona lu Ẽ[γ] = E[γ] − λL[γ], czyli

Ẽ[γ] =

∫ xB

xA

dx (z(x) − λ)
√

1 + (z′(x))2 ≡
∫ xB

xA

dx Ẽ(z, z′) .

81Mamy nadzieje֒, że czytelnik zdo la odróżnić funkcjona l L[γ] od konkretnej liczby L.
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Ponieważ funkcja podca lkowa nie zależy jawnie82 od zmiennej x, ca lka֒ pierwsza֒ równania
Eulera - Lagrange’a wyznaczaja֒cego krzywa֒ be֒da֒ca֒ ekstremum Ẽ[γ] jest “hamiltonian”,
tj. wielkość

z′
∂Ẽ
∂z′

− Ẽ .

Zatem

− z − λ
√

1 + (z′)2
= −C ,

gdzie C jest sta la֒. Wywik luja֒c sta֒d z′ otrzymujemy

dz

dx
= ±

√

(

z − λ

C

)2

− 1 .

(Znak ± jest znakiem pochodnej z′, który może zmieniać sie֒ wzd luż krzywej odpowia-
daja֒cej konkretnej sta lej C. Jest mniej wiecej jasne, że tak w laśnie tu be֒dzie - od punktu
A  lańcuch be֒dzie najpierw opadać, a potem wznosić sie֒ do punktu B.) Rozdzielaja֒c
zmienne, i dokonuja֒c podstawienia u = (z − λ)/C sprowadzamy problem do ca lki

∫

dx = ±C

∫

du√
u2 − 1

.

Standardowe podstawienie u = chθ daje jako wynik ca lki po prawej stronie archu i osta-
tecznie otrzymujemy

z − λ

C
= ch

(

x− x0
C

)

, lub, inaczej, z(x) = λ+ C ch

(

x− x0
C

)

.

Ponieważ ch jest funkcja֒ parzysta֒, znak ± znika.
W rozwia֒zaniu wyste֒puja֒ trzy sta le dowolne: x0, C oraz mnożnik Lagrange’a λ.

Trzeba je dobrać tak, by krzywa dana powyższym równaniem przechodzi la przez punkty
A i B (dwa warunki) oraz by d lugość  lańcucha by la równa L (tzn. by odleg lość od punktu
A do punktu B liczona wzd luż otrzymanej krzywej by la równa L). Ten ostatni warunek
można teraz napisać jawnie, obliczaja֒c ca lke֒:

∫ xB

xA

dx

√

1 + sh2

(

x− x0
C

)

=

∫ xB

xA

dx ch

(

x− x0
C

)

= C

[

sh

(

xB − x0
C

)

− sh

(

xA − x0
C

)]

.

82Bo w zagadnieniach z wie֒zami “globalnymi” mnożnik(i) Lagrange’a jest (sa֒) rzeczywíscie sta la֒(ymi).
Natomiast w przypadku wie֒zów “lokalnych”, takich jak rozpatrywane w Zadaniu 7.15, mnożnik(i) jest (sa֒)
funkcjami zmiennej ca lkowania i należy je uważać za wprowadzaja֒ce jawna֒ zależność funkcji podca lkowej
pomocniczym fukcjona lu od tej zmiennej.
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Jest od razu jasne (co od poczatku powinno być oczywiste, że aby problem mia l rozwia֒zanie,
d lugość L  lańcucha musi być nie mniejsza niż xB − xA, bo wartość powyższej ca lki jest
wie֒ksza niż xB−xA (funkcja kosinus hiperboliczny jest zawsze wie֒ksza niż 1). Przyjmuja֒c
(bez straty ogólności), że xA = −b, a xB = b oraz, że z(xA) = hA = 0 (poziom zerowy
wybieramy na wysokości zawieszenia jednego z końców  lańcucha), a z(xB) = hB możemy
warunki, które trzeba spe lnić zapisać w postaci

−λ
C

= ch

(−b− x0
C

)

,

hB − λ

C
= ch

(

b− x0
C

)

,

L

C
= sh

(

b− x0
C

)

− sh

(−b− x0
C

)

.

Fizycznie rzecz biora֒c, jeśli tylko L > (xB−xA) = 2b, warunki te powinny mieć rozwia֒zanie.
W ogólnym przypadku dowolnego hB jest jednak niemożliwe ich spe lnienie analityczne.
Dlatego ograniczymy sie֒ do rozpatrzenia przypadku z hB = 0 (oba końce  lańcucha zacze-
pione na tej samej wysokości. Jest wtedy jasne, że sta la x0 = 0 i dwa pierwsze warunki
redukuja֒ sie֒ do jednego, a w ostatnim warunku z uwagi na nieparzystość funkcji sh, dwa
cz lony po prawej stronie sa֒ identyczne. Bez straty ogólności można też po lożyć b = 1
(tzn. przyja֒ć b za jednostke֒ d lugości). Wreszcie wygodnie be֒dzie wprowadzić C̃ = 1/C.
Warunki, które trzeba spe lnić przybiora֒ wówczas postać

−λ C̃ = ch C̃ ,

L C̃ = 2 sh C̃ .

Drugi z nich wyznacza sta la֒ C̃ (czyli C), a naste֒pnie pierwszy wyznacza mnożnik λ.
Wcia֒ż sa֒ one trudne do analitycznego rozwia֒zania, ale  latwo je przeanalizować w dwóch
skrajnych przypadkach: L >∼ 2 (tzn. L >∼ 2b) i L≫ 2 (tzn. L≫ 2b).

Rozwia֒zanie drugiego warunku sprowadza sie֒ do znalezienia odcie֒tej (tak to sie֒ chyba
za cara Miko laja II - jednego z g lupszych carów - nazywa lo) punktu przecie֒cia wykresu
fukcji 2 sh C̃ z prosta֒ LC̃ o nachyleniu L (ponieważ w C̃ = 0 nachylenie fukcji 2 sh C̃ jest
równe 2, te dwie krzywe przecinaja֒ sie֒ tylko, gdy L > 2, co już by lo przedyskutowane).
Jest też jasne, że gdy L >∼ 2, krzywe te przecinaja֒ sie֒ blisko pocza֒tku wykresu, tzn. C̃ >∼ 0.
Dok ladniej, rozwijaja֒c funkcje֒ sh otrzymujemy pierwszy warunek w postaci

LC̃ ≈ 2C̃ +
1

3
C̃3 + . . . ,

ska֒d C̃ ≈
√

3(L− 2). Rozwia֒zaniem pierwszego warunku jest wtedy λ ∼ −1/C̃, bo
kosinus hiperboliczny jest niemal równy 1. Znów dok ladniej, rozwijaja֒c funkcje֒ ch

−λC̃ = 1 +
1

2
C̃2 + . . . , czyli λ = − 1

C̃
− 1

2
C̃ + . . .
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Kszta lt  lańcucha jest wtedy dany wzorem

z(x) ≈ − 1

C̃
− 1

2
C̃ +

1

C̃
ch (C̃x) ≈ −1

2
C̃ +

1

2
C̃x2 .

Zgodnie z oczekiwaniem,  lańcuch tworzy mie֒dzy punktami A i B linie֒ niemal prosta֒ z
ma lym tylko ugie֒ciem pośrodku (tj. przy x = 0).

Gdy L≫ 2 (tzn. L≫ 2b), rozwia֒zniem drugiego warunku jest C̃ ≫ 1. Wtedy jednak
sh C̃ ≈ ch C̃ wie֒c, wykorzystuja֒c drugi warunek w pierwszym, znajdujemy że λ ≈ −L/2
i kszta lt  lańcucha zadaje wzór

z(x) ≈ −L
2

+
1

C̃
ch C̃x = −L

2

(

1 − ch C̃x

ch C̃

)

,

(druga postać wzoru wynika natychmiast z warunku z(1) = 0). Ponieważ ch C̃ ≫ 1, przy
x = 0  lańcuch schodzi, zgodnie z oczekiwaniem, niemal do z = −L/2.
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Zadanie 7.15

Korzystaja֒c z rachunku wariacyjnego znaleźć najkrótsza֒ droge֒ leża֒ca֒ na powierzchni
bocznej walca o promieniu R  la֒cza֒ca֒ punkty A = (R, 0, 0) i B = (0, R, h). Rozwia֒zać pro-
blem wykorzystuja֒c technike֒ mnożników Lagrange’a oraz inaczej, przechodza֒c do zmien-
nych zgodnych z wie֒zami. Uwzgle֒dnić także role֒ topologii walca.

Rozwia֒zanie:

Szukamy ekstremum (minimum) funkcjona lu

L[γ] =

∫ B

A

dl =

∫ B

A

√

dx2 + dy2 + dz2 ,

w którym ca lka jest obliczana wzd luż  la֒cza֒cej punkty A i B drogi γ. Krzywa γ musi leżeć
na powierzchni walca, co narzuca warunek g(x, y, z) = x2 + y2 −R2 = 0.

Sparametryzujmy najpierw droge֒ γ zmienna֒ x. Wówczas

L[γ] =

∫ 0

R

dx
√

1 + y′2 + z′2 .

Warunek uboczny g(x, y, z) = 0 uwzgle֒dniamy wprowadzaja֒c zależny od x mnożnik La-
grange’a (czyli w laściwie funkcje mnożnikowa֒) λ(x) i szukamy ekstremum funkcjona lu

L̃[γ] =

∫ 0

R

dx
{

√

1 + y′2 + z′2 − λ(x) (x2 + y2 − R2)
}

,

przy warunku x2 + y2 − R2 = 0. Do rozwia֒zania sa֒ wie֒c równania

d

dx

y′
√

1 + y′2 + z′2
= −2λ(x) y ,

d

dx

z′
√

1 + y′2 + z′2
= 0 ,

x2 + y2 = R2 .

Pierwsze z nich wyznacza tylko λ(x) (lub w laściwie: czynnik λ(x) dobieramy tak, by to
równanie by lo spe lnione, gdy już znamy y(x) i z(x)). Z drugiego wywik lujemy z′:

z′2 =
C2

1 − C2
(1 + y′2) ,

(C jest sta la֒ ca lkowania drugiego równania). Z kolei z trzeciego równania (wie֒zów) znaj-
dujemy y = ±

√
R2 − x2, czyli

y′ =
∓x√
R2 − x2

,

co po wstawieniu do wzoru na z′2 sprowadza go do

dz

dx
= ± C√

1 − C2

R√
R2 − x2

.
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Po sca lkowaniu otrzymujemy sta֒d (C̃ = RC/
√

1 − C2 )

z(x) = ± C̃ arcsin
x

R
+D .

Sta le C̃ i D trzeba dobrać tak, by z(R) = 0 i z(0) = h.  Latwo znajdujemy, że

D = h oraz ± C√
1 − C2

π

2
= −h .

Ekstremala ma zatem postać

z(x) = h− 2h

π
arcsin

x

R
=

2h

π

(π

2
− arcsin

x

R

)

≡ 2h

π
ϕ ,

gdzie ϕ jest standardowo zdefiniowanym ka֒tem cylindrycznego uk ladu wspó lrze֒dnych.
Ekstemala֒ jest wie֒c linia śrubowa. Oczywíscie gdyby rozcia֒ć walec wzd luż jego tworza֒cej
otrzymana ekstremala okaza laby sie֒ linia֒ prosta֒ bo powierzchnia walca jest p laska (ma
zerowa֒ wewne֒trzna֒ krzywizne֒).

Topologia walca ma jednak znaczenie przy szukaniu ekstremali: wszystkie bowiem
drogi biegna֒ce po powierzchni walca  la֒cza֒ce dwa zadane jej punkty A i B można podzielić
na klasy charakteryzowane ca lkowita֒ liczba֒ n (w topologii zwanej liczba֒ nawinie֒ć - ang.
winding number) mówia֒ca֒ ile razy dana droga obiega walec dooko la (można przyja֒ć, że
n > 0 charakteryzuje drogi obiegaja֒ce walec n-krotnie w kierunku przeciwnym do ruchu
wskazówek zegara, a n < 0 oznacza drogi obiegaja֒ce walec |1 + n|-krotnie w kierunku
przeciwnym). Nietrudno też zrozumieć, że w każdej klasie dróg powinna istnieć jedna
ekstremala. Parametryzacja drogi zmienna֒ x nie pozwala jednak otrzymać tych innych
ekstremali (ani nawet odróżnić drogi o n > 0 od drogi o n′ = 1−n), ponieważ na drogach
obiegaja֒cych walec raz lub wie֒cej razy (w jednym ba֒dź drugim kierunku) jednej wartości
x musia loby odpowiadać wie֒cej niż jedna wartość zmiennej z - drogi takie nie sa֒ wie֒c
zadane uczciwymi funkcjami z = f(x).

Ten sam problem można rozwia֒zać przechodza֒c do zmiennych (ϕ, z) zdefiniowanych
standardowo x = R cosϕ, y = R sinϕ, z = z, które sa֒ zgodne z wie֒zami, tj. g(x(ϕ), y(ϕ)) ≡
0. W tych zmiennych funkcjona l L[γ] przybiera postać

L[γ] =

∫ B

A

√

[d(R cosϕ)]2 + [d(R sinϕ)]2 + dz2 = R

∫ ϕn

0

dϕ
√

1 + u′2 ,

gdzie u ≡ z(ϕ)/R, prim oznacza pochodna֒ po ϕ, a wartość końcowa parametru ϕ zależy
od liczby nawinie֒ć, która֒ trzeba zadać:

ϕn =
π

2
+ 2πn , n ∈ Z .

Ponieważ funkcja podca lkowa nie zależy jawnie od zmiennej ca lkowania ϕ, ca lka֒ pierwsza֒
równania Eulera-Lagrange’a wyznaczaja֒cego u jest “hamiltonian”

u′
∂J
∂u′

− J = − R√
1 + u′2

= −C = const.
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Sta֒d już od razu wynika, że ekstremala֒ jest droga u′ = D =const., czyli że z(ϕ) = Dϕ+E.
Warunek z(0) = 0 daje E = 0, a wartość D wyznaczona przez warunek z(ϕn) = h zależy
od liczby nawinie֒ć D = 2h/(1 + 4n)π. Zatem ekstremale maja֒ postać

z(ϕ) =
2h

(1 + 4n)π
ϕ , 0 ≤ ϕ ≤ π

2
+ 2πn .

Dla n = 0 jest to to samo rozwia֒zanie, co poprzednio i fizycznie jest jasne, że jest to
globalne minimum funkcjona lu (czyli rzeczywíscie najkrótsza droga). Pozosta le ekstre-
male sa֒ jednak także minimami funkcjona lu, tyle że jego minimami lokalnymi. Warto też
zauwaźyć, że gdyby punkt B leża l po przeciwnej stronie osi x, to ekstremale odpowia-
daja֒ce n = 0 i n = −1 (nieodróżnialne przy parametryzacji dróg zmienna֒ x) by lyby obie
globalnymi minimami funkcjona lu (i tak samo minima lokalne o n i n′ = 1 − n mia lyby
równe “g le֒bokości”).

Warto jeszcze zwrócić uwage֒ na to, że przej́scie od pierwszego sposobu rozwia֒zywania
tego problemu do drugiego odpowiada dok ladnie temu, co robi sie֒ przechodza֒c od równań
Lagrange’a I-go rodzaju (z si lami reakcji proporcjonalnymi do mnożników Lagrange’a) do
równań Lagrange’a II-go rodzaju, w których wie֒zy sa֒ już automatycznie uwzgle֒dnione
przez wybór zmiennych.
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Przypomnienie

Problemy mechaniki, przede wszystkim, gdy wchodza֒ce w gre֒ si ly i oddzia lywania sa֒ za-
chowawcze, a ewentualne wie֒zy sa֒ holonomiczne i dwustronne, wygodnie jest formu lować
jako problemy wariacyjne: rzeczywisty ruch uk ladu mechanicznego, tzn. zależność od
czasu zmiennych qi wybranych jako charakteryzuja֒ce jego stan (po lożenie), jest wy-
znaczony przez warunek stacjonarności pewnego funkcjona lu I[q] zwanego dzia laniem:
δI[q] = 0 w klasie wszystkich możliwych funkcji qi(t) przyjmuja֒cych w chwilach t1 i t2
ustalone wartości. W mechanice nierelatywistycznej funkcjona l ten ma postać

I[q] =

∫ t2

t1

dt (T (q, q̇) − V (q)) ≡
∫ t2

t1

dtL(q, q̇) ,

w której T jest energia֒ kinetyczna֒ ca lego uk ladu (w jakimś wybranym inercjalnym uk ladzie
odniesienia), tj. suma֒ energii kinetycznych wszystkich mas tworzacych uk lad mierzonych
w tym uk ladzie odniesienia, a V (q) suma֒ energii potencjalnych jego elementów (energii
potencjalnych mas w polu grawitacyjnym, energii spre֒żynek itp.); wielkość L = L(q, q̇),
centralna֒ w tym sformu lowaniu mechaniki, nazywa sie֒ lagrangianem (albo funkcja֒ La-
grange’a) uk ladu fizycznego.

Równania Lagrange’a drugiego rodzaju sa֒ bardzo wygodne. Nie wymagaja֒ one jaw-
nego rozpatrywania si l reakcji powodowanych wie֒zami. (Gdy wie֒c znajomość tych si l
jest potrzebna, trzeba wrócić do równań Lagrange’a pierwszego rodzaju; można w nich
jednak wtedy wykorzystać znaleziony przy pomocy równań Lagrange’a drugiego rodzaju
ruch - zob. Zadanie 6.8). Rozwia֒zywanie problemu mechanicznego ta֒ metoda֒ spro-
wadza sie֒ do ustalenia najpierw liczby stopni swobody badanego uk ladu mechanicz-
nego, tj. liczby niezależnych zmiennych, których wartości należy podać, by jednoznacz-
nie określić jego po lożenie. Liczba ta, n, jest oczywíscie równa 3N − p, gdzie N jest
liczba֒ ruchomych mas badanego uk ladu fizycznego, a p liczba֒ niezależnych wie֒zów ho-
lonomicznych. Drugim krokiem jest konkretny wybór tzw. zmiennych uogólnionych
q1, . . . , qn charakteryzuja֒cych zgodne z wie֒zami po lożenia mas. Moga֒ one być wybrane
dowolnie; w szczególności moga֒ one wszystkie, lub tylko niektóre z nich, wyznaczać
po lożenia mas wzgle֒dem jakiegoś uk ladu niekoniecznie inercjalnego, którego po lożenie
wzgle֒dem inercjalnego uk ladu odniesienia jest z góry zadane lub zadane przez pozosta le
zmienne qi. Niektóre ze zmiennych qi moga֒ np. charakteryzować po lożenie jednej masy
wzgle֒dem drugiej, której po lożenie i ruch jest z kolei scharakteryzowane innymi zmien-
nymi. Należy jednak podkreślić jeszcze raz: mimo iż energie wyste֒puja֒ce w lagrangianie
moga֒ być wyrażone przez zmienne uogólnione definiuja֒ce po lożenie mas wzgle֒dem dowol-
nego punktu odniesienia (czyli moga֒ wyznaczać po lożenia mas wzgle֒dem uk ladów nieko-
niecznie inercjalnych), to energie sk ladaja֒ce sie֒ na T musza֒ być energiami kinetycznymi
wzgle֒dem jakiegoś wybranego uk ladu inercjalnego. To jest ta (cze֒sto nieuświadamiana
sobie) podstawa nierelatywistycznej mechaniki klasycznej, która֒ zostawi l nam w spadku
Newton: istnieje absolutna przestrzeń i absolutny czas i, wobec tego, ca la klasa uk ladów
zwanych inercjalnymi, które wzgle֒dem absolutnej przestrzeni poruszaja֒ sie֒ jednostajnie
i prostoliniowo. I tego nie ukryje żadne przej́scie do formalizmu lagrangeowskiego. Nie
wiadomo, dlaczego to dzia la (por. w rozdziale 16-1 t. I Feynmana uwagi o kawiarnianych
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filozofach) ale tak jest. Można to kwestionować i niektórzy staraja֒ sie֒ skonstruować me-
chanike֒ tak, by uwzgle֒dnić w niej postulat E. Macha, że znaczenie moga֒ mieć tylko ruchy
wzgle֒dne mas. Polecam tu bardzo ciekawa֒ ksia֒żke֒ Juliana Barboura “The discovery of
Dynamics” o historycznym rozwoju mechaniki szczególnie skupiaja֒ca֒ sie֒ na ścieraniu sie֒
podej́sć opartych na ruchu wzgle֒dnym i absolutnym. Autor utrzymuje, że nawet ogólna
teoria wzgle֒dności nie w pe lni realizuje postulat Macha. (Niestety ksiażka ta nie zosta la
wydana po polsku; na Amazonie kosztuje jakieś trzysta kilkadziesia֒t z lotych...)

W nierelatywistycznej mechanice klasycznej energia kinetyczna ma postać

T =
1

2

N
∑

i=1

m(i)v
2
(i) ,

gdzie v(i) = ṙ(i), a r(i) sa֒ wektorami po lożenia poszczególnych mas m(i) w wybranym
uk ladzie inercjalnym. Po wyrażeniu po lożeń r(i) wszystkich N mas przez n = 3N−p ≤ 3N
zgodnych z wie֒zami zmiennych uogólnionych qi, energia kinetyczna T przybiera z regu ly
postać (dodatnio określonej) formy kwadratowej pre֒dkości uogólnionych q̇i

T =
1

2

n
∑

i,j=1

Tij(q
1, . . . , qn) q̇iq̇j ,

o wspó lczynnikach Tij be֒da֒cych w ogólności funkcjami zmiennych qi. Odste֒pstwo od
tej regu ly powstaje, gdy niektóre ze zmiennych qi sa֒ zdefiniowane wzgle֒dem jakichś
elementów uk ladu, które wykonuja֒ zadany z góry (wymuszany przez jakieś czynniki
zewne֒trzne) ruch: Tij pozostaje wtedy forma֒ kwadratowa֒ wszystkich pre֒dkości, w tym
także pre֒dkości elementów uk ladu wykonuja֒cych zadany ruch; te jednak nie sa֒ zmiennymi
dynamicznymi i energia kinetyczna T traktowana jako funkcja dynamicznych pre֒dkości
q̇i ma wtedy cz lony niezależne od q̇i i może takė mieć cz lony liniowe w q̇i.

Po wyrażeniu zaś energii potencjalnych elementów uk ladu przez zmienne qi lagrangian
staje sie֒ funkcja֒ uogólnionych po lożeń i pre֒dkości

L = L(t, q1, . . . , qn, q̇1, . . . , q̇n) ,

przy czym zależność od pre֒dkości, jeśli nie zachodzi konieczność wprowadzenia poten-
cja lów uogólnionych - zob. niżej - (co jest konieczne, gdy wyste֒puja֒ si ly zależne od
pre֒dkości) jest forma֒ kwadratowa֒.

Z lagrangianu otrzymuje sie֒ n równań Lagrange’a

d

dt

∂L

∂q̇i
=
∂L

∂qi
, i = 1, . . . , n ,

Jest to n równań różniczkowych drugiego rze֒du na n funkcji qi(t). Tak jak w przypadku
rachunku wariacyjnego, gdy lagrangian nie zależy od zmiennej qi (a tylko od odpowia-
daja֒cej jej pre֒dkości uogólnionej q̇i), i-te równanie ca lkuje sie֒ natychmiast do

∂L

∂q̇i
= Ci = const ,
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i staje sie֒ równaniem pierwszego rze֒du. Gdy zaś lagrangian nie zależy jawnie od czasu,
istnieje dodatkowa ca lka pierwsza - “hamiltonian”:

n
∑

i=1

q̇i
∂L

∂q̇i
− L = h = const .

Dobrze jest też pamie֒tać, iż dwa lagrangiany L i L′ (be֒da֒ce funkcjami tych samych
zmiennych) różnia֒ce sie֒ o wyrażenie be֒da֒ce pe lna֒ pochodna֒ po czasie

L(t, q, . . . , q) = L′(t, q1, . . . , q̇n) +
d

dt
f(t, q1, . . . ) ,

daja֒ te same równania Larange’a. Innymi s lowy, cz lon lagrangianu be֒da֒cy pe lna֒ pochodna֒
po czasie można odrzucić.

Jeśli masy m(i) maja֒  ladunki elektryczne q(i), wp lyw na ich ruch pól elektrycznego E

i magnetycznego B wymaga w tym formalizmie użycia potencja lów ϕ i A, takich, że83

E = −∇ϕ− ∂A

∂t
, B = ∇×A .

Lagrangian N mas ma wtedy cz lony zależne od uogólnionych pre֒dkości liniowo (nie sa֒
one cze֒ścia֒ energii kinetycznej uk ladu)

L(t, q1, . . . , q̇n) = · · · +
N
∑

i=1

q(i)

[

A(t, r(i)(t, q)) ·
d

dt
r(i)(t, q) − ϕ(t, r(i)(t, q))

]

.

Wprawdzie potencja ly ϕ i A nie sa֒ przez pola E i B wyznaczone jednoznacznie - można
zawsze dokonać ich zmiany

ϕ→ ϕ′ = ϕ− ∂θ

∂t
, A → A′ = A + ∇θ ,

to jednak transformacja taka zmienia lagrangian jedynie o cz lon be֒da֒cy pe lna֒ pochodna֒
po czasie:

N
∑

i=1

q(i)

[

d

dt
r(i)(t, q) ·(∇θ(t, r))r=r(i)(t,q) +

∂

∂t
θ(t, r(i)(t, q))

]

=
d

dt

N
∑

i=1

q(i)θ(t, r(i)(t, q)) ,

i jako taki nie maja֒cy wp lywu na równania Lagrange’a. Wzie֒ta֒ z minusem cze֒ść lagran-
gianu zależna֒ liniowo od pre֒dkości uogólnionych ṙ(i) nazywa sie֒ potencja lem uogólnionym.

Ze sformu lowania dynamiki w je֒zyku lagrangianu wynikaja֒ natychmiast prawa ska-
lowania. Jeśli, jak to cze֒sto ma miejsce, cz lon energii potencjalnej V w lagrangianie
zapisanym przez wspó lrze֒dne kartezjańskie cia l

L =
1

2

N
∑

i=1

m(i)v
2
(i) − V (r(i), . . . , r(N)) ,

83Używamy tu tego niby jedynego legalnego, choć w istocie idiotycznego, uk ladu SI jednostek.
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jest funkcja֒ jednorodna֒ rze֒du k:

V (αr(1), . . . , αr(N)) = αkV (r(1), . . . , r(N)) ,

można bez rozwia֒zywania równań ruchu wywnioskować prawa skalowania spe lniane przez
ich rozwia֒zania. W tym celu transformacje֒ skalowania po lożeń r(i) → αr(1) uzupe lniamy o
transformacje֒ skalowania czasu t→ βt, co powoduje, że pre֒dkości, jako pochodne po lożeń
po czasie, skaluja֒ sie֒ wed lug regu ly ṙ(i) → (α/β)ṙ(i). Po takiej operacji skalowania

L→ L′ =
1

2

α2

β2

N
∑

i=1

m(i)v
2
(i) − αkV (r(i), . . . , r(N)) .

Jeśli po lożyć teraz β = α1−k/2, otrzyma sie֒ zwia֒zek

L′ = αkL ,

z którego wynika (ponieważ czynnik αk mnoża֒cy lagrangian jako ca lość nie ma wp lywu na
równania ruchu), że jeśli funkcje r(i)(t) sa֒ rozwia֒zaniami równań Eulera-Lagrange’a wyni-
kaja֒cych z L, to funkcje αr(i)(α

1−k/2t) też sa֒ rozwia֒zaniami tychże samych równań. Jeśli
wie֒c dwa tory be֒da֒ce rozwia֒zaniami tych samych rówanań Eulera-Lagrange’a i maja֒ce
jakieś d lugości charakterystycznea i a′ przechodza֒ na siebie po przeskalowaniu o czyn-
nik α (równy α = a′/a), to czasy charakterystyczne T i T ′ tych ruchów be֒da֒ do siebie
pozostawać w stosunku

T ′

T
= α1−k/2 =

(

a′

a

)1−k/2
,

a pre֒dkości charakterystyczne v i v′, w stosunku

v′

v
=
α

β
= αk/2 =

(

a′

a

)k/2

.

W przypadku ruchu masy m w potencjale keplerowskim V = −κ/|r|, który jest funkcja֒
jednorodna֒ rze֒du k = −1 i którego wspó lczynnik κ (z powodu równości masy grawitacyj-
nej i masy bezw ladnej) jest proporcjonalny do m, dzie֒ki czemu funkcja Lagrange’a jest
do masy m proporcjonalna jako ca lość (i z tego powodu wartość masy m nie ma wp lywu
na równania ruchu), wynika sta֒d natychmiast trzecie prawo Keplera

(

T ′

T

)2

=

(

a′

a

)3

,

(stosunki kwadratów okresów obiegu planet sa֒ takie same jak stosunki sześcianów dużych
pó losi ich eliptycznych orbit). Z kolei w przypadku oscylatora harmonicznego, którego
potencja ljest funkcja֒ jednorodna֒ rze֒du k = 2, a z prawa skalowania wynika niezależność
okresu od amplitudy wychylenia: T ′/T = α0 = 1.
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Zadanie 8.4

Rozpatrzmy punkt materialny o masie m poddany dzia laniu si ly F = F(t), która jest
niezależna od po lożenia. Translacje przestrzenne sa֒ oczywistymi symetriami tego pro-
blemu (jeśli r = r(t) jest jakimś rozwia֒zaniem rówanania Newtona, to jest nim także
r′(t) = r(t) + a). Mimo to, pe֒d p cza֒stki nie jest sta la֒ ruchu. Wyjaśnić to (pozorne)
pogwa lcenie zwia֒zku symetrii z prawami zachowania.

Rozwia֒zanie:

Aby wyjaśnić sprawe֒ trzeba sie֒ odwo lać do twierdzenia Noether. Dzia lanie I punktu
materialnego o masie m poddanego dzia laniu si ly F(t) ma postać

I[r] =

∫ t1

t0

dtL(r, ṙ, t) =

∫ t1

t0

dt

[

1

2
mṙ2 + r·F(t)

]

.

Zmienna r nie jest jednak niczym wyróżniona i zamiast niej można by używać r′ = r + a.
Powinien wie֒c istnieć lagrangian L′(r′, ṙ′, t), taki, że jeśli r′(t) spe lnia wynikaja֒ce z niego
równanie, to r(t) = r′(t) − a be֒dzie automatycznie spe lniać równanie wynikaja֒ce z
L(r, ṙ, t). Nie chodzi tu na razie o symetrie֒, tylko o dowolność wyboru zmiennej cha-
rakteryzuja֒cej po lożenie uk ladu w każdej chwili czasu. Żeby tak by lo, wystarczy , by

I ′ =

∫ t1

t0

dtL′(r′, ṙ′, t) =

∫ t1

t0

dtL(r, ṙ, t) +

∫ t1

t0

dt
d

dt
Λ(t, r) .

Jeśli jednak wykorzystuja֒c dowolność wyboru L′ (polegaja֒ca֒ na dodaniu do niego pe lnej
pochodnej czasowej jakiej́s funkcji r′) można sprawić, że L′(·, ·, t) = L(·, ·, t), to mamy do
czynienia z symetria֒ i wtedy jeśli r(t) spe lnia równania wynikajace z L, to spe lnia je też
r′(t) = r(t) + a. I tak w laśnie jest w tym przypadku: biora֒c za L′ po prostu L mamy

L(r′, ṙ′, t) =
1

2
mṙ2 + (r + a) · F(t) = L(r, ṙ, t) +

d

dt

∫ t

t0

dt′ a·F(t′) ,

czyli w laśnie (Λ(t)oznacza ca lke֒ w ostatnim wzorze, tu niezależna֒ od r)

I ′ ≡
∫ t1

t0

dtL′(r′, ṙ′, t) =

∫ t1

t0

dtL(r′, ṙ′, t) = I +

∫ t1

t0

dt
d

dt
Λ(t) .

Zapewnia to, że r′(t) jest rozwia֒zaniem równania ruchu jeśli jest nim r(t). Odpowiadaja֒ce
tej symetrii prawo zachowania wynikaja֒ce z twierdzenia Noether otrzymuje sie֒ rozpatruja֒c
infinitezymalne przekszta lcenie symetrii r′ = r + δr (tu δr = δa), tak iż

0 ≡ I ′[r′] − I[r] −
∫ t1

t0

dt
d

dt
δΛ(t) =

∫ t1

t0

dt

[

∂L

∂r
· δr +

∂L

∂ṙ
· d
dt
δr − d

dt
δΛ(t)

]

=

∫ t1

t0

dt

{[

∂L

∂r
− d

dt

∂L

∂ṙ

]

· δr +
d

dt

[

∂L

∂ṙ
· δr − δΛ(t)

]}

.

Przyjmuja֒c tuδr = δa oraz δΛ(t) =
∫ t

t0
dt′ δa ·F(t′), widzimy, że jeśli r(t) spe lnia równanie

Eulera-Lagrange’a, wielkościa֒ zachowana֒ jest nie p, lecz

Θ =
∂L

∂ṙ
−
∫ t

t0

dt′F(t′) ≡ p(t) −
∫ t

t0

dt′F(t′) .
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Zadanie 8.8 (Proste, szkoleniowe)

Klin o masie M , ka֒cie nachylenia α i wysokości górnej krawe֒dzi h może przesuwać sie֒
bez tarcia po p laskiej powierzchni. Po klinie, wskutek dzia lania skierowanego pionowo
w dó l pola si ly cie֒żkości g, może zsuwać sie֒ bez tarcia klocek o masie m. Znaleźć ruch
tego uk ladu wykorzystuja֒c równania Lagrange’a drugiego rodzaju. Porównać wynik z
otrzymanym w Zadaniu 6.3 w granicy µ1 = µ2 = 0.

Rozwia֒zanie:

Ponieważ klocek pozostaje zawsze na klinie, uk lad ma dwa stopnie swobody. Jako dwie
zmienne dynamiczne (q1 i q2 w notacji ogólnej) ca lkowicie wyznaczaja֒ce jego chwilowe
po lożenie można wybrać X - po lożenie tylnej krawe֒dzi klina na osi poziomej (zob. rysunek
42) oraz z - wysokość na jakiej nad p laska֒ powierzchnia֒ znajduje sie֒ klocek. Przez te
dwie zmienne można wyrazić wszystkie kartezjańskie wspó lrze֒dne po lożeń (w uk ladzie
inercjalnym zwia֒zanym z p laszczyzna֒) środków masy klina

xM = X + const, zM = const. ,

i (traktowanego jak punkt materialny) klocka84

xm = X + (z − h) ctgα , zm = z .

Suma energii kinetycznych klina i klocka wyraża sie֒ przez wybrane zmienne dynamiczne
wzorem

T = TM + Tm ≡ 1

2
M(ẋ2M + ż2M) +

1

2
m(ẋ2m + ż2m)

=
1

2
MẊ2 +

1

2
m[(Ẋ + ż ctgα)2 + ż2] .

Energia potencjalna uk ladu (energia potencjalna klina i klocka) V = VM +Vm = MgzM +
mgzm redukuje sie֒, ponieważ zM ≡ 0, do V = mgz. Lagrangian uk ladu, L = T − V , ma
zatem postać

L =
1

2
MẊ2 +

1

2
m[(Ẋ + ż ctgα)2 + ż2] −mgz .

Dwoma równaniami Lagrange’a drugiego rodzaju wynikaja֒cymi z tego Lagrangianu sa֒

(M +m)Ẍ +mz̈ ctgα = 0 ,

m(1 + ctg2α)z̈ +mẌ ctgα = −mg .

Pierwsze z nich wyraża, oczywíscie, sta lość poziomej sk ladowej ca lkowitego pe֒du uk ladu

(M +m)Ẋ +mż ctg = const.

84Zwia֒zek mie֒dzy xm, a X i z (taki sam, jak w zadaniu 6.3) wynika np. z proporcji (h−z)/(X−xm) =
tgα (oczywistej z rysunku 42).
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Rysunek 42: Klocek zsuwaja֒cy sie֒ z g ladkiego klina. Definicje zmiennych.

Z drugiego zaś otrzymujemy

Ẍ = −g tgα− z̈(tgα + ctgα) = −g tgα− z̈

sinα cosα
,

co po wstawieniu do pierwszego daje zamknie֒te równanie na zmienna֒ z̈:

z̈ = −g (m +M) tgα

(m+M)(tgα + ctgα) −m ctgα
,

kt??re po pomnożeniu licznika i mianownika przez cosα sinα sprowadza sie֒ do

z̈ = −g (m+M) sin2 α

m+ M −m cos2 α
= −g (m +M) sin2 α

M +m sin2 α
.

Wstawienie wyrażenia na z̈ otrzymanego wyżej do wzoru na Ẍ daje

Ẍ = −g tgα +
g(m+M)tgα

M +m sin2 α
= g

m sinα cosα

M +m sin2 α
.

Wreszcie, można powyższe wyrażenia na Ẍ oraz z̈ wstawić do zwia֒zku ẍm = Ẍ + z̈ctgα
i dostać

ẍm = −g M sinα cosα

M +m sin2 α
.

Sa֒ to te same wyniki, co w Zadaniu 6.3. Dyskusja szczególnych granicznych przypadków
jest wie֒c taka sama, jak tam.
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Zadanie 8.9

Klin o masie M i przekroju poprzecznym w kszta lcie trójka֒ta wysokości h maja֒cego
ka֒ty nachylenia ramion do poziomu równe α i β może przemieszczać sie֒ bez tarcia po
p laskiej poziomej (w stosunku do pola g) powierzchni. Po jego bocznych p laszczyznach,
po la֒czone nierozcia֒gliwa֒ i nieważka֒ linka֒ d lugości l, moga֒ przesuwać sie֒ dwa klocki o
masach m1 (ta od strony ka֒ta α) i m2 (zob. rysunek 43). Napisać lagrangian i równania
wyznaczaja֒ce p laskorównoleg ly ruch tego uk ladu. Zak ladaja֒c, że w chwili pocza֒tkowej
masa m1 znajduje sie֒ w najwyższym po lożeniu (na wysokości h nad podstawa֒ klina)
obliczyć czas jej zjazdu do najniższego po lożenia, przyjmuja֒c, że m1 > m2 i α > β (i że
d lugość linki to umożliwia). Obliczyć także odleg lość o jaka֒ przesunie sie֒ przy tym klin.

Rozwia֒zanie:

Ten uk lad także ma tylko dwa stopnie swobody. Oznaczmy xM po lożenie rzutu wierz-
cho lka trójka֒ta na oś x uk ladu inercjalnego. Jako druga֒ zmienna֒ uogólniona֒ wprowadźmy
zmienna֒ z zdefiniowana֒ tak jak na rysunku. Analogiczna zmienna z2 jest zwia֒zana z
z1 ≡ z wzorem z1 + z2 = l. Wspó lrze֒dne po lożenia mas m1 i m2 w uk ladzie kartezjańskim
xy wyrażaja֒ sie֒ wtedy wzorami

x1 = xM + z cosα , x2 = xM − (l − z) cos β ,

y1 = h− z sinα , y2 = h− (l − z) sin β .

Energia kinetyczna uk ladu jest wie֒c dana wzorem (aby uczynić wzory bardziej przejrzy-
stymi wprowadzamy oznaczenia cα ≡ cosα, itd.)

T =
1

2
Mẋ2M +

1

2
m1[(ẋM + ż cα)2 + (ż sα)2] +

1

2
m2[(ẋM + ż cβ)2 + (ż sβ)2] ,

a energia potencjalna (sk ladaja֒ca sie֒ z energii potencjalnych masy m1 i masy m2) jest
równa

V = (h− z sα)m1g + (h− (l − z) sβ)m2g .

Lagrangianem uk ladu, po pominie֒ciu sta lych, jest wie֒c:

L =
1

2
(M +m1 +m2) ẋ

2
M +

1

2
(m1 +m2) ż

2 + (m1cα +m2cβ) ẋM ż + (m1sα −m2sβ) gz .

Wynikaja֒ce z niego dwa równania Eulera-Lagrange’a maja֒ postać

(M +m1 +m2) ẍM + (m1cα +m2cβ) z̈ = 0 ,

(m1 +m2) z̈ + (m1cα +m2cβ) ẍM = (m1sα −m2sβ) g .

Pierwsze z nich wyraża sta lość poziomej sk ladowej ca lkowitego pe֒du uk ladu (w tym kie-
runku na uk??ad nie dzia la żadna si la zewne֒trzna), czego odbiciem jest także niezależność
lagrangianu od zmiennej xM . Z pierwszego z nich znajdujemy, że

ẍM = − m1cα +m2cβ
M +m1 +m2

z̈ ,
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Rysunek 43: Dwa klocki na dwu-klinie.

co po wstawieniu do drugiego daje

[

m1 +m2 −
(m1cα +m2cβ)2

M +m1 +m2

]

z̈ = (m1sα −m2sβ) g .

(Wyrażenie w nawiasie kwadratowym jest, oczywíscie, dodatnio określone.) Przyspiesze-
nie z̈ klocków w ich ruchu wzgle֒dem klina jest wie֒c sta le i równe

az ≡ z̈ =
(M +m1 +m2)(m1sα −m2sβ)

(M +m1 +m2)(m1 +m2) − (m1cα +m2cβ)2
.

a zależność od czasu zmiennej z jest dana wzorem z(t) = z(0)+ ż(0)t+ 1
2
azt

2. Czas zjazdu
klocka o masie m1 z najwyższego po lożenia (z zerowa֒ pre֒dkościa֒ pocza֒tkowa֒), czyli czas
przebycia przezeń w zmiennej z odleg lości h/sα jest równy t2zj = 2h/azsα, czyli

tzj =

(

2h

sα

(M +m1 +m2)(m1 +m2) − (m1cα +m2cβ)2

(M +m1 +m2)(m1sα −m2sβ)

)1/2

.

Ponieważ przyspieszenie ax ≡ ẍM klina jako ca lości jest też sta le, w czasie tzj przebe֒dzie
on odleg lość

d =
1

2
axt

2
zj = −1

2

m1cα +m2cβ
M +m1 +m2

azt
2
zj = − m1cα +m2cβ

M +m1 +m2

h

sα
.

Przemieszczenie to jest ujemne, bo klin przesunie sie֒ w lewo.
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Zadanie 8.13

Napisać równania wyznaczaja֒ce ruch uk ladu sk ladaja֒cego sie֒ z dwóch mas, z których
jedna, m1, ślizga sie֒ bez tarcia po poziomym pre֒cie, a druga, m2 jest z tamta֒ po la֒czona
nieważkim pre֒tem o d lugości l i może wahać sie֒ w p laszczyźnie wyznaczanej przez pole
si ly cie֒żkości g i pre֒t (rysunek 44). Znaleźć ruch uk ladu w przybliżeniu ma lych odchyleń
z po lożenia równowagi.

Rozwia֒zanie:

Uk lad ma dwa stopnie swobody. Jako dwie zmienne dynamiczne wybieramy po lożenie x
masy m1 na pre֒cie (punkt scharakteryzowany wartościa֒ x = 0 można wybrać w dowolnym
miejscu pre֒ta) oraz zaznaczony na rysunku 44 ka֒t ϕ, o jaki drugi pre֒t odchylony jest od
pionu (wyznaczonego przez pole g. Energia kinetyczna masy m1 jest oczywíscie równa
1
2
m1ẋ

2. Kartezjańskie wspó lrze֒dne x2 i z2 masy m2 w uk ladzie inercjalnym sa֒ dane przez

x2 = x + l sinϕ ,

z2 = −l cosϕ ,

(oś z kierujemy do góry), tak iż jej energia kinetyczna jest dana wzorem

1

2
m2(ẋ

2
2 + ż22) =

1

2
m2(ẋ

2 + l2ϕ̇2 + 2l ϕ̇ ẋ cosϕ) .

Energia potencjalna masy m2 jest zaś dana wzorem V = m2gz2 = −m2gl cosϕ. Zatem
Lagrangian ma postać

L =
1

2
(m1 +m2) ẋ

2 +
1

2
m2(l

2ϕ̇2 + 2l ϕ̇ ẋ cosϕ) +m2gl cosϕ .

Ponieważ L nie zależy od zmiennej x, jedna֒ sta la֒ ruchu jest oczywíscie

∂L

∂ẋ
= (m1 +m2) ẋ+m2l ϕ̇ cosϕ = P = const.

Jest to oczywíscie x-owa sk ladowa ca lkowitego pe֒du uk ladu. Druga֒ sta la֒ ruchu jest -
ponieważ Lagrangian nie zależy jawnie od czasu - “hamiltonian”:

ẋ
∂L

∂ẋ
+ ϕ̇

∂L

∂ϕ̇
− L =

1

2
(m1 +m2) ẋ

2 +
1

2
m2 (l2ϕ̇2 + 2l ϕ̇ ẋ cosϕ) −m2gl cosϕ = E = const .

(W tym przypadku be֒da֒cy sta֒ la ruchu “hamiltonian” jest po prostu ca lkowita֒ energia֒
mechaniczna֒ uk ladu). Wstawiaja֒c tu ẋ wyrażone prze zachowanuy ca lkowity pe֒d uk ladu

ẋ =
P

m1 +m2

− m2

m1 +m2

l ϕ̇ cosϕ .

eliminujemy zmienna֒ x:

1

2

P 2

m1 +m2

+
1

2
m2l

2ϕ̇2 − 1

2

m2
2

m1 +m2

l2ϕ̇2 cos2 ϕ−m2gl cosϕ = E .
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Rysunek 44: Wahad lo o masie m2 w polu g na nieważkim pre֒cie o d lugości l; punkt
zawieszenia o masie m1 może ślizgać sie֒ bez tarcia po poziomym pre֒cie.

Ca lkowity (x-owy) pe֒d uk ladu P daje tylko addytywny przyczynek do ca lkowitej ener-
gii E a pozosta le wyrazy od P nie zależa֒.85 Wygodnie jest wie֒c zdefiniować energie֒
“wewne֒trzna֒” E ′ = E − P 2/2(m1 + m2) uk ladu (jest to energia jaka֒ zmierzy lby iner-
cjalny obserwator poruszaja֒cy sie֒ z pre֒dkościa֒ P/(m1 +m2) wzd luż osi x).

Zachowanie energii E ′ pozwala sprowadzić ruch do kwadratur: rozdzielaja֒c zmienne
w równości

1

2
m2l

2ϕ̇2

(

1 − m2

m1 +m2
cos2 ϕ

)

= E ′ +m2gl cosϕ ,

otrzymujemy

t− t0 = ±
∫

dϕ√
E ′ +m2gl cosϕ

√

m2l2

2

(

1 − m2

m1 +m2

cos2 ϕ

)

.

W przybliżeniu ma lych wychyleń od oczywistego po lożenia równowagi ϕ = 0, tj. dla
|ϕ| ≪ 1, przybliżamy cos2 ϕ przez 1, a cosϕ pod pierwiastkiem w mianowniku rozwijamy
do wyrazu kwadratowego w ϕ:

t− t0 = ±
√

m2l2

2

m1

m1 +m2

∫

dϕ
√
E ′ + m2gl

√

1 − m2gl
2(E′+m2gl)

ϕ2
.

E ′ + m2gl jest energia֒ mierzona֒ od po lożenia równowagi. Standardowe ca lkowanie daje
w zastosowanym przybliżeniu ma lych drgań ruch harmoniczny

ϕ(t) =

√

2(E ′ +m2gl)

m2gl
cosω(t− t0) ,

z cze֒stościa֒

ω =

√

g

l

m1 +m2

m1
.

Gdy m1 ≫ m2, cze֒stość drgań zbliża sie֒ do
√

g/l (na ruch wahad la jakim jest masa m2

dużo wie֒ksza masa m1 nie wp lywa, a sam ruch masy m1 staje sie֒ w tej granicy niemal
jednostajny ẋ→ const).

85Że tak musi być wynika z symetrii wgle֒dem przekszta lceń Galileusza - ruch w zmiennej ϕ nie może
zależeć od wyboru inercjalnego uk ladu odniesienia, od którego to wyboru zależy wartość P .
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Zadanie 8.15 (“Waciak”)
Znaleźć ruch “waciaka”, czyli regulatora Watta. Jest to ustrojstwo pokazane na rysunku
11: wokó l pionowej osi (w polu g) na wychodza֒cych ze znajduja֒cego sie֒ na sta lej wy-
sokości pierścienia A, symetrycznie po lożonych ruchomych ramionach o d lugości l wiruja֒
z ustalona֒ pre֒dkościa֒ ka֒towa֒ ω dwie masy m pola֒czone kolejna֒ para֒ ramion o d lugości
l z mogacym przesuwać sie֒ po osi w góre֒ i w dó l obcia֒żaja֒cym pierścieniem o masie
M . Napisać lagrangian waciaka i wynikaja֒ce zeń ścis le równanie ruchu. Znaleźć stabilne
po lożenie równowagi i ruch uk ladu w przybliżeniu ma lych wychyleń z po lożenia równowagi
trwa lej.

Rozwia֒zanie:

Uk lad ma oczywíscie tylko jeden stopień swobody - do ca lkowitego wyznaczenia jego
po lożenia wystarczy jedna zmienna, za która֒ najwygodniej jest przyja֒ć ka֒t θ zaznaczony
na rysunku 45. Wprowadźmy inercjalny uk lad odniesienia o osi z skierowanej od punktu
A w góre֒ i osiach x i y w p laszczyźnie prostopad lej do osi. Wspó lrze֒dna zM po lożenia
masy M przez ka֒t θ wyraża sie֒ wtedy wzorem

zM = −2l cos θ ,

a pozosta le dwie wspó lrze֒dne xM i yM masy M sa֒ stale równe zeru. Z kolei wspó lrze֒dne
x1, y1, z1 i x2, y2, z2 dwu mas m sa֒ dane wzorami

x1 = l sin θ cosωt , x2 = l sin θ cos(ωt+ π) = −l sin θ cosωt ,

y1 = l sin θ sinωt , y2 = l sin θ sin(ωt+ π) = −l sin θ sinωt ,

z1 = −l cos θ , z2 = −l cos θ .

Sumaryczna֒ energie֒ kinetyczna֒ wszystkich elementów uk ladu wyrażona֒ przez zmienna֒
dynamiczna֒ θ  latwo już teraz napisać:

T = TM + T1 + T2 =
1

2
Mż2M +

1

2
m(ẋ21 + ẏ21 + ż21) +

1

2
m(ẋ22 + ẏ22 + ż22)

= 2Ml2θ̇2 sin2 θ +m
(

ω2l2 sin2 θ + l2θ̇2
)

Również energia potencjalna sk lada sie֒ trzech przyczynków

V = MgzM +mgz1 +mgz2 = −2(M +m)gl cos θ .

Kompletny lagrangian uk ladu, L = T − V ma zatem postać

L =
1

2
l2(2m + 4M sin2 θ) θ̇2 +mω2l2 sin2 θ + 2(M +m)gl cos θ ,

a ruch wyznacza równanie

d

dt
[2l2(m + 2M sin2 θ) θ̇] = 2mω2l2 sin θ cos θ − 2(M +m)gl sin θ + 4Ml2θ̇2 sin θ cos θ ,
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Rysunek 45: “Waciak” (czyli regulator Watta).

Przy wypisywaniu go należy pamie֒tać, że cz lon z θ̇2 w lagrangianie zależy także od θ i
jego pochodna֒ po θ trzeba uwzgle֒dnić - jest to ostatni wyraz - po prawej stronie równania
Eulera-Lagrange’a. Po wykonaniu pochodnej po czasie po lewej stronie wyjdzie tam
podobny wyraz, ale z dwa razy wie֒kszym wspó lczynnikiem, wie֒c oba wyrazy nie zredukuja֒
sie֒ ca lkowicie. Jako równanie ruchu otrzymujemy wie֒c ostatecznie

2(m+ 2M sin2 θ) θ̈ + 4Mθ̇2 sin θ cos θ = 2mω2 sin θ cos θ − 2(m+M)
g

l
sin θ .

Jak zwykle, po lożenia równowagi, sa֒ to rozwia֒zania powyższego równania z θ(t) =
θ0 = const. Musi wie֒c ono spe lniać równanie

mω2 sin θ0 cos θ0 = (m+M)
g

l
sin θ0 .

Zatem albo86 θ0 = 0 lub π, albo

cos θ0 =
ω2
0

ω2
, ω2

0 ≡
(

1 +
M

m

)

g

l
,

oczywíscie tylko, jeśli ω2
0/ω

2 ≤ 1. Powstaje wie֒c pytanie, które z tych po lożeń równowagi
jest stabilne i w jakich warunkach. W tym celu badamy równanie Eulera-Lagrange’a dla
ma lych odchyleń od równowagi podstawiaja֒c doń θ(t) = θ0+η(t) z |η(t)| ≪ 1 i zachowuja֒c
w nim tylko wyrazy liniowe w η(t) (wyraz η̇2 biora֒cy sie֒ z cz lonu z θ̇2, również pomijamy
- uzasadnienie, troche֒ a posteriori, jest takie, że w liniowym przybliżeniu, w ruchu, w
którym |η(t)| ≪ 1 przez ca ly czas, również |η̇| ≪ 1 - jest to elementarna wiedza o ruchu
harmonicznym). W przybliżeniu takim równanie na η(t) ma postać

(m+ 2M sin2 θ0) η̈ ≈ 1

2
mω2 sin(2θ0 + 2η) − (m+M)

g

l
sin(θ0 + η)

≈ 1

2
mω2(sin 2θ0 + 2η cos 2θ0) − (m+M)

g

l
(sin θ0 + η cos θ0) ,

86Badamy teraz matematyczna֒ strone֒ problemu, abstrahuja֒c od pytania, czy w realnym waciaku
po lożenia θ0 = 0 lub π sa֒ rzeczywíscie możliwe.
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czyli (bo pierwszy i trzeci wyraz po prawej stronie redukuja֒ sie֒ wzajem na mocy warunku
spe lnianego przez θ0)

(m+ 2M sin2 θ0) η̈ =
[

mω2(2 cos2 θ0 − 1) − (m +M)
g

l
cos θ0

]

η .

Stabilność po lożeń równowagi θ0 zależy teraz w sposób oczywisty od znaku kwadratowego
nawiasu po prawej stronie (nawias mnoża֒cy η̈ jest zawsze dodatni).

• Jeśli θ0 = π, znak ten jest dodatni i równanie ma postać η̈ = +κ2η i, z wyja֒tkiem
szczególnych warunków pocza֒tkowych (η(0) = 0, η̇(0) = 0), prowadzi do eksponen-
cjalnego narastania wychylenia |η|.

• Jeśli θ0 = 0,

[. . . ] = mω2 − (m+M)
g

l
= −m(ω2

0 − ω2) ≡ −mΩ2 ,

co pokazuje - ponieważ równanie na η(t) staje sie֒ wtedy równaniem oscylatora
harmonicznego, którego rozwia֒zaniami sa֒ ma le, jeśli ma le by ly |η(0)| i |η̇(0)/Ω|,
oscylacje wokó l po lożenia θ = 0 - że jest to po lożenie równowagi trwa lej (stabilnej),
gdy ω2

0 − ω2 > 0, czyli, gdy pre֒dkość ka֒towa ω waciaka jest mniejsza od pre֒dkości
krytycznej ω0.

• Jeśli ω > ω0, stabilnym staje sie֒ po lożenie, w którym cos θ0 = ω2
0/ω

2. Wówczas

[. . . ] = m

[

ω2

(

2
ω4
0

ω4
− 1

)

− ω2
0

ω2
0

ω2

]

= −m ω4 − ω4
0

ω2
,

i możliwe sa֒ ma le oscylacje wokó l tego po lożenia z cze֒stościa֒

Ω =

[

ω4 − ω4
0

ω2

(

1 + 2
M

m
sin2 θ0

)−1
]1/2

.

Przej́scie od po lożenia równowagi w θ0 = 0 (dla ω < ω0) do zależnego od ω po lożenia w
cos θ0 = ω2

0/ω
2 jest przyk ladem tzw. bifurkacji.

Ponieważ lagrangian uk ladu nie zależy jawnie od czasu, ca lka֒ pierwsza֒ równania
Eulera-Lagrange’a jest “hamiltonian”, tj. wielkość87

θ̇
∂L

∂θ̇
− L = l2(m+ 2M sin2 θ) θ̇2 −mω2l2 sin2 θ − 2(m+M)gl cos θ = h = const.

Jej istnienie pozwala - bo uk lad ma tylko jeden stopień swobody - sprowadzić ruch do
kwadratur. Po rozdzieleniu zmiennych otrzymujemy (h̃ ≡ h/ml2)

t− t0 = ±
∫

dθ

√

1 + 2(M/m) sin2 θ

h̃+ 2ω2
0 cos θ + ω2 sin2 θ

≡ ±
∫

dθ

√

1 + 2(M/m) sin2 θ

h̃− Veff(θ)
,

87Zauważmy od razu, że h nie jest tu energia֒ uk ladu E = T + V (mierzona֒ w uk ladzie inercjalnym).
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(znak ± jest znakiem pochodnej θ̇). Druga postać ca lki definiuje potencja l efektywny
Veff(θ). Przybliżenia ma lych wychyleń można teraz dokonać znajduja֒c po lożenie θ0 eks-
tremum potencja lu efektywnego

Veff(θ) = −2ω2
0 cos θ − ω2 sin2 θ ,

podstawiaja֒c w ca lce w mianowniku wyrażenia pod pierwiastkiem θ = θ0+η i zachowuja֒c
wyraz do η2, a w liczniku k lada֒c θ = θ0. Aby znaleźć rozwinie֒cie mianownika piszemy88

2ω2
0 cos(θ0 + η) + ω2 sin2(θ0 + η) = 2ω2

0 cos θ0 + ω2 sin2 θ0

+[−2ω2
0 sin θ0 + 2ω2 sin θ0 cos θ0] η

−[ω2
0 cos θ0 − ω2 cos 2θ0]η

2 .

Widać, że wyraz liniowy w η znika dla θ0 = π, θ0 = 0 lub cos θ0 = ω2
0/ω

2 (jeśli ω2
0/ω

2 < 1).
W θ0 = π wyrażenie w nawiasie kwadratowym przed η2, które oznaczymy Ω2, jest równe
−ω2

0 − ω2. Ponieważ jest ono ujemne, θ0 = π jest lokalnym maksimum Veff(θ). Jest
to niestabilne po lożenie równowagi. W punkcie θ0 = 0 nawias kwadratowy jest równy
ω2
0−ω2. Jest on dodatni, gdy ω2

0 > ω2, tj., gdy szybkość obrotów waciaka jest nie za duża.
Punkt θ0 = 0 jest wtedy po lożeniem równowagi trwa lej. Wreszcie, gdy ω2

0 < ω2 trwa lym
po lożeniem równowagi jest to, w którym cos θ0 = ω2

0/ω
2 - nawias kwadratowy równy

(ω4−ω4
0)/ω2 jest wtedy dodatni. Dyskusja ta jest dok ladnie równoważna przeprowadzonej

poprzednio, na podstawie równania Eulera-Lagrange’a.
Cze֒stość ma lych drgań wokó l po lożenia równowagi trwa lej znajdujemy standardowo:

piszemy (η = θ − θ0)

t− t0 = ±
∫

dθ

√

1 + 2(M/m) sin2 θ0

C̃ − Ω2η2
,

(C̃ = h̃− Veff(θ0) > 0) i ca lkujemy:

1
√

1 + 2(M/m) sin2 θ0
(t− t0) = ± 1

√

C̃

∫

dη
√

1 − (Ω η/
√

C̃ )2
= ± 1

Ω
arcsin

(

Ωη
√

C̃

)

.

Sta֒d już widać, że cze֒stości drgań sa֒ równe

√

Ω2

1 + 2(M/m) sin2 θ0
,

tak jak poprzednio.

88Można oczywíscie zamiast rozwijania obliczać pochodne Veff(θ).
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Zadanie 8.24

Napisać lagrangian sferycznego wahad la, tj. masy m na sztywnym nierozcia֒gliwym drucie
o d lugości l zawieszonego na wysokości h = l nad Ziemia֒ na szerokości geograficznej φ
uwzgle֒dniaja֒c dobowy obrót Ziemi. Wypisać ścis le równania ruchu (Eulera-Lagrange’a)
i znaleźć ich rozwia֒zanie w przybliżeni ma lych wychyleń z po lożenia równowagi.

Rozwia֒zanie:

Wprowadźmy uk lad O′ zwia֒zany z obracaja֒ca֒ sie֒ Ziemia֒ (a wie֒c nieinercjalny) o pocza֒tku
w punkcie zaczepienia wahad la, osi z′ skierowanej w góre֒, osi x′ w kierunku wschodnim,
a y′ pó lnocnym, jak na rysunku 46. W tym uk ladzie po lożenie wahad la (masy m) zadaje
wektor r = ex′x

′ + ey′y
′ + ez′z

′. Wahad lo ma dwa stopnie swobody. Jako zmienne
uogólnione wybieramy ka֒ty θ i ϕ, tak że

x′ = l sin θ cosϕ ,

y′ = l sin θ sinϕ ,

z′ = l cos θ .

Wprowadźmy ponadto uk lad inercjalny O o pocza֒tku w środku Ziemi i osi z skierowa-
nej ku biegunowi pó lnocnemu. Pocza֒tek tego uk ladu z punktem zawieszenia wahad la
 la֒czy wektor R, który w uk ladzie nieinercjalnym ma postać (zak ladamy, że d lugość l
jest dobrana tak, iż wahad lo w najniższym swoim po lożeniu muska powierzchnie֒ Ziemi)
R = ez′(RZ + l).

Pre֒dkość V masy m wzgle֒dem uk ladu inercjalnego O wyraża sie֒ wzorem

V =
d

dt
(R + r) =

d′

dt
(R + r) + ω × (R + r) ≡ v′ + ω × (R + r) ,

gdzie v′ ≡ d′r/dt (wektor R jest w uk ladzie O′ sta ly).
Z kolei energia potencjalna V masy m jest ścísle rzecz biora֒c dana wyrażeniem

V (r) = −GMZm

|R + r| = − GMZm√
R2 + 2R· r + r2

.

Jednakże jest jasne, że |r| = l ≪ |R| = RZ+l ≈ RZ , co pozwala przybliżyć V nastepuja֒co:

V (r) ≈ − GMZm|R|
R2
√

1 + 2R· r/|R|2 + r2/|R|2
≈ −GMZ

R2
m|R|

(

1 − R· r
|R|2 + . . .

)

.

Ponieważ GMZ/R
2 = GMZ/(RZ + l)2 ≈ GMZ/R

2
Z = g, a R· r = |R| l cos θ,

V (r) = const.+mgl cos θ + . . . ,

jak też i należa lo oczekiwać. Tak wie֒c (energia kinetyczna jest tu ta֒, jaka֒ masa m ma w
uk ladzie inercjalnym!)

L = T − V =
1

2
m (v′ + ω × (R + r))

2 −mgl cos θ

≈ 1

2
mv′2 +mv′ ·[ω × (R + r)] −mgl cos θ ,

228



m
l

ω
z

φ

z′y′ x′

Rysunek 46: Wahad lo Foucault na obracaja֒cej sie֒ Ziemi (w polu g).

po pominie֒ciu wyrazu rze֒du ω2. Drugi wyraz jest odpowiedzialny za przyspieszenie Co-
riolisa.

Wypisany wyżej lagrangian trzeba jeszcze wyrazić przez wybrane wspó lrze֒dne uogólnione
θ i ϕ.

v′ ·[ω × (R + r)] = −ω ·[v′ × (R + r)]

= −ωy′ [v′ × (R + r)]y
′ − ωz′ [v′ × (R + r)]z

′

,

bo ω = ey′ωy′ +ez′ωz′ ≡ ey′ωcφ+ez′ωsφ (cφ ≡ cosφ, sφ ≡ sin φ). Z kolei w tymże uk ladzie
O′ (aby mniej pisać, niech R′Z = RZ + l)

R + r =





l sin θ cosϕ
l sin θ sinϕ
R′Z + l cos θ



 ,

wie֒c

ω ·[v′ × (R + r)] = ωy′
[

−l2θ̇ sin2 θ cosϕ

−l (θ̇ cos θ cosϕ− ϕ̇ sin θ sinϕ)(R′Z + l cos θ)
]

+ωz′
[

l2 (θ̇ cos θ cosϕ− ϕ̇ sin θ sinϕ) sin θ sinϕ

−l2 (θ̇ cos θ sinϕ+ ϕ̇ sin θ cosϕ) sin θ cosϕ
]

.

Jest to dosyć skomplikowane, ale na szcze֒ście po wymnożeniu troche֒ sie֒ to wyrażenia
upraszcza:

ω ·[v′ × (R + r)] = ωy′
[

−l2θ̇ cosϕ+ l2ϕ̇ sin θ cos θ sinϕ

−R′Z l θ̇ cos θ cosϕ+R′Z l ϕ̇ sin θ sinϕ
]

+ωz′
[

−l2ϕ̇ sin2 θ
]

.
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Zatem lagrangian wahad la Eco, pardon, wahad la Foucaulta, ma postać

L =
1

2
ml2(θ̇2 + ϕ̇2 sin2 θ) −mgl cos θ

−mωy′ l2 [−θ̇ cosϕ+ ϕ̇ sin θ cos θ sinϕ]

−mωy′R′Z l [−θ̇ cos θ cosϕ+ ϕ̇ sin θ sinϕ]

−mωz′ l2[−ϕ̇ sin2 θ] .

Trzecia֒ linie֒ tego lagrangianu można pomina֒ć, jako że jest ona pe lna֒ pochodna֒

−θ̇ cos θ cosϕ+ ϕ̇ sin θ sinϕ =
d

dt
(− sin θ cosϕ) ,

i jako taka nie ma wp lywu na równania ruchu. Tym samym wypada ca lkowicie zależność
od R′Z (poza ta֒ ukryta֒ w g). Ostatecznie wie֒c

L =
1

2
ml2(θ̇2 + ϕ̇2 sin2 θ) −mgl cos θ

−mωy′ l
2 (−θ̇ cosϕ+ ϕ̇ sin θ cos θ sinϕ) +mωz′ l

2ϕ̇ sin2 θ .

Wypisujemy naste֒pnie równania Eulera-Lagrange’a:

d

dt
ml2
(

θ̇ + ωy′ cosϕ
)

= ml2ϕ̇2 sin θ cos θ +mgl sin θ

−mωy′ l2ϕ̇ cos 2θ sinϕ+mωz′ l
2 sin 2θ ,

d

dt
ml2
(

ϕ̇ sin2 θ − ωy′ sin θ cos θ sinϕ+ ωz′ sin2 θ
)

= −mωy′ l2θ̇ sinϕ

−mωy′ l2ϕ̇ sin θ cos θ cosϕ .

Po obliczeniu pozosta lych pochodnych po czasie i podzieleniu przez ml2 otrzymujemy
wie֒c

θ̈ − ωy′ ϕ̇ sinϕ = ϕ̇2 sin θ cos θ +
g

l
sin θ − ωy′ ϕ̇ cos 2θ sinϕ+ ωz′ϕ̇ sin 2θ ,

ϕ̈ sin2 θ + θ̇ ϕ̇ sin 2θ − ωy′ ϕ̇ sin θ cos θ cosϕ

−ωy′ θ̇ cos 2θ sinϕ+ ωz′ θ̇ sin 2θ = −ωy′ θ̇ sinϕ− ωy′ ϕ̇ sin θ cos θ cosϕ

Drugie równanie  ladnie sie֒ upraszcza i ostatecznie (po użyciu w obu tożsamości cos 2θ =
1 − 2 sin2 θ i podzieleniu drugiego przez sin θ) dwoma równaniami ruchu wahad la sa֒
równania

θ̈ − ϕ̇2 sin θ cos θ =
g

l
sin θ + 2ϕ̇ (ωy′ sin θ sinϕ+ ωz′ cos θ) sin θ ,

ϕ̈ sin θ + 2ϕ̇ θ̇ cos θ + 2ωy′ θ̇ sin θ sinϕ+ 2ωz′ θ̇ cos θ = 0 .
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Szukamy najpierw po lożeń równowagi, czyli rozwia֒zań ze sta lymi ka֒tami θ i ϕ. Drugie
równanie jest zawsze spe lnione przez θ̇ = ϕ̇ = 0. Spe lnienie pierwszego wymaga, by
zerowa l sie֒ jeszcze sin θ. Zatem po lożeniami równowagi sa֒ θ = 0 i π (ka֒t ϕ jest wtedy
niezdefiniowany) ale ponieważ potencja l mia l postać mgl cos θ, stabilnym po lożeniem jest
θ = π. Zmieniamy wie֒c definicje ka֒tów θ → π − θ (czyli sin θ → sin θ, cos θ → − cos θ,
oraz θ̈ → −θ̈, θ̇ → −θ̇). Równania przybieraja֒ wtedy postać

θ̈ − ϕ̇2 sin θ cos θ = −g
l

sin θ − 2ϕ̇ (ωy′ sin θ sinϕ− ωz′ cos θ) sin θ ,

ϕ̈ sin θ + 2ϕ̇ θ̇ cos θ = 2θ̇ (ωy′ sin θ sinϕ− ωz′ cos θ) .

W przybliżeniu ma lych wychyleń z po lożenia równowagi trwa lej można po lożyć sin θ ≈ θ,
cos θ ≈ 1, co sprowadza je do

θ̈ − θ ϕ̇2 = −g
l
θ + 2ωz′ θ ϕ̇ ,

ϕ̈θ + 2ϕ̇ θ̇ = −2ωz′ θ̇ .

Widać, że rozwia֒zaniem drugiego równania jest ϕ̈ = 0, ϕ̇ = −ωz′. Pierwsze równanie
sprowadza sie֒ wtedy do

θ̈ = −
(g

l
+ ω2

z′

)

θ .

Zatem ruch jest z lożeniem harmonicznych oscylacji ka֒ta θ z cze֒stościa֒ Ω =
√

(g/l) + ω2
z′

i obrotu wokó l osi z′ lokalnego uk ladu O′ w kierunku zgodnym z kierunkiem ruchu
wskazówek zegara (bo ϕ̇ < 0).

231



Zadanie 8.21

Sta le pole magnetyczne o symetrii cylindrycznej, B = ez B(r), gdzie r =
√

x2 + y2, jest
zlokalizowane w obszarze, którego rzut na p laszczyzne֒ xy jest ko lem o promieniu R. Pole
to jest takie, że

∫

z=0

ds·B = 0 .

Pokazać, że jeśli cza֒stka o  ladunku elektrycznym q startuja֒ca z punktu r = 0 i pozo-
staja֒ca stale w p laszczyźnie xy opuszcza obszar pola (tzn. obszar r < R), to w chwili
przekraczania granicy (tj., gdy r = R) pola jej pre֒dkość jest skierowana radialnie. Podać
warunek, jaki musi spe lniać pre֒dkość v0 cza֒stki w r = 0, by mog la ona opuścić obszar
pola.89

Rozwia֒zanie:

Za lóżmy, że cza֒stka dociera do r = R w chwili t = tesc i obliczmy zmiane֒ z-owej sk ladowej
jej momentu pe֒du spowodowana֒ oddzia lywaniem z polem magnetycznym. Zmiana ta
musi być równa ca lce po czasie z z-owej sk ladowej momentu si ly dzia laja֒cego na cza֒stke֒:

∆Lz =

∫ tesc

0

dt [r×(qv×B)]z = q

∫ tesc

0

dt [vz(r·B) − (r·v)B] .

Jeśli cza֒stka porusza sie֒ pozostaja֒c stale w p laszczyźnie xy, to r·B = 0. Sta֒d

∆Lz = −q
∫ tesc

0

dt (v·r)B(r(t)) = −q
∫

dr·rB(r)

= −1

2
q

∫ R2

0

d(r2)B(r) = −q
∫ R

0

dr r B(r) = − q

2π

∫

z=0

ds·B = 0 .

Zatem zmiana ∆Lz z-owej sk ladowej momentu pe֒du cza֒stki znika, jeśli znika strumień
pola magnetycznego przez p laszczyzne֒ xy, a ponieważ cza֒stka startuja֒ca z r = 0 ma
w chwili pocza֒tkowej zerowy moment pe֒du, musi mieć również zerowa֒ jego sk ladowa֒ z-
owa֒. Sta֒d jej pre֒dkość, gdy opuszcza ona obszar pola, musi być skierowana radialnie,
by sk ladowa Lz jej momentu pe֒du znów by la równa zeru (oczywíscie wewna֒trz obszaru
dzia lania pola, gdy |r(t)| < R, ta sk ladowa momentu pe֒du cza֒stki nie musi znikać, bo
strumień

∫

ds·B pola magnetycznego przez ko lo o promieniu r < R nie musi znikać).

Aby znaleźć warunek, jaki musi spe lniać pre֒dkość pocza֒tkowa v0, by cza֒stka mog la
opuścić obszar pola, trzeba wykorzystać wielkości zachowane podczas ruchu w cylindrycz-
nie symetrycznym polu magnetycznym. Naj latwiej je znaleźć wykorzystuja֒c formalizm
lagrangeowski. W przypadku cza֒stki poruszaja֒cej sie֒ w polu magnetycznym wymaga on
wprowadzenia potencja lu wektorowego A, takiego, że B = ∇×A. Lagrangian ma wtedy
postać

L =
1

2
mv2 + qv·A .

89J. Franklin i K. Cole Newton Am. J. Phys. 84 (2016) s. 263.
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W przypadku cylindrycznie symetrycznego pola B wygodnie jest przyja֒ć90 (r =
√

x2 + y2)

A = eϕA
ϕ(r) .

Strumień pola magnetycznego można wyrazić przez A wzorem (tzw. A-Ampsio)

∫

Σ

ds·B =

∮

∂Σ

dl·A .

W przypadku powierzchni Σ be֒da֒cej ko lem o promieniu R i potencja lu wektorowego
A = eϕA

ϕ(r), wzór ten daje

∫

ds·B = 2π RAϕ(R) .

Zatem znikanie strumienia pola przez ko lo o promieniu R oznacza, że Aϕ(R) = 0.
Lagrangian cza֒stki ma w zmiennych cylindrycznych i przy tym wyborze potencja lu

wektorowego postać

L =
1

2
m(ṙ2 + r2ϕ̇2 + ż2) + rϕ̇ qAϕ(r) .

Ponieważ nie zależy on jawnie ani od czasu ani od zmiennej ϕ, wielkościami sta lymi sa֒
“hamiltonian” (be֒da֒cy tu ca lkowita֒ energia֒ - pole magnetyczne nie wykonuje pracy!)

h = ṙ
∂L

∂ṙ
+ ϕ̇

∂L

∂ϕ̇
+ +ż

∂L

∂ż
− L =

1

2
m(ṙ2 + r2ϕ̇2 + ż2) = E ,

oraz (bo Lagrangian nie zależy jawnie od zmiennej ϕ)

∂L

∂ϕ̇
= mr2ϕ̇+ r qAϕ(r) = const .

Jeśli cza֒stka startuje z r = 0, ta druga wielkość zachowana jest równa zeru,91 czyli w
ca lym ruchu w polu magnetycznym zachodzi zwia֒zek

rϕ̇ = − q

m
Aϕ(r) .

90W zmiennych cylindrycznych, je??li A = erA
r + eϕA

ϕ + ezA
z, to

∇×A = er

(

1

r

∂Az

∂ϕ
− ∂Aϕ

∂z

)

+ eϕ

(

∂Ar

∂z
− ∂Az

∂r

)

+ ez
1

r

(

∂(rAϕ)

∂r
− ∂Ar

∂ϕ

)

.

91Zak ladamy (tu i wyżej, gdy strumień pola B wyrażony zosta l przez przez Aϕ) na razie, że pole
Aϕ(r) nie jest osobliwe w r = 0. Z postaci rotacji wynika, że dla r ∼ 0 mog loby ono zachowywać sie֒
najwyżej jak ∼ 1/r, by strumień pola magnetycznego przez p laszczyzne֒ xy by l skończony (przy r → 0
pole magnetyczne nie może być bardziej osobliwe niż B(r) ∼ 1/rβ z β < 2); przypadek takiej osobliwości
pola Aϕ(r) uwzgle֒dnimy dalej.
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Zatem ze sta lości energii E, która na pocza֒tku ruchu jest równa 1
2
mv2

0, otrzymujemy
(ruch jest p laski, wie֒c z = 0 i ż = 0)

v2
0 = ṙ2 + r2ϕ̇2 = ṙ2 +

( q

m
Aϕ(r)

)2

.

Ponieważ ṙ2 ≥ 0, wynika sta֒d, że aby cza֒stka mog la opuścić obszar pola musi być
spe lniona nierówność

|v0| ≥ max0≤r≤R

∣

∣

∣

q

m
Aϕ(r)

∣

∣

∣
.

Pozostaje jeszcze tylko pytanie o sens tego kryterium wobec tego, że potencja l wek-
torowy A nie jest przez pole B wyznaczony jednoznacznie: A′ = A + ∇χ(r) daje to
samo pole magnetyczne (i zerowe pole elektryczne). Należy jednak zauważyć, że wyko-
rzystana ca lka pierwsza równania ruchu istnieje tylko wtedy, gdy lagrangian nie zależy
od zmiennej ϕ i co wie֒cej, ca le wyprowadzenie warunku jest oparte na tym, że jedyna֒
niezerowa֒ sk ladowa֒ potencja lu wektorowego jest Aϕ. Należy wie֒c zapytać, jaka jest swo-
boda wyboru skalarnej funkcji χ(r, ϕ, z), by nadal potencja l spe lnia l te warunki, tzn. by
A′r = A′z = 0 i A′ϕ = Aϕ + f(r)? Funkcja χ(r, ϕ, z) musi wie֒c być taka, że

∂χ

∂r
=
∂χ

∂z
= 0 ,

1

r

∂χ

∂ϕ
= f(r) .

Ostatnia równość mówi, że

χ(r, ϕ, z) = rϕf(r) + g(r, z) .

Znikanie A′z, czyli zerowanie sie֒ pochodnej ∂χ/∂z oznacza, że funkcja g nie może zależeć
od z. Z kolei znikanie A′r (czyli pochodnej ∂χ/∂r) daje teraz warunek

ϕ [f(r) + rf ′(r)] + g′(r) = 0 .

Wynika z niego (bo równość ta musi zachodzić dla dowolnego ka֒ta ϕ), że g(r) = const,
oraz że f(r) = a/r. Zatem jedyna֒ dopuszczalna֒ funkcja֒ jest χ(r, ϕ, z) = aϕ + const.,
która daje92

Aϕ′(r) = Aϕ(r) +
a

r
.

Jeśli jednak zamiast Aϕ(r) użyjemy A′ϕ(r), to na pocza֒tku ruchu, gdy cza֒stka startuje
z r = 0, druga wielkość zachowana nie jest już równa zeru, lecz qa. W trakcie ruchu
zachodzi wtedy zwia֒zek

rϕ̇ = − q

m

(

A′ϕ − a

r

)

.

92Nie zmienia to strumienia pola B obliczanego z A-Ampsia, bo wobec osobliwości A′ϕ(r) trzeba teraz
zastosować przej́scie graniczne przyjmuja֒c za brzeg obszaru ca lkowania duże ko lo o promieniu R i ma le
(obiegane w przeciwna֒ strone֒) o promieniu ε:

∫

ds ·B =
∫

dϕR (Aϕ(R) + a/R) −
∫

dϕ ε (Aϕ(ε) + a/ε) i
przej́sć do granicy ε→ 0.
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Zatem do podania kryterium wylatywania cza֒stki z obszaru pola wystarczy użyć takiego
potencja lu wektorowego, że Ar = Az = 0, a pole Aϕ jest tylko funkcja֒ zmiennej r nie-
osobliwa֒ w r = 0 i wybór ten jest (dla danego pola magnetycznego) jednoznaczny; jeśli
użyjemy potencja lu z osobliwościa֒ typu a/r wchodza֒ca֒ w Aϕ addytywnie to i tak musimy
szukać maksimum Aϕ z cz lonem osobliwym odje֒tym.
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Przypomnienie

Ogólna technika rozwia֒zywania tej klasy problemów polega na znalezieniu po lożenia
równowagi (q1(0), . . . , q

n
(0)) uk ladu, którego dynamike֒ wyznacza lagrangian o ogólnej po-

staci

L = T − V =
1

2
q̇i Tij(q

1, . . . , qn) q̇j − V (q1, . . . , qn) ,

i zlinearyzowaniu równań ruchu przy za lożeniu, że odchylenia od po lożenia równowagi sa֒
ma le. Osia֒ga sie֒ to zazwyczaj rozwijaja֒c potencja l V (q1, . . . , qn) w szereg Taylora wokó l
punktu (q1(0), . . . , q

n
(0)) do drugiego rze֒du i badaja֒c ruch wyznaczony przez przybliżony

(“skwadratyzowany”) lagrangian

Lkwadr =
1

2
q̇i Tij(q

1
(0), . . . , q

n
(0)) q̇

j − 1

2
qiV ′′ij (q

1
(0), . . . , q

n
(0)) q

j ,

w którym qi oznaczaja֒ teraz odchylenia od po lożeń równowagi, tj. dokonane zosta lo prze-
mianowanie qi − qi(0) na qi (pierwsza pochodna V ′(q1, . . . , qn) znika w (q1(0), . . . , q

n
(0)), a

sta la֒ V (q1(0), . . . , q
n
(0)) można pomina֒ć). Macierz Tij ≡ Tij(q

1
(0), . . . , q

n
(0)) musi być dodatnio

określona i symetryczna (albo: tylko symetryczna cze֒ść macierzy Tij wchodzi do Lkwadr),
a symetryczna (z konstrukcji) macierz V ′′ij (q

1
(0), . . . , q

n
(0)), oznaczana dalej Vij, musi być do-

datnio określona (jako macierz formy kwadratowej; w sprawie warunków zapewniaja֒cych
dodatniość - zob. np. mój skrypt do algebry) lub przynajmniej dodatnio pó lokreślona (tj.
dopuszczamy jej zerowanie sie֒ na pewnych niezerowych wektorach).

Równania Eulera-Lagrange’s wynikaja֒ce z Lkwadr tworza֒ uk lad równań

Tij q̈
j + Vijq

j = 0 .

Rozwia֒zania szuka sie֒ w standardowej formie93

qj(t) = Aj eiωt ,

w której Aj sa֒ sk ladowymi sta lego (tj. niezależnego od czasu) wektora spe lniaja֒cego
algebraiczne równanie

−ω2TijA
j + VijA

j = 0 .

Równanie to jest równoważne równaniu w lasnemu

(F − ω2I)·A = 0 ,

macierzy F = T−1 · V . Mimo, że naogó l niesymetryczna, macierz F jest zawsze diago-
nalizowalna, tzn. ma zawsze tyle wektorów w lasnych, ile wynosi jej wymiar, ponieważ
powsta la ze z lożenia macierzy T−1 i macierzy symetrycznej V . Kwadraty ω2

a cze֒stości

93Oczywíscie fizyczne rozwia֒zanie jest dane przez cze֒ść rzeczywista֒ (lub urojona֒) postulowanego
rozwia֒zania.
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w lasnych sa֒ pierwiastkami (niektóre moga֒ być wielokrotne) wielomianu charakterystycz-
nego94

WF (ω2) = det(F − ω2I) = 0 .

Wektory w lasne A(a) odpowiadaja֒ce różnym cze֒stościom ωa sa֒ automatycznie ortogonalne
w iloczynie skalarnym zadawanym przez macierz Tij i można (i należy) je unormować
wzgle֒dem tego iloczynu skalarnego; wektory w lasne A(a1) i A(a2) odpowiadaja֒ce tej samej
cze֒stości ωa można zortonormalizować stosuja֒c procedure֒ Gramma-Schmidta tak, by

Ai(a)TijA
j
(b) = δab .

Niżej przyjmujemy, że zosta lo to zrobione. Ogólne rozwia֒zanie (zlinearyzowanych) równań
ruchu (tj. równań otrzymanych z Lkwadr)

qj(t) =

n
∑

a=1

Aj(a) (Ca cosωat + Sa sinωat) =

n
∑

a=1

Aj(a)Da cos(ωat + ϕa) ,

ma postać superpozycji harmonicznych drgań w lasnych, czyli tzw. modów w lasnych,
uk ladu o różnych cze֒stościach. Stosunki Ai(a)/A

j
(a) sk ladowych wektora A(a) mówia֒, jak

sie֒ maja֒ do siebie wychylenia (z po lożeń równowagi) poszczególnych zmiennych dyna-
micznych w a-tym modzie drgań w lasnych uk ladu, tj. zadaja֒ niezależne od czasu stosunki
qi(t)/qj(t) w a-tym modzie drgań.95

Wspó lrze֒dnymi normalnymi nazywa sie֒ zmienne uogólnione, w których uproszczony
(skwadratyzowany lagrangian) rozpada sie֒ na sume֒ n lagrangianów poszczególnych modów
normalnych, z których każdy zależy tylko od jednej wspó lrze֒dnej normalnej i jest lagran-
gianem oscylatora harmonicznego o odpowiadaja֒cej temu modowi cze֒stości ωa. Wspó lrze֒d-
ne takie, Qa(t), tworzy sie֒, gdy już znane sa֒ (zortonormalizowane w iloczynie skalarnym
zadawanym przez macierz Tij) wektory A(a), wed lug przepisu:

qi(t) =
n
∑

a=1

Ai(a)Q
a(t) .

(Postawione na “sztorc” sk ladowe Ai(a) kolejnych wektorów A(a) tworza֒ tu macierz liniowej

94Oczywíscie te same kwadraty ω2
a cze֒stości w lasnych sa֒ pierwiastkami równania

WT,V (ω2) = det(−ω2T + V ) = 0 ,

gdyż WT,V (ω2) = WF (ω2) det(T ).
95Cze֒sto przytomne spojrzenie na uk lad pozwala zgadna֒ć przynajmniej niektóre z wektorów A(a), co

pozwala od razu, bez rozwia֒zywania równania WF (ω2) = 0 znaleźć (przez bezpośrednie zadzia lanie na
zgadnie֒te wektory A(a) macierza֒ F ) także odpowiadaja֒ce tym modom cze֒stości ωa i tym samym - bo
już jakieś pierwiastki równania charakterystycznego sa֒ znane - uprościć sobie znajdywanie pozosta lych
poprzez obniżenie rze֒du równania je wyznaczaja֒cego.
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zamiany zmiennych). Rzeczywíscie:

Lkwadr =
1

2
q̇i Tij q

j − 1

2
qi Vij q

j =
1

2
Q̇aAi(a) Tij A

j
(b)Q̇

b − 1

2
QaAi(a) Vij A

j
(b)Q

b

=
1

2
Q̇a δab Q̇

b − 1

2
QaAi(a) ω

2
bTij A

j
(b)Q

a =
∑

a

(

1

2
Q̇aQ̇a − 1

2
ω2
aQ

aQa

)

.

Po drodze wykorzystana zosta la (dwukrotnie) ortogonalność wektorów A(a) w iloczynie
skalarnym zadanym przez macierz Tij i równanie w lasne wyznaczaja֒ce te wektory. Stare,
“fizyczne” (choć przy ich wyborze, tak jak zawsze przy wyborze zmiennych uogólnionych,
jest spora dowolność) zmienne dynamiczne qi(t) sa֒ kombinacjami liniowymi wspó lrze֒d-
nych normalnych Qa(t) i vice versa (macierz Ai(a) jest oczywíscie odwracalna). Z tego
powodu zmienne Qa nie maja֒ naogó l oczywistej interpretacji przemieszczeń jakichś po-
jedyńczych cze֒ści uk ladu (choć oczywíscie, gdy znany jest ich zwia֒zek z maja֒cymi taka֒ in-
terpretacje֒ zmiennymi qi, podanie wartości wszystkich Qa wyznacza jednoznacznie po lożenie
uk ladu); sa֒ jednak koniecznym krokiem ku kwantowaniu, czyli budowie odpowiedniej
kwantowej teorii uk ladu z lożonego wykonuja֒cego ma le drgania na bazie jego teorii kla-
sycznej

Osobnym zagadnieniem jest wyznaczanie cze֒stości i modów w lasnych drgań cza֒steczek
zbudowanych zN atomów96 (traktowanych jak punktowe masy), których wia֒zania (maja֒ce
w rzeczywistości pochodzenie elektromagnetyczne) sa֒ modelowane przez si ly spre֒żystości
zależne (w przybliżeniu) liniowo od wychyleń atomów cza֒steczki z ich po lożeń równowagi
ra(0), a = 1, . . . , N . W ogólności, cza֒steczka zbudowana z N atomów ma 3N stopni
swobody, z których 3 odpowiadaja֒ ruchowi poste֒powemu cza֒steczki jako ca lości (który
można wyeliminować przechodza֒c do uk ladu odniesienia, w którym środek jej masy spo-
czywa), a kolejne 3 obrotowi cza֒steczki jako ca lości; wyja֒tkiem jest tu cza֒steczka, w
której wszystkie atomy w po lożeniach równowagi leża֒ na jednej prostej - tylko 2 stopnie
swobody takiej cza֒steczki odpowiadaja֒ jej obrotowi. Pozosta le stopnie swobody odpo-
wiadaja֒ wewne֒trznym oscylacjom cza֒steczki. Przy obliczaniu cze֒stości drgań w lasnych N
atomowej cza֒steczki wygodnie jest od razu wyeliminować stopnie swobody zwia֒zane z jej
ruchem poste֒powym i obrotowym; innymi s lowy chcemy rozpatrywać drgania cza֒steczki
w uk ladzie, w którym jej środek masy spoczywa, nie pozwalaja֒c by wykonywa la ona ja-

96Maja֒c (wyznaczone na podstawie mechaniki klasycznej) cze֒stości oraz momenty bezw ladności
cza֒steczek można, traktuja֒c cza֒steczki jak wzajemnie nieoddzia luja֒ce, zbudować kwantowa֒ teorie֒ two-
rzonego przez nie gazu doskona lego przewiduja֒ca֒ poprawnie, jakościowo i ilościowo, zależność ciep la
w laściwego od temperatury. Ciep la w laściwe gazów doskona lych (tzn. tworzonych przez cza֒steczki,
których wzajemne oddzia lywania sa֒ pomijalnie s labe) nie sa֒ bowiem - wbrew temu, co można wnosić z
kiepskich kursów termodynamiki - sta le w ca lym zakresie temperatur, a tylko “kawa lkami” prawie sta le:
stopnie swobody zwia֒zane z obrotami cza֒steczki jako ca lości oraz z jej drganiami “w la֒czaja֒” poczynaja֒c
od pewnych temperatur “progowych”, zwie֒kszaja֒c tym samym pojemność cieplna֒ gazu. Owe tempera-
tury progowe kwantowa mechanika statystyczna wia֒że w laśnie z momentami bezw ladności i cze֒stościami
w lasnymi cza֒steczek gazu. Jest zabawne, że efekty ścísle kwantowe, jakimi sa֒ te wzrosty pojemności
cieplnych gazów niemal doskona lych zachodza֒ przy temperaturach, które sa֒ rze֒du od kilkuset do kilku
tysie֒cy Kelvinów, a nie, jak można by mniemać, przy bardzo niskich temperaturach.
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kikolwiek ruch obrotowy. W przypadku cza֒stek kilkuatomowych zmniejsza to wydatnie
liczbe֒ stopni swobody, znacznie upraszczaja֒c problem.

Eliminacje֒ stopni swobody zwia֒zanych z ruchem środka masy i obrotami przeprowadza
sie֒ naste֒puja֒co. Zapisujemy wektory ra(t), a = 1, . . . , N po lożenia atomów w formie

ra(t) = ra(0) + ua(t) ,

gdzie sta le wektory ra(0), a = 1, . . . , N sa֒ jakimś (jest ich nieskończenie wiele) niezależnym
od czasu rozwia֒zaniem ścis lych równań ruchu, a ua(t) sa֒ (ma lymi z za lożenia) wychyle-
niami z tych po lożeń równowagi i graja֒ role֒ 3N zmiennych uogólnionych. Na zmienne
ua(t) narzucamy najpierw wie֒zy

P ≡
N
∑

a=1

maṙa(t) =
N
∑

a=1

mau̇a(t) =
d

dt

N
∑

a=1

maua(t) = 0 .

Odzwierciedlaja֒ one z to, że chcemy rozpatrywać uk lad, którego środek masy (w wybra-
nym inercjalnym uk ladzie odniesienia) nie porusza sie֒. Wie֒zy te sa֒, jak widać, ca lkowalne,
tzn. można je przedstawić w postaci warunku wia֒ża֒cego 3N zmiennych ua(t):

N
∑

a=1

maua(t) = const.

Ponieważ w po lożeniach równowagi ua = 0, sta la jest wektorem zerowym: const = 0.
Warunki

N
∑

a=1

maua(t) = 0 ,

pozwalaja֒ wyrazić w lagrangianie 3 z 3N zmiennych przez pozosta le 3N − 3.
Eliminacje֒ stopni swobody zwia֒zanych z obrotami przeprowadzamy narzucaja֒c waru-

nek znikania ca lkowitego momentu pe֒du J cza֒steczki (tj. chcemy rozpatrywać uk lad w
sytuacji, gdy jako ca lość nie obraca sie֒ on):

J =
N
∑

a=1

mara(t)×ṙa(t) =
N
∑

a=1

ma[ra(0) + ua(t)]×u̇a(t) = 0 .

W tej ścis lej postaci sa֒ to wie֒zy nieholonomiczne,97 których, wobec tego, nie można
użyć do wyeliminowania z lagrangianu dalszych trzech (lub dwu) zmiennych. Jeśli jed-
nak badamy tylko ma le wychylenia z po lożeń równowagi, to wie֒zy te w przybliżeniu sa֒

97Tzn. nie daja֒ce sie֒ przedstawić w postaci

d

dt
f(u1, . . . ,uN , t) = 0 .
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holonomiczne:

J ≈
N
∑

a=1

mara(0)×u̇a(t) =
d

dt

N
∑

a=1

mara(0)×ua(t) ,

i warunek98

N
∑

a=1

mara(0)×ua(t) = 0 ,

może zostać użyty do wyeliminowania z lagrangianu dalszych trzech (lub dwu) zmien-
nych. Otrzymany w ten sposób lagrangian efektywny zależy od 3N − 6 (lub 3N − 5, w
przypadku cza֒steczki dwuatomowej) zmiennych uogólnionych. Dalsze kroki prowadza֒ce
do znalezienia cze֒stości w lasnych drgań cza֒steczki i odpowiadaja֒cych im modów sa֒ już
takie same, jak opisane w pierwszej cze֒ści tego Przypomnienia.

98Tak jak w przypadku ca lkowitego pe֒du, sta la, która֒ w ogólności jest
∑N

a=1mara(0)×ua jest równa
zeru, bo wektory ua zeruja֒ sie֒ w po lożeniu równowagi.
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Zadanie 9.1 (Instruktażowe)
W przybliżeniu ma lych wychyleń z po lożenia równowagi znaleźć ruch pokazanego na ry-
sunku 14 uk ladu dwóch mas m moga֒cych ślizgać sie֒ bez tarcia po dwu pre֒tach  la֒cza֒cych
sie֒ pod ka֒tem π/3 (pre֒ty leża֒ w p laszczyźnie prostopad lej do pola g, czyli pole to jest tu
nieistotne) i po la֒czonych jedna z drugóraz każda z osobna z punktem z la֒czenia sie֒ pre֒tów
jednakowymi spre֒żynkami o d lugościach swobodnych l0 i wspó lczynnikach spre֒żystości k.
Znaleźć wspó lrze֒dne normalne. Podać przyk lad warunków pocza֒tkowych, przy których
wzbudzony zostanie tylko mod drgań o wyższej cze֒stości.

Rozwia֒zanie:

Uk lad ma dwa stopnie swobody - wystarczy podać po lożenia każdej z dwóch mas m na jej
pre֒cie. Jako zmienne wybieramy wie֒c x i z pokazane na rysunku 14. Energia kinetyczna
T uk ladu jest suma֒ energii kinetycznych obu mas:

T =
1

2
m(ẋ2 + ż2) .

Energia potencjalna V uk ladu jest suma֒ energii potencjalnych każdej z trzech spre֒żynek:
V = V1 + V2 + V3. Dwie pierwsze z nich sa֒ oczywiste:

V1 + V2 =
1

2
k [(x− l0)

2 + (z − l0)
2] .

Trzecia z nich ma bardziej skomplikowana֒ postać

V3 =
1

2
k
[

√

(xA − xB)2 + (yA − yB)2 − l0

]2

=
1

2
k

[

√

(x− 1

2
z)2 +

3

4
z2 − l0

]2

.

(Bo xA = x, yA = 0, xB = z cos π
3

= 1
2
z i yB = z sin π

3
=
√
3
2
z - zob. rysunek 47). Zatem

V =
1

2
k

[

(x− l0)
2 + (z − l0)

2 +
(√

x2 − xz + z2 − l0

)2
]

.

Ponieważ potencja l V jest dodatnio określony, ma on minimum (absolutne) tam, gdzie
przyjmuje wartość równa֒ zeru, tj. w punkcie x = z = l0. Dokonujemy wie֒c przesunie֒cia
zmiennych x̃ = x− l0, z̃ = z − l0. W nowych zmiennych (pomijamy tyldy) ma on postać

V =
1

2
k

[

x2 + z2 +

(

√

l20 + l0(x + z) + x2 + z2 − xz − l0

)2
]

.

Ponieważ zerowy wyraz rozwinie֒cia pierwiastka wokó l x = z = 0 zredukuje sie֒ z l0,
wyraz kwadratowy potencja lu pochodza֒cy z pierwiastka bierze sie֒ tylko z cz lonu l0(x +
z). Ostatecznie wie֒c, rozwinie֒ty do wyrazów kwadratowych w wychyleniach z po lożenia
równowagi potencja l ma postać

V =
1

2
k

[

x2 + z2 +

(

x + z

2

)2
]

=
1

2
k

(

5

4
x2 +

1

2
xz +

5

4
z2
)

.
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Rysunek 47: Dwie masy na pre֒tach po la֒czone spre֒żynkami.

Równaniami ruchu wynikaja֒cymi z lagrangianu L = T − V sa֒

d2

dt2

(

x
z

)

+
k

4m

(

5 1
1 5

)(

x
z

)

=

(

0
0

)

.

Podstawiamy
(

x
z

)

=

(

Ax

Az

)

eiωt ,

co daje równanie w lasne (ω2 ≡ (k/4m)η2)
(

5 − η2 1
1 5 − η2

)(

Ax

Az

)

=

(

0
0

)

.

Warunek znikania wyznacznika wyznacza wartości η2: η21 = 4, η22 = 6. Odpowiadaja֒ one
cze֒stościom i wektorom w lasnym

ω2
1 =

k

m
,

(

Ax

Az

)

=

(

1/
√

2
−1/

√
2

)

, ω2
2 =

3k

2m
,

(

Ax

Az

)

=

(

1/
√

2
1/
√

2

)

.

Ponieważ macierz energii kinetycznej Tij by la proporcjonalna do macierzy jednostko-
wej, a odpowiadaja֒ce dwóm wekorom w lasnym cze֒stości sa֒ różne, sa֒ one ortogonalne
w zwyk lym, “szkolnym” iloczynie skalarnym (tu zosta ly one od razu unormowane do
jednostkowej d lugości). Ogólne rozwia֒zanie ma wie֒c postać
(

x
z

)

=

(

1/
√

2
−1/

√
2

)

[C1 cosω1t+ S1 sinω1t] +

(

1/
√

2
1/
√

2

)

[C2 cosω2t+ S2 sinω2t],

a przyk ladowymi warunkami pocza֒tkowmi wzbudzaja֒cmi tylko czyste drgania o cze֒stości
ω2 sa֒ np. x(0) = z(0) = a z dowolnym a 6= 0 i ẋ(0) = ż(0) = 0.

Zmienne x i z można wyrazić przez wspó lrze֒dne normalne Q1 i Q2 wzorem
(

x(t)
z(t)

)

=

(

1/
√

2 1/
√

2
−1/

√
2 1/

√
2

)(

Q1(t)
Q2(t)

)

.

Po wyrażeniu lagrangianu przez zmienne Qi przyjmuje on postać sumy

L =
1

2
m(Q̇2

1 − ω2
1Q

2
1) +

1

2
m(Q̇2

2 − ω2
2Q

2
2) .

Masy m pozosta ly w wyrazach kinetycznych (nie zosta ly wcia֒gnie֒te w definicje zmiennych
Qi), bo w charakterze iloczynu skalarnego zosta la wzie֒ta nie macierz Tij , a macierz Tij/m.
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Zadanie 9.6

Z dwu końców belki o masie M i d lugości 2a moga֒cej swobodnie przesuwać sie֒ poziomo
(w polu g) po nieważkich rolkach zwisaja֒ dwa jednakowe sztywne, nieważkie pre֒ty o
d lugościach l zakończone masami m każdy. Masy te sa֒ ze soba֒ po la֒czone spre֒żyna֒ o
wspó lczynniku spre֒żystości k i d lugości swobodnej 2a (zobacz rysunek 48). Napisać ścis ly
lagrangian tego uk ladu a naste֒pnie wyeliminować z niego stopnie swobody zwia֒ane z
ruchem uk ladu jako ca lości. W otrzymanym efektywnym lagrangianie dokonać przy-
bliżenia odpowiadaja֒cego ma lym drganiom dwu wahade l. Znaleźć w tym przybliżeniu
ruch uk ladu.

Rozwia֒zanie:

Uk lad ma trzy stopnie swobody. Jako trzy uogólnione zmienne dynamiczne można przyja֒ć
xM (przesunie֒cie środka belki wzgle֒dem środka odleg lości mie֒dze rolkami), ϕ1 i ϕ2 zde-
finiowane na rysunku 17. Po lożenia mas m w zdefiniowanym na tymże rysunku uk ladzie
inercjalnym sa֒ naste֒puja֒ce:

x1 = xM − a+ l sinϕ1 , x2 = xM + a+ l sinϕ2 ,

z1 = −l cosϕ1 , z2 = −l cosϕ2 .

Zatem energia kinetyczna T uk ladu to

T =
1

2
Mẋ2M +

1

2
m[(ẋM + lϕ̇1 cosϕ1)

2 + l2ϕ̇2
1 sin2 ϕ1]

+
1

2
m[(ẋM + lϕ̇2 cosϕ2)

2 + l2ϕ̇2
2 sin2 ϕ2]

=
1

2
(M + 2m)ẋ2M +

1

2
ml2(ϕ̇2

1 + ϕ̇2
2) +mlẋM (ϕ̇1 cosϕ1 + ϕ̇2 cosϕ2) .

Energia potencjalna V uk ladu sk lada sie֒ z sumy energii potencjalnych Vg mas m w polu
si ly cie֒żkości g:

Vg = mgz1 +mgz2 = −mgl(cosϕ1 + cosϕ2) ,

oraz energii potencjalnej Vk spre֒żyny

Vk =
k

2

(

√

(x2 − x1)2 + (z2 − z1)2 − 2a
)2

=
k

2

(

√

(2a+ l sinϕ2 − l sinϕ1)2 + (l cosϕ2 − l cosϕ1)2 − 2a
)2

.

Pe lny lagrangian L = T − Vg − Vk jest wie֒c dość skomplikowany. Nie zależy on jawnie
od zmiennej xM , wobec czego sta la֒ ruchu jest wielkość P = (∂L/∂ẋM ) be֒da֒ca oczywíscie
x-owa֒ sk ladowa֒ ca lkowitego pe֒du uk ladu. Sta la֒ ruchu jest też “hamiltonian” h, który
jest tu ca lkowita֒ energia֒ mechaniczna֒ uk ladu (mierzona֒ w uk ladzie inercjalnym).
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xxM

ϕ1
ϕ2

g

m
m

M, 2a

l
l

k, 2a

Rysunek 48: Dwa wahad la podwieszone do ruchomej platformy.

Jeśli w trakcie ruchu ka֒ty ϕ1 i ϕ2 oscyluja֒ wokó l zera, można lagrangian przybliżyć
przez wyrażenie

L ≈ 1

2
(M + 2m)ẋ2M +

1

2
ml2(ϕ̇2

1 + ϕ̇2
2)

+ml (ϕ̇1 + ϕ̇2) ẋM − 1

2
mgl (ϕ2

1 + ϕ2
2) −

k

2
l2(ϕ1 − ϕ2)

2 .

Istotnie,

Vk ≈
k

2

(

√

4a2 + 4al(ϕ1 − ϕ2) + . . .− 2a
)2

=
k

2

[

2a

(

1 +
l

2a
(ϕ1 − ϕ2) + . . .

)

− 2a

]2

.

Aby przeanalizować ma le drgania wygodnie jest wielkość zachowana֒ P

∂L

∂ẋM
= (M + 2m)ẋM +ml (ϕ̇1 + ϕ̇2) = P ,

wykorzystać do bezpośredniego wyeliminowania z lagrangianiu zmiennej ẋM . Wolno tak
zrobić, gdyż równanie wyrażaja֒ce sta lość P można przedstawić w postaci wie֒zów holono-
micznych

(M + 2m)xM +ml (ϕ1 + ϕ2) − Pt = 0 .

Podstawiaja֒c

ẋM =
1

M + 2m
[P −ml(ϕ̇1 + ϕ̇2] ,

do uproszczonego (“skwadratyzowanego”) lagrangianu otrzymujemy lagrangian efektywny

Leff =
1

2
ml2(ϕ̇2

1 + ϕ̇2
2) −

1

2

m

M + 2m
ml2(ϕ̇1 + ϕ̇2)

2 − 1

2
mgl (ϕ2

1 + ϕ2
2) −

1

2
kl2(ϕ1 − ϕ2)

2 ,

wyznaczaja֒cy dynamike֒ ma lych zmian zmiennych ϕ1 i ϕ2. Pominie֒ta zosta la w nim, nie
maja֒ca wp lywu na równania ruchu, sta la P 2/2(M+2m) be֒da֒ca energia֒ kinetyczna֒ ruchu
poste֒powego ca lego uk ladu. Macierz energii kinetycznej w Leff jest, jak  latwo sprawdzić,
dodatnio określona.
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Równania ruchu otrzymane z Leff maja֒ postać (r ≡ (M +m)/(M+2m), s ≡ m/(M +
2m), a ≡ g/l, b ≡ k/m)

(

r −s
−s r

)(

ϕ̈1

ϕ̈2

)

+

(

a+ b −b
−b a + b

)(

ϕ1

ϕ2

)

= 0 .

Podstawienie ϕ(t) = Aeiωt prowadzi do równania charakterystycznego

(a + b− r ω2)2 − (s ω2 − b)2 = 0 ,

które najlepiej jest zapisać w postaci (zamiast ślepo stosowaác szkolne wzory z ∆ = b2−4ac
...)

a + b− r ω2 = ±(s ω2 − b) ,

o pierwiastkach

ω2
1 =

a

r − s
=

M

M + 2m

g

l
, ω2

2 =
a+ 2b

r + s
=
g

l
+

2k

m
.

Odpowiednimi wektorami w lasnymi sa֒ wektory, na których zeruja֒ sie֒ macierze

(

a+ b− r ω2
1 s ω2

1 − b
s ω2

1 − b a + b− r ω2
1

)

=
rb− s(a + b)

r − s

(

1 −1
−1 1

)

,

(

a+ b− r ω2
2 s ω2

2 − b
s ω2

2 − b a + b− r ω2
2

)

=
s(a + b) − rb

r + s

(

1 1
1 1

)

.

Zatem po prostu

A1 =

(

1
1

)

, A2 =

(

1
−1

)

,

co zreszta֒ można by lo przewidzieć patrza֒c na uk lad. Z oczekiwaniami opartymi na intuicji
fizycznej zgadza sie֒ też to, że cze֒stość ω1 nie zależy od wspó lczynnika k spre֒żyny - jeśli
wychylenia obu majtade l sa֒ zgodne i równe, tak jak to wynika ze stosunku sk ladowych
wektora A1, to w trakcie ich ruchu d lugość spre֒żyny pozostaje (w liniowym przybliżeniu)
stale równa 2a - oraz to, że cze֒stość ω2 nie zależy od masy M - przy przeciwnych i równych
wychyleniach obu majtadel belka pozostaje w spoczynku.

Wektory A1 i A2 sa֒ nawzajem do siebie ortogonalne w iloczynie skalarnym zadanym
przez macierz energii kinetycznej99

(

r −s
−s r

)

.

99Przypadkowo sa֒ one także ortogonalne w “szkolnym” iloczynie skalarnym.
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Po unormowaniu w tymże iloczynie skalarnym zadaja֒ one wspó lrze֒dne normalne Q1, Q2

uk ladu

(

ϕ1(t)
ϕ2(t)

)

=

√

M + 2m

2M

(

1
1

)

Q1(t) +
1√
2

(

1
−1

)

Q2(t).

Najogólniejsze rozwia֒zanie jest dane powyższym wzorem z Q1(t) = C1 cos(ω1t + δ1) i
Q2(t) = C2 cos(ω2t + δ2), a w zmiennych Q1 i Q2 “skwadratyzowany” lagrangian ma
postać

Leff =
1

2
ml2(Q̇2

1 − ω2
1Q

2
1) +

1

2
ml2(Q̇2

2 − ω2
2Q

2
2).
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Zadanie 9.10

Znaleźć mody drgań i odpowiadaja֒ce im cze֒stości uk ladu N jednakowych masmmoga֒cych
ślizgać sie֒ bez tarcia po prostym pre֒cie i po la֒czonych jednakowymi spre֒żynkami o wspó l-
czynnikach spre֒żystości κ i d lugościach swobodnych l (zob. rysunek 49). Odleg lość mie֒dzy
ściankami, do których zamocowane sa֒ skrajne spre֒żyny jest równa (N + 1) l.

Rozwia֒zanie:

Wyrażony przez wspó lrze֒dne uogólnione zdefiniowane na rysunku 49 lagrangian rozpa-
trywanego uk ladu ma postać

L =
1

2
m

N
∑

i=1

(ẋi)2 − 1

2
k (x1)2 − 1

2
k
N−1
∑

i=1

(xi − xi+1)2 − 1

2
k (xN)2 ,

a równania ruchu tworza֒ uk lad N równań (ω2
0 = k/m)

ẍ1 = −ω2
0 x

1 − ω2
0 (x1 − x2) ,

ẍ2 = −ω2
0 (x2 − x1) − ω2

0 (x2 − x3) ,

ẍ3 = −ω2
0 (x3 − x2) − ω2

0 (x3 − x4) ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ẍN−1= −ω2
0 (xN−1 − xN−2) − ω2

0 (xN−1 − xN ) ,

ẍN = −ω2
0 (xN − xN−1) − ω2

0 x
N .

Standardowe podstawienie xl(t) = Al e−iωt redukuje rozwia֒zanie tego uk ladu równań do
problemu w lasnego (λ ≡ ω2/ω2

0):
















2 − λ −1 0 0 . . .
−1 2 − λ −1 0 . . .
0 −1 2 − λ −1 . . .
. . . . . . . . . . . . . . . . . . . . . . . .

. . . −1 2 − λ −1

. . . 0 −1 2 − λ

































A1

A2

A3

. . .
AN−1

AN

















=

















0
0
0
. . .
0
0

















.

Obliczenie wyznacznika tej macierzy wymiaru N × N nie jest  latwe. Jeszcze trudniejsze
by loby znalezienie N pierwiastków równania charakterystycznego, a naste֒pnie odpowia-
daja֒cych im wektorów w lasnych. Dlatego w przypadkach takich jak tu stosuje sie֒ inna֒
metode֒.

Pomijamy najpierw zależne od warunków brzegowych pierwsze i ostatnie równanie
powyższego uk ladu N jednorodnych równań na sk ladowe wektora A i rozpatrujemy ty-
powe równanie “środkowe”:

−An−1 + (2 − λ)An − An+1 = 0 , n = 2, 3, . . . , N − 1 .

Jego rozwia֒zania szukamy w formie100

An = an .
100Uwaga: An oznacza n-ta֒ sk ladowa֒ wektora A; z kolei an oznacza n-ta֒ pote֒ge֒ liczby a. Ten konflikt

oznaczeń bierze sie֒ z che֒ci porza֒dnego oznaczania kontrawariantnych sk ladowych wektorów.
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x1 x2 x3 x4 xN−1 xN

Rysunek 49: Uk lad N jednakowych mas m moga֒cych ślizgać sie֒ bez tarcia po pro-
stym pre֒cie i po la֒czonych jednakowymi spre֒żynkami o wspó lczynnikach spre֒żystości k
i d lugościach swobodnych l. Odleg lość mie֒dzy ściankami ograniczaja֒cymi uk lad z obu
stron jest równa (N + 1) l. Pokazane sa֒ wygodne zmienne uogólnione.

Liczbe֒ a wyznacza wie֒c równanie kwadratowe

a2 + (λ− 2) a+ 1 = 0 .

Ma ono dwa rozwia֒zania

a∓ = 1 − λ

2
∓ i

√

1 −
(

1 − λ

2

)2

,

które wygodnie jest przedstawić w postaci a∓ = e∓iθ utożsamiaja֒c 1−1
2
λ z cos θ. Oczywíscie,

tak jak każa֒ wzory Viète’a

a− + a+ = 2 − λ .

Ogólnie wie֒c

An = C−a
n
− + C+a

n
+ ,

gdzie C∓ sa֒ dwiema zespolonymi sta lymi (dopiero na końcu wydzielimy cze֒ść rzeczywista֒
zespolonego rozwia֒zania).

Na tym etapie sa֒ wcia֒ż jeszcze dwie niewiadome: jedna֒ jest λ, a druga֒ stosunek
C−/C+ (ponieważ równanie w lasne na wektor A jest jednorodne, nie da sie֒ oczywíscie
wyznaczyć bezwzgle֒dnych wartości sta lych C∓). Do spe lnienia pozosta ly jednak jeszcze
równania skrajne, pierwsze i ostatnie:

(2 − λ)A1 − A2 = 0 ,

−AN−1 + (2 − λ)AN = 0 .

Podstawiaja֒c do nich ustalona֒ wyżej ogólna֒ postać n-tej sk ladowej wektora A otrzymu-
jemy

(2 − λ)(C−a− + C+a+) − C−a
2
− − C+a

2
+ = 0 ,

(2 − λ)(C−a
N
− + C+a

N
+ ) − C−a

N−1
− − C+a

N−1
+ = 0 .

Po skorzystaniu ze wzoru Viète’a 2−λ = a−+a+ pierwsze z tych dwu równań sprowadza
sie֒ do

(C− + C+)a−a+ = 0 ,
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i daje C− = −C+, a po wykorzystanie tej równości drugie można sprowadzić do

aN−1− [a−(2 − λ) − 1] = aN−1+ [a+(2 − λ) − 1] .

To zaś, po użyciu wzoru Viète’a i wykorzystaniu przedstawienia a∓ = e∓iθ (iloczyny a+a−
skasuja֒ sie֒ z jedynkami), daje warunek

e−i(N+1)θ = e+i(N+1)θ ,

wyznaczaja֒cy dopuszczalne wartości θ, czyli (znów przez wzór Viète’a) wartości λ, tj.
cze֒stości drgań uk ladu. Zatem dopuszczalne wartości θ tworza֒ zbiór dyskretny

θa =
πa

N + 1
, a = 1, 2, . . . , N .

Wartość a = 0 trzeba pomina֒ć, bo dawa laby a+ = a− = 1, co w po la֒czeniu z C− = −C+

prowadzi lo by do trywialnego rozwia֒zania xi(t) ≡ 0; wartości a > N nie daja֒ już nowych
rozwia֒zań: a = N + 1, tak jak a = 0, daje wszystkie xn(t) zerowe, a = N + 2 jest
równoważne a = N itd., aż do a = 2N + 1 równoważnego a = 1, gdyż

π
N + 2

N + 1
= 2π − π

N

N + 1
,

π
2N + 1

N + 1
= 2π − π

1

N + 1
;

cosinusy wyznaczaja֒ce cze֒stości sa֒ parzyste, a sinusy wyznaczaja֒ce sk ladowe wektorów
w lasnych zmieniaja֒ znaki na przeciwne (co nie zmienia stosunków sk ladowych). Naste֒pnie,
poczynaja֒c od a = 2(N + 2), ca ly cykl sie֒ powtarza. Zatem cze֒stości drgań uk ladu sa֒
dane wzorem

ω2
a = λaω

2
0 = (2 − a− − a+)ω2

0 = ω2
0

(

2 − 2 cos
πa

N + 1

)

= 4ω2
0 sin2 πa

2(N + 1)
.

Ogólne rozwia֒zanie równań ruchu uk ladu N mas przedstawionego na rysunku 49 jest dane
przez (C+ = −C− ≡ C)

xn(t) = Re

{

N
∑

a=1

Ca

(

einθa − e−inθa
)

e−iωat

}

.

N dowolnych zespolonych sta lych Ca daje konieczne do spe lnienia warunków pocza֒tkowych
2N rzeczywistych sta lych dowolnych. Rozwia֒zanie to można przedstawić na dwa równowa-
żne sposoby:
a) Niech Ca = (Ca/2i) e

iϕa , gdzie Ca > 0 oraz ϕa sa֒ sta lymi rzeczywistymi. Wtedy

xn(t) =

N
∑

a=1

Ca sin

(

πa

N + 1
n

)

cos(ωat+ ϕa) ,
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jest superpozycja֒ fal stoja֒cych.
b) Niech Ca = Ca e

iϕa z rzeczywistymi Ca > 0. Wtedy

xn(t) =

N
∑

a=1

Ca [cos(θan− ωat+ ϕa) − cos(θan + ωat− ϕa)] ,

jest superpozycja֒ fal biegna֒cych w lewo i w prawo z ustalonymi wzgle֒dnymi amplitudami
(co w laśnie oznacza, że te fale biegna֒ce sk ladaja֒ sie֒ w fale stoja֒ce). Interpretacje֒ “falowa֒”
można uścíslić definiuja֒c x = nl jako po lożenie równowagi (na poziomej osi) n-tej masy, a
ka = θa/l jako (jednowymiarowy) wektor falowy. Czynniki sin(θan) i cos(θan∓ ωat+ ϕa)
przybiora֒ wtedy postać sin(kax) oraz cos(kax ∓ ωat + ϕa). D lugościa֒ fali danego modu
drgań jest wtedy λa = 2π/ka = 2πl/θa. Gdy N ≫ 1 najd luższe fale (pod lużne) maja֒
d lugość λ1 = 2l(N + 1), a najkrótsze λN = 2l(N + 1)/N ≈ 2l. Sa֒ to oczywíscie odpo-
wiednio fale, w których wszystkie masy przesuwaja֒ sie֒ zgodnie w tym samym kierunku
i fale, w których sa֒siednie masy przesuwaja֒ sie֒ w kierunkach dok ladnie przeciwnych. W
je֒zyku kwantowej teorii pola można to uja֒ć stwierdzeniem, że skończone rozmiary uk ladu
stanowia֒ obcie֒cie w podczerwieni, a jego dyskretny charakter zapewnia obcie֒cie w ultra-
fioletowe.

W a-tym modzie drgań stosunki wychyleń poszczególnych mas sa֒ ustalone przez sto-
sunki odpowiadaja֒cych im sk ladowych wektora A(a), który ma postać

A(a) =













sin πa
N+1

sin 2πa
N+1

sin 3πa
N+1

. . .
sin Nπa

N+1













.

Ponieważ macierz energii kinetycznej rozpatrywanego tu uk ladu mas jest proporcjonalna
do macierzy jednostkowej, wektory A(a) i A(b) sa֒, gdy a 6= b, wzajemnie ortogonalne w
zwyk lym iloczynie skalarnym. Sprawdzenie tego jest prostym ćwiczeniem z trygnometrii,
sumowania szeregów geometrycznych i manipulowania liczbami zespolonymi:

A(a) ·A(b) =
N
∑

n=1

sin

(

πa

N + 1
n

)

sin

(

πb

N + 1
n

)

=
1

2

N
∑

n=1

[

cos

(

π(a− b)

N + 1
n

)

− cos

(

π(a+ b)

N + 1
n

)]

=
1

4

{

ei
π(a−b)
N+1

1 − ei
π(a−b)N

N+1

1 − ei
π(a−b)
N+1

+ c.c.− [(a− b) → (a+ b)]

}

.

c.c. oznacza tu wyrażenie sprze֒żone do poprzedniego.101 Naste֒pnie eksponens w liczniku

101Skorzystalísmy tu ze znanego wzoru

sin
α+ β

2
sin

α− β

2
=

1

2
(cosβ − cosα) ,

250



u lamka przepisujemy w postaci

ei
π(a−b)N

N+1 = ei
π(a−b)(N+1−1)

N+1 = eiπ(a−b) e−i
π(a−b)
N+1 ,

i “wpuszczamy” eksponens stoja֒cy na przedzie na kreske֒ u lamka, co daje

A(a) ·A(b) =
1

4

{

ei
π(a−b)
N+1 − eiπ(a−b)

1 − ei
π(a−b)
N+1

+ c.c.− [(a− b) → (a+ b)]

}

.

Należy teraz odróżnić dwa przypadki. Jeśli a− b (a wie֒c także a+ b) jest liczba֒ parzysta֒,
to eiπ(a−b) = eiπ(a+b) = 1 i w nawiasie kre֒conym dostajemy {−1 − 1 − [−1 − 1]} = 0.
Jeśli a− b (i a+ b) jest liczba֒ nieparzysta֒, to eiπ(a−b) = eiπ(a+b) = −1 i wtedy, pisza֒c α w
miejsce π(a∓ b)/(N + 1), mamy

eiα + 1

1 − eiα
+ c.c. = −2 +

2

1 − eiα
+

2

1 − e−iα
= −2 + 2

1 − e−iα + 1 − eiα

(1 − eiα)(1 − e−iα)
= 0 .

Z rachunku tego można też w zasadzie wyznaczyć normalizacje֒ wektorów A(a), czyli
|A(a)|2, ale ponieważ dla b = a wyste֒puje tu wyrażenia typu 0/0,  latwiej obliczyć od
pocza֒tku:

|A(a)|2 =

N
∑

n=1

sin2

(

πa

N + 1
n

)

=
1

2

N
∑

n=1

[

1 − cos

(

2πa

N + 1
n

)]

=
N

2
− 1

4

[

ei
2πa
N+1

1 − ei
2πa
N+1

N

1 − ei
2πa
N+1

+ c.c.

]

.

Po zrobieniu tej samej sztuczki, co poprzednio: ei
2πa
N+1

N = ei2πa e−i
2πa
N+1 i zauważeniu, że

ei2πa = 1 znajdujemy, że

|A(a)|2 =
N + 1

2
.

Zadanie to można też rozwia֒zać nieco prostszym sposobem, który jest użyteczniejszy
przy bardziej skomplikowanych uk ladach tego typu, postuluja֒c od razu rozwia֒zanie “środ-
kowego” równania ruchu

ẍn + ω2
0

(

2xn − xn−1 − xn+1
)

= 0,

oraz ze wzoru na sume֒ (od k = 1, nie od zera!)

N
∑

k=1

qk = q
1 − qN

1 − q
.
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w postaci fali stoja֒cej xn(t) = e−iωte±iθn. Wypisane równanie daje wtedy od razu “zwia֒zek
dyspersyjny”

ω2 = ω2
0 (2 − 2 cos θ) = 4ω2

0 sin2 θ

2
,

Ruch n-tej masy jest wtedy dany wzorem

xn(t) = e−iωt
(

C+e
inθ + C−e

−inθ) ,

z dowolnymi (zespolonymi) sta lymi C±. Warunek, by masa o numerze n = 0 (której
niema) pozostawa la nieruchoma daje zwia֒zek C− = C+, a warunek by nieruchoma pozo-
stawa la (również nieistnieja֒ca) masa o numerze N + 1 wyznacza (te same, co poprzednio)
dopuszczalne dyskretne wartości “wektora falowego” θ. Reszta rachunków przebiega tak
samo jak poprzednio.
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Zadanie 9.12

Wyznaczyć cze֒stości drgań pod lużnych uk ladu 2N jednakowych mas m moga֒cych ślizgać
sie֒ bez tarcia po poziomym pre֒cie i po la֒czonych ze soba֒ i z odleg lymi jedna od dru-
giej o (2N + 1)l ściankami spre֒żynkami o d lugościach swobodnych l i wspó lczynnikach
spre֒żystości naprzemian kA i kB. Wykazać, że otrzymane wzory na cze֒stości drgań i wy-
chylenia mas z po lożeń równowagi przechodza֒ w granicy kA = kB = k w te otrzymanew
zadaniu 9.10.

Rozwia֒zanie:

Przy odrobinie wprawy równania ruchu 2n-tej i 2n + 1-szej masy w zmiennych zdefinio-
wanych na rysunku 50 można napisać “od re֒ki”, bez wypisywania już lagrangianu:

ẍ2n + ω2
A

(

x2n − x2n−1) + ω2
B(x2n − x2n+1

)

= 0 ,

ẍ2n+1 + ω2
B

(

x2n+1 − x2n) + ω2
A(x2n+1 − x2n+2

)

= 0 .

Równania mas pierwszej i 2N -tej sa֒ inne, ale jeśli przyja֒ć, że istnieja֒ fikcyjne masy
zerowa i 2N + 1-a, to wypisane równania be֒da֒ s luszne dla wszystkich mas; warunek, że
masy zerowa i 2N + 1-a nie przemieszczaja֒ sie֒ zostanie narzucony na końcu i pos luży
do wyznaczenia cze֒stości drgań uk ladu. Takie podej́scie pozwoli też rozpatrzyć i inne
możliwe warunki brzegowe.

Ponieważ można oczekiwać, że mody drgań uk ladu be֒da֒ mia ly charakter (pod lużnych)
fal stoja֒cych, rozwia֒zania wypisanych równań poszukujemy w postaci (amplitudy A±, B±
moga֒ być zespolone)

x2n(t) = A± e
±i2nθ e−iωt ,

x2n+1(t) = B± e
±i(2n+1)θ e−iωt .

Ponieważ wychylenia mas o numerach parzystych i nieparzystych moga֒ sie֒ różnić, do-
puszczamy różne ich amplitudy. Podstawienie tych wzorów do wypisanych wyżej równań
różnczkowych sprowadza je do równań algebraicznych:

−ω2
A± + ω2

B

(

A± − B±e
∓iθ)+ ω2

A

(

A± − B±e
±iθ) = 0 ,

−ω2
B± + ω2

A

(

B± − A±e
∓iθ)+ ω2

B

(

B± − A±e
±iθ) = 0 .

Równania te wygodniej jest przepisać w formie macierzowej (jako tzw. równanie “wie-
kowe” - ang. secular equation)

(

ω2
A + ω2

B − ω2 −ω2
Be
∓θ − ω2

Ae
±θ

−ω2
Ae
∓θ − ω2

Be
±θ ω2

A + ω2
B − ω2

)(

A±
B±

)

=

(

0
0

)

.

Widać wtedy, że warunkiem istnienia niezerowych amplitud A± i B± jest znikanie wy-
znacznika wypisanej macierzy. Warunek ten maja֒cy postać

(

ω2
A + ω2

B − ω2
)2

=
(

−ω2
Be
∓θ − ω2

Ae
±θ)(−ω2

Ae
∓θ − ω2

Be
±θ)

≡ ω4
A + ω4

B + ω2
Aω

2
B

(

e2iθ + e−2iθ
)

,

253



x1

kA

x2

kB

x3

kA

x4

kB

x2N−1

kB

x2N

kA

Rysunek 50: Uk lad 2N jednakowych mas m moga֒cych ślizgać sie֒ bez tarcia po prostym
pre֒cie i po la֒czonych naprzemiennie spre֒żynkami o wspó lczynnikach spre֒żystości kA i kB.
D lugości swobodne wszystkich spre֒żynek sa֒ równe l. Odleg lość mie֒dzy ściankami ogra-
niczaja֒cymi uk lad z obu stron jest równa (2N + 1) l. Pokazane sa֒ wygodne zmienne
uogólnione.

wyznacza zwia֒zek dyspersyjny, tzn. zależność cze֒stoći modów drgań uk ladu od “liczby
falowej” θ:

ω2 = ω2
A + ω2

B ∓
√

(ω2
A − ω2

B)2 + 4ω2
Aω

2
B cos2 θ .

Zwia֒zek ten ma tu, jak widać, dwie ga le֒zie odpowiadaja֒ce dwóm znakom przed pier-
wiastkiem. Widać też, że gdy “liczba falowa” θ da֒ży do zera, tj. w granicy fal d lugich,
cze֒stości ω ga le֒zi odpowiadaja֒cej znakowi − też da֒ża֒ do zera, ale cze֒stości drugiej ga le֒zi
da֒ża֒ do wartości niezerowej. Mody drgań o cze֒stościach tworza֒cych pierwsza֒ z tych ga le֒zi
sa֒ zwane drganiami “akustycznymi”, a te drugie “optycznymi”.

Należy teraz zapewnić spe lnianie przez zapostulowane rozwia֒zania

x2n(t) =
(

A+ e
i2nθ + A− e

−i2nθ) e−iωt,

x2n+1(t) =
(

B+ e
i(2n+1)θ + B− e

−i(2n+1)θ
)

e−iωt ,

warunków brzegowych. Jeśli pierwsza masa jest po la֒czona spre֒żynka֒ ze ścianka֒, co jest
równoważne ża֒daniu, by x0(t) ≡ 0, należy po lożyć A− = −A+. Zatem

x2n(t) = e−iωt 2iA+ sin(2nθ) ,

a amplitudy B± sa֒, przy zadanych cze֒stościach ω, wyznaczone przez równania wiekowe.
Wybieraja֒c dolne (górne jest odeń liniowo zależne, gdy ω spe lnia zwia֒zek dyspersyjny)
otrzymujemy

B± =
ω2
A e
∓iθ + ω2

B e
±iθ

ω2
A + ω2

B − ω2
A± .

Zatem

x2n+1 =
A+

ω2
A + ω2

B − ω2

[(

ω2
A e
−iθ + ω2

B e
iθ
)

ei(2n+1)θ −
(

ω2
A e

iθ + ω2
B e
−iθ) e−i(2n+1)θ

]

e−iωt ,

albo, po uporza֒dkowaniu,

x2n+1 =
2iA+

ω2
A + ω2

B − ω2

[

ω2
A sin(2nθ) + ω2

B sin(2(n+ 1)θ)
]

e−iωt .
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Rysunek 51: Graficzne rozwia֒zywanie warunku wyznaczaja֒cego “wektory falowe” θ
uk ladu 2N = 16 mas z rysunku 50 z naprzemiennie rozmieszczonymi spre֒żynkami o dwu
różnych sta lych spre֒żystości. Przyje֒to iż η ≡ (ω2

A − ω2
B)/(ω2

A + ω2
B) = 0.5 (krzywa czer-

wona) i η = 0.02 (krzywa zielona). Możliwe wartości θ sa֒ odcie֒tymi punktów przecie֒cia
krzywych niebieskich (tg[17θ]) z krzywa֒ czerwona֒ i zielona֒ (η tgθ).

Jeśli mas jest 2N (ostatnia spre֒żynka ma wspó lczynnik spre֒żystości kA) i ostatnia z
nich jest po la֒czona spre֒żynka֒ ze ścianka֒, należy zaża֒dać, by x2N+1(t) ≡ 0. Wykorzystuja֒c
wypisana֒ wyżej ogólna֒ postać x2n+1(t) znajdujemy, iż warunek ten be֒dzie spe lniony, gdy

ω2
A sin(2Nθ) = −ω2

B sin(2(N + 1)θ) .

Warunek ten można zapisać w bardziej czytelnej postaci, jeśli napisać najpierw sin(2Nθ) =
sin[(2N + 1)θ − θ)] i sin[2(N + 1)θ] = sin[(2N + 1)θ + θ] i skorzystać z tożsamości
sin(α ± β) = sinα cos β ± cosα sin β. Po prostych przekszta lceniach można sprowadzić
warunek do postaci

tg[(2N + 1)θ] =
ω2
A − ω2

B

ω2
A + ω2

B

tgθ .

Wyznacza on możliwe wartości “ficzby falowej” θ. Powinno być ich dok ladnie N : uk lad
2N mas musi mieć 2N (ogólnie rzecz biora֒c, niekoniecznie różnych, ale tu degeneracja nie
wysta֒pi) cze֒stości, a zwia֒zek dyspersyjny ma tu dwie ga le֒zie. Graficzny sposób wyzna-
czania wartości θ jest pokazany na rysunku 51.

Jak widać z rysunku 51, gdy czynnik η ≡ (ω2
A − ω2

B)/(ω2
A + ω2

B), −1 ≤ η ≤ 1 jest
dodatni i niezbyt bliski zeru, oczywistych rozwia֒zań, czyli możliwych wartości “wektora
falowego” θ jest przedziale 0 < θ < π/2 o jedno za ma lo (na rysunku 51 przecie֒ć krzywej
czerwonej z niebieska֒ jest 7 zamiast 8). Jest tu jakís problem wyboru jeszcze jednego
rozwia֒zania. Gdy czynnik η jest bliski zeru lub ujemny problem znika - rozwia֒zań jest
przedziale 0 < θ < π/2 tyle ile być powinno.

Gdy ωA = ωB, rozwia֒zanie rozpatrywanego tu problemu powinno sie֒ sprowadzać do
rozwia֒zania zadania 9.10, w którym należy zamienić N na 2N . Po takiej zamianie, “liczby
falowe” tam znalezione sa֒ równe θa = πa/(2N + 1) z a = 1, . . . , 2N , a cze֒stości sa֒ dane
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wzorem

ω2 = ω2
0

[

2 − 2 cos

(

πa

2N + 1

)]

.

Należy jednak zauważyć, że cos(πa/(2N + 1)) jest dla a = 1, . . .N dodatni, a dla a =
N + 1, . . . , 2N ujemny i, co wie֒cej,

cos

(

π(2N + 1 − a)

2N + 1

)

= − cos

(

πa

2N + 1

)

,

co oznacza, że z punktu widzenia cze֒stości można by a ograniczyć do a = 1, . . . , N
i uwzgle֒dnić dwa znaki przed funkcja֒ cosinus. Jest to dok ladnie to, co daja֒ w granicy
ω2
A = ω2

B = ω2
0 dwie ga le֒zie zwia֒zku dyspersyjnego uk ladu z naprzemiennymi spre֒żynkami

(można pokazać, że niezależnie od liczby N , dla dostatecznie bliskich sobie wartości ω2
A i

ω2
B warunek tg[(2N + 1)θ] = η tgθ ma zawsze N rozwia֒zań w przedziale 0 < θa < π/2).

Ponadto, wzór na x2n jest formalnie taki sam taki sam, jak otrzymany w zadaniu 9.10
(różnica polegaja֒ca na innych zakresach θa zostanie wyjaśniona niżej), a otrzymany tu
wzór na x2n+1 w granicy ω2

A = ω2
B = ω2

0 przechodzi we wzór na x2n+1 z zadania 9.10: aby
to zobaczyć, trzeba skorzystać z tożsamości trygonometrycznej

sinα + sin β = 2 sin

(

α + β

2

)

cos

(

α− β

2

)

,

by napisać

ω2
A sin(2nθ) + ω2

B sin(2(n+ 1)θ) → 2ω2
0 cos θa sin[(2n+ 1)θa].

Ponieważ w tej granicy mianownik ω2
A +ω2

B −ω2
a przechodzi w ±2ω2

0 cos θa (gdy 0 < θa <
π/2, cosinus jest dodatni) otrzymujemy x2n+1 ∝ ± sin[(2n + 1)θa]. Aby zobaczyć, że jest
to to samo, co w zadaniu 9.10 trzeba uwzgle֒dnić jeszcze to, że tam a = 1, . . . , 2N , a tu
a = 1, . . . , 2. Jednakże

sin

(

π
2N + 1 − a

2N + 1
(2n+ 1)

)

= − sin

(

π
a

2N + 1
(2n+ 1)

)

,

czyli, innymi s lowy, watości sinusów dla a = 2N, . . . , N + 1 sa֒ dok ladnie przeciwne odpo-
wiednim ich wartościom dla a = 1, . . . , N . Jest też jasne, że

sin

(

π
2N + 1 − a

2N + 1
2n

)

= sin

(

π
a

2N + 1
2n

)

.

Tak wie֒c rzeczywíscie w granicy otrzymane tu wzory przechodza֒ w te z zadania 9.10.
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Zadanie 9.14

Pos luguja֒c sie֒ metoda֒ eliminacji translacyjnych i rotacyjnych stopni swobody znaleźć
mody w lasne drgań i odpowiadaja֒ce im cze֒stości cza֒steczki zbudowanej z trzech iden-
tycznych atomów tworza֒cych w po lożeniu równowagi (w stanie niewzbudzonym, mówia֒c
je֒zykiem mechaniki kwantowej) trójka֒t równoboczny o bokach d lugości l. Atomy trak-
tujemy tu jak punktowe masy m, a si ly je wia֒ża֒ce (których prawdziwym źród lem sa֒
oddzia lywania elektromagnetyczne) jak zwyk le spre֒żynki o d lugościach swobodnych l i
wspó lczynnikach spre֒żystości κ.

Rozwia֒zanie:

Uk lad trzech mas ma  la֒cznie 9 stopni swobody. Z tego trzy odpowiadaja֒ modom transla-
cyjnym (przesunie֒cia cza֒steczki jako ca llości), a trzy naste֒pne modom rotacyjnym. Tylko
trzy stopnie swobody odpowiadaja֒ zatem modom oscylacyjnym. Aby nie rozpatrywać
skomplikowanego problemu z dziewie֒cioma zmiennymi należy tu zastosować metode֒ eli-
minacji zbe֒dnych stopni swobody poprzez narzucenie odpowiednich wie֒zów.

Przyjmijmy inercjalny uk lad odniesienia taki, jak pokazany na rysunku 52, w którym
w chwili pocza֒tkowej trzy atomy (trzy masy m) znajduja֒ sie֒ każdy na innej osi uk ladu.
Ich po lożenia w dowolnej chwili t czasu można wtedy przedstawić wektorami

r1(t) =





l/
√

2
0
0



+ u1(t) ≡ r10 + u1(t) ,

r2(t) = r20 + u2(t) oraz r3(t) = r30 + u3(t). Energia kinetyczna T jest wie֒c równa

T =
1

2
m (u̇2

1 + u̇2
2 + u̇2

3) =
1

2
m
∑

a=1,2,3

∑

i=x,y,z

(u̇ia)
2 .

Energia potencjalna jest suma֒ energii potencjalnych trzech wia֒zań, czyli - w przyje֒tym
modelu - suma֒ energii trzech spre֒żynek.

V = V12 + V13 + V23 .

Np.

V12 =
κ

2
(|r1 − r2| − l)2

=
κ

2

(

√

(r10 − r20)2 + 2 (r10 − r20)·(u1 − u2) + (u1 − u2)2 − l
)2

.

Ponieważ (r10 − r20)
2 = l2, wyrażenie w nawiasie pod kwadratem można przepisać w

postaci

√
. . .− l = l

√

1 + 2 e12 ·
(u1 − u2)

l
+

(u1 − u2)2

l2
− l ≈ e12 ·(u1 − u2) ,

257



1

2

3

x

y

z

l

l
l

Rysunek 52: Cza֒steczka zbudowana z trzech identycznych atomów. Definicja inercjalnego
uk ladu odniesienia.

w której e12 = (r10 − r20)/|r10 − r20| = (r10 − r20)/l jest wektorem jednostkowym skiero-
wanym od masy drugiej do pierwszej. Jawnie

e12 =
1√
2





1
−1
0



 , e23 =
1√
2





0
1
−1



 , e31 =
1√
2





−1
0
1



 .

W przybliżeniu ma lych wychyleń z po lożeń równowagi lagrangian ma zatem postać

L =
1

2
m (u̇2

1 + u̇2
2 + u̇2

3) −
κ

2

(

[e12 ·(u1 − u2)]
2 + [e13 ·(u1 − u3)]

2 + [e23 ·(u2 − u3)]
2
)

.

Aby wyeliminować stopnie swobody odpowiadaja֒ce modom translacyjnym i rotacyj-
nym narzucamy na wektory ui odchyleń z po lożeń równowagi warunki

u1 + u2 + u3 = 0 ,

r10 × u1 + r20 × u2 + r30 × u3 = 0 .

Warunki te stanowia֒ uk lad sześciu jednorodnych równań liniowych na dziewie֒ć niewiado-
mych (dziewie֒ć kartezjańskich sk ladowych wektorów ui zdefiniowanych we wprowadzonym
na rysunku 52 inercjalnym uk ladzie odniesienia) i pozwalaja֒ wyrazić przez wybrane trzy
zmienne sześć pozosta lych. Jako trzy niezależne zmienne wybierzemy q1 ≡ ux1 , q2 ≡ uy2
i q3 = uz3, tj. przemieszczenia każdego z atomów wzd luż “jego” osi. W sk ladowych
powyższe warunki to:

q1 + ux2 + ux3 = 0 , uz2 − uy3 = 0 ,

uy1 + q2 + uy3 = 0 , ux3 − uz1 = 0 ,

uz1 + uz2 + q3 = 0 , uy1 − ux2 = 0 .

Po wyeliminowaniu z uk ladu trzech wypisanych po lewej stronie równań zmiennych ux3 ,
uy1 i uz2 z pomoca֒ zwia֒zków podanych po prawej stronie przyjmuje on postać

ux2 + uz1 = −q1 ,
ux2 + uy3 = −q2 ,
uz1 + uy3 = −q3 .
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Rozwia֒zaniem jego sa֒

ux2 = uy1 =
1

2
(q3 − q1 − q2) ,

uy3 = uz2 =
1

2
(q1 − q2 − q3) ,

uz1 = ux3 =
1

2
(q2 − q1 − q3) .

Należy teraz wyrazić energie֒ kinetyczna֒ i potencjalna֒ przez zmienne q1, q2 i q3.

u̇2
1 = q̇21 +

1

4
(q̇3 − q̇1 − q̇2)

2 +
1

4
(q̇2 − q̇1 − q̇3)

2 ,

u̇2
2 =

1

4
(q̇3 − q̇1 − q̇2)

2 + q̇22 +
1

4
(q̇1 − q̇2 − q̇3)

2 ,

u̇2
2 =

1

4
(q̇2 − q̇1 − q̇3)

2 +
1

4
(q̇1 − q̇2 − q̇3)

2 + q̇23 ,

a zatem, jak  latwo obliczyć,

T =
1

2
m

(

5

2
(q̇21 + q̇22 + q̇23) − q̇1q̇2 − q̇2q̇3 − q̇3q̇1

)

.

Aby wyrazić przez zmienne q1, q2 i q3 energie֒ potencjalna֒ rozpisujemy jawnie iloczyny
skalarne:

e12 ·(u1 − u2) =
1√
2

(ux1 − ux2 − uy1 + uy2)

=
1√
2

(

q1 − 2 × 1

2
(q3 − q1 − q2) + q2

)

=
1√
2

(2q1 + 2q2 − q3) .

Wykorzystuja֒c symetrie֒ wybranych zmiennych nietrudno sie֒ zorientować, że

V =
κ

2

1

2

[

(2q1 + 2q2 − q3)
2 + (2q2 + 2q3 − q1)

2 + (2q3 + 2q1 − q2)
2
]

=
κ

2

9

2

(

q21 + q22 + q23
)

.

Równania ruchu zatem, to

m

(

5

2
q̈1 −

1

2
q̈2 −

1

2
q̈3

)

+ κ
9

2
q1 = 0 ,

etc., lub w postaci macierzowej (ω2
0 ≡ 9κ/m)

d2

dt2





5 −1 −1
−1 5 −1
−1 −1 5









q1
q2
q3



+





ω2
0 0 0

0 ω2
0 0

0 0 ω2
0









q1
q2
q3



 = 0 .
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Poste֒puja֒c standardowo, podstawiamy102

q = A e−iωt ,

i otrzymujemy problem w lasny (λ ≡ ω2/ω2
0)





1 − 5λ λ λ
λ 1 − 5λ λ
λ λ 1 − 5λ









A1

A2

A3



 = 0 .

Równanie charakterystyczne, po uporza֒dkowaniu ma postać

−108λ3 + 72λ2 − 15λ+ 1 ≡ −4 (3λ)3 + 8 (3λ)2 − 5 (3λ) + 1 = 0 .

Aby je  latwo rozwia֒zać, zauważamy na podstawie symetrii uk ladu, iż jednym z wektorów
w lasnych powinien być wektor

A(1) =





1
1
1



 ,

któremu, jak  latwo zobaczyć dzia laja֒c nań wypisana֒ wyżej macierza֒, odpowiada wartość
λ = 1

3
. Dziela֒c wielomian 4ξ3 − 8ξ2 + 5ξ − 1 (ξ ≡ 3λ) przez ξ − 1 otrzymujemy równanie

4ξ2 − 4ξ + 1 = (2ξ − 1)2 = 0 .

Zatem równanie charakterystyczne ma jeden pierwiastek λ = 1
3

i podwójny pierwiastek
λ = 1

6
, czyli cze֒stościami drgań rozpatrywanej cza֒steczki sa֒

ω2
1 =

1

3

9k

m
=

3k

m
, ω2

2,3 =
1

6

9k

m
=

3k

2m
.

Jako dwa wektory A(2) i A(3) można wybrać na przyk lad

A(2) =





1
−1
0



 , oraz A(3) =





1
0
−1



 .

 Latwo sprawdzić, że wektory A(1) i A(2) oraz A(1) i A(3) sa֒ parami ortogonalne w iloczynie
skalarnym zadawanym przez macierz energii kinetycznej





5 −1 −1
−1 5 −1
−1 −1 5



 .

102Należy pamie֒tać, że utworzony tu wektor q nie jest wektorem w kartezjańskim uk ladzie inercjalnym z
rysunku 52, lecz wektorem w abstrakcyjnej przestrzeni R3 (w “theory space” - jak powiedzieliby spece od
dekonstrukcji i dynamicznej generacji dodatkowych wymiarów czasoprzestrzeni; niema to jak wymyślić
ma֒drze brzmia֒ca nazwe֒!).
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Wektory A(2) i A(3) odpowiadaja֒ce tej samej wartości w lasnej nie sa֒ do siebie ortogo-
nalne - trzeba by je dopiero zortogonalizować. Ponieważ nie be֒dziemy sie֒ tu zajmować
wspó lrze֒dnymi normalnymi, nie be֒dziemy tu tego robić.

Maja֒c wektory A(a), a = 1, 2, 3 modów w lasnych drgań uk ladu w “theory space” i
wyrażaja֒c jawnie wektory ui, i = 1, 2, 3 przemieszczeń atomów w fizycznej przestrzeni
przez zmienne qi

u1 =





q1
1
2
(q3 − q1 − q2)

1
2
(q2 − q1 − q3)



 , u2 =





1
2
(q3 − q1 − q2)

q2
1
2
(q1 − q2 − q3)



 , u2 =





1
2
(q2 − q1 − q3)

1
2
(q1 − q2 − q3)

q3



 ,

można także podać, jak wygla֒daja֒ te trzy mody drgań w fizycznej przestrzeni. I tak, w
modzie drgań o cze֒stości ω1 odpowiadaja֒cym wektorowi A(1)

u1(t) =





1
−1

2

−1
2



Q1(t), u2(t) =





−1
2

1
−1

2



Q1(t), u3(t) =





−1
2

−1
2

1



Q1(t),

gdzie Q1(t) = C1 cosω1t + S1 sinω1t, w modzie drgań o cze֒stości ω2 odpowiadaja֒cym
wektorowi A(2)

u1(t) =





1
0
−1



Q2(t), u2(t) =





0
−1
1



Q2(t), u2(t) =





−1
1
0



Q2(t),

gdzie Q2(t) = C2 cosω2t + S2 sinω2t, a w modzie drgań o cze֒stości ω2 odpowiadaja֒cym
wektorowi A(3)

u1(t) =





1
−1
0



Q3(t), u2(t) =





−1
0
1



Q3(t), u2(t) =





0
1
−1



Q3(t),

gdzie Q3(t) = C3 cosω2t+S3 sinω2t. Oczywíscie w każdym z modów, jak  latwo sprawdzić,
u1(t) + u2(t) + u3(t) = 0 oraz (co już zobaczyć jest trudniej) r10 × u1(t) + r20 × u2(t) +
r30 × u3(t) = 0.
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Przypomnienie

Moment pe֒du L = mr×v = r×p masy m poruszaja֒cej sie֒ pod dzia laniem (wypadkowej)
si ly F jest sta ly (dL/dt = 0), gdy znika moment D dzia laja֒cej nań (wypadkowej) si ly,103

tj. gdy

D ≡ r × F = 0 .

Jest tak zawsze (choć nie jest to jedyna możliwość) w przypadku zachowawczej (poten-
cjalnej) si ly centralnej

F = −∇V (r) = −erV
′(r) .

Jeśli moment pe֒du jest sta ly podczas ruchu, sta la jest również tzw. pre֒dkość polowa
|L|/2m: wielkość

|L|
2m

dt =
1

2
|r × dr| ,

jest bowiem po lowa֒ pola infinitezymalnego równoleg loboku rozpietego przez wektor wodza֒cy
r i jego zmiane֒ dr w infinitezymalnym odcinku czasu dt, czyli polem trójka֒ta tworzonego
przez wektory r, dr i r + dr.

Sta lość wektora L podczas ruchu w polu zachowawczej si ly centralnej oznacza, że
wyróżniona jest pewna p laszczyzna prostopad la do L: jest to ta p laszczyzna, w której
zachodzi ruch. Umożliwia to rozpatrywanie go we wspó lrze֒dnych biegunowych (r, ϕ) na
tej p laszczyznie (tj. zredukowanie zagadnienia znalezienia ruchu do problemu dwuwymia-
rowego). Możliwe sa֒ dwie metody rozwia֒zywania takiego zagadnienia.

Metoda 1. Wykorzystanie samej tylko sta lości w czasie sk ladowej Lz ≡ L momentu pe֒du.
W równaniu Newtona ma = F(r) rozpisanym na sk ladowe we wspó lrze֒dnych biegunowych

m (r̈ − rϕ̇2) = Fr(r) = −V ′(r) ,
m (2 ṙϕ̇+ rϕ̈) = 0 ,

drugie z równań wyraża w laśnie sta lość L: po pomnożeniu stronami przez r, jest ono
równoważne równości d(mr2ϕ̇)/dt ≡ dL/dt = 0. Zatem,

ϕ̇ =
L

mr2
.

Umożliwia to przekszta lcenie pierwszego z równań Newtona w równanie wyznaczaja֒ce
tor, czyli zależność r = r(ϕ):

ṙ =
dr

dϕ
ϕ̇ =

L

mr2
dr

dϕ
= −L

m

d

dϕ

1

r
,

103Ponieważ mamy na myśli mase֒ punktowa֒, moment wypadkowej si ly jest tym samym, co wypadkowy
moment si l.
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i sta֒d

r̈ = −L

m

d

dt

(

d

dϕ

1

r

)

= − L2

m2r2
d2

dϕ2

1

r
.

Po wyrażeniu r̈ w ten sposób i wyeliminowaniu ϕ̇ z pomoca֒ L, pierwsze z równań Newtona
staje sie֒ wzorem Bineta

− L2

mr2

[

1

r
+

d2

dϕ2

1

r

]

= Fr(r) .

Jeśli znany jest tor ruchu, czyli zależność r = r(ϕ), wzór ten pozwala znaleźć si le֒ Fr wzd luż
trajektorii. W ogólności, gdy si la Fr zależy104 i od r i od ϕ, tylko zależność Fr(r(ϕ), ϕ);
jeśli jednak wiadomo, że si la jest tylko funkcja֒ odleg lości, wzór Bineta pozwala znaleźć
Fr(r). Jeśli zaś zależność Fr(r) jest znana, wzór Bineta jest zwyczajnym równaniem
różniczkowym drugiego rze֒du wyznaczaja֒cym tor.

W przypadku si ly Fr(r) = −κ/r2 wzór Bineta

d2u

dϕ2
+ u =

κm

L2
,

zapisany w zmiennej u = 1/r daje sie֒  latwo sca lkować (potraktowany jak równanie
różniczkowe na tor jest formalnie identyczny z równaniem oscylatora harmonicznego pod-
danego dzia laniu sta lej si ly) i daje

r(ϕ) =
L2/κm

1 + A cos(ϕ+ δ)
=

p

±1 + ε cos(ϕ+ δ)
,

gdzie p ≡ L2/|κ|m. Jest to równanie krzywej stożkowej tj. krzywej be֒da֒cej przecie֒ciem
stożka i p laszczyzny. W zależności od wartości parametru ε (który można przyja֒ć za
nieujemny - jego znak można wcia֒gna֒ć w faze֒ δ) oraz znaku ± (czyli, geometrycznie, od
nachylenia p laszczyzny wzgle֒dem osi stożka) jest to albo elipsa (w szczególnym przypadku
redukuja֒ca sie֒ do okre֒gu) albo hiperbola albo parabola be֒da֒ca forma֒ przej́sciowa֒ od elipsy
do hiperboli.

Metoda 2. Wykorzystujemy zarówno sta lość L, jak i sta lość (wynikaja֒ca֒ z tego, że Fr(r) =
−V ′(r)) energii E

1

2
m(ṙ2 + r2ϕ̇2) + V (r) = E .

Po wyeliminowaniu z powyższego wzoru ϕ̇ na rzecz L/mr2 otrzymujemy zwia֒zek105

1

2
mṙ2 + Veff(r) = E , Veff(r) = V (r) +

L2

2mr2
.

104Si la taka nie mog laby być si la֒ potencjalna֒.
105Przy okazji warto tu zwrócić uwage֒ na to, iż poste֒powanie polegaja֒ce na podstawieniu ϕ̇ = L/mr2
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Redukuje to znalezienie ruchu w zmiennej radialnej r do problemu jednowymiarowego
(takiego jak rozpatrywane w rozdziale III); ruch w zmiennej r jest wtedy dany w kwadra-
turach

∫

dt = ±
√

m

2

∫

dr
√

E − Veff(r)
.

Znak ± jest tu znakiem pochodnej dr/dt. Jedyna֒ różnica֒ w porównaniu z prawdziwym
ruchem jednowymiarowym jest to, że zakresem zmienności r jest zbiór R+ (a nie R, jak
w przypadku zmiennej x w ruchu prawdziwie jednowymiarowym); należy też pamie֒tać,
że w punkcie r = 0 zmienna ϕ uk ladu biegunowego jest źle określona.

Skorzystanie w różniczkowym zwia֒zku dt = ±
√

m/2 dr/
√

E − Veff(r) z równości
dt = (mr2/L)dϕ (wynikaja֒cej z tego, że ϕ̇ = L/mr2) pozwala106 przekszta lcić powyższa֒
kwadrature֒ (tj. ca lke֒) w kwadrature֒ daja֒ca֒ równanie toru, czyli zwia֒zek r z ϕ:

∫

dϕ = ±
√

L2

2m

∫

dr

r2
√

E − Veff(r)
= ∓

√

L2

2m

∫

du
√

E − Veff(1/u)
.

Znak ± jest teraz znakiem pochodnej dr/dϕ. Jeśli V (r) = −κ/r, otrzymuje sie֒ sta֒d ten
sam wzór na zależność r = r(ϕ), co otrzymany ze wzoru Bineta ale ze sta lymi p i ε od
razu wyznaczonymi przez ca lkowita֒ energie֒ E i moment pe֒du L.

Wyznaczywszy r = r(ϕ) albo ze wzoru Bineta, albo z powyższej kwadratury (naogó l
w postaci uwik lanej), zależność po lożenia od czasu można otrzymać ca lkuja֒c zwia֒zek

r2(ϕ) dϕ =
L

m
dt ,

do samego lagrangianu (ufamy, że L - moment pe֒du i L - lagrangian nie pochrzania֒ sie֒ czytelnikowi...)

L(r, ṙ, ϕ̇) =
1

2
m(ṙ2 + r2ϕ̇2) − V (r) ,

i wykorzystanie niezależności od czasu tak otrzymanego lagrangianu L′(r, ϕ, ṙ) = L(r, ṙ, L/mr2) da loby
w efekcie b ledny wniosek, jakoby sta la֒ ruchu by la wielkość

h′ =
1

2
mṙ2 + V (r) − L2

2mr2
.

Powodem tego jest to, że zwia֒zek ϕ̇ − L/mr2 = 0, albo lepiej, zwia֒zek dϕ − (L/mr2)dt = 0, nie jest
ca lkowalny, tj. nie daje sie֒ przedstawić w postaci df(r, ϕ, t)/dt = 0 (nie ma on bowiem nawet czynnika
ca lkuja֒cego) i jako taki nie reprezentuje wie֒zów holonomicznych, a tylko zwia֒zki be֒da֒ce (lub daja֒ce sie֒
przedstawić jako takie) wie֒zami holonomicznymi można wykorzystywać bezpośrednio w lagrangianie do
eliminowania zmiennych: wie֒zy holonomiczne można bowiem zawsze - na tym polega przecież ca la metoda
równań Lagrange’s II-go rodzaju! - wyeliminować przez wybór odpowiednich zmiennych uogólnionych
zgodnych z tymi wie֒zami i to w laśnie de facto czynimy, eliminuja֒c z lagrangianu jaka֒ś zmienna֒ wy-
znaczaja֒c ja֒ ze zwia֒zku reprezentuja֒cego wie֒zy holonomiczne (por. uwagi o eliminacji zmiennych w
Przypomnieniu do rozdzia lu IX).
106Do tego samego prowadzi też wyrażenie w podanym wzorze na energie֒ E pochodnej r po czasie przez

pochodna֒ r po ϕ zgodnie z wyprowadzonym już zwia֒zkiem ṙ = −(L/m)d(1/r)/dϕ.
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który (znów: naogó l w postaci uwik lanej) daje ϕ = ϕ(t) a w konsekwencji także r =
r(ϕ(t)) ≡ r(t).

Tak jak w przypadku ruchów jednowymiarowych, Metoda 2 pozwala tu przy ustalonym
momencie pe֒du L zbadać charakter ruchu jakościowo w zależności od ca lkowitej energii
E.107 Np. Jeśli Veff(r) ma w r = r0 minimum równe V min

eff , zmienna r be֒dzie oscylować
wokó l r0 pomie֒dzy wartościami r− < r0 i r+ > r0 wyznaczonymi przez warunki Veff(r±) =
E i, jeśli energia E ruchu jest niewiele wyższa niż V min

eff (jak bardzo musi być bliska V min
eff ,

to zależy od bardziej globalnej postaci Veff(r)), można zależność r(t) (lub r(ϕ)) przybliżyć
przez oscylacje harmoniczne wokó l r = r0. Ponieważ ϕ̇ ∝ L ma sta ly znak, który przez
wybór strony, z której patrzymy na p laszczyzne֒ ruchu, można przyja֒c za dodatni, masa
m, obiegaja֒c centrum r = 0, znajduje sie֒ zawsze (“faluja֒c” pomie֒dzy nimi) pomie֒dzy
dwoma okre֒gami o promieniach r− i r+. Powstaje wtedy naturalne pytanie, czy tor ruchu
jest krzywa֒ zamknie֒ta֒. Odpowiedź daje ca lka

√

L2

2m

∫ u−

u+

du
√

E − Veff(1/u)
= ∆ϕ , u± = 1/r± .

Jeśli ∆ϕ = 2π(n/k) z jakimís naturalnymi n i k, tor jest krzywa֒ zamknie֒ta֒. Dowodzi sie֒
(zob. zadanie 10.13), że tylko w potencja lach V (r) = −1

2
|k|r2 i V (r) = −|κ|/r wszystkie

trajektorie ograniczone (tzn. nie rozcia֒gaja֒ce sie֒ do nieskończoności) sa֒ zamkniete
Na podstawie analizy potencja lu efektywnego Veff(r) widać też, że spadek cia la na cen-

trum si ly przycia֒gaja֒cej jest możliwy tylko wtedy, gdy V (r) “niweluje” skutki istnienia
bariery odśrodkowej (“centryfugalnej” w niektórych starszych podre֒cznikach) reprezento-
wanej w Veff(r) przez wyraz L2/2mr2. Jest tak, gdy

lim
r→0

(

r2 V (r)
)

< − L2

2m
.

Np. gdy V (r) = −|κ|/r2 i |κ| > L2/2m, lub gdy V (r) = −|κ|/rβ i β > 2 i, oczywíscie,
zawsze (w przypadku potencja lu przycia֒gajacego na ma lych odleg lościach), gdy L = 0,
co odpowiada ruchowi po prostej przechodza֒cej przez centrum.

107Sta le E i L sa֒ dwiema niezależnymi globalnymi charakterystykami ruchu; dwiema pozosta lymi -
ponieważ ruch p laski jest zadany dwoma zwyczajnymi równaniami różniczkowymi drugiego rze֒du, musza֒
być cztery sta le dowolne (warunki pocza֒tkowe) wyznaczaja֒ce jednoznacznie zależność po lożenia od czasu
- sa֒ wybór chwili pocza֒tkowej t = 0 i wybór kierunku, od którego liczony jest ka֒t ϕ - nie maja wiec one
charakteru globalnego.
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Zadanie 10.4

Wykazać metodami geometrii analitycznej, że wzór

r(ϕ) =
p

±1 + ε cosϕ
,

w którym parametr ε jest z definicji nieujemny (tak wybrany jest sposób odmierzania
ka֒ta ϕ), rzeczywíscie zadaje znane z geometrii krzywe stożkowe: elipse֒ (gdy 0 ≤ ε < 1 i
znak +), hiperbole֒ (gdy ε > 1, oba znaki) i parabole֒ (gdy ε = 1 i znak +). Wyprowadzić
w ten sposób zwia֒zki mie֒dzy różnymi charakterystykami tych krzywych (np. mie֒dzy
d lugościami a i b pó losi elipsy, parametrami p i ε oraz odleg lościa֒ 2c mie֒dzy dwoma
ogniskami elipsy i suma֒ 2f odleg lości dowolnego punktu na elipsie od jej ognisk).

Rozwia֒zanie:

Elipsa jest to krzywa p laska (przyjmujemy, że leży ona w p laszczyźnie xy) tworzona przez
takie punkty o wspó lrze֒dnych (x, y), że suma (kartezjańskich) odleg lości r− i r+ (zob.
lewy rysunek 53) każdego z nich od ustalonych dwu punktów P− i P+ o wspó lrze֒dnych
odpowiednio (−c, 0) i (c, 0) jest sta la i równa 2f . Hiperbole֒ z kolei tworza֒ punkty, których
różnica odleg lości r− i r+ od punktów P− i P+ jest równa 2f lub −2f (zob. prawy rysunek
53). Wszystkie te przypadki ujmuje zwia֒zek

|r− ± r+| = 2f , r∓ =
√

(x± c)2 + y2 .

Po podniesieniu obu stron do kwadratu daje on równanie (znak − po prawej stronie
odpowiada elipsie, a znak + hiperboli)

x2 + y2 + c2 − 2f 2 = ∓
√

[(x+ c)2 + y2][(x− c)2 + y2] ,

które, po jeszcze jednym podniesieniu stronami do kwadratu, daje (maja֒cy już taka֒ sama֒
postać dla obu krzywych) zwia֒zek 4(f 2−c2)x2+4f 2y2 = 4f 2(f 2−c2) równoważny znanym
ze szko ly równaniom

x2

f 2
± y2

|f 2 − c2| = 1 .

(Znak +, gdy f 2 > c2, a znak −, gdy f 2 < c2). Jest geometrycznie oczywiste, że w
przypadku elipsy musi zachodzić nierówność f 2 > c2 (gdy f → c elipsa redukuje sie֒ do
odcinka  la֒cza֒cego punkty P− i P+). Z kolei z prostych rozważań nietrudno wywnioskować,
że w przypadku hiperboli f 2 < c2 (tj. zbiór punktów spe lniaja֒cych warunek |r− − r+| =
2f jest, gdy f 2 > c2, zbiorem pustym). Zatem d lugości a i b pó losi elipsy we wzorze
x2/a2 + y2/b2 = 1 wia֒ża֒ sie֒ z parametrami c i f wzorami

a2 = f 2 , b2 = f 2 − c2 , (elipsa) ,

tj. c2 = a2 − b2, a parametry a i b we wzorze x2/a2 − y2/b2 = 1 definiuja֒cym hiperbole֒ sa֒
dane przez

a2 = f 2 , b2 = c2 − f 2 , (hiperbola) ,
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x′

y′

x

y

(−c, 0) (+c, 0)

P− P+

r− r+
x′

y′

x

y

(−c, 0) (+c, 0)

P− P+
r−

r+

Rysunek 53: Definicje wielkości i primowanych uk ladów kartezjańskich (x′, y′) przy kon-
strukcji elipsy (r− + r+ = 2f , f > c) i hiperboli (|r− − r+| = 2f , f < c).

tj. w tym przypadku c2 = a2 + b2.

Aby sprowadzić równanie elipsy do postaci podanej w Przypomnieniu (tj. aby wy-
kazać, że wzór tam otrzymany i przytoczony w treści tego Zadania rzeczywíscie definiuje
elipse֒) zapisujemy je w zmiennych biegunowych (r, ϕ) zdefiniowanych w uk ladzie (x′, y′)
o pocza֒tku w punkcie P+ (zobacz lewy rysunek 53): x = c + x′ = c + r cosϕ ≡ c + rcϕ,
y = y′ = r sinϕ ≡ rsϕ:

1

a2
(c+ rcϕ)2 +

1

b2
r2s2ϕ = 1 ,

i traktujemy ten wzór jak równanie kwadratowe

(c2ϕ +
a2

b2
s2ϕ) r2 + 2c cϕr − b2 = 0 ,

(wykorzystany tu zosta lzwia֒zek c2 = a2 − b2) wyznaczaja֒ce odleg lość r od punktu P+ w
funkcji ka֒ta ϕ. Rozwia֒zaniem jego jest

r =
1

2[c2ϕ + (a2/b2)s2ϕ]

[

−2c cϕ +
√

4c2c2ϕ + 4(b2c2ϕ + a2s2ϕ)
]

=
a− c cϕ

(a2/b2) + [1 − a2/b2]c2ϕ
.

(Fizyczny jest tylko jeden pierwiastek, bo zmienna r jest nieujemna; w drugim kroku
ponownie wykorzystana zosta la równość c2 = a2 − b2). Wzór ten jest w laśnie wzorem
otrzymanym w Przypomnieniu (w sytuacji, gdy κ > 0), jeśli zdefiniować

ε ≡ c

a
=

√

1 − b2

a2
< 1 .

Wówczas bowiem

r =
a(1 − εcϕ)

(a2/b2)[1 − ε2c2ϕ]
=

b2/a

1 + ε cosϕ
.

Otrzymujemy sta֒d ponadto zwia֒zek p = b2/a. Zakres zmienności ka֒ta ϕ nie jest w tym
przypadku niczym ograniczony: 0 ≤ ϕ < 2π.
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Równanie hiperboli x2/a2 − y2/b2 = 1 przepisujemy na odmiane֒ w zmiennych biegu-
nowych (r, ϕ) zdefiniowanych w uk ladzie (x′, y′) o pocza֒tku w punkcie P− (zobacz prawy
rysunek 53): x = −c + x′ = −c + r cosϕ, y = y′ = r sinϕ:

1

a2
(c− rcϕ)2 − 1

b2
r2s2ϕ = 1 ,

co, po skorzystaniu z tego, że w tym przypadku c2 = a2 + b2, prowadzi do wzoru na r

r =
b2

a

∓1 + εcϕ
−1 + ε2c2ϕ

=
b2

a

∓1 + εcϕ
(−1 + εcϕ)(1 + εcϕ)

,

w którym teraz (parametr p = b2/a, tak jak poprzednio)

ε ≡ c

a
=

√

1 +
b2

a2
> 1 .

Oba pierwiastki równania kwadratowego sa֒ w tym przypadku fizyczne i daja֒ zależności
r = r(ϕ) odpowiadaja֒ce dwu różnym ga le֒ziom hiperboli: znak − daje ga la֒ź lewa֒ (przebie-
gaja֒ca֒ bliżej lewego ogniska, tj. pocza֒tku uk ladu (x′, y′)), a znak + ga la֒ź prawa֒. Zakres
zmienności ka֒ta ϕ jest na obu ga le֒ziach ograniczony do −ϕmax < ϕ < ϕmax przez warunek
dodatniości mianownika; ka֒t graniczny ϕmax zależy od ga le֒zi: na lewej π/2 < ϕmax < π,
a na prawej 0 < ϕmax < π/2.

Geometrycznie parabola jest krzywa֒ p laska֒ (przyjmujemy, że leża֒ca֒ w p laszczyźnie
xy), której każdy punkt jest równoodleg ly od ustalonego punktu P - przyjmujemy, że jest
to punkt o wspó lrze֒dnych (−p/2, 0) - i ustalonej prostej ℓ (nieprzechodza֒cej przez wy-
brany punkt); bez straty ogólności przyjmujemy, że jest to prosta x = p/2. Wspó lrze֒dne
punktów leża֒cych na paraboli spe lniaja֒ zatem zwia֒zek rℓ = rP , czyli

∣

∣

∣
x− p

2

∣

∣

∣
=

√

(

x+
p

2

)2

+ y2 ,

Aby wykazać, że wyprowadzony w Przypomnieniu tor ruchu w potencjale V (r) = −κ/r
jest, gdy ε = 1, parabola֒, zapisujemy równanie paraboli y2 = −2px, otrzymane po pod-
niesiony stronami do kwadratu powyższego zwia֒zku, w uk ladzie biegunowym zwia֒zanym z
uk ladem (x′, y′) o pocza֒tku w punkcie P : x = −p/2+x′ = −p/2+r cosϕ, y = y′ = r sinϕ.
Daje to równanie kwadratowe na r

r2s2ϕ + 2pcϕr − p2 = 0 .

Jego rozwia֒zanie (tylko jeden pierwiastek jest fizyczny, gdyż r ≥ 0)

r =
1

2s2ϕ

(

−2pcϕ +
√

4p2c2ϕ + 4p2s2ϕ

)

=
p(1 − cϕ)

1 − c2ϕ
=

p

1 + cosϕ
.

Tak wie֒c w przypadku paraboli, wprowadzony w Przypomnieniu parametr p jest tym sa-
mym, który charakteryzuje parabole֒ geometrycznie (jest odleg lościa֒ punktu P od prostej
ℓ). Zakresem zmienności ka֒ta ϕ jest tu przedzia l otwarty (−π,+π).
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Zadanie 10.5

Wiedza֒c, że torami ruchu masy m w polu si ly centralnej o potencjale V (r) = −κ/r (κ > 0
- si la przyciagaja֒ca, κ < 0 - odpychaja֒ca) sa֒ krzywe stożkowe: okra֒g, elipsa, parabola
lub hiperbola, wyprowadzić zwia֒zki mie֒dzy różnymi charakterystykami elipsy i hiperboli:
(c, f), (a, b) i (p, ε) bez jawnego wyprowadzania (jak w Zadaniu 10.4) zwia֒zków mie֒dzy
równaniami w uk ladzach kartezjańskim i biegunowym. Powia֒zać te charakterystyki z
momentem pe֒du L i ca lkowita֒ energia֒ mechaniczna֒ E cza֒stki. W przypadku ruchu po
elipsie wyprowadzić z otrzymanych zwia֒zków trzecie prawo Keplera.

Rozwia֒zanie:

Jak to ustalone zosta lo w Przypomnieniu, we wzorze

r(ϕ) =
p

±1 + ε cosϕ
,

w którym wystepuje znak +, gdy si la jest przycia֒gaja֒ca (κ > 0), a znak −, gdy si la jest
odpychaja֒ca (κ < 0). Parametr ε jest z definicji (tak wybrany jest sposób odmierzania
ka֒ta ϕ) nieujemny. Sta la p > 0 wia֒że sie֒ z momentem pe֒du L wzorem p = L2/m|κ|.
Aby powia֒zać parametr ε z momentem pe֒du i ca lkowita֒ energia֒ mechaniczna֒ E cza֒stki,
wystarczy zauważyć, iż w punkcie toru, w którym r przyjmuje swa֒ najmniejsza֒ wartość

rmin =
p

ε± 1
,

we wzorze

1

2
mṙ2 + Veff(r) ≡ 1

2
mṙ2 − κ

r
+

L2

2mr2
=

L2

2m

(

d

dϕ

1

r

)2

− κ

r
+

L2

2mr2
= E ,

na ca lkowita֒ energie֒ ruchu znika pochodna ṙ (lub pochodna d(1/r)/dϕ). Zatem równość108

E = Veff(rmin) = ∓|κ|
p

(ε± 1) +
L2

2mp2
(ε± 1)2 = ∓mκ

2

L2
(ε± 1) +

mκ2

2L2
(ε± 1)2 ,

stanowi równanie wyznaczaja֒ce ε ± 1, czyli ε w funkcji E i L. Ponieważ ε > 0, tylko
jeden pierwiastek powyższego równania kwadratowego jest fizyczny i otrzymuje sie֒ sta֒d
zwia֒zek

ε =

√

1 +
2EL2

mκ2
,

s luszny (ponieważ znak ± w ε±1 jest skorelowany ze znakiem wyrazu liniowego wzgle֒dem
niewiadomej ε ± 1 w równaniu) dla obu znaków parametru κ (tj. zarówno dla si ly
przycia֒gaja֒cej, jak i odpychaja֒cej).

108Taka sama równość zachodzi także w punkcie o maksymalnej wartości rmax zmiennej r, jeśli tor jest
zamknie֒ty, tzn. jest okre֒giem lub elipsa֒, co z kolei jest możliwe tylko w przypadku si ly przycia֒gaja֒cej
(κ > 0).
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Ponieważ gdy κ < 0, potencja l efektywny Veff(r) jest wsze֒dzie ścísle dodatni, energia
ca lkowita ruchu E musi być też ścísle dodatnia (energia kinetyczna ruchu radialnego 1

2
mṙ2

jest nieujemna, wie֒c tor ruchu może przechodzić tylko przez obszary, w których zmienna
r jest taka, że E ≥ Veff(r)), przy ruchu w polu si ly odpychaja֒cej parameter ε jest zawsze
wie֒kszy od jedności. Wzór

r(ϕ) =
p

−1 + ε cosϕ
,

wyznacza wtedy hiperbole֒:109 ponieważ zmienna r musi być ścísle dodatnia (przy L 6= 0
dotarcie do r = 0 jest przy skończonej energii ruchu E niemożliwe) zakres zmienności
ka֒ta ϕ jest ograniczony warunkiem cosϕ > 1/ε, czyli do zakresu −ϕmax < ϕ < ϕmax przy
czym 0 < ϕmax < π/2; gdy ϕ→ ±ϕmax, cza֒stka oddala sie֒ do nieskończoności.

Przy ruchu w potencjale si ly przycia֒gaja֒cej (κ > 0) potencja l efektywny Veff(r) jest w
pewnym zakresie zmiennej r ujemny i ma minimum V min

eff (L) = −mκ2/2L2 w (zależa֒cym
od L) punkcie r0(L) = L2/m|κ| ≡ p. Jeśli energia ruchu E jest (przy ustalonym L)
dok ladnie równa V min

eff (L), możliwy jest tylko ruch po okre֒gu (zmiana odleg lości r od cen-
trum si ly jest niemożliwa, bo znikać musi 1

2
mṙ2). Jest to zgodne z otrzymanym wzorem:

w takiej sytuacji ε = 0 i równanie toru redukuje sie֒ do zwia֒zku r(ϕ) = p =const.
Gdy V min

eff (L) < E < 0, parametr ε jest ograniczony przez nierówności 0 < ε < 1 i
wzór

r(ϕ) =
p

1 + ε cosϕ
,

wyznacza wtedy elipse֒: mianownik nigdy sie֒ nie zeruje (ka֒t ϕ przebiega ca ly zakres
od 0 do 2π), a zmienna r, be֒da֒ca odleg lościa֒ punktu na elipsie od jednego (przyjmujemy
konwencje֒, że od prawego, czyli od punktu P+ na lewym rysunku 53) z jej ognisk, zmienia
sie֒ od

rmin =
p

1 + ε
(gdy ϕ = 0 + 2nπ) do rmax =

p

1 − ε
(gdy ϕ = π + 2nπ).

Jak wiadomo ze szko ly, elipse֒ (na p laszczyźnie xy) można zadać albo wzorem

x2

a2
+
y2

b2
= 1 ,

w którym a i b sa֒ d lugościami jej pó losi, albo scharakteryzować jako zbiór punktów których
suma odleg lości r−+ r+ od dwu ustalonych punktów (ognisk elipsy) P− i P+ p laszczyzny
odleg lych od siebie o 2c jest sta la i równa 2f (zob. Zadanie 10.4). Zwia֒zki mie֒dzy
różnymi sposobami charakteryzowania elipsy  latwo ustalić: wybieraja֒c osie x i y tak,
by wspó lrze֒dnymi punktów P− i P+ by ly (−c, 0) i (c, 0) - powyższe szkolne równanie
elipsy jest napisane w laśnie w takim uk ladzie odniesienia - rozpatrujemy punkt elipsy o

109Z rozwia֒zania Zadania 10.4 wiadomo też, że jest to ga la֒ź hiperboli dalsza od ogniska.
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wspó lrze֒dnych (−a, 0) leża֒cy na osi x na lewo od punktu P−; jego odleg lości od ognisk,
czyli punktów P− i P+, sa֒, jak nietrudno zobaczyć, równe r− = a− c i r+ = a + c, czyli

2f = r− + r+ = 2a .

Wynika sta֒d, że f = a. Rozpatruja֒c naste֒pnie punkt elipsy o wspó lrze֒dnych (0, b),
z twierdzenia Pitagorasa znajdujemy, że b =

√

f 2 − c2 =
√
a2 − c2. Z kolei zwia֒zki

parametrów a i b z parametrami p i ε można ustalić naste֒puja֒co: po pierwsze jest jasne,
że

2a = rmin + rmax =
p

1 + ε
+

p

1 − ε
,

ska֒d wnioskujemy, że

a =
p

1 − ε2
.

Wynika sta֒d także, iż

rmin = a (1 − ε) , rmax = a (1 + ε) .

Chwyt pozwalaja֒cy bez k lopotów wyrazić b przez p i ε polega na zauważeniu, że d lugość
b jest równa maksymalnej wartości zmiennej y = r sinϕ; przyrównuja֒c do zera pochodna֒

d

dϕ
y(ϕ) =

d

dϕ

p sinϕ

1 + ε cosϕ
,

znajdujemy, że znika ona w cosϕ = −ε, gdzie y = (p
√

1 − ε2)/(1 − ε2). Zatem

b =
p√

1 − ε2
,

i zachodzi zwia֒zek

b2 = ap .

Zatem b2/a2 = 1 − ε2 i sta֒d

ε =

√

1 − b2

a2
=
c

a
.

Alternatywnie można rozpatrzyć na elipsie punkt odpowiadaja֒cy ka֒towi ϕ = π/2.
Punkt ten w uk ladzie kartezjańskim o środku w po lowie odleg lości pomie֒dzy ogniskami
elipsy (chodzi tu o uk lad xy z lewego rysunku 53) ma wspó lrze֒dne x = c+ r(ϕ) cosϕ = c,
y = r(ϕ) sinϕ = p. Wspó lrze֒dne te musza֒ spe lniać równanie elipsy (x/a)2 + (y/b)2 = 1.
Podstawiaja֒c tu x2 = c2 = a2 − b2 i y2 = p2 znajdujemy, że p = b2/a, czyli że b =

√
ap,

co daje podany już wzór wyrażaja֒cy b przez p i ε.
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Znalezione wyżej zwia֒zki prowadza֒ natychmiast do trzeciego prawa Keplera. Przypo-
mnijmy bowiem (przypomnielísmy to już w Przypomnieniu), że sta lość momentu pe֒du L
jest równoważna sta lości pre֒dkości polowej (A od “area”)

dA

dt
=

1

2
r · r ϕ̇ =

L

2m
.

Ca lkuja֒c obie strony po ca lym obiegu elipsy, czyli od zera do okresu ruchu T , otrzymamy
po lewej stronie pole elipsy A = πab. Prowadzi to do zwia֒zku

π2a2b2 ≡ π2a3p =
L2

4m2
T 2 .

Jest to w laśnie trzecie prawo Keplera: stosunek kwadratów okresów obiegu planet (Uk ladu
S lonecznego) do sześcianów d lugości dużych pó losi ich orbit nie zależy od planety. Rze-
czywíscie:

T 2

a3
= 4π2m

2p

L2
= 4π2m

κ
=

4π2

GMS
,

po uwzgle֒dnieniu tego, że κ = GMSm (MS jest tu masa֒ S lońca). Wyrażaja֒c z kolei we
wzorach a = p/(1 − ε2) i b = p/

√
1 − ε2 parametry p i ε przez E i L znajdujemy, że

a =
κ

2|E| , b =
L

√

2m|E|
,

co pozwala wyrazić okres obiegu elipsy przez energie֒:

T = 2π
m

L
ab = π

√

mκ2

2|E|3 .

Okoliczność, że okres T nie zależy od momentu pe֒du L jest cecha֒ szczególna֒ ruchu Ke-
plerowskiego (i niekiedy istotna֒ w dalszych Zadaniach).

Zauważmy też, że wzór a = κ/2|E| zapisany w postaci

E = − κ

2a

uogólnia znany ( latwy do wykazania) zwia֒zek E = −κ/2r mie֒dzy ca lkowita֒ energia֒ ruchu
zachodza֒cego w potencjale V (r) = −κ/r po orbicie ko lowej, a promieniem tej orbity.

Zwia֒zki mie֒dzy parametrami a i b wyste֒puja֒cymi w “szkolnym” równaniu hiperboli
(x/a)2 − (y/b)2 = 1, a parametrami c i f , gdzie 2c jest odleg lościa֒ ogniska P− od ogniska
P+, a 2f jest sta la֒ różnica֒ |r−− r+| odleg lości punktów hiperboli od jej ognisk, ustalamy
rozpatruja֒c najpierw punkt A hiperboli o wspó lrze֒dnych (a, 0) w kartezjańskim uk ladzie
xy z prawego rysunku 53. Jego odleg lości od ognisk sa֒ równe r− = c + a, r+ = c− a, co
powala stwierdzić, że f = a (tak jak w przypadku elipsy). Z kolei rozpatrujemy punkt B o
wspó lrze֒dnych (w tymże samym uk ladzie kartezjańskim) (c, yB). Odleg lości tego punktu
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od ognisk sa֒ równe r− =
√

(2c)2 + y2B, r+ = yB, tak iż r− − r+ = 2f = 2a daje (po
podniesieniu stronami równości r− = 2a+ r+ do kwadratu) yB = (c2−a2)/a. Wstawiaja֒c
wspó lrze֒dne punktu B do równanie hiperboli dostajemy zwia֒zek

c4 − (2a2 + b2)c2 + a2(a2 + b2) = 0 ,

który potraktowany jak równanie bikwadratowe na c ma dwa rozwia֒zania: c2 = a2, które
trzeba odrzucić, gdyż w przypadku hiperboli musi być c > a oraz drugie, daja֒ce dobry
zwia֒zek

c2 = a2 + b2 .

Z kolei zwia֒zek parametrów a i b z parametrami p i ε znajdujemy naste֒puja֒co. Naj-
pierw rozpatrujemy punkt na lewej ga le֒zi hiperboli odpowiadaja֒cy ka֒towi ϕ = π/2.
Ma on w kartezjańskim uk ladzie xy z prawego rysunku 53 wspó lrze֒dne (−c, p) gdyż
x = −c+r(ϕ) cosϕ, y = r(ϕ) sinϕ, a na lewej ga le֒zi r = p/(1+ε cosϕ). Wstawiaja֒c je do
równania hiperboli (x/a)2 − (y/b)2 = 1 i wykorzystuja֒c to, że c2 = a2 + b2 otrzymujemy
zwia֒zek p = b2/a. Naste֒pnie bierzemy na lewej ga le֒zi hiperboli punkt o wspó lrze֒dnych
(x, y) = (−a, 0) najbliższy ognisku P−, które jest pocza֒tkiem kartezjańskiego uk ladu x′y′,
w którym zdefiniowane sa֒ zmienne r i ϕ (zobacz Zadanie 10.4). Punkt ten jest od tego
ogniska odleg ly o r− = c− a. Ta sama odleg lość r− jest też równa p/(1 + ε). Zatem

p = (1 + ε)(c− a) ,

co po skorzystaniu z ustalonych już zwia֒zków p = b2/a i b2 = c2 − a2 daje

b2

a2
≡ c2

a2
− 1 =

( c

a
− 1
)( c

a
+ 1
)

= (1 + ε)
( c

a
− 1
)

.

Sta֒d, w przypadku hiperboli

ε =
c

a
=

√

1 +
b2

a2
.

W przypadku potencja lu si ly przycia֒gaja֒cej V (r) = −|κ|/r potencja l efektywny Veff(r)
da֒ży przy r → ∞ do zera od do lu (Veff → 0−) i możliwy jest ruch nieograniczony z zerowa֒
energia֒ ca lkowita֒ (E = 0). Torem ruchu jest w tym szczególnym przypadku parabola,
be֒da֒ca tworem przej́sciowym pomie֒dzy baaaardzo wyd luuuużooooona֒ elipsa֒ a hiperbola֒.
Ponieważ wtedy ε = 1, zmienna r da֒ży do nieskończoności, gdy |ϕ| da֒ży do π. Gdy energia
ruchu jest dodatnia (E > 0) torem jest już hiperbola, a zmienna r da֒ży do nieskończoności,
gdy ka֒t |ϕ| da֒ży do ka֒ta ϕmax leża֒cego pomie֒dzy π/2 a π. Różnica mie֒dzy ruchem po
hiperboli w przypadku si ly przycia֒gaja֒cej (κ > 0) i odpychaja֒cej (κ < 0) jest wie֒c taka
(zobacz rysunek ??), że w pierwszym przypadku nadlatuja֒ca z nieskończoności cza֒stka
zawraca za centrum si ly (za dalszym ogniskiem), a w drugim przed centrum si ly (tj. przed
dalszym ogniskiem, ale za bliższym).
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Zadanie 10.6

Wyprowadzić wzory zadaja֒ce (w sposób uwik lany) zależność od czasu po lożenia masy
m poruszaja֒cej sie֒ w potencjale V (r) = −κ/r (κ > 0 - si la przyciagaja֒ca, κ < 0 -
odpychaja֒ca) we wszystkich możliwych przypadkach: ruchu po elipsie (możliwym przy
κ > 0), ruchu po hiperboli (trzeba tu odróżnić przypadki ruchu po ga le֒zi hiperboli bliższej
centrum si ly, co zachodzi, gdy κ > 0 i po ga le֒zi dalszej, gdy κ < 0) oraz w przypadku
ruchu po paraboli (możliwym tylko, gdy κ > 0).

Rozwia֒zanie:

Zależność po lożenia od czasu jest dana ogólnym zwia֒zkiem

t− t0 = ±
√

m

2

∫ r(t)

r(t0)

dr
√

E + κ/r − L2/2mr2
,

znak + dotyczy tu oddalania sie֒ masy m od centrum si ly, a − zbliżania. W przypadku
ruchu po elipsie (κ > 0, E = −|E|) wzór ten, “zwijaja֒c do pe lnego kwadratu” wyrażenie
pod pierwiastkiem, przekszta lcamy do postaci

t− t0 = ±
√

m

2|E|

∫ r(t)

r(t0)

dr r
√

(κ2/4E2) − (L2/2m|E|) − (r − κ/2|E|)2

= ±
√

ma

κ

∫ r(t)

r(t0)

dr r
√

a2ε2 − (r − a)2
.

Skorzystalísmy tu z tego (zob. Zadanie 10.5), że (a jest d lugościa֒ dużej pó losi elipsy)

a =
κ

2|E| ,
κ2

4E2
− L2

2m|E| = a2
(

1 − 2|E|L2

mκ2

)

= a2ε2 .

Niech czas t be֒dzie liczony od r = rmin (perygeum w ruchu wokó l Ziemi, lub peryhelium
w ruchu wokó l S lońca, a ogólnie pericentrum). Zatem

t =

√

ma

κ

∫ r(t)

rmin

dr r
√

a2ε2 − (r − a)2
.

W powyższej ca lce robimy podstawienie

r(ξ) − a = −aε cos ξ , dr = dξ aε sin ξ .

Zmienna ξ biegnie tu od 0 do π: r(0) = a(1 − ε) = rmin < a (sta֒d znak minus po prawej
stronie wzoru na r − a) oraz r(π) = a(1 + ε) = rmax. Wybieramy także znak + przed
ca lka֒, gdyż na tym odcinku czasu ṙ > 0. Sta֒d (sin ξ′ > 0 w rozpatrywanym zakresie ξ′)

t =

√

ma

κ

∫ ξ

0

dξ′ a(1 − ε cos ξ′) aε sin ξ′

aε sin ξ′
=

√

ma3

κ

∫ ξ

0

dξ′ (1 − ε cos ξ′) .
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Ca lka jest elementarna i otrzymujemy wyrażona֒ w sposób parametryczny zależność r od
czasu

t =

√

ma3

κ
(ξ − ε sin ξ) ,

r = a (1 − ε cos ξ) ,

przy czym (na razie) 0 ≤ ξ ≤ π. Be֒da֒cy po lowa֒ okresu T czas ruchu od rmin do rmax jest
równy t(π), czyli

T = 2π

√

ma3

κ
= π

√

mκ2

2|E|3 ,

co zgadza sie֒ z wynikiem uzyskanym na podstawie sta lości pre֒dkości polowej (zobacz
Zadanie 10.5).

Zakres zmiennej ξ można w powyższych zwia֒zkach przed lużyć do 2π, o czym można
przekonać sie֒ naste֒puja֒co. Gdy t > T/2 powinnísmy napisać (ponieważ na tym odcinku
czasu ṙ < 0, wybieramy przed ca lka֒ znak minus)

t =
T

2
−
√

ma

κ

∫ r(t)

rmax

dr r
√

a2ε2 − (r − a)2
.

Podstwiamy tu naste֒pnie r−a = +aε cos η z 0 ≤ η < 2π (teraz η = 0 odpowiada apogeum,
aphelium lub ogólnie apocentrum, czyli rmax > a), co prowadzi analogicznie jak wyżej, do

t =
T

2
+

√

ma3

κ

∫ η

0

dη′ (1 + ε cos η′) =
T

2
+

√

ma3

κ
(η + ε sin η) ,

czyli do

t =
T

2
+

√

ma3

κ
(η + ε sin η) ≡

√

ma3

κ
(π + η + ε sin η) ,

r = a (1 + ε cos η) .

Widać jednak, że te same t i r otrzymamy k lada֒c we wzorze s lusznym na razie w zakresie
0 ≤ ξ ≤ π zmienna֒ ξ = π + η, jako że −ε sin(π + η) = ε sin η, ε cos(π + η) = −ε cos η.
Pokazuje to, że zależność r od czasu jest w ca lym ruchu po elipsie dana w sposob uwik lany
zwia֒zkami

t =

√

ma3

κ
(ξ − ε sin ξ) ,

r = a (1 − ε cos ξ) ,

w których 0 ≤ ξ ≤ 2π.
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Wykorzystujemy teraz zwia֒zek r = p/(1 + ε cosϕ) w postaci

cosϕ =
1

ε

(p

r
− 1
)

, sinϕ = ±
√

1 − 1

ε2

(p

r
− 1
)2

,

do wyrażenia we wzorach x = r cosϕ, y = r sinϕ ka֒ta ϕ przez r = r(ξ(t)):

x =
p− r

ε
=

1

ε
(p− a+ aε cos ξ) = a

[

cos ξ +
1

ε

(p

a
− 1
)

]

,

a ponieważ

ε =
c

a
=

√

1 − p

a
,

wie֒c 1 − p/a = ε2. Zatem (p − r)/ε = a(cos ξ − ε). Otrzymujemy w ten sposób (w
postaci uwik lanej) zależność kartezjańskich zmiennych x i y od czasu masy m poruszaja֒cej
sie֒ po elipsie wokó l centrum (znajduja֒cego sie֒ w punkcie (x = 0, y = 0)) w uk ladzie
kartezjańskim:110

x(t) = a (−ε+ cos ξ(t)) ,

y(t) = a
√

1 − ε2 sin ξ(t) .

W przypadku ruchu po hiperboli, gdy E > 0, zależność zmiennej r od czasu jest dana
wzorem

t− t0 = ±
√

m

2E

∫ r(t)

r(t0)

dr r
√

(r + κ/2E)2 − (κ2/4E2) − (L2/2mE)

= ±
√

ma

κ

∫

dr r
√

(r ± a)2 − a2ε2
,

gdzie, ponieważ teraz a = p/(ε2 − 1) = |κ|/2E (zob. Zadanie 10.5), górny znak (+) w
wyrażeniu pod pierwiastkiem odnosi sie֒ do ruchu w potencjale si ly przycia֒gaja֒cej, a dolny
(−) odpychaja֒cej (κ = −|κ|). Przyjmuja֒c, że t = 0, w punkcie r = rmin i podstawiaja֒c111

r ± a = aε ch ξ , dr = dξ aε sh ξ ,

110W Zadaniu 10.4 uk lad ten by l oznaczany (x′, y′). Zauważmy (wracaja֒c do oznaczeń z tamtego
Zadania), że otrzymane wzory sa֒ zgodne z równaniem elipsy w pierwotnym uk ladzie (x, y): x′ + aε ≡
x′ + c = x = a cos ξ, y′ = y = a

√

1 − c2/a2 sin ξ = b sin ξ, a zatem (x/a)2 + (y/b)2 = 1.
111Jest to zgodne z tym, że rmin = a(ε∓ 1) (górny znak, gdy κ > 0, dolny, gdy |κ < 0), gdyż

rmin =
p

ε± 1
≡ p

ε2 − 1
(ε∓ 1) ≡ a(ε∓ 1) .
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otrzymujemy, po podobnych krokach jak wykonane wyżej,

t =

√

ma3

κ
(−ξ + ε sh ξ) ,

r = a (−1 + ε ch ξ) ,

w przypadku si ly przycia֒gaja֒cej (tj. gdy κ > 0) i

t =

√

ma3

|κ| (ξ + ε sh ξ) ,

r = a (1 + ε ch ξ) ,

w przypadku si ly odpychaja֒cej (tj. gdy κ < 0). W obu przypadkach −∞ < ξ < ∞.
Ponieważ w przypadku hiperboli

ε =
c

a
=

√

1 +
b2

a2
=

√

1 +
p

a
,

wie֒c 1 + p/a = ε2 i po krokach analogicznych do wykonanych w przypadku ruchu po
elipsie, znajdujemy, że w ruchu po hiperboli

x(t) = a(ε− chξ(t)) ,

y(t) = a
√
ε2 − 1 shξ(t) ,

gdy potencja l jest przycia֒gaja֒cy (κ > 0) oraz

x(t) = a(ε+ chξ(t)) ,

y(t) = a
√
ε2 − 1 shξ(t) ,

gdy potencja l jest odpychaja֒cy (κ < 0).

Ruch po paraboli masy m (możliwy tylko, gdy κ > 0, tj. w polu si ly przyciagaja֒cej)
zachodzi z zerowa֒ energia֒. Ogólny wzór daje wie֒c

t− t0 = ±
√

m

2

∫ r(t)

r(t0)

dr
√

κ/r − L2/2mr2
= ±

∫

dr r
√

(2κ/m)r − L2/m2
.

Przyjmuja֒c jak zawsze, iż r(0) = rmin podstawiamy tu

r =
L2

2mκ
(1 + ξ2) ≡ p

2
(1 + ξ2) , dr = p ξ dξ ,

co po prostych przekszta lceniach prowadzi do zwia֒zków

t =
mp2

2L

(

ξ +
1

3
ξ3
)

≡
√

mp3

4κ

(

ξ +
1

3
ξ3
)

,

r =
p

2
(1 + ξ2) ,

w których −∞ < ξ <∞.
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Zadanie 10.13 (tzw. Problem Bertranda)
Udowodnić, że tylko w potencja lach V (r) = −|κ|/r oraz V (r) = 1

2
|k|r2 wszystkie ruchy

ograniczone z L 6= 0 zachodza֒ po torach zamknie֒tych.112

Rozwia֒zanie:

Aby w potencjale V (r) możliwe by ly, przy L 6= 0, ruchy w obszarze ograniczonym,
Veff(r, L) = V (r) + L2/2mr2 musi być taki, że dla pewnych wartości ca lkowitej ener-
gii E ruchu warunek Veff(r, L) ≤ E wyznacza pewien skończony zakres113 zmiennej r.
Dla tych to wartości energii (których widmo - mówia֒c je֒zykiem mechaniki kwantowej -
może być cia֒g le i/lub dyskretne) ruch be֒dzie zachodzić pomie֒dzy jakimís114 rmin > 0 i
rmax <∞.

Rozpatrzmy taki skończony przedzia l [rmin, rmax]. Jeśli potencja l jest funkcja֒ różniczko-
walna֒ w r ∈ [rmin, rmax], to musi istnieć w tym obszarze co najmniej jeden punkt r0, w
którym V ′eff(r0, L) = 0 (taka jest treść jakiegoś twierdzenia Rolle’a, czy kogoś takiego -
kto by tam te nazwy szkolnych twierdzeń pamie֒ta l). Możliwy jest wtedy ruch z energia֒
E = Veff(r0, L) po orbicie ko lowej o promieniu r0. V

′
eff(r0) = 0 jest równoważne stwierdze-

niu, że

− d

dr
V (r)

∣

∣

∣

∣

r0

≡ Fr(r0) = − L2

mr30
.

Widać sta֒d, że wartość Fr(r0) musi być ujemna - orbity takie sa֒ możliwe tylko (co w
sumie jest oczywiste), gdy si la jest przycia֒gaja֒ca.

Rozpatrzymy teraz ruch o energii E nieco wie֒kszej niż Veff(r0, L) - jeśli wszystkie tory
ograniczone maja֒ być zamknie֒te, to także i takie. Tor takiego ruchu musi odchylać sie֒ od
ko lowego, ale jeśli w r0 potencja l Veff(r, L) ma minimum, odchylenie to może być dowolnie
ma le, gdy E >∼ Veff(r0, L). Ogólnie, tor (każdego) ruchu musi być rozwia֒zaniem równania
Bineta (1/r(ϕ) = u(ϕ)):

d2u

dϕ2
+ u = J(u) ≡ −m

L2

d

du
V

(

1

u

)

≡ − m

L2u2
Fr

(

1

u

)

.

Ruch po orbicie ko lowej o u(ϕ) = u0 = 1/r0 jest rozwia֒zaniem tego równania, gdy115 u0 =
J(u0). Poszukamy rozwia֒zania ma lo odbiegaja֒cego od orbity ko lowej, tj. rozwia֒zania
u(ϕ) = u0 + w(ϕ), zak ladaja֒c, że |w(ϕ)|/u0 ≪ 1. Można wtedy prawa֒ strone֒ równania
Bineta rozwina֒ć w szereg Taylora wokó l u = u0:

J(u) = J(u0) + wJ1 +
1

2
w2J2 +

1

6
w3J3 + . . . ,

112Ruchy, w których L = 0 zachodza֒ wzd luż prostej przechodza֒cej przez centrum si ly; jeśli V (r) ma
“do lek” (albo do lki), to każdy ruch w takim do lku jest okresowy - zobacz zadania w rozdzia lu 3 - i jego
tor jest trywialnie “zamknie֒ty”.
113Dla niektórych wartości E obszar doste֒pny zmiennej r może sie֒ sk ladać z roz la֒cznych odcinków -

rozpatrujemy wtedy jeden z nich.
114Trzeba za lożyć, że rmin > 0, gdyż ruchy z L 6= 0, w trakcie których dla t = tcr zachodzi spadek

na centrum, sa֒ “patologiczne” - ruchu naogó l nie daje sie֒ przed lużyć na t > tcr (zobacz zadania 10.15 i
10.16) i problem zamknie֒tości toru traci sens.
115Równość ta jest oczywíscie tym samym, co warunek |Fr(r0)| = mv2/r0 bo mv2/r0 ≡ L2/mr30 .
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gdzie Ji sa֒ kolejnymi pochodnymi funkcji J(u) obliczonymi w u = u0. Ograniczymy sie֒
najpierw do pierwszego wyrazu rozwinie֒cia, co prowadzi do równania

d2w

dϕ2
+ (1 − J1)w = 0 ,

na funkcje֒ w(ϕ).

J1 ≡
dJ(u)

du

∣

∣

∣

∣

u0

=
d

du

(

− m

L2u2
Fr

(

1

u

))∣

∣

∣

∣

u0

=
2m

L2u30
Fr

(

1

u0

)

+
m

L2u20
r20
dFr(r)

dr

∣

∣

∣

∣

1/u0

.

Korzystaja֒c z warunku u0 = J(u0) możemy teraz w obu cz lonach tej pochodnej zasta֒pić
1/L2 przez −u30/mFr(1/u0), co da

J1 = −2 − r0
Fr(r0)

dFr
dr

∣

∣

∣

∣

r0

.

Zatem przybliżone równanie na w(ϕ) ma postać

d2w

dϕ2
+ β2w = 0 , β2 ≡ 3 +

r0F
′
r(r0)

Fr(r0)
.

Jeśli β2 ≤ 0, rozwia֒zania w(ϕ), z wyja֒tkiem szczególnie dobranych warunków w jakimś
ustalonym ϕ = ϕ0, rosna֒ nieograniczenie z ϕ i dokonane przybliżenie równania Bineta
szybko przestaje być s luszne. Ponieważ rozpatrywalísmy punkt r0 z przedzia lu wyznaczo-
nego przez warunek Veff(r, L) ≤ E, sytuacja taka może sie֒ zdarzyć, gdy Veff(r, L) ma w
r0 = 1/u0 lokalne maksimum mniejsze od E a nie minimum; ruch wokó l takiego lokalnego
maksimum musi, oczywíscie - w powodu warunku Veff(r, L) ≤ E - zachodzić w ograniczo-
nym obszarze, ale z powodu za lamywania sie֒ przybliżenia nie można powiedzieć, czy jego
tor jest zamknie֒ty, czy nie. Niemniej z tego samego powodu musza֒ wtedy w rozpatrywa-
nym przedziale zmiennej r istnieć inne punkty, w których Veff(r, L) ma lokalne minimum
i przenosimy wtedy analize֒ do jednego z takich punktów.

Jeśli β2 > 0, rozwia֒zaniem sa֒ rzeczywíscie ma le oscylacje

w(ϕ) = a cos(βϕ+ δ) .

czyli

1

r(ϕ)
=

1

r0
+ a cos(βϕ+ δ) .

Ruch zachodzi pomie֒dzy r− osia֒ganym dla βϕ+δ = 0, a r+ osia֒ganym dla βϕ+δ = π. Ka֒t
Φ zakreślany pomie֒dzy r = r+, a r = r− w bogatej literaturze poświe֒conej problemowi
Bertranda nazywa sie֒ ka֒tem apsydalnym (ang. the apsidal angle) i jest jak widać równy

Φ =
π

|β| =
π

√

3 + r0F ′r(r0)/Fr(r0)
.
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Pouczaja֒ce jest otrzymanie wzoru na ka֒t Φ druga֒ metoda֒ (tak, jak w swojej niezwykle
interesuja֒cej, choć fizyka troche֒ denerwuja֒cej, ksia֒żce o mechanice każe W.I. Arnold). Jak
zawsze,

Φ = −
√

L2

2m

∫ r−

r+

dr

r2
√

E − Veff(r)
=

√

L2

2m

∫ u+

u−

du
√

E −W (u)
,

gdzie W (u) ≡ Veff(1/u). Jeśli odchylenia u od u0 sa֒ ma le (tj. u+ i u− niewiele sie֒ różnia֒
od u0 be֒da֒cego punktem ekstremalnym W (u), w którym dW/du = 0, to w powyższej
ca lce można W (u) rozwina֒ć do drugiego rze֒du w u− u0:

Φ ≈
√

L2

2m

∫ u+

u−

du
√

E −W0 − 1
2
W ′′

0 (u− u0)2
= π

√

L2

mW ′′
0

.

(W polskim wydaniu ksia֒żki Arnolda jest tu misprint - zamiast W jest jakieś niezdefi-
niowane V i zbe֒dny czynnik r2; poza tym Arnold ma m = 1, a jego M oznacza moment
pe֒du L).

W ′′
0 ≡ d2W (u)

du2

∣

∣

∣

∣

u0

= −r20
d

dr

(

−r2 d

dr

(

V (r) +
L2

2mr2

))∣

∣

∣

∣

1/u0

= r20

(

2r0V
′(r0) + r20V

′′(r0) +
L2

mr20

)

.

Ponownie korzystaja֒c z warunku V ′eff(r0) = 0 zaste֒pujemy L2/m przez r30V
′(r0), otrzy-

muja֒c ten sam wzór na Φ, co wyżej, jeśli uwzgle֒dni sie֒ to, że Fr = −V ′.
Ważna֒ cecha֒ ka֒ta Φ jest jego niezależność (w tym przybliżeniu) od energii (lub raczej

nadwyżki energii nad energia֒ odpowiadaja֒ca֒ orbicie ko lowej), czyli od wielkości zaburze-
nia.116 Cecha ta jest wykorzystywana w dowodzie twiedzenia Bertranda podanym przez
W.I. Arnolda. Jasne w każdym razie jest, że aby rozpatrywany tor by l zamknie֒ty, β musi
być liczba֒ wymierna֒.

Wyrażenie L przez V ′(r0) (tj. przez Fr(r0)) jest ważnym krokiem, bo umożliwia od-
powiedź na pytanie, jak w okolicy r0 musi zmieniać sie֒ potencja l V (r), żeby ka֒t Φ nie
zależa l od wyboru r0. Istotnie, ponieważ szukamy potencja lu w którym wszystkie ruchy
ograniczone odbywaja֒ sie֒ po torach zamknie֒tych, można i należy rozpatrzyć, jak be֒dzie
wygla֒da l ruch po torze niewiele odchylaja֒cym sie֒ od nowego punktu r′0 po lożonego infini-
tezymalnie w bok od punktu r0; punkt r′0 musi oczywíscie odpowiadać troche֒ zmienionej
wartości L2 tak dobranej, by potencja l efektywny Veff(r, L) mia l w nim minimum. Dzie֒ki

116Może sie֒ to wydać dziwne na pierwszy rzut oka, bo w pierwszym odruchu ma sie֒ wrażenie, że orbicie
ko lowej powinien odpowiadać ka֒t Φ = 0 i wtedy cia֒g lość Φ powinna prowadzić do jego zależności od
wielkości odste֒pstwa od orbity ko lowej. Tak jednak nie jest: ka֒t Φ jest dla orbity ko lowej nieokreślony,
tak samo jak wspó lrze֒dna ϕ uk ladu biegunowego nie jest określona, gdy r = 0 - przy schodzeniu do r = 0
z różnych kierunków ka֒t ϕ jest różny.
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wyrażeniu L2 przez V ′(r0 można uzyskany wzór na Φ potraktować jak funkcje֒ r0. Po-
nieważ rozpatrujemy punkt r′0 przesunie֒ty infinitezymalnie w stosunku do r0, nowy tor
be֒dzie (na mocy ciag lości Φ jako funkcji punktu r0) zamknie֒ty jeśli Φ nie zmieni sie֒ (a β
jest liczba֒ wymierna֒). Niezależność Φ od r0 jest wtedy równoważna równaniu (pomijamy
już ten subskrypt 0)

3 +
r

Fr(r)

dFr(r)

dr
= β2 ,

które po sca lkowaniu daje

Fr(r) = − |κ|
r3−β2 .

Znak si ly musi być ujemny - si la musi być przycia֒gaja֒ca, co jest intuicyjnie oczywiste
(ale wysz lo też już wcześniej jako warunek matematyczny). Tak wie֒c potencja l musi być
pote֒gowy. Co wie֒cej, wzór na ka֒t apsydalny Φ mówi, że aby zamknie֒ty móg l być tor
infinitezymalnie odchylaja֒cy sie֒ od ko lowego, β musi być liczba֒ wymierna֒: β = k/n
(wtedy tor zamknie sie֒ po n pe lnych oscylacjach promienia wokó l r = r0).

W literaturze spotyka sie֒ różne metody obliczania ka֒ta Φ dla nieinfinitezymalnych
odchyleń toru od ko lowego. Tu rozpatrzymy metode֒ oparta֒ na rachunku zaburzeń. W tym
celu szukamy rozwia֒zania równania Bineta z funkcja֒ J(u) po prawej stronie rozwinie֒ta֒
do trzeciego rze֒d u wokó l u = u0

d2w

dϕ2
+ β2w =

1

2
J2w

2 +
1

6
J3w

3 ,

w postaci szeregu (θ ≡ βϕ)

w(ϕ) = A1 cos θ + A0 + A2 cos 2θ + A3 cos 3θ + . . . ,

traktuja֒c J2, A0 i A2 jak ma le pierwszego rze֒du (∝ ε), a J3 i A3 jak ma le drugiego rze֒du
(∝ ε2; A1 jest oczywíscie rze֒du ε0). Szukana postać rozwia֒zania zapewnia zamykanie
sie֒ toru (jeśli β = n/k). Wstawiaja֒c postulowane rozwia֒zanie do równania i zachowuja֒c
tylko wyrazy do rze֒du ε2 w la֒cznie dostajemy po lewej stronie

d2w

dϕ2
+ β2w = β2A0 − 3β2A2 cos 2θ − 8β2A3 cos 3θ ,

a po prawej117

1

2
J2w

2 +
1

6
J3w

3 =
1

2
J2
(

A2
1 cos2 θ + 2A0A1 cos θ + 2A1A2 cos θ cos 2θ

)

+
1

6
J3A

3
1 cos3θ

≡ 1

2
J2

[

1

2
A2

1(1 + cos 2θ) + 2A0A1 cos θ + A1A2 cos θ + A1A2 cos 3θ

]

+
1

24
J3A

3
1 [3 cos θ + cos 3θ] .

117Przekszta lcaja֒c prawa֒ strone֒ korzystamy z  latwych do udowodnienia tożsamości trygonometrycznych
2 cos θ cos 2θ = cos θ + cos 3θ, 4 cos3 θ = 3 cos θ + cos 3θ.
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Równanie Bineta be֒dzie spe lnione (z dok ladnościa֒ do wyrazów rze֒du ε2) jeśli równe be֒da֒
wspó lczynniki przy takich samych wyrazach po obu stronach. Przyrównania do siebie po
obu stronach wyrazów rze֒du ε: sta lych i proporcjonalnych do cos 2θ oraz wyrazów rze֒du
ε2 z cos 3θ narzuca zwia֒zki

A0 =
A2

1J2
4β2

, A2 = − A2
1J2

12β2
, A3 = − 1

8β2

(

A1A2J2
2

+
A3

1J3
24

)

.

Wstawiaja֒c tak wyznaczone A0 i A2 do warunku zerowania sie֒ po prawej stronie wyrazów
rze֒du ε2 proporcjonalnych do cos θ (bo po lewej cos θ nie wyste֒puje)

A0A1J2 +
1

2
A1A2J2 +

1

8
A3

1J3 = 0 ,

znajdujemy, że równanie Bineta może być spe lnione przez taki szereg wyższych harmo-
nicznych, tylko jeśli

5J2
2

24β2
+
J3
8

= 0 , czyli, tylko gdy 5J2
2 + 3β2J3 = 0 .

Pozostaje wie֒c obliczyć J2 i J3 dla Fr(r) = −|κ|rβ2−3 czyli Fr(1/u) = −|κ|u3−β2
. Mamy

J(u) = − m

L2u2
Fr(1/u) =

m|κ|
L2

u1−β
2

.

Zatem (pamie֒tamy: L2 = −mu−30 Fr(1/u0) = m|κ|u−β2

0 , co jest tym samym, co warunek

J(u0) = u0 wyznaczaja֒cy u0; sta֒d (m|κ|/L2) = uβ
2

0 )

J2 =
d2J(u)

du2

∣

∣

∣

∣

u0

=
m|κ|
L2

(1 − β2)(−β2)u−1−β
2

0 = −β2(1 − β2)
1

u0
,

J3 =
d3J(u)

du3

∣

∣

∣

∣

u0

=
m|κ|
L2

(1 − β4)β2u−2−β
2

0 = (1 − β4)β2 1

u20
.

Warunek przybiera wie֒c postać

5β4(1 − β2)2 + 3β4(1 − β4) ≡ 2β4(1 − β2)[4 − β2] = 0 .

Ponieważ czynnik β ma być wie֒kszy od zera, jedynymi dopuszczalnymi rozwia֒zaniami sa֒
β2 = 1 i β2 = 4, czyli si ly postaci

Fr(r) = − |κ|
r2
, (β2 = 1) oraz Fr(r) = −|κ|r , (β2 = 4).

Oczywíscie przedstawione tu rozumowanie nie dowodzi, że dowolnie duże zaburzenia orbit
ko lowych ruchu w polu tych dwóch si l centralnych be֒da֒ zawsze torami zamknie֒tymi - to
wiemy z bezpośredniej analizy rozwia֒zań - wyklucza ono jednak, by taka֒ w laściwość mog ly
mieć jakieś inne si ly centralne.
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Zadanie 10.21

Zgodnie z prawami elektrodynamiki klasycznej  ladunek elektryczny q poruszaja֒c sie֒ z
przyspieszeniem promieniuje i traci energie֒. Wypromieniowana (czyli stracona) w prze-
dziale dt czasu energia dE jest dana (w tym nienormalnym uk ladzie SI) wzorem

dE = −2

3

q2

4πε0c3
a2(t) dt .

Przyjmuja֒c że spowodowana promieniowaniem strata energii elektronu na bohrowskiej
orbicie ko lowej118 w atomie wodoropodobnym (jeden elektron kra֒ża֒cy wokó l ja֒dra o  la-
dunku Ze) jest ma la, oszacować czas życia takiego rza֒dzonego prawami fizyki klasycznej
atomu (tj. czas po którym elektron spad lby na ja֒dro).

Rozwia֒zanie:

Na orbicie ko lowej zachodzi zwia֒zek (|κ| = Ze2/4πε0, a me jest masa֒ elektronu) Ekin =
1
2
mev

2 = |κ|/2r wynikaja֒cy z tego, że iloczyn masy i przyspieszenia dośrodkowego jest
równy sile przycia֒gaja֒cej. Sta֒d energia ca lkowita elektronu E = Ekin − |κ|/r jest równa
E = −|κ|/2r i dE = (|κ|/2r2)dr. Ponieważ powoduja֒ca zmiane֒ promienia orbity zmiana
energii dE elektronu jest skutkiem wypromieniowywania przez elektron energii, musi także
zachodzić zwia֒zek

|κ|
2r2

dr = −2

3

q2

4πε0c3
a2 dt .

Przyspieszenie a jest w przybliżeniu równe przyspieszeniu dośrodkowemu (pomijamy także
zwia֒zane z hamowaniem przyspieszenie styczne do orbity), zatem

mea ≈ mev
2

r
=

|κ|
r2
.

Wyrażaja֒c sta֒d a przez r otrzymujemy wie֒c zwia֒zek

|κ|
2r2

dr = −2

3

q2

4πε0c3
|κ|2
m2
er

4
dt ,

który, po rozdzieleniu zmiennych i sca lkowaniu stronami (od r0 do 0 i od 0 do τ - czasu
życia), daje

r30 = 4
e2

4πε0~c

~c

c3
Ze2

4πε0~c

~c

m2
e

τ ,

Pamie֒taja֒c, że e2/4πε0~c = αEM = 1/137, i że za promień r0 powinno sie֒ przyja֒ć promień
Bohra aB = ~c/mec

2ZαEM ≈ 0.5 · 10−10m, znajdujemy, że

τ =
1

4Zα2
EM

(

mec
2

~c

)2
a3B
c

=
1

4Z4α5
EM

~c

mec2
1

c
,

118Jak wiadomo N. Bohr by l z matematyki noga (wielkość Bohra leża la w czymś zupe lnie innym)
i konstruuja֒c swój model atomu by l w stanie rozpatrzyć jedynie orbity ko lowe; eliptyczne musia l już
opracować A. Sommerfeld. Tu jednak jest to okoliczność szcze֒śliwa, gdyż przyje֒ta֒ tu metode֒ można
zastosować w zasadzie tylko do orbit ko lowych.
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Ponieważ ~c = 197 MeV·fm= 197 · 10−15 MeV·m, a mec
2 = 0.5 MeV otrzymujemy, dla

Z = 1, oko lo 10−11 s.

284



Zadanie 10.22 119

Pos luguja֒c sie֒ mechanika֒ newtonowska֒ obliczyć jak zmienia sie֒ z czasem cze֒stotliwość ν
fal grawitacyjnych (rejestrowanych na Ziemi przez detektory LIGO) emitowanych przez
uk lad dwóch czarnych dziur o masach M1 i M2 wiruja֒cych wokó l swojego środka masy,
jeśli wiadomo, że cze֒stość 2πν emitowanych fal jest równa podwojonej pre֒dkości ka֒towej
ω ich obrotów, a moc P wypromieniowywana przez taki uk lad jest dana wzorem

P = αGaI2ωbcd ,

w którym α = 32/5, c jest pre֒dkościa֒ świat la, a I jest momentem bezw ladności wzgle֒dem
osi obrotu uk ladu dwóch czarnych dziur. Wyk ladniki a, b i d w podanym wzorze na P
trzeba ustalić na podstawie analizy wymiarowej. Przyja֒ć, że środek masy uk ladu czarnych
dziur pozostaje w spoczynku w uk ladzie, w którym emitowane przezeń promieniowanie
jest rejestrowane, a ruch wzgle֒dny czarnych dziur odbywa sie֒ po orbicie ko lowej.

Rozwia֒zanie:

Uk lad równań wyznaczaja֒cy ruch przycia֒gaja֒cych sie֒ grawitacjnie dwóch mas M1 i M2

(κ = GM1M2):

M1
d2r1
dt2

= −κ r1 − r2

|r1 − r2|3
, M2

d2r2
dt2

= κ
r1 − r2

|r1 − r2|3

można przepisć w równoważnej postaci

d2

dt2
(M1r1 +M2r2) = 0 , Mred

d2r

dt2
= −κ r

|r|3 ,

w której r ≡ r2 − r1, a Mred = M2M2/(M1 +M2). W ten sposób ruch uk ladu dwóch cia l
sprowadzony zostaje do swobodnego ruchu środka ich masy i ich ruchu wzgle֒dnego. Zgod-
nie z za lożeniem, problem ruchu uk ladu dwóch czarnych dziur rozpatrujemy w uk ladzie
odniesienia, w którym ich środek masy pozostaje w spoczynku; przyjmiemy też, że jest
on pocza֒tkiem uk ladu odniesienia, tj. że M1r1 +M2r2 = 0. Wówczas

r1 = − M2

M1 +M2

r , r2 =
M1

M1 +M2

r .

Ze zróżniczkowania tych wzorów po czasie wynikaja֒ też zwia֒zki

v1 = − M2

M1 +M2
v , v2 =

M1

M1 +M2
v .

Jeśli wzgle֒dny ruch czarnych dziur odbywa sie֒ po orbicie ko lowej120 wielkości takie jak
wzgle֒dna pre֒dkość v = |v| dziur i ich wzajemna odleg lość r ≡ |r| = |r1| + |r2| ≡ r1 + r2,

119H. Mathur, K. Brown, A. Lowenstein, Am. J. Phys. 85 (2017) 676.
120Dok ladniejsze rachunki pokazuja֒, iż wkutek wypromieniowywania przez taki uk lad energii pocza֒tkowo

eliptyczna orbita szybko staje sie֒ orbita֒ ko lowa֒.
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a zatem także pre֒dkość ka֒towa ω ≡ v/r ich obrotu oraz moment bezw ladności uk ladu
(wzgle֒dem ich środka dziur) I = M1r

2
2 + M2r

2
2 sa֒ ze soba֒ ścísle powia֒zane: dowolne trzy

z tych czterech wielkości można wyrazić przez czwarta֒. Ponieważ cze֒stotliwość rejestro-
wanych fal grawitacyjnych jest proporcjonalna do pre֒dkości ka֒towej ω, wygodnie be֒dzie
od razu wyrazić przez nia֒ wszystkie pozosta le wielkości.

W szczególności moment bezw ladności I dwóch dziur można wyrazić przez ich wza-
jemna֒ odleg lość r korzystaja֒c z wypisanych już zwia֒zków:

I = M1r
2
1 +M2r

2
2 = M1

(

M2

M1 +M2

r

)2

+M2

(

M1

M1 +M2

r

)2

= Mredr
2 .

Ponieważ, jak zawsze przy ruchu po orbicie ko lowej, spe lniony jest zwia֒zek

Mred
v2

r
≡Mred r ω

2 =
κ

r2
,

odleg lość wzgle֒dna r jest powia֒zana z pre֒dkościa֒ ka֒towa֒ wzorem

r3 =
κ

Mred ω2
=
G(M1 +M2)

ω2
.

Zatem

I = Mred r
2 = Mred [G(M1 +M2)]

2/3 ω−4/3 =
G2/3M1M2

(M1 +M2)1/3
ω−4/3 .

Ponadto, ca lkowita energia E ruchu wzgle֒dnego po orbicie ko lowej jest równa121

1

2
Mredv

2 − κ

r
≡ 1

2
Iω2 − κ

r
= − κ

2r
.

Zatem

E = −Ekin = − 1

2
Iω2 = − 1

2

G2/3M1M2

(M1 +M2)1/3
ω2/3 .

W analogiczny sposób wzór na wypromieniowywana֒ moc P można wyrazić przez sama֒
pre֒dkość ka֒towa֒ ω. Najpierw trzeba jednak ustalić w tym wzorze wyk ladniki a, b i c.

Wymiarem fizycznym sta lej G jest [G] = [L]3[M ]−1[T ]−2. Z kolei moc P ma wymiar
[P ] = [M ][L]2[T ]−3. Zatem zgodność wymiarów obu stron zwia֒zku P ∝ GaI2ωbcd:

[M ][L]2

[T ]3
=

(

[L]3

[M ][T ]2

)a

[M ]2[L]4
1

[T ]b

(

[L]

[T ]

)d

,

121Energia kinetyczna ruchu wzgle֒dnego jest oczywíscie tożsama z energia֒ kinetyczna֒ ca lego uk ladu
liczona֒ wzgle֒dem inercjalnego uk ladu środka jego masy:

1

2

(

M1v
2
1 +M2v

2
2

)

=
1

2

[

M1

(

M2

M1 +M2
v

)2

+M2

(

M1

M1 +M2
v

)2
]

=
1

2
Mredv

2 =
1

2
Iω2 .

Tym samym również ca lkowita energia ruchu wzgle֒dnego jest tożsama z ca lkowita֒ energia֒ uk ladu.
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wymaga, by a = 1, b = 6, d = −5. Zatem

P = α
GI2ω6

c5
= α

G7/3

c5
ω10/3 M2

1M
2
2

(M1 +M2)2/3
.

Przyrównuja֒c teraz (zob. zadania 10.20, 10.21 oraz 2.15) szybkość

−dE
dt

=
1

3

G2/3M1M2

(M1 +M2)1/3
ω−1/3

dω

dt
,

utraty energii uk ladu do wypromieniowywanej mocy P , otrzymuje sie֒ równanie

M =
c3

G

(

1

3α
ω−11/3

dω

dt

)3/5

,

wyznaczaja֒ce zależność pre֒dkości ka֒towej ω, a wie֒c także i cze֒stotliwości ν rejestrowanych
przez detektory LIGO fal grawitacyjnych, od czasu. Maja֒ca wymiar masy wielkość M

M ≡ (M1M2)
3/5

(M1 +M2)1/5
,

jest w literaturze zwana masa֒ ćwierkania lub świergotu (the chirp mass). Po sca lkowaniu
od ω(t1) = πν(t1) ≡ πν1 do ω(t2) = πν(t2) ≡ πν2 (bo 2ω = 2πν) otrzymujemy sta֒d
zwia֒zek

1

ν
8/3
1

− 1

ν
8/3
2

= 8απ8/3 G
5/3M5/3

c5
(t2 − t1) .

Zgodnie z tym zwia֒zkiem, ν2 → ∞ po skończonym czasie t2 − t1. W rzeczywistości w
momencie tym uk lad dziur zaczyna sie֒ zlewać by, w końcu, stworzyć jedna֒ czarna֒ dziure֒.
Wykorzystywane proste newtonowskie rozważania przestaja֒ wie֒c być wtedy s luszne (ten
etap ewolucji uk ladu czarnych dziur musi być już modelowany przy użyciu równań Ogólnej
teorii wzgle֒dności, które w tym celu trzeba rozwia֒zywać numerycznie), a rzeczywisty
wykres ν(t) urywa sie֒ na pewnej wartości νmax. Niemniej, znajduja֒c na wykresie zależności
od czasu rejestrowanej cze֒stotliwości ν punkt t2, w którym ν zaczyna ostro ísć do góry
(tak, iż można po lożyć ν(t2) ≈ ∞) i odczytuja֒c wartość ν(t1) dla jakiegoś wcześniejszego
czasu t1 można ze zwia֒zku

M =
c3

Gπ8/5(8α)3/5ν
8/5
1 (t2 − t1)3/5

,

wyznaczyć wartość M. W ten sposób z oryginalnego przedstawionego przez kolaboracje֒
LIGO wykresu odpowiadaja֒cego zdarzeniu oznaczanemu GW150914, na którym ν1 ≈ 42
Hz w chwili t1, a t2 − t1 ≈ 0.082 s, otrzymuje sie֒ M ≈ 35MS (MS = 1.988 × 1030 kg jest
tu masa֒ S lońca).
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Masa M jest tylko pewna֒ kombinacja֒ mas obu czarnych dziur, ale k lada֒c M1 = ξMtot,
M2 = (1 − ξ)Mtot, gdzie Mtot = M1 +M2, a ξ ∈ [0, 1], można  latwo sprawdzić, że Mtot ≥
43/5M. Tak wie֒c sumaryczna masa Mtot czarnych dziur uczestnicza֒cych w zdarzeniu
GW150914 by la wie֒kszaniż 70MS. Bardziej dok ladnie można oszacować wartość Mtot

przyjmuja֒c, że faza zlewania sie֒ dziur rozpoczyna sie֒ wtedy, gdy ich wzajemna odleg lość
staje sie֒ równa sumie ich promieni Schwarzschilda RS(M1) +RS(M2), gdzie

RS(M) =
2GM

c2
,

jest ta֒ odleg lościa֒ od (punktowej) masy M , po osia֒gnie֒ciu której pre֒dkość (tzw. “druga
kosmiczna”) konieczna do ucieczki masy próbnej do nieskończoności musia laby być wie֒ksza
od pre֒dkości świat la c. Pre֒dkość ka֒towa֒ ωcr z jaka֒ uk lad czarnych dziur obraca sie֒ w
chwili, gdy r1 + r2 ≡ r = RS(M1) + RS(M2) = 2G(M1 + M2)/c

2 można otrzymać z
wypisanego wyżej zwia֒zku r3 = G(M1 +M2)/ω

2. Jest ona równa

ωcr =
c3√

8G(M1 +M2)
.

Jeśli utożsami sie֒ ωcr/π z maksymalna֒ cze֒stotliwościa֒ νmax ≈ 300 Hz na przedstawionym
przez LIGO wykresie odpowiadajacym zdarzeniu GW150914 (tzn. z cze֒stotliwościa֒, na
której ten wykres ν(t) urywa sie֒, zamiast da֒żyć asymptotycznie do nieskończoności), to
z powyższego zwia֒zku otrzyma sie֒ Mtot = M1 +M2. Z wykresu można wie֒c otrzymać

Mtot =
c3

π
√

8Gνmax

,

co daje Mtot = M1 +M2 ≈ 76MS.  La֒cza֒c ten wynik z M ≈ 30MS można oszacować, że
M1 ≈ 36MS, M2 ≈ 29MS.

Pocza֒tkowa֒ wzajemna֒ odleg lość czarnych dziur można także oszacować przyjmuja֒c, że
odpowiada ona cze֒stotliwości fal grawitacyjnych w chwili, gdy ich sygna l zaczyna być re-
jestrowany przez detektory LIGO czyli, w przypadku zdarzenia GW150914, cze֒stotliwości
ν(t1) ≈ 42 Hz. Ze zwia֒zku r31 = G(M1 + M2)/ω

2
1 = G(M1 + M2)/π

2ν2(t1) otrzymuje sie֒
w ten sposób r1 ≈ 790 km. (Odleg lość RS(M1) +RS(M2) jest równa oko lo 100 km.)

Jeśli przyja֒ć, że chwila t1, w której pojawia sie֒ sygna l odpowiada pomijalnie ma lej
odwrotności wzajemnej odleg lości czarnych dziur, a moment t2, kiedy cze֒stotliwoćć ν(t)
staje sie֒ praktycznie nieskończona odpowiada r = RS(M1)+RS(M2) = 2GMtot/c

2, to wy-
promieniowana֒ (w postaci fal grawitacyjnych) mie֒dzy tymi chwilami energie֒ Erad można
obliczyć ze wzoru

Erad =

(

− κ

2r(t0)

)

−
(

− κ

2r(t1)

)

≈ κ

2r(t1)
=

κ

2RS(M1) +RS(M2)
=

1

4

M1M2

M1 +M2

c2 .

Dla M1 = 36MS i M2 = 29MS otrzymuje sie֒ energie֒ Erad ≈ 4MSc
2 wypromieniowana֒ w

czasie ∆t = t2 − t1 ≈ 0.08 s.

288



14 ROZPRASZANIE I PRZEKROJE CZYNNE

Przypomnienie

Przekrój czynny jest wielkościa֒ umożliwiaja֒ca֒ statystyczne (probabilistyczne) ujmowa-
nie rezultatu wielu zderzeń wtedy, gdy nie śledzimy toru pojedyńczej cza֒stki, a zaj-
mujemy sie֒ grupa֒ cza֒stek o jednakowych masach i pre֒dkościach tworza֒cych jednorodny
strumień padaja֒cy na powierzchnie֒ materia lu zawieraja֒cego wiele identycznych centrów
oddzia lywania, z którymi padaja֒ce cza֒stki oddzia luja֒ wed lug jednego i tego samego dla
wszystkich prawa.

Jeśli na blok prostopad lościenny o grubości ∆x i polu powierzchni równym A, w
którym ze sta la֒ ge֒stościa֒ n rozmieszczone sa֒ centra oddzia lywania, pada, prostopadle do
powierzchi tego bloku, jednorodny strumień Φ cza֒stek i rezultatem każdego pojedyńczego
aktu oddzia lywania cza֒stki padaja֒cej z centrum może być pewne zdarzenie P , które z
jakichś powodów nas interesuje i podlega rejestracji (przez detektory), to liczba NP takich
zdarzeń P zarejestrowanych w czasie ∆t jest dana wzorem122

NP = ∆t · (n · A · ∆x) · Φ · σ ,

w którym σ - przekrój czynny na zdarzenie123 P - jest wielkościa֒ o wymiarze pola po-
wierzchni charakteryzuja֒ca֒ szanse֒ zaj́scia P w pojedynczym akcie oddzia lywania cza֒stki
padaja֒cej z centrum oddzia lywania.

Jeśli zdarzenia P charakteryzuja֒ sie֒ pewnymi parametrami l = (l1, . . . , ln), które moga֒
zmieniać sie֒ w sposób cia֒g ly, to zwykle w takiej sytuacji interesuje nas liczba dNl takich
zdarzeń, w których zmienna l przyjmuje wartości ze zbioru (l, l + dl); przekrój czynny dσ
jest wtedy wielkościa֒ różniczkowa֒.

Np. w typowej sytuacji, w której blok zawiera centra si l rozpraszaja֒cych nadlatuja֒ce
cza֒stki, interesuje nas liczba dNθ,ϕ cza֒stek nadlatuja֒cych z nieskończoności, gdzie mia ly
energie֒ E każda, rozproszonych (w czasie ∆t) w ka֒t bry lowy dΩ(θ, ϕ) ≡ dϕdθ sin θ. W celu
znalezienia potrzebnego do obliczenia tej liczby (w konkretnych warunkach eksperymen-
talnych określanych przez Φ, A, n ∆x) różniczkowego przekroju czynnego rozpraszania
dσ(E) rozpatrujemy pojedyńcze centrum oddzia lywania i pojedyńcza֒ cza֒stke֒ nadlatuja֒ca֒
z parametrem zderzenia b, tj. odleg lościa֒ w nieskończoności od prostej ℓ równoleg lej do jej
pre֒dkości i przechodza֒cej przez centrum oddzia lywania (w którym umieszczamy pocza֒tek
uk ladu odniesienia) i wyznaczamy (na podstawie praw mechaniki) kierunek w którym
odleci ona w wyniku oddzia lywania. Jeśli oś z wybrana jest wzd luż prostej ℓ i osie x, y
sa֒ ustalone, to prawa te pozwalaja֒ powia֒zać kierunek scharakteryzowany ka֒tami θ i ϕ
w którym cza֒stka oddali sie֒ po oddzia lywaniu z jej po lożeniem w stosunku do osi (z jej
odleg lościa֒ b od osi i ka֒tem ϕ) w nieskończoności przed oddzia lywaniem. Jeśli cza֒stka
leca֒ca przez wycinek 1

2
[(b+db)2− b2]dϕ ≈ bdbdϕ powierzchni prostopad lej do osi ℓ oddala

122Zak ladamy tu, że szerokość ∆x jest ma la na tyle, by można by lo pomina֒ć przypadki oddzia lania
cza֒stki padaja֒cej z wie֒cej niż jednym centrum oddzia lywania.
123Utrwali l sie֒ taki dziwola֒g je֒zykowy, którego jak niepodleg lości broni jakać zgrzybia la Komisja

Je֒zykowa PTF; ja wole֒ mówić “przekrój czynny zdarzenia” bo jest on w laśnie pewna֒ charakterystyka֒
(w laściwościa֒) tego zdarzenia.
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sie֒ po oddzia lywaniu w kierunku wyznaczonym przez przedzia ly (θ, θ+ dθ) i (ϕ, ϕ+ dϕ),
to różniczkowy przekrój czynny tego zdarzenia, dσ(E), jest równy

dσ(E) = b db dϕ = b

∣

∣

∣

∣

db

dθ

∣

∣

∣

∣

dθ dϕ =
b

sin θ

∣

∣

∣

∣

db

dθ

∣

∣

∣

∣

dΩ ≡ 1

2 sin θ

∣

∣

∣

∣

db2

dθ

∣

∣

∣

∣

dΩ .

Zatem w celu wyznaczenia dσ(E) = dσ(E, θ) należy ztem znaleźć (jednoznaczny) zwia֒zek
θ = θ(b), odwrócić go, tj. znaleźć zwia֒zek b = b(θ) i wykorzystać go w powyższym wzorze.
Ponieważ pochodna b2 (lub b) po θ może być ujemna, we wzorze tym musi stać jej wartość
bezwzgle֒dna. Ponadto, jeśli zwia֒zek b = b(θ) nie jest jednoznaczny (a nie musi być -
funkcja ta może mieć kilka ga le֒zi b = bi(θ) i = 1, . . . , g), należy zsumować wszystkie
możliwości:

dσ(E) ≡ 1

2 sin θ

g
∑

i=1

∣

∣

∣

∣

db2i
dθ

∣

∣

∣

∣

dΩ ,

ponieważ w takiej sytuacji każdy z przedzia lów (bi, bi + dbi) prowadzi do rozproszenia
cza֒stki w kierunku (θ, θ + dθ).

Należy także podkreślić, że przekrój czynny jest wielkościa֒ dość uniwersalna֒ i można
pytać o przekrój czynny zaj́scia dowolnego zdarzenia w wyniku określonej reakcji (np.
wyprodukowania w wyniku rozpraszania cza֒stek na centrum oddzia lywania s lonia z tra֒ba֒
o d lugości w przedziale od l do l + dl lub innego zwierzaka - w mechanice klasycznej
przekrój czynny taki be֒dzie oczywíscie zerowy, ale w mechanice kwantowej, to kto wie...).

Proces rozpraszania można też obserwować z uk ladu, w którym porusza sie֒ również tar-
cza. Znika wtedy w zasadzie rozróżnienie, co jest tarcza֒, a co padaja֒ca֒ wia֒zka֒. Przekrój
czynny jest wtedy otrzymywany z obliczonego w uk ladzie, w którym tarcza spoczywa
przez odpowiednia֒ transformacje֒ (Galileusza w przypadku nierelatywistycznym, lub Lo-
rentza, w przypadku relatywistycznym) do uk ladu poruszaja֒cego sie֒.
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b R

α

α
α

θ

Rysunek 54: Elastyczne rozpraszanie kuli o promieniu r na unieruchomionej kuli o pro-
mieniu R. Z rysunku widać, że θ + 2α = π.

Zadanie 11.1

Obliczyć różniczkowy i ca lkowity przekrój czynny elastycznego rozpraszania sztywnej kuli
o promieniu r na unieruchomionej kuli o promieniu R.

Rozwia֒zanie:

Jak zawsze, aby obliczyć przekrój czynny trzeba znaleźć zależność ka֒ta rozproszenia od
parametru zderzenia b, tj. funkcje֒ θ = θ(b), a naste֒pnie odwrócić ja֒, by wyznaczyć
b = b(θ). W rozpatrywanym tu przypadku zwia֒zek θ = θ(b) ma charakter czysto geome-
tryczny i nie zależy od pre֒dkości (czyli energii) padaja֒cej kuli o promieniu r. Z rysunku
54 widać, że zachodzi zwia֒zek 2α + θ = π, czyli

α =
π − θ

2
.

Także z tegoż rysunku 54 można odczytać, że

b = (r +R) sinα = (r +R) cos
θ

2
.

Sta֒d

dσ = b(θ)

∣

∣

∣

∣

db(θ)

dθ

∣

∣

∣

∣

dϕdθ =
1

2
(r +R)2 cos

θ

2
sin

θ

2
dϕdθ

=
1

4
(r +R)2 sin θ dϕ dθ =

1

4
(r +R)2dΩ .

Zatem różniczkowy przekrój czynny nie zależy od ka֒ta θ (jest izotropowy)

dσ

dΩ
=

1

4
(r +R)2 ,

a ca lkowity przekrój czynny takiego elestycznego rozpraszania jest, zgodnie ze zdrowa֒ in-
tuicja֒ (i sensem przekroju czynnego, jako pola powierzchni, w która֒ jeśli cza֒stka padaja֒ca
leci, to sie֒ rozproszy), równy

σ = π (r +R)2 .

291



Zadanie 11.2

Obliczyć przekrój czynny σzderz(E) na zderzenie z planeta֒ o promieniu R i masie M me-
teorytu (traktowanego jak punkt) o masie m nadlatuja֒cego z nieskończoności i maja֒cego
energie֒ E.

Rozwia֒zanie:

Aby znaleźć warunek, jaki musi spe lniać parametr zderzenia b nadlatuja֒cego meteorytu,
by uderzy l on w Ziemie֒ nalizujemy potencja l efektywny

Veff(r) = −|κ|
r

+
L2

2mr2
,

w którym L = mv∞b, czyli L2 = 2mEb2. Przy ustalonej energii E, odleg lości mniejsze
niż r = R sa֒ dla meteorytu osia֒galne tylko, gdy jego moment pe֒du L (a zatem parametr
zderzenia b) jest taki, że Veff(R) ≤ E, tj. gdy

−|κ|
R

+
L2

2mR2
≡ −|κ|

R
+
b2E

R2
< E .

Sta֒d otrzymujemy warunek, że przy ustalonej energii E parametr zderzenia b musi być
mniejszy niż

b2 < b2max = R2

(

1 +
|κ|
RE

)

.

Sta֒d

σzderz(E) = πR2

(

1 +
|κ|
RE

)

.

Przekrój czynny jest równy czynnikowi geometrycznemu πR2 pomnożonemu przez ma-
leja֒cy z energia֒ E (im wyższa energia E meteorytu, tym trudniej sile grawitacji “zagia֒ć”
jego tor) “czynnik Sommerfelda”.

Spowodowany jakimś s labym przycia֒gaja֒cym oddzia lywaniem (wcia֒ż hipotetycznych)
reliktowych cza֒stek ciemnej materii i zwie֒kszaja֒cy przekrój czynny ich anihilacji czyn-
nik Sommerfelda móg lyby t lumaczyć dlaczego może ona w centrum Galaktyki zachodzić
znacznie wydajniej, niż wtedy, gdy cza֒stki te anihilowa ly w pierwotnej plaźmie kosmicz-
nej pozosta lej po Wielkim Wybuchu,124 pozostawia֒ja֒c tylko ich tzw. ge֒stość reliktowa֒
stanowia֒ca֒ dzís ok. 23% energii Wszechświata. Oczywíscie nie ma pewności, że obser-
wowane w centrum Galaktyki procesy astrofizyczne sa֒ w laśnie anihilacja֒ cza֒stek ciemnej
materii. Rozważania odwo luja֒ce sie֒ do czynnika Sommerfelda spowodowanego jakimś,
też hipotetycznym, oddzia lywaniem sa֒ typowa֒ ilustracja֒ prób sk ladania kosmicznego
“puzzla”. Przyk lad przekroju czynnego na zderzenie meteorytu z planeta֒ zawsze jest
jednak przywo lywany aby zilustrować role֒ możliwych dodatkowych oddzia lywań mie֒dzy
cza֒stkami ciemnej materii.
124Oczywíscie Wielki Wybuch jest tu tylko umowna֒ nazwa֒ procesu, w którym po okresie inflacyjnej

ekspansji Wszechświat “podgrza l“ sie֒ do dość wysokiej temperatury T , tj. wype lni l różnymi cza֒stkami
o dość wysokiej éredniej energii.
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Przypomnienie

W dynamice bry ly sztywnej role֒ masy odgrywa wielkość Î(O) zwana tensorem jej mo-
mentu bezw ladności wzgle֒dem punktu O. Jeśli z O poprowadzić wektory wodza֒ce ra do
wszystkich infinitezymalnych elementów bry ly o masach ∆ma, to tensor Î(O) ma postać

Î(O) =
∑

a

∆ma

[

r2a (ex ⊗ ex + ey ⊗ ey + ez ⊗ ez) − ra ⊗ ra
]

.

Tensor jest, tak jak “żywe” wektory (w sprawie “żywości” wektorów - zob. mój skrypt
do algebry), obiektem geometrycznym i nie zależy od uk ladu odniesienia.125 Zależy tylko
od punktu O, wzgle֒dem którego jest zdefiniowany. Jeśli bry la obraca sie֒ wokó l osi prze-
chodza֒cej przez O z (chwilowa֒) pre֒dkościa֒ ka֒towa֒ ω, to zwia֒zany z tym obrotem moment
pe֒du J(O) (ca lkowity moment pe֒du bry ly wzgle֒dem pocza֒tku jakiegoś dowolnie wybranego
uk ladu inercjalnego ma jeszcze inne przyczynki - zob. niżej) jest równy126

J(O) = Î(O) ·ω =
∑

a

∆ma

{

r2a [ex (ex ·ω) + ey (ey ·ω) + ez (ez ·ω)] − ra (ra ·ω)
}

.

Jeśli wprowadzić uk lad odniesienia o pocza֒tku w punkcie O i wersorach ex, ey, ez, to
tensor można zapisać w postaci

Î(O) = ei ⊗ ej I
ij
O ,

i reprezentować go jego dziewie֒cioma sk ladowymi (Î(O))
ij w bazie ei ⊗ ej . Tworza֒ one

macierz

Î(O) =
∑

a

∆ma





y2a + z2a −xaya −xaza
−yaxa x2a + z2a −yaza
−zaxa −zaya x2a + y2a



 ,

lub, w notacji wskaźnikowej,

Î ij(O) =
∑

a

∆ma

(

δijr2a − riar
j
a

)

,

a w wersji cia֒g lej, w której ρ(r) jest lokalna֒ ge֒stościa֒ masy bry ly,

Î ij(O) =

∫

d3r ρ(r)
(

δijr2 − rirj
)

.

125Tensor ex ⊗ ex + ey ⊗ ey + ez ⊗ ez ma te֒ sama֒ postać niezależnie od wyboru ortonormalnego uk ladu

wersorów ei. Dzie֒ki temu zdefiniowany podanym wzorem tensor Î(O) rzeczywíscie nie zależy od wyboru
uk ladu odniesienia (wersorów ei).
126Dzia lanie tensora na wektor wykorzystuje tu kanoniczny izomorfizm Frecheta-Riesza wektorów i form,

który w przestrzeni R3 sprowadza sie֒ do dzia lania przez zwyk ly iloczyn skalarny. W rzeczywistości tensor
ÎO powinien być elementem przestrzeni V ⊗ V ∗ (V ∗ jest przestrzenia֒ form nad V - nad przestrzenia֒, w
której “żyje” wektor ω), ale tu nie musimy sie֒ takimi szczegó lami przejmować, bo nic z nich nie wynika
dla “zdrowej” fizyki.
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Zwia֒zany z obrotem wokó l punktu O moment pe֒du bry ly można zatem napisać w postaci

J(O) = ei J
i
(O) = ei Î

ij
(O) δjk ω

k .

Zatem sk ladowe J i(O) wektora J(O) uzyskujemy dzia laja֒c po prostu macierza֒ Î(O) na kolu-
mienke֒ sk ladowych wektora pre֒dkości ka֒towej.

Jeśli znany jest tensor Î(CM) momentu bezw ladności bry ly wzgle֒dem jej środka masy

(CM), to tensor Î(O) wzgle֒dem punktu O, do którego biegnie od środka masy wektor R

można otrzymać ze wzoru (twierdzenie Steinera, zob. zadanie 12.2)

Î(O) = Î(CM) +M
[

R2 (ex ⊗ ex + ey ⊗ ey + ez ⊗ ez) − R ⊗ R
]

,

w którym M jest ca lkowita֒ maa֒ bry ly.

Każdy ruch bry ly sztywnej (wzgle֒dem wybranego uk ladu inercjalnego) można z lożyć
z ruchu poste֒powego dowolnie wybranego punktu O w uk ladzie zwia֒zanym na sztywno z
bry la֒ (punkt ten może być punktem samej bry ly, ale może też leżeć poza nia֒) i obrotu bry ly
wokó l tego punktu z (w ogólności zmieniaja֒ca֒ sie֒ w czasie) pre֒dkościa֒ ka֒towa֒ ω. Pre֒dkość
ka֒towa bry ly jest wektorem niezależym od wyboru punktu O, który wybrany zosta l jako
ten, przez który przechodzi jej chwilowa oś obrotu. Infinitezymalne przemieszczenie dτA
(wzgle֒dem wybranego uk ladu inercjalnego) dowolnego punktu A bry ly można zawsze
zapisać jako

dτA = drO + dθ×rOA ,

gdzie rO jest wektorem wodza֒cym punktu O, rOA wektorem biegna֒cym od punktu O
do punku A, a dθ infinitezymalnym ka֒tem obrotu bry ly wokó l jej chwilowej osi obrotu
przechodza֒cej przez A (tj. dθ/dt = ω). Wzór ten można wykorzystywać do wyznaczania
wektora pre֒dkości ka֒towej ω.

Dynamika֒ bry ly sztywnej rza֒dza֒ dwa równania:

d

dt
J = D ,

d2

dt2
MR = F .

R jest tu po lożeniem środka masy bry ly w dowolnie wybranym uk ladzie inercjalnym,
F wektorowa֒ suma֒

∑

a Fa wszystkich si l na nia֒ dzia laja֒cych (choćby by ly przy lożone
w różnych jej punktach), D =

∑

a ra × Fa suma֒ momentów tych si l liczonych wzgle֒dem
pocza֒tku wybranego uk ladu inercjalnego, a J jest momentem pe֒du bry ly również liczonym
wzgle֒dem pocza֒tku tegoż uk ladu inercjalnego. Wektor J jest w ogólności dany wzorem

J = MR × vO +MrO × (ω × R′O) + Î(O) ·ω .

W powyższym wzorze vO = ṙO jest pre֒dkościa֒ wzgle֒dem uk ladu inercjalnego punktu O, a
R′O jest wektorem ida֒cym od punktu O do środka masy bry ly; zatem R = rO + R′O (zob.
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rysunek 55). Î(O) jest tensorem momentu bezw ladności bry ly wzgle֒dem punktu O. Punkt
O, jak już by lo powiedziane, może być, podobnie jak uk lad inercjalny, wybrany arbitralnie
ale (co bardzo ważne - zob. np. zadanie 12.15) jest przyczepiony do uk ladu zwia֒zanego
a bry la֒ i wobec tego zmienia wraz z nia֒ swe po lożenie wzgle֒dem uk ladu inercjalnego.
Pochodne po czasie wyste֒puja֒ce w podanych tu równaniach ruchu bry ly sa֒ pochodnymi
obliczanymi w uk ladzie inercjalnym.

x

y

z

CM

O
R

rO

R′O

ω

CM
d1

F1

F2

d2

Rysunek 55: Ruch bry ly sztywnej jako z lożenie ruchu poste֒powego (z pre֒dkościa֒ vO = ṙO)
wybranego (dowolnego, ale zwia֒zanego z bry la֒) punktu O i obrotu z chwilowa֒ pre֒dkościa֒
ka֒towa֒ ω wokó losi przechodza֒cej przez punkt O. Definicje wektorów.

Ważne uproszczenie wyste֒puje, gdy jako punkt O obrany zostaje środek masy bry ly
(jednak nie zawsze jest to najwygodniejsze), tj. gdy rO = R, a R′O = 0. Wówczas

J = MR × Ṙ + ICM ·ω ≡MR × Ṙ + J(CM) .

J(CM) można wtedy uważać za “wewnetrzny” moment pe֒du (chcia loby sie֒ rzec: spin) bry ly
liczony wzgle֒dem środka jej masy, a pierwszy wyraz za jej “orbitalny moment pe֒du”. Co
wie֒cej, jeśli wektory wodza֒ce przy lożonych do bry ly si l Fa zapisać jako sumy ra = R+da,
gdzie da sa֒ wektorami od środka masy bry ly do punktów przy lożenia si l (zobacz prawy
rysunek 55) i zapisać momenty si l w postaci Da = R × Fa + da × Fa = R × Fa + DCM

a ,
to równania dynamiki bry ly zredukuja֒ sie֒ do127

d2

dt2
MR =

∑

a

Fa ,

d

dt
JCM ≡ d

dt
(ICM ·ω) = DCM ≡

∑

a

DCM
a .

Istotnie, mnoża֒c wektorowo przez R z lewej strony równanie ruchu środka masy

R × d

dt
MṘ =

d

dt
(MR × Ṙ) = R × F ,

127Ze szko ly wynosi sie֒ zwykle mniemanie, że to te wzory sa֒ ogólnymi prawami dynamiki bry ly; jest
ono, jak widać, b le֒dne i jako takie, szkodliwe!
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i odejmuja֒c je stronami od pe lnego równania

d

dt
J =

d

dt

(

MR × Ṙ + JCM

)

= R × F + DCM ,

otrzymujemy “zredukowane” równanie podane wyżej.
Należy tu jeszcze raz zwrócić uwage֒ na to, że pochodne po czasie wyste֒puja֒ce w wy-

pisanych wyżej prawach dynamiki bry ly sa֒ pochodnymi liczonymi w inercjalnym uk ladzie
odniesienia. Aby je obliczać bezpośrednio trzeba wszystkie wektory rO, R′O, ω i tensor IO
rozpisać na sk ladowe tymże uk ladzie. Nie zawsze jest to wygodne, gdyż wzgle֒dem tego
uk ladu bry la obracaja֒c sie֒, zmienia swoje po lożenie, co powoduje, że sk ladowe tensora
bezw ladności IO nie sa֒ sta le (wyja֒tkiem - myla֒cym! - sa֒ “szkolne” przyk lady). Wyj́sciem
w tej sytuacji jest wyrażenie pochodnej wektora J obliczanej w uk ladzie inercjalnym przez
jego pochodna֒ po czasie wzgle֒dem uk ladu zwia֒zanego z bry la֒:

dJ

dt
=
d′J

dt
+ ω×J .

W oznaczeniach wprowadzonych wyżej (zob. także rysunek 55) energia kinetyczna
T bry ly, której ruch traktujemy jak z lożenie ruchu poste֒powego wybranego punku O
maja֒cego ustalone wzgle֒dem bry ly po lożenie i obrotu bry ly wokó l chwilowej osi prze-
chodza֒cej przez punkt O jest dana wzorem

T =
1

2
Mv2

O +MvO ·(ω × R′O) +
1

2
ω ·IO·ω .

Taka֒ w laśnie postać energii kinetycznej bry ly sztywnej należy w ogólności wykorzystywać
w lagrangianie L = T − V . Jest ona oczywíscie niezależna od wyboru punktu O.
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Zadanie 12.1

Wyprowadzić wzory na sk ladowe (chwilowej) pre֒dkości ka֒towej ω w uk ladzie odniesienia
zwia֒zanym z obracaja֒ca֒ sie֒ bry la֒ sztywna֒, którego orientacja wzgle֒dem uk ladu nierucho-
mego (inercjalnego), maja֒cego z nim wspólny pocza֒tek jest wyznaczona przez zdefinio-
wane standardowo przez trzy ka֒ty Eulera ϕ, θ i ψ (trzy“trzy ruchy  lapki”).

Sparametryzowane ka֒tami Eulera trzy obroty przeprowadzaja֒ce uk lad trzech ortonormal-
nych wektorów ex, ey i ez w trzy ortonormalne wektory ex′′′ , ey′′′ i ez′′′ uk ladu zwia֒zanego
z bry la֒ sa֒ naste֒puja֒ce: najpierw dokonujemy obrotu wokó l wektora ez o ka֒t ϕ, co prze-
prowadza wektory ex, ey i ez w wektory ex′ , ey′ i ez′ = ez. Naste֒pnie te primowane
wektory obracamy wokó l osi zwanej linia֒ we֒z lów o wersorze w, pokrywaja֒cej sie֒ z wek-
torem128 ey′ o ka֒t θ otrzymuja֒c w ten sposób wersory ex′′ , ey′′ = ey′ i ez′′. Wreszcie
obracamy bisowane wektory wokó l wersora ez′′ o ka֒t ψ, co przeprowadza je w końcowy
uk lad wersorów ex′′′ , ey′′′ i ez′′′ = ez′′ uk ladu zwia֒zanego z bry la֒. Pre֒dkość ka֒towa ω jest
wie֒c równa

ω = ez ω
z + wωw + ez′′ ω

z′′ = ez ω
z + wωw + ez′′′ ω

z′′′

= ez ϕ̇+ w θ̇ + ez′′′ ψ̇ .

Zatem (ωx
′′′

= ex′′′ ·ω, etc.):

ωx
′′′

= (ex′′′ ·ez) ϕ̇+ (ex′′′ ·w) θ̇ + 0 ,

ωy
′′′

= (ey′′′ ·ez) ϕ̇+ (ey′′′ ·w) θ̇ + 0 ,

ωz
′′′

= (ez′′′ ·ez) ϕ̇+ (ez′′′ ·w) θ̇ + ψ̇ .

Zera na końcu pierwszej i drugiej linii biora֒ sie֒ z tego, że ez′′′ ·ex′′′ = 0 i ey′′′ ·ex′′′ = 0, a w
ostatnim cz lonie trzeciej linii wykorzystane zosta la równość ez′′′ ·ez′′′ = 1. Ponieważ

w ≡ ey′ = −ex sinϕ+ ey cosϕ ,

(w/g konwencji przyje֒tej w mechanice klasycznej w ≡ ex′ = ex cosϕ+ ey sinϕ) wie֒c

ωx
′′′

= (ex′′′ ·ez) ϕ̇− (ex′′′ ·ex) θ̇ sϕ + (ex′′′ ·ey) θ̇ cϕ ,
ωy

′′′

= (ey′′′ ·ez) ϕ̇− (ey′′′ ·ex) θ̇ sϕ + (ey′′′ ·ey) θ̇ cϕ ,
ωz

′′′

= (ez′′′ ·ez) ϕ̇− (ez′′′ ·ex) θ̇ sϕ + (ez′′′ ·ey) θ̇ cϕ + ψ̇ .

Aby zatem podać sk ladowe pre֒dkości ka֒towej, trzeba znaleźć iloczyny skalarne wer-
sorów ei′′′ z wersorami ej. Ponieważ oba uk lady wersorów sa֒ ortonormalne, wystarczy
wyrazić wersory ei′′′ przez ej. Robimy to sukcesywnie (w sprawie porza֒dku w notacji zob.
mój skrypt do Algebry)

(ex′ , ey′ , ez′) = (ex, ey, ez)





cϕ −sϕ 0
sϕ cϕ 0
0 0 1



 .

128Tu istnieja֒ dwie szko ly: wed lug jednej oś we֒z lów pokrywa sie֒ z osia֒ x′. Tak też zwykle jest przyj-
mowane w podre֒cznikach Mechaniki. Tu jednak przyjmiemy konwencje֒ drugiej szko ly, jako że jest ona
standardowa w mechanice kwantowej, która be֒dzie nam bardziej użyteczna.
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(ex′′ , ey′′ , ez′′) = (ex′, ey′ , ez′)





cθ 0 sθ
0 1 0

−sθ 0 cθ





= (ex, ey, ez)





cϕ −sϕ 0
sϕ cϕ 0
0 0 1









cθ 0 sθ
0 1 0

−sθ 0 cθ



 ,

i wreszcie

(ex′′′ , ey′′′ , ez′′′) = (ex′′ , ey′′ , ez′′)





cψ −sψ 0
sψ cψ 0
0 0 1





= (ex, ey, ez)





cϕ −sϕ 0
sϕ cϕ 0
0 0 1









cθ 0 sθ
0 1 0

−sθ 0 cθ









cψ −sψ 0
sψ cψ 0
0 0 1



 .

Po cierpliwym wymnożeniu macierzy (Mathematica robi to szybciej) ostatecznie otrzy-
mujemy (w oznaczeniach z mojego skryptu do Algebry) ei′′′ = ej[Re←e′′′ ]

j
i′′′ , czyli jawnie

(ex′′′ , ey′′′ , ez′′′) = (ex, ey, ez)





cϕcθcψ − sϕsψ −sϕcψ − cϕcθsψ cϕsθ
sϕcθcψ + cϕsψ cϕcψ − sϕcθsψ sϕsθ

−sθcψ sθsψ cθ



 .

Widnieja֒ca tu macierz jest w laśnie macierza֒ poszukiwanych iloczynów skalarnych

Re←e′′′ =





ex ·ex′′′ ex ·ey′′′ ex ·ez′′′
ey ·ex′′′ ey ·ey′′′ ey ·ez′′′
ez ·ex′′′ ez ·ey′′′ ez ·ez′′′



 ,

gdyż ek ·ei′′′ = δkj [Re←e′′′ ]
j
i′′′ ≡ [Re←e′′′ ]

k
i′′′ . Zatem

ωx
′′′

= −ϕ̇ sθcψ + θ̇ sψ ,

ωy
′′′

= ϕ̇ sθsψ + θ̇ cψ ,

ωz
′′′

= ϕ̇ cθ + ψ̇ .

Metoda tu wykorzystana pozwala także bez trudu znaleźć sk ladowe wektora chwilowej
pre֒dkości ka֒towej w wyj́sciowym uk ladzie xyz:

ωx = (ex ·ez) ϕ̇− (ex ·ex) θ̇ sϕ + (ex ·ey) θ̇ cϕ + (ex ·ez′′′)ψ̇ = − θ̇ sϕ + ψ̇ cϕsθ ,

ωy = (ey ·ez) ϕ̇− (ey ·ex) θ̇ sϕ + (ey ·ey) θ̇ cϕ + (ey ·ez′′′)ψ̇ = θ̇ cϕ + ψ̇ sϕsθ ,

ωz = (ez ·ez) ϕ̇− (ez ·ex) θ̇ sϕ + (ez ·ey) θ̇ cϕ + (ez ·ez′′′)ψ̇ = ϕ̇ + ψ̇ cθ .

Jeśli przyja֒ć druga֒ konwencje֒, wed lug której w = ex′, to analogiczne kroki dadza֒

ωx
′′′

= ϕ̇ sθsψ + θ̇ cψ ,

ωy
′′′

= ϕ̇ sθcψ − θ̇ sψ ,

ωz
′′′

= ϕ̇ cθ + ψ̇ .
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Zadanie 12.2

Podać wzór wyrażaja֒cy tensor I(O) momentu bezw ladności bry ly sztywnej wzgle֒dem
punktu O przez tensor I(CM) tejże bry ly wzgle֒dem jej środka masy.

Rozwia֒zanie:

Tensor I(O) momentu bezw ladności bry ly sztywnej wzgle֒dem dowolnego punktu O jest
dany wzorem

IO =
∑

a

∆ma

[

r2a (ex ⊗ ex + ey ⊗ ey + ez ⊗ ez) − ra ⊗ ra
]

,

w którym sumowanie przebiega po wszystkich elementach masy ∆ma, z których sk lada sie֒
bry la. (Gdy masa bry ly jest roz lożona w sposób cia֒g ly, należy zasta֒pić masy ∆ma przez
d3r ρ(r), gdzie ρ(r) jest (lokalna֒) ge֒stościa֒ masy, a sumowanie zasta֒pić ca lkowaniem).
Wektory ra biegna֒ce od punktu O do poszczególnych mas ∆ma można zawsze zapisać
jako

ra = −R + r(CM)
a ,

gdzie R jest wektorem od środka masy do punktu O. Wstawiaja֒c tak zapisany wektor ra
do powyższego wzoru na I(O) otrzymujemy

IO =
∑

a

∆ma

[

(r(CM)
a − R)2 (ex ⊗ ex + ey ⊗ ey + ez ⊗ ez)

−(r(CM)
a − R) ⊗ (r(CM)

a − R)
]

,

Po rozpisaniu wzór powyższy przybiera postać

IO =
∑

a

∆ma

[

(r(CM)
a )2 (ex ⊗ ex + ey ⊗ ey + ez ⊗ ez) − r(CM)

a ⊗ r(CM)
a

]

+
∑

a

∆ma

[

R2 (ex ⊗ ex + ey ⊗ ey + ez ⊗ ez) − R ⊗ R
]

+
∑

a

∆ma

[

−r(CM)
a ·R (ex ⊗ ex + ey ⊗ ey + ez ⊗ ez) + r(CM)

a ⊗ R + R ⊗ r(CM)
a

]

.

Ostatnia linia tego wzoru, w której wektory r
(CM)
a wyste֒puja֒ liniowo, znika, gdyż z definicji

środka masy (CM)

∑

a

∆mar
(CM)
a = 0 ,

a pierwsza jego linia jest tensorem I(CM) bry ly wzgle֒dem środka jej masy. Zatem zapisane
tensorowo twierdzenie Steinera ma postać

I(O) = I(CM) +M
[

R2 (ex ⊗ ex + ey ⊗ ey + ez ⊗ ez) − R ⊗ R
]

,
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gdyż suma po ∆ma w środkowej linii daje mase֒ bry ly. W konkretnym uk ladzie odniesienia
zadawanym przez wersory129 ex, ey i ez. w którym R = exX+ey Y +ezZ, a I = ei⊗ej I

ij

“dodatek” wynikaja֒cy z “przesunie֒cia” tensora momentu bezw ladności od środka masy
(CM) do punktu O ma w notacji wskaźnikowej postać ∆I ijO = M(δijR2 − RiRj), a w
macierzowej

∆ÎO = M





Y 2 + Z2 −XY −XZ
−Y X X2 + Z2 −Y Z
−ZX −ZY X2 + Y 2



 .

Należy tu zwrócić uwage֒ na to, że tensor momentu bezw ladności przesuwamy zawsze od
środka masy bry ly do danego punktu. Jeśli ze znanego tensora I(O) chcemy otrzymać
tensor I(O′) należy przej́sć przez środek masy (R′ jest wektorem skierowanym od środka
masy do punku O′):

I(O′) = I(CM) + ∆I(R′) = I(O) − ∆I(R) + ∆I(R′) .

129Tensor ex ⊗ ex + ey ⊗ ey + ez ⊗ ez ma te֒ sama֒ postać niezależnie od wyboru ortonormalnego uk ladu
wersorów ei.
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Zadanie 12.4

Znaleźć tensor Î(O) momentu bezw ladności jednorodnego stożka o masie M , promie-
niu podstawy R i wysokości h wzgle֒dem punktu O be֒da֒cego środkiem jego podstawy.
Naste֒pnie wykorzystuja֒c twierdzenie Steinera, otrzymać tensor momentu bezw ladności
wzgle֒dem środka masy stożka.

Rozwia֒zanie:

Wprowadźmy uk lad odniesienia o osi z skierowanej wzd luż osi stożka do góry i osiach x i
y leża֒cych w p laszczyźnie jego podstawy. Punkt O be֒da֒cy środkiem podstawy jest wie֒c
pocza֒tkiem tego uk ladu odniesienia. W tak zdefiniowanym uk ladzie odniesienia sk ladowe
I
(O)
ij tensora momentu bezw ladności Î(O) wzgle֒dem punktu O sa֒ dane ca lkami

I(O)
xx =

∫ ∫ ∫

Vol

dz dy dz ρ
(

y2 + z2
)

,

I(O)
xy =

∫ ∫ ∫

Vol

dz dy dz ρ (−xy) ,

etc. przy czym granice ca lek  latwiej ustalić po dokonaniu w ca lkach zamiany zmiennych
na cylindryczne: x = r cosϕ, y = r sinϕ, dx dy = dϕdr r. Po takiej zamianie zmiennych

I(O)
xx =

∫ h

0

dz

∫ 2π

0

dϕ

∫ r(z)

0

dr rρ
(

z2 + r2 sin2 ϕ
)

,

I(O)
xy =

∫ h

0

dz

∫ 2π

0

dϕ

∫ r(z)

0

dr r
(

−r2 cosϕ sinϕ
)

,

etc. Górna granica wewne֒trznej ca lki jest dana oczywistym wzorem (musi być równa R,
gdy z = 0 i znikać, gdy z = h)

r(z) = R
(

1 − z

h

)

.

Od razu widać, że ca lkowanie po ka֒cie ϕ wyzerowuje wszystkie pozadiagonalne sk ladowe:
I
(O)
xy = I

(O)
xz = I

(O)
yz = 0. Poza tym po wykonaniu ca lki po ka֒cie ϕ otrzymujemy

I(O)
xx = π ρ

∫ h

0

dz

∫ r(z)

0

dr r
(

2z2 + r2 sin2 ϕ
)

= π ρ

∫ h

0

dz

(

z2r2(z) +
1

4
r4(z)

)

.

Po przej́sciu do zmiennej ξ = z/h mamy sta֒d

I(O)
xx = π ρR2h

∫ 1

0

dξ

[

h2ξ2(1 − ξ)2 +
1

4
R2(1 − ξ)4

]

= π ρR2h

(

1

30
h2 +

1

20
R2

)

.

Ponieważ jest jasne (z symetrii), że I
(O)
xx = I

(O)
yy , a (ze szko ly jeszcze)

ρ =
3M

πR2h
,

301



otrzymujemy

I(O)
xx = I(O)

yy =
M

20

(

3R2 + 2h2
)

.

Sk ladowa֒ I
(O)
zz oblicza sie֒ jeszcze prościej

I(O)
zz =

∫ ∫ ∫

Vol

dz dy dz ρ
(

x2 + y2
)

= 2π ρ

∫ h

0

dz

∫ r(z)

0

dr r3 ,

i po analogicznych krokach otrzymuje sie֒

I(O)
zz =

3

10
MR2 .

Ostatecznie wie֒c, zapisuja֒c tensor Î(O) we wprowadzonym uk ladzie (czyli w bazie ei⊗ ej ,
gdzie i, j = x, y, z) macierzowo

I(O) =
M

20





3R2 + 2h2 0 0
0 3R2 + 2h2 0
0 0 6R2



 .

Aby napisać tensor momentu bezw ladności wzgle֒dem środka masy stożka trzeba naj-
pierw ustalić, gdzie ów środek sie֒ znajduje. Niewa֒tpliwie (z powodu symetrii wzgle֒dem
obrotów stośka wokó l jego osi) gdzieś na osi stożka. Aby ustalić na jakiej wysokości,
obliczamy ca lke֒

z(CM) =
1

M

∫ ∫ ∫

Vol

dz dy dz ρ z = π
ρ

M

∫ h

0

dz z r2(z) =
1

4
h .

Zatem wektor a, o który trzeba “przesuna֒ć” tensor Î(CM) by dostać z niego tensor Î(O)

zgodnie ze wzorem (1̂ jest tensorem jednostkowym)

Î(O) = Î(CM) +M
(

a21̂ − a ⊗ a
)

,

ma, we wprowadzonym uk ladzie postać a = ez(h/4). W sk ladowych zatem

I(CM) =
M

20





3R2 + 2h2 0 0
0 3R2 + 2h2 0
0 0 6R2



− Mh2

16





1 0 0
0 1 0
0 0 0



 ,

czyli

I(CM) =
3M

80





4R2 + h2 0 0
0 4R2 + h2 0
0 0 8R2



 .
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Sk ladowe te można też otrzymać wprowadzaja֒c nowy uk lad odniesienia przesunie֒ty
do środka masy i ca lkuja֒c bezpośrednio. Teraz jednak zmieniaja֒ sie֒ granice ca lek i

I(CM)
zz = 2π ρ

∫ 3h/4

−h/4
dz r̃4(z) ,

gdzie wskutek przesunie֒ciu uk ladu

r̃(z) = R

(

3

4
− z

h

)

.

Zatem

I(CM)
zz =

π

2
ρR4

∫ 3h/4

−h/4
dz

(

3

4
− z

h

)4

=
π

10
ρR4h .

Analogicznie, po wykonaniu ca lki po ka֒cie ϕ

I(CM)
xx = π ρ

∫ 3h/4

−h/4
dz

∫ r̃(z)

0

dr r
(

2z2 + r2
)

= π ρ

∫ 3h/4

−h/4
dz

(

z2r̃2(z) +
1

4
r̃4(z)

)

Oczywíscie dostaje sie֒ w ten sposób te same sk ladowe, co z twierdzenia Steinera.

303



A B

C

ϕ x

y

z

ϕ′

Rysunek 56: Dwa po la֒czone przegubowo pre֒ty.

Zadanie 12.8

Znaleźć energie֒ kinetyczna֒ uk ladu dwu po la֒czonych przegubowo pre֒tów o masie m i
d lugości l każdy. Koniec lewego pre֒ta jest unieruchomiony w punkcie A (pre֒t może sie֒
tylko obracać wokó l A), a koniec B prawego pre֒ta może tylko przesuwać sie֒ po ustalonej
prostej przechodza֒cej przez punkt A (rysunek 56).

Rozwiazanie:

Jak widać z rysunku 56 dwa ka֒ty ϕ i ϕ′ nie sa֒ niezależne: ϕ′ = π − ϕ. Uk lad ma wie֒c
tylko jeden stopień swobody. Za uogólniona֒ zmienna֒ dynamiczna֒ wybieramy ka֒t ϕ. Osie
inercjalnego uk ladu odniesienia wybieramy tak, jak na rysunku.

Energie֒ kinetyczna֒ obliczamy z ogólnego wzoru

T =
1

2
mv2

O +mvO ·(ω × R′O) +
1

2
ω ·I(O) ·ω .

Należy przy tym pamie֒tać, że rozpatrywany uk lad sk lada sie֒ z dwóch niezależnych (gdy
chodzi o obliczanie energii) poduk ladów, którymi sa֒ dwa pre֒ty. Zatem T = T1 + T2. W
celach instruktażowych obliczymy każda֒ z tych dwu energii dwoma sposobami.

T1 - energia kinetyczna lewego pre֒ta. Najpierw rozpatrujemy ruch tego pre֒ta jako z lożenie
ruchu poste֒powego punktu A i obrotu pre֒ta wokó ltegoż punktu. Ponieważ punkt A jest
unieruchomiony, vA = 0; jeśli kierunek wzrostu ka֒ta ϕ jest taki, jak na rysunku 18, to
ω1 = ez ϕ̇, a tensor momentu bezw ladności pre֒ta wzgle֒dem osi z przechodza֒cej przez jego
koniec jest znany (paka - to z lowróżbne, rosyjskie s lówko...) ze szko ly:130 Izz(A) = 1

3
ml2.

Zatem

T1 =
1

2

1

3
ml2ϕ̇2 =

1

6
ml2ϕ̇2 .

Alternatywnie, można widzieć ruch lewego pre֒ta jako z lożenie ruchu poste֒powego środka
jego masy i obrotu pre֒ta wokó l tegoż środka. Zmieniaja֒cymi sie֒ wspó lrze֒dnymi (w
uk ladzie inercjalnym) środka masy sa֒ xCM1 = (l/2) cosϕ, yCM1 = (l/2) sinϕ, wie֒c v2

CM1 =
(l2/4)ϕ̇2. Z kolei (znów ze szko ly) Izz(CM) = (1/12)ml2 i ponownie

T1 =
1

2

1

4
ml2ϕ̇2 +

1

2

1

12
ml2ϕ̇2 =

1

6
ml2ϕ̇2 .

130Pozosta le sk ladowe w uk ladzie inercjalnym tego tensora zmieniaja֒ sie֒ w trakcie ruchu pre֒ta, ale
ponieważ ω = ez ϕ̇ stale, nie wchodza֒ one w T1.
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Pouczaja֒ce może też być obliczenie T1 wybieraja֒c zaO drugi koniec pierwszego pre֒ta, czyli
punkt C - wtedy niezerowy jest środkowy cz lon ogólnego wzoru na energie֒ kinetyczna֒.

T2 - energia kinetyczna prawego pre֒ta. Najpierw rozpatrujemy ruch tego pre֒ta jako
z lożenie ruchu poste֒powego punktu B i obrotu wokó l tego punktu. Z rysunku 18 widać,
że xB = 2l cosϕ, yB ≡ 0, wie֒c vB = −ex 2lϕ̇ sinϕ. Z kolei wektor od punktu B (który
teraz gra tu role֒ punktu O) do środka masy drugiego pre֒ta ma, jak widać z rysunku,
postać R′B = −ex (l/2) cosϕ + ey (l/2) sinϕ. Ponadto ω2 = ez ϕ̇

′ = −ez ϕ̇ i wobec
tego ω2 × R′B = (l/2)ϕ̇(ex sinϕ + ey cosϕ). Zatem (oczywíscie Izz(CM) = 1

12
ml2 wie֒c

Izz(CM) + 1
4
ml2 = 1

3
ml2, ale wydzielamy Izz(CM) dla wygody)

T2 =
1

2
4ml2ϕ̇2 sin2 ϕ−ml2ϕ̇2 sin2 ϕ+

1

2
(Izz(CM) +

1

4
ml2)ϕ̇2

=
1

8
ml2(1 + 8 sin2 ϕ)ϕ̇2 +

1

2
Izz(CM)ϕ̇

2 =
1

6
ml2(1 + 6 sin2 ϕ)ϕ̇2 .

Jeśli zaś ruch prawego pre֒ta uważać za z lożenie obrotu wokó l środka jego masy i ruchu
poste֒powego tegoż punktu, to xCM2 = (3l/2) cosϕ, yCM2 = (l/2) sinϕ, wie֒c

v2
CM2 =

1

4
l2ϕ̇2(9 sin2 ϕ+ cos2 ϕ) =

1

4
l2ϕ̇2(1 + 8 sin2 ϕ),

co prowadzi do tego samej energii kinetycznej T2.
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Rysunek 57: Toczenie sie֒ niejednorodnego walca.

Zadanie 12.9

Znaleźć energie֒ kinetyczna֒ niejednorodnego walca o masie M i promieniu R tocza֒cego sie֒
bez poślizgu po p laszczyźnie. Środek masy walca jest odleg ly o a od jego osi, a oś g lówna
jego tensora bezw ladności I(CM) (z za lożenia znanego) jest równoleg la do osi walca.

Rozwiazanie:

Najprościej jest rozpatrzyć ruch walca jako z lożenie ruchu poste֒powego punktu A walca
(rysunek 57) i obrotu wokó l tego punktu. Ponieważ przy toczeniu sie֒ bez poślizgu chwi-
lowa pre֒dkość punktu A jest z definicji równa zeru, wie֒c

T =
1

2
Mv2

A +MvA ·(ω × R′A) +
1

2
ω ·I(A) ·ω =

1

2
ω ·I(A) ·ω .

Trzeba tylko korzystaja֒c twierdzenia Steinera (zadanie 12.2) znaleźć tensor I(A), a w laściwie,
ponieważ przy p laskorównoleg lym ruchu walca

ω = −ez ϕ̇ ,

(oś z uk ladu inercjalnego, w którym tu rozpisujemy na sk ladowe wszystkie wektory oraz
tensor bezw ladności, jest skierowana przed rysunek), tylko jego sk ladowa֒ Izz(A). Jest ona
równa

Izz(A) = Izz(CM) +Md2(ϕ) ,

gdzie zmieniaja֒ca֒ sie֒ z ka֒tem ϕ odleg lość d(ϕ) można znaleźć z uogólnionego twierdzenia
Pitagorasa131

d2(ϕ) = R2 + a2 − 2Ra cosϕ .

Sta֒d

T =
1

2
Izz(A) ϕ̇

2 =
1

2

[

Izz(CM) +M(R2 + a2 − 2Ra cosϕ)
]

ϕ̇2.

131Jak by ktoś go nie pamie֒ta l (w końcu facet ży l tak dawno temu!), to zawsze można sie֒ uciec do
(dwuwymiarowej) geometrii analitycznej: w uk ladzie o pocza֒tku w środku geometrycznym walca A =

(0,−R), CM ≡ B = (−a sinϕ, −a cosϕ) wie֒c d(ϕ) = |AB| =
√

a2 sin2 ϕ+ (R− a cosϕ)2.
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Alternatywnie, można widzieć ruch walca jako ruch jego środka masy i obrót wokó l
środka masy. W ogólnym wzorze na T środkowy wyraz znika wtedy (bo R′ = 0), a
pre֒dkość ruchu środka masy wynika z jego obrotu wokó l punktu A - ramieniem tego
obrotu jest d(ϕ) - i ma wobec tego wartość |vCM| = |ϕ̇|d(ϕ), co od razu daje energie֒
kinetyczna֒ T taka֒ sama֒, jak wyżej.

Wreszcie, można rozpatrzyć ruch walca jako ruch poste֒powy jego geometrycznego
środka (tj. punktu O na rysunk 57) i obrót wokó l przechodza֒cej przez ten środek osi.
Pre֒dkość geometrycznego środka walca jest wektorem vO = exRϕ̇. W laściwym momen-
tem bezw ladności jest teraz Izz(CM) + Ma2, a wektor R′O = −ex a sinϕ − ey a cosϕ, tak
iż

vO ·(ω × R′O) = vO ·(−ex a ϕ̇ cosϕ+ ey a ϕ̇ sinϕ) = −Ra ϕ̇2 cosϕ ,

i znów

T =
1

2
MR2ϕ̇2 −MRa ϕ̇2 cosϕ+

1

2
[Izz(CM) +Ma2]ϕ̇2 .
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Rysunek 58: Walec tocza֒cy sie֒ wewna֒trz nieruchomego wie֒kszego walca. Przy pokazanym
na rysunku po lożeniu uk ladu ka֒t ϕ jest ujemny.

Zadanie 12.10

Znaleźć energie֒ kinetyczna֒ ma lego jednorodnego walca o masie m i promieniu a tocza֒cego
sie֒ bez poślizgu po wewne֒trznej powierzchni nieruchomego dużego walca o promieniu R
(R > a). Osie obu walców sa֒ do siebie stale równoleg le (rysunek 58).

Rozwiazanie:

Uk lad ma jeden stopień swobody. Za zmienna֒ dynamiczna֒ przyjmiemy ka֒t ϕ zaznaczony
na rysunku 58. Jest jasne, że pre֒dkość ruchu poste֒powego środka masy ma lego walca jest
równa

v2
CM = (R− a)2 ϕ̇2 .

Aby znaleźć pre֒dkość ka֒towa֒ obrotu ma lego walca (jest ona zawsze taka sama, nie-
zależnie od tego, przez który punkt przeprowadzimy chwilowa֒ oś obrotu), rozpatrzmy
punkt styczności obu walców. Gdy ka֒t ϕ zmieni sie֒ o ∆ϕ, punkt styczności przebywa
droge֒ R∆ϕ (mierza֒c po powierzchni dużego walca); ma ly walec obróci sie֒ o wtedy o ka֒t
∆α, co musi dać te֒ sama֒ droge֒ (bo toczy sie֒ bez poślizgu).

∆α =
R

a
∆ϕ .

Znak ∆α jest taki sam, jak znak ∆ϕ, bo, jak widać z rysunku ??, gdy ka֒t α rośnie, to
ka֒t ϕ również wzrasta). Stosunek ∆α/∆t (∆t - czas, w którym nasta֒pi l obrót o ka֒t ∆α)
nie jest jednak pre֒dkościa֒ ka֒towa֒ obrotu ma lego walca wzgle֒dem uk l adu inercjalnego:
∆α jest ka֒tem, o który ma ly walec obraca sie֒ w stosunku do prostej, która  la֒czy la jego
środek i punkt styczności obu walców; w tymże czasie uk lad odniesienia (którego jedna֒
z osi jest ta prosta) zwia֒zany na sztywno z ma lym walcem dodatkowo obróci sie֒ o ka֒t
∆ϕ w stosunku do nieruchomego uk ladu inercjalnego i o ten ka֒t trzeba pomniejszyć ∆α.
Zatem

ω =
∆α− ∆ϕ

∆t
=
R− a

a
ϕ̇ .

Zauważmy, że po prostu (tzw. “patent Landaua” - pre֒dkość ka֒towa jest równa pre֒dkości
środka masy przemieszczaja֒cej sie֒ bry ly podzielonej przez “ramie֒” jego obrotu wokó l
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Rysunek 59: Znajdowanie wektora pre֒dkości ka֒towej. Oś z skierowana przed kartke֒.
Infinitezymalne przemieszczenie dτA punktu A jest równe zeru wskutek niewyste֒powania
poślizgu.

nieruchomego punktu, którym tu jest punkt styczności obu walców)

|ω| =
|vCM|
a

.

Tak wie֒c

T =
1

2
m(R − a)2 ϕ̇2 +

1

2
Izz(CM)

(R− a)2

a2
ϕ̇2 .

Wektor pre֒dkości ka֒towej, który tu zosta l tu znaleziony z pomoca֒ dość heurystycznych
argumentów można też znaleźć wykorzystuja֒c inny patent (z którego patent Landaua
zapewne wynika, jako przypadek szczególny). Jeśli bry la obraca sie֒ w czasie dt o dθ = ωdt
wokó lchwilowej osi przechodza֒cej przez punkt O, to przemieszczenie dτA jej punktu A
wzgle֒dem uk ladu inercjalnego jest dane wzorem

dτA = drO + dθ×rOA .

gdzie drO jest przemieszczeniem punktu O, a rOA wektorem biegna֒cym od O do A. Sto-
suja֒c ten wzór do punktu A (lub punktów), którego przemieszczenie dτA jest ska֒dina֒d
znane (czy zadane warunkami problemu), można wyznaczyć wektor dθ, czyli ω. Ponieważ
w przypadku uk ladu pokazanego na rysunku ??

rOA = a (ex cosϕ+ ey sinϕ) ,

drO = (R− a)(−ex sinϕ+ ey cosϕ)dϕ ,

a dθ = ezdθ
z - to można tu spokojnie przyja֒ć - wie֒c (korzystaja֒c z tego, że ez × ex = ey,

ez × ey = −ex)

dτA = (R− a)(−ex sinϕ+ ey cosϕ)dϕ+ (ey cosϕ− ex sinϕ) a dθz = 0 ,

bo chwilowe przemieszczenie punktu A, jako punktu styczności (toczenie bez poślizgu!)
musi być równe zeru. Zarówno zerowanie sie֒ sk ladowej x-owej i y-kowej daja֒ ten sam
zwia֒zek a dθz = −(R− a)dϕ, ska֒d wynika, że w uk ladzie z rysunku 58

dθ

dt
= ω = −ez

R − a

a
ϕ̇ ,

tak jak to zosta l ustalone poprzednio.
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Zadanie 12.11

Znaleźć energie֒ kinetyczna֒ jednorodnego stożka o ca lkowitej masie M , ka֒cie rozwarcia 2α
i wysokości h taczaja֒cego sie֒ bez poślizgu po p laszczyźnie w taki sposób, że jego czubek
pozostaje stale w tym samym punkcie p laszczyzny (rysunek 60). Naste֒pnie, przyjmuja֒c,
że p laszczyzna ta jest do pionu (wyznaczanego przez pole si ly cie֒żkości) nachylona pod
ka֒tem β, napisać równanie wyznaczaja֒ce ruch stożka po p laszczyźnie.

Rozwiazanie:

Najpierw zajmiemy sie֒ energia֒ kinetyczna֒ taczaja֒cego sie֒ stożka. Nachylenie p laszczyzny,
po której on sie֒ przetacza nie ma tu żadnego znaczenia. Wprowadźmy inercjalny uk lad
odniesienia O′, którego osie x′ i y′ leża֒ w p laszczyźnie, po której przetacza sie֒ stożek
i o pocza֒tku w punkcie A, w którym uwie֒ziony jest czubek stożka. Oś z′ tego uk ladu
niech be֒dzie skierowana w góre֒ w sosunku do tej p laszczyzny. Chwilowe po lożenie stożka
jako bry ly jest jednoznacznie wyznaczone przez podanie ka֒ta θ pomie֒dzy osia֒ x′ uk ladu
O′, a prosta֒ przechodza֒ca֒ przez punkty A i B, wzd luż której tworza֒ca stożka styka sie֒
z p laszczyzna֒ (zob. rysunek 60). Uk lad ma wie֒c tylko jeden stopień swobody. Jako
zmienna֒ uogólniona֒ przyjmujemy ka֒t θ.

Pierwszym krokiem jest znalezienie wektora chwilowej pre֒dkości ka֒towej ω. Jeśli jest
oczywiste, że ma ona kierunek prostej AB (zob. rysunek 60) - tj. kierunek linii wzd luż
której tworza֒ca stożka styka sie֒ z p laszczyzna֒ x′y′, to skoro środek masy stożka odleg ly
o a = 3

4
h od czubka stożka (zob. zadanie 12.4) porusza sie֒ po okre֒gu z pre֒dkościa֒

|vCM| = a θ̇ cosα, pozostaja֒c stale na wysokości a sinα nad punktem C, pre֒dkość ka֒towa
musi być równa (“patent Landaua”!)

|ω| =
|vCM|
a sinα

= θ̇ ctgα .

Jeśli nie jest to oczywiste, w celu upewnienia sie֒, można pos lużyć sie֒ naste֒puja֒cym ro-
zumowaniem. Niech P be֒dzie dowolnym punktem poruszaja֒cej sie֒ bry ly sztywnej, a O
punktem bry ly przez który przechodzi chwilowa oś jej obrotu.132 Niech ponadto rOP
be֒dzie wektorem od punktu O do punktu P . Wektor drP o jaki przemieszcza sie֒ punkt
P wzgle֒dem uk ladu inercjalnego w infinitezymalnym odcinku czasu dt musi być równy

drP = drO + dϕ× rOP ,

gdzie rO jest wektorem po lożenia w uk ladzie inercjalnym punktu O. W przypadku ta-
czajacego sie po p laszczyźnie stożka weźmy jako O środek jego podstawy. Aby uprościć
rozważania za lóżmy, że w danej chwili tworza֒ca stożka styka sie֒ z p laszczyzna֒ wzd luż osi
x′. Wtedy

drO = ey′ hdθ cosα .

132Pamie֒tamy, że punkt ten jest wybrany dowolnie - ruch bry ly uważamy za z lożenie ruchu poste֒powego
punktu dowolnie wybranego punktu O o niezmiennym po lożeniu wzgle֒dem bry ly i jej obrotu wokó l tego
punktu.
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Rysunek 60: Stożek o unieruchomionym czubku taczaja֒cy sie֒ po p laszczyźnie.

Punkty stożka, które nie powinny sie֒ przemieścić w odcinku czasu dt, to jego czubek A
(bo jest on w warunkach zadania nieruchomy) oraz wszystkie punkty tworza֒cej, która֒
stożek styka sie֒ z p laszczyzna֒ x′y′ (bo stożek tacza sie֒ bez poślizgu) - weźmy do rozważań
np. punkt B tej tworza֒cej wspólny z podstawa֒ stożka. Biora֒c zatem za P punkty A i B,
których wektory rOA i rOB  latwo skonstruować patrza֒c na prawy rysunek 60, mamy

0 = drA = ey′ hdθ cosα + dϕ× [−ex′ h cosα− ez′ h sinα] ,

0 = drB = ey′ hdθ cosα + dϕ×
[

ex′

(

h

cosα
− h cosα

)

− ez′ h sinα

]

.

Odejmuja֒c te dwa równania stronami widzimy, że

dϕ× ex′
h

cosα
= 0 ,

czyli, że dϕ = ex′ dϕ
x′. Z pierwszego mamy wtedy

ey′ hdθ cosα + dϕ× [−ez′ h sinα] = ey′ hdθ cosα + ey′ hdϕ
x′ sinα = 0 ,

czyli dϕx
′

= −dθ ctgα, tak jak wyżej. Należy pamie֒tać, że wektor pre֒dkości ka֒towej jest
taki sam, niezależnie od tego, który ustalony w stosunku do bry ly punkt przyjmiemy za
O, czyli za punkt, przez który przechodzi chwilowa oś jej obrotu.

Obliczymy energie֒ kinetyczna֒ taczaja֒cego sie֒ stożka dwoma sposobami.
1) Traktuja֒c ruch stożka jak z lożenie obrotu wokó l środka jego masy z ruchem poste֒po-

wym tego środka. Rozk ladamy wtedy znaleziony wektor pre֒dkości ka֒towej maja֒cy kieru-
nek tworza֒cej, wzd luż której stożek styka sie֒ z p laszczyzna֒ na cze֒ść ω‖ równoleg la֒ do osi
stożka i ω⊥ prostopad la֒ do niej:

|ω‖| = |ω| cosα , |ω⊥| = |ω| sinα .
Momenty bezw ladności stożka (wzgle֒dem środka jego masy) wzgle֒dem tych osi zosta ly
znalezione w zadaniu 12.4 (R = h tgα jest promieniem podstawy stożka)

I
‖
(CM) =

3

10
MR2 =

3

10
Mh2 tg2 α ,

I⊥(CM) =
3

20

(

MR2 +
1

4
Mh2

)

=
3

20
Mh2

(

1

4
+ tg2 α

)

.
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Pre֒dkość środka masy jest, jak to już zosta lo ustalone, równa |vCM| = 3
4
h θ̇ cosα. Zatem

T =
1

2
Mv2

CM +
1

2
I
‖
(CM)ω

2
‖ +

1

2
I⊥(CM)ω

2
⊥

=
1

2
Mh2 θ̇2

(

9

16
cos2 α+

3

10
cos2 α +

3

80
cos2 α+

3

20
sin2 α

)

=
3

40
Mh2 θ̇2(1 + 5 cos2 α) .

2) Drugi sposób polega na rozpatrzeniu obrotu stożka wokó l punktu A. Ponieważ
punkt ten spoczywa, T = 1

2
ω · I(A) · ω. W tym samym, co poprzednio uk ladzie O′

zwia֒zanym ze stożkiem (oś z̃ tożsama z osia֒ stożka etc.) twierdzenie Steinera daje

I z̃z̃(A) = I z̃z̃(CM) = I
‖
(A) ,

I x̃x̃(A) = I ỹỹ(A) = I x̃x̃(CM) +
9

16
Mh2 = I⊥(A) ,

i od razu widać, że dodatek (9/16)Mh2 pochodza֒cy z przesunie֒cia tensora do punktu A
daje dok ladnie to samo, co w metodzie pierwszej wyraz z v2

CM.

Aby bezboleśnie znaleźć energie֒ potencjalna֒ wygodnie be֒dzie wykorzystać pomocnicze
uk lady odniesienia. Pierwszym jest uk lad O′′, którego pocza֒tkiem jest czubek stożka, A
osia֒ x′′ jest tworza֒ca stożka, która֒ styka sie֒ on z nachylona֒ p laszczyzna֒, a oś z′′ jest do
tej p laszczyzny prostopad la. W tym uk ladzie środek masy stożka znajduja֒cy sie֒ na jego
osi w odleg lości (3/4)h od czubka ma wspó lrze֒dne (3/4)h(cosα, 0, sinα). Drugim jest
wprowadzony już uk lad O′, którego oś z′, jest tożsama z osia֒ z′′ a oś x′ jest obrócona
w kierunku spadku p laszczyzny po której przetacza sie stożek o ka֒t θ. W uk ladzie O′
wspó lrze֒dnymi środka masy stożka sa֒ (cα ≡ cosα etc.)

3h

4





cθ −cθ 0
sθ cθ 0
0 0 1









cα
0
sα



 =
3h

4





cαcθ
cαsθ
sα



 .

Ponieważ uk lad O′ ma z uk ladem O (w którym pole si ly cie֒żkości jest skierowane w dó l
osi z) wspólna֒ o’s y = y′ i jest w stosunku doń wokó l tej wspólnej osi obrócony o ka֒t β,
wspó lrze”dnymi środka masy stożka sa֒ w nim

3h

4





cβ 0 sβ
0 1 0

−sβ 0 cβ









cαcθ
cαsθ
sα



 =
3h

4





cβcαcθ + sβsα
cαsθ

−sβcαcθ + cβsα



 .

Energia potencjalna taczaja֒cego sie֒ stożka jest równa po prostu V = Mgz, ale wyraz
∝ cβsα można, ja֒ko sta ly, pomina֒ć. Zatem lagrangian uk ladu to

L =
3

40
Mh2

(

1 + 5 cos2 α
)

θ̇2 +
3

4
Mgh sin β cosα cos θ ,
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i równanie ruchu stożka ma postać

θ̈ + 5
g

h

sin β cosα

1 + 5 cos2 α
sin θ .

Jest jasne, że może on wykonywać ma le oscylacje wokó l po lożenia równowagi θ = 0.
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Zadanie 12.13

Jednorodna bry la w kszta lcie stożka o wysokości h i promieniu podstawy również h obraca
sie֒ ze sta la֒ pre֒dkościa֒ ka֒towa֒ ω wokó l osi z pokrywaja֒cej sie֒ z tworza֒ca֒ stożka (zob.
lewy rysunek 61). Jakie si ly FA i FB musza֒ na nia֒ dzia lać, jeśli sa֒ one przy lożone w dwu
punktach: A be֒da֒cym wierzcho lkiem stożka i zarazem pocza֒tkiem inercjalnego uk ladu
odniesienia oraz w punkcie B po lożonym na brzegu podstawy stożka, którym styka sie֒
ona z osia֒ z?

Rozwia֒zanie:

W zwia֒zanym ze stożkiem uk ladzie O′′, którego oś z′′ pokrywa sie֒ z osia֒ stożka, osie x′′

i y′′ sa֒ równoleg le do jego podstawy, a pocza֒tek znajduje sie֒ w środku masy, sk ladowe
tensora bezw ladności I(CM) maja֒ w notacji macierzowej postać (zob. zadanie 12.4).

Î ′′CM =
3

80
Mh2





5 0 0
0 5 0
0 0 8



 .

Tu jednak bardziej przydatne be֒da֒ sk ladowe tego tensora w zwia֒zanym ze stożkiem
uk ladzie O′, którego oś z′ jest równoleg la do osi z uk ladu inercjalnego, a w wybranej
szczególnej chwili (kiedy stożek dwiema tworza֒cymi styka sie֒ z osiami y i z uk ladu in-
ercjalnego) oś y′ jest równoleg la do osi y uk ladu inercjalnego. O′′ jest wzgle֒dem uk ladu
O′ obrócony o ka֒t (zob. prawy rysunek 61) φ = π

2
+ π

4
przeciwnie do ruchu wskazówek

zegara wokó l osi ex′′ = ex′. Zatem

ey′′ = ey′ cosφ+ ez′ sinφ =
1√
2

(−ey′ + ez′) ,

ez′′ = −ey′ sinφ+ ez′ cosφ =
1√
2

(−ey′ − ez′) .

Napisany wyżej w postaci macierzowej tensor jest w istocie, tak jak i każdy wektor,
obiektem geometrycznym i jako taki ma postać133

ICM =
3

80
Mh2 (5 ex′′ ⊗ ex′′ + 5 ey′′ ⊗ ey′′ + 8 ez′′ ⊗ ez′′) .

Wyrażaja֒c tu wektory ei′′ przez wektory ej′ tak jak wyżej i korzystaja֒c z regu l

(−ey′ + ez′) ⊗ (−ey′ + ez′) = ey′ ⊗ ey′ − ey′ ⊗ ez′ − ez′ ⊗ ey′ + ez′ ⊗ ez′ ,

etc., znajdujemy

ICM =
3

160
Mh2 (10 ex′ ⊗ ex′ + 13 ey′ ⊗ ey′ + 13 ez′ ⊗ ez′ + 3 ey′ ⊗ ez′ + 3 ez′ ⊗ ey′) ,

133Tak jak wektor w = eiw
i
(e) jest “żywym” wektorem, niezależnym od konkretnej bazy ei, w której

podane sa֒ jego sk ladowe wi
(e), tak i tensor ICM jest “żywym” obiektem geometrycznym, niezależnym od

bazy ei′′ ⊗ ej′′ przestrzeni tensorowej w której jego sk ladowymi (I ′′CM)ij sa֒ elementy wypisanej wyżej

macierzy Î ′′CM; Dlatego też piszemy ICM już bez żadnych primów; zostaje jedynie symbol CM, bo taki
obiekt geometryczny jednak zależy od punktu, wzgle֒dem którego jest zdefiniowany.
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h

hh

ω

x′
y′

z′ = z

A

B

ey′

ez′

ey′′

ez′′

φ= 3
4
π

Rysunek 61: Po lewej: Stożek obracaja֒c sie֒ pod dzia laniem si l przy lożonych w punktach
A i B. Środek masy zaznaczno kropka֒ na osi stożka (po lożona֒ w jednej czwartej jego
wysokości). Po prawej: zwia֒zki mie֒dzy wersorami uk ladów O′′ i O′.

czyli, w notacji macierzowej,

Î ′CM =
3

160
Mh2





10 0 0
0 13 3
0 3 13



 .

Oczywíscie te֒ sama֒ macierz Î ′CM tensora (tj. jego sk ladowe w bazie ei′ ⊗ ej′) otrzymamy
ze wzoru

(Î ′CM)ij = Oi
kO

j
l (Î
′′
CM)kl ≡ (O · Î ′′CM ·OT )ij ,

w którym macierz

O =
1√
2





√
2 0 0

0 −1 −1
0 1 −1



 ,

jest macierza֒ zmiany bazy taka֒, że134

Maja֒c macierz tensora uk ladzie O′ możemy już rozwia֒zać postawiony problem. Roz-
patrzymy ruch stożka jako z lożenie ruchu poste֒powego środka jego masy i obrotu stożka
wokó l tegoż punktu. Innymi s lowy, obieramy punkt O w środku masy i korzystamy z
uproszczonych równań dynamiki

d

dt
(ICM ·ω) = DCM

A + DCM
B ,

d2

dt2
MR = FA + FB .

Aby obliczyć wystepuja֒ca֒ w pierwszym równaniu pochodna֒ po czasie unikaja֒c problemu
zwia֒zanego z tym, że w uk ladzie inercjalnym O, w którym pochodna ta ma być obliczona,
sk ladowe tensora ICM zmieniaja֒ sie֒, stosujemy standardowy chwyt:

d

dt
(ICM ·ω) =

d′

dt
(ICM ·ω) + ω × (ICM ·ω) .

134W notacji z mojego s lynnego skryptu do algebry macierz O jest wie֒c macierza֒ R(e′←e′′).
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Ponieważ w uk ladzie O′ zwia֒zanym ze stożkiem zarówno sk ladowe tensora ICM, jak i
sk ladowe pre֒dkości ka֒towej ω sa֒ sta le (pre֒dkości ka֒towej, bo tak jest ona akurat tu
skierowana: jest stale równoleg la do osi ez′ = ez), wie֒c ca la pochodna d′/dt jest równa
zeru. Jako pierwsze równanie dynamiki zostaje zatem równość wektorowa

ω × (ICM ·ω) = DCM
A + DCM

B ,

która֒ na sk ladowe można rozpisać w dowolnym uk ladzie (bo już nie wyste֒puje w niej
pochodna). Oczywíscie najlepiej rozpisać ja֒ w uk ladzie O′ zwia֒zanym z bry la֒, w którym
sk l adowe tensora ICM sa֒ sta le. W tym uk ladzie

ω =





0
0
ω



 , ICM ·ω =
3

160
Mh2ω





0
3
13



 , ω × (ICM ·ω) =
3

160
Mh2ω2





−3
0
0



 .

Do obliczenie DCM
A i DCM

B potrzebne sa֒ wektory dA i dB o sk ladowych w O′ ( latwo je
odczytać z lewego rysunku 61)

dA = − 3h

4
√

2





0
1
1



 , dB = dA +
√

2h





0
0
1



 .

Jeśli sk ladowymi przy lożonych si l w tym uk ladzie sa֒

FA =





F x′

A

F y′

A

F z′

A



 , FB =





F x′

B

F y′

B

F z′

B



 ,

to sk ladowymi ich momentów DA = dA × FA, DB = dB × FB sa֒

DCM
A = − 3h

4
√

2





F z′

A − F y′

A

F x′

A

−F x′

A



 , DCM
B = − 3h

4
√

2





F z′

B − F y′

B

F x′

B

−F x′

B



+
√

2h





−F y′

B

F x′

B

0



 ,

tak, że

DCM
A + DCM

B = − 3h

4
√

2





(FA + FB)z
′ − (FA + FB)y

′

(FA + FB)x
′

−(FA + FB)x
′



−
√

2h





F y′

B

−F x′

B

0



 .

Ponieważ wektor ω × (ICM ·ω) ma niezerowa֒ tylko pierwsza֒ sk ladowa֒, musza֒ zachodzić
równości

− 3h

4
√

2
(FA + FB)x

′

+
√

2hF x′

B = 0

(FA + FB)x
′

= 0 ,
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które mówia֒, że F x′

A = F x′

B = 0. Z kolei równość pierwszych sk ladowych wektora ω ×
(ICM · ω) i wektora momentu si ly daje zwia֒zek

− 9

160
Mh2ω2 = − 3h

4
√

2
[(FA + FB)z

′ − (FA + FB)y
′

] −
√

2hF y′

B .

Jest wreszcie równanie ruchu środka masy stożka MR̈ = FA + FB . Druga֒ pochodna֒
wektora R trzeba oczywíscie obliczyć w uk ladzie inercjalnym, ale sam wektor be֒da֒cy
pochodna֒ można już rozpisać w uk ladzie O′. Znalezienie tej drugiej pochodnej wektora
R jest proste: środek masy stożka porusza sie֒ po okre֒gu i R̈ musi być zwia֒zanym z
tym przyspieszeniem dośrodkowym, a wie֒c |R̈| = 3hω2/4

√
2. Wektor ten jest zawsze

skierowany od środka masy ku osi z = z′; w uk ladzie inercjalnym obraca sie֒ on, a w
uk ladzie O′ jest sta ly:

R̈ = − ey′
3h

4
√

2
ω2 .

Równanie ruchu środka masy stożka daje wie֒c zwia֒zki

(FA + FB)x
′

= (FA + FB)z
′

= 0 ,

(FA + FB)y
′

= − 3h

4
√

2
Mω2 .

Po ich wykorzystaniu nietrywialne równanie otrzymane z równości ω × (I(CM) · ω) =
DCM
A + DCM

B przybiera postać

9

160
Mh2ω2 =

3h

4
√

2

[

3h

4
√

2
Mω2

]

+
√

2hF y′

B ,

i wyznacza

F y′

B = − 9

40
√

2
Mhω2 .

Zatem

F y′

A = − 21

40
√

2
Mhω2 .

W ten sposób wykorzystane zosta ly już wszystkie informacje. Nie wyznaczaja֒ one F z′

B

i F z′

B z osobna; tylko suma tych sk ladowych musi znikać. Jest to fizycznie oczywiste.
Podkreślmy jeszcze, że wyznaczylísmy sk ladowe si l FA i FB w uk ladzie O′, który obraca
sie֒ wraz ze stożkiem. Zatem w uk ladzie inercjalnym si ly te zmieniaja֒ stale swój kierunek
(tak jak trzeba cia֒gna֒ć i obracać sie֒, by trzymaja֒c s lonia za uszy - musi być afrykański;
indyjskie maja֒ za ma le uszy - zafundować mu “karuzele֒”).

Si ly FA i FB można też znaleźć rozpatruja֒c obrót stożka wokó lpunktu A be֒da֒cego
pocza֒tkiem uk ladu inercjalnego O (i zarazem pocza֒tkiem uk ladu O′). Tensor bezw ladności
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stożka wzgle֒dem punktu A otrzymujemy wykorzystuja֒c twierdzenie Steinera (zadanie
12.2):

I i
′′j′′

(A) = I i
′′j′′

(CM) +M(R2δi
′′j′′ −Ri′′Rj′′) ,

gdzie R = 3
4
hez′′ jest wektorem od punktu A do O (sk ladowe tensorów ICM i IA wektora

R sa֒ tu podane w uk ladzie O′′ o osi z′′ pokrywaja֒cej sie֒ z osia֒ stożka). Sta֒d Iz
′′z′′

A = Iz
′′z′′

CM

oraz

Ix
′′x′′

(A) = Iy
′′y′′

(A) = Ix
′′x′′

CM +
9

16
Mh2 =

15

80
Mh2 +

9

16
Mh2 =

3

4
Mh2 ,

czyli

IA =
3

4
Mh2

(

ex′′ ⊗ ex′′ + ey′′ ⊗ ey′′ +
2

5
ez′′ ⊗ ez′′

)

.

Naste֒pnie, tak jak poprzednio, zapisujemy tensor IA przez iloczyny tensorowe wersorów
ex′ etc., co daje

IA =
1

40
Mh2 (30 ex′ ⊗ ex′ + 21 ey′ ⊗ ey′ + 21 ez′ ⊗ ez′ − 9 ey′ ⊗ ez′ − 9 ez′ ⊗ ey′) ,

lub, w notacji macierzowej,

Î ′(A) =
1

40
Mh2





30 0 0
0 21 −9
0 −9 21



 .

Jeśli punktem, wokó l którego stożek sie֒ obraca, jest punkt A, to J - moment pe֒du stożka
wzgle֒dem pocza֒tku uk ladu inercjalnego O - sie֒ upraszcza, bo rA = 0, a tym samym
vA = ṙA = 0, wobec czego

J = I(A) ·ω .

Tak jak poprzednio pochodna֒ J po czasie w uk ladzie inercjalnym wyrażamy przez  la-
twiejsza֒ pochodna֒ w uk ladzie O′ i dostajemy

d

dt
J = ω × I(A) ·ω = DB ,

bo moment si ly FA wzgle֒dem punktu A znika. Sk ladowe wektora ω w uk ladzie O′ sa֒
takie jak poprzednio, a wektor konieczny do znalezienia momentu si ly DB to wektor
rB = ez′

√
2h. Zatem po prostych obliczeniach iloczynów wektorowych powyższa równość

jest równoważna zwia֒zkowi

9

40
Mh2ω2 ex′ = −

√
2h
(

ex′F
y′

B − ey′F
x′

B

)

.
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Wynika sta֒d od razu, że F x′

B = 0, a F y′

B = −(9/40
√

2 )Mhω2, tak jak poprzednio.
Równania ruchu środka masy walca sa֒ w tym podej́sciu takie same i ponownie daja֒
warunki

(FA + FB)x
′

= (FA + FB)z
′

= 0 ,

(FA + FB)y
′

= − 3h

4
√

2
Mω2 ,

które pozwalaja֒ wyznaczyć F x′

A = 0, F y′

A = −(21/40
√

2 )Mhω2.

W rozważaniach tych nie by la uwzgle֒dniana dzia laja֒ca na stożek si la cie֒żkości i si la
reakcji pod loża aniich momenty. Nietrudno zobaczyć, że sa֒ one nieistotne: zarówno suma
tych si l jak i ich momentów jest równa zeru.
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Zadanie 12.15

Pó lwalec o promieniu R i masie M wykonany z jednorodnego kawa lka materia lu może
toczyć sie֒ bez poślizgu po poziomej w stosunku do pola g powierzchni i tym samym wy-
konywać ma le drgania wokó l po lożenia równowagi. Wypisać równanie ruchu pó lwalca i
znaleźć cze֒stość jego ma lych drgań. Problem rozwia֒zać zarówno pos luguja֒c sie֒ równaniami
Lagrange’a II-go rodzaju, jak też i metoda֒ “newtonowska֒”.

Rozwia֒zanie:

Najpierw trzeba znaleźć po lożenie środka masy pó lwalca, tj. obliczyć odleg lość a na
rysunku 62. Jeśli pocza֒tek uk ladu O′ zwia֒zanego z pó lwalcem umieścimy w punkcie O,
oś x′ skierujemy przez środek masy, oś z′ przed rysunek, a oś y′ wzd luż p laskiego wierzchu
pó lwalca, to po lożenie X ′ środka masy w tym uk ladzie be֒dzie dane ca lka֒

X ′ =
ρ

M

∫ L

0

dz′
∫ π/2

−π/2
dϕ′
∫ R

0

dr′ r′ r′ cosϕ′ =
2

3

ρ

M
R3L ,

gdzie L jest d lugościa֒ (wzd luż osi z′) pó lwalca, a ρ jego ge֒stościa֒. Ponieważ M = 1
2
πR2Lρ,

znajdujemy, że

a = X ′ =
4

3π
R .

To samo d można otrzymać z twierdzenia aleksandryjczyka Pappusa (zobacz Feynmana
Wyk lady z Fizyki, t. I), które mówi, że jeśli figura p laska przemieszcza sie֒ tak, iż pre֒dkość
każdego jej punktu jest stale prostopad la do jej powierzchni, to obje֒tość powsta lej przez
taki obrót bry ly jest równa polu powierzchni obracanej razy droga przebyta przez środek
masy tej powierzchni (przy za lożeniu, że jej ge֒stość masy jest jednorodna). Rzeczywíscie:
obracaja֒c przekrój pó lwalca, czyli pó lkole otrzymamy kule֒ o obje֒tości 4

3
πR3, która zgodnie

z twierdzeniem Pappusa powinna być równa 1
2
πR2 razy 2πa.

Uk lad, jakim jest pó lwalec tocza֒cy sie֒ bez poślizgu ma jeden stopień swobody. Ścísle
rzecz biora֒c jest to uk lad o dwu stopniach swobody poddany wie֒zom nieholonomicznym,
które jednakowoż sa֒ trywialnie135 ca lkowalne, co pozwala wyeliminować jedna֒ z dwu
zmiennych dynamicznych, jakimi mog lyby być (przed uwzgle֒dnieniem wie֒zów holono-
micznych) zmienne x i ϕ zdefiniowane na rysunku 62. Brak poślizgu oznacza, że chwilowa
pre֒dkość tego punktu pó lwalca, którym w danej chwili styka sie֒ on z powierzchnia֒ jest
równa zeru. Oznacza to, że sumaryczne przemieszczenie tego punktu w infinitezymalnym
odcinku czasu dt jest równe zeru. Przemieszczenie to jest kombinacja֒ przemieszczenia
tego punktu spowodowanego obrotem bry ly i ruchu poste֒powego bry ly jako ca lości. Jeśli
rozpatrujemy ruch bry ly jako z lożenie ruchu poste֒powego np. punktu O zaznaczonego na
rysunku 62 i jej obrotu wokó l osi przechodza֒cej przez ten punkt, to przemieszczenie punktu
styczności P spowodowane ruchem poste֒powym punktu O wynosi dx, a przemieszczenie
spowodowane obrotem pó lwalca wokó l osi przechodza֒cej przez punkt O wynosi −Raϕ.
Zatem warunek braku poślizgu oznacza istnienie wie֒zów

dx− Rdϕ = 0 .

135Tj. bez żadnego czynnika ca lkuja֒cego.
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Rysunek 62: Ko lysza֒cy sie֒ pó lwalec.

Przy ustalonych warunkach pocza֒tkowych x(0) = x0, ϕ(0) = ϕ0 wie֒zy te sa֒ równoważne
wie֒zom holonomicznym

x− x0 = (ϕ− ϕ0)R ,

które pozwalaja֒ wyeliminować x na rzecz ϕ (tj. wybrać zmienna֒ uogólniona֒ zgodna֒ z
wie֒zami).

Znajdziemy równania ruchu pó lwalca na kilka sposobów aby zilustować różne możliwości
i pokazać pu lapki (które czynia֒ dynamike֒ bry ly tak interesuja֒ca֒).

Przyjmiemy najpierw, że ruch pó lwalca jest z lożeniem ruchu poste֒powego punktu O i
obrotu wokó losi przechodza֒cej przez ten punkt. Roz lożymy wszystkie potrzebne wektory
na wersory uk ladu inercjalnego O o osiach x, y i z pokazanych na rysunku 62. Mamy
wie֒c

vO =





Rϕ̇
0
0



 , ω =





0
0
−ϕ̇



 , R′O =





−a sinϕ
−a cosϕ

0



 ,

gdzie R′O jest wektorem od punktu O do środka masy (oznaczonego “CM” na rysunku
62).

Zastosujemy najpierw metode֒ oparta֒ na równaniu Lagrange’a II-go rodzaju, która
jest najpewniejsza. Energia potencjalna V pó lwalca jest równa Mg razy wysokość środka
masy, czyli

V = Mg(R− a cosϕ) = −Mga cosϕ+ const.

Energia kinetyczna jest dana ogólnym wzorem

T =
1

2
Mv2

O +MvO ·(ω × R′O) +
1

2
ω · IO · ω .

Wprawdzie w uk ladzie inercjalnym O nie wszystkie sk ladowe tensora IO sa sta le - jego
macierz w tym uk ladzie ma postać

IO =





IxxO IxyO 0
IxyO IyyO 0
0 0 IzzO




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- ale dzie֒ki temu, że pre֒dkość ka֒towa ma tylko sk ladowa֒ z-owa֒, zależne od ka֒ta ϕ elementy
IxxO , IxyO i IyyO nie wejda֒ do wzoru na T .  Latwo znajdujemy, że

vO ·(ω × R′O) = −Raϕ̇2 cosϕ ,

a sta֒d

L =
1

2
MR2

(

1 +
IO
MR2

− 2
a

R
cosϕ

)

ϕ̇2 +Mga cosϕ .

IO oznacza tu sk ladowa֒ IzzO tensora momentu bezw ladności, która jest równa oczywíscie
Iz

′z′

O = 1
2
MR2 (moment bezw ladności pó lwalca wzgle֒dem osi przechodza֒cej przez punkt

O i równoleg lej do osi z jest oczywíscie taki sam, jak moment pe lnego walca) - czyli
odpowiedniej sk ladowej w uk ladzie zwia֒zanym z pó lwalcem.

Dalej dzia la już “maszynka lagranżowska”: równaniem Eulera-Lagrange’a jest

d

dt

[

MR2

(

1 +
IO
MR2

− 2
a

R
cosϕ

)

ϕ̇

]

= −Mga sinϕ+MRaϕ̇2 sinϕ ,

(drugi wyraz po prawej stronie bierze sie֒ z pochodnej energii kinetycznej T po ϕ), czyli,
po wykonaniu pozosta lej pochodnej po czasie

MR2

(

1 +
IO
MR2

− 2
a

R
cosϕ

)

ϕ̈ = −Mga sinϕ−MRaϕ̇2 sinϕ .

Zmiana znaku drugiego wyrazu po prawej stronie wzie֒ la sie֒ teraz ze zróżniczkowania po
czasie cosϕ po stronie lewej, co da lo tam wyraz 2MRaϕ̇2 sinϕ.

Oczywíscie nie da sie֒ uzyskanego pe lnego równania ruchu pó lwalca rozwia֒zać ścísle
analitycznie. Jak zwykle w takich przypadkach rozwia֒zujemy je wie֒c w przybliżeniu
ma lych wychyleń z po lożenia równowagi, tj. linearyzuja֒c je. Po lożeniem równowagi (czyli
ścis lym rozwia֒zaniem ϕ(t) = ϕ0) jest ϕ0 = 0 i zatrzymuja֒c tylko wyrazy liniowe w ϕ (i
traktuja֒c ϕ̇ również jak wielkość ma la֒, tak jak sam ka֒t ϕ) otrzymujemy

MR2

(

1 +
IO
MR2

− 2
a

R

)

ϕ̈ = −Mgaϕ ,

co jest równaniem oscylatora harmonicznego o cze֒stości

Ω =

√

ga

R2(1 + IO/MR2 − 2a/R)
.

Alternatywnie, można rozwia֒zanie pe lnego równania sprowadzić do kwadratury, czyli do
jednej ca lki korzystaja֒c z tego, że Lagrangian nie zależy jawnie od czasu i wobec tego
sta la֒ ruchu jest “hamiltonian”

h ≡ ϕ̇
∂L

∂ϕ̇
− L =

1

2
MR2

(

1 +
IO
MR2

− 2
d

R
cosϕ

)

ϕ̇2 −Mgd cosϕ = E = const.

322



(Nazwalísmy te֒ sta la֒ E, bo tu h = T + V , czyli jest to prawdziwa energia ca lkowita). Po
rozdzieleniu zmiennych dostajemy sta֒d

∫

dt = ±
√

MR2

2

∫

dϕ

√

1 + IO/MR2 − 2(a/R) cosϕ

E +Mga cosϕ
.

Dalej poste֒pujemy standardowo: mianownik pod pierwiastkiem zapisujemy w postaci
E − Veff(ϕ), znajdujemy po lożenie ϕ0 minimum Veff(ϕ) = −Mga cosϕ i rozwijamy ten
potencja l w szereg Taylora wokó l ϕ0 do wyrazów kwadratowych w odchyleniu od mini-
mum, czyli w ϕ−ϕ0. Jednocześnie w liczniku przybliżamy ϕ przez wartość ϕ0. Ponieważ
tu ϕ0 = 0, otrzymujemy

∫

dt = ±
√

MR2

2

∫

dϕ

√

1 + IO/MR2 − 2(a/R)

E +Mga− 1
2
Mgaϕ2

= ±
√

MR2

2

1 + IO/MR2 − 2(a/R)

E +Mga

∫

dϕ
√

1 −
(√

Mga
2(E+Mga)

ϕ
)2

= ± 1

Ω

∫

dξ
√

1 − ξ2
,

z ξ ≡
√

Mgd/2(E +Mgd) ϕ, co daje jako rozwia֒zanie harmoniczna֒ zależność ϕ(t) z
cze֒stościa֒ Ω, tak jak metoda linearyzacji równania ruchu.

Znajdziemy teraz równania ruchu pó lwalca metoda֒ Newtonowska֒, nadal traktuja֒c jego
ruch jak z lożenie ruchu poste֒powego punktu O i obrotu wokó l osi przechodza֒cej przez ten
punkt. Wektorowymi równaniami wyznaczaja֒cymi ruch pó lwalca sa֒

d

dt
J = Dg + DR + DT ,

d2

dt2
MRCM = Mg + FR + FT .

RCM jest tu wektorem wodza֒cym (z pocza֒tku wybranego uk ladu inercjalnego) środka
masy pó lwalca, FR i FT sa֒ odpowiednio si lami reakcji i tarcia, DR i DT momentami tych
si l, a

J = MRCM × vO +MrO × (ω × R′O) + IO ·ω ,

jest momentem pe֒du pó lwalca obliczonym wzgle֒dem punktu be֒da֒cego pocza֒tkiem uk ladu
inercjalnego pokazanego na rysunku 62. Momenty si l Dg, DR i DT sa֒ również liczone
wzgle֒dem tego samego punktu. Pochodne po czasie figuruja֒ce w tych równaniach sa֒
pochodnymi obliczanymi w uk ladzie inercjalnym. Sk ladowe wektorów R′O, ω zosta ly już
wypisane wcześniej.

rO =





x
R
0



 , vO = ṙO =





ẋ
0
0



 , RCM = rO + R′O =





x− a sinϕ
R− a cosϕ

0



 .
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Cierpliwie obliczamy potrzebne iloczyny wektorowe:

RCM × vO = −ẋ (R− a cosϕ) ez ,

rO × (ω × R′O) = ϕ̇ a (x sinϕ+R cosϕ) ez .

Podobnie obliczamy momenty si l Fg = −Mg ey, FR = FR ey i FT = FT ex:

Dg = RCM × Fg = −Mg (x− a sinϕ) ez ,

DR = x ex × FR = xFR ez ,

DT = x ex × FT = 0 .

Ponieważ wektor ω ma niezerowa֒ tylko ostatnia֒ sk ladowa֒, zmieniaja֒ce sie֒ z ϕ (w uk ladzie
inercjalnym) sk ladowe tensora IO nie wejda֒ w równania: IO ·ω = −ezI

zz
O ϕ̇ i dwa pierw-

sze równania powstaja֒ce z rozpisania na sk ladowe w uk ladzie inercjalnym pierwszego z
równań wektorowych sprowadzaja֒ sie֒ do tożsamości 0 = 0. Trzecie z tych równań (z-owa
sk ladowa), wyznaczaja֒ce szybkość zmian z-owej sk ladowej momentu pe֒du ma postać

d

dt
[−Mẋ(R − a cosϕ) +Ma(x sinϕ +R cosϕ) ϕ̇− IzzO ϕ̇] = xFR −Mg(x− a sinϕ) .

Z kolei w równaniu ruchu środka masy rozpisanym na sk ladowe uk ladu inercjalnego trzecie
z równań jest tożsamościa֒ 0 = 0, dwa zaś pierwsze to

d2

dt2
M(x− a sinϕ) = FT ,

d2

dt2
M(R − a cosϕ) = −Mg + FR

Dota֒d nie zosta ljeszcze użyty warunek braku poślizgu. Pozwala on jednoznacznie wyrazić
ẋ jako Rϕ̇, ale nie umożliwia (bez znajomości warunków pocza֒tkowych) wyeliminowania
samego x na rzecz ϕ. Nie jest to na szcze֒ście potrzebne. Jeśli za lożymy, że ruch jest bez
poślizgu, to pierwsze z tych dwu równań wyznacza tylko konieczna֒ do tego si le֒ tarcia:

FT = M(ẍ + a ϕ̇2 sinϕ− a ϕ̈ cosϕ) .

Z drugiego wyznaczamy FR

FR = M(g + a ϕ̇2 cosϕ+ a ϕ̈ sinϕ) ,

Po jej wstawieniu do równania wyrażaja֒cego szybkość zmian w czasie z-owe sk ladowej
ca lkowitego momentu pe֒du pó lwalca otrzymujemy

d

dt
[−Mẋ(R − a cosϕ) +Ma(x sinϕ +R cosϕ) ϕ̇− IzzO ϕ̇]

= Mga sinϕ+Mx (a ϕ̇2 cosϕ+ a ϕ̈ sinϕ) .
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Wreszcie, po pracowitym wykonaniu po lewej stronie pozosta lej pochodnej po czasie
wszystkie wyrazy z “go lym” x sie֒ zredukuja֒ tak, jak powinny, i otrzymamy

−Mẍ(R − a cosϕ) +MRa ϕ̈ cosϕ−MRa ϕ̇2 sinϕ− IzzO ϕ̈ = Mga sinϕ ,

co po wykorzystaniu warunku ruchu bez poślizgu, ẍ = Rϕ̈, da uzyskane już wcześniej
równanie

MR2

(

1 +
IO
MR2

− 2
a

R
cosϕ

)

=̈ −Mga sinϕ−MRa ϕ̇2 sinϕ .

Maja֒c zależność ϕ(t) można obliczyć si le֒ reakcji i si le֒ tarcia konieczna֒ do ruchu bez
poślizgu i sprawdzać kiedy |FT | ≤ µstat|FR|, co jest konieczne, by ruch taki móg l zachodzić.

Warto rozwia֒zać to zadanie jeszcze raz przyjmuja֒c tym razem, że ruch jest z lożeniem
ruchu poste֒powego punktu P zaznaczonego na rysunku 62 i obrotu pó lwalca wokó l tego
punktu, bo pozwoli to zobaczyć niebezpieczeństwa, na jakie można sie֒ natkna֒ć przy nie
dość uważnym trzymaniu sie֒ zasad.

Aby porównać to podej́scie z poprzednim trzeba najpierw znaleźć sk ladowa֒ IzzP (która
jest taka sama zarówno w uk ladzie inercjalnym, jak też i w uk ladzie zwia֒zanym z pó lwalcem)
tensora momentu bezw ladności pó lwalca wzgle֒dem punktu P i wyrazić ja֒ przez IzzO . W
tym celu wykorzystujemy twierdzenie Steinera. Należy tylko pamie֒tać, że punkt O nie
by l środkiem masy, wie֒c IzzO trzeba najpierw “cofna֒ć” do środka masy, czyli obliczyć Izz(CM)

i dopiero z Izz(CM) obliczyć IzzP . Niech c be֒dzie odleg lościa֒ od środka masy do punktu P . Z

uogólnionego twierdzenia Pitagorasa (patrza֒c na rysunek 62) znajdujemy, że

c2 = a2 +R2 − 2Ra cosϕ ,

wie֒c

IzzP = Izz(CM) +Mc2 = IzzO −Ma2 +Mc2 = MR2

(

1 +
IzzO
MR2

− 2
a

R
cosϕ

)

.

Jeśli zastosujemy metode֒ lagrangeowska֒, otrzymamy natychmiast poprawne równanie
ruchu walca: z ogólnego wzoru

T =
1

2
Mv2

P + vP ·(ω × R′P ) +
1

2
ω ·IP ·ω ,

ale ponieważ chwilowa pre֒dkość punktu P jest równa zeru (warunek braku poślizgu!),
wie֒c

L =
1

2
ω ·IP ·ω − V =

1

2
MR2

(

1 +
IzzO
MR2

− 2
a

R
cosϕ

)

ϕ̇2 +Mga cosϕ .

Jest to ten sam lagrangian, co poprzednio.
Pu lapki czyhaja֒ jednak, jeśli be֒dziemy chcieli wypisać równania Newtona. Aby uprościć

rachunki przyjmijmy że teraz pocza֒tek inercjalnego uk ladu odniesienia przesuwamy w
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prawo, tak by punkt P (w chwili dla której piszemy równania Newtowna) znalaz l sie֒
dok ladnie nad nim. Wtedy (w tym momencie) DR = DT = 0, a

Dg = ezMga sinϕ ,

(t.j. ma te֒ postać, co poprzednio, tylko z x = 0). Wektor ca lkowitego momentu pe֒du
pó lwalca dany ogólnym wzorem

J = MRCM × vP +MrP × (ω × R′P ) + IP ·ω ,

upraszcza sie֒ do

J = IP ·ω = −ez I
zz
P ϕ̇ ,

bo vP = 0 (znów warunek braku poślizgu!), a rP = 0 dzie֒ki wyborowi pocza֒tku uk ladu in-
ercjalnego. Zatem równanie wyrażaja֒ce szybkość zmiany momentu pe֒du ma teraz postać
(znów dwie pierwsze sk ladowe tego wektorowego równania daja֒ tożsamości 0 = 0):

d

dt
(−IzzP ϕ̇) = Mga sinϕ ,

i po zróżniczkowaniu po czasie (i zmianie znaków obu stron) otrzymujemy równanie

MR2

(

1 +
IO
MR2

− 2
a

R
cosϕ

)

ϕ̈+ 2MRaϕ̇2 sinϕ = −Mga sinϕ .

Wygla֒da ono podobnie do otrzymanego poprzednio (już trzema sposobami!), ale ma czyn-
nik 2 przed drugim wyrazem po lewej stronie, którego to czynnika poprzednio nie by lo.
Stosunek wyników 3 : 1 (w tym dwa otrzymane niezawodna֒ metoda֒ lagrangeowska֒!)
wskazuje, że to to ostatnie równanie jest b le֒dne. W istocie, przy wyprowadzeniu tego
równania pope lnione zosta ly dwa b le֒dy.

Po pierwsze, wprawdzie moment pe֒du pó lwalca rzeczywíscie w chwili, w której punkt
P jest dok ladnie nad pocza֒tkiem inercjalnego uk ladu odniesienia ma podana֒ wyżej prosta֒
postać, jednak w równanie Newtona wchodzi pochodna J po czasie

d

dt
J = M

[

ṘCM × vP + RCM × v̇P + vP × (ω × R′P ) + rP × d

dt
(ω × R′P )

]

+
d

dt
IP ·ω .

Trzy z wyrazów w nawiasie kwadratowym rzeczywíscie znikaja֒ (znikaja֒ wektory vP i
rP ), ale wyraz RCM × v̇P = RCM × aP nie znika. Trzeba bowiem pamie֒tać, że gdy
piszemy równania Newtona, punkt, wokó l którego rozpatrujemy obrót bry ly (przez który
przechodzi chwilowa oś jej obrotu), porusza sie֒ razem z bry la֒. Wprawdzie w danej chwili
punkt P spoczywa (z punktu widzenia uk ladu inercjalnego), lecz chwile֒ później, gdy
pó lwalec sie֒ nieco obróci, punkt P już nie be֒dzie punktem styczności z pod lożem i be֒dzie
mia lniezerowa֒ pre֒dkość. A to oznacza, że w chwili, gdy jest on punktem styczności
v̇P 6= 0!  Latwo zobaczyć, że przyspieszenie to musi być równe v̇P = ey R ϕ̇2, bo w
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uk ladzie inercjalnym (w którym obliczamy pochodna֒ J) punkt P porusza sie֒ po okre֒gu o
promieniu R i ma pre֒dkość ka֒towa֒ ϕ̇. Tak wie֒c w równaniu Newtona musimy uwzgle֒dnić
po lewej stronie wyraz

+MRCM × v̇P = −ezMRdϕ̇2 sinϕ .

Drugi b la֒d, jaki zosta lpope lniony, polega na zróżniczkowaniu po czasie tensora mo-
menu bezw ladności IzzP . Reczywíscie, skoro punkt P , wokó l którego rozpatrujemy obrót
bry ly jest na sztywno przyczepiony do niej, to sk ladowa IzzP pozostaje sta la (ka֒t ϕ w
niej należy utożsamić z wartościa֒ ϕP jaka֒ ka֒t ϕ mia l wtedy, gdy punkt P by l punktem
styczności pó lwalca z pod lożem. Aby rozwiać wszelkie wa֒tpliwości co do tego, czy należy
obliczać pochodna֒ sk ladowej IzzP tensora, możemy zastosować znany wzór

d

dt
IP ·ω =

d′

dt
(IP ·ω) + ω × (IP ·ω) .

Drugi wyraz znika bo w rozpatrywanym problemie wektor IP ·ω jest równoleg ly do ω.
Pochodna d′/dt w pierwszym wyrazie jest obliczana w uk ladzie O′ na sztwno zwia֒zanym
z bry la֒ i wobec tego w tym uk ladzie sk ladowa Iz

′z′

P jest sta la. Tu jednak Iz
′z′

P = IzzP , wie֒c
istotnie przy różniczkowaniu po czasie J należa lo napisać

d

dt
IP ·ω = −ez I

zz
P ϕ̈ .

Po tych poprawkach otrzyma sie֒ już to samo równanie, co poprzednio.136

W szkolnych rozwia֒zaniach zagadnień ruchu bry ly sztywnej cze֒sto pisze sie֒ równania
ruchu przymuja֒c, że bry la obraca sie֒ wokó l punktu styczności z pod lożem. Jednak dzie֒ki
wysokiej symetrii tych bry l nie wpada sie֒ w k lopoty takie jak tutaj, ponieważ wektor
v̇P jest w tych szkolnych przyk ladach równoleg ly do wektora RCM i sta֒d dodatkowy
wyraz, który tu trzeba by lo uwzgle֒dnić, automatycznie znika. Po drugie istotna dla
tych szkolnych zagadnień sk ladowa momentu bezw ladności jest (znów wskutek wysokiej
symetrii) niezależna od zmiennych dynamicznych.

136Pouczaja֒cym ćwiczeniem może być otrzymanie tego równania ostatnia֒ metoda֒ bez zak ladania, że
punkt P w chwili, w której pisane sa֒ równania Newtona znajduje sie֒ dok ladnie nad pocza֒tkiem inercjal-
nego uk ladu odniesienia.
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Przypomnienie

Równania kanoniczne. Równania Lagrange’a drugiego rodzaju otrzymywane z lagran-
gianu, który należy traktować jak funkcje֒ 2f zmiennych (f jest tu liczba֒ stopni swobody
uk ladu): f uogólnionych po lożeń qi oraz f uogólnionych pre֒dkości vi ≡ q̇i, sa֒ uk ladem f
zwyczajnych równań różniczkowych drugiego rze֒du. Matematycy nauczaja֒, że taki uk lad
można zawsze sprowadzić do uk ladu 2f równań pierwszego rze֒du. W mechanice osia֒ga
sie֒ to przechodza֒c do formalizmu kanonicznego (Hamiltonowskiego), w którym centralna֒
role֒ odgrywa hamiltonian be֒da֒cy transformata֒ Legendre’a lagrangianu L = L(q, v, t) w
f zmiennych vi, tj. funkcja֒ f pe֒dów kanonicznych zdefiniowanych jako pochodne lagran-
gianu po pre֒dkościach uogólnionych:

pi(q, v) =
∂L(q, v, t)

∂vi
, i = 1, . . . , f .

Ponieważ w różniczce (pomocniczej na razie) wielkości137 h(q, v, t) ≡ (∂L/∂vi)vi−L(q, v, t)

dh(q, v, t) =

(

∂2L

∂vi∂qj
vi − ∂L

∂qj

)

dqj +

(

∂L

∂vj
+

∂2L

∂vi∂vj
vi − ∂L

∂vj

)

dvj − ∂L

∂t
dt

= − ∂L

∂qj
dqj + vi

(

∂2L

∂vi∂qj
dqj +

∂2L

∂vi∂vj
dvj
)

− ∂L

∂t
dt ,

różniczki dvi pre֒dkości można jednoznacznie wyrazić przez różniczki dqi oraz pe֒dów

dpi =
∂2L

∂vi∂qj
dqj +

∂2L

∂vi∂vj
dvj ,

tak iż dh = −(∂L/∂qi)dqi + vidpi − (∂L/∂t)dt, funkcja H(q, p, t) = h(q, v(q, p), t) jest
w istocie funkcja֒ qi oraz pi (i ewentualnie czasu t), gdyż startuja֒c z zadanej wartości
H w jakimś punkcie (q, v(q, p), t) można zamknie֒ta֒ jedno-forme֒ dh = dH “odca lkować”
(tak jak to robimy w termodynamice) do pe lnej funkcji H(q, p, t). Jako transformata
Legendre’a hamiltonian

H(q, p, t) =

f
∑

i=1

pi q̇
i(q, p) − L(q, q̇(q, p), t) ,

w którym pre֒dkości uogólnione vi = q̇i sa֒ wyrażone138 przez pe֒dy pi i zmienne qi, koduje

137Zgodnie z zaleceniem wujka A.E. pomijamy symbole sum; powtarzaja֒ce sie֒ (na różnych poziomach)
wskaźniki traktujemy jak domyślnie zsumowane.
138Tu zak ladamy, że zwia֒zki definiuja֒ce pe֒dy pi daje sie֒ odwrócić. Jeśli nie jest to możliwe, rozpatrywany

uk lad fizyczny należy do klasy uk ladów poddanych wie֒zom. Jeśli sa֒ to tzw. wie֒zy drugiego rodzaju,
hamiltonizacje֒ uk ladu daje sie֒ przeprowadzić, ale wymaga to pewnych sztuczek wymyślonych przez Diraca
(zob. zadanie ??); jeśli wie֒zy sa֒ pierwszego rodzaju, to uk lad ma pewna֒ symetrie֒ cechowania i jego
ewolucja czasowa nie jest jednoznacznie wyznaczona nawet przez lagrangian. O tym wszystkim zwykle
wyk ladam w ramach kwantowej teorii pola.
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w sobie te֒ sama֒ informacje֒ o uk ladzie, co lagrangian.139 W szczególności, uk lad 2f
kanonicznych (Hamiltona) różniczkowych równań pierwszego rze֒du

q̇i =
∂H(q, p, t)

∂pi
, i = 1, . . . , f ,

ṗi = −∂H(q, p, t)

∂qi
, i = 1, . . . , f ,

jest równoważny uk ladowi f równaniom Eulera-Lagrange’a. Istotnie, Jeśli zmienne qi

spe lniaja֒ równania Lagrange’a, to

∂L

∂qi
=

d

dt

∂L

∂vi
≡ ṗi ,

i wypisane wyżej równania kanoniczne (oraz zwia֒zek ∂H/∂t = −∂L/∂t) wynikaja֒ natych-
miast z postaci różniczki hamiltonianu H = d(−L(q, q̇(q, p), t) − piq̇

i(q, p)):

dH(q, p, t) = −∂L
∂qi

dqi − ∂L

∂q̇j

(

∂q̇j

∂qi
dqi +

∂q̇j

∂pi
dpi

)

−∂L
∂t

dt+ q̇idpi + pi

(

∂q̇j

∂qi
dqi +

∂q̇j

∂pi
dpi

)

= −∂L
∂qi

dqi + vi dpi −
∂L

∂t
dt = −ṗi dqi + q̇i dpi −

∂L

∂t
dt .

Ważna֒ zaleta֒ równań kanonicznych jest to, że jeśli jakaś zmienna q nie wyste֒puje w
Hamiltonianie, to sprze֒żony z nia֒ pe֒d kanoniczny p jest sta la֒ ruchu, co zmniejsza liczbe֒
rozwia֒zywanych sprze֒żonych równań. Niech np. hamiltonian zależy tylko od n ≤ f
zmiennych qi. Wtedy uk lad 2f równań redukuje sie֒ od razu do uk ladu 2n równań na n
zmiennych qi i n pe֒dów pi i = 1, . . . , n, bo f − n pozosta lych pe֒dów, od których zależy
hamiltonian można od razu po lożyć równe sta lym βl, l = n + 1, . . . , f . Po rozwia֒zaniu
tego zredukowanego uk ladu 2n równań, zależność od czasu f − n pozosta lych zmiennych
ql można otrzymać ca lkuja֒c osobny uk lad f − n równań

q̇l =
∂

∂βl
H(q1(t), . . . , qn(t), p1(t), . . . , pn(t), βn+1, . . . , βf) ,

139Nie by lo by tak, gdyby po prostu wyrazić sam lagrangian przez pe֒dy pi. Niech bowiem be֒dzie dana
(wypuk la - z niewypuk lymi sa֒ dodatkowe k lopoty) funkcja f(ξ). Jeśli odwrócimy zwia֒zek p = f ′(ξ) i
skonstruujemy funkcje֒ g(p) = f(ξ(p)), to funkcje g(p) odpowiadaja֒ce funkcjom f1(ξ) i f2(ξ) = f1(ξ − a)
be֒da֒ identyczne - naj latwiej to zobaczyć robia֒c odpowiedni rysunek - czyli znaja֒c funkcje֒ g(p) nie można
jednoznacznie odtworzyć funkcji f . Jeśli jednak przez każdy punkt wykresu funkcji f(ξ) poprowadzi sie֒
styczna֒ do tego wykresu, to zbiór takich stycznych wyznacza funkcje֒ f jednoznacznie. Każda֒ zaś styczna֒
z tego zbioru można scharakteryzować podaja֒c jej nachylenie p i rze֒dna֒ (to jednak pionowa oś sie֒ nazywa
osia֒ rze֒dnych, a pozioma odcie֒tych!) punktu jej przecie֒cia z osia֒ y. Transformata Legendre’a funkcji f
jest to w laśnie ta rze֒dna w funkcji nachylenia: jeśli weźmiemy pukt ξ0 i f ′(ξ0) = p, to prosta styczna do
wykresu funkcji f przechodza֒ca przez punkt (ξ0, f(ξ0)) ma równanie y = p ξ + f(ξ0)− p ξ0 i rze֒dna֒ g(p)
jej punktu przecie֒cia z osia֒ y jest g(p) = f(ξ0) − p ξ0. W mechanice bierze sie֒ jako charakterystyke֒ tej
prostej nie g(p), a −g(p) po to, aby hamiltonian mia l (w wie֒kszości przypadków) sens ca lkowitej energii.
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w których q1(t), . . . , qn(t) i p1(t), . . . , pn(t) sa֒ już dane jako jawne funkcje czasu.140

Kanoniczne równania Hamiltona można zapisać w eleganckiej postaci wprowadzaja֒c
tzw. nawiasy Poissona. Jeśli F (q, p, t) i G(q, p, t) sa֒ dwiema funkcjami zmiennych kano-
nicznych qi i pi, i = 1, . . . , f , to ich nawiasem Poissona jest wielkość dana wyrażeniem

{F (q, p, t), G(q, p, t)}PB ≡
f
∑

i=1

(

∂F

∂qi
∂G

∂pi
− ∂G

∂qi
∂F

∂pi

)

.

Pe lna֒ (tzn. uwzgle֒dniaja֒ca֒ także zależność od czasu zmiennych qi i pi) pochodna֒ po
czasie dowolnej wielkości F (q, p, t) można za pomoca֒ nawiasu Poissona napisać w postaci

d

dt
F (q, p, t) = {F, H}PB +

∂F

∂t
.

a same ównania Hamiltona można zapisać jako

q̇i = {qi, H}PB , ṗi = {pi, H}PB .

Nawiasy Poissona maja֒ proste w laściwości: sa֒ biliniowe, antysymetryczne ({F, G}PB =
−{G, F}PB) i spe lniaja֒ regu le֒ “wysadzania”141 taka֒ jak komutatory operatorów w me-
chanice kwantowej:

{F, G1G2}PB = G1 {F, G2}PB + {F, G1}PBG2 ,

oraz tzw. tożsamość Jacobiego

{F1, {F2, F3}PB}PB + {F3, {F1, F2}PB}PB + {F2, {F3, F1}PB}PB = 0 .

Jest też jasne, że jeśli wielkość F nie zależy od czasu jawnie (a tylko poprzez zależność
od qi i pi), to jest ona sta la֒ ruchu (wielkościa֒ zachowana֒), gdy {F, H}PB = 0.

Tak jak równania Lagrange’a drugiego rodzaju sa֒ równaniami Eulera-Lagrange’a pro-
blemu wariacyjnego

δ

∫ t2

t1

dtL(q, q̇, t) = 0 , δqi(t1) = δqi(t2) = 0 ,

140Należy to porównać z równaniami Lagrange’a w sytuacji, gdy lagrangian nie zależy od f−n zmiennych
ql: wynikaja֒ce z tego równości

∂L

∂q̇l
= 0 , l = n+ 1, . . . , f ,

stanowia֒ nadal równania różniczkowe, wprawdzie już tylko pierwszego rze֒du, ale które należy rozwia֒zywać
razem z pozosta lymi n różniczkowymi równaniami drugiego rze֒du.
141Jakoś mi sie֒ ona kojarzy z takim dowcipem: jada֒ mís i zaja֒czek pocia֒giem w jednym przedziale i

zaja֒czek sie֒ zwierza misiowi (jak to zwierz zwierzowi), że nie ma biletu; mís na to “a to nic takiego,
jak bedzie nadchodzi l konduktor, to ja Ciebie, Zaja֒czku, z lapie֒ za uszka i potrzymam za oknem i tak
unikniesz kary”; przychodzi konduktor, sprawdza misiowi bilet, a potem pyta: “a co Ty tam niedźwiedziu”
trzymasz za oknem?” a mís otrzepuja֒c  lapy: “a już nic!”...
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tak i równania kanoniczne sa֒ równaniami Eulera-Lagrange’a wariacyjnego problemu

δ

∫ t2

t1

dt

{

∑

i

pi q̇
i −H(q, p, t)

}

= 0 , δqi(t1) = δqi(t2) = 0 ,

w którym na wariacje δpi(t) nie sa֒ narzucone żadne warunki brzegowe. Można też, i
tak za lożymy dalej, rozpatruja֒c przekszta lcenia kanoniczne, zawe֒zić klase֒ dopuszczalnych
wariacji pe֒dów do spe lniaja֒cych warunki δpi(t1) = δpi(t2) = 0. Jest też jasne, że przy
takim zawe֒żeniu klasy dopuszczalnych wariacji dodanie do wyrażenia podca lkowego w
powyższej zasadzie wariacyjnej dowolnego wyrażenia be֒da֒cego pe lna֒ pochodna֒ po czasie
nie ma wp lywu na otrzymywane z niej równania kanoniczne.

Przekszta lcenia kanoniczne. Równania Lagrange’a drugiego rodzaju sa֒ niezmiennicze
wzgle֒dem dowolnej zamiany wspó lrze֒dnych uogólnionych. Jeśli stare wspó lrze֒dne qi zo-
stana֒ wyrażone przez nowe Qi,

qi = qi(Q, t) ,

(zak ladamy przy tym, że jakobian det(∂q/∂Q) 6= 0), to zależność od czasu zmiennych Qi

jest dana równaniami

d

dt

∂LQ

∂Q̇i
=
∂LQ
∂Qi

, i = 1, . . . , f ,

w których wyste֒puje nowy lagrangian LQ(Q, Q̇, t), który otrzymuje sie֒ przez wyrażenie
starego lagrangianu Lq(q, q̇, t) przez nowe zmienne:

LQ(Q, Q̇, t) = Lq(q(Q, t), q̇(Q, Q̇, t), t) .

Jest to oczywiste, gdyż lagrangian (w mechanice nierelatywistycznej) jest różnica֒ fizycznej
energii kinetycznej (przypomnijmy: zdefiniowanej wzgledem jakiegoś uk ladu inercjalnego)
i energii potencjalnej, które zachowuja֒ swój sens niezależnie od tego, przez jakie zmienne
zostana֒ wyrażone. (Pozostaje to s luszne także w uogólnieniach mechaniki, gdy lagran-
gian niekoniecznie ma taka֒ w laśnie postać; można sie֒ wtedy odwo lać do argumentu, że
dzia lanie I, którego punktu stacjonarnego jako funkcjona lu szuka sie֒ rozwia֒zuja֒c równania
Eulera-Lagrange’a, jest pewna֒ obiektywna֒ wielkościa֒, która może być sparametryzowana
na różne sposoby). Przy takich przekszta lceniach wspó lrze֒dnych uogólnionych sposób
przekszta lcania sie֒ pe֒dów kanonicznie z nimi sprze֒żonych jest jednoznacznie wyznaczony:

Pi =
∂LQ

∂Q̇i
=

f
∑

j=1

∂Lq
∂q̇j

∂q̇j

∂Q̇i
=

f
∑

j=1

pj
∂qj

∂Qi
.

Ostatnia równość wynika z tego, że

q̇j =
d

dt
qj(Q, t) =

f
∑

k=1

∂qj

∂Qi
Q̇i +

∂qj

∂t
,
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ska֒d wynika, że w różniczce dq̇j(Q, Q̇, t) wspó lczynnikiem przy dQ̇i jest w laśnie ∂qj/∂Qi.
Przy takich przekszta lceniach zmianie nie ulega także postać równań kanonicznych: zależ-
ność od czasu nowych zmiennych Qi i Pi jest dana równaniami

Q̇i =
∂HQP (Q,P, t)

∂Pi
, i = 1, . . . , f ,

Ṗi = −∂HQP (Q,P, t)

∂Qi
, i = 1, . . . , f ,

w których wystepuje nowy Hamiltonian HQP (Q,P, t) otrzymany ze starego, Hqp(q, p, t)
wed lug przepisu

HQP (Q, P, t) = Hqp(q(Q, t), p(P,Q, t), t) ,

gdzie pi = pi(P,Q, t) uzyskuje sie z odwrócenia (liniowych w p i P ) zwia֒zków wyprowa-
dzonych wyżej. Przekszta lcenia należa֒ce do tej klasy nazywa sie֒ punktowymi.

Równania kanoniczne sa֒ jednak niezmiennicze także wzgle֒dem znacznie szerszej grupy
przekszta lceń, zwanych przekszta lceniami kanonicznymi, w których niema bezpośredniego
zwia֒zku mie֒dzy przekszta lceniami zmiennych qi i zmiennych pi. Maja֒ one ogólna֒ postać

qi = qi(Q,P, t) ,

pi = pi(Q,P, t) ,

przy czym zak lada sie֒, iż niezerowy jest jakobian

det

(

(∂q/∂Q) (∂q/∂P )
(∂p/∂Q) (∂p/∂P )

)

.

Przekszta lcenia te oraz nowy hamiltonian H̄(Q,P, t) sa֒ skonstruowane tak, by qi(t) i pi(t)
otrzymane z powyższych zwia֒zków spe lnia ly równania kanoniczne (ze starym hamiltonia-
nem H(q, p, t)), gdy Qi(t) i Pi(t) sa֒ rozwia֒zaniami równań kanonicznych z hamiltonianem
H̄(Q,P, t). Dopuszczalna֒ postać takich przekszta lceń oraz postać nowego hamiltonianu
ustala sie֒ zauważaja֒c, że powyższe ża֒danie jest równoważne temu, by równość

δ

∫ t2

t1

dt

{

∑

i

Pi Q̇
i − H̄(Q, P, t)

}

= 0 ,

przy δQi(t1) = δQi(t2) = 0, δPi(t1) = δPi(t2) = 0, zachodza֒ca, gdy zmienne Qi(t), Pi(t)
spe lniaja֒ kanoniczne równania z hamiltonianem H̄(Q, P, t), pocia֒ga la za soba֒ znikanie
także wyrażenia

δ

∫ t2

t1

dt

{

∑

i

pi q̇
i −H(q, p, t)

}

,

przy skorelowanych (za pośrednictwem zwia֒zków q = q(Q,P, t), p = p(Q,P, t)) z δQi(t) i
δPi(t) wariacjach δqi(t) i δpi(t) (spe lniaja֒cych wobec tego warunki δqi(t1) = δqi(t2) = 0,
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δpi(t1) = δpi(t2) = 0) na trajektorii qi(t), pi(t) zadanej wzorami qi(t) = qi(Q(t), P (t), t),
pi(t) = pi(Q(t), P (t), t). Dostatecznym warunkiem tego, by tak by lo jest zaś, by przy
wariacjach zmiennych δQi(t) i δPi(t) o ustalonych końcach wokó l dowolnej trajektorii
Qi(t) i Pi(t) (a nie tylko trajektorii spe lniaja֒cej kanoniczne równania z hamiltonianem
H̄) i skorelowanych z nimi wariacjach δqi(t) i δpi(t) znika la wariacja funkcjona lu

J =

∫ t2

t1

dt

{

∑

i

(

pi q̇
i − Pi Q̇

i
)

−
(

H − H̄
)

}

.

To z kolei jest zapewnione, jeśli wyrażenie podca lkowe powyższego funkcjona lu J jest
różniczka֒ zupe lna֒, tj. gdy142

∑

i

(

pi dq
i − Pi dQ

i
)

−
(

H − H̄
)

dt = dΦ(Q,P, t) ,

gdyż wówczas

J =

∫ t2

t1

dΦ(Q,P, t) = Φ(Q(t2), P (t2), t2) − Φ(Q(t1), P (t1), t1) ,

i automatycznie δJ = 0 przy dowolnych wariacjach o ustalonych końcach. Jeśli zaś znika
dowolna wariacja o ustalonych końcach funkcjona lu J , to przy wariacjach δQi(t) i δPi(t)
wokó l trajektorii Qi(t) i Pi(t) spe lniaja֒cych kanoniczne równania

Q̇i =
∂H̄(Q,P, t)

∂Pi
, i = 1, . . . , f ,

Ṗi = −∂H̄(Q,P, t)

∂Qi
, i = 1, . . . , f ,

kiedy to osobno znika wariacja cze֒ści

∫ t2

t1

dt

{

∑

i

Pi Q̇
i − H̄

}

,

funkcjona lu J musi też znikać wariacja drugiej po lowy J , czyli wariacja funkcjona lu

∫ t2

t1

dt

{

∑

i

pi q̇
i −H

}

.

142Jeśli kogoś przerażaja֒ formy różniczkowe, to warunek ten można też zapisać jako

∑

i

(

pi q̇
i − Pi Q̇

i
)

−
(

H − H̄
)

=
d

dt
Φ(Q(t), P (t), t) .

333



Wspomniane na wste֒pie przekszta lcenia punktowe spe lniaja֒ trywialnie ten warunek
z H̄ = H (tj. w laśnie z H̄(Q,P, t) = H(q(Q, t), p(Q,P, t), t), gdzie teraz HQP ≡ H̄ , a
Hqp ≡ H), tak jak to zosta lo podane wyżej, gdyż przy takich przekszta lceniach

∑

i

(pidq
i − PidQ

i) =
∑

i

pidq
i −
∑

ijk

pi
∂qi
∂Qj

∂Qj

∂qk
dqk ≡ 0 .

Różniczka funkcji tworza֒cej Φ jest wie֒c tu tożsamościowo równa zeru. Stanowia֒ wie֒c one
podklase֒ (dość trywialnych) przekszta lceń kanonicznych.

Wyrażaja֒c funkcje֒ Φ przez te zmienne, których różniczki wyste֒puja֒ po lewej stronie,
tj. przez qi i Qi (zak ladamy przy tym, że zwia֒zki definiuja֒ce przekszta lcenie daja֒ sie֒
odpowiednio rozwik lać, co z kolei wymaga nieznikania odpowiedniego podwyznacznika
jakobianu), otrzymujemy wniosek, że warunkiem dostatecznym, by dane przekszta lcenie
by lo kanoniczne, jest istnienie takiej funkcji Φ(q, Q, t), że

pi =
∂Φ

∂qi
, Pi = − ∂Φ

∂Qi
, H̄ −H =

∂Φ

∂t
.

Funkcja Φ jest nazywana funkcja֒ tworza֒ca֒ przekszta lcenia kanonicznego. (W be֒da֒cym
standardem światowym podre֒czniku H. Goldsteina funkcja Φ jest oznaczana F1, a w
dalszych zadaniach be֒dzie ona oznaczanana W (q, Q, t)). Jeśli zwia֒zków definiuja֒cych
przekszta lcenie nie daje sie֒ odwik lać tak, by zmiennymi niezależnymi by ly qi i Qi (pod-
jakobian znika - jest tak np. w przypadku transformacji punktowych, przy których
det(∂q/∂P ) = 0), to warunek kanoniczności można przez transformacje֒ Legendre’a (znów
ta transformacja!) przekszta lcić do innej postaci. Np. dodaja֒c do obu jego stron różniczke֒
zupe lna֒143 d

∑

iQ
iPi otrzymamy jako dostateczny warunek kanoniczności równość

∑

i

(

pi dq
i +Qi dPi

)

−
(

H − H̄
)

dt = dS(q, P, t) ,

gdzie S = Φ +
∑

iQ
iPi. Wykorzystanie tego warunku wymaga z kolei by zwia֒zki defi-

niuja֒ce przekszta lcenie da ly sie֒ odwik lać tak, by niezależnymi zmiennymi by ly qi oraz Pi.
Przekszta lcenie jest wie֒c także kanoniczne, jeśli istnieje taka funkcja tworza֒ca S(q, P, t)
(u Goldsteina zwana F2), że

pi =
∂S

∂qi
, Qi =

∂S

∂Pi
, H̄ −H =

∂S

∂t
.

Nietrudno zobaczyć, że funkcja֒ tworza֒ca֒ transformacji punktowych jest np. funkcja
S(q, P ) =

∑

i PiQ
i(q). W podobny sposób można sformu lować inne dostateczne warunki

kanoniczności.

143Odpowiada to zmodyfikowaniu wyrażenia podca lkowego z zasadzie wariacyjnej spe lnianej przez tra-
jektorie Qi(t) i Pi(t) o pe lna֒ pochodna֒ po czasie.
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