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ZADANIA Z MECHANIKI!

!Tu zamieszczam wszystkie zadania, takze te, ktére sa przerabiane na zajeciach (rozwiazania tych
zadan sa zamieszczone w dalszej czeéci tego pliku). Symbol £ nie oznacza, ze jest to zadanie “radzieckie”
(choé¢ niektére z nich takie sa) tylko co$ innego.



1 KINEMATYKA

Zadanie 1.1%
Dane sa cztery wektory A, B, C oraz D. Wyrazi¢ wielkosé

(A xB)-(CxD)
przez same iloczyny skalarne tych wektoréow. Przedstawi¢ wektor
(A xB)x(CxD)

w postaci kombinacji liniowej wyrazen, z ktérych wystepuje tylko po jednym iloczynie
wektorowym dwu wektorow.

Zadanie 1.2%
Dany jest tor r = r(\), gdzie A jest jakim$ parametrem. Wiadomo, ze przy dowolnej
wartosci A

dr dr

r-azo oraz rxa:O.

Pokazaé, ze tor taki jest po prostu punktem (tzn. ze r(\) jest stalym wektorem).

Zadanie 1.3%

Dany jest uktad wspéhrzednych (x,y) na plaszezyznie oraz okrag o promieniu R i srodku
w punkcie (0,0). Dana jest tez prosta p styczna do okregu, ktéra toczy sie po nim bez
poslizgu. (Bez poslizgu to znaczy, ze jesli w dwu réznych chwilach czasu zaznaczymy i
na okregu i na prostej punkty stycznosci, to odlegtos¢ miedzy tymi punktami na prostej
bedzie réwna dlugosci tuku pomiedzy punktami stycznosci na okregu). Biegunowy kat «
wyznaczajacy punkt stycznosci prostej p z okregiem zmienia sie z czasem: a = a(t). W
chwili ¢ = 0 prosta ta przechodzi przez punkt (R, 0), tj. «(0) = 0. Punkt A prostej ma w
chwili ¢ = 0 wspétrzedne (R, y4). Znalezé jego wspotrzedne w dowolnej chwili czasu.

Zadanie 1.4%

Wyprowadzi¢ wzory na sktadowe wektorow predkosci i przyspieszania we wspdtrzednych
biegunowych (r, @) na plaszczyznie i we wspélrzednych sferycznych (r, 0, o) w przestrzeni
tréjwymiarowe;.

Zadanie 1.5%

Podaé (tj. wyprowadzi¢) wzory na wszystkie trzy kartezjanskie sktadowe L¢ wektora (or-
bitalnego) momentu pedu czastki o masie m wyrazone przez: a) zmienne (i ich pochodne
po czasie) p, ¢, z cylindrycznego uktadu wspétrzednych, b) zmienne (i ich pochodne) r,
0, ¢ sferycznego uktadu wspéhrzednych. W obu przypadkach podaé takze wzory na L2.
Podac¢ takze sktadowe wektora L w bazach wersoréw e,, e, e, oraz e,, ey, e, zwigzanych
z tymi uktadami wspoélrzednych wyrazone przez zmienne tychze uktadow.



Zadanie 1.6%
W uktadzie kartezjanskim tensor elastycznych odksztalcen ciata ma sktadowe

=5 (5 + )

gdzie u;(x) to skladowe wektora przemieszczen. Rozpatrujac cialo plaskie mogace od-
ksztalcaé sie tylko w plaszczyznie xy = x119 wyprowadzié¢ sktadowe tensora odksztalcen
w uktadzie cylindrycznym wyrazajac je oczywiscie przez pochodne po zmiennych r i ¢
skltadowych wektora przemieszczen w tymze ukladzie.?

Zadanie 1.7%
Wyprowadzi¢ wzory wyrazajace wspotczynniki rozktadu wektora predkosci v, wektora
przyspieszenia a oraz pochodnej po czasie a wektora przyspieszenia na trzy ortonormalne
wektory
dr dt
—, n=p—, n=1, oraz b=txn,
dl P M
(dl v = |v|,jest tu rézniczka dlugosci toru), przez szybkosé v = |v|, promien p (lokalnej)
krzywizny toru, ich pochodne po czasie oraz skrecenie (torsje) 7. Promien p krzywizny i
skrecenie T sg zdefiniowane zwigzkami

dt 1 dn

— = - — =at b.
i pn, dl at+T1

[
Il

Wspétezynnik v w drugim zwiazku nie jest niezalezny od p i 7 i trzeba go wyznaczy¢.?

Zadanie 1.8%

Ptaska kolista tarcza obraca sie wokol prostopadlej do niej osi ze stata predkoscia katowa
w. Od érodka tarczy rusza zuczek* i podaza ku jej brzegowi ze stala predkoécia, vy skiero-
wana wzdhiz promienia tarczy. Jak wyglada ruch zuczka w nieruchomym kartezjanskim

2Wystarczy zajaé sie przypadkiem dwuwymiarowym, zeby zobaczyé, jak to robi¢. Rachunki sa do$é
zmudne, a przypadek trzech wymiaréw nic od strony koncepcyjnej by nie wniést; wzory w trzech wymia-
rach w ukladach cylindrycznym i sferycznym mozna znalezé w Teorii sprezystosci Landaua i Lifszyca (tom
VII ich stawetnego Kursu fizyki teoretycznej). Zauwazmy jeszcze, ze tensor jest obiektem geometrycznym.
Jedli ograniczamy sie do ortogonalnych ukladéw krzywoliniowych i postugujemy unormowanymi wekto-
rami bazowymi zwigzanymi z takim ukladem, mozna tensor odksztalcen U traktowac jak “biwektor”

U:%(?®u+u®V).

V jest tu “wektorem” gradientu, a strzatka nad nim pokazuje, w ktéra strone dziala zwiazane z nim
rézniczkowanie.

3Parametryzacja krzywej jej dlugoécia ! jest dla matematykéw “kanoniczna”. Ich naogél intere-
suje nastepujace zagadnienie: majac zadane p i 7 jako funkcje dlugosci, zrekonstruowaé sama krzywa
(oczywiscie p i 7 wyznaczaja krzywa tylko dokladnoscia do jej dowolnego przesuniecia i dowolnego ob-
rotu jako calosci).

4Zuczek gnojarek z muszka plujka na grzbiecie, zgodnie z posenka “Muszka plujka i zuczek gnojarek//
stanowili doé¢ dobrana pare...”



ukladzie (ktérego poczatek pokrywa sie ze srodkiem tarczy)? ZnaleZé nastepnie w tym
nieruchomym uktadzie:

a) wzory zadajace ruch we wspéhrzednych biegunowych (r, ¢),

b) réwnanie toru, po ktérym porusza sie punkt (zaréwno we we wspéhrzednych bieguno-
wych jak i kartezjanskich),

c) skltadowe radialng i transwersalng wektoréw predkosci (v) i przyspieszenia (a), tzn.
rzuty tych wektoréw na wersory e, i e, ukladu biegunowego,

d) |v| oraz |al,

e) wektory styczny t i normalny n do toru ruchu w kazdym jego punkcie (zob. Zada-
nie 1.1), oraz skladowe a; = a - t i a, = a - n wektora przyspieszenia a,

f) zaleznosé promienia krzywizny toru p od czasu (i sprawdzi¢ tym samym zwiazek
an = v?/p),

g) dtugosé toru zakreslanego przez zuczka w nieruchomym ukladzie w funkeji czasu t.

Zadanie 1.9%

Wiedzac, ze podczas ptaskiego ruchu czastki kat pomiedzy kierunkiem jej wektora wodzacego
r i wektorem jej predkosci v jest staly (i réwny «) znalezé we wspéhrzednych biegunowych:
a) wzér na tor czastki,

b) dlugosé toru w funkeji potozenia czastki.

Przyja¢ jako warunki poczatkowe ©(0) = 0 i 7(0) = ro. Zaleznosé szybkosci |v(t)| od
czasu moze by¢ dowolna.

Zadanie 1.10%

Wyznaczy¢ tor, po jakim powinien z predkoscia wieksza of predkosci dzwieku lecie¢ sa-
molot, by do obserwatora stojacego na ziemi dzwiek silnika samolotu dochodzil z calego
toru w tej samej chwili.

Zadanie 1.11%

Zmalez¢ i przedyskutowaé tor i ruch psa, ktéry goni zajaca uciekajacego z predkoscia v

po prostej. Pies biegnie z predkoscia c taka, ze jest ona stale skierowana w strone zajaca.

Zbada¢ kiedy pies zajaca dogoni i poda¢ punkt i chwile zlapania szaraka.

Wskazowka: Wybrac¢ uktad wspolrzednych kartezjanskich xy tak, by w chwili poczatkowe;j
t = 0 pies byt w poczatku ukltadu, a zajac w punkcie (a,0); prosta po ktérej ucieka zajac

jest wtedy prosta x = a. Wykazac, ze zachodzi zwiazek

@_ 1
dr  a—=x

v [* dy\”
—y+ - / doy[1+ (—y)
cJo dz
i stad, rézniczkujac, uzyska¢ rézniczkowe réwnanie wyznaczajace tor.

Zadanie 1.12%

Lustro wody w studni obniza sie ze stala predkoscia w. W chwili t = 0, gdy lustro wody
znajdowalo sie na pewnej nieznanej glebokosci, do studni upuszczono (tzn. puszczono z
zerowa, predkoscia poczatkowa) kamien. Odglos plusniecia tego kamienia o lustro wody



dotarldo spuszczajacego kamien w chwili ¢;. Po czasie T od upuszczenia pierwszego
kamienia upuszczono drugi kamien, odgtos plusniecia ktorego dotartdo spuszczajacego go
w chwili T+ t5. Przyjmujac, ze (stala) predkosé dzwieku w powietrzu jest réwna v, (i
znana) obliczy¢ na podstawie podanych danych predkosé w opadania lustra wody.

Zadanie 1.13

Nad punktem P na ziemi z samolotu lecacego na stalej wysokosci H z predkoscia v
wyskoczyt spadochroniarz i otworzyt spadochron po czasie t;, na ziemi zas wyladowalpo
czasie ty (od opuszczenia samolotu). Zaktadajac, ze od otwarcia spadochronu spadat on
ze staly predkoscia u znalezé:

1) predkosé samolotu wzgledem skoczka w funkeji czasu

2) odlegtosé samolot-skoczek w funkcji czasu

3) ruch skoczka wzgledem punktu P.

(Wszystkie te wielkosci wygodnie jest przedstawié graficznie).

Zadanie 1.14%

Ustawione na ziemi dzialo moze wystrzeliwa¢ pociski o poczatkowej szybkosci v w pod
dowolnym katem w stosunku do plaszczyzny horyzontu i w dowolnym kierunku azymu-
talnym. Pomijajac wpltyw sily Coriolisa wyznaczy¢ rownanie powierzchni ograniczajacej
obszar, do kazdego punktu ktérego pocisk moze dotrzec.

Zadanie 1.15%

Punkt porusza sie ze stala szybkoscia v po lezacej w plaszczyznie (z, y) krzywej o réwnaniu
y(r) = (2/3)ax®? (a > 0). Podaé zaleznosé od czasu wspéhzednych z i y jego potozenia
przyjmuaé, ze x(0) = 0. Podaé¢ kartezjanskie sktadowe wektora v predkosci i wektora a
przyspieszenia punktu oraz sktadowe przyspieszenia styczna i normalna do toru. Wyzna-
czy¢ takze promien p krzywizny toru punktu jako funkcji jej ditugosci (.

Zadanie 1.16%

Turysta wchodzi na gérke, ktérej zbocze wznosi sie zgodnie ze wzorem z(z) = y/ax, gdzie
a > 0, przy czym skladowa jego predkosci w kierunku pionowym jest stata i réwna wu.
Oblicz czas, po ktérym turysta rozpoczynajac z punktu o x = 0 dotrze do schroniska
znajdujacego sie na zboczu na wysokosci h. Podaj wspétrzedne (z, z) polozenia turysty w
kazdej chwili czasu a takze jego predkos¢ i przyspieszenie. Jaka droge pokona docierajac
do schroniska? Wyznacz takze krzywizne zbocza jako funkcje wysokosci z.

2 CALKOWANIE ROWNAN RUCHU

Zadanie 2.1%

Punkt materialny o masie m porusza sie ruchem jednostajnym, tj. ze stala wartoscia
predkosci |v|, po okregu o promieniu Ry (okrag potozony jest horyzontalnie). Na punkt
ten dziala sita oporu F,, = —kv oraz inna zewnetrzna sita F pozwalajaca punktowi
utrzymywac statg predkos¢. Znalez¢ prace jaka wykonuje sita oporu F,, podczas jednego
obiegu punktu wokot okregu. Jaka prace wykonuje wtedy sita zewnetrzna F? Przyjmujac



nastepnie, ze sita oporu znika, obliczy¢ prace, jaka wykona¢ musi zewnetrzna sita F, by
spowodowaé zmiane z Ry na R; promienia okregu, po ktorym krazy masa m.

Zadanie 2.2%

Cialu o masie m nadano predkosé¢ u skierowana pod katem a do powierzchni ziemi.
Przyjmujac, ze istotna jest tylko pozioma skladowa sity oporu, ktéra jest proporcjonalna
do poziomej sktadowej predkosci ciala, znalezé¢ zasieg takiego rzutu uko$nego w funkcji
kata a. Pokaza¢, ze odlegtos¢ w kierunku poziomym przebyta przez cialo do momentu
osiagniecia przez nie maksymalnej wysokosci jest wieksza od polowy zasiegu.

Zadanie 2.3%

Po réwni pochylej o kacie nachylenia do poziomu réwnym « zsuwa sie klocek o masie
m, na ktory dziala sita oporu F = —mxkv. Znalez¢ polozenia klocka w funkcji czasu
jesli w chwili ¢ = 0 znajdowatl sie on na wysokosci h. Sprawdzié¢, ze w granicy k — 0
dostaje sie “szkolne” rozwiazanie. Obliczy¢ strate energii mechanicznej (kinetycznej plus
potencjalnej) w funkeji czasu i poréwnaé ja z praca wykonana przez site oporu.

Zadanie 2.4%

Pocisk o masie m i skierowanej horyzontalnie (w stosunku do pola grawitacji g) predkosci
v wpada do akwarium wypelnionego gesta ciecza, w ktérej dziata nan sita oporu F,, =
—kv (k > 0. Znalez¢ polozenie punktu (glebokos¢, na jakiej sie on znajduje), w ktérym
pocisk uderzy w przeciwlegla scianke akwarium odlegta od punktu wlotu o d.

Zadanie 2.5%
Na ciato o masie m i predkosci poczatkowej v(0) = v, dziata tylko sita oporu

v
Fo, = —k|v|*— Kkya > 0.

v]’

Zbadad, jak czas trwania takiego ruchu i jego zasieg zaleza od wykladnika .

Zadanie 2.6%
Zbada¢ mozliwe ruchy jednowymiarowego oscylatora harmonicznego z ttumieniem bedace
rozwigzaniami réwnania

mi +2vi—+kr=0,

gdzie v > 0, k > 0 (czynnik 2 w drugim wyrazie zostal wprowadzony dla rachunkowej
wygody). Rozpatrzy¢ wszystkie mozliwe przypadki.

Zadanie 2.7%

Pokaza¢, ze tor ruchu dwuwymiarowego izotropowego oscylatora harmonicznego, czyli
lezacy na plaszczyznie tor ruchu czastki o masie m poddanej dziataniu sity sprezystej
F = —mw?r jest elipsa. Jaki warunek musza spetiaé czestoéci w; i wo nieizotropowego
tréjwymiarowego oscylatora o sile F = —m(wize, + wiye, + wize,), by tor jego ruchu
byt krzywa zamknieta?



Zadanie 2.8%
Zmalez¢ ruch jednowymiarowego oscylatora harmonicznego o masie m, stalej sprezystosci
k = mw? i wspdlezynniku sity thumiacej 2y = 2mA pobudzanego sita zewnetrzna o har-

monicznej zaleznosci od czasu
F(t) = Fycos(2t +0) .

Przedyskutowaé zaleznos¢ amplitudy wychylen oscylatora od czestosci Q sity wymu-
szajacej oraz korelacje maksiméw wychylen oscylatora z maksimami sity. Zaktadajac, ze
A # 01 ze ruch trwa juz dostatecznie dtugo, by zaleznosé ruchu od warunkéw poczatkowych
stala sie nieistotna (tj. ze t > 1/)), obliczy¢ usredniona po okresie sity wymuszajacej
moc przekazywana przez nia oscylatorowi i zbadac jej zaleznosé od czestoscei 2. Co sie
dzieje z ta pobierana przez oscylator energia?

Zadanie 2.9%

Dokonujac odpowiednich przyblizen w Scistym wzorze na zaleznos¢ od czasu polozenia
rozpatrywanego w zadaniu 2.8 oscylatora (i przyjmujac, ze faza J sity wymuszajacej jest
réwna zeru) przedyskutowaé jakosciowo charakter jego ruchu w réznych rezimach (tj. dla
réznych stosunkéw wielkosci wg, € i A), jesli w chwili ¢ = 0 oscylator spoczywalw swoim
polozeniu réwnowagi (z(0) = 0, £(0) = 0). W szczegdlnosci rozpatrzy¢ przypadek bez
thumienia (A = 0), oraz przypadki 0 < A < |wg — Q| 1 |wg — Q| < A.

Zadanie 2.10%

Podac¢ zaleznosé od czasu wychylenia oscylatora harmonicznego o wspolczynniku ttumienia
A réwnym doktadnie jego czestosci wlasnej wy (tzn. o sile oporu F,, = —2mwyi) pobu-
dzanego sita harmoniczng F(t) = Fycos Qt, ktéry w chwili ¢ = 0 spoczywal w polozeniu
x = 0. Jak wyglada ruch w granicy r = Q/wy = 07 Uzasadni¢, ze gdy r > 1 (czestosé
sity wymuszajacej bardzo duza w poréwnaniu z czestoscia wlasna) najwieksze wychyle-
nie oscylatora jest proporcjonalne do 2/r?. Jak poczatkowo, tj. dla wyt < 1, narasta
wychylenie oscylatora, gdy r = 17

Zadanie 2.11%

Poda¢ rozwiazanie réwnania ruchu jednowymiarowego oscylatora harmonicznego o masie
m, czestosci wy 1 wspélezynniku thumienia 2y = 2mA pobudzanego sita F(t) o dowolnej
zalezno$ci od czasu.

Zadanie 2.12%

Zmalez¢ i przedyskutowa¢ ruch jednowymiarowego niettumionego oscylatora harmonicz-
nego o masie m, czestosci wy pobudzanego sita F'(t) postaci

a) F(t) = Fyexp(—kt) z k > 0,

b) F(t)= (t/T)Fydla0<t<TiF(t)=0dlat>T,

jesli w chwili ¢ = 0 oscylator znajdowalsie w spoczynku w polozeniu réwnowagi. W
szczegolnosci, powiedziec, jak wychylenie oscylatora zmienia sie z czasem poczatkowo, tj.
gdy, w przypadku pierwszej sily, kit < 11 wpt < 11 wpt < 1, w przypadku drugiej. Jaka
jest amplituda wychylen po dostatecznie dlugim czasie w zaleznosci od wartosci stosunku



k/wo w przypadku pierwszej sity? Napisa¢ wychylenie jako funkcje czasu dla ¢t > T w
przypadku drugiej sity.

Zadanie 2.13%
Obliczy¢ prace W jaka nad niettumionym jednowymiarowym oscylatorem harmonicznym
o czestosci wy wykona w ciagu catego czasu swego nan dziatania sita postaci

A

Rozpatrzyé¢ przypadki: a) gdy w ¢ — —oo (tj. przed wlaczeniem sie sity) oscylator
byt w catkowitym spoczynku, oraz b) gdy w t — —oo ruch oscylatora byldany wzorem
x(t) = Acos(wot + ). Jaka w przypadku oscylatora poczatkowo spoczywajacego jest
praca W, gdy wor < 1, a jaka, gdy wor > 17 Czy mozna to intuicyjnie zrozumie¢? Jak
mozna w drugim przypadku zrozumieé to, ze praca W moze by¢ ujemna?

Wskazéwka: Wykorzystujac metody catkowania funkcji zmiennej zespolonej mozna uza-

sadni¢, ze
> t +ia)?
/ dt exp (—#) =77,
_ T

[e.e]

innymi stowy, przesuniecie w funkcji exp(—t%/7%) zmiennej catkowania o liczbe urojona
nie zmienia wartosci catki.

Zadanie 2.14"

Rozwiazujac réwnanie Newtona z sila Lorentza F = ¢(E + v x B), przedyskutowaé
ruch czastki o tadunku elektrycznym ¢ i masie m w stalych i jednorodnych, wzajem-
nie prostopadtych polach: elektrycznym E i magnetycznym B, w zaleznosci od predkosci
poczatkowej v czastki. Sprawdzi¢ otrzymane rozwiazanie r(t) w przypadku znikania pola
magnetycznego lub elektrycznego. Przedyskutowaé takze wszystkie mozliwe typy rzutow
toru czastki na plaszczyzne prostopadia do pola magnetycznego w zaleznosci od rzutu
predkosci czastki na te plaszczyzne w chwili wybranej za poczatkowa.

Zadanie 2.15%

Zmalez¢ tor czastki o tadunku ¢ i masie m poruszajacej sie¢ w stalym i jednorodnym polu
magnetycznym B = e,B w osrodku, w ktérym dziala na nia sita oporu F = —m s v.
Pokazac¢, ze rzut na plaszczyzne prostopadia do kierunku pola magnetycznego krzywej
zakredlanej przez czastke w trakcie ruchu jest spirala, tj. okregiem, ktérego promien R
maleje z czasem. Otrzymaé takze (z doktadnoscia do stalej proporcjonalnosci) zaleznosé
R(t) rozpatrujac straty energii czastki powodowane wystepowaniem sity oporu.
Wskazéwka: Rownania ruchu w plaszczyznie prostopadiej do pola magnetycznego naj-
latwiej rozwiaza¢ wprowadzajac zmienna zespolona & = x + 1y.

Zadanie 2.16%
Czastka o masie m i fadunku elektrycznym q znajduje sie w jednorodnych polach: magne-
tycznym B = e,B (B > 0) i elektrycznym, ktérego wektor E o stalej dlugosci obraca sie

9



B .- ! ekran

Rysunek 1: Ekran ustawiony za obszarem pola magnetycznego.

ze stala predkoscia katowa €2 réwna co do wartosci czestosci cyklotronowej wp = ¢B/m w
plaszczyznie prostopadlej do pola magnetycznego: E = E (e, cos Qt + e, sin Qt). Znalezé
ruch tej czastki, jesli w chwili ¢ = 0 pozostawala ona w spoczynku (v(0) = 0). Rozpatrzy¢
przypadki Q = wp oraz ) = —wp. Sprawdzi¢, ze w granicy B — 0 (wg — 0) otrzymane
rozwiazania maja wlasciwa (czyli jaka?) granice. W obu przypadkach naszkicowaé tor
ruchu czastki i podaé jako$ciowe wytlumaczenie.

Wskazéwka: Bez straty ogdlnosci mozna przyjaé, ze r(0) = 0.

Zadanie 2.17%

Stale jednorodne pole magnetyczne B = e, B rozciaga sie tylko w obszarze, w ktorym
0 <x < L. W pole to w punkcie r = 0 wpada bardzo szybka czastka o tadunku
elektrycznym ¢q i predkosci v = e vy, vg > 0. Jakie sa wspéhrzedne punktu, w ktérym
czastka ta uderzy w ekran ustawiony prostopadle do osi x i przecinajacy jaw z = X > L
(zob. rysunek 1)?

Zadanie 2.18%

Nadlatujace z réznymi (ale do$¢ duzymi) predkosciami vo = e vy (vo > 0) czastki o
masie m i tadunku elektrycznym ¢ wpadaja w punkcie r = 0 w obszar dzialania statych
i jednorodnych pdél magnetycznego B = —e, B i elektrycznego E = e, F (B > 0, E > 0).
Szerokos$é obszaru, w ktérym wystepuja pola wynosi L (wzdhuz osi z; w kierunkach y
i z pola rozciagaja sie nieograniczenie). Zaktadajac, iz czastki sa dostatecznie szybkie,
pokazaé, ze punkty, w ktorych uderza one w prostopadly do osi x ekran ustawiony w
odlegtosci d+ L od poczatku uktadu wspoétrzednych utworza parabole o ksztalcie zalezacym
od stosunku g/m. (W ten sposéb w roku 1913 J.J. Thomson wykazal istnienie izotopow
neonu o liczbach masowych A =201 A = 22).

Zadanie 2.19%

L6dz podwodna o catkowitej masie m jest napedzana silnikiem o statej mocy P. Opor
stawiany przez wode mozna w przyblizeniu wyrazi¢ sita F' = —kv, gdzie v jest predkoscia
lodzi. Zakladajac, ze predkos$¢ todzi w chwili ¢ = 0 byla réwna zeru znalez¢ jej predkos¢ i
potozenie w dowolnej chwili . Znalez¢ tez czas, po ktérym osiagnie ona predkosé¢ réwna
polowie maksymalnie mozliwej (tj. polowie predkosci granicznej). Jaka bedzie predkosé
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todzi po dlugim czasie, jesli wystartowata ona z predkoscia wieksza, od predkosci granicz-
nej? Jak przebyta droga s przyrasta z czasem dla duzych czaséw t?

Zadanie 2.20" (Autorstwa A. Szymachy)

W cylindrycznym naczyniu (o przekroju poprzecznym A) zamknietym mogacym poru-
sza¢ sie bez tarcia tloczkiem o masie m, znajduje sie N czastek jednoatomowego gazu
doskonatego (o réwnaniu stanu pV = NkgT i stalym cieple wlasciwym cy). Poczatkowa
objeto$¢ gazu wynosi V. Znalezé zalezno$é od czasu polozenia tltoczka przy adiabatycz-
nym rozprezaniu sie gazu.

Uwaga: Zadanie to daje sie rozwiagzaé scisle do konica!

Zadanie 2.21%

Punktowa masa m porusza sie pionowo w polu grawitacyjnym g. Sita oporu dzialajaca
na nia jest dana wzorem F = —\|v|v. Znalez¢ zaleznos$¢ predkosci i polozenia masy m od
czasu w przypadku, gdy jej ruch rozpoczal sie z zerowa predkoscia na pewnej wysokosci.
Poda¢ jak zmieniaja sie te wielkosci na samym poczatku ruchu i po dostatecznie dlugim
czasie. Przedyskutowac¢ jako$ciowo takze przypadki niezerowej predkosci poczatkowej i
jej dwu mozliwych kierunkéw (w gére i w dét).

Zadanie 2.22%
Udowodni¢, ze gdy punktowa czastka o masie m porusza sie w polu sily o potencjale

K
V(r)=—— —F-
(r)=-—-Fr,

gdzie F jest stalym wektorem, stalymi ruchu sa wielkosci: calkowita energia E czastki,
L-F oraz

1
A:F-(vxL)—fF-r+§(Fxr)2.
T

Zadanie 2.23%

Czastka o masie m i tadunku elektrycznym ¢ porusza sie w stalym i jednorodnym polu
magnetycznym B. Rdzniczkujac po czasie wielkos¢ B - L, gdzie L jest momentem pedu
czastki, znalezé¢ wielko$é, ktéra pozostaje stata w takim ruchu. Zapisaé te wielko$¢ we
wspotrzednych cylindrycznych o osi z réwnoleglej do pola magnetycznego B. Wyrazi¢ ja
jawnie przez warunki poczatkowe ruchu (tj. przez r(0) i v(0)). Wykorzystujac jej statosé
oraz jeszcze jedna zachowana wielkosé znalez¢ ruch.

Zadanie 2.24%
Czastka o tadunku elektrycznym ¢ i masie m porusza sie¢ w polu magnetycznym

r g

= — €
r3 r2 T

wytwarzanym przez monopol magnetyczny. Pokazaé, ze wektor
r
Q=mrxv—gqg—,
,
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jest podczas jej ruchu stalty. Wybierajac os z uktadu kartezjanskiego w kierunku wek-
tora Q i obliczajac iloczyny skalarne Q z wersorami e,, ey i e, zwiazanymi z ukladem
wspotrzednych sferycznych, pokazaé, ze w polu monopola magnetycznego czastka porusza
sie po stozku scharakteryzowanym przez staly kat 8 = 6. Wykorzystujac to, ze pole
magnetyczne nie wykonuje pracy, znalezé réwnanie r = r(p) toru czastki oraz zaleznosé
jej polozenia od czasu.

Zadanie 2.257

Postlugujac sie Feynmanowskim modelem atomu jako naladowango elektronu o masie
m uwiazanego sprezynka (o wspolezynniku sprezystosci mw?) do nieruchomego jadra,
wyjasni¢ jakosciowo, dlaczego po umieszczeniu atomu w staltym i jednorodnym polu ma-
gnetycznym B w kierunku réwnolegltym do tego pola obserwuje sie promieniowanie o
dwéch réznych czestosciach (jakich), a w kierunku doni prostopadlym - promieniowanie o
trzech réznych czestosciach.

Wskazowka: Pamietaé, ze przyspieszany tadunek elektryczny promieniuje; rejestrowany
w chwili ¢t wektor pola elektrycznego takiego promieniowania jest dany wzorem (w tym
kretynskim ukladzie SI)

1 a;(t—r/c)

E(t,r) = dre, c2r

Y

gdzie r jest odlegloscia od przyspieszajacego tadunku, a, zas jest rzutem jego chwilowego
przyspieszenia, obliczonym w chwili weczesniejszej, ¢ — r/c, niz chwila obserwacji ¢, na
kierunek prostopadly do kierunku, z ktorego tadunek jest obserwowany.

3 RUCH JEDNOWYMIAROWY -
WYKORZYSTANIE ZACHOWANIA ENERGII

Zadanie 3.1%
Zmalez¢ jednowymiarowy ruch czastki o masie m w potencjale Morse’a

Viz) =V (e —2e7), Vo, a > 0.

W przypadku ruchu z ujemna catkowita energia E wyznaczy¢ jego okres. Pokazaé, ze
gdy € = Vy — |E| < Vp, ruch jest w przyblizeniu harmoniczny i sprawdzié¢, ze czestosé
tego ruchu harmonicznego (czyli takze okres) mozna znalezé rozwijajac potencjal wokét
minimum. W przypadku E > 0, pokaza¢, ze dla t — 400 ruch jest niemal ruchem
jednostajnym. Poda¢ odpowiadajaca tej granicy asymptotyczna postaé¢ x(t).

Zadanie 3.2%
Zmalez¢ jednowymiarowy ruch czastki o masie m w potencjale
Vo

V@) =~
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W przypadku ruchu z ujemna calkowita energia E wyznaczy¢ jego okres. Pokazaé, ze gdy
e = Vp—|E| < Vj, ruch jest w przyblizeniu harmoniczny i sprawdzi¢ ze czestosé tego ruchu
harmonicznego (czyli takze okres) mozna znalezé rozwijajac potencjal wokét minimum.
W przypadku E > 0 pokazaé¢, ze dla t — oo ruch jest niemal ruchem jednostajnym.
Podaé¢ asymptotyczna postaé z(t), jesli x(0) = 01 v(0) = vg > 0. Czy ruch o £ > 0 od
x = —bdox=>b (np., gdy b > a, czyli gdy “przestrzeliwujemy” czastke przez obszar
dzialania potencjatu) trwa dluzej, czy krécej niz ruch (z ta sama predkoscia w punkcie
x = —b) przy braku potencjatu?

Zadanie 3.3%
Znalez¢ jednowymiarowy ruch w potencjale V(x) = —Vj 2* czastki o masie m i zerowej
catkowitej energii. Przyjaé, ze x(0) = zo > 0 i rozpatrzy¢ przypadki #(0) = vo > 01 < 0.

Zadanie 3.4%
Zbada¢, jak wyglada jednowymiarowy ruch czastki o masie m i calkowitej energii £ w
potencjale V(x) w poblizu punktu zwrotnego.

Zadanie 3.5%

Zbada¢, jak czas dochodzenia masy m o calkowitej energii E poruszajacej sie¢ w jednym
wymiarze w potencjale V(z) do punktu zwrotnego xy potozonego blisko punktu z. (po
przeciwnej stronie g, niz ta, po ktdrej porusza sie masa m), w okolicy ktérego poten-
cjatmozna przyblizyé¢ wzorem V(z) = V(z.) — Gu(z — z)" + ..., z G, > 0 zalezy od
réznicy V(z.) — E = €. Rozpatrzy¢ przypadkin =2 in > 2.

Zadanie 3.6%

Zmalez¢ w pierwszym przyblizeniu zmiane 071" okresu T jednowymiarowego ruchu czastki

o masie m spowodowang mala zmiana 0V (x) wiazacego te czastke w ograniczonym ob-

szarze potencjatu V' (zx), przy niezmienionej calkowitej energii E ruchu. Zakladamy tu,

ze zmiana 0V (z) potencjalu nie zmienia jakosciowo charakteru ruchu (czastka nadal

pozostaje uwieziona w ograniczonym obszarze). Obliczy¢ w tym przyblizeniu 67, gdy
1

V(z) = imw?a?, a 6V (z) = tmfB a*, gdzie 8 > 0. Sprawdzi¢ ten wynik na przykladzie

potencjatu z Zadania 3.2

Zadanie 3.7%

Zmalez¢ zmiane 01 okresu T' jednowymiarowego ruchu czastki o masie m spowodowana
mala zmiang 6V (z) = %mv 23 potencjalu V(x) = %mw2z2 wigzacego czastke w ograniczo-
nym obszarze przy niezmienionej catkowitej energii mechanicznej £ ruchu. Wykorzystujac
ten wynik znalezé pierwsza poprawke (tj. poprawke proporcjonalna do energii £ ruchu),
o ktéra rézni sie okres ruchu w potencjale Morse’a (Zadanie 3.1) od okresu ruchu w poten-
cjale oscylatora harmonicznego o odpowiedniej czestosci i poréwnaé¢ wynik z poprawka
otrzymanga z odpowiedniego rozwiniecia okresu wyznaczonego ze Scistego rozwiazania.
Wyrazi¢ takze zmiane §T okresu, gdy potencjal jest dokltadnie réwny V(x) + 0V (z) w
postaci nieskonczonego szeregu i przypadku potencjatu Scisle réwnego %mexQ + %my 3
powiedzie¢, kiedy ten szereg jest zbiezny.
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Zadanie 3.8%

Wykorzystujac zachowanie energii mechanicznej znalezé wzor wyrazajacy w sposob przy-
blizony zalezno$¢ od czasu potozenia czastki o masie m poruszajacej sie w potencjale
Viz) = %mw2x2 + %mv 23 7 energia calkowita F i znajdujacej sie w t = 0 w o = 0.
Ograniczy¢ sie do przyblizenia pierwszego rzedu w malym (z zalozenia) parametrze ~.
Sprawdzi¢ otrzymane przyblizone rozwiazanie wstawiajac je do odpowiedniego réwnania
ruchu.

Zadanie 3.9%

Stosujac zwykty rachunek zaburzen, tj. podstawiajac do réwnania Newtona rozwiazanie
w postaci szeregu z(t) = zo(t)+0x(t)+O(v?) z dz(t) proporcjonalnym do v i przyréwnujac
do siebie wyrazy z tymi samymi potegami v po obu stronach rownosci, znalez¢ z doktadnos-
cia do pierwszego rzedu w v przyblizony wzor wyrazajacy zaleznos¢ od czasu polozenia
czastki o masie m poruszajacej sie w potencjale V(x) = %mwzxz + %mv 2% 7 energia
catkowita E' i znajdujacej sie w t = 0 w x = 0. Poréwna¢ wynik z otrzymanym metoda z
Zadania 3.8.

Zadanie 3.10%

Zmalez¢ ruch ptaskiego wahadta sferycznego, tj. masy m zawieszonej w polu g na niewazkim
sztywnym precie o dlugosci [, mogacym obracac sie w ustalonej plaszczyznie pionowej, jesli
wiadomo, ze w najnizszym polozeniu jego energia kinetyczna T, jest réwna 2mgl. Jaki
jest okres T ruchu, gdy w najnizszym potozeniu Ty, > 2mgl?

Zadanie 3.11
Korzystajac z calki pierwszej energii otrzymac¢ ogdlny wzér wyrazajacy okres jednowy-

miarowego ruchu masy m w potencjale V' (z) = %kxzn, gdzie k > 0,an=1,2,..., przez
funkcje I'(x).
Wskazowka:
1
_ . T(a)(b)
de g9 1 1— b—1 _

Zadanie 3.12F

Czastka o masie m nadlatuje z nieskonczonosci, gdzie ma predkosc¢ v, i zderza sie centralnie
(tzn. caly ruch odbywa sie wzdluz jednej prostej) ze spoczywajaca poczatkowo druga
czastka o takiej samej masie. Czastki odpychaja sie za posrednictwem sily o potencjale
]

Vi(wy, m2) = V(|21 — 22]) =

|21 — x|

Jaka bedzie minimalna odleglos¢ miedzy czastkami? Wyznaczy¢ potoznie punktu do
ktorego dotrze nadlatujaca czastka.

Wskazowka: Rozpatrzy¢ nadlatywanie czastki ze skoniczonej odlegloéci R i dopiero po-
tem zbada¢ istnienie granicy R = oo.
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Zadanie 3.13%

Odwotujac si¢ do zachowania energii ruchu wzglednego i innych zasad dynamiki, w prze-
dyskutowaé¢ jakosciowo, co sie dzieje gdy w sytuacji takiej jak w poprzednim Zadaniu
czastka bedaca poczatkowo w spoczynku ma mase M rézna od masy m czastki nadla-
tujacej z nieskoniczonosci (gdzie miata predkos$¢ v). Obliczy¢ na jaka minimalna odlegto$é
czastki zbliza sie do siebie?

Zadanie 3.14
Punktowa masa m porusza sie w jednowymiarowym potencjale danym wzorem

V(z) = Votg*(z/a),

w ktorym Vo > 0. Znalezé zaleznosé jej polozenia od czasu i pokazaé, ze ruch przy matych
wychyleniach z (oczywistego) potozenia réwnowagi ma charakter drgan harmonicznych,
ktorych czestos¢ mozna takze wyznaczy¢ bez znajomosci rozwiazywania Scistego rownania
ruchu.
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4 RUCH UKLADOW O ZMIENNEJ MASIE

Zadanie 4.1%

Na odkryta ptaska kolejowa platforme o masie M, poruszajaca sie poziomo po prostym
torze z predkoscia Vj zaczyna w chwili ¢t = 0 wali¢ énieg (pada on prostopadle do po-
wierzchni platformy) w tempie p kilograméw na sekunde. Jak z czasem bedzie sie teraz
zmieniaé¢ predkosé platformy, jesli:

a) kolejarz (jego masa jest wliczona w Mj) zmiata caly osiadajacy $nieg w bok (nadajac
mu jakas predkosé prostoapdla wzgledem platformy)?

b) zmiata caty osiadajacy $nieg, ale do tytu, nadajac mu predko$é w wzgledem platformy?
c) $nieg osiada, a kolejarz smacznie $pi?

Zadanie 4.2%

Rakieta wznosi sie pionowo z Ziemi wyrzucajac gaz ze stala predkoscia w do tytu wzgledem
siebie samej. Masa rakiety zmienia sie wskutek tego zgodnie ze wzorem m(t) = mgy —
Kk t, gdzie Kk jest stala. Znalez¢ zaleznos¢ potozenia rakiety od czasu, jesli jej predkosé
poczatkowa, w chwili £ = 0, byta réwna vy.

Zadanie 4.3% (pomyshu A. Szymachy)

Wyprowadzi¢ wzoér Ciotkowskiego v(t) = —w In(M (t)/M(0)) wyrazajacy zaleznos$¢ pred-
kosci rakiety rozpedzajacej sie w prozni (z dala od wszelkich sit zewnetrznych) wskutek
odrzutu gazu od stanu spoczynku od jej (zmieniajacej sie z czasem) masy, przyjmujac,
ze gazy sa wyrzucane impulsami, a z kazdym impulsem rakieta traci 1/(n + 1) czesé
swojej aktualnej masy. Przyjac, ze gaz jest odrzucany z predkoscia w wzgledem rakiety
skierowanga przeciwnie do predkosci rakiety.

Zadanie 4.4%

Na stole lezy sznur o catkowitej dtugosci . Poczatkowo 1/4 jego dhugosci zwisa z krawedzi
stotu pionowo w dét. Wspdtezynnik tarcia (dynamicznego) sznura o stét wynosi f. Po
jakim czasie sznur zsunie sie catkowicie ze stotu?

Uwaga: Cho¢ nie jest to konieczne, w celach szkoleniowych dobrze jest tu potraktowac
ruch sznura jak ruch dwu poduktadéw (zwisajacy kawalek sznura i kawalek pozostajacy
na stole) o zmiennych masach i wypisa¢ réwnania ruchu obu tych poduktadéw.

Zadanie 4.5%(z Biatkowskiego)

Wyprowadzi¢ i przedyskutowaé¢ wzor na zaleznos¢ od czasu predkosci kropli spadajacej w
ziemskim polu grawitacyjnym g. Kropla spadajac albo paruje (jesli spada w prézni) albo
para wodna z otoczenia kondensuje na niej. Przyjac¢, ze szybko$¢ zmiany z czasem masy
kropli jest proporcjonalna do jej aktualnego promienia® (traktujemy krople jak kulke i
zakladamy stalosé gestosci wody ja tworzacej), a takze iz dziala na nia sita oporu (gdy
spada w powietrzu) proporcjonalna do jej szybkosci i do aktualnego promienia. Przyjaé

5W istocie, gdy kropla spada w prézni, szybkoéé zmiany jej masy jest proporcjonalna do pola jej
powierzchni, czyli do r2; gdy za$ para z otoczenia kondensuje na niej, szybko$é¢ zmiany masy jest mniej
wiecej o 73/2, gdy predko$é kropli jest niewielka i mniej wiecej oc /2 przy wiekszych predkosciach.
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tez, ze tracona lub zyskiwana przez krople woda ma zerowa predko$é¢ wzgledem osrodka,
w ktoérym kropla spada.

Zadanie 4.6%

W stojacy poczatkowo samochéd o masie M uderzaja poruszajace sie poziomo wzgledem
ziemi z predkoscia u pitki, ktére od samochodu odbijaja sie catkowicie sprezyscie rowniez
w kierunku poziomym. Pilki maja mase m i sa wyrzucane w kierunku samochodu na tyle
czesto, ze mozna przyjaé¢ iz w ukladzie zwiazanym z ziemia tworza one strumien masy
o (kg/s). Znalezé predkosé i polozenie samochodu w funkeji czasu. Jakie beda predkosé
i polozenie samochodu w funkcji czasu, jesli pitki zamiast odbijaé¢ sie od niego beda do
niego wpadaé i pozostawa¢ w nim?

Zadanie 4.7% (autor: K. Meissner)

Wyprowadzié¢ relatywistyczny analog wzoru Ciotkowskiego (Zadania 4.2 1 4.3) wyrazajacy
zaleznosé predkosci rakiety (wzgledem uktadu odniesienia, w ktérym ona poczatkowo
spoczywala) rozpedzajacej sie w prézni (z dala od wszelkich sit zewnetrznych) wskutek
odrzutu gazu od stanu spoczynku od jej (zmieniajacej sie z czasem) masy, przyjmujac,
ze gazy sa wyrzucane z rakiety z predkoscia w wzgledem rakiety (tj. w ukladzie z nia
zwiazanym) skierowang przeciwnie do predkosci rakiety. Pokazaé, ze relatywistyczny wzor
przechodzi we wzér Ciotkowskiego. Jaka ma on postaé, gdy wyrzucanym gazem jest gaz
fotonéw (silnik fotonowy)?
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5 ROWNANIA NEWTONA
W UKLADACH NIEINERCJALNYCH

Zadanie 5.1%

Dany jest zmieniajacy sie z czasem wektor b(t). Powiaza¢ jego pochodne obliczone w
dwu réznych uktadach odniesienia O i O'. Uklady te maja wspdlny poczatek i obracaja
sie wzgledem siebie wokot wspdlnej osi z = 2. Kat jaki tworzy o$ ' ukltadu O’ z osia x
ukladu O jest pewna funkcja czasu p(t).

Uwaga: Zaden z tych ukladéw nie jest wyrézniony. W szczegélnosci zaden z nich nie
musi by¢ uktadem inercjalnym.

Zadanie 5.2%

Znalez¢ catke pierwsza réwnania “Newtona” (tj. réwnania z sitami bezwladnosci) wyzna-
czajacego ruch masy m w ukladzie nieinercjalnym O’ obracajacym sie wzgledem uktadu
inercjalnego O ze stala predkoscia katowa w tak, ze wektor taczacy $rodek uktadu iner-
cjalnego ze srodkiem ukladu nieinercjalnego pozostaje staly, gdy sity niebezwltadnosciowe
w uktadzie nieinercjalnym sa potencjalne, a ewentualne wiezy, jakim poddana jest masa
m, sa w tymze ukladzie niezalezne od czasu. Znalez¢ zwiazek tej calki pierwszej z energia
mechaniczna masy m mierzona w ukladzie inercjalnym.

Zadanie 5.3%

Przedyskutowaé jakosciowo wpltyw sit odsrodkowej i Coriolisa na ruch (w poblizu po-
wierzchni Ziemi) masy m wzgledem nieinercjalnego uktadu odniesienia majacego poczatek
w punkcie o szerokosci geograficznej ¢ na powierzchni obracajacej sie Ziemi.

Zadanie 5.4%

7 wiezy o wysokosci h = 125 m stojacej na rowniku spuszczono swobodnie kamien o masie
m. Jak daleko upadnie on od podstawy wiezy? Pomina¢ wszystkie mozliwe sity oporu.
Rozwiaza¢ ten problem w uktadzie zwiazanym z Ziemia oraz w uktadzie inercjalnym,
ktorym Ziemia (wraz z wieza) sie obraca.

Zadanie 5.5%

Stosujac rachunek zaburzen (albo inaczej, zasade Banacha) podaé¢ rozwiniecie ogélnego
rozwiazania r = r(t) rownania Newtona wyznaczajacego ruch punktu materialnego w
nieinercjalnym ukladzie odniesienia zwiazanym z powierzchnia Ziemi stuszne w przypadku
ruchéw krétkotrwalych, w trakcie ktérych maltym pozostaje bezwymiarowy czynnik wt (w
jest tu predkoscia katowa obrotu Ziemi.

Zadanie 5.6%
Korzystajac z wyprowadzonego w Zadaniu 5.5 rozwiniecia

1 1
r(t) =ro+vot + §gt2 —wtx (V0t+§gt2) + O(w?t?),

w ktorym ry i vy sa odpowiednio poczatkowym polozeniem i poczatkowa predkoscia, w
wektorem predkosci katowej obrotu Ziemi, a g polem ciazenia, zbadaé¢ spadek swobodny
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kamienia z wiezy o wysokosci h stojacej na szerokosci geograficznej® ¢ i znalezé¢ odchylenie
kamienia od podstawy wiezy.

Zadanie 5.7%

Korzystajac z przyblizonego wzoru wyprowadzonego w Zadaniu 5.5 napisaé¢ explicite
wzory na zaleznos$é¢ od czasu sktadowych wektora potozenia w przypadku rzutu ukosnego
pod katem « do poziomu w kierunku na Wschéd (tj. w sytuacji, gdy réwnoleglta do Ziemi
sktadowa predkosci poczatkowej vy skierowana jest doktadnie wzdluz réwnoleznika) w
punkcie o szerokosci geograficznej ¢ na obracajacej sie Ziemi. Znalezé réznice zasiegdw
(tj. odlegtosci punktu upadku od punktu wyrzucenia) takiego rzutu na obracajacej sie i
nieobracajacej sie Ziemi (tj. poprawke do zasiegu spowodowana sita Coriolisa). Objasni¢
jakosciowo pochodzenie poszczegdlnych przyczynkow tej poprawki. Czy mozna tak dobraé
kat «, by sitla Coriolisa nie spowodowala zmiany zasiegu?

Uwaga: We wszystkich wyrazeniach uwzgledniaé tylko wyrazy liniowe w predkosci katowej
obrotu Ziemi.

Zadanie 5.8%

Rakiety V2, ktérymi w czasie II Wojny Swiatowej ostrzeliwany byt Londyn, przebywaly
droge s = 300 km i na skutek dziatania sity Coriolisa doznawaly odchylenia d = 3700 m (w
ktéra strone?). Zakladajac, ze wystrzeliwane byly one z réwnolegla do ziemi predkoscia,
vy skierowana wzdhuz potudnika (najpewniej potudnika 0) i pomijajac wpltyw réznych sit
oporu dziatajacych na nie, znalez¢ czas ich lotu. Przyjaé, ze szerokos¢ geograficzna miejsca
wystrzelenia i Londynu byt a mniej wiecej ta sama i wynosita 52°.

Zadanie 5.9" (Wahadlo Foucault, takie jak u U. Eco)

Zmalez¢ w przyblizeniu matych wychylen od potozenia réwnowagi ruch wahadta Foucault
(tj. ciezarka) o masie m zawieszonego na (w przyblizeniu) niewazkiej i nierozciagliwej
lince o dlugosci £ nad punktem na powierzchni Ziemi (nad posadzka paryskiego Panteonu)
znajdujacym sie na szerokosci geograficznej .

Zadanie 5.10 (Twierdzenie Larmora)®

Pokazad, ze jesli czastka o masie m wykonuje ruch r(¢) pod wpltywem jakiej$ zadanej sity
zewnetrznej F, to po zmianie sity

F—-F+emvxk,

gdzie k jest stalym wektorem, a |¢| < 1, tor ruchu r(t) w pierwszym przyblizeniu (t;.
z dokladnoscia, w ktérej uwzglednia sie tylko efekty rzedu €) zacznie sie obracaé¢. Jak
zmieni sie wtedy energia kinetyczna (a wiec i energia calkowita) czastki?

W przypadku, gdy e mk = ¢B, gdzie B jest stalym i jednorodnym polem magnetycznym,
stwierdzenie bedace przedmiotem tego zadania jest trescia tzw. twierdzenia Larmora.

SKorzystajacym z podrecznika G. Biatkowskiego przypominam, ze przyjelo sie liczyé szeroko$é geo-
graficzna od réwnika (a nie od bieguna péhmocnego).
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Rysunek 2: Masa na wirujacej ptaszczyznie.

Zadanie 5.11%

Zmalez¢ ruch czastki o masie m po znajdujacej sie na obracajacej sie Ziemi, na szerokosci
geograficznej ¢ plaszezyinie prostopadlej do (lokalnego) kierunku pionu. Na czastke
dziala sita oporu F,, = —mkv, sila przyciagania Ziemskiego oraz sila reakcji podioza.
Zakladajac, ze w chwili ¢ = 0 czastka znajduje sie w r(0) = 0 i ma predkos$¢ v, skie-
rowana na potudnie, znalez¢ jej polozenie w kierunku réwnoleznikowym w chwili, gdy
jej predkos¢ wskutek dziatania sily oporu spadla do potowy swej poczatkowej wartosci.
Uwzgledni¢ tylko wyrazy liniowe w predkosci katowej w Ziemi. Odtworzy¢ rozwiazanie
uzyskane przez bezposrednie catkowanie rownan ruchu (i rozwiniecie wynikow do wy-
razéw liniowych wzgledem w) stosujac rozwiniecie wokét rozwiazania z zerowa predkoscia
katows obrotu Ziemi.

Zadanie 5.12%

Mata kulka o masie m, wykonana z materialu o gestosci pru opada na dno naczynia
wypelnionego ciecza o gestodci peiecsy (Peiecsy < Pruiki). W naczyniu dziala na kulke sila
oporu F = —mxv. Znalez¢ ruch tej kulki uwzgledniajac site Coriolisa i site wyporu, jesli
v(0) = 0. Ograniczy¢ sie w rozwiazaniu do wyrazéw liniowych w predkosci katowej w
Ziemi. W ktora strone spadajac kulka odchyli sie od pionu? Znalezé wielko$é¢ tego od-
chylenia w chwili, gdy predkos$¢ kulki osiagnela potowej swej wartosci granicznej (jakiej?).
Zbadaé granice k — 0 rozwiazania.

Zadanie 5.13%

Punkt materialny o masie m moze sie przemieszczaé po gltadkiej plaszczyznie, ktéra wiruje
w polu grawitacyjnym g wokdt przechodzacej przez nia poziomej (w stosunku do g) osi z
predkoscia katowa w (zob. Rysunek 2). Pomijajac wpltyw obrotu Ziemi podaé¢ réwnania
Lagrange’a pierwszego rodzaju wyznaczajace ruch masy m w ukladzie wspolrzednych
zwiazanych z plaszczyzna, rozwiazac¢ je i opisa¢ jakosciowo charakter ruchu rozpatrujac
zarowno przypadek wiezéw jednostronnych jak i dwustronnych. Znalezé site reakcji i
podaé przyklad warunkéw poczatkowych prowadzacych (jesli wiezy sa jednostronne) do
oderwania sie masy m od plaszczyzny. Czy mozliwy jest ruch masy m w ograniczonym
obszarze plaszczyzny?
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Rysunek 3: Klocek (zaznaczony linia kropkowana) mogacy przemieszczaé sie w
wydrazeniu (o prostokatnym przekroju) wirujacej belki.

Zadanie 5.14%

Belka ma wzdluz calej swojej dltugosci prostokatne wydrazenie. Belka ta wiruje z predkoscia,
katowa w wokoét osi prostopadlej do wewnetrznego wydrazenia i przechodzacej przez jej ko-
niec. W wydrazeniu znajduje sie prostokatny klocek o masie m, ktory moze sie przemiesz-
czaé¢ wzdhuz wydrazenia (zob. rysunek 3). Znalez¢ ruch klocka wzdtuz osi x, uwzgledniajac
sity Coriolisa i odérodkowa (w ukladzie obracajacym sie wraz z belka) i wspétezynnik p
(110) dynamicznego (statycznego) tarcia klocka o $cianki wydrazenia. Jak duza moze by¢
predkos¢ katowa, by klocek spoczywajacy w xg # 0 nie zostal wprawiony w ruch? Prze-
dyskutowaé¢ jakosciowo mozliwe rodzaje ruchu. Sprawdzi¢ granice w — 0 uzyskanego
rozwigzania.

Zadanie 5.15

Wewnatrz rurki o prostokatnym przekroju (wymiaréw 2R x2R) obracajacej sie wokdl osi z
(réwnolegtej do kierunku pola grawitacyjnego) z predkoscia katowa w znajduje sie kulisty
koralik o masie m i promieniu R zaczepiony do osi obrotu sprezynka. Sprezynka ma
zerowa dlugos¢ swobodna, tj. sita przyciagajaca koralik do osi obrotu dana jest wzorem
F, = —kr, gdzie r jest odlegloscia od osi. Wskutek chropowatosci $cianek rurki na koralik
dziata dodatkowo sita tarcia dynamicznego Fiacie = —pt|Frac|V/| V], gdzie F . jest sila z
jaka koralik naciska na Scianke rurki. Znalez¢ ruch koralika wzdtuz osi rurki uwzgledniajac
takze sile odsrodkows i site Coriolisa.
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6 ZASADA A’ALEMBERTA
I ROWNANIA LAGRANGE’A I-go RODZAJU

Zadanie 6.1% (Raz zobaczy¢ wiezy nieholonomiczne)

Zmalez¢ wiezy, ktorym poddany jest uktad skladajacy sie z dwoch kot o takich samych
promieniach a potaczonych osia o ustalonej dlugosci b i toczacych sie bez poslizgu po
bedacym plaska powierzchnia podiozu. Kazde z kol moze obracaé sie na osi niezaleznie
od drugiego.

Zadanie 6.2%

Klocek o masie m traktowany jak punkt materialny zsuwa sie po szorstkiej powierzchni
rowni pochytej w ziemskim polu g. Wspdlezynniki statycznego i dynamicznego tarcia
klocka o réownie sa rowne odpowiednio p i pu. Zaktadajac, ze w chwili ¢ = 0 klocek
spoczywal na réwni znalez¢ jego ruch w zaleznosci od kata a nachylenia réwni.

Zadanie 6.3%

Na ptaskiej powierzchni stotu lezy klin o masie M, kacie nachylenia a i wysokosci gornej
krawedzi h. Po klinie, wskutek dziatania skierowanego pionowo w dét pola grawitacyjnego
g, moze zsuwac sie klocek o masie m. Pomiedzy klockiem a klinem wystepuje sita tarcia
dynamicznego réwna co do wartosci sile nacisku klocka na na klin razy wspétczynnik ;.
Podobna sita tarcia, o wspélczynniku ps wystepuje pomiedzy klinem a stotem. Postugujac
sie rownaniami Newtona z wiezami (czyli rownaniami Lagrange’a I-go rodzaju) znalezé
sity reakcji pomiedzy klinem a klockiem oraz pomiedzy klinem a stolem w sytuacji, gdy
klocek zaczyna zsuwac sie z klina. Znalez¢ jawne wzory na sity reakcji i przyspieszenia,

gdy p11 = p2 = 0.

Zadanie 6.4%

Punkt materialny o masie m moze poruszac sie po wewnetrznej stronie ustawionej pionowo
(tj. tak, ze jedna z jej Srednic jest réwnolegta do ziemskiego pola grawitacyjnego g)
nieruchomej obreczy o promieniu R (zob. rysunek 4). Pomijajac tarcie napisa¢ réwnania
ruchu uwzgledniajace site reakcji wiezow. Traktujac te wiezy jak jednostronne, znalezé
zaleznos¢ sity ich reakcji od potozenia punktu na obreczy, jesli w najnizszym potozeniu
punkt mial liniowa predko$¢ vy. Jaka musi by¢ minimalna predkos$¢ vy aby punkt nigdy
nie oderwal sie od obreczy? Znalez¢ ruch i jego czesto$¢ w przyblizeniu malych wychylen
z potozenia rownowagi. W przypadku, gdy catkowita energia jest akurat wystarczajaca
do osiagniecia przez mase m najwyzszego punktu toru, znalez¢ zaleznosé jej polozenia na
obreczy od czasu. (Czy jednostronne wiezy pozwola mu osiagna¢ ten punkt?) Rozpatrzyc
takze przypadek, gdy masa m porusza sie bez tarcia po zewnetrznej stronie obreczy
i znalezé punkt, w ktérym puszczona swobodnie (z zerowa predkoscia) z najwyzszego
punktu obreczy oderwie sie ona od niej.

Wskazéwka: Najwygodniej jest uzy¢ uktadu biegunowego.

Zadanie 6.5%
Jaka predkos¢ nalezy w najnizszym punkcie obreczy nada¢ masie m z Zadania 6.4, aby
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Rysunek 4: Masa m slizgajaca sie po wewnetrznej powierzchni gladkiej obreczy.

mogta ona, nie odrywajac sie od obreczy, osiagnac jej punkt najwyzszy, jesli wspotczynnik
tarcia dynamicznego masy m o obrecz jest réwny u?

Wskazowka: Napisa¢ réwnanie wyrazajace straty energii kinetycznej masy m przy jej
przemieszczaniu sie po obreczy od ¢ do ¢+ dyp na skutek wykonywania nad nia (ujemnej)
pracy przez sile grawitacji i site tarcia.

Zadanie 6.6%
Punkt materialny o masie m porusza sie w plaszczyznie xz w polu sity ciezkosci g = ge,
po gtadkiej cykloidzie zadanej (parametrycznie) réwnaniami

z=a(p—sing),
z=ua(l—cosyp),

gdzie 0 < ¢ < 27. Znalez¢ ruch tego punktu postugujac sie rownaniem Lagrange’a
pierwszego rodzaju (ograniczy¢ sie do ruchéw, w trakcie ktérych punkt nie opuszcza
cykloidy albo przyjaé, ze wiezy sa dwustronne). Wyznaczyé sile reakeji jako funkcje
parametru . Rozwiaza¢ takze problem korzystajac z zachowania energii. Wyprowadzié¢
rownanie wyznaczajace ten sam ruch korzystajac z rownania Lagrange’a drugiego rodzaju.

Zadanie 6.7%

Punkt materialny o masie m zsuwa sie w polu grawitacyjnym majacym kierunek osi
z (g = —e.g) po goérnej czesci paraboli zadanej wzorem 22 = ax (ruch jest plaski).
Przyjmujac, ze ruch rozpoczal sie z wysokosci z = h, na ktorej predkos¢ punktu byla réwna
zeru, sprowadzi¢ problem znalezienia ruchu (tj. potozenia masy m na paraboli w funkcji
czasu) do kwadratury, znalezé site reakcji w funkeji potozenia i réwnanie wyznaczajace
miejsce, w ktérym punkt oderwie sie od paraboli. Poda¢ wspolrzedna z punktu oderwania
sie, gdy h = %a.

Wskazéwka: Pamietaé, ze sita reakcji nie wykonuje (jesli wiezy sa, tak jak tu, niezalezne
od czasu) pracy, w zwiazku z czym energia mechaniczna jest podczas ruchu stala.

Zadanie 6.8%

Punktowa masa m poruszajaca sie w polu sily ciezkosci g = —g e, jest zmuszona do
pozostawania na linii $rubowej zadanej wzorami x = Rcosy, y = Rsinp, z = ay.
Napisa¢ rownania Lagrange’a [-go rodzaju wyznaczajace jej ruch oraz sity reakcji. Znalezé
polozenie masy m w przestrzeni w funkcji czasu korzystajac z odpowiedniego réwnania
Lagrange’a II-go rodzaju i wykorzystac te informacje do wyznaczenia sit reakcji. Nastepnie
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Rysunek 5: Dwie masy na pretach potaczone poprzeczka.

otrzymaé te same rezultaty postugujac sie wzorami Freneta (Zadanie 1.7), wyznaczajac
“przy okazji” promien p krzywizny i skrecenie 7 linii Srubowej. Zaktadamy, ze sily oporu
(tarcia) nie wystepuja.

Zadanie 6.9%

Tor skateboardowy ma ksztalt paraboli o réwnaniu z = 2?/a (a > 0). Zawodnik zjezdza
po nim w dét (w polu sily ciezkosci (g = —ge,), rozpoczynajac zjazd z zerowa predkoscia
w punkcie (—a,a). Traktujac skateboardziste jak punkt materialny sprowadzi¢ do kwa-
dratury problem wyznaczenia zaleznosci jego potozenia od czasu oraz obliczy¢ jaka sita
reakcji bedzie nan dziala¢ w najnizszym punkcie toru.

Zadanie 6.10%

W polu grawitacyjnym g na nitce zaczepionej do sufitu wisi masa m;. Do masy m,
przyczepiona jest niewazka sprezynka o dtugosci swobodnej [y i wspétczynniku sprezystosci
k. Na drugim koncu sprezynki wisi masa mo. W chwili ¢ = 0 nitke, na ktorej wisiala
masa my przecieto. Znalezé pozniejszy ruch tego uktadu.

Zadanie 6.117

Postugujac sie zasada Lagrange’a prac wirtualnych znalezé potozenie réwnowagi w polu
grawitacyjnym g tancucha skladajacego sie z n segmentow w ksztalcie odcinkéw polaczonych
jedne z drugimi przegubowo. Kazdy z segmentéw ma mase m i dlugos¢ 2a. Jeden ko-
niec tancucha jest zaczepiony na stale, a na drugi dziala skierowana poziomo sita F'. Jak
zmieni sie rozwiazanie, gdy wektor sily dzialajecej na koniec tancucha bedzie tworzyt z
kierunkiem horyzontalnym kat 87 W otrzymanych rozwiazaniach przej$¢ do granicy, w
ktorej liczba segmentow tancucha staje sie nieskonczona przy ustalonej jego dtugosci L.

Zadanie 6.12%

Dwie masy, my i mo, moga przemieszczaé sie po paraboli o rOwnaniu z = %a:ﬁ w polu sity
ciezkosci g = e,g (0§ z jest skierowana w d6t). Masy polaczone sa nierozciagliwa nicig o
dhugosci [, ktéra uktada sie na paraboli (inaczej méwiac, odleglosé miedzy masami liczona
po paraboli wynosi zawsze ). Korzystajac z zasady prac wirtualnych Lagrange’a znalez¢
polozenie réwnowagi uktadu tych dwéch mas.
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Rysunek 6: Dwie masy §lizgajace sie po pretach w polu g polaczone sprezynka.

Zadanie 6.13%

Masa m; moze Slizgaé sie (bez tarcia) po prostej réwnoleglej do kierunku pola grawita-
cyjnego g, a masa meo poO przecinajacej sie z tamta drugiej prostej nachylonej do pionu
pod katem 45°. Obie masy sa polaczone niewazkim sztywnym pretem dhugosci [ (rys. 5).
Napisa¢ réwnania Lagrange’a wyznaczajace ruch tych mas i znalezé wynikajace z nich
polozenia réwnowagi. Znalezé takze te same potozenia rownowagi stosujac zasade prac
wirtualnych Lagrange’a. Zbada¢ skrajne przypadki ms > mq i mgy < my.

Zadanie 6.14

Poda¢ réwnania Lagrange’a pierwszego rodzaju wyznaczajace ruch uktadu dwu mas, m,
i mo, Slizgajacych sie bez tarcia w polu g po dwu prostopadtych do siebie pretach (kazdy
z nich jest skierowany w dét pod katem 45° w stosunku do pionu) i potaczonych niewazka,
sprezynka o wspétezynniku sprezystosei k i pomijalnie matej dtugosci swobodnej (zob. ry-
sunek 6). Wyznaczy¢ polozenia réwnowagi tego uktadu i sity reakcji. Rozwiaza¢ réwnania
ruchu. Rozwiazaé takze to samo zadanie, gdy prety, po ktorych §lizgaja sia masy wiruja
z predkoscia katowa w wokdt pionowej osi zaznaczonej na rysunku 6 linia kropkowana.

Zadanie 6.15%

Punkt materialny o masie m zsuwa sie bez tarcia po zewnetrznej powierzchni sfery o
promieniu R znajdujacej sie w polu grawitacyjnym g. Sprowadzi¢ problem rozwiazania
réwnani wyznaczajacych ruch masy po sferze do kwadratur (tj. do wykonania calki).
Znalez¢é zaleznosé sily reakceji wiezéw od potozenia masy na sferze (dla dowolnych wa-
runkéw poczatkowych) i punkt w ktérym oderwie sie ona od sfery (jesli wiezy sa jedno-
stronne). Wyznaczy¢ jawnie ten punkt, gdy masa m zsuwa sie bez predkosci poczatkowej
z samego wierzchotka sfery.

Zadanie 6.16%

Punkt materialny o masie m porusza sie po stozku o kacie rozwarcia 2« i osi réwnolegtej
do pola g. Wypisa¢ uwzgledniajace sity reakcji rownania ruchu wyznaczajace ruch masy
m i sprowadzi¢ ich rozwiazanie do kwadratur. Przedyskutowac¢ jakosciowo charakter ru-
chu w zaleznosci od kata «. Jakie warunki musza by¢ spelnione, by masa m oderwala
sie od stozka? Jesli w jakim$ przypadku mozliwy jest ruch o charakterze okresowych
zmian odleglosci masy od wierzchotka stozka, wyznaczy¢ czestosé takich oscylacji, gdy ich
amplituda jest niewielka.
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Rysunek 7: Malpka Fiki-Miki wspinajaca si¢ po linie.

Zadanie 6.17%

Punkt materialny o masie m moze porusza¢ sie¢ po powierzchni nieskonczonego walca o
promieniu R, ktory jest nachylony pod katem a do pionu wyznaczanego przez pole g.
Napisa¢ réwnania Lagrange’a I-go rodzaju i znalez¢ site reakcji wiezow dzialajaca na ten
punkt.

Zadanie 6.18%

Punktowa masa m porusza sie po paraboloidzie obrotowej zadanej (w zmiennych cylin-
drycznych) réwnaniem z = 72/2a (a > 0) w polu sity ciezkodci g. Zbada¢ mozliwy jej
ruch korzystajac z rownan Lagrange’a I-go rodzaju, tj. przedyskutowaé jakosciowo cha-
rakter ruchu w zaleznosci od jego globalnych charakterystyk (tj. wielkosci zachowanych,
ktérych wartosci sa wyznaczane przez konkretne warunki poczatkowe). Jaki jest zakres
zmiennosci wspohrzednej z (albo r) punktu? Czy mozliwy jest ruch o charakterze Scisle
oscylacyjnym? Czy mozliwy jest ruch po okregu (na ustalonej wysokosci z)? Jesli tak, to
jaki jest okres obiegu paraboloidy dookota? Wyznaczy¢ site reakcji w funkcji globalnych
charakterystyk ruchu oraz polozenia punktu na stozku. Czy gdy paraboloida jest skie-
rowana w dot, tj. gdy a < 0, punkt zaczynajacy spadek z jej wierzchotka bez predkosci
poczatkowej oderwie sie od niej?

Zadanie 6.19

Punkt materialny o masie m porusza sie po przecieciu gtadkiej sfery o promieniu a z gtadka
pozioma plaszczyzna poruszajaca sie¢ w gére i w dot zgodnie z zaleznoscia z = asinwt w
jednorodnym polu grawitacyjnym g = —ge,. Napisa¢ rownania Lagrange’a I-go rodzaju
tego uktadu i rozwiazac je. Znalez¢ sity reakcji wiezow.

Zadanie 6.20%

Masa m zsuwa sie w polu g po plaszczyznie réwni nachylonej do poziomu pod katem
a. Predkosé masy m moze byé¢ skierowana dowolnie w stosunku kierunku najszybszego
spadku. Wspdlezynnik tarcia dynamicznego (statycznego) masy m o réwnie wynosi p (po)-
Napisa¢ rownania wyznaczajace ruch masy m, gdy poczatkowa predkos¢ ma nieznikajaca
poprzeczng (w stosunku do réwni) skladowa i sprowadzi¢ je do kwadratur. Sprawdzié
granice p = 0 rozwiazania.
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Zadanie 6.21%
Na stole (oczywiscie w ziemskim polu grawitacyjnym g) stoi klocek o masie M, do ktérego
przyczepiona jest lina. Jeden koniec liny zwisa w doél przez krawedz stotu. Po zwisajacym
kawatku liny wspina sie maltpka Fiki-Miki o masie m. Porusza sie ona tak, iz jej odleglosé
od ustalonego punktu na linie (np. jej swobodnego korica) jest zadana funkcja f(t) (zob.
rys. 7). Miedzy klockiem a stolem wystepuje sita tarcia o wspétezynnikach gy (tarcie
statyczne) 1 playn (tarcie dynamiczne). jaki warunek musi by¢ spelmiony, by podczas
wspinania sie malpki klocek pozostawalw spoczynku? Obliczy¢ przyspieszenie, z jakim
klocek bedzie sie przybliza¢ do krawedzi stotu oraz przyspieszenie malpki wzgledem ziemi
w sytuacji, gdy znaleziony warunek bezruchu klocka nie jest spemiony.

Otrzymac to samo przyspieszenie postugujac sie formalizmem réwnan Lagrange’a dru-
giego rodzaju w sytuacji, gdy tarcie nie wystepuje.

Zadanie 6.22%

Rozpatrzmy oscylator utworzony z masy m zawieszonej na nierozciagliwej, niewazkiej nici
o dlugosci | w polu g. Pokaza¢ bezposrednim rachunkiem, rozpatrujac mate wychylenia
z polozenia rownowagi, ze jesli ni¢ bedzie nieskorniczenie powoli $ciagana w punkcie jej
zaczepienia przez zewnetrzna site, to wielkosé¢ E/w, tj. stosunek calkowitej energii ruchu
do czestosci nie ulega zmianie (jest tzw. niezmiennikiem adiabatycznym).
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7 ZAGADNIENIA WARIACYJNE

Zadanie 7.1%

Znale7¢ lezacy calkowicie w plaszezyZnie xy tor promienia $wiatta wpadajacego (od strony
ujemnych z-6w) w punkcie (z,y) = (0,0) pod katem g w stosunku do osi x do osrodka,
w ktérym wspélezynnik zalamania zalezy od glebokosci x jak n(x) = /1 + az. Oprzeé
sie raz na prawie Snella, a drugi raz na zasadzie Fermata mdwiacej, ze promien Swiatla
miedzy dwoma punktami biegnie po takiej drodze, ze czas przelotu jest minimalny.”
Przypomnienie: W osrodku o wspdlczynniku zalamania n predkosé swiatla (lokalna)
jest réwna c/n.

Zadanie 7.2%

Znalez¢ plaski tor promienia swietlnego w osrodku o wspdtezynniku zalamania n(z,y) =
p/x biegnacego pomiedzy dwoma punktami A i B potozonymi w pdlprzestrzeni x > 0.
Podaé petne réwnanie toru, gdy A = (1,0), B = (2,1). Przedyskutowaé takze jakosciowo
istnienie rozwiazania dla dowolnych dwéch punktéw A # B lezacych w pélptaszczyznie
x > 0. Co sie dzieje, gdy oba punkty leza na tej samej wysokosci nad osia = (tzn. maja
takie same wspohrzedne y-owe)?

Zadanie 7.3%

Wysokosé zaspy $nieznej zalegajacej na pélptaszezyznie x > 0 jest proporcjonalna do /z.
Wzdtuz jakiej krzywej y(x) powinien i$¢ przekop o ustalonej (pomijalnie malej szerokosci)
laczacy dwa ustalone punkty A i B (lezace w tej polplaszczyznie), by ilo$¢ sniegu, jaka
trzeba odgarnaé byla jak najmniejsza?

Zadanie 7.4

Wysokos¢ zaspy $nieznej jest proporcjonalna do /y. Wzdtuz jakiej krzywej nalezy prowa-
dzi¢ przekop taczacy punkty (za, ya) i (xp, yp) (potozone w pierwszej éwiartce ukladu)
by ilosé $niegu jaka nalezy odgarnaé¢ byt a minimalna? (Zakladamy, ze szeroko$é¢ przekopu
jest infinitezymalnie mala.)

Zadanie 7.5%

Jaki jest ksztalt majacej minimalne pole powierzchni obrotowej rozpietej na dwéch réwno-
legtych do siebie nawzajem kolach o promieniach R i Rs, ktorych srodki leza na tej same;j
prostej i sa oddalone od siebie o 2L7?

Zadanie 7.6

Dwa pierscienie o promieniach R; i Ry, odlegte od siebie o L i ustawione tak, ze ptaszczyzny
ograniczanych przez nie okregéow sa do siebie réwnolegle, potaczone sa btona mydlana.
Zmnalez¢ ksztalt powierzchni blony wiedzac, ze odpowiada ona minimum energii potencjal-
nej, ktéra jest proporcjonalna do pola powierzchni biony.

"Naprawde $wiatlo biegnie to takim torze, ze czas przelotu jest ekstremalny.
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18

Rysunek 8: Wahadlo zaczepione do obracajacej sie obreczy.

Zadanie 7.7% (Problem brahistochrony)

Po jakiej krzywej lezacej w plaszczyznie xz powinna w polu grawitacyjnym g = —g e,
zsuwaé sie (majaca zerowa predko$é poczatkowa) masa m zaczynajaca ruch w punkcie
A =(0,h), by w jak najkrétszym czasie dotrze¢ do

a) punktu B = (b,0),

b) pionowej prostej o réwnaniu z = b > 07

Zadanie 7.8%

Korzystajac z rachunku wariacyjnego znalez¢ najkrétsza droge laczaca na plaszczyznie
xy dwa ustalone punkty A = (x4,y4) 1 B = (zp,yp). Rozwiazaé problem w zmiennych
kartezjanskich i biegunowych. Rozwiaza¢ ten sam problem (w zmiennych kartezjarskich)
w przestrzeni o d wymiarach.

Zadanie 7.9%

Dwa punkty A i B leza w pdlprzestrzeni y > 0. Wykorzystujac zasade Fermata wyzna-
czy¢ tor po jakim biegnie pomiedzy punktami A i B promien $wietlny, jesli wspotczynnik
zalamania n = ¢/py (tj. v = py, p > 0). Wyznaczy¢ i narysowaé tor w przypadku,
gdy oba punkty, A i B, maja taka sama wspolrzedna y-owa: ya4 = yp = d, a odleglosé
pomiedzy ich rzutami na plaszczyzne y = 0 wynosi 2d. W tym przypadku obliczy¢ takze
czas przelotu promienia od A do B.

Uwaga: Nalezy poda¢ matematyczny argument, ze tor promienia lezy catkowicie w
plaszczyznie przechodzacej przez oba te punkty.

Zadanie 7.10" (Zasada Fermata “more geometrico”)
7 zasady Fermata otrzymaé réwnanie charakteryzujace w sposéb geometryczny trajektorie
promienia swietlnego w o$rodku o zmiennym wspélezynniku zalamania n = n(x, y, 2).

Zadanie 7.117
Wyznaczy¢ ksztalt fanicucha (o bardzo krétkich ogniwach albo nierozciagliwej jednorodnej
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Rysunek 9: Dwa klocki na dwu-klinie.

liny) o dlugosci L i stalej gestosci p masy na jednostke dlugosci umocowanego swoimi
koncami w dwdch réznych punktach A i B nad ziemia i swobodnie zwisajacego (bez
dotykania ziemi) w polu sily ciezkosci g.

Zadanie 7.12F

Jak powinna zmieniaé sie z czasem predkos$¢ pojazdu, ktéry, rozpedzajac sie od zerowej
predkosci, ma w zadanym czasie T' przeby¢ po linii prostej dystans 2L (i zatrzymaé sie
po jego przebyciu), zeby zminimalizowaé dyskomfort jego pasazeréw powodowany z jego
przyspieszaniem i hamowaniem? Za miare dyskomfortu przyjaé catke wzdhuz przebywanej
drogi z kwadratu przyspieszenia.

Wskazéwka: Sparametryzowaé¢ droge przebyta odlegloscia i uwzgledni¢ zadany czas T'
przejazdu jako dodatkowy warunek.

Zadanie 7.13%

Rozwiazaé problem 7.12 w sposob przyblizony minimalizujac funkcjonat dyskomfortu bez-
postednio, postulujac wielomianowa posta¢ zaleznosci przebywanej drogi od czasu. Dla
prostoty ograniczy¢ sie do wielomiandéw stopnia nie wyzszego niz czwarty.

Zadanie 7.147

Wytyczyé w gornej pétptaszezyznie krzywa o dlugosei 21, taczaca punkty (—a,0) i (a,0) i
obejmujaca jak najwieksze pole (ograniczone ta krzywa i osia ). Przedyskutowaé, kiedy
problem ten ma rozwiazanie i jak ono wyglada w przypadkach granicznych.

Zadanie 7.15%

Korzystajac z rachunku wariacyjnego znalez¢ najkrotsza droge lezaca na powierzchni
bocznej walca o promieniu R taczaca punkty A = (R,0,0) 1 B = (0, R, h). Rozwiazaé
problem raz wykorzystujac technike mnoznikow Lagrange’a oraz drugi raz, przechodzac
do zmiennych zgodnych z wiezami. Uwzglednié¢ takze role topologii walca.

Zadanie 7.16%

Korzystajac z rachunku wariacyjnego wykazaé, ze geodetyka (tj.krzywa o najmniejszej
dhugosci) na sferze (o promieniu R) laczaca dwa zadane punkty sfery jest wycinek kota
wielkiego (tj. krzywej powstalej z przeciecia tej sfery plaszczyzna przechodzaca przez jej
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srodek) przechodzacego przez te dwa punkty.

Wskazéwka: Uzywajac wspdlrzednych sferycznych szukaé rozwiazania jako funkcji ¢ =
®(6). W otrzymanym na konicu réwnaniu przejs¢ do wspéhrzednych kartezjaniskich i za-
uwazy¢, ze jest to rownanie postaci zx + by + cz = 0 wyznaczajace plaszczyzne prze-
chodzaca przez srodek sfery.

Zadanie 7.17%

Napisa¢ réwnania wyznaczajace bieg promienia swietlnego padajacego pod katem « na
powierzchnie kuli o promieniu R, we wnetrzu ktorej wspolczynnik zalamania n zmienia
sie zgodnie ze wzorem n = (R/r)®. Otrzymac tor promienia jawnie w przypadkach, gdy
a=11a=2. Jedli promien dociera do srodka kuli, obliczy¢ po jakim czasie sie to stanie.

Zadanie 7.18%

Po jakiej zamknietej krzywej ptaskiej zawartej w plaszczyznie Oxy powinien poruszaé sie
przez czas T punkt, ktérego predkosé jest zadana funkcja czasu v = v(t), aby zakreslona
przezen krzywa ograniczala obszar o najwiekszym mozliwym polu?

Wskazéwka: Wykorzysta¢ wzér wyrazajacy pole powierzchni obszaru ograniczonego
dana krzywa przez catke z jakiej$ jedno-formy po tej krzywe;j.

Zadanie 7.19%
Poda¢ réwnanie Eulera-Lagrange’a odpowiadajace problemowi wariacyjnemu

&2
5I1f] = 6 /g dETE f, ') 1) =0,

1

o ustalonych koncach, tj. 6f(&1) = 0f(&) = 0 oraz 6f'(&1) = §f' (&) = 0. Zastosowal
nastepnie uzyskany wynik do calki dzialania

[[Q]:/thL(q, 4, qG),

t1

z funkcja Lagrange’a postaci

o 1 .
L(q, ¢, §) = —5mad - V(g).

Czy w tym przypadku dodatkowe warunki d¢(t;) = 0¢(t2) = 0 sa konieczne?
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8 ROWNANIA LAGRANGE’A II-go RODZAJU

Zadanie 8.1%

Plaskie wahadlo o dlugosci [ i masie m (tj. masa m zawieszona na sztywnym, w przy-
blizeniu niewazkim, precie) jest zaczepione w punkcie umiejscowionym na okregu o pro-
mieniu R, ktory obraca sie z predkoscia katowa w wokot osi prostopadlej do kierunku pola
sity ciezkosci g (zob. rysunek 8). Przyjmujac, ze wahadlo pozostaje zawsze w plaszczyznie
wyznaczanej przez okrag (czyli, ze jego ruch jest plaski) napisaé lagragian tego ukladu i
otrzymaé¢ zen réwnanie wyznaczajace ruch masy m.

Zadanie 8.2%
Pokazaé, ze réwnanie ruchu czastki o masie m w uktadzie nieinercjalnym (primy nad
wielkosciami zdefiniowanymi wzgledem uktadu nieinercjalnego zostaly tu pominiete)

d
ma;F—m(atr+d—j><r+2w><v+w><(w><r)),

jesli tylko rzeczywista sita F jest potencjalna (lub wynika z jakiego$ potencjatu uogélnonego)
wynikaja z lagrangianu z odpowiednio dobranym (uogdlnionym) potencjalem zaleznym od
predkosci katowej w.

Zadanie 8.3%

Pokazaé¢ bezpoérednim rachunkiem,® ze réwnania Eulera-Lagrange’a zachowuja, swoja po-
staé¢ przy dowolnych zamianach q,(t) = qu(s1,- .. sn,t), a = 1,..., N zmiennych uogdlnionych
(s1(t), ..., sn(t) sa nowymi zmiennymi).

Zadanie 8.4%

Rozpatrzmy punkt materialny o masie m poddany dzialaniu sity F = F(t), ktéra jest
niezalezna od polozenia. Translacje przestrzenne sa oczywistymi symetriami tego pro-
blemu (jesli r = r(t) jest jakim$ rozwiazaniem réwanania Newtona, to jest nim takze
r'(t) = r(t) + a). Mimo to, ped p czastki nie jest stala ruchu. Wyjasni¢ to (pozorne)
pogwalcenie zwiazku symetrii z prawami zachowania.

Zadanie 8.5

Czy w sytuacji takiej jaka jest przedmiotem Zadania 8.4 galileuszowskie pchniecie jest
symetria ukladu? jesli jest, to znalezé odpowiadajaca jej wielkos¢ zachowana korzystajac
z twierdzenia Noether i pokaza¢ wykorzystujac rownania ruchu, ze jest ona rzeczywiscie
stalg ruchu.

Zadanie 8.6%

Pret nachylony pod katem « do pionu (wyznaczanego przez pole grawitacyjne g) wiruje z
predkoscia katowa w wokdl przechodzacej przezen pionowej osi (zakreslajac w ten sposéb
powierzchnie stanowiaca dwie czesci stozka o kacie rozwarcia «). Po precie, pozostajac

87e jest to prawda, wynika juz z samego wyprowadzenia réwnan Lagrange’a drugiego rodzaju z zasady
d’Alemberta, w ktérym po prostu wyraza sie kartezjariskie sktadowe wektoréw polozenia r;(¢) mas uktadu
przez dowolnie zdefiniowane (byle zgodne z wigzami holonomicznymi) wspéhrzedne uogélnione g;.
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Rysunek 10: Masa m slizgajaca sie po gtadkim precie potaczona sprezynka z nieruchomym
punktem P.

stale na nim, §lizga sie bez tarcia koralik o masie m. Zakladamy tez (nie interesujac

sie tym, jak to by mialo by¢ technicznie mozliwe), ze koralik moze przechodzi¢ przez

o$ obrotu. Wypisa¢ funkcje Lagrange’a koralika oraz wynikajace z niej jego rownanie

ruchu. Znalez¢ i przedyskutowaé¢ charakter ruchu koralika w zaleznosci od wartosci kata

a 1 warunkéw poczatkowych (koralik w ¢ = 0 nad punktem przeciecia sie preta z osia lub
™

pod nim, etc. Czy w przypadku, gdy a = 7 mozliwe sa takie warunki poczatkowe, by

koralik asymptotycznie zblizal sie do osi obrotu?

Zadanie 8.7%

Koralik o masie m moze §lizgaé sie bez tarcia po precie odchylonym od pionu (wyzna-
czanego przez pole ciezkosi g) o kat « 1 wirujacym ze stala predkoscia katowa w wokdt
przechodzacej przezen pionowej osi, tak jak w Zadaniu 8.6. Dodatkowo koralik jest zacze-
piony do (naciagnietej na pret) sprezyny o wspétezynniku sprezystosci k i pomijalnie malej
dtugosci swobodnej, ktéra jest umocowana w do preta w punkcie oddalonym o [ od tego
punktu preta, przez ktéry przechodzi o$ obrotu (zob. rysunek ??). Zbadaé¢ ruch ukladu
w zaleznosci od warto$ci parametréow w, k, [ warunkéw poczatkowych. Jak zmienitby
sie lagrangian uktadu, gdyby sprezyna byla umocowana w punkcie przecigcia preta z osia
obrotu a miata za to dtugos¢ swobodna réwna (7

Zadanie 8.8%

Klin o masie M, kacie nachylenia a i wysokosci gérnej krawedzi h moze przesuwaé sie
bez tarcia po plaskiej powierzchni. Po klinie, wskutek dzialania skierowanego pionowo
w doét pola sity ciezkosci g, moze zsuwadé sie bez tarcia klocek o masie m. Znalez¢ ruch
tego uktadu wykorzystujac réwnania Lagrange’a drugiego rodzaju. Poréwnaé¢ wynik z
otrzymanym w Zadaniu 6.3 w granicy g, = e = 0.

Zadanie 8.9%

Klin o masie M i przekroju poprzecznym w ksztalcie tréojkata wysokosci h majacego
katy nachylenia ramion do poziomu réwne « i § moze przemieszczaé sie bez tarcia po
plaskiej poziomej (w stosunku do pola g) powierzchni. Po jego bocznych plaszczyznach,
polaczone nierozciagliwa i niewazka linka dlugosci [, moga przesuwaé sie dwa klocki o
masach m; (ta od strony kata a)) i mo (zob. rysunek 9). Napisaé lagrangian i réwnania
wyznaczajace plaskoréownolegly ruch tego ukladu. Zaktadajac, ze w chwili poczatkowej
masa m; znajduje sie w najwyzszym polozeniu (na wysokosci h nad podstawa klina)
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Rysunek 11: “Waciak” (czyli regulator Watta).

obliczy¢ czas jej zjazdu do najnizszego polozenia, przyjmujac, ze my; > mo i a > 8 (i ze
dhugosé linki to umozliwia). Obliczy¢ takze odleglo$é o jaka przesunie sie przy tym klin.

Zadanie 8.10%

Dwie masy m; i my polaczone sztywnym pretem o dlugosci [ i pomijalnie matej masie
slizgaja sie w pionowym polu g po dwéch przecinajacych sie (wiec wyznaczajacych pewna
plaszczyzne) prostych nachylonych do poziomu pod katem m/4. Napisaé¢ lagrangian i
odpowiadajace mu réwnania Eulera-Lagrange’a. Znalez¢ potozenie rownowagi uktadu i
czestos¢ matych drgan wokot tego potozenia.

Zadanie 8.11%

Masa m moze bez poslizgu przemieszczaé sie po poziomej osi i jest polaczona (niewazka)
sprezynka o dlugosci swobodnej [y i wspdtczynniku sprezystosci k£ z nieruchomym punktem
P. Napisa¢ lagrangian tego uktadu pokazanego na rysunku 10 i znalezé czestosci jego
malych drgan wokdt polozen réwnowagi trwatej. Rozpatrzy¢ przypadki a > Iy i a < (.

Zadanie 8.12%

Koralik o masie m porusza sie po okregu o promieniu R (wiezy dwustronne), ktérego
jedna ze srednic jest réwnolegla do ziemskiego pola ciazenia g. Okrag ten obraca sie
wokot tejze srednicy z predkoscia katowa w. Napisaé lagrangian tego uktadu i wynikajace
z niego réwnanie Lagrange’a IIgo rodzaju wyznaczajace ruchu koralika. Sprowadzi¢ jego
rozwiazanie do kwadratur wykorzystujac catke pierwsza (czy jest nia catkowita energia
mechaniczna koralika?). Znalezé jego polozenia réwnowagi i przedyskutowaé ich cha-
rakter (rownowaga trwala lub nietrwala) w zaleznosci od wartosci predkosci katowej w.
Wyznaczy¢ czestosci malych drgan koralika wokdt potozen réwnowagi trwalej.

Zadanie 8.13%

Napisa¢ rownania wyznaczajace ruch ukladu skladajacego sie z dwéch mas, z ktorych
jedna, mq, slizga sie bez tarcia po poziomym precie, a druga, ms jest z tamta potaczona
niewazkim pretem o dlugosci [ i moze wahac¢ sie w plaszczyznie wyznaczanej przez pole
sity ciezkosci g i pret (rysunek ?7?). Znalez¢ ruch uktadu w przyblizeniu matych odchylen
z polozenia réwnowagi.

Zadanie 8.14%
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Rysunek 12: Koralik na okregu o promieniu R wirujacym wokot osi przechodzacej przez
punkt na obwodzie. Pokazana jest sugerowana definicja zmiennej dynamicznej .

Masa m jest zawieszona w polu g na niewazkim sztywnym precie o dtugosci [. Gorny
koniec tego preta, czyli punkt w ktorym zawieszone jest utworzone z preta i masy m
wahadlo, porusza sie horyzontalnie, wzdl6z osi x ruchem harmonicznym o amplitudzie a
i czestosci w. Napisa¢ réwnanie wyznaczajace ruch wahadla (masy m) i rozwiazaé je w
spos6b przyblizony, zakladajac (jako warunki poczatkowe), ze w chwili, gdy jego ruchome
zawieszenie ma maksymalna predkos¢ zwisalo ono swobodnie. Rozpatrzy¢ przypadek,
gdy w? — g/l. Czy otrzymane rozwiazanie pozostaje wtedy stuszne dla dowolnie dtugiego
czasu? Podac tez przyblizone rozwiazanie stosowalne przez jakis$ czas po t = 0 w sytuacji,
gdy wp > |w — wo| # 0.

Zadanie 8.15" (“Waciak”)

Zmalez¢ ruch “waciaka”, czyli regulatora Watta. Jest to ustrojstwo pokazane na rysunku
11: wokét pionowej osi (w polu g) na wychodzacych ze znajdujacego sie na stalej wy-
sokosci pierscienia A, symetrycznie potozonych ruchomych ramionach o dtugosci | wiruja
z ustalona predkoscia katowa w dwie masy m polaczone kolejna para ramion o diugosci
[ z mogacym przesuwaé sie¢ po osi w gore i w dét obciazajacym pierscieniem o masie
M. Napisa¢ lagrangian waciaka i wynikajace zen Sciste rownanie ruchu. Znalezé stabilne
polozenie réwnowagi i ruch uktadu w przyblizeniu matych wychylen z polozenia réwnowagi
trwatej.

Zadanie 8.16"

Masa m moze §lizgaé sie bez tarcia po okregu o promieniu R wirujacym ze stala predkoscia
katowa w wokol punktu O polozonego na jego obwodzie. 7 punktem tym masa m
jest potaczona niewazka sprezyna o dlugosci swobodnej [ i wspolczynniku sprezystosci
k. (Okrag wiruje w plaszczyznie prostopadlej do pola grawitacyjnego - zob. rysunek
12). Napisa¢ lagrangian tego uktadu i wynikajace zen réwnanie ruchu masy m. Znalezé
polozenia rownowagi i czestosci matych drgan masy m wokot potozenia réwnowagi trwate;j.
Jakie warunki musza spelia¢ parametry R, [ i w, by ¢ = 0 bylo polozeniem réwnowagi
trwalej? Znalezé takze calke pierwsza (stala ruchu) réwnania Eulera-Lagrange’a - czy
jest to energia? - i sprowadzi¢ jego rozwiazanie do kwadratur. Rozwijajac odpowiedni

35



A%
O\.m

o
1
1
1
1
1
1
1
1

|8

M@
Rysunek 13: Dwie masy potaczone linka.

potencjatefektywny masy m wokét jego minimow uzyskaé te same wnioski, ktore wynikaja
z linearyzacji rownania Eulera-Lagrange’a.

Zadanie 8.17%

Punkt materialny o masie m mogacy poruszac sie bez tarcia po gladkiej poziomej (w sto-
sunku do pola g) plaszczyznie jest polaczony linka (niewazka i nierozciagliwa) o dlugosci
[ przechodzaca przez otwér w plaszczyznie z druga masa M, ktora moze poruszaé sie
tylko wzdluz pionowej prostej. W chwili £ = 0 masa m znajduje sie¢ w odleglosci R od
otworu i ma predkos¢ v, skierowana prostopadle do linki, a predko$¢ masy M jest réwna
zeru (zob. rysunek 13). Napisaé¢ lagrangian tego uktadu i sprowadzi¢ wynikajace zen
rownania wyznaczajace zaleznos¢ potozenia elementéw uktadu od czasu do kwadratur.
Na tej podstawie opisa¢ ruch jakosciowo, czyli m.in. powiedzie¢, czy moze on by¢ okre-
sowy. Wyznaczy¢ takze minimalna odleglos¢ Ry, na jaka masa m moze sie zblizy¢ do
otworu. Jaka zmiane wprowadzitoby odrzucenie warunku, ze predkos$¢ poczatkowa v jest
prostopadla do nici?

Zadanie 8.18"

Postlugujac sie réwnaniami Lagrange’a Il-go rodzaju zbadaé¢ ruch masy m zmuszonej
do pozostawiania na stozku (wiezy dwustronne) o kacie rozwarcia 2«a, ktérego o$ jest
rownolegla do pola grawitacyjnego g. Przedyskutowaé ruch jakosciowo w zaleznosci od
kata a. Jesli w jakim$ zakresie kata o mozliwy jest ruch quasi-okresowy (tj. taki, przy
ktorym zmiany odleglosci masy od czubka stozka sa okresowe), znalezé jego czestosé, w
przyblizeniu maltych amplitud oscylacji.

Zadanie 8.19%

Postugujac sie réwnaniami Lagrange’a II-go rodzaju napisa¢ rownania wyznaczajace ruch
masy m pozostajacej stale na powierzchni obrotowej zadanej wzorem z = (22 + y?)?/4a?
(a > 0 jest stala o wymiarze dlugosci), ktorej o$ symetrii jest réwnolegla do ziemskiego
pola ciazenia g = —g e,. Sprowadzi¢ rozwiazanie zagadnienia do “kwadratury”, tj.
do jednej calki i przedyskutowaé jakosciowo charakter mozliwego ruchu wykorzystujac
pojecie potencjatu efektywnego. W przyblizeniu maltych odychylert zmiennej radialnej od
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Rysunek 14: Dwie masy na pretach polaczone sprezynkami.

polozenia minimum tego potencjalu wyznaczy¢ okres oscylacji masy m wokot niego oraz
zaleznos¢ od czasu w tej sytuacji predkosci katowej, z jaka masa m okraza oS z.

Zadanie 8.20%

Napisa¢ lagrangian czastki o masie m i tadunku elektrycznym ¢ poruszajacej sie w stalym
i jednorodnym polu magnetycznym B = e,B, wprowadzajac zmienne cylindryczne w
plaszczyznie prostopadtej do pola magnetycznego. Wykorzystujac calki pierwsze sprowa-
dzi¢ rozwiazanie do kwadratury i znalezé¢ zaleznosé potozenia czastki od czasu przyjmujac,
ze r(0) =01v(0) = v¥e, + v e,

Wskazéwka: Wybraé¢ odpowiednio potencjal wektorowy A pola magnetycznego.

Zadanie 8.21%
Stale pole magnetyczne o symetrii cylindrycznej, B = e, B(r), gdzie r = /2% + 32, jest
zlokalizowane w obszarze, ktorego rzut na plaszczyzne xy jest kolem o promieniu R. Pole

to jest takie, ze
/ ds-B=0.
z=0

Pokaza¢, ze jesli czastka o tadunku elektrycznym ¢ startujaca z punktu r = 0 i pozo-
stajaca stale w plaszczyznie xy opuszcza obszar pola (tzn. obszar r < R), to w chwili
przekraczania granicy (tj., gdy r = R) pola jej predkosé jest skierowana radialnie. Podaé
warunek, jaki musi spelnia¢ predko$¢ vy czastki w r = 0, by mogta ona opusci¢ obszar
pola.

Wskazéwka: wykorzystaé¢ wielkosci, ktore pozostaja state podczas ruchu czastki.

Zadanie 8.22%

Czy mozliwy jest jednowymiarowy (tj. wzdluz jakiej$ krzywej) ruch oscylacyjny punkto-
wego fadunku ¢ o masie m w polu elektrycznym wytwarzanym przez nieruchomy punktowy
dipol elektryczny p (wektor p ma warto$é bezwzgledna réwna iloczynowi dodatniego ta-
dunku @ i odleglosci d dzielacej ten tadunek i tadunek ujemny —(@) i jest skierowany od
ladunku ujemnego do dodatniego; dipol punktowy powstaje w granicy d — 0, () — o0 z
Qd = |p| = p = const. > 0)?

Wskazéwka: Sprobowaé znalezé takie rozwiazanie réwnan ruchu zapisanych we wspdt-
rzednych sferycznych (z osia z wybrana wzdluz wektora p), ktére ma znikajaca sktadowa,
momentu pedu w kierunku p.
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Rysunek 15: Potaczone dwa ruchome prety. Pokazane sa mozliwe zmienne uogdlnione.

Zadanie 8.23%
Czastka o masie m i fadunku elektrycznym ¢ porusza sie w polu magnetycznym

g
B = 7’_2 e,,

wytwarzanym przez monopol (g jest tadunkiem magnetycznym monopola). Napisaé la-
grangian wyznaczajacy ruch czastki wykorzystujac wspotrzedne sferyczne. Znalezé réwna-

nie toru czastki i zaleznos¢ jej potozenia od czasu.

Zadanie 8.24%

Napisaé lagrangian sferycznego wahadla, tj. masy m na sztywnym nierozciagliwym drucie
o dhlugosci | zawieszonego na wysokosci h = [ nad Ziemia na szerokosci geograficznej ¢
uwzgledniajac dobowy obrét Ziemi. Wypisaé $ciste rownania ruchu (Eulera-Lagrange’a)
i znalez¢ ich rozwiazanie w przyblizeni malych wychylen z polozenia réwnowagi.
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9 MALE DRGANIA UKLADOW ZLOZONYCH

Zadanie 9.1%

W przyblizeniu matych wychylen z polozenia rownowagi znalez¢ ruch pokazanego na ry-
sunku 14 ukitadu dwéch mas m mogacych slizga¢ sie bez tarcia po dwu pretach taczacych
sie pod katem 7/3 (prety leza w plaszczyZnie prostopadlej do pola g, czyli pole to jest tu
nieistotne) i potaczonych jedna z drugéraz kazda z osobna z punktem ztaczenia sie pretow
jednakowymi sprezynkami o dlugosciach swobodnych [y i wspoélczynnikach sprezystosci k.
Zmalez¢ wspéhrzedne normalne. Podaé przykitad warunkéw poczatkowych, przy ktorych
wzbudzony zostanie tylko mod drgan o wyzszej czestosci.

Zadanie 9.2%
Masa m; moze poruszaé sie jedynie po paraboli o réwnaniu z = z?/2a. 7 masa ta
niewazkim sztywnym pretem o dlugosci [ jest potaczona masa msg, ktéra moze poruszaé

sie jedynie w plaszczyznie zz. Caly uktad znajduje sie w polu sity ciezkosci g = —ge,.
Napisa¢ lagrangian i wynikajace z niego réwnania ruchu uktadu. Znalezé potozenie
rownowagi trwalej i czestosci matych drgan wokdét niego w przypadku, gdy [ = a i

my = 3me. Zidentyfikowaé¢ w tym przypadku wspélrzedne normalne. Podaé zaleznosé
polozent obu mas od czasu jesli w chwili £ = 0 masa m; spoczywata w potozeniu x = 0, a
pret taczacy ja z masa ms byl odchylony od pionu o kat a.

Zadanie 9.3%

Napisa¢ lagrangian uktadu zlozonego z dwu jednakowych mas m podwieszonych jedna do
drugiej na dwu jednakowych niewazkich sprezynkach o dtugosci swobodnej [ i wspoétczynniku
sprezystosci k w polu sily ciezkosci g (ruch mas moze zachodzi¢ tylko wzdtuz pionowej
prostej bo np. zaréwno masy, jak i sprezyny slizgaja sie bez tarcia po pionowym precie).
Zmalez¢ polozenie réwnowagi tego ukladu, czestosci drgan wlasnych wokét tego potozenia
i odpowiadajace im mody normalne drgan. Podac¢ przykladowe warunki poczatkowe, przy
ktérych wzbudzeniu ulega tylko mod drgan o wyzszej czestosci. Jak wyglada dalszy ruch
ukltadu jesli znienacka, w trakcie wykonywania drgan, gérna sprezyna peknie (np. w
momencie, gdy jest maksymalnie - dla danych drgan - rozciagnieta)?

Zadanie 9.4%

Niewazki pret o dlugosci [ zakoniczony masa m przymocowany jest (w polu sily ciezkosci
g) do sufitu tak, ze moze obracac sie tylko w jednej plaszczyznie. W polowie jego dlugosci
przyczepiony jest don drugi taki sam pret, ktory rowniez moze obracaé sie¢ w tej samej co
tamten plaszczyznie? (zobacz rysunek 15). Napisa¢ lagrangian tego uktadu i wynikajace
z niego réwnania ruchu. Znalez¢ potozenie rownowagi trwalej. Przyjmujac, ze wychylenia
obu pretow z tego polozenia sa niewielkie, znalez¢ czestosci drgan oraz odpowiadajace
im mody normalne i wspélrzedne normalne. Podaé¢ przyklad warunkéw poczatkowych
wzbudzajacych tylko mod drgan o nizszej czestosci.

9Problem jest akademicki, wiec oba prety swobodnie mijaja sie w powietrzu podczas wykonywania
ruchu.
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Rysunek 16: Dwa sprzezone wahadla przy Scianie.

Zadanie 9.5%

Zmalez¢ czestosci whasne i mody normalne matych drgan uktadu dwu jednakowy mas m
podwieszonych na dwu jednakowych niewazkich pretach o dlugosci | do sufitu. Punkty
podwieszenia sa odlegle od siebie o odleglosé¢ [, ktora jest réwna dlugosci swobodnej
sprezyny o wspotczynniku sprezystosci k taczacej obie kulki. Dodatkowo, jedna z kulek jest
polaczona taka sama sprezyna z pionowa sciang réwniez odlegla o [ od punktu zawieszenia
pierwszej kulki (zobacz rysunek 16).

Zadanie 9.6

7 dwu koncéw belki o masie M i dlugosci 2a mogacej swobodnie przesuwadé sie poziomo
(w polu g) po niewazkich rolkach zwisaja dwa jednakowe sztywne, niewazkie prety o
dtugosciach [ zakonczone masami m kazdy. Masy te sa ze soba polaczone sprezyna o
wspdlezynniku sprezystosci k i dhugosci swobodnej 2a (zobacz rysunek 17). Napisaé Scisty
lagrangian tego ukladu a nastepnie wyeliminowa¢ z niego stopnie swobody zwiaane z
ruchem ukiadu jako calosci. W otrzymanym efektywnym lagrangianie dokonaé przy-
blizenia odpowiadajacego matym drganiom dwu wahadel. Znalezé w tym przyblizeniu
ruch uktadu.

Zadanie 9.7%

Napisa¢ rownania ruchu, i podaé ich najogdlniejsze rozwiazanie, ukladu trzech jednako-
wych mas §lizgajacych sie bez tarcia po okregu o promieniu R, polaczonych jednako-
wymi sprezynkami o dtugosciach swobodnych [ = mR/2 i wspdlezynnikach sprezystosci k
(sprezynki sa tez nawleczone na okrag, ktéry jest umieszczony horyzontalnie - pole sity
ciezkosci nie odgrywa tu zadnej roli). Znalezé czestosci wlasne i odpowiadajace im mody
normalne drgan. Podaé jawnie zamiane zmiennych wyrazajaca wybrane wspéirzedne
uogdblnione przez wspoélrzedne normalne. Rozwigzaé ten sam problem eliminujac sto-
pien swobody odpowiadajacy jednostajnemu obieganiu okregu przez wszystkie trzy masy.
Pokaza¢ jawnie, ze otrzymuje sie w ten sposob rozwiazanie rownowazne otrzymanemu
pierwsza metoda.

Zadanie 9.8%
Dwa atomy A o masie my4 i jeden atom B o masie mp tworza liniowa czasteczke A-
B-A. Oddziatywanie sasiednich atoméw modelujemy sila sprezysta o wspdélezynniku
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Rysunek 17: Dwa wahadla podwieszone do ruchomej platformy.

sprezystosci k. Przyjmujac, ze atomy moga przemieszczac sie tylko wzdluz osi czasteczki
znalez¢ najogdélniejsza postaé rozwiazania rownan ich ruchu. Wyznaczyé czestosci drgan
tego uktadu i poda¢ wspétrzedne normalne. Zilustrowaé¢ graficznie odpowiednie mody
drgan. Nastepnie zastosowaé¢ do tego ukladu procedure eliminacji stopnia swobody od-
powiadajacego (jednowymiarowemu) ruchowi czasteczki jako calosci, napisa¢ odpowiedni
zredukowany lagrangian i rozwiaza¢ wynikajace z niego rownania ruchu. Czy otrzymuje
sie w ten sposob to samo rozwiazanie, co pierwsza metoda?

Zadanie 9.9%

Napisa¢ najogolniejsze rozwiazanie rownan ruchu ukladu sktadajacego sie z czterech, pa-
rami réwnych (réwne sa masy przeciwlegle), mas §lizgajacych sie bez tarcia po okregu o
promieniu R i potaczonych jednakowymi sprezynkami o dtugosciach swobodnych | = 7R /2
i wspétezynnikach sprezystosci k (sprezynki sa tez nawleczone na okrag, ktérego srednice
sa prostopadle do pola sily ciezkosci g - sila ta nie odgrywa tu zatem zadnej roli). Znalezé
czestosci wlasne i odpowiadajace im mody normalne drgan (zilustrowaé rysunkami odpo-
wiadajace tym modom przemieszczenia mas). Podaé przyktad warunkéw poczatkowych
prowadzacych do wzbudzenia tylko drgan o najwyzszej czestosci.

Zadanie 9.10%

Zmalez¢ mody drgan i odpowiadajace im czestosci uktadu N jednakowych mas m mogacych
slizgaé¢ sie bez tarcia po prostym precie i polaczonych jednakowymi sprezynkami o wspdt-
czynnikach sprezystosci x i dlugosciach swobodnych [. Odleglo$¢ miedzy $ciankami, do
ktérych zamocowane sa skrajne sprezyny jest réwna (N + 1) 1.

Zadanie 9.11%

Zmalez¢ czestosci i mody drgan uktadu N jednakowych mas m slizgajacych sie po okregu
o promieniu R polaczonych jednakowymi sprezynkami o dlugosciach swobodnych | =
27 R/N i wspdlezynnikach sprezystosci k (sprezynki sa naciagniete na okrag; pole ciezkosci
nie odgrywa roli - okrag lezy horyzontalnie). Znalezé mody normalne tego uktadu. Po-
kazac, ze dla N = 3 wyprowadzone wzory sprowadzaja sie do wyniku otrzymywanego
bezposrednio dla przypadku trzech mas (Zadanie 9.7).

Zadanie 9.127

Wyznaczy¢ czestosci drgan podtuznych uktadu 2NV jednakowych mas m mogacych slizgac
sie bez tarcia po poziomym precie i polaczonych ze soba i z odleglymi jedna od dru-
giej o (2N + 1)l Sciankami sprezynkami o dlugosciach swobodnych [ i wspélezynnikach
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sprezystosdci naprzemian k4 i kg. Wykazaé, ze otrzymane wzory na czestosci drgan i wy-
chylenia mas z polozen réwnowagi przechodza w granicy ks = kg = k w te otrzymanew
zadaniu 9.10.

Zadanie 9.13%

Rozpatrzy¢ czasteczke zbudowana z dwu réznych atomow o masach m 4 i mp oddzialuja-
cych ze soba sita sprezysta o wspoleczynniku k zalezna tylko od odleglosci miedzy atomami
A'i B. Sila ta znika, gdy atomy sa od siebie odlegte o [. Stosujac metode elimina-
¢ji stopni swobody zwiazanych z ruchem translacyjnym oraz obrotami, znalezé czestosé
drgan wlasnych czasteczki. Rozwiaza¢ nastepnie Scisle problem ruchu takich dwu atoméw
wyrazajac ich lagrangian przez wektor R polozenia srodka masy oraz wektorr =r4—rp i
znalezé wzory pozwalajace wyznaczy¢ czestos¢ matych drgan $cisle. Czym uzyskany w ten
sposob wynik rézni sie od otrzymanego metoda eliminacji translacyjnych i rotacyjnych
stopni swobody?

Zadanie 9.14%

Postugujac sie metoda eliminacji translacyjnych i rotacyjnych stopni swobody znalezé
mody wilasne drgan i odpowiadajace im czestosci czasteczki zbudowanej z trzech iden-
tycznych atoméw tworzacych w polozeniu réwnowagi (w stanie niewzbudzonym, méwiac
jezykiem mechaniki kwantowej) tréjkat réwnoboczny o bokach dlugosci I. Atomy trak-
tujemy tu jak punktowe masy m, a silty je wiazace (ktérych prawdziwym zZrédlem sa
oddzialywania elektromagnetyczne) jak zwykle sprezynki o dlugosciach swobodnych [ i
wspotczynnikach sprezystosci k.
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10 RUCHY W POLACH SIL CENTRALNYCH

Zadanie 10.17
Masa m porusza sie w polu sity centralnej F,.(r) po torze zamknietym o réwnaniu

r(¢) = a(l 4 cosp).

Znalez¢ postaé powodujacej ten ruch sity centralnej F,.(r). Obliczy¢ takze czas obiegu
centrum przyciagajacego przez mase m

Zadanie 10.2%
Wyznaczy¢ postac sily centralnej powodujacej ruch punktu po masie m po spirali hiper-
bolicznej danej rownaniem

Znalez¢ takze zaleznos$¢ ¢ = ¢(t). Czy otrzymany wzér na site nie wyglada dziwnie? Jesli
tak, poszuka¢ wyjasnienia rozwiazujac Zadanie 10.14.

Zadanie 10.3%
Masa m porusza sie w polu sily centralnej o potencjale

K
. , . . . o . . o 7. . ’7. . 1
Czy moze ona poruszac si¢ po stabilnej orbicie kotowej, jesli a = 57 Jesli a = 57

Zadanie 10.4%
Wykaza¢ metodami geometrii analitycznej, ze wzér

p

rle) = +1+ecosp’

w ktérym parametr e jest z definicji nieujemny (tak wybrany jest sposéb odmierzania
kata ¢), rzeczywiscie zadaje znane z geometrii krzywe stozkowe: elipse (gdy 0 <e < 11i
znak +), hiperbole (gdy € > 1, oba znaki) i parabole (gdy ¢ = 1 i znak +). Wyprowadzi¢
w ten sposéb zwiazki miedzy réznymi charakterystykami tych krzywych (np. miedzy
dtugos$ciami a i b polosi elipsy, parametrami p i € oraz odlegtoscia 2¢ miedzy dwoma
ogniskami elipsy i suma 2f odlegtosci dowolnego punktu na elipsie od jej ognisk).

Zadanie 10.5%

Wiedzac, ze torami ruchu masy m w polu sily centralnej o potencjale V(r) = —x/r (k > 0
- sita przyciagajaca, £ < 0 - odpychajaca) sa krzywe stozkowe: okrag, elipsa, parabola
lub hiperbola, wyprowadzi¢ zwiazki miedzy réznymi charakterystykami elipsy i hiperboli:
(c, f), (a,b) i (p,e) bez jawnego wyprowadzania (jak w Zadaniu 10.4) zwiazkéw miedzy
rownaniami w ukladzach kartezjanskim i biegunowym. Powiaza¢ te charakterystyki z
momentem pedu L i calkowita energia mechaniczna E czastki. W przypadku ruchu po
elipsie wyprowadzi¢ z otrzymanych zwiazkéw trzecie prawo Keplera.
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planeta | duza polosa [j.a.]| okres T [s] | stosunek 72/a® [s°/m?]
Merkury 0.387099 7.600344 x 10° 2.97457 x 1071
Wenus 0.723332 1.94 x 107 2.97461 x 10719
Ziemia 1 3.15576 x 107 2.97462 x 10717
Mars 1.523691 5.94 x 107 2.97463 x 10717
Jowisz 5.202803 3.74 x 10® 2.97179 x 10719
Saturn 9.55884 9.30 x 108 2.97377 x 10719
Uran 19.1819 2.66 x 10° 2.97457 x 10719
Neptun 30.0578 5.20 x 10° 2.97442 x 10719
Pluton 39.44 7.82 x 10° 2.97466 x 10717

Tablica 1: Orbity planet Ukladu Stonecznego. j.a.= 1.4959787066 x 10! m.

Zadanie 10.6"

Wyprowadzi¢ wzory zadajace (w sposéb uwiktany) zaleznosé od czasu polozenia masy
m poruszajacej sie w potencjale V(r) = —k/r (k > 0 - sila przyciagajaca, k < 0 -
odpychajaca) we wszystkich mozliwych przypadkach: ruchu po elipsie (mozliwym przy
k > 0), ruchu po hiperboli (trzeba tu odréznié¢ przypadki ruchu po gatezi hiperboli blizszej
centrum silty, co zachodzi, gdy x > 0 i po galezi dalszej, gdy x < 0) oraz w przypadku
ruchu po paraboli (mozliwym tylko, gdy x > 0).

Zadanie 10.7"
Wykazaé, ze wektor A (zwany wektorem Lenza)

A:VXL—I—EI‘,
r

z odpowiednio dobranag stala [ jest staly podczas ruchu masy m w potencjale

K

V(r)=——

(r)=-"

Wykorzystujac stalos¢ A poda¢ wzdér wyznaczajacy tor, po ktéorym porusza sie masa m,
wyrazajac wystepujace w tym wzorze state przez jej calkowita energie i moment pedu.

Zadanie 10.8%
Wythumaczy¢ widoczne w tabeli 1 odstepstwo od trzeciego prawa Keplera, jakie wykazuja
planety Jowisz i Saturn.

Zadanie 10.9%

Pierwszy lot suborbitalny odbyt sie w roku 1961. Kabina Merkury zostata wystrzelona
z Ziemi i poruszajac sie po elipsie osiagneta maksymalna wysokos¢ h = 185 km (nad
powierzchnia Ziemi). Wyladowala w odleglosci (liczonej po powierzchni Ziemi) s = 480
km od punktu startu. Znalezé parametry p i € elipsy, po ktorej poruszata sie kabina.
Obliczy¢ takze czas trwania jej lotu.
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Zadanie 10.10%

Z powierzchni Ziemi wystrzelono pod katem « (w stosunku do powierzchni Ziemi) rakiete
z predkoscia vy (mniejsza od pierwszej predkosci kosmicznej). Jaki jest zasieg jej lotu (tj.
liczona po powierzchni Ziemi odleglosé od punku wystrzelenia do punktu upadku)? Dla
jakiego kata a zasieg jest najwiekszy? Pokazaé, ze gdy v} < GMz/Ryz, otrzymuje sie
znany zasieg rzutu ukosnego w polu sity ciezkosci g. Jak wyglada orbita, gdy vg dazy do
pierwszej predkosci kosmicznej?

Zadanie 10.11%
Masa m spada z odlegtosci R (gdzie ma zerowa predkosé) na centrum keplerowskiej sity
przyciagajacej o potencjale

Viry=——, k>0,

Obliczy¢ czas, po ktéorym masa m spadnie na centrum.

Zadanie 10.12%

Sztuczny satelita porusza sie (z wylaczonymi silnikami) po orbicie kotowej o promieniu
Ry wokét Ziemi. W pewnym punkcie A toru, wlacza na (pomijalnie krétki) moment
silniki i jego predkos$¢ zwieksza sie lub zmniejsza sie o Av w kierunku prostopadltym do
promienia orbity. W ten sposob pojazd przechodzi na orbite eliptyczna. Pokazaé¢, ze
punkt A jest apogeum lub perygeum tej orbity eliptycznej. Jaka musi by¢ warto$é |Av|
by pojazd mégl w ten sposéb osiagnaé¢ wysokosé Rs (i przejsé na nowa orbite kolowa
wlaczajac ponownie na pomijalnie krétki czas silniki i dopasowujac odpowiednio do niej
swoja predkosé transwersalna)?

Zadanie 10.13% (tzw. Problem Bertranda)
Udowodni¢, ze tylko w potencjatach V(r) = —|x|/r oraz V(r) = 1|k|r? wszystkie ruchy
ograniczone z L # 0 zachodza po torach zamknietych.!°

Zadanie 10.14"

Rozpatrzy¢ ruch masy m w polu przyciagajacej sily centralnej o potencjale V(r) =
—|B|/r?. Wszystkie mozliwe przypadki takiego ruchu, w zaleznosdci od catkowitego mo-
mentu pedu L i catkowitej energii E ruchu, usystematyzowac¢ i przedyskutowaé, przede
wszystkim jakosciowo, ale opierajac sie w kazdym z przypadkow na wzorach zadajacych
tor (tj. zaleznos$¢ r = r(p)) oraz zalezno$é polozenia od czasu (¢ = @(t) i ewentual-
nie 7 = r(t)). Jesli dla jakich§ wartosci energii E i momentu pedu L mozliwy jest ruch
konczacy sie spadkiem na centrum sity, obliczy¢ czas po jakim masa m na nie spadnie,
jesli chwili ¢ = 0 znajdujduje sie w skoriczonej oden odlegtosci (¢t = 0) = ry. Pokazaé
takze, ze otrzymane wzory daja, gdy |3] — 0, to, czego nalezaloby sie spodziewaé (czyli
co?).

ORuchy, w ktérych L = 0 zachodza wzdtuz prostej przechodzacej przez centrum sity; jesli V(r) ma
“dotek” (albo dotki), to kazdy ruch w takim dotku jest okresowy - zobacz zadania w rozdziatu 3 - i jego
tor jest trywialnie “zamkniety”.
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Zadanie 10.15%
Masa m porusza sie¢ w polu sity centralnej o potencjale

W chwili ¢ = 0 masa ta znajduje sie w odleglosci |rg| = ¢ od przyciagajacego centrum,
przy czym wektor jej predkosci vg jest prostopadly do wektora wodzacego rg i ma wartosé
taka, ze calkowita energia mechaniczna ruchu £ = 0. Wyznaczy¢ tor, po ktorym poruszala
i bedzie sie porusza¢ masa m. Czy spadnie ona na przyciagajace ja centrum sity? Jesli
tak, obliczy¢ czas po jakim to nastapi. Przedyskutowaé takze mozliwo$¢ przedhuzenia
toru masy m poza punkt r = 0.

Zadanie 10.16%
Masa m porusza sie¢ w polu sity centralnej zadanej potencjalem

przy czym catkowita energia mechaniczna tego ruchu F = 0. Znalez¢ zaleznos¢ polozenia
masy m od czasu, w przypadku, gdy jej moment pedu L jest réwny zeru. W przypadku,
gdy L > 0, znalez¢ i naszkicowa¢ tor ruchu masy m oraz poda¢ rownania wyznaczajace
jej potozenie w funkcji czasu, jesli w chwili ¢ = 0 byla ona w punkcie maksymalnie (przy
E =01 zadanym L > 0) odlegtym od centrum. Obliczy¢ czas jej spadku na centrum i
przedyskutowaé¢ mozliwosé¢ przedhuzenia toru takiego ruchu poza r = 0.

Zadanie 10.17
W polu sily centralnej o potencjale
k| B
V(ir)=——-—=

(="1-15,
porusza si¢ masa m, o catkowitej energii £ i momencie pedu L takim, ze 3 > L?/2m.
Zakladajac, ze energia F jest taka, ze masa spada na centrum, znalezé¢ tor jej ruchu
i obliczy¢ czas, po jakim spadnie ona na centrum, jesli w chwili poczatkowej byla w
odleglosci ry oden. Jesli moment pedu L czastki jest taki, ze 3 < L?/2m, to nadlatujaca
masa oddala sie do nieskonczonosci. Czy jej tor ma wtedy punkt przegiecia? Jesli tak, to
co go wyznacza?!

Zadanie 10.18%

Masa m porusza sie w polu potencjalnej przyciagajacej silty centralnej o potencjale

V(r):—i, k>0, a>0.

;,oOé

W chwili ¢ = 0 znajduje sie one w odleglosci rg > 0 od przyciagajacego ja centrum.
Zbadaé, w zaleznosci od wyktadnika « i globalnych charakterystyk ruchu masy m (mo-
mentu pedu L, catkowitej energii F i od znaku jej predkosci radialnej v,.(0) = 7(0) w
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chwili poczatkowej), czy spadnie ona na przyciagajace ja centrum. Kiedy przy takim
spadku okrazy ona centrum nieskonczenie wiele razy? Ile za$ razy masa m okrazy cen-
trum przy oddalaniu sie do nieskonczonosci, gdy warunki poczatkowe sa takie, ze ucieczka
taka nastapi?

Zadanie 10.197

Zapisa¢ rozwiazanie kartezjanskich rownan ruchu dwuwymiarowego izotropowego oscyla-
tora harmonicznego o masie m i czestodci w we wspdtrzednych biegunowych i otrzymac
rownanie toru, wyrazone przez calkowita energie mechaniczna oscylatora i jego moment
pedu oraz wzér na r%(t). Odtworzy¢ nastepnie réwnanie toru oraz wzér na r2(t) catkujac
podane w Przypomnieniu wzory witasciwe dla ruchu w polu sit centralnych.

Zadanie 10.20%

Satelita o masie m porusza sie wokdt Ziemi po orbicie kolowej o promieniu ry. Oprécez
sity grawitacji dziata nai dodatkowo sita oporu F,, = —Av""!v (v = |v|). Przyjmujac, ze
energia tracona przezen w trakcie kazdego obiegu jest bardzo mala w poréwnaniu z jego
calkowita energia kinetyczna (tak iz mozna przyjaé ze sita oporu powoduje jedynie mata
zmiane promienia orbity), obliczy¢ czas, po ktérym spadnie on na Ziemie.

Zadanie 10.21%
Zgodnie z prawami elektrodynamiki klasycznej tadunek elektryczny ¢ poruszajac sie z
przyspieszeniem promieniuje i traci energie. Wypromieniowana (czyli stracona) w prze-
dziale dt czasu energia dF jest dana (w tym nienormalnym ukladzie SI) wzorem

2 ¢ 9

dE = —=
3 4mepc3 a

t)dt.

Przyjmujac ze spowodowana promieniowaniem strata energii elektronu na bohrowskiej or-
bicie kotowej!! w atomie wodoropodobnym (jeden elektron krazacy wokét jadra o fadunku
Ze) jest mala, oszacowaé czas zycia takiego rzadzonego prawami fizyki klasycznej atomu
(tj. czas po ktérym elektron spadiby na jadro).

Zadanie 10.22%

Postugujac sie mechanika newtonowska obliczy¢ jak zmienia sie z czasem czestotliwos¢ v
fal grawitacyjnych (rejestrowanych na Ziemi przez detektory LIGO) emitowanych przez
uktad dwoch czarnych dziur o masach M; i My wirujacych wokét swojego srodka masy,
jesli wiadomo, ze czesto$é¢ 2 emitowanych fal jest réwna podwojonej predkosci katowej
w ich obrotéw, a moc P wypromieniowywana przez taki ukltad jest dana wzorem

P =aG T’ A,

w ktérym « = 32/5, ¢ jest predkoscia $wiatla, a I jest momentem bezwladnosci wzgledem
osi obrotu uktadu dwdéch czarnych dziur. Wyktadniki a, b i d w podanym wzorze na P

1 Jak wiadomo N. Bohr byt z matematyki noga (wielko$¢é Bohra lezata w czym$ zupelie innym)
i konstruujac swéj model atomu byl w stanie rozpatrzy¢ jedynie orbity kotowe; eliptyczne musial juz
opracowaé¢ A. Sommerfeld. Tu jednak jest to okoliczno$¢ szczesliwa, gdyz przyjeta tu metode mozna
zastosowaé w zasadzie tylko do orbit kotowych.
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trzeba ustali¢ na podstawie analizy wymiarowej. Przyjac, ze srodek masy uktadu czarnych
dziur pozostaje w spoczynku w uktadzie, w ktérym emitowane przezen promieniowanie
jest rejestrowane, a ruch wzgledny czarnych dziur odbywa sie po orbicie kotowej.

Zadanie 10.23%

Masa m porusza sie w polu centralnej sity przyciagajacej o potencjale V' (r) majac ujemna
energie. Ruch odbywa sie wiec w ograniczonym obszarze: odleglo$¢ masy m od centrum
zmienia sie od pewnej wartosci minimalnej r_ do maksymalnej r,. Pomiedzy dwoma
kolejnymi potozeniami minimalnego oddalenia od centrum sily masa zakresla kat Agp
(réowny 27, gdy V(r) = —k/r). Wyprowadzi¢ wzér pozwalajacy obliczy¢ zmiane (w
przypadku keplerowskich orbit zmiana ta nazywa sie precesja orbity) 6(Ap) powodowana
zmiang potencjatu z V(r) na V(r) + 6V (r). Potraktowaé dV (r) jak male zaburzenie i
ograniczy¢ sie do efektéw pierwszego rzedu. Otrzymany wzér sprawdzi¢ na przykladzie
V(r)+6V(r) = —k/r + B/r* (zmiane §(Ay) mozna wtedy obliczy¢ Scidle). Przy okazji,
korzystajac z analizy wymiarowej, oszacowaé rzad wielkosci precesji (sumarycznej zmiany
d(Ap) po stu latach - taka wielko$¢ podaja Zrédla stronomiczne) orbity Merkurego (o
a = 0.387 j.a., ¢ = 0.21, obieganej przezen w T" = 88 dni) powodowana efektami relaty-
wistycznymi - efekty te modyfikuja nieco potencjat keplerowski o cztony, ktére powinny
znikaé, gdy predkosé $wiatla ¢ dazy do nieskoriczonosei (analiza wymiarowa nie pozwala
rozdzieli¢ efektéw szczegdlnej i ogdlnej teorii wzglednosci).

Zadanie 10.24"
Obliczy¢ szybko$é¢ precesji orbity masy m o calkowitej energii ruchu E < 0 jakie by
spowodowalo odstepstwo postaci

7|

_,r.l-i-a ?

V(r) =

lo| < 1,

potencjatu sity centralnej od $cisle keplerowskiej. Przez szybkos$¢ precesji nalezy tu rozu-
mie¢ stosunek zmiany 0(Ap) pod wplywem zaburzenia potencjatu Sciéle keplerowskiego
przez o # 0 kata Ay, jaki masa m zakresla pomiedzy kolejnymi polozeniami maksy-
malnego oddalenia od centrum sity, do okresu obiegu orbity w niezaburzonym potencjale
keplerowskim.
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11 ROZPRASZANIE I PRZEKROJE CZYNNE

Zadanie 11.17
Obliczy¢ rézniczkowy i catkowity przekrdj czynny elastycznego rozpraszania sztywnej kuli
o promieniu r na unieruchomionej kuli o promieniu R.

Zadanie 11.2%

Obliczy¢ przekrdj czynny 0,46, (F) na zderzenie z planeta o promieniu R i masie M me-
teorytu (traktowanego jak punkt) o masie m nadlatujacego z nieskoniczonosci i majacego
energie F.

Zadanie 11.3%
Jaki jest przekrdj czynny ogpadra(£) na spadek na centrum przyciagajacej sily centralnej
o potencjale

masy m w zaleznosci od jej energii £ i od wyktadnika n >0 7

Zadanie 11.4%
Tworzace jednorodny strumien czastki majace w nieskoriczonosci predkosé vy, (tj. usta-
lona energie E) réwnolegla do osi = rozpraszaja sie w polu sity o potencjale

Wyznaczy¢ obszar niedostepny dla tych czastek.

Zadanie 11.5%

Tworzace jednorodny strumient mate (mozna je traktowac jak punktowe) meteoryty leca w
kierunku Ziemi majac w nieskoriczonosci predkosé v, (tj. ustalona energie F) réwnolegla
do osi x bedacej zarazem przedtuzeniem (np. w kierunku pélocnym) osi Ziemi. Jakie
szerokosci geograficzne na Ziemi sa “bezpieczne” (tzn. meteoryty nie moga tam spasé)?

Zadanie 11.6%
Masa m nadlatuje z nieskonczonosci, rozprasza sie w polu zachowawczej sity centralnej o
potencjale

i oddala sie ponownie do nieskoriczonosci. Jaki kat tworza wektor predkosci poczatkowej
(tj. wt = —00) i koficowej (w t = +00) masy m, jesli calkowita jej energia jest réwna E,
a momement pedu L. Rozpatrzy¢ przypadki > 01 < 0, uwzgledniajac tez mozliwosé
2mp/L* < —1.

Zadanie 11.7%

49



Traktujac zmiane pedu czastki rozpraszajacej sie na ustalonym centrum sity (niekoniecz-
nie centralnej, ale takiej, ze ruch czastki jest plaski, tj. jej tor lezy w jednej plaszczyznie)
o potencjale V(r) jak wielkos¢ mala pierwszego rzedu (tego samego, co sam potencjat)
wyprowadzi¢ ogélny wzor na przekrdj czynny rozpraszania pod matymi katami. W przy-
padku rozpraszania w polu sity centralnej wyprowadzi¢ ten sam wzér robiac odpowiednie
przyblizenia w standardowych wyrazeniach.

Zadanie 11.8"
Obliczy¢ réozniczkowy przekrdj czynny rozpraszania czastki o masie m i energii £ (lub,
réwnowaznie, predkosci v, w nieskoriczonosci) w polu sity centralnej o potencjale

K
V(r)=——

()=~
Rozpatrzy¢ przypadki sily przyciagajacej (v > 0) i odpychajacej (k < 0). Jaki jest
caltkowity przekrdj czynny rozpraszania w takim potencjale? Odtworzy¢ otrzymany réz-
niczkowy przekrdj czynny rozpraszania pod malymi katami postugujac sie ogdlna przy-
blizona metoda obliczania przekroju czynnego w tej granicy z zadania 11.7.

Zadanie 11.9%
Obliczy¢ rézniczkowy przekrdj czynny rozpraszania czastek o masie m w polu odpy-
chajacej sily centralnej o potencjale

_ 18

r2’

Vi(r)

Jaki jest catkowity przekroj czynny takiego rozpraszania? Odtworzy¢ postaé rézniczkowego
przekroju czynnego rozpraszania pod infinitezymalnie malymi katami metoda z zadania
11.7.

Zadanie 11.10%
Obliczy¢ rézniczkowy przekrdj czynny rozpraszania czastek o masie m w polu przyciagajacej
silty centralnej o potencjale

Czy wiodacy wyraz otrzymanego rozniczkowego przekroju czynnego rozpraszania pod
infinitezymalnie matymi katami mozna odtworzy¢ metoda z zadania 11.77

Zadanie 11.11%
Obliczy¢ rézniczkowy przekrdj czynny rozpraszania czastki o masie m w polu impulsowe;j
sity centralnej o potencjale w bedacym sferycznie symetryczna “studnia” o promieniu R

_ -Vl edy r< R
V(T)_{ 0 gdy >R~

Otrzymac zwiazek kata rozproszenia z parametrem zderzenia dwiema réznymi metodami:
raz metoda “optyczno-geometryczna’ wprowadzajac wspolczynnik “zatamania” czastki
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na granicy studni potencjalu, a drugi raz korzystajac z ogdlnego wzoru na kat ¢pax.
Obliczy¢!'? catkowity przekrdj czynny catkujac do/dQ) po catym, kacie brylowym.

Zadanie 11.12%
Obliczy¢ rézniczkowy przekrdj czynny rozpraszania czastki o masie m w polu impulsowej
sity centralnej o potencjale bedacym sferycznie symetrycznym “garbem”

_J | gdy r<R
V(T)_{ 0 gdy > R’

Obliczy¢ catkowity przekrdj czynny catkujac do/dS2 po kacie brylowym i pokazaé, ze ma
on wartos¢ zgodna z oczekiwana (czyli jaka?).

Zadanie 11.13%

Na powierzchnie obrotowa zadana wypukla funkcja p = f(z) (gdzie p? = 2% + y?),
rownolegle do osi z pada strumien czastek o masie m i catkowitej energii E. Czastki
odbijaja sie od powierzchni doskonale sprezyscie. Zakladajac, ze powierzchnia ta jest wy-
pukta, wyrazi¢ rézniczkowy przekrdj czynny rozpraszania przez funkcje f i jej pochodne
(obliczone w odpowiednim punkcie). Podaé przekr6j czynny w jawnej postaci w sytu-
acji, gdy f(z) = A(z/a)®, zakladajac (dla wypuklosci), ze o > 1. Dobierajac wykladnik
a, znalezé taka funkcje f(z), ze przekrdj czynny rozpraszania na niej bedzie mial taka
sama zalezno$¢ od kata rozproszenia, jak przekrdj rutherfordowski rozpraszania czastek
natadowanych na nieruchomym natadowanym centrum. Czy ta sama powierzchnia moze
“symulowac¢” rutherfordowskie rozpraszanie dla kazdej wartosci energii?

Zadanie 11.14%

Obliczy¢ przekrdj czynny wzbudzenia poczatkowo nieruchomego tréjwymiarowego izotro-
powego oscylatora harmonicznego (o $rodku w punkcie r = 0 i czestosci whasnej w) do
energii pomiedzy E i E+ dFE przez przelatujaca bardzo szybka czastke o predkosci v, jesli
oddziatuje ona z oscylatorem sita, ktorej potencjal jest dany wzorem

V(r,R) = —Vyexp {—r*(r — R)*},

w ktérym r jest wychyleniem oscylatora, a R polozeniem przelatujacej czastki. Dokonaé
przyblizenia polegajacego na przyjeciu, ze |r| < |R| i pominieciu odchylenia toru czastki
od prostoliniowego (czastka szybka).

Zadanie 11.15%

Dwie (nierelatywistyczne) czastki o masach m; i my oddzialujace tylko ze soba nawza-
jem, z ktérych ta o masie ms poczatkowo spoczywa (tj. w chwili ¢t = —oo) w ukladzie
zwiazanym z laboratorium, a druga nadlatuje z nieskonczonosci z predkoscia rowna vy,
(tez w t = —00), rozpraszaja sie na sobie elastycznie (tzn. bez strat energii mechanicznej)
i rozlatuja do nieskoniczonosci. Wyrazi¢ katy 611 i 051, pod jakimi (w stosunku do kierunku

12 Albo przynajmniej powiedzieé, ile powinien on wynosoé, jesli catka, ktéra trzeba wykonaé jest zbyt
przerazajaca.
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Rysunek 18: Dwa potaczone przegubowo prety.

wyznaczanego przez viy,) w ukladzie laboratorium rozleca sie one do nieskoriczonosci przez
kat 9 ich rozproszenia w uktadzie srodka ich masy.

Zadanie 11.16%

Kula o masie m; i promieniu r; nadlatuje z nieskonczonosci i odbija sie doskonale sprezyscie
od poczatkowo nieruchomej (w ukltadzie laboratoryjnym) kuli o masie msy i promieniu r.
Zmalez¢ rozniczkowy przekrdj czynny tego rozpraszania wyrazajac go zaréwno przez kat
01, rozproszenia kuli o masie m; jak tez i przez kat 6,1, pod jakim w stosunku do kierunku
wyznaczanego przez wektor poczatkowej predkosci padajacej kuli odlatuje kula o masie
mo. Rozpatrzy¢ przypadki my; < mg, my; > mo i m; = my. We obu przypadkach obliczy¢
cafkowity przekrdj czynny wykonujac catkowanie po katach bezposrednio i pokazac, ze
jest on réwny, tyle ile by¢ powinien (czyli ile?).
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Rysunek 19: Kula o promieniu R z kulistym wydrazeniem o promieniu r.

12 BRYLA SZTYWNA

Zadanie 12.1%

Wyprowadzi¢ wzory na sktadowe (chwilowej) predkosci katowej w w uktadzie odniesienia
zwiazanym z obracajaca sie bryla sztywna, ktorego orientacja wzgledem uktadu nierucho-
mego (inercjalnego), majacego z nim wspdlny poczatek jest wyznaczona przez zdefinio-
wane standardowo przez trzy katy Eulera ¢, 6 i ¢ (trzy “trzy ruchy tapki”).

Zadanie 12.27 (Twierdzenie Steinera)
Poda¢ wzoér wyrazajacy tensor Ip) momentu bezwladnosci bryly sztywnej wzgledem
punktu O przez tensor Icny tejze bryly wzgledem jej srodka masy.

Zadanie 12.3%

Znalezé tensor 1©) momentu bezwladnosci jednorodnej plaskiej plytki o ksztalcie pro-
stokatnego tréjkata majacego przyprostokatne o dtugosciach R i h i mase M wzgledem
punktu O bedacego wierzchotkiem kata prostego. Plytke nalezy potraktowad jak dwuwy-
miarowy rozktad masy, ale sam tensor 1© charakteryzuje ja jako bryle w trzech wymia-
rach.

Zadanie 12.4%

Znalezé tensor I© momentu bezwladnosci jednorodnego stozka o masie M, promie-
niu podstawy R i wysokosci h wzgledem punktu O bedacego srodkiem jego podstawy.
Nastepnie wykorzystujac twierdzenie Steinera, otrzymac¢ tensor momentu bezwladnosci
wzgledem $rodka masy stozka.

Zadanie 12.5%

Poda¢ skltadowe tensora momentu bezwladnosci Loy (wzgledem srodka masy) jednorod-
nej bryly o catkowitej masie M bedacej kula o promieniu R z pustym kulistym wydrazeniem
o promieniu r < R, ktére jest styczne z jej powierzchnia, tak jak na rysunku 19.

Zadanie 12.6%

Pokazac, ze ruch srodka masy jednorodnej kuli o promieniu R i masie M toczacej sie bez
poslizgu po poziomej (w stosunku do pola sity ciezkosci g) plaszczyZnie pod dzialaniem
statej sity F' skierowanej poziomo wzdluz prostej przechodzacej przez srodek kuli jest
taki sam, jak punktu materialnego o tej samej masie pod wpltywem stalej poziomej sity
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Rysunek 20: Walec wtaczajacy sie na prog.

F' = aF. Znalezé wspétezynnik proporcjonalnosci av.

Zadanie 12.7%

W gérna krawedz szescianu o objetosci [? i masie M spoczywajacego na plaszczyznie (w
polu sily ciezkosci g) uderza kulka o masie m lecaca poziomo z predkoscia v prostopadta
do tej krawedzi. Przyjmujac, ze jej zderzenie z szeScianem jest doskonale sprezyste i
kulka odbija sie tak, ze odlatuje wzdluz tej samej prostej, wzdluz ktorej nadleciala, a
dolna krawedz szescianu, przeciwlegla do tej, w od ktérej odbija sie kulka, jest unieru-
chomiona tak, ze szescian moze sie tylko wokoét niej obracaé¢ (odrywajac dolna sciane od
podloza), znalezé predkosé katowa takiego obrotu szescianu po odbiciu sie oden kulki.
Poda¢ rownania wyznaczajace ruch szescianu po odbiciu i sprowadzi¢ jego rozwiaznie do
kwadratury. Jaka musi by¢ minimalna predko$¢ kulki, by szescian obrécit sie calkowicie,
tzn. o kat w/2 7

Zadanie 12.8%

Zmalez¢ energie kinetyczna uktadu dwu potaczonych przegubowo pretéw o masie m i
dhugosci [ kazdy. Koniec lewego preta jest unieruchomiony w punkcie A (pret moze sie
tylko obraca¢ wokdt A), a koniec B prawego preta moze tylko przesuwaé sie po ustalonej
prostej przechodzacej przez punkt A (rysunek 18).

Zadanie 12.9%

Zmalez¢ energie kinetyczna, niejednorodnego walca o masie M i promieniu R toczacego sie
bez poslizgu po plaszczyznie. Srodek masy walca jest odlegly o a od jego osi, a 0$ gtéwna
jego tensora bezwladnosci Iicwy (z zalozenia znanego) jest réwnolegla do osi walca.

Zadanie 12.10%

Zmnalez¢ energie kinetyczna malego jednorodnego walca o masie m i promieniu a toczacego
sie bez poslizgu po wewnetrznej powierzchni nieruchomego duzego walca o promieniu R
(R > a). Osie obu walcéw sa do siebie stale réwnolegle.

Zadanie 12.11%7

Zmalez¢ energie kinetyczna jednorodnego stozka o catkowitej masie M, kacie rozwarcia 2«
i wysokosci h taczajacego sie bez poslizgu po plaszczyznie w taki sposob, ze jego czubek
pozostaje stale w tym samym punkcie plaszczyzny. Nastepnie, przyjmujac, ze plaszczyzna
ta jest do pionu (wyznaczanego przez pole sity ciezkosci) nachylona pod katem [, napisaé
rownanie wyznaczajace ruch stozka po plaszczyznie.
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Zadanie 12.127

Jednorodny walec o masie M i promieniu R toczy sie bez poslizgu po plaszczyznie stotu
z predkoscia katowa w. Toczac sie dociera do progu o wysokosci h, ktorego krawedz jest
réwnolegla do osi walca (patrz rysunek 20). Jakie warunki musi speliaé¢ ruch walca, by
walec wtoczyl sie na prog? Jaka jest jego predkosé katowa po wtoczeniu sie na prog?

Zadanie 12.13"

Jednorodna bryta w ksztalcie stozka o wysokosci h i promieniu podstawy rowniez h obraca
sie ze stala predkoscia katowa w wokét osi z pokrywajacej sie z tworzaca stozka. Jakie
sity F4 1 Fp musza na nia dzialaé, jesli sa one przytozone w dwu punktach: A bedacym
wierzchotkiem stozka i zarazem poczatkiem inercjalnego uktadu odniesienia oraz w punkcie
B polozonym na brzegu podstawy stozka, ktorym styka sie ona z osia 27

Zadanie 12.14%

Ptaska plytka o ksztalcie rownoramiennego tréjkata prostokatnego majacego przypro-
stokatne o dlugosci a i mase M obraca sie ze stala predkoscia katowa w wokot pionowej
(w stosunku do pola sily ciezkosci g) osi bedacej jedna z przyprostokatnych tak, iz wierz-
chotek A plytki bedacy katem prostym jest dolnym jej punktem oparcia a punkt B na
drugim koncu tej przyprostokatnej gérnym. Oprocz sity ciezkosci, na plytke dzialaja w
punktach A i B sily reakcji. Jaka musi by¢ warto$¢ |w| predkosci katowej, by znikala
horyzontalna sktadowa sity reakcji w punkcie A? Czy skladowe pionowe obu sit reakcji
mozna wyznaczy¢ bezwzglednie?

Zadanie 12.15%

Pétwalec o promieniu R i masie M wykonany z jednorodnego kawalka materialu moze
toczy¢ sie bez poslizgu po poziomej w stosunku do pola g powierzchni i tym samym wy-
konywa¢ male drgania wokoél polozenia rownowagi. Wypisa¢ rownanie ruchu potwalca i
znalezé czestosé jego malych drgan. Problem rozwiazaé zarowno postugujac sie rownaniami
Lagrange’a II-go rodzaju, jak tez i metoda “newtonowska”.

Zadanie 12.16"

Jednorodny cienki pret o masie m i dlugosci [ polozono na nieruchomej walcowatej po-
wierzchni o promieniu a tak, ze srodek preta jest zarazem punktem styku obu ciat a sam
pret jest prostopadly do osi walca. (Caly uktad znajduje sie w polu grawitacyjnym g).
Zakladajac, ze poslizg preta nie wystepuje, napisa¢ Sciste rownanie wyznaczajace jego
ruch korzystajac z metody lagrangeowskiej. Stosujac standardowe przyblizenia znalezé
czestosé matych drgan w jakie mozna wprawic¢ pret nieznaczne wychylajac go z polozenia
rownowagi. Odtworzy¢ takze Sciste rownanie ruchu korzystajac z metody newtonowskiej.

Zadanie 12.17%

Blok o masie M majacy walcowate wydrazenie o promieniu R moze slizga¢ sie bez tar-
cia po gladkiej poziomej (w stosunku do pola g) plaszczyznie w kierunku prostopadtym
do osi wydrazenia. W wydrazeniu znajduje si¢ jednorodny pret o masie m i dlugosci
2l (I < R). Pret ten moze §lizgaé¢ sie bez tarcia po $ciankach wydrazenia pozostajac
stale prostopadlym do osi wydrazenia (zob. rysunek 21). Ograniczajac sie do ruchéw
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Rysunek 21: Pret o masie m i dlugosci 21 < 2R w walcowym wydrazeniu o promieniu R
w bloku o masie M na gtadkim stole.

plaskich napisa¢ lagrangian tego ukladu oraz wynikajace z niego Sciste réwnania jego ru-
chu. Sprowadzi¢ ich rozwiazanie do kwadratur wykorzystujac calki pierwsze. Znalezé
ruch ukladu w przyblizeniu matych odchylen preta od pozycji poziomej (wzgledem pola
g). W tym przyblizeniu podaé zaleznosé¢ od czasu wszystkich wybranych wspétrzednych
uogolnionych.

Zadanie 12.18%

Konce jednorodnego preta majacego dhugosé 2/ i mase m moga Slizga¢ sie bez tarcia po
niewazkiej obreczy o promieniu R > [. Obrecz ta wiruje ze stala predkoscia katowa w
wokdt swojej $rednicy rownoleglej do pola a sity ciezkosci g. Napisa¢ lagrangian tego
uktadu i réwnania ruchu. Sprowadzi¢ rozwiazanie do kwadratur wykrzystujac catke
pierwsza. Znalez¢ polozenia réwnowagi preta i czestosci matych drgan wokdét polozen
rownowagi trwalej.

Zadanie 12.19%

Jednorodny walec o promieniu a i masie m stacza sie bez poslizgu w polu sily ciezkosci
g z duzego catkowicie unieruchomionego walca o promieniu b. Osie obu walcéw pozo-
staja caly czas wzajemnie réwnolegte (i prostopadle do pola g). Znalezé zaleznosé sity
reakcji dziatajacej na maly walec od strony duzego walca i punkt, w ktérym oderwie sie
on od duzego walca, jesli zaczyna stacza¢ sie praktycznie bez predkosci poczatkowej z
najwyzszego polozenia.

Zadanie 12.20"%

Obrecz o promieniu R i masie M stoi na horyzontalnej (w stosunku do pola sity ciezkosci
g) plaszczyznie tak, ze jedna z jej srednic jest réwnolegta pola g. Do obreczy tej w punk-
cie, ktéry znajduje sie na wysokosci R nad ptaszczyzna przyczepiono nagle punktowy
ciezarek o masie m (np. kulke z plasteliny) tak, ze obrecz zaczyna sie obracaé i prze-
mieszcza¢. Jak duzy musi by¢ wspolczynnik ug tarcia statycznego obreczy o plaszcezyzne
by nie wystapil poslizg? Napisa¢ takze lagrangian wyznaczajacy toczenie sie obciazonej
obreczy bez poslizgu. Podac¢ rownanie wyznaczajace ruch obciazonej obreczy w przypadku
niewystapienia poslizgu.
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Rysunek 22: Pret upadajacy na pozioma plaszczyzne, o ktoéra opiera sie stale jednym
swoim koncem.

Zadanie 12.21"7

Jednorodny pret o masie m, dtugosci 2a i pomijalnie matym przekroju poprzecznym upada
na pozioma (w stosunku do pola sily ciezkosci g) plaszczyzne stale slizgajac sie po niej
(catkowicie bez tarcia) jednym ze swych koncow (rysunek 22). Jak predkosé srodka masy
preta i sita reakcji podloza zaleza od wysokosci h, na jakiej sSrodek masy preta znajduje
sie nad plaszczyzna, jesli poczatkowo znajdowalon sie w spoczynku na wysokosci hg < a?

Zadanie 12.22"

Zmalez¢ ruch w ziemskim polu grawitacyjnym g baka o masie M i symetrii obrotowej,
ktorego czubek lezacy na osi symetrii pozostaje unieruchomiony w ustalonym punkcie
plaszczyzny (czyli ruch tzw. baka symetrycznego podpartego). Wykorzystujac odpowied-
nio zdefiniowany potencjat efektywny przedyskutowaé jakosciowo charakter ruchu baka.
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13 FORMALIZM HAMILTONOWSKII ROWNANIE
HAMILTONA-JACOBIEGO

Zadanie 13.17
Poda¢ hamiltonian uktadu, ktérego lagrangian ma ogdlna postac

L(g,q.1) = 5 ) Tl t) ¢’ + Y aila.t)d' = V(g 1),

zakladajac, ze symetryczna macierz T;;(q,t) jest odwracalna. Korzystajac z wyniku wy-
pisa¢ jawnie hamiltoniany czastki o masie m poruszajacej sie w potencjale V (r) wyrazone
w zmiennych cylindrycznych i sferycznych. Podaé (w zmiennych kartezjanskich) hamil-
tonian czastki o masie m i tadunku elektrycznym ¢ oddzialujacej z zewnetrznymi polami
elektrycznym i magnetycznym. Wypisa¢ takze hamiltonian baka symetrycznego podpar-
tego rozpatrywanego w zadaniu 12.22.

Zadanie 13.2F

Napisa¢ hamiltonian czastki swobodnej o masie m wyrazony przez zmienne (i sprzezone
z nimi kanonicznie pedy) zdefiowane w ukladzie obracajacym sie wzgledem ukladu iner-
cjalnego z (chwilowa) predkoscia katowa w.

Zadanie 13.3%
Stosujac réwnania kanoniczne Hamiltona rozwiazaé problem ruchu czastki o masie m i
tadunku elektrycznym ¢ w stalym, jednorodnym polu magnetycznym B = e, B.

Zadanie 13.4"
Rozwiaza¢ rownania kanoniczne wynikajace z hamiltonianu

H p2+1 202 1\ p2+1 222
= — + —nmw — 4+ -m
om 2l om 2 )

w ktérym A jest pewna stata. Czy uklad, ktérego jest to hamiltonian, jest oscylatorem
harmonicznym o czestosci w?

Zadanie 13.5%

Zmalez¢ hamiltonian oscylatora harmonicznego o masie m i czestosci w otrzymany w wy-
niku przeksztalcenia kanonicznego do nowych zmiennych ) i P zadawanego przez funkcje
tworzaca

1
W(g,Q) = §qu26th-

Rozwiaza¢ nowe réwnania kanoniczne i znalez¢é w ten sposéb ruch ukladu.
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Zadanie 13.6%

Stosujac przeksztalcenie kanoniczne z zadania 13.5 otrzymaé przyblizone rozwiazanie
problemu oscylatora harmonicznego, ktérego czesto$¢ w wolno zmienia si¢ z czasem:
w(t) = wy+ et + ... przy czym || < wd.

Zadanie 13.7%
Hamiltonian uktadu o jednym stopniu swobody ma postac

2 1
H=2_4 —mw?q® + ag® + Bep* .
2m 2

W przeksztalceniu kanonicznym do nowych zmiennych @) i P zadanym funkcja tworzaca
S(¢, P) = qP +ag’P +bP?,

dobraé stale a i b tak, by z przeksztalconego hamiltonianu H(Q, P) usunaé¢ wyrazy an-
harmoniczne pierwszego rzedu w « i 8. Przyblizajac nastepnie H(Q, P) przez hamilto-
nian oscylatora (w zmiennych @) i P) podaé przyblizone rozwiazanie ruchu wyjsciowego
uktadu, tj. przyblizona funkcje ¢(t), zakladajac, ze w trakcie ruchu o|q| < mw? i
Blg| < 1/m. Poréwnaé je z przyblizonym rozwiazaniem, ktére mozna przymaé stosujac
rachunek zaburzen do réwnania Eulera-Lagrange’a otrzymanego z lagrangianu odpowia-
dajacego wyjsciowemu hamiltonianowi.

Zadanie 13.8"
Stosujac do Hamiltonianu

P o1
H="—+_-mw¢®+ Bq".
2m 2
jednowymiarowego osylatora harmonicznego o masie m i czestosci w zaburzonego cztonem
anharmonicznym zadane funkcja tworzaca

S(q,P)=qP+ag’P +bqP?,

przeksztalcenie kanoniczne do nowych zmiennych @) i P znalezé zalezno$é¢ zmiennej g od
czasu. Zalozyé¢, iz odchylenia ¢ od poloZenia réwnowagi ¢ = 0 sa na tyle male (3¢%(t) <
mw?), ze mozna sie ograniczy¢ do poprawek pierwszego rzedu wzgledem 3. Czy otrzymane
w ten sposob przyblizone rozwiazanie jest lepsze od otrzymywanego przy zastosowaniu
rachunku zaburzen do rownania Lagrange’a?

Wskazéwka: Dobraé stale a i b tak, by z nowy hamiltonian H(Q, P) miat posta¢ analo-
giczna do hamiltonianu z zadania 13.4.

Zadanie 13.9%
W zwiagzkach

xza(QQ—\/TleinPl), px:b<P2+\/ﬁcosPl),
yza(—ngL\/ﬁcosPl), py:b<Q2+\/2TleinP1),
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dobra¢ stale a i b tak, by bylo to przeksztalcenie kanoniczne od zmiennych (z,y, p., py)
do nowych zmiennych (Q1,Q2, P, P,). Podaé jawna postaé jego funkeji tworzacej. Wy-
korzystujac to przeksztalcenie sprowadzi¢ hamiltonian czastki o masie m i tadunku elek-
trycznym ¢ poruszajacej sie w stalym i jednorodnym polu magnetycznym B = e, B do
prostej postaci i rozwiazujac réwnania kanoniczne w nowych zmiennych znalez¢ zaleznosé
polozenia czastki od czasu, tj. zaleznos¢ od czasu zmiennych x i y.

Zadanie 13.10%
Na przyktadzie jednowymiarowego ruchu czastki o masie m poddanej dziataniu stalej i
jednorodnej sity F', ktérej to czastki lagrangianem jest wyrazenie

1
L:§mq'2—|—qF,

pokazaé, ze transformacje od zmiennych ¢(t), p(t) do Q(t) = q(t+7), P(t) = p(t+7) oraz
od zmiennych ¢(t), p(t) do Q(t) = qo, P(t) = po (tu qo i po sa warunkami poczatkowymi w
chwili ¢y) sa kanoniczne. Znalez¢ funkcje tworzace tych przeksztalceni i pokazaé¢ formalnie,
7e w pierwszym przypadku H(Q, P) = H(q,p), a w drugim H(Q, P) = 0.

Zadanie 13.11%

Na przyktadzie ruchu jednowymiarowego oscylatora harmonicznego o masie m i czestosci
w pokazaé, ze transformacje od zmiennych naturalnych ¢(t),p(t) do Q(t) = q(t — 7),
P(t) = p(t — 1) oraz od zmiennych ¢(t),p(t) do Q(t) = Q, P(t) = P (tu Q i P sa
warunkami poczatkowymi w chwili ¢ = 0) sa kanoniczne. Znalezé funkcje tworzace tych
przeksztalcen i pokazaé¢ formalnie, ze w pierwszym przypadku H(Q,P) = H(q,p), a w
drugim H(Q, P) = 0.

Zadanie 13.12%
Postugujac sie rownaniem Hamiltona-Jacobiego znalez¢ tor ruchu oraz zalezno$¢ potozenia
od czasu masy m poruszajacej sie w stalym i jednorodnym polu sity ciezkosci g.

Zadanie 13.13%
Rozwiazujac réwnanie Hamiltona-Jacobiego w zmiennych kartezjanskich znalez¢é ruch
dwuwymiarowego izotropowego oscylatora harmonicznego o masie m i czestosci w.

Zadanie 13.14%

Zmalez¢ ruch dwuwymiarowego izotropowego oscylatora harmonicznego o masie m i czesto-
sci w, rozwiazujac rownanie Hamiltona-Jacobiego w zmiennych biegunowych. Scatkowaé
rownanie toru i wykazac, ze tor jest elipsa o srodku w centrum sity przyciagajacej. Wy-
znaczy¢ dhugosé pétosi elipsy w funkeji energii ruchu i momentu pedu.

Zadanie 13.15%

Rozwiazujac rownanie Hamiltona-Jacobiego znalez¢ ruch czastki o tadunku elektrycznym
¢ i masie m w rownoleglych do siebie nawzajem, statych i jednorodnych polach elektrycz-
nym E = E,e,, i magnetycznym B = Be,. Odtworzy¢ w ten sposéb wynik znany z
calkowania réwnania Newtona (zadanie 2.18).
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Zadanie 13.16%

Rozwiazujac rownanie Hamiltona-Jacobiego znalez¢ ruch czastki o tadunku elektrycznym
q i masie m we wzajemnie do siebie prostopadiych, statych i jednorodnych polach elek-
trycznym E = E ey, i magnetycznym B = Be,. Odtworzy¢ w ten sposéb wynik znany
z catkowania réwnania Newtona (zadanie 2.14).

Zadanie 13.17%

Rozwiazujac réwnanie Hamiltona-Jacobiego znalezé ruch czastki (tj. tor czastki i rownania
wyznaczajace zaleznosé jej potozenia od czasu) o masie m w polu sity centralnej o poten-
cjale (k > 0)

K
V(r)=——

(1) ="

W przypadku ruchu w ograniczonym obszarze przestrzeni wyrazi¢ polosie elipy bedacej
torem przez stale ruchu: calkowita energie £ i moment pedu L.

Zadanie 13.18%
Rozwiazujac rownanie Hamiltona-Jacobiego w dwéch wymiarach znalezé¢ ruch w polu sity
(niecentralnej) o potencjale

w ktorym a jest stalym wektorem, czastki o masie m nadlatujacej z nieskonczonosci, gdzie
ma ona predkosé¢ v, antyrownolegla do wektora a i parametr zderzenia réwny b. Znalezé
takze rézniczkowy przekréj czynny rozpraszania takich czastek (tzn. nadlatujacych z
kierunku, w ktérym wskazuje wektor a) pod matymi katami w przyblizeniu duzych energii
i/lub duzych parametréw zderzenia. Czy ten przekrdj czynny mozna otrzymaé z ogdlnej
metody (zadanie 11.7) znajdywania przekroju czynnego rozpraszania pod matymi katami?
Otrzymac¢ takze w tym samym rezimie przekrdj czynny rozpraszania czastek o masie m
na potencjale

2
V(r.0) = acos* 0

Y

72

przy padaniu z kierunku 6 = 0 i poréwnaé¢ z wynikiem otrzymywanym z ogélnej metody
z zadania 11.7.

Zadanie 13.19%
Wykorzystujac metode Hamiltona-Jacobiego znalez¢ przekrdj czynny spadku na centrum
sity o potencjale

w zaleznosci od energii nadlatujacych czastek o masie m i od kata « jaki ich predkos¢ w
nieskonczono$ci tworzy z kierunkiem wyznaczanym przez staly wektor a.
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Zadanie 13.20%
Pole magnetyczne zadane przez potencjal wektorowy

1
A= irB(z)egp,

w ktorym e, jest jednym z wersoréw zwiagzanych z ukladem wspotrzednych walcowych,
rozciaga sie w obszarze —a < z < a (tzn. funkcja B(z) znika poza tym przedzialem).
Postugujac sie metoda Hamiltona-Jacobiego znalezé punkt na osi z w ktorym zognisko-
wane zostang elektrony rozpoczynajace bieg z punktu na osi z o wspéhrzednej zop < —a i

pozostajace przez caly czas blisko osi z.

Zadanie 13.21F%

Zbadac¢ przyosiowe ogniskowanie czastek takie jak w zadaniu 13.20 przez pole magnetyczne

o potencjale wektorowym (zadanym w calej przestrzeni)
1
A= 57 B(z)e,,
jesli

By

B = .
(2) 1+ K222

Zadanie 13.22F%

Lagrangian ukladu o trzech stopniach swobody ma postac:

1
L= §M2] .TZIZ.CL’) — imj .TL’Z'LU]',

gdzie

2

M=m V =nmw

_ o =
[EEE )
O —
o O =

o = O
— o O

Rozwiaza¢ rownania Eulera-Lagrange’a i znalez¢ ruch tego uktadu. Przej$¢ do sformulowa-
nia kanonicznego, znalez¢ wszystkie wiezy i skonstruowa¢ hamiltonian zachowujacy wiezy
w trakcie ewolucji. Pokazaé¢, ze ruch otrzymany jako rozwiazanie réwnan kanonicznych
jest tym samym, co otrzymany jako rozwiazanie rownan Eulera-Lagrange’a.

Zadanie 13.23%

Udowodnié, ze nawias Poissona {F, G} pp Poissona wielkosci F' i G obliczony w zmiennych
(gi, p:i) jest taki sam, jak obliczony w zmiennych (Q;, P;) powiazanych z wyjsciowymi

przeksztalceniem kanonicznym.
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CZESC (CHYBA PRAWIE WSZYSTKO) TEGO, CO BYLO NA CWICZENIACH
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IS 4

Rysunek 23: Trzy uklady wspélrzednych.

1. KINEMATYKA

Zadanie 1.3

Dany jest uktad wspéhrzednych (z,y) na plaszczyznie oraz okrag o promieniu R i srodku
w punkcie (0,0). Dana jest tez prosta p styczna do okregu, ktéra toczy sie po nim bez
poslizgu. (Bez podlizgu to znaczy, ze jesli w dwu réznych chwilach czasu zaznaczymy i
na okregu i na prostej punkty stycznosci, to odlegtos¢ miedzy tymi punktami na prostej
bedzie réwna dlugoscei tuku pomiedzy punktami stycznosci na okregu). Biegunowy kat o
wyznaczajacy punkt stycznosci prostej p z okregiem zmienia sie z czasem: a = a(t). W
chwili ¢ = 0 prosta ta przechodzi przez punkt (R,0), tj. «(0) = 0. Punkt A prostej ma w
chwili t = 0 wspdhrzedne (R, y4). Znalezé jego wspohrzedne w dowolnej chwili czasu.

Rozwiazanie:

Wyrazmy najpierw wspéhzedne kartezjanskie (z,y) dowolnego punktu na plaszczyzZnie
xy przez jego wspotrzedne (zg, yo) w ukladzie, ktéry ma z nieruchomym uktadem wspélny
poczatek i jest obrécony o kat « przeciwnie do wskazowek zegara:

T = Ty CoSa — 9YgSin v,

Y = xopsina + yocosa.

Poprawnos¢ tego wzoru nietrudno sprawdzi¢: gdy a = 7 powinno by¢ xo = y iy = —x.
Nastepnie wyrazamy wspélrzedne (xg, yo) przez wspohrzedne (2, y') uktadu przesunietego
o R wzdtuz osi zq

r=(2'+ R)cosa —y sina,

y= (24 R)sina+y cosa.

(2',y') jest ukladem o poczatku O’ lezacym na okregu o promieniu R. Prosta p w mo-
mencie, gdy jest do tego okregu styczna w O, pokrywa sie z osia 3. Jesli prosta ta z
polozenia zajmowanego w t = 0 przetoczyla sie bez poslizgu stale pozostajac styczna do
okregu w O’, to punkt A przesunal sie w kierunku punktu stycznosci prostej z okregiem
(lub od niego oddalit - zaleznie od tego, czy y4 > 0, czy ya < 01 od tego, w ktdra strone
po okregu przetacza sie prosta p) o odleglo$¢ Ra. Przyjmujac, ze kat « rosnie przeciwnie
do kierunku ruchu wskazéwek zegara, zauwazamy, ze w ukladzie (2’,y’) punkt A ma po
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przetoczeniu sie wspélrzedne (0, ya — Ra). Stad, w wyjSciowym ukladzie kartezjanskim
xy jego wspolrzednymi beda

z(t) = Reosa(t) — (ya — Ra(t)) sina(t),
y(t) = Rsina(t) + (ya — Ra(t)) cosalt) .

Zaleznosé a(t) moze byé, oczywiscie, dowolna.
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Zadanie 1.4

Wyprowadzi¢ wzory na sktadowe wektorow predkosci i przyspieszania we wspotrzednych
biegunowych (r, ¢) na plaszczyznie i we wspéhrzednych sferycznych (r, 0, p) w przestrzeni
tréjwymiarowe;.

Rozwiagzanie:
Ze wspolrzednymi kartezjanskimi x, y i z stowarzyszone sa ustalone jednostkowe wektory
(wersory) e, e,, e,. Wektory polozenia r, predkosci v i przyspieszenia a zapisane jako
kombinacje liniowe tych wersoréw wyrazaja sie oczywistymi wzorami
r=e,r+e,yt+e,z,
v=e,T+e,y+e,z,
a=e,rTte,yte,z.

Uklad wspétrzednych biegunowych na plaszczyznie zadaja wzory

T =TCcosy,
y=rsing.
Ze wspotrzednymi tymi stowarzyszone sa wersory e, i e,, ktére zmieniaja sie od punktu

do punktu. (Nalezaloby wiec pisa¢ e, (z,y) i e,(x,y) lub e,(¢) i e, (y) - w istocie wersory
zaleza tylko od kata ¢.) Sporzadzajac odpowiedni rysunek (i rozpatrujac przypadki ¢ = 0

i p = Z) latwo jest zobaczy¢, ze'®
€. = €,Ccosp+e;siny,
€, = —€;siny + e, cosy.

Wzory te latwo odwréci¢ i otrzymacd
€, = €,Co8p —e,sinp,
€, =€.5Iny+e,cosy.

Oczywiscie kazdy wektor mozna zapisa¢ albo w bazie wersoréw kartezjanskich e,, e,,
albo w bazie wersoréw e,, e, w odpowiednim punkcie.'* Piszemy zatem (wprowadzajac
oczywiste skrétowe oznaczenia)

I =e,7Cosp+e,rrsinp

= (e,Ccp — €,5,) TCy + (€,5, + €,C,) TS, = €, 7,

3Dalej zobaczymy, ze wzory takie mozna zawsze otrzymac bezposérednio ze wzoréw definiujacych krzy-
woliniowe (tu biegunowe) wspélrzedne.

14Na pozér wersory e,, e, zdefiniowane w dowolnym punkcie stanowia baze, w ktérej mozna rozlozy¢
dowolny wektor, np. wektor predkosci odpowiadajacy innemu polozeniu. Jednak przy bardziej geome-
trycznym spojrzeniu okazuje sie, ze gdyby zajmowadé si¢ ruchem na dowolnej tzw. rozmaitosci, to z
kazdym punktem takiej rozmaitosci stowarzyszona jest naprawde inna przestrzen wektorowa. I to ele-
mentami przestrzeni wektorowej witasciwej dla danego punktu rozmaitosci - tzw. przestrzeni stycznej
do rozmaitosci w tym punkcie - sa wektory predkosci i przyspieszenia zdefiniowane w danym punkcie
rozmaitosci. Wektory te, mo zna zatem rozkladac tylko na bazowe wektory przestrzeni stycznej wlasciwej
dla danego punktu rozmaitosci przestrzeni stycznej.
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jak tez mozna sie bylo spodziewaé¢. Analogicznie

vV =€, (rc, — rs,) + ey, (s, + r¢cy,)
= (e,cp, — €,8,) (Tcy, — TPSy,)

+ (ers5, +e,cy) (15, +1¢c,) = e 7 +e,rd.

Sktadowa r-owa predkosci jest oczywista - gdyby ruch odbywat sie wzdtuz promienia tylko,
jego predko$¢ w tym kierunku bylaby w oczywisty sposéb réwna 7. Podobnie oczywista
jest sktadowa p-fowa: r¢ jest po prostu predkoscia liniowa zwiazana z ruchem po okregu
o promieniu r. Wreszcie

a=e, (7';% — 2rps, — 1S, — T¢2C¢)
+e, (fssp + 2rpc, + rpe, — rgb28¢)
= (e,cp, — €,5,) (i‘cw — 21 pSy, — TPSy, — rgbzc@)

+ (ersp + €pcy) (fsso + 27pc, +rpcy, — 7’@23@) =€ (T - T‘p2) +e, (2rp+rg).

Zméw wiekszos¢ wyrazow wystepujacych w koncowym wzorze jest oczywista: 7 jest przy-
spieszeniem ruchu wzdluz promienia, —r@? jest przyspieszeniem dosrodkowym w ruchu
po okregu o promieniu r, a r¢ jest liniowym przyspieszeniem zwiazanym z przyspiesza-
niem ruchu po okregu o promieniu r. Jedynie wyrazu 27¢ nie mozna tatwo otrzymac na
podstawie rozpatrywania takich szczegdlnych postaci ruchu.

Zauwazmy tez, ze powyzsze wzory mozna by bylo otrzymac nieco inaczej, gdyby naj-
pierw znalez¢ pochodne po czasie wersorow e, (¢) i e,(¢). To za$ jest latwe (wersory e,
i e, jako stale, nie podlegaja rézniczkowaniu):

d

pri e (€excp +€ys,) = —Ps, (€0, — €,5,)

+pCp (€r5p + €pCy) = €pp,
d d ;
dt €p = at (—ers, +eycy) = —pc, (e.cp, — €,5,)

— S, (€r5, +€4C,) = —€,.

Mozna (i wlasciwe nalezy) ugdlni¢ te wzory tak, by nie wystepowala w nich zaleznosé
od czasu; nalezy po prostu pytaé¢, jak zmieniaja sie wersory przy przejsciu od punktu o
wspéhrzednych (7, ) do sasiedniego o wspétrzednych (r 4 dr, ¢ + dyp). Zmiany te sa dane
przez

0 e =0 0 e e
o 9p T
0 e, =0 0 e, = —e
or 7 odp ¢
Majac te wzory mozna juz predkos¢ i przyspieszenie znalezé “na piechote”:
d L : .
V= (e,7) =€, 7+ & r=er7r+e,rp,
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i podobnie

d ) i . .. . . .9
a=— (e, +e,r9) =€, 7 +e,7p+e,(rp+rp)—e,re
=e (i —r¢?) +e, (2rp+rd),
tak jak i poprzednim sposobem.
W przypadku ukladu wspétrzednych sferycznych zadnych wzorami
x =rsinf cosp = rspc,,
xr =rsinfsing = rsps,,
x =rcosf =rcy,

trudniej jest graficznie zobaczy¢, ze

€. = €,;59C, + €yS5pS, + €,Cq,
€9 = €;C9C, T €yCyS, — €:5¢,
€, = —€;5, + €yC, .

Wzory te mozna jednak natychmiast dosta¢ wspomnianym juz sposobem, ktéry przed-
stawimy nizej. Aby je odwréci¢, tj. wyrazi¢ e, e,, e, przez wersory e,, €g, €,, MNozZymy
pierwsze z wypisanych wyzej réwnan przez sq (cg), drugie przez ¢y (s), dodajemy (odejmu-
jemy) je do (od) siebie i zestawiamy z trzecim, otrzymujac uktad (ostatnie z poprzednich
réwnan teraz napisane zostato jako srodkowe)

e.Sg+epcy = €,;Cp + €Sy,
e, = —€;S, +€,C,,
€-Cp —€9Sp = €,

ktéry juz latwo rozwiazaé ze wzgledu na e, i e, (e, juz jest). Ostatecznie

€, = €;59C, + €9CeCy, — €4S, ,

€y = €595, + €9CyS, + €,C,

€, =€,.Cp —€9Syp.

Mozna traz standardowym sposobem znalez¢ pochodne wersoréw e, eq, e, po katach

0 i ¢ (jest miej wiecej jasne, ze ich pochodne po r musza znika¢). Obliczymy, zeby byto
sprawniej, pochodne zupelne po czasie (wektory mnozace 7, 6 1 ¢ beda wtedy pochodnymi
rézniczkowanych wersoréw po wspétrzednych r, 6 1 ¢):

d . _ . ' .
7 e =e, (6’09% — g08984p> +e, (909% + @sacgj) + e, (—9$9>
= (e,s9cy, + €gcoCy, — €4,5,) (909% — cps(gs@)
+ (e,505, + €9CoSy, + €4Cy) (9093@ + @secw)
+ (e, cog — €y sp) (—939)
=g 0+ €, Sy,
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d : . . ) .

7 e =e, (—939(:@ - goces¢> + e, (—939% + goc(;c@) + e, (—9@)
= (e,sgc, + €gcocy, — €45,) (—989% — gbcesg;)
+ (ers95, + €9cos, + €,cy) <—9898¢ + gbcec¢>
+ (er Cyp — €y 89) (—éCQ)
= —eré+ewgb09,

1 wreszcie

d . )

E €, =€; (—(pc¢) + €y (_SOSSD)
= (e,50c, + €gcocy, — €,5,) (—pcy,)

+ (€r805, + €aCaS, + €,C,) (—Ps,)

= —€, PSp — €9 PCy .

Stad bezposrednio odczytujemy pochodne wektoréw e, eg i e, po katach

ge—O ge =e€ ie—es

or r — U, 90 r — €6, 84,0 r — Cpob,
ge—O 2e——e ge =e,cC

or 0 — Y, o0 0 — T 8@ 0 — Cp Lo,

0 0 0

Eecp:(), %ecp:(), %e¢:—er89—6969.

Mozna teraz tatwo napisa¢ wzory na predkosé i przyspieszenie:!®

d ) . :
v = %(err) =e. 7 +eyrd+e,rpsg,

d . .
a= 7 (er 7+ eprd + e, rgbsp) =e, (r —ré? — rgbzsg)

+eg <r9 + 270 — rgb23909>
+e, (r¢39 + sy + 2r9gbce> .
Znéw czesé wyrazéw daje sie prosto zintepretowad: czton —r6? w skladowej a, jest

oczywiscie przyspieszeniem dosrodkowym ruchu po wielkim kole (po potudniku), a czton
rf w skladowej ag jest przyspieszeniem liniowym takiego ruchu; ruch po réwnolezniku

I5W popularnym u nas (przynajmniej na naszym warszawskim Wydziale Fizyki) podreczniku mechaniki
autorstwa G. Biatkowskiego wzory na sktadowe przyspieszenia (wzér 2.12 s. 44) sa podane z bledami: w
sktadowej a, brak czynnika sz, a w sktadowej ag opuszczony zostal ostatni czlon z (2.
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daje tez przyspieszenie dosrodkowe, ale promien réwnoleznika zalezy od kata 6 i jest
rowny rsg - przyspieszenie to jest jednak skierowane do $rodka lezacego w plaszczyznie
réwnoleznikowej (a nie ku poczatkowi uktadu) i wobec tego rozklada sie z czynnikiem sy na
kierunek e, i z czynnikiem ¢y na kierunek ey - co wyjasnia pochodzenie ostatnich cztonow
sktadowych a, i ap; wreszcie, pierwszy czton sktadowej a,, jest oczywistym przyspieszeniem
liniowym ruchu po réwnolezniku.

Mozna to troche uogdlni¢ i znacznie uprosci¢ znajdywanie skladowych predkosci w
ukladzie krzywoliniowym. Niech &1, €2, €3 beda trzema wspéhrzednymi krzywoliniowego
uktadu. Oznacza to, ze dane sa wzory

z = 1’(51’ 52’ 53) )
y =y e,¢8%),
z=2(6,8,8).

W naturalny sposéb z uktadem takim stowarzyszone sa trzy wektory ij, is, i3, dane

VVZOI"GHI16

a
ij (5) =€, g—z] s
gdzie z' =z, 22 =y, 2° = 2z, a e; = e,, €2 = e,, €3 = e,, sa trzema kartezjaniskimi wer-
sorami tworzacymi uklad ortonormalny: (e,|ey) = €,-€, = 6. Wektory i; sa, jak latwo
zrozumied, styczne do krzywych wytyczanych w trojwymiarowej przestrzeni, gdy zmienia
sie tylko parametr & przy ustalonych pozostatych dwu pozostatych £&. W ogdlnym przy-
padku wektory te nie tworza uktadu ortonormalnego: macierz ich iloczynow skalarnych

ox® Oxb o0x® 0x°

(ij]ix) = €7 Dk (€ales) = D€ DEx
definiuje tensor metryczny g;x(£):
. Ox* Ox*
9i1(§) = (i]ix) = 0—51 (‘3—5’“

Tensor ten jest w ogdélnym przypadku niediagonalny. W trojwymiarowej przestrzeni ist-
nieje jednak 11 uktadéw wspétrzednych krzywoliniowych (wsréd nich cylindryczny, sfe-
ryczny, paraboliczny, etc.), wyrézniajacych sie tym, ze stowarzyszone z nimi wektory iy,
ip, i3 sa (w kazdym punkcie) wzajemnie prostopadle. Tensor metryczny ma wiec w tych
uktadach postac

9ik(€) = h3(€) O -

Wspodlczynniki h; nazywaja sie wspétczynnikami Lamé. W takich ukiadach krzywolinio-
wych mozna stworzy¢ latwo stowarzyszone z nim wektory e;(§), j = 1,2, 3 stanowiace

16 Jak zwykle obowiazuje tu konwencja sumacyjna wujka Albercika i po wskaznikach powtarzajacych
sie na dwu réznych poziomach (na gérze i na dole) jest zawsze domyslne sumowanie.
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w kazdym punkcie uktad ortonormalny (baze ortonormalna). Wystarczy tylko podzieli¢
dane w sposob naturalny wektory i; przez ich dlugosci h;:

i
e, = —.

J hj
Dowolny wektor V (“zaczepiony” w danym punkcie, tzn. nalezacy do przestrzeni stycznej
w tym punkcie) mozna rozlozy¢ albo w bazie tworzonej przez wektory i;, albo w bazie
tworzonej przez wektory e;:

V = i]‘/(Jlk) = ejVék) = ejV] .

(Dwie pierwsze postacie wektora V sa tu zapisane w notacji z mojego stynnego skryptu do
algebry; ostatnia posta¢ jest wzigta z Gravitation and Cosmology S. Weinberga.) Jasne
jest wiec, ze V7 = Vék) = thJik). W przypadku ukladu sferycznego &' = r, €2 = 0,
&3 = ¢, sktadowymi wektoréw i, ip, i, w bazie wersoréw kartezjaiskich (e,, e,, e.) sa

S56Cyp TCpCy —T'SpSyp
895@ s ’/’C@Sw s rSpCyp s
Cy —7Sg 0

skad h, = 1, hg = r, h, = 154 1 wektory e,, ey, e,, sa dane przez unormowanie tych wypi-
sanych wyzej (tj. podzielenie kazdego z nich przez odpowiedni czynnik h), czyli wzorami,
ktore zostaly wypisane juz wezesniej “spod duzego palucha” (a w istocie wykorzystujac
wlagnie podany tu sposéb).

Sktadowe wektora predkosci w bazie ortonormalnej'” tworzonej przez wektory e; sto-
warzyszone z jednym z owych 11 ukladéw krzywoliniowych mozna teraz otrzymac bez
zadnych rachunkdw:!8

a Ox® d&7 , d&l d¢i
v :e“@%:‘j%:;ej(hﬂ'ﬁ)'

Tak wiec w ukladzie sferycznym v, = h,7 = 1, vg = hgé =70 i vy, = hop = rsgp. Jak
widac, nie wymaga to odwracania wzoréw wiazacych wersory e; wersorami kartezjanskimi
€,.

Zasadne jest pytanie, czy ta sama metoda upraszcza znalezienie skladowych krzywo-
liniowych wektora przyspieszenia. Niestety nie za bardzo. Zobaczmy:

. wa d or® dé‘] o 821'0‘ i ik or? i
am e =eu (56 ) = (e ¥ 56 €)

"Przypomnijmy jednak, Ze to jest tylko takie dazenie do wygody oraz sila przyzwyczajenia, ktére
powoduja, ze w problemach fizycznych jakie rozpatruje sie w mechanice korzysta si¢ na ogél z baz orto-
normalnych - w istocie baza moze byé dowolny uktad liniowo niezaleznych wektorow rozpinajacych cala
przestrzenn wektorowa. Dlatego na zaawansowanym poziomie, np. w Ogdlnej teorii wzglednosci, jako
bazy uzywa sie bardziej “naturalnych” wektoréw ij;.

18P0 ostatniej réwnoéci piszemy tu jawnie znak sumy, bo wprowadzenie czynnikéw Lamé zakléca kon-
wencje sumacyjna Einsteina - wskaznik j po ktérym biegnie suma powtarza sie trzykrotnie.
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7 drugiego cztonu w nawiasie daje sie tak jak poprzednio wyciagnaé¢ przed nawias macierz
0x/0¢7, ktéra w polaczeniu z wektorem e, da wektor i;, ale z pierwszego czlonu nie.
Wszystko co mozna zrobi¢, to napisaé

B aé"] 02 Gk 5
a_zejhj <% agzagkgg +§ ) .

Macierz 0¢7 /0x® stojaca w pierwszym czlonie jest odwrotna do macierzy D§ = 0z o0&

o b, et 98
oxe 963 I

Otrzymany wzor na @’ (uzywajac notacji Weinberga) zgadza sie z tym, co juz wiemy
w przypadku ukladu sferycznego: kawalki z druga pochodna & maja tam postaé h;&?
(bez sumowania po j). Widaé tez, ze jesli kartezjanskie wspohrzedne z* polozenia sa
nieliniowymi funkcjami wspélrzednych &7, we wzorach na @’ musza wystapi¢ czlony z
iloczynami pierwszych pochodnych wspétrzednych 7. Jawne ich otrzymanie jest jednak
pracochtonne. Po pierwsze trzeba odwréci¢ macierz D;. To jeszcze daje sie w miare
latwo zrobi¢. Wprawdzie jest to macierz zmiany bazy taczaca baze ortonormalna z baza
nieortonormalna, i; = e, D% (i = €,[R(e,«i,)|"; W notacji z mojego skryptu do algebry)
ale, w przypadku owych 11 specjalnych ukladéw wspétrzednych, baza i; wiaze si¢ prosto
(bo tylko przez wspélczynniki Lamé) z baza ortonormalna e;. Zatem (sumowanie jest tu
po a, ale nie po j!)

ox® 1 ay—
e =e, <8§j h_J) =e, (Djhj 1)>

a stojaca tu w nawiasie macierz zmiany bazy R (lub [Re,e;)|{ W mojej algebraicznej
notacji) jako taczaca ze soba dwie bazy ortonormalne musi by¢ macierza ortogonalna i jej
odwrotnos¢é R~! jest dana po prostu przez transpozycje: R~! = RT. Zatem

TG _ s (-1 pT
e, = ¢[R']; =1; (7' [R']]) .
Stojaca tu w nawiasach okragtych macierz jest wlasnie szukana macierza [D‘l]ia odwrotna
do D?,.
W przypadku ukladu sferycznego macierz R jest macierza stworzona z postawionych

“na sztorc” skladowych (w bazie wersoréw kartezjanskich) wektoréw e,, ey i e,,. Biorac jej
transpozycje i nastepnie przemnazajac j-ty wiersz macierzy R’ przez hj_l otrzymujemy

S9Cy S0Sy Co
D! = CoCy /T Cosp/r  —Sp/T
—sof(rse) cp/(rse) 0

Jak tatwo sprawdzi¢, jest to rzeczywiscie macierz odwrotna do

SCp TCYCp —T'SpSy
D = | sgs, 1TCeS,  TSeC,
Coy —TSg 0
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Mozna teraz sprébowaé otrzymaé sktadowe przyspieszenia w uktadzie sferycznym.

0%z
ar = by (T+S"%agagl55 o *08885155 8&@8@55)

Poniewaz h, = 1 daje to (od razu uwzgledniamy, ze z,. = Y = 2, = 0)

a, =7+ sgc, (2:@97’"9 + 2%, 7 + 2x9¢9¢ + T090? + xw<p2)
+50C, (ergfé 2 + 250,00 + Yool + ngbz)
+cp <2z,,97"6" + 22,70 + 229¢9¢ + 2p96% + ZW<P2> .

Jak wida¢ nie jest to bardzo przyjemne... Ale cierpliwie rézniczkujac mozemy dojsé do
celu:

a, =7 + 54Cy (2090@7‘6’ — 289S,TP — 2r09$¢9gb — rsecqjéz — rsecspng)
+ SpCy (209%7*9 + 2sgc 10 + 2rcac¢9gb — 7’89%92 — rsesspng)
+ o <—2897'”¢9‘ — T09é2> ,
i po poskltadaniu wszystkiego do kupy otrzymac
a, =i —rf* — rsap?.
Otrzymanie ag i a, ta metoda pozostawimy juz czytelnikowi.

Najszybszy jednak sposob otrzymania przyspieszen w dowolnym krzywoliniowm ukta-
dzie wspolrzednych polega na odwotaniu sie do réwnan Lagrange’a II-go rodzaju: po-
niewaz otrzymanie wzoréw na predkosci jest, jak wynika z przeprowadzonych WyZej rozwa-
zan, bardzo proste, wystarczy wyrazi¢ przez nie energie kinetyczng T = —mv i napisac
lagrangian czastki swobodnej L = T'; wyprowadzone z niego rownania Eulera - Lagrange’a
dadza natychmiast szukane wzory na przyspieszenia. Np. w ukladzie sferycznym

1 .
L= g™ (7’"2 + 7267 4 r?p* sin? 9) ,

i rownania Eulera - Lagrange’a maja postac

mit = m(r6* + r$? sin® 0),

m(r?6 + 2ri-f) = mr?¢? sin 6 cos 0

m(r?@sin? 0 + 2ripsin® 0 + 2r’p 0 sinf cos ) = 0.
Poniewaz sa to rownania ruchu czastki swobodnej, ma = 0, sktadowe przyspieszenia musza
by¢ proporcjonalne do wyrazen, ktére sie dostaje po przeniesieniu wszystkich cztonow
na jedna strone i podzieleniu przez m. W ustaleniu czynnikéw proporcjnalnosci mozna
sie poshuzy¢ analiza wymiarowa (przyspieszenia musza mie¢ wymiar [L|[T]72 i pewnym
wyczuciem (fizycznym zdrowym rozsadkiem). Drugie z wypisanych wyzej réwnan daje
ag po podzieleniu przez czynnik r (analiza wymiarowa); trzecie za$ po podzieleniu przez

rsin @ (czlon z ¢ musi dawaé zwiazane ze zmiana ¢ przespieszenie styczne do réwnoleznika
o promieniu 7 sin ).
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Zadanie 1.9

Wiedzac, ze podczas ptaskiego ruchu czastki kat pomiedzy kierunkiem jej wektora wodzacego
r i wektorem jej predkosci v jest staly (i réwny «) znalezé we wspohrzednych biegunowych:
a) wzor na tor czastki,

b) dlugosé toru w funkcji potozenia czastki.

Przyja¢ jako warunki poczatkowe ©(0) = 0 i 7(0) = 7o. Zaleznosé szybkosci |v(t)| od
czasu moze by¢ dowolna.

Rozwigzanie:
Jesli r = r e, jest wektorem wodzacym (czyli wektorem polozenia), a v = re, +r¢pe,,
wektorem predkosci, to cosinus kata a pomiedzy nimi jest rowny

r-v T

rllvl 222

Stad (pamietajac, ze 7/$ = dr/dp) otrzymujemy natychmiast réwnanie rézniczkowe wy-
znaczajace tor w postaci r = r(p):

cos =

- — = ctga.

r dy &
Warto tu sie zastanowi¢ nad znakiem (po drodze podnosiliSmy co$ do kwadratu i wyciagali
pierwiastek - znak mogt sie zgubic¢). Jest on jednak poprawny: jesli 0 < o < 7, to wektor
predkosci jest tak skierowany, ze odleglos¢ » powinna rosnac ze wzrostem ¢ i rzeczywiscie
kotangens jest wtedy dodatni;'® gdy —5 < a < 0, to r rosnie ale wtedy, gdy ¢ maleje
(kat ¢ jest liczony przeciwnie do kierunku ruchu wskazéwek zegara) i rzeczywiscie ctg jest
wtedy ujemny. 7 kolei, gdy § < a <7, to r maleje, gdy kat rosnie i ctg jest ujemny, tak
jak powinien. Rozwiazaniem uzyskanego réwnania rézniczkowego jest spirala

() = (o) exp { (¢ — wo)ctga} .

Gdy chodzi o dlugos¢ toru, to widaé (patrz przypis nizej) ze wystarczy rozpatrzy¢ tylko
przypadki 0 < a < 7, kiedy to tor jest spirala rozwijajaca sie i jego dlugos¢ rosnie ze
wzrostem  nieograniczenie, oraz przypadek § < a < m, gdy tor jest zaciesniajaca sie
spirala i powinien mie¢ skoniczona dlugosé nawet wtedy, gdy ¢ — co. Przyjmujac wiec,

ze ¢ > 0 obliczmy dlugosé toru s(t) jako funkcje czasu przechodzac po drodze do s(¢(t))

t t t
S(t)Z/dt’\V(t/)\ =/dt’ Ug(t’)+vi(t/):/dt/\/m
0 0 0

(1) dr\ 2 12
:/ ng <—> +T2
¥o d(p

(1) 1/2 1 (t)
= / dy [r2ctg20z + 7‘2} = / dpr(p),
©

1/2

S1n e ©o

YA co, gdy —% < a < 0 ? Powinno by¢ tak samo, tzn. odleglo$¢ r tez powinna rosnaé, bo na rysunku
sytuacja wyglada tak samo, ale ctga jest w tm zakresie katow ujemny... No tak, ale wtedy ze wzrostem
r kat ¢ nie rosénie, tylko maleje wiec réwnanie znéw jest poprawne!
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gdzie skorzystalismy ze zwiazku 1 + ctg?a = 1/sin® a i wzoru na dr/dp. Calkujac otrzy-
mujemy

Y

sin « COS & COS (v

e(t) e(t)
s(t) = r(%o) / d elp—vo)ctea r(%o) e(p—vo)ctaa r(¢o) [e(¢(t)—<ﬂo)0tga _ 1}
©0 ®0

Wzo6r mozna uprosci¢ przyjmujac, ze po = 0. ctga jest dodatni, gdy 0 < a < 7 i dlugos¢
toru jest wtedy nieograniczona, gdy kat ¢ rosnie nieograniczenie. Jedli za$ ctga < 0 (czyli,
gdy 7 < a < ), dlugos¢ toru jest skonczona, gdy ¢ — oo:

7“(@0)
cosa’

s(o0) = —

(oczywiscie, gdy § < a < 7 to cosa < 0 i dhugoé¢ toru jest dodatnia). Przypadek oo = §
jest szczegdlny: odleglo$é r pozostaje stala, réwna 7(pp). Dlugosé toru jest oczywiscie
nieskonczona jesli ¢ rosnie nieograniczenie, ale jesli rozpatrzy¢ diugo$é¢ toru od g do
¢ = o + 27, to w granicy a — & uzyskany wzor daje oczywiscie s = 277 (¢):

s(p =2m) = lim rlgo)

1
i osa 1+ 2metga + 5(27Tctga)2 +- =1 =27r(p) .

Wreszcie przypadki o = 0 lub 7 sa szczegdlne w tym znaczeniu, ze wektor predkosci jest
skierowany wzdhuz wektora wodzacego i kat ¢ pozostaje staty.?’ Nie mozna wiec w tym
przypadku napisa¢ réwnania toru w postaci r = r(p). Mozliwy jest tylko parametryczny
opis toru (naturalnym parametrem jest tu czas) r = r(t), ¢ = @(t) = const = y.

20Dobrze jest przepisaé uzyskane réwnanie rézniczkowe w (zalecanej przeze mnie na Matmie IT) postaci
drtga =rdp. Wtedy widaé, ze gdy o = 0 lub 7, zmiana r nie pociaga za soba zmiany kata .
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Zadanie 2.5
Na ciatlo o masie m i predkosci poczatkowej v(0) = v dziala tylko sita oporu

v
Fo, = —k|v|*— Kkya > 0.

v’
Zbada¢, jak czas trwania takiego ruchu i jego zasieg zaleza od wykladnika .

Rozwiazanie:
Poniewaz na cialo dziata tylko jedna sita, ktéra ma zawsze ten sam kierunek, co chwilowa
predkos¢ ciata (i przeciwny do niej zwrot), dobrze jest wybraé¢ o§ x w kierunku vq. Problem
staje sie wtedy jednowymiarowy i redukuje sie dorozwiazywania réwnania

K

mo(t) = —kv®(t), czyli  o(t) = - v (t),

z warunkami poczatkowymi v(0) = vy (vg > 0) oraz, bez straty ogdlnosci, z(0) = 0.
Rozdzielenie zmiennych prowadzi do catki

v(®) dy K
oy U m

0

ktéra, jako caltka z funkcji potegowej, jesli o # 1, daje

1 o o K
[0 -] = -,

czyli, po “odkreceniu”,

1
11—«

v(t) = v [1 +(a—1) %vg‘_l t]

Wynik dla o = 1, ktéra to warto$¢ « jest, jak widaé¢, wyrézniona (uzasadnione jest
wiec nazwanie jej wartoscia krytyczna), mozna dostaé albo obliczajac bezposrednio catke
z a = 1, albo, co jest bardziej ksztalcace, dokonujac w powyzszym wzorze przejscia

granicznego o — 1:

o . . ﬁ a—1 m_ . ]-
U(t)—voil_{nl [1+(0z 1)mv0 t] —voil_{nlexp{l_a

In [1 + (a — 1)%@8‘_14 }

a1 1—« m 2 m2

1 2
e L |

(Pod logarytmem mozna juz bylo spokojnie potozy¢ vy ™! = 1).
Z otrzymanych wzoréw tych widaé, ze jesli @ < 1, to czas trwania ruchu jest skonczony:
cialo zatrzymuje sie po czasie

m vy ®
tmax:_
k1l—a«

>0.
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Zasieg ruchu, jest w takim przypadku, rzecz jasna, skonczony.

Jedli zas o > 1, to ruch trwa wiecznie (co nie znaczy jeszcze, jak zobaczymy nizej, ze
zasieg jego jest nieskoriczony) i asymptotycznie v(t) o< 1/ pa=T (lub v(t) o< e="&/™t gdy o =
1). Wynik ten moze na pierwszy rzut oka wydawaé sie dziwny: przeciez wydaje sie, ze dla
wiekszych wartodci a sita oporu jest wieksza! I istotnie tak jest, ale dla duzych predkosci;?!
jednak dla kwestii, czy sita oporu spowoduje calkowite zatrzymanie sie ciala, decydujaca
jest wielkos¢ silty oporu dla predkosci malych, nie zas duzych, a w sposéb oczywisty
jeshi (v/Vehar) < 1, gdzie venar jest jakas predkoscia charakterystyczna, to (v/vepar)® >
(V/Vehar)??, gdy a1 < as.

Zaleznosé przebytej drogi x od czasu jest dana catka

t t t ﬁ
x(t) = / dt' v(t') = vo/ dt' (1 — —) :
0 0 T

gdzie wielkos¢é 7 = (m/k)(v) /(1 — @)) = tmax jest, gdy a < 1, tozsama z czasem
trwania ruchu ¢,.x, dla a > 1 za$ |7| jest po prostu pewnym czasem charakterystycznym.
Otrzymujemy stad

—1

t/T
. 1 j— 1+171a
o -9

l-« £\ e m vy @ £\ e
= VT 1—(1-- =—2 1—(1-- .
2—« T K 2—« T

Ze wzoru tego od razu widaé, ze 2 jest druga krytyczna wartoscia wyktadnika . Oczywiscie
jesli ae < 1, zasieg d jest skonczony i wynosi

2—a
m v

d = x(tmax) = 5o

Otrzymany wzér na z(t) pozostaje stuszny takze przy a = 1 (gdy ruch trwa wiecznie),
co mozna sprawdzi¢ albo caltkujac bezposrednio wzér na v(t) z a = 1, lub tez dokonujac

21 Jak zawsze, aby orzec, czy wielko$é wymiarowa jest duza, czy mala, trzeba powiedzieé, w poréwnaniu
z czym. W zwiazku z tym zauwazmy, ze wymiar wspotczynnika k w podanym wzorze na sile oporu zmienia
sie z a; aby operowaé wspétczynnikiem o wymiarze niezaleznym od «, nalezy wzor ten zapisaé w postaci

v v

Fo, =

’U(?har |V| 7

(e} —2

w ktérej k' = kv§ ., ma juz wymiar [M][L][T]~* niezalezny od . Pojawia siec wtedy predkos¢ charakte-
rystyczna vehar 1 to poréwnanie z nig decyduje, czy predkosé v(t) jest duza czy mala.
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przejscia granicznego we wzorze na x(t):

K a—1

m . 2 -« K a1
—;voi:rri{l—exp<1_aln [1—(1—a)avo t])}

)

x(t):@volim{l_ [1—(1—04)%?;3‘%]%3}

co dla t = 0o daje do—1 = (m/K)vy. Zasieg ruchu pozostaje skoniczony az do o = 2, gdyz
dla 1 < a < 2 wykladnik (2 — «)/(1 — a) jest ujemny podobnie jak i 7 i, gdy t — oo,

2—« 1 2—«
e(ty="2Y0 Jy L Mm%
n2-a @) s 2-a

Dla av = 2 wzdr na x(t) jest osobliwy i konieczne jest znowu przejscie graniczne

22—« 2-a
B @ . /UO B i 11—«
x(t>_f<a£1—>r%2—a{1 <1+|T\) }

Po rozwinieciu funkcji exponens otrzymujemy stad

m t m K

Zasieg jest wiec wtedy nieskonczony: przebyta droga rosnie wolno, jak logarytm czasu,
ale jednak rosnie nieograniczenie. Oczywiscie zasieg jest tez nieskonczony dla wszystkich
a > 21 wtedy rosnie juz z czasem potegowo:

a—2 —2
t\ o=t t\ ot
(1 + —) — 1| — const. x <—) .
7| 7]

2—«
w(t) = = 20

K a—2
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Zadanie 2.21

Punktowa masa m porusza si¢ pionowo w polu grawitacyjnym g. Sita oporu dzialajaca
na nia jest dana wzorem F = —\|v|v. Znalez¢ zaleznosé predkosci i potozenia masy m od
czasu w przypadku, gdy jej ruch rozpoczal sie z zerowa predkoscia na pewnej wysokosci.
Poda¢ jak zmieniaja sie te wielkosci na samym poczatku ruchu i po dostatecznie dhugim
czasie. Przedyskutowac¢ jako$ciowo takze przypadki niezerowej predkosci poczatkowej i
jej dwu mozliwych kierunkéw (w gére i w dot).

Rozwiazanie:
Jesli masa m porusza sie w dot, a tak bedzie w przypadku zerowej predkosci poczatkowej,
to réwnanie wyznaczajace zaleznosé jej predkosci od czasu ma postac

dv 9 A
— =g— KV, K

dt

O$ z uktadu odniesienia, wzdluz ktérej odbywa sie ruch zostala tu skierowana w doét.
Réwnanie to mozna scatkowaé rozdzielajac zmienne

/t o g 1 [o® dv 1 " dp
0 vo g—rv* g vo 1_(\/’%/9@)2 VIt Jno L=

Wprowadzona tu zostata zmienna n = v4/k/g. Calke wykonuje sie rozkladajac wyrazenie
podcatkowe na UAMKki proste:??

t 1 n g nt) g 1
[a=g ([ [T ) = ) - =i
0 296 \Jy, 1+4nm w L= 2,\/gK 0

co prowadzi do wzoru

m .

ln<|1 +Z|) — 2 /Rt + 24,
w ktérym 2Ag = In(1+4179) —In |1 —ng|. Aby wywiktaé stad zalezno$¢ predkosci od czasu,
trzeba zdecydowaé (z powodu wystepowania pod logarytmen modutu), czy wartosé n
jest wieksza, czy mniejsza od 1. Jesli ruch zaczal sie od zerowej predkosci poczatkowej,
to, przynajmniej przez jakis czas (ale zaraz zobaczymy, ze zawsze) warto$¢ n pozostaje
mniejsza od 1. Zatem w takim przypadku

1
1+_77 = exp(2\/grt + 24),
—-n

i po odwiktaniu dostajemy

v(t) = \/%th(\/g_/{t—i—Ao).

2ZKorzystajac w razie koniecznogci z porad specjalistéw z Uniwersytetu Adama Mickiewicza w Pozna-
niu.
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Wzér ten pokazuje, ze jesli poczatkowa predkos¢ vy byla réwna zeru badz dodatnia
ale mniejsza od predkosci (nazwijmy ja graniczna) v, = 1/g/k, bedzie ona z czasem
rosna¢ dochodzac do vy, asymptotycznie (oczywiscie fizycznie wezesniej masa m wyrznie
w ziemie), ale nigdy jej nie przekroczy. Jest to oczywiste z samej postaci wyjsciowego
réwnania rézniczkowego, ktérego prawa strona zeruje si¢ przy v = vg - warto$¢ ta jest
tzw. punkem stalym réwnania; poniewaz réwnanie to jest pierwszego rzedu (czyli wy-
maga tylko jednego warunku poczatkowego), rozwiazanie v(t) = v, dzieli przestrzen
pozostalych rozwiazan na dwie klasy: w jednej klasie zawsze v(t) > vg, W drugiej zas
v(t) < vg. Gdyby predkosé poczatkowa vy byla dodatnia i wieksza od vg,, “zdejmujac”
modul w przeksztalceniach powyzej trzeba by zamiast 1 — ) napisa¢ n — 1 i w rezultacie
otrzymalibysmy jako rozwiazanie

g 1
vlt) = \/;th(mt+Ao) '

Predko$¢ v(t) dochodzitaby wtedy do predkosci granicznej od gory.

Zaktadajac, ze vy = 0, znajdziemy teraz polozenie masy m w funkcji czasu:

0= [ - L[S0

= 2o+ p ln[ch(\/ﬁt)] .

Gdy czas dazy do nieskonczonosci, predkosc¢ staje sie réwna vg, 1 wzor ten powinien dawac
liniowy przyrost drogi z czasem. Jest tak rzeczywiscie:

2(t) — 20 = lln{1 (evort +e_\/~"_’”)} R~ \/gt— l1112.
K 2 K K
Ujemna stala bierze si¢ z tego, ze masa m nie porusza si¢ caly czas predkoscia vg; wy-
nika stad pewna strata dystansu (reprezentowana wiasnie przez czynnik —(1/k)In2) w
stosunku do ciala, ktére od poczatku poruszatoby sie z predkoscia ve, od t = 0.

Mozemy tez sprawdzi¢, jak przebyta przez mase m droga przyrasta zaraz po starcie,
tj. dla czaséw bliskich zeru. Argument { = /grt funkcji kosinus hiperboliczny jest wtedy
maly (< 1) i korzystajac ze wzoréw na rozwiniecie funkcji cosh i rozwiniecie logarytmu
mamy

1 1 1
z(t)—z(]:gln<1+§§2+ﬁ§4+...),

(rozwiniecie kosinusa hiperbolicznego jest takie jak kosinusa, tylko wszystkie znaki sa
dodatnie, co wynika z tego, ze cos(i§) = chf) i teraz korzystajac z rozwiniecia In(1 +¢) =

12 4 . mamy

1 1 1/1 2 1/1 1

t) — — 4 U iy =z ¢t .
2t = 2 YR 2(2ng )} m(zg 2t T

N

—N
N —
Iy
)
+



Tak wiec, gdy t < 1/,/9~,

1 1
2(t) — 2= = gt* — — ¢’ktt 4+ ...
(t) =20 =59t = 5 g Rt +
W pierwszym przyblizeniu, kiedy predkos¢ jest jeszcze niewielka, sita oporu nie gra roli
(jest znikoma) i w pierwszym przyblizeniu masa m spada swobodnie, “po szkolnemu”; w
nastepnym przyblizeniu dochodzi poprawka opdzniajaca spadek, proporcjonalna do t*.
Przy okazji warto zobaczyé, jak ten sam wynik dla t < 1/,/gk mozna uzyskaé

rozwiazujac wyjsciowe rownanie rézniczkowe metoda Banacha. Zapiszmy rownanie w
postaci

dv 9

— =g — KV,

at
i potraktujmy cala jego prawa strone jak zaburzenie (oczywiscie zeby tak mozna bylo
zrobi¢ mata musi by¢ predkosé poczatkowa vgy). Pierwszym przyblizeniem rozwiazania,
czyli rozwiazaniem zerowego rzedu jest v(®)(t) = vy (po prostu!). Nastepnie szukamy
rozwiazania pierwszego rzedu, v\ (t), catkujac powyzsze réwnanie z prawa strona obli-
czong 7 rozwiazania zerowego rzedu:

dvM ()

dt :g—K(U(O))2,

co da

v () = vy + (9 —Kug)t.
Nastepnie szukamy rozwiazania drugiego rzedu obliczajac prawa strone ze znalezionego
wyzej rozwiazania rzedu pierwszego

dv® ()

dt
itd. Kladac dla prostoty vg = 0 mamy tu réwnanie
dv® ()

dt

:g—m[vo—l-(g—/wg)t}z,

=g— Kkg't*,

ktorego rozwiazaniem jest

1
0@ (t) = gt — 3 kg*t?

i ktére po scatkowaniu jeszcze raz da otrzymane juz wyzej przyblizenie z(t), ktére jest
stuszne, gdy t < 1/,/gk.

Na koniec zauwazmy jeszcze, ze gdyby predkosé poczatkowa vy byta ujemna (skiero-
wana w gore), nalezaloby rozwiazywaé¢ réwnanie

dv 4
—_ = RV
dt g Y
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Roéwnanie to nie ma punktu statego, ale przy vy < 0, dyktuje ono wzrost v(t) od v do zera.
W chwili ¢, w ktorej predkosé stanie sie réwna zeru réwnanie to przestaje obowiazywac
i nalezy od tego momentu rozwiazywac¢ poprzednie rownanie z warunkiem poczatkowym
v=0.
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Zadanie 2.6
Zbada¢ mozliwe ruchy jednowymiarowego oscylatora harmonicznego z thumieniem bedace
rozwigzaniami réwnania

mx+2yx+kxr=0,

gdzie v > 0, k > 0 (czynnik 2 w drugim wyrazie zostal wprowadzony dla rachunkowej
wygody). Rozpatrzyé¢ wszystkie mozliwe przypadki.

Rozwigzanie:
Réwnanie
T4 2\i +wir =0,
gdzie A\ = v/m, w? = k/m jest rézniczkowym réwnaniem liniowym drugiego rzedu.

Zgodnie z ogdlnymi zasadami powinno ono mie¢ dwa liniowo niezalezne rozwiazania,
a najogdlniejsze rozwiazanie jest kombinacja liniowa tych dwu rozwiazan z dowolnymi
wspotczynnikami. Wystepuja w nim zatem dwie stale dowolne. Zgodnie z tradycja fi-
zyczna przekazana nam w Feynmana wyktadach z Fizyki, rozwiazan szukamy w postaci

z(t) = et

tj. szukamy funkcji speliajacej wypisane wyzej réwnanie ale przyjmujacej wartosci ze-
spolone. Poniewaz rownanie jest liniowe o rzeczywistych wspoélczynnikach, spelnia¢ je
bedzie osobno zaréwno czesé¢ rzeczywista jak i urojona zespolonego rozwiazania z(t) i
ktérakolwiek z nich mozna wzia¢ jako rozwiazanie wyjsciowego rzeczywistego réwnania.
Podstawiajac ten tzw. Ansatz (liczba mnoga die Ansétze, gdyby ktos nie wiedzial) do
rozwiazywanego réwnania otrzymujemy warunek na « (czyli inaczej réwnanie charakte-
rystyczne tego réwnania liniowego)

—a? + 2ida+wi =0.
Rozwiazaniami tego warunku sa

ay =i\t Jwd — A2,

Zatem ogolnym zespolonym rozwiazaniem jest
Z(t) _ Cl 6—)\t+i\/wg—)\2 t + C2 6—)\t—i\/wg—)\2 t
C1 2 sa dwiema dowolnymi zespolonymi stalymi. Jesli wi — A% < 0, tj. jesli wyktadniki

eksponenséw sa czysto rzeczywiste, wziecie czesci rzeczywistej (lub urojonej) x(t) zespo-
lonego rozwiazania z(t) sprowadza sie po prostu do wziecia ReC; i ReCy (ImC; i ImCs)
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jako dwu statych rzeczywistych. Gdy zas$ w2 —\? > 0, aby wydzieli¢ czes$¢ rzeczywista (lub
urojona) tego rozwiazania, wygodniej jest, przedefiniowujac stale, przepisa¢ je w postaci®

Z(t) =C e—)\t+i\/wg—)\2 t + C* e—)\t—m /wg—)\Q t
+B e—At-ﬁ-i«/wg—)\? t_R* g Min fw2—N2 t

Pierwsza linia tak zapisanego zespolonego rozwiazania z(t) jest czysto rzeczywista, a druga
czysto urojona. Zatem jako rozwiazanie rzeczywiste z(t) mozemy wzia¢ np. Rez(t), czyli

o(t) = e ((C etV wi—At +C* e~V Wi—A? t) .

Powyzsze rozwiazanie x(t) zalezy, tak jak powinno, od dwoch statych dowolnych, ktérymi
sa czes¢ rzeczywista i cze$¢ urojona C.
Tak wiec, w zaleznosci od wzajemnego stosunku wg i A?, mozliwe sa trzy przypadki

e Gdy w? > A% rozwiazanie mozna zapisa¢ w postaci
z(t) = e ™M (Acoswt + Bsinwt),
gdzie A=C+ C* =2ReC, B=i(C—-C*) = —2ImC, a w = \/wi — \2.

o Gdy wi < A\, piszemy /w3 — A2 = —ixk oraz (w pierwotnej formie rozwiazania z C,
i Cy) ReCy = 3(A+ B), ReCy = 5(A — B), co sprowadza czes¢ rzeczywista Re z(t)
rozwiazania do postaci

x(t) = e (Achkt + Bshrt).

e Gdy w? = A2, dwa znalezione rozwiazania staja sie wzajemnie proporcjonalne czyli
liniowo zalezne i trzeba znalez¢ jeszcze jedno liniowo niezalezne rozwiazanie, gdyz
inaczej ogdlne rozwiazania zalezaloby tylko od jednej tylko (rzeczywistej) stalej do-
wolnej, co nie pozwalaloby spehi¢ warunkéw poczatkowych (z ogélnej teorii réwnan
rozniczkowych wiadomo, ze najogdlniejsze rozwiazanie musi mie¢ dwie state do-
wolne). Okazuje sie, ze ogdlnym rozwiazaniem jest wtedy

x(t) =e M (A+ Bt).

Ze jest to istotnie rozwiazanie, mozna sprawdzi¢ wstawiajac je do wyjsciowego
réwnania (w ktérym nalezy polozy¢ w? = A?).2* Wynik ten, jak zobaczymy nizej,
mozna tez otrzyma¢ dokonujac odpowiedniego przejécia granicznego.

23Choé¢ nie jest to do niczego potrzebne, zanotujmy, ze C; = C+B, Cy = C* —B* czyli C = %((Cl +C3),
alB= %((Cl — C;)
M stotnie: & +2A7+ N2z = e M(A2A—2AB+\2Bt) + 2 e M (= AA+ B—ABt)+ X2e " M(A+ Bt) = 0.
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Dowolne stale rzeczywiste A i B w powyzszych ogdlnych rozwiazaniach sa wyznaczone
przez zadane warunki poczatkowe. Jesli sa nimi

z(0) =z, (0) = vy,
to, jak tatwo sprawdzi¢,
[ A
x(t) = e |2 coswt + Yot A%o G wt] :
w

z(t) = e M [%co + (vo + Axo) t]

Vo + Az

x(t) = e |zochkt + % sh mt] ,

K

gdy, odpowiednio, wg > A2, w2 = A? i w2 < A%

Majac rozwiazania dla dwoch skrajnych przypadkéw zalezne od warunkow poczatko-
wych tatwo zobaczy¢, ze rozwiazanie w przypadku wi = A? mozna otrzymaé przez przejécie
graniczne. Np. biorac w pierwszym rozwiazaniu granice w — 0 (czyli wg — A?) widzimy,
ze coswt — 1, a drugi wyraz w tej granicy daje

Vo + Az
lim L2 AT Gy — (vo + Azo) T,
w—0 w
i otrzymujemy rozwiazanie dla przypadku w? = A% W podobny sposéb mozna to

rozwiazanie otrzyma¢ w granicy kK — 0 z trzeciego rozwiazania. Przejécia granicznego
mozna dokona¢ dopiero po wyrazeniu statych dowolnych przez warunki poczatkowe, gdyz,
jak wida¢, wspolczynniki tych liniowo niezaleznych rozwiazan nie pozostaja stale przy
zmienianiu w lub k.

Tylko w przypadku, gdy w? > A2, tj. gdy sita oporu nie jest zbyt duza, ruch wykazuje
charakter quasi-periodyczny: kolejne zera funkcji x(t) (przechodzenie oscylatora przez
polozenie réwnowagi) wystepuja regularnie, w odstepach czasu At = %T, gdzie T' = 27 /w.
Kolejne maksima funkcji |z(t)| wystepuja zas, gdy #(t) = 0 i sa nieco przesuniete w
stosunku do polozen, jakie mialyby przy niewystepowaniu sity oporu. Np. jesli (dla
prostoty) zo = 0 i z(t) = (vo/w)e * sinwt, maksymalne wychylenia, tj. maksymalne
wartosci |z(t)| przypadaja w tych momentach, w ktérych znika @(t), czyli gdy

6—)\t(

wcoswt — Asinwt) =0,

tj., w ktérych tgwt = w/A; jesli sila oporu jest staba, A < w, przypadaja one niemal

dokladnie wtedy, kiedy wt = 7/2 + nm; jesli zas A ~ w lub A > w, chwile te sa nieco

wezesniejsze (co zrozumiate, bo sita oporu powoduje wezesniejsze wytracenie predkosci).
W przypadku, gdy wg < A? (a 2o = 0) wychylenie oscylatora z(t) jest tylko jednego

znaku (zaleznego od znaku predkosci poczatkowej vg) i |z(t)| ma tylko jedno maksimum

wystepujace w chwili, gdy 4(¢) = 0, czyli gdy

thist) = %,/Az—wg <1.

Jest bowiem jasne, iz rownanie to ma tylko jedno rozwiazanie.
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Rysunek 24: Obrét uktadu wspdlrzednych o kat 6.

Zadanie 2.7

Pokaza¢, ze tor ruchu dwuwymiarowego izotropowego oscylatora harmonicznego, czyli
lezacy na plaszczyznie tor ruchu czastki o masie m poddanej dziataniu sity sprezystej
F = —mw?r jest elipsa. Jaki warunek musza spelia¢ czestosci w; i we nieizotropowego
tréjwymiarowego oscylatora o sile F = —m(wire, + wiye, + w3ze,), by tor jego ruchu
byt krzywa zamknieta?

Rozwiazanie:
Réwnania ruchu dwuwymiarowego izotropowego oscylatora

f+wr=0, jJ+wiy=0,

najtatwiej rozwiaza¢ wprowadzajac zmienng zespolona § = r+iy. Rozwiazaniem rownania
€ + W% = 0 jest wtedy

f(t) — A_"_eiwt + A_e—iwt — ‘A+|€iwt+i5+ + |A_‘e—iwt+i6, — ei@ (|A+‘6iwt+i5 4 ‘A_‘e—m—m) ’

przy czym zespolone state calkowania AL zaleza od warunkéw poczatkowych. W ostat-
nim kroku fazy 6, i 6_ statych A, zostaly zapisane w formie 6, = 0+, 6_ = 6 — 6.
Podstawiajac nastepnie |Ay| = $(A £ B), mozna wyrazenie w nawiasie napisa¢ jako

é (ez’wt-i-ié + e—iwt—ié) 4 E

5 5 (et — e t=10) = Acos(wt + 6) + iBsin(wt + 6) .
i

Mozemy teraz zinterpretowaé to jako & = x'(t) +iy/(t), gdyz jesli uktad O’ jest wzgledem
ukladu O obrécony o kat 6 tak, jak na rysunku 24, to x = 2’ cos @ — 3/ sin 6, y = 2’ sin 0 +

y'cosl, czyli wlasnie € = ¢’ Zatem w ukladzie obréconym o kat 6 tor jest dany
réwnaniem (2//A)? + (y'/B)?* = 1, ktére jest wlasnie réwnaniem elipsy.

Jedli rozwiazanie nieizotropowego oscylatora zapisa¢ w postaci x(t) = A, cos(wit+4,),
y(t) = Aycos(wat + dy), 2(t) = A, cos(wst + 6,), to jest jasne, ze tor bedzie krzywa
zamknieta, gdy mozna dobra¢ wielokrotnosci okreséw ruchow wzdiuz poszczegdlnych osi
tak, by byly sobie rowne, czyli gdy istnieje okres T' taki, ze

wiT:27m2-, 121,2,3

Tor bedzie wiec krzywa zamknieta, gdy wy : ws : w3 =Ny : ng @ n3.
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Zadanie 2.8
Zmalez¢ ruch jednowymiarowego oscylatora harmonicznego o masie m, stalej sprezystosci
k = mw? i wspdlezynniku sity thumiacej 2y = 2mA pobudzanego sita zewnetrzna o har-

monicznej zaleznosci od czasu
F(t) = Fycos(Qt +9).

Przedyskutowa¢ zaleznos¢ amplitudy wychylen oscylatora od czestosci ) sity wymu-
szajacej oraz korelacje maksiméw wychylen oscylatora z maksimami sity. Zakladajac, ze
A # 01 ze ruch trwa juz dostatecznie dtugo, by zaleznosé ruchu od warunkéw poczatkowych
stala sie nieistotna (tj. ze t > 1/)), obliczy¢ usredniona po okresie sity wymuszajacej
moc przekazywana przez nia oscylatorowi i zbadac jej zaleznos¢ od czestosci 2. Co sie
dzieje z ta pobierana przez oscylator energia?

Rozwiazanie:
Réwnanie Newtona, wyznaczajace ruch oscylatora ma postac

EF
i+ 200 + wie = =2 cos(Qt + 6) .
m

Jego najogolniejsze rozwiazanie jest suma najogdlniejszego rozwiazania rownania jedno-
rodnego (tj. powyzszego réwnania z sita F'(t) réwna zeru) oraz jakiegokolwiek rozwigzania
(tzw. rozwiazania szczegdlnego) powyzszego réwnania z sita F'(t). Najogdlniejsze rozwia-
zania (w zaleznosci od wzajemnego stosunku A do wp) réwnania jednorodnego zostaly
znalezione w Zadaniu 2.6. Znalezé rozwiazanie szczegdlne jest najprosciej przepisujac
powyzsze réwnania w zmiennej zespolonej z(t) i modyfikujac jego prawa strone:

Fy .
E4 22X 4 wiz = 2 i)
m

Poniewaz réwnanie to jest liniowe, a wspétczynniki prawej jego strony sa rzeczywiste,
czesé rzeczywista z(t) bedzie spelnia¢ whasnie to réwnanie, ktére chcemy rozwiazaé (czesé
urojona z(t) bedzie za$ speliaé réwnanie z sita F(t) = Fysin(Q2t + §)). Podstawiamy
nastepnie do tego rownania

2(t) = Ae™,
z amplituda A bedaca liczba zespolona i widzimy, ze jest ono spemione, jesli

FO 62‘6
m wi — Q%+ 2iAQ

A=

Szczegdlne (niezalezne od zadnych statych dowolnych) rozwiazanie wyj$ciowego réwnania
ma zatem postac

FO ei(Qt+6) FO 1
SL’SZ(T,) = Re E 5 0z - =
W + 2102 m \/(wE — 02)2 + 4)202

cos(QU+6— ).
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¢ jest faza mianownika wg — Q2 4+ 2iIAQ = /(w2 — Q2)2 + 42202 €' zespolonej amplitudy.
Jest ona dana wzorem
20
g (p - w% - QQ )

albo, co wygodniejsze, bo nie wymaga zmieniania galezi arcusa tangensa przy przecho-
dzeniu przez Q? = w2, wzorami

wi — Q2 sin 200
: inp = :
V(W2 —Q2)2 + 42202 7 V(W2 = Q22 + 42202

cos p =

Poniewaz, jak wida¢, sin ¢ jest nieujemny, faza ¢ nalezy do przedziatu [0, 7.
Alternatywna (ale réwnowazna) postaé rozwiazania szczegélnego uzyskujemy piszac

sz t) = - !
Ty (1) Re(m (w8—92)2+4)\2926

B 1
om (wg — 02)2 4+ 42202

[(wg — Q%) cos(Qt + 6) + 2AQsin(Q + 0)] .

Wprawdzie pelne rozwiazanie réwnania ruchu wymaga dodania do znalezionego tu
rozwiazania szczegolnego rownania niejednorodnego jeszcze ogdlnego rozwiazania rownania
jednorodnego zaleznego od dwdéch dowolnych stalych (dopiero wtedy mozna narzucié
na rozwiazanie warunki poczatkowe - zobacz Zadanie 2.9), to, jesli tylko sita oporu
(wspélezynnik ) nie znika, efekty tego ogdlnego rozwiazania, a z nim zalezno$é¢ ruchu
od warunkéw poczatkowych, beda z czasem male¢ do dowolnie maltej wielkosci. Roz-
patrujac ruch oscylatora w chwilach ¢t > A~!, mozna sie ograniczy¢ wtedy do badania
samego szczegblnego rozwiazania réwnania niejednorodnego, gdyz (1) & Tgye,(t).

Zatem gdy t > A\7! amplituda A drgan oscylatora (czyli maksymalne wychylenie)
jest réwna

Fy 1
A(Q>:H 2 _02)2 202
V(W2 —02)2 + 4220

Gdy sita oporu nie jest zbyt duza, amplituda ma maksimum w punkcie, w ktorym mianow-
nik ma minimum, a jeszcze lepiej, tam, gdzie minimum ma wyrazenie pod pierwiastkiem
czyli tam, gdzie znika pochodna po x funkcji f(z) = (z — w2)? + 4\%x, tj. przy czestosci
Q, = Jw? — 2)2, zwanej czestosciq rezonansowq. Czestosé ta, jak widaé, jest nizsza niz
czestosé whasna wy oscylatora. Oczywiscie, gdy wi < 202, amplituda A(£2) jest monoto-
nicznie malejaca funkcja czestosci 2. Wykres amplitudy wychylen oscylatora jako funkcji
czestosci sity wymuszajacej jest pokazany na lewym panelu rysunku 25. W obu przypad-
kach, zaréwno, gdy wi < 2A?% jak i gdy wg > 2\%, amplituda spada do zera, gdy Q — oc:
oscylator majacy bezwladno$é (m # 0) nie zdaza reagowaé znaczacym wychyleniem na
nastepujace niemal natychmiast po sobie pochodzace od sily pchniecia w przeciwnych
kierunkach. Gdy € = 0, rozwiazanie ¥, (t) redukuje sie do stalej z,e, = (Fo/mw}) cosd,
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Rysunek 25: Po lewej: wykres amplitudy wychylen oscylatora (w jednostkach Fp/mw?)
w funkcji czestosci €2 sity wymuszajacej dla A/wg = 0.2 (krzywa niebieska z wyraznym
maksimum) i 0.75 (krzywa czerwona). Po prawej: wykres fazy ¢ w funkcji £2/wq oscylatora
dla A\/wy = 0.5 (krzywa niebieska) i 0.1 (krzywa czerwona).

co odpowiada spoczynkowi oscylatora w punkcie przesunetym w stosunku do centrum sity
sprezystej; sita sprezysta Fip, = —mw%xsm jest w tym polozeniu réwnowazona przez site
zewnetrzna, Fycosd.

Faza ¢ zadaje opdznienie maksymalnych wychylen oscylatora w stosunku do maksy-
malnych wartosci sity pobudzajacej (jesli sita ta ma maksimum w chwili ¢x, to wychylenie
maksymalne wystepuje w chwili ¢z + ¢/Q). Faza ta, jak wynika z podanego wzoru, jest
bardzo mala, gdy czestosé 2 sily pobudzajacej jest mala (w stosunku do A) - oscylator
mimo dziatania silty oporu, “nadaza” za sila pobudzajaca. Przy €2 = wy faza ¢ jest rowna
/2 (w chwilach, gdy sita jest maksymalna, wychylenie oscylatora zeruje sie) i dazy do T,
gdy Q — oo (oscylator jest wtedy z sita w przeciwfazie). Zaleznosé fazy ¢ od thumienia
A ilustruje prawy panel rysunku 25. Przy A = 0 zalezno$¢ fazy ¢ od czestosci Q) sily
degeneruje sie do ¢ = 0, gdy Q2 < wp i do ¢ = m, jesli Q@ > wy. Rozwiazanie zg,,(t)
pozostaje jednak ciagla funkcja © (co widaé z przytoczonej wyzej alternatywnej formy
rozwiazania) i przybiera wtedy postaé
Ey 1 Ey

lim cos(Qt + 6) cosp = — o cos(Qt +0).

Tu(t) = w2 — 2] tgpmro

m wi — Q2

Trzeba jednak pamietac, ze gdy A = 0, rozpatrywanie samego tylko rozwiazania szczegolne-
go traci sens, bo zalezna od staltych dowolnych (czyli od warunkéw poczatkowych) czesé
pelnego rozwiazania nie zanika z czasem.

Poniewaz w stanie ustalonym (gdy zanikta juz pamie¢ uktadu o warunkach poczatko-
wych) ruch uktadu jest okresowy, mozna obliczy¢ érednia (po okresie T' = 27 /€)) moc
pobierana przezen od sity wymuszajacej F'(t). Chwilowa jej moc jest réwna Pp(t) =
F(t)z(t), a usredniona jest dana calka



Bez straty ogélnosci przyjmiemy tu 6 = 0. Wéwczas
Fy Q
m \/(wg — Q2)2 4 42202

Potrzebna calke oblicza sie najszybciej, gdy fukcje trygonometryczne zostana zapisane
przez eksponensy:

F(t) = FycosQt,  i(t) =

sin(Qt — ) .

— Fg 0 g
Pp=—-" / dt sin(Q2t — ) cos QU
T'm \/(wd — Q2)2 +4X2Q2 Jo
_ Fg Q 1 Tdt [ei%-ie _ o=i0tHie] [ | o=if%)
T'm \/(wg — 02)2 442202 4i Jy
F? Q T, _. o F2 0

- _ _ - __ oy — Y 1
T e 5 ) T o oo

Mimo iz chwilowa moc pobierana przez oscylator od sily wymuszajacej moze byé¢ ujemna
(Z(t) o sin(Q2t + 6 — @) moze by¢ przeciwnego znaku niz F(t) o< cos(2t + d)), usredniona
po okresie moc pobierana jest zawsze dodatnia bo, jak juz zauwazyliSmy, faza ¢ nalezy
do przedziatu [0, 7]. Po podstawieniu tu wzoru na faze

200
V(wd —Q2)2 402027

sin g =

otrzymujemy
F? Q2

P = )
m (wg — Q%)% + 4X2Q2

Moc pobierana ($rednio w okresie) przez oscylator jest mala przy malych czestosciach
Q) sity wymuszajacej i spada rowniez do zera, gdy czestosé ta staje sie bardzo duza (w
poréwnaniu z czestoscia wlasna wy oscylatora). Maksimum osiaga, jak tatwo sprawdzié
szukajac maksimum funkcji

x

J(@) = (r —wd)?+ 4N’
przy 2 = wy (a nie przy czestosci rezonansowej, jak mozna by sadzi¢) i jest tam réwna
??ax = FZ/4m\. Oczywiscie, poniewaz ruch oscylatora jest stanem ustalonym, pobierana
przezen od sily wymuszajacej moc musi w calosci by¢ tracona wskutek dzialania sity
oporu. Istotnie, chwilowa moc tej sity, dana wzorem Py (t) = —2Ami?(t) (jak widac jest

ona zawsze ujemna - sita oporu w kazdej chwili, a nie tylko w sredniej, powoduje strate
energii oscylatora), po usrednieniu po okresie

23m 2 9%
dr (1) = —2m o

— o2am [T T
— dt sin®(Qt —
T J T m? (W2 — Q)2 +4>\2Q2/0 i (§ = ¢),

A=

poniewaz $rednia po okresie funkcji sin? jest réwna % (reguta, ktéra warto pamietac), jest
dokladnie réwna wzietej z przeciwnym znakiem usrednionej mocy Pp.
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Zadanie 2.9

Dokonujac odpowiednich przyblizen w Scistym wzorze na zaleznos¢ od czasu polozenia
rozpatrywanego w zadaniu 2.8 oscylatora (i przyjmujac, ze faza § sily wymuszajacej jest
réwna zeru) przedyskutowaé jakosciowo charakter jego ruchu w réznych rezimach (tj. dla
réznych stosunkéw wielkosci wg, € i A), jesli w chwili ¢ = 0 oscylator spoczywalw swoim
potozeniu réwnowagi (z(0) = 0, £(0) = 0). W szczegdlnosci rozpatrzy¢ przypadek bez
thumienia (A = 0), oraz przypadki 0 < A < |wg — Q| 1 |wg — Q| < A.

Rozwiazanie:

Aby zbada¢ zachowanie sie oscylatora w réznych rezimach trzeba najpierw wypisaé¢ kom-
pletne rozwiazanie uwzgledniajace warunki poczatkowe x(0) = 0, #(0) = 0, ktére ozna-
czaja, ze w chwili t = 0, gdy sila pobudzajaca jest maksymalna, oscylator znaduje sie
w w spoczynku w polozeniu réwnowagi. Przyjmiemy tez, ze w3 > A2, czyli Ze thumienie
oscylatora jest stabe. Ogdlna postaé zaleznego od dwu stalych dowolnych rozwiazania jest
nastepujaca (przypomnijmy, ze w = \/wi — \2):

z(t) = e (A coswt 4+ Bsin wt)
Fo/m

o)y e

[(w§ — Q%) cos Qt + 2X\Qsin Q1] .

Przyjete warunki poczatkowe, z(0) = 0, #(0) = 0 prowadza do réwnan

FQ wg — Q2
A+ =0 —
+ m (wg —02)2 4 4202 0,
Fy 2002
At wB+ m (wg — Q2)2 + 4202 0
Ich rozwiazaniami sa
A:@ Qz—wg B:—FO )\(Qz—l—wg)
m (wg — Q?)% + 41202 mw (wg — Q%)% + 42202

Pelne rozwiazanie z przyjetymi warunkami poczatkowymi ma wiec postaé:

. Fo/m
"0 = oy e

{(wg — %) (cos Qt — e M coswt)

2 2
42X [ sin it — M e M sin wt .
20w

Mozna teraz zbada¢ rézne przypadki.
1) Zbadajmy najpierw ruch w przypadku, gdy tlumienie nie wystepuje, tj., gdy A = 0
(wtedy w = wp). Wypisane wyzej rozwiazanie redukuje sie wtedy do

Fo/m

x(t) = - (cos Qt — coswot) .
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Rysunek 26: Wychylenia (w jednostkach Fy/mw?) oscylatora bez thumienia (A = 0)
pobudzanego sita harmoniczna F(t) = Fcos((wy + €)t) w funkcji wot. Po lewej: €/wy =
—0.05; Scisty wzor - linia niebieska; wzdr przyblizony - linia czerwona. Po prawej w
przypadku $cistego rezonansu 2 = wy.

Szczegdlnie interesujacy jest przypadek ruchu wymuszanego przez site o czestosci €2 bliskiej
czestosci wlasnej wy oscylatora. W przeksztalconej?® postaci powyzszego wzoru?®

mozna, gdy €2 = wg + € & wy, zastapi¢ wy + 2 przez 2wy. Daje to

Fo et
x(t) =~ sin wot sin .
MWOE 2

Wychylenie oscylatora zmienia sie wtedy niemal periodycznie, jak sin wyt, ale amplituda
jest modulowana przez wolnozmienny czynnik Sin(%st). Zachowanie to ilustruje lewy panel

PWykorzystujemy tu wzér

cosa —cosf3 = —2sin<a;5> sin(a;—5> ,

(nie trzeba go szukaé po Internetach... wystarczy pamietaé, ze taki wzoér istnieje i ma w jednej funkeji
polowe sumy katow, a w drugiej polowe réznicy; poniewaz po lewej kosinusy nie maja w zapisie przez
eksponensy czynnika ¢ w mianowniku, po lewej musi by¢ albo iloczyn dwéch sinuséw, albo dwéch kosi-
nuséw (zeby nie bylo ¢ w mianowniku) ale lewa strona zmienia znak przy zamianie « «+ 8, wiec to musza
by$ sinusy, a ogdélny znak latwo dopasowa¢ ktadac np. o =01 § = 7, czy cos takiego.

26 Alternatywnie mozna by prébowaé od razu polozyé Q = wg + €, piszac

cos((wo + &)t) — coswot = coswpt coset — sinwyt sinet — cos wot ,

i uzyé argumentu, ze coset ~ 1, dzieki czemu pierwszy i ostatni czton sie zredukuja i zostanie tylko
— sinwpt sinet. Takie przyblizenie jest jednak shuszne tylko dla czaséw ¢ takich, ze |et| < 1 i doéé szybko
sie zalamuje. W rezultacie otrzymany w ten sposdéb wzoér daje dwukrotnie krotszy okres modulacji
(Tmod = 27 /e zamiast Tyoq = 47/¢). Scisla granice 2 = wqy otrzymuje sie, oczywiscie, poprawna.
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rysunku 26. W granicy Scistego rezonansu, gdy 2 = wy otrzymuje sie

Fy
2

x(t) ~ 5
0

(A)Ot sin (A)Ot .

Amplituda wychylen narasta wtedy z czasem liniowo (zob. prawy panel rysunku 26).

2) Drugi przypadek to sytuacja, gdy A < | — wy| < wp. Thlumienie jest stabe, ale
niezerowe, a odchylenie czestosci sity wymuszajacej od czestosci wlasnej oscylatora jest
zawsze wicksze niz parametr A (granicy |2 —wg| — 0 w tym rezimie nie mozna zatem
osiagnac).

W tym przypadku w pelmym rozwiazaniu mozna opuscié¢ cztony z sinusami (bo sa
proporcjonalne do parametru A, ktéry moze by¢ dowolnie maly) i zastapi¢ w przez wy:

Fo/m
w0~ F =y 5 e

(wg — Q%) (cos Ut — e coswot) -
Ponadto mozna pominaé czynnik A\2Q? w mianowniku i, wprowadzajac € = Q + wy, spro-
wadzi¢ powyzszy wzor do

_F()/m
20)05

A

x(t) ~

(cos wot cos et — sinwpt sin et — e~ cos wot) .

Zeby latwiej dostrzec jakosciowy charakter ruchu, dobrze jest wyrazenie w nawiasie przed-
stawi¢ w postaci A(t) cos(wot+p(t)), tj. w postaci ruchu harmonicznego z (wolno) zmienna,
z czasem amplituda i (wolno) zmienna z czasem faza. Przypuszczamy bowiem, ze po do-
statecznie dlugim czasie ruch oscylatora powinien si¢ jakos ustabilizowac¢. Trzeba zatem

tak dobra¢ A(t) i ¢(t), by

A(t) cos p(t) = coset — e M,
A(t)sin p(t) = sinet .

Latwo zobaczy¢, ze rozwiazaniem tego problemu sa

sin et
A(t) = V1 — 2e M t —2Xt tep(t) = ———— .
(1) = V1= 2e N coset + e, tgalt) = ——

Zatem

Fo/m
2&)08

x(t) ~ — V1= 2e=Mcoset 4 e—2M cos(wot + ¢(t)) .

Amplituda wychylenia dazy, gdy t — oo do Fy/2mwpe, ale “po drodze” wykazuje lokalne
maksima i minima wypadajace, gdy

€ . — Xt
coset + Xsmst =e .
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Rysunek 27: Wychylenia (w jednostkach Fy/mw?) oscylatora z thamieniem pobudzanego
sita harmoniczna F(t) = Fycos((wp + €)t) w funkcji wot. Po lewej: €/wy = —0.05,
A/wo = 0.01; linie czerwona i zielona pokazuja przebieg modulujacego czynnika A(t)/2]e|.
Po prawej: £/wy = —0.01, A/wy = 0.2; linie czerwona i zielona pokazuja przebieg modu-
lujacego czynnika A(t)/2X. Wykresy zostaly otrzymane z przyblizonych wzoréw podanych
w tekscie; optycznie nie réznia sie jednak od otrzymywanych ze $cistego rozwiazania.

Maksima te, z ktérych najwyzsze jest pierwsze, moga, jesli |e/A| > 1, znacznie prze-
kraczaé¢ asymptotyczna wartosé amplitudy, co wida¢, gdy sie ja zapisze eliminujac z niej
czynnik e~ z pomoca wypisanego wyzej warunku wyznaczajacego ekstremum:

)
Amax/min = \/]- —cos? et + F sin? et .
Typowa zalezno$¢ od czasu wychylenia oscylatora w tym rezimie pokazuje lewy panel
rysunku 27.

3) Trzeci przypadek zachodzi, gdy |wy — Q2| < A < wy, co oznacza, ze thumiony oscylator
jest bardzo blisko rezonansu (i granice scistego rezonansu mozna osiagna¢). W tym przy-
padku w pelnym rozwiazaniu mozna pominaé czlony z kosinusami (bo sa mnozone przez
wig — Q2 a zostawi¢ nalezy te z sinusami. Ponadto, w mianowniku na przedzie mozna
po prostu polozyé¢ wi = Q2 i przyblizyé¢ przez 1 czynnik (Q2 + w2)/2Qw. Po potozeniu
2 = wp + € otrzymuje sie wtedy

_ Fo/m
- 2)\&]0

A

x(t)

(sin wot cos et + coswpt sin et — e~ sin wt) .

Jesli jeszcze w ostatnim sinusie przyblizy¢ w przez wg, to mozna z pomoca takiej samej
sztuczki, jak w poprzednim przypadku przedstawi¢ przyblizone rozwiazanie w postaci
Fo/m
z(t) =~ o/
2)\(,4.)0

A(t) sin(wot + ¢(1)),

w ktérej A(t) i ¢(t) sa dane tymi samymi wzorami, co w poprzednim przypadku (mozna
tu jednak pod pierwiastkiem potozy¢ e = 0, co sprowadzi caly czynnik modulujacy A(t)

94



do 1 — e™). Typowa zalezno$é¢ od czasu wychylenia oscylatora w tym rezimie pokazuje
prawy panel rysunku 27.

W sytuacji, gdy A ~ |Q2—wp| trudno jest napisa¢ jakies przyblizenie $cistego rozwiazania,
ktore by czynito charakter ruchu tatwo widocznym. Niemniej poréwnujac oba panele ry-
sunku 27 mozna oczekiwaé, ze przy przechodzeniu of A < |2 —wy| do |2 — wy| < A przez
rezim, w ktérym A ~ |Q — wp|, “falowania” obwiedni (krzywych czerwonej i zielonej)
powinny po prostu malec.
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Zadanie 2.11

Poda¢ rozwiazanie réwnania ruchu jednowymiarowego oscylatora harmonicznego o masie
m, czestosci wy 1 wspélezynniku thumienia 2y = 2mA pobudzanego sita F(t) o dowolnej
zaleznosci od czasu.

Rozwigzanie:
Najogoélniejsze rozwiazanie réwnania

T+ 207 +wiz = f(1),

gdzie f(t) = F(t)/m, ma posta¢ sumy z dowolnymi wspélczynnikami dwu liniowo nie-
zaleznych rozwazan x1(t) i z2(t) réwnania jednorodnego (z f(t) = 0) i jakiegokolwiek (tzw.
szczegllnego) rozwiazania rownania niejednorodnego. Gdyby to bylo réwnanie pierwszego
rzedu, szczegdlne rozwiazanie rownania niejednorodnego mozna by bylo znalezé metoda
uzmiennienia stalej w rozwiazaniu rownania jednorodnego. Tu jednak mamy do czynienia
z rownaniem drugiego rzedu i jesli przyjmiemy, ze

Iszcz(t) = Cl(t> T (t) + Cg(t) l’g(t) s
to po wstawieniu tego zg,(t) do wyjSciowego réwnania otrzymamy

011’1 + 2011’1 + Cli’l + 2)\(015(71 + Cljfl) + wgClscl +
021'2 + QC'gi’g + Cg!i’g + 2)\(02!13’2 + 021'2) + WSCQZL'Q = f(t) .

Nawet po wykorzystaniu tego, ze x; i xo spelniaja réwnanie jednorodne pozostaje jedno
rézniczkowe réwnanie na dwie nieznane funkcje (C; i Cy), i to réwnanie drugiego rzedu z
zaleznymi od czasu wspolczynnikami:

01251 + 2011’1 + 2)\015(31 +
02252 + 2021’2 + 2)\025132 = f(t) .

7 klopotu wybawia nas to, ze wystarczy znalez¢ jedno jakiekolwiek rozwiazanie réwnania
niejednorodnego. Mozemy wiec narzuci¢ na C'y i Cy jakies dodatkowe warunki pozwalajace
uprosci¢ powyzsze rownanie. Okazuje sie, ze wlasciwa sztuczka jest zazadanie, by C i Cs
nie byly od siebie niezalezne, lecz by spemialy zwiazek
011'1 —l—OQI’Q =0.
Zwiazek taki oznacza, ze takze
011'1 + Oli'l + CQIQ + Cgi’g =0.

Wykorzystanie narzuconego warunku upraszcza rownanie do rownania pierwszego rzedu:

Criy 4 Coiy = f(t).
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Narzucony zwiazek pozwala ponadto uzyska¢ zamkniete réwnania na C i Cs: podsta-
wiajac do powyzszego réwnania

C2:——101, lub 01:——202,
) T1
otrzymujemy dwa réwnania
. Lo
Cl = T f(t) )
T1T9 — X1X2
. T
Co=—""—"-/(1),

Toly — LTy
ktére juz tatwo scatkowaé.?”
W przypadku rozpatrywanego réwnania, dwoma liniowo niezaleznymi rozwiazaniami

réwnania jednorodnego sa®

r1(t) = e Mcoswt,  wo(t) = e Msinwt,  w=/wi— A2,
i latwo znalezé, ze @179 — 1109 = —we™ 2. Po wstawieniu tych rozwiazan do powyzszych
wzordéw znajdujemy, ze
1 (" F(r) ,
Cy=—— [ dr —2 eV sinwr,
W m
1 [t F(r
Co= — dTLe’\T COS WT ,
w m

Zatem szczegdlne rozwiazanie rownania niejednorodnego ma postac

1 t R
Tpen(t) = —— e M cos wt/ dr ﬂ e sinwT
w m

t
—i—l e Msin wt/ dr M e coswr .
w m
Dolne granice calek sa tu dowolne - rézne ich wybory daja funkcje C;(t) i Cy(t) rézniace
sie o stale, co daje rozwiazania xg,.(t) rézniace sie od siebie o pewna kombinacje li-
niowa rozwiazan x1(t) i x2(t) réwnania jednorodnego. Poniewaz pelne (najogdlniejsze)
rozwiazanie wyjsciowego réwnania ma postac

1 tOF(r
z(t) = Aye M coswt + Ay e Msinwt — — e cos wt/ dr L M sinwr
w m

1 tOP(r
+= e Msinwt / dr L M coswT
w m

1 [t F
= Aje Mcoswt + Aye Msinwt + — / dr Fir) e M sinfw(t — 7],
w m

2"Przy okazji: wspdlny mianownik tych wyrazen nazywa sie wroriskianem od Jézefa Marii Hoene
Wrorniskiego - polskiego fizyka, matematyka i filozofa, jednego z przedstawicieli polskiego mesjanizmu.
Pamietamy: Mickiewicz, Towianski i te sprawy. Zob. Gorgy Spiro “Mesjasze”. Cho¢, jak twierdzi Milosz
(w “Ziemi Ulro”), Hoene-Wrorniski “wierszoklety i jego mistycznej bandy” nie znosit...

ZOgraniczamy sie tu do przypadku w3 > A? - zob. Zadanie 2.6
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wiec wyb6r dolnych granic calek (czy tez jednej calki, w ostatnim wariancie wzoru, ktéry
zaklada, ze dolne granice obu calek sa takie same) sprowadza sie do przedefiniowania
dowolnych statych A; i Ay, ktére wyznacza sie z warunkéw poczatkowych. Jesli warunki
poczatkowe sa zadane np. w t = 0, to wygodnym wyborem dolnych granic catek jest zero,
gdyz woéwezas® x(0) = Ai2(0) = wB — MA.

Innym sposobem uzyskania tego rozwiazania jest sprowadzenie wyjsciowego rownania
rézniczkowego drugiego rzedu (z niejednorodnoscia) do ukladu dwu réwnan liniowych
pierwszego rzedu z niejednorodno$cia. Do znalezienia rozwiazania szczegdlnego réwnania
niejednorodnego mozna wtedy zastosowaé zwykla metode (juz nie wymagajaca sztuczek z
wronskianami) uzmienniania stalej, ktérej role gra wtedy dwuwymiarowy wektor. (Sposéb
ten jest przedstawiony w moim skrypcie do analizy).

Jeszcze jedna wazna metoda znalezienia rozwiazania szczegdlnego jest metoda wy-
korzystujaca funkcje Greena. W przypadku rozpatrywanego réwnania jest to funkcja
G(t — t') speliajaca réwnanie

G+ 220G+ WiG =0(t—t),
w ktérym funkcja po prawej stronie jest delta Diraca, czyli “funkcja’3® réwna zeru
wszedzie oprécz punktu ¢ = ¢/, w ktérym przyjmuje ona wartos¢ nieskonczona, tak iz
dla dowolnego a > 0

/adtd(t) =1, lub inaczej: /adt h(t)o(t) = h(0).

a —a

Rozwiazanie T, (t) réwnania 7 + 2\t + wiz = f(t) jest wtedy dane wzorem

Las(t) = / Tar G- 1) £(F).

[e.e]

Rzeczywidcie: dzialajac na obie strony tej réwnogci operatorem rézniczkowym d?/dt* +
2)\d/dt+w? dostajemy po lewej odpowiednie pochodne Zg,,, a po prawej, wprowadziwszy
ten operator pod znak calki i zadziatawszy nim na G(t — t’), dostajemy pod catka po dt’
iloczyn 6(t — ') f(t'); zgodnie z podana wyzej wlasciwoscia funkceji delta, catka da wtedy
f(t). Aby znalezé¢ taka funkcje Greena wygodnie jest zapisa¢ ja w postaci transformaty

P Rézniczkowanie Ty, (t) po t daje dwa wyrazy, ale oba one przy takim wyborze dolnej granicy catki
znikaja w t = 0: jeden bierze sie z rézniczkowania po ¢ funkcji podcatkowej - wyraz ten znika poniewaz
gbérna granice calki kladziemy potem réwna zeru - a drugi z rézniczkowania po t w gornej garnicy calki;
w wyniku tej operacji dostajemy funkcje podcalkowa wzieta w punkcie, ktéry byt gérna granica calki, a
to znéw da zero, bo sinw(t — t) = 0.

308cigle rzecz biorac delta Diraca jest dystrybucja, tj. funkcjonatem liniowym F[h(t)] na przestrzeni
funkeji h(t), czyli méwiac jezykiem praktycznym, maszynka, do ktérej wrzuca sie funkcje h(t) i otrzymuje
w rezultacie liczbe wedlug przepisu, ktéry jest liniowy wzgledem funkeji h(t). Przepis F[h(t)] = h(0)
definiuje delte Diraca jako taka wlasnie dystrybucje.
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Fouriera®' z nieznana na razie funkcja G(€):
*dQ - -
Git—t)= [ —G(Q)e .
t-t)= [ GG
Poniewaz

(S(t i t/> _ /OO C2i_Q e—iQ(t—t’) :
oo 4T

réwnanie na funkcje G(t — t') przyjmuje postaé

d? d s . / ay . /
- 2N — 2 0) e~ U=t — / e~ 1920t—t)
(dt2 2 dt ) /_Oo 27 G(@)e o ’

czyli, po “wjechaniu” z operatorem rézniczkowym pod catke i zadziataniu nim na funkcje
eksponens,

d 2 2 o —iQ(t—t’)_/ df2 —iQt—t)
/ o G(Q) (W2 — Q% —2i\Q) e = o :

Wida¢, ze rownanie bedzie spetnione, jesli

R 1
G0 =—q — W2 200 T

1
[Q+ A+ Jwd — N2][Q+ i\ — Jwi — \?]

Dopoki A # 0, osobliwosci mianownika znajduja sie poza osia rzeczywista, po ktérej bie-
gnie catkowanie po d). Leza one pod nia® w punktach Q. = —i\+ /w2 — A2 = —idt+w
plaszczyzny zespolonej zmiennej (2. Umozliwia to jawne obliczenie calki metoda residuow.

31Poniewaz G jest funkcja zmiennej majacej interpretacje czasu, przedstawiamy ja jako catke z minusem
w wyktadniku funkeji eksponens. Transformaty Fouriera funkcji zmiennych przestrzennych, np. (x),
przedstawiamy zas$ w postaci catek z plusem w wyktadniku:

v = [ (dgl)‘ D1 .

Konwencja w przypadku funkcji zmiennych przestrzennych x jest uzasadniona interpretacja transformaty
Fouriera w mechanice kwantowej: reprezentuje one rozklad funkcji falowej 1 (x) czastki reprezentujacej
kwantowomechaniczny stan tejze na funkcje falowe e’ stanéw bedacych stanami wlasnymi operatora
pedu, ktéry ma postaé P = —ihV; funkcja e’ jest funkcja wlasna tego operatora z wartoscia wlasna
hk. Odwrotny znak wyktadnika w przypadku funkcji zmiennej majacej interpretacje czasu bierze sie
oczywiscie ze Szczegélnej Teorii Wzglednodci: wyktadnik funkeji e ~#*+-X jest jedli A2 i Ak transformuja
sie przy przejsciu do innego ukladu odniesienia tak jak energia i ped, niezmiennikiem. Wreszcie czynniki
27 w mianownikach calek sa jak najbardziej wlasciwe w kontekécie fizyki statystycznej: d3k/(27)3 jest
objetoscia elementarnej komorki przestrzeni pedowej. Tak wiec wszystkie inne konwencje w jakich mate-
matycy, a niestety czesto i fizycy, zapisuja transformaty Fouriera (inne znaki w wykladnikach, czynniki
27 w innych miejscach lub, horrendum!, jakie$ v/27) powinny by¢ przez studentéw fizyki wytupane i
wybuczane!
32 Jak sie tatwo zorientowaé, jest tak takze i wtedy, gdy A\? > wg, tj. gdy w jest wielkoscia urojona.
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Zgodnie z lematem Jordana,®® gdy ¢ — t' > 0, kontur calkowania nalezy domknaé¢ duzym
pétokregiem w dolnej pétptaszezyznie (catka po tylko tym pélokregu znika w granicy nie-
skoriczonego jego promienia). Oba punkty osobliwe, w ktérych funkcja podcatkowa ma
bieguny proste, leza wewnatrz tego konturu. Otrzymujemy wtedy wyrazenie

-7 { —e~ A=t piw(t—t) o= A(t—t) piw(t—t') }

2 2w + —2w

ktére mozna zwinaé do sinusa. Jesli zas t — ¢’ < 0 kontur catkowania nalezy domknaé
duzym polokregiem w gornej péiplaszczyznie. Poniewaz wewnatrz konturu catkowania
niema w tym przypadku zadnych osobliwosci, catka daje zero. Zatem

1 ,
Git—t) =0t —t)=e M sinw(t —t).
w
Funkcja 6(t — t') Heviside’a jest réwna 1, gdy ¢t — ' > 01 zero, gdy t — ¢’ < 0.
Rozwiazanie szczegdlne jest wiec dane przez

mw mw

[e.e] —00

e’} F / , t F / ,
Tager(t) = / dt' o(t —t') ﬂ e M) sinw(t —t) = / dt’ ﬂ e M) sinw(t —t).

Funkcja (t —t') “obcina” gdérna granice calki po dt’. Rozwiazanie to odpowiada znalezio-
nemu poprzednio w przypadku szczegdlnego wyboru (—oo) dolnej granicy wystepujacej
tam catki.?*

3370b. méj skrypt z calkami zespolonymi.

34Warto tu jeszcze uczynié nastepujacy komentarz. Jesli A # 0, czyli gdy w ukladzie wystepuje
thumienie powodujace asymetrie wzgledem zmiany kierunku czasu, tj. nieodwracalno$é ruchu (pusz-
czony od tylu film z nagranym takim ruchem ukaze ruch, ktéry w sposéb oczywisty jest “niefizyczny”
i funkcja Tywspak(t) = Tssen(—t) go reprezentujaca nie spemia réwnania ruchu i + 2A\& 4+ wiz = f(—t)).
Funkcja Greena jest w takim przypadku catkowicie przyczynowa. Wyraza sie to funkcja (¢t — t') réwna
zeru gdy ¢ < t': na Tge,(t) w chwili ¢ dane calka

Teren(t) = /7 T Gl — ) £,

wplywa tylko przebieg sity f(t') w chwilach wezesniejszych od t.

Jedli A = 0, funkcja podcatkowa we wzorze na funkcje G(t —t’) ma osobliwosci na osi rzeczywistej, czyli
na drodze catkowania. Aby znalezé G(t—t'), trzeba nadaé calce sens, podajac jakis sposéb ominiecia tych
osobliwoéci. Sposobdéw jest kilka: mozna np. przesunaé oba bieguny infinitezymalnie pod o$ rzeczywista,
co da przyczynowa fukcje Greena, tak jak wtedy, gdy A # 0. Mozna tez przesunaé oba nad o$, co da
funkcje antyprzyczynowa, réwna zeru gdy t > ¢’ - warto$é Zg,c,(t) w chwili ¢ bedzie wtedy wyznaczona
przez zachowanie sie sity w przysztosci, ale poniewaz réwnanie ruchu jest teraz niezmiennicze wzgledem
odwrdécenia czasu, przyszlosé jest nieodréznialna od przesziosci. Mozna wreszcie przesunaé jeden biegun
pod 0§, a drugi nad; prowadzi to do tzw. feynmanowskiej funkcji Greena, szeroko wykorzystywanej
w kwantowej teorii pola (propagator feynmanowski!). Oczywiscie wszystkie funkcje Greena uzyskane z
rézmych przepiséw spehiaja réwnanie G + w3G = §(t — t') - réznia sie one o jakie§ rozwiazanie AG
réwnania jednorodnego AG + WAAG = 0.
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Rozwiazanie z funkcja Greena mozna takze otrzymacé¢ mniej “apriorycznie”, argumen-
tujac, ze kazda sile F(t) mozna przedstawié w postaci superpozycji sito réznych harmo-
nicznych zaleznosciach od czasu, czyli po prostu w postaci catki Fouriera

O _ (4O o

m 02T m

Amplitudy F(Q)/m sa dane przez odwrotna transformate:

m:/wdtwemt_

m m

—00

Poniewaz funkcja F'(t) jest rzeczywista, zespolone amplitudy F(Q) spehiaja zwiazek
F*(Q) = F(—9Q). Z Zadania 2.8 znamy juz rozwiazanie réwnania

F(Q)
F420+wiz = Le_mt.
m

Ma ono postac:

F(9) 1 i

t,Q) =
A == T ana ¢

(w poréwnaniu z Zadaniem 2.8 zostal tu zmieniony znak 2). Rozwiazanie réwnania z
dowolng sita, F'(t)/m musi wiec by¢, dzieki liniowosci, superpozycja takich rozwiazan, tj.

calka po €
> dQ F(Q) 1 o
szez(t) = R
Zcat) / 2 m wi— 02— 200 °

Wstawiajac tu transformate F(Q)/m sity wyrazona przez catke z samej sity F(t) i zamie-
niajac kolejnoéé¢ catkowan otrzymujemy>”

© R() [%dQ 1 o
wren 1) = d/ iQt"  —iQt
a1 /_ m / 2 Wi — 220" °

oo

co jest tym samym, co dostalismy metoda funkcji Greena. Aby to zobaczy¢, wystarczy
napisac

oo —iQ(t—t’)
racs(t) = | d’F()/ o
e —c0 m 2 [Q+iX — Jwd — N2][Q + i\ + JwE — A\?]

i wykona¢ caltke po d) metoda residuéw, by otrzymaé (w = \/wg — \2)

T (t) = /_ at T gy e300 ginfiot — ).

mw

35Powinniémy tu jeszcze wziaé czesé rzeczywista: xSZCZ( ) =Re(2ssc2(t)), ale jak latwo sie zorientowaé
(co potwierdza wynik koricowy), poniewaz F*(Q) = F(—Q), rozwiazanie zgc,(t) jest juz samo z siebie
rzeczywiste.
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Zadanie 2.14

Rozwiazujac réwnanie Newtona z sila Lorentza F = ¢(E + v x B), przedyskutowaé
ruch czastki o tadunku elektrycznym ¢ i masie m w stalych i jednorodnych, wzajem-
nie prostopadtych polach: elektrycznym E i magnetycznym B, w zaleznosci od predkosci
poczatkowej v czastki. Sprawdzi¢ otrzymane rozwiazanie r(t) w przypadku znikania pola
magnetycznego lub elektrycznego. Przedyskutowaé takze wszystkie mozliwe typy rzutéw
toru czastki na plaszczyzne prostopadia do pola magnetycznego w zaleznosci od rzutu
predkosci czastki na te plaszczyzne w chwili wybranej za poczatkowa.

Rozwiazanie:
Réwananie Newtona determinujace ruch czastki ma (w tym nienormalnym uktadzie SI)
postac

d2

m—r(t)=q(E+v(t)xB).

3 r(t) = g (B+ (1)< B)
Aby rozpisaé je na poszczegdlne sktadowe, wybieramy (zgodnie z wielowiekowa tradycja)
o$ z kartezjanskiego ukladu odniesienia tak, by pokrywala sie z kierunkiem pola magne-
tycznego, a o$ y kierujemy wzdluz pola elektrycznego:

E=e/ L, B=e.B.

Poniewaz pola E i B sa stale i jednorodne, mozemy, bez straty ogdélnosci, wybrac¢ poczatek
tego ukladu odniesienia w punkcie, w ktorym czastka znajduje sie w chwili t = 0. Wa-
runkami poczatkowymi sa wiec

r(0)=ro=0, oraz 1(0)=vy.
Je?i v(t) = e, + e,y +e,2, to
vit)yxB=|0 0 B|=e,By—e,Bi.
e, € e,

Rozpisane na sktadowe rownanie Newtona ma wiec postac

T = wpy,
y :_WB$+WB§7
Z=0.

Zostalo tu wprowadzone tradycyjne oznaczenie tzw. czestosci cyklotronowej

Poniewaz trzecie rownanie jest niezalezne od dwu pierwszych, jego rozwiazanie jest oczy-
wiste (uwzgledniamy tu, ze 2(0) = 0): z(t) = vit. Zauwazmy przy tym, ze zadanie mozna
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bytoby uogélni¢ odrzucajac warunek prostopadtosci pol E i B: mozna by wtedy przyjac
E i B: mozna by wtedy przyja¢c B = e.B i E = e,/ + e, F*; dwa pierwsze rownania
wyznaczajace ruch czastki w plaszczyznie xy pozostalyby wtedy bez zmian, a trzecie
przybratoby posta¢ Z = gE*/m, nadal niezalezna od dwu pozostalych i rozwiazaniem jego
bytaby funkcja z(t) = vit + (qE*/2m)t?.

Dwa pierwsze rownania mozna rozwiazac¢ kilkoma sposobami. Tu podamy dwa z nich.

Sposdb pierwszy: Drugie z réwnan, §j = —wpd + wp(F/B), mozna przepisaé w postaci

—d )+ w —t] =0
T — w
dt Yy B BB )

z ktérej wynika, iz

) E

y(t) + wpx(t) — wBEt =Cy.
Stata C'y mozna natychmiast wyznaczy¢ z warunkéw poczatkowych obliczajac lews strone
powyzszej réwnosci dla ¢ = 0. Poniewaz x(0) = 0, znajdujemy w ten sposéb C, = v.
Podstawiajac teraz tak znalezione g(t) do pierwszego réwnania, otrzymujemy zamkniete
réwnanie rézniczkowe drugiego rzedu na x(t)

E
T +w]23x:w]23§t+w3vg.

Jest to oczywiscie réwnanie oscylatora harmonicznego o czestosci wg poddanego dziataniu
zaleznej od czasu “sity pobudzajacej” F(t) = m(w%(E/B)t+wpv]). Poniewaz jednak owa
sita jest od czasu zalezna liniowo, byloby malto praktyczne korzysta¢ z wyprowadzonego
w Zadaniu 2.11 ogélnego rozwiazania tego réwnania. (Ale jak ktos chce, to prosze bardzo
- to moze by¢ pozyteczne ¢wiczenie.) Zamiast tego lepiej postuzy¢ sie tu znana sztuczka
i przepisaé¢ to rownanie w zmodyfikowanej postaci

d? E vy ) FE vy

czyli w postaci € + w3e = 0z £(t) = z(t) — (E/B)t — (vl /wg), w ktérej rozwi??zanie jest
ju?? oczywiste: £(t) = Acoswpt + D sinwgt, czyli
y FE
x(t) = SR Acoswpt + Dsinwgt.
wp B

Warunki poczatkowe z(0) = 0, #(0) = v} pozwalaja od razu wyznaczy¢ stale A i D:

A=—v§/wp, D =1§/wp — E/Bwg, co prowadzi do
E 4 1 E
x(t) = Et+ 5—(;(1 — coswpt) + o (vé” - E) sinwpt .
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Majac juz jawne rozwiazanie x(t), mozna teraz wréci¢ do réwnania na y(t):
. y E
y(t) = v + WBEt — wpx(t).

Wstawiajac tu znalezione x(t), otrzymujemy réwnanie

d y R A
Ey:vocosw]gt— UO—E sinwpt,

ktére juz jest latwo scatkowaé¢. Zauwazmy jednak, ze po prawej stronie tego réwnania
nie wystepuje czlon liniowy w ¢t. Oznacza to, ze v¥(t) = y(t) nie rosnie liniowo z czasem,
mimo, ze to wlasnie w tym kierunku (na plaszczyznie xy) na czastke dziala stala sita
pochodzaca od pola elektrycznego E! Catkujac powyzsze réwnanie, otrzymujemy

vy 1 E
t)=C+ Lsinwpt + — (vf — = | coswpt,
y(t) oy, St + (Uo B) wp

a stala catkowania C ustalamy z warunku y(0) =0: C = —(v§ — E/B)/ws.
Sposob drugi: Dwa rownania

T —wpy =0,

?J‘I‘WBi'ZWBE,

po pomnozeniu drugiego przez ¢ dodajemy do siebie stronami. Wprowadzamy przy tym
zespolong zmienna,

§(t) = x(t) +iy(t),
na ktéra w ten sposéb otrzymujemy réownanie
£ +iwgé = Wwp -

Réwnanie to przepisujemy w rownowaznej postaci

d? E o d E

Na zespolona zmienna 7(t) = £(t) — (E/B)t mamy zatem réwnanie

d ) . .
E(?’H—szn) =0, czyli N +iwgn=C.

Ma ono oczywiste rozwiazanie

C )
n(t) = —i— + De 5",
WwpB
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Stad

E C
E(t) =x(t) +iy(t) = =t —i— + D (coswpt — isinwpt) .
B wp
Zespolone state C i D wyznaczamy teraz z warunkéw poczatkowych £(0) = 0 oraz £(0) =
vE + ivy. Daje to réwnania

C
—i—+D =0,
WB
1)
E—ZMBID) = vaﬂ—i—ivé’,

czyli

]D):E<—E+vo+wg), C:—E+vo+wé’.

Obydwiema metodami dostajemy zatem te same rozwiazania

W =Ly g 04— (op = L) sinwpt
z(t) = =t+ —(1 —cosw — (v — = | sinw
B wp 5 wp 0 B B
vy 1 E
t) = 0 t+— (7= =) (=1 t
y(t) o, Snws +WB (UO B)( + coswpt),
2(t) = vit.

Od razu zauwazmy, iz z rozwiazania tego wynika, ze jesli v§ = 0, a v§ = E/B, to rzut
czastki na plaszczyzne xy przemieszcza sie ruchem jednostajnym prostoliniowym wzdhiz
osi = ze stala predkoscia v = e,(E/B). Jest to mozliwe, gdyz sila gv x B ma wtedy
doktadnie kierunek sity ¢E, te sama co ona warto$¢, ale przeciwny zwrot. Sily te wiec
catkowicie sie rownowazg.

W ramach kontroli poprawnosci uzyskanego rozwiazania zbadamy jeszcze inne przy-
padki graniczne.

e B=0. W tym przypadku powinniSmy (na plaszczyZnie xy) otrzymaé ruch jedno-
stajnie przyspieszony w kierunku osi y i jednostajny w kierunku osi x. Pamietajac,
ze wg X B, rozwijamy funkcje sin wgt i coswpgt i bierzemy granice wg — 0:

E 4 1 1 E
:c(t):Et—i-Z—(;(l—l—i-ﬁw%t?qL...)—i-@(vg—g) (wpt+...)
E

xT E x
:§t+vot—§t+(’)(w3t2) — gt

i podobnie

Yy
Yo 1 . E Ly
t) = — t+ ... — —— | (-14+1—-wit*+...
y() (A)B(WB >+MB (UO B)( QWB )

1 E
— ot = —— Wit + O(wpt) — vt + g—m 2.

E
2B(A)B
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e E = 0. Rozwiazania (na plaszczyznie xy) redukuja sie w tym przypadku do

T

vy g

x(t) = —(1 — coswpt) + — sinwpt,
wp wp
vy v

y(t) = —sinwpt + —(—1 4+ coswpt) .
wp wpB

Pozwalaja one znalezé tor ruchu czastki (przenosimy wyrazy bez funkcji trygono-
metrycznych na lewa strona, podnosimy oba tak otrzymane réwnania stronami do
kwadratu i dodajemy stronami do siebie):

2 2 2
vy vE V3% + v
r— ) gyt L) =00
wpB wp )

Torem ruchu jest wiec w tym przypadku okrag o promieniu R = m|vo,|/q|B|,
gdzie vi, jest prostopadia do pola magnetycznego sktadowa predkosci poczatkowej.
Polozenie §rodka okregu zalezy od wartosci sktadowych of i v§. Dlugosé |vo, | tej
predkosci nie ulega w trakcie ruchu zmianie, gdyz dzialajaca na ladunek sita wy-
twarzana przez pole magnetyczne, bedac zawsze prostopadia do chwiliwej predkosci
tadunku, nie wykonuje pracy:

Wg = /dtv(t)-FB = /dtv(t)-(qva) =0.

Okresem obiegu czastki po okregu jest T = 27 /wp. Jedli skladowa v§ predkosci
poczatkowej nie jest zerowa (ale pole elektryczne E nie ma skladowej wzdluz pola
B), czastka porusza sie po linii srubowej (ktérej rzutem na plaszczyzne xy jest
okrag) o skoku [ = v§T'. Jesli zas pole elektryczne E ma niezerowa skladowa wzduz
pola B, skok linii sSrubowej rosnie liniowo z czasem.

W ogdélnym przypadku, gdy niezerowe sa oba pola ruch czastki na plaszczyznie xy jest
zlozeniem ruchu po okregu z dryfem w kierunku osi x z predkoscia réwna Va,y = €, (E/B).
Aby sie o tym przekonaé¢ mozna, tak jak w przypadku zerowego pola E, dodaé¢ stronami
podniesione do kwadratu réwnania, co da

E, v 2+ (e E 2 vg2+1 . E\?
r——t—— — (v — = =+ (v -=) .
B wp YT\ B wy  wy \ " B

Otrzymany zwiazek z z y nie jest wprawdzie rownaniem toru w Scistym sensie, gdyz czas ¢
nie zostal zen catkowicie wyeliminowany, ale pozwala przekonaé sie o stusznosci powyzszej
interpretacji: przedstawia on bowiem okrag, ktoreg srodek przesuwa sie rownolegle do osi
x ze stala predkoscia V. = €, (E/B).

Jakosciowo (i do$¢ nieprecyzyjnie) powstawanie dryfu mozna zrozumie¢ tak. Jesli
czastka naladowana (dodatnio) porusza sie w plaszczyznie xy po okregu zgodnie z ruchem
wskazowek zegara, to w okolicach “godz. 9”7 jest przyspieszana przez pole elektryczne, a
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w okolicach “godz. 3” jest przez to pole opdzniana. W rezultacie, w okolicach “godz. 127,
gdy porusza sie w prawo ma wieksza predko$¢ niz w okolicach “godz. 67, gdy porusza sie
w lewo. Skutkiem tego w czasie obiegania calego okregu przemiesci sie troche w prawo.

Ten sam wniosek mozna takze otrzymac, jak teraz pokazemy, rozpatrujac ten ruch
wzgledem ukladu poruszajacego sie w kierunku osi x z odpowiednio dobrana predkoscia.
Réwnanie Newtona m a = F . jest niezmiennicze wzgledem transformacji Galileusza,
przy czym wystepujace w nim zwykle sity “mechaniczne” F.a (zaliczajac do takich
réwniez sity grawitacji traktowanej po newtonowsku, czyli nierelatywistycznie) sa takie
same w dwu ukladach poruszajacych sie jeden wzgledem drugiego z predkoscia V. Silty
elektromagnetyczne zachowuja sie jednak w zasadzie inaczej, gdyz teoria Maxwella jest
niezmiennicza wzgledem transformacji Lorentza, a nie Galileusza. W zwiazku z tym, aby
dowiedzie¢ sie, jakie pola elektromagnetyczne E'(¢',r') 1 B'(¢',r") wystepuja w ukladzie
poruszajacym sie, gdy w uktadzie nieruchomym wystepuja pola E(¢,r) i B(¢,r), przyto-
czymy tu dla bezpieczenstwa pelne relatywistyczne wzory i “przykroimy” je do matych
wzglednych predkosci V. Wzory te (w uktadzie SI) maja postac:

2 V[V
E=vE+VxB) - Y (1.E
@+ VB - T (Tom),
72

c ¢ 1+~ ¢ \ ¢ ’

gdzie v = 1/4/1 —V?2/c2. Po lewej stronie pola E' i B’ sa tu wziete w czasoprzestrzen-
nym punkcie (¢, 1'), a pola E i B po prawej stronie w punkcie (¢,r) zwiazanym z (¢', ')
transformacja Lorentza (poniewaz w naszym problemie pola sa stale i jednorodne, jest to
tu nieistotne). Z doktadnoscia do wyrazéw malych, gdy |V|/c < 1 (a v &~ 1) mozna te
wzory przyblizy¢ przez

E~E+VxB, B ~B,

a czas t’ utozsami¢ z t. W ukladzie poruszajacym sie z predkoscia V réwnanie Newtona
bedzie mialo zatem postaé (v’ jest predkoscia czastki w primowanym ukladzie odniesienia)
d I d r_ / / N o~ /
MmooV Amo v =q¢(E+ v xB)~q¢E+VxB+vxB).
Poniewaz po praawej stronie v/ +V = v, wiec rzeczywiscie w rozpatrywanym przyblizeniu
prawa strona réwnania Newtona nie zmienia sie (tj. sila jest taka sama, jak w ukladzie
pierwotnym bo wystepujaca w sile Lorentza predko$¢ v jest ta, jaka czastka miata w
tamtym uktadzie). Jesli wybierzemy

B ExB

V =
B2~

to wéwczas (ogdlnie)

(E-B)

VxB=-E-+B
8 MANTTE
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Przy prostopadlych (w wyjsciowym ukladzie odniesienia) polach E i B drugi czlon w
powyzszym wzorze znika i w uktadzie poruszajacym sie z predkoscia V o wartosci |V| =
E/B pole E zostaje wyeliminowane i ruch, jak juz to analizowali$my, jest ruchem po
okregu.

Przeanalizujemy teraz charakter toru czastki na plaszczyznie xy w zaleznosci od jej
predkosci poczatkowej. Aby uproscié¢ to zadanie, przyjmiemy, ze v§ = 0. Nie ogranicza to
ogolnoéci, gdyz predkosé

E
y(t) = v§ coswpt + (E - vg) sinwpt,
nieuchronnie zeruje si¢ co jakis czas (réwnanie () = 0 ma nieskonczenie wiele rozwiazan,
bo funkcja tgwpt jest okresowa i przyjmuje wszystkie mozliwe wartosci od —oo do +00).
Zatem wybér v§ = 0 jest w gruncie rzeczy wyborem chwili od ktérej liczony jest czas t.
Przy tym uproszczeniu, réwnania, ktére trzeba analizowaé, to®0

E
x(t) = Et_l_ — (vf)” — E) sinwpt,

1 /. E
y(t) = o (UO — E) (—1 + coswpt) .

Mozemy teraz rozpatrzy¢ rézne przypadki (zgodnie z tym, co powiedzieliSmy wyzej, przy-
padki te wyczerpuja zbiér wszystkich mozliwosci ruchu w skrzyzowanych polach B i E;
kazdy ruch jest klasyfikowany podiug wartosci, jaka przyjmuje z-owa sktadowa predkosci
w chwili, gdy zeruje sie jej y-kowa skladowa).

e vj = 0. Rozwiazania upraszczaja sie do

W =Zi- £ nwpt
x(t)=—=t— sin w
B" Bwp 7V
E
y(t) = By (1 — coswpt) .

Tor ruchu jest w tym przypadku najpospolitsza cykloida. Jest to krzywa plaska
jaka zakresla punkt na obwodzie kola toczacego sie po plaszczyznie. Jest wiec to
ciag z lekka splaszczonych tukéw opartych na prostej y = 0 (zmienna y nigdy nie
jest ujemna) - cos jak warszawskie Arkady Kubickiego (zob. lewy panel rysunku
28); dwa sasiednie tuki w miejscu stykania sie ze soba i z prosta tworza dziubek.
Charakter zmiany wspotrzednych z i y w okolicach takich dziubkéw mozna wydoby¢
patrzac na powyzsze wzory w granicy t ~ 0:

E
1)~ — Wi t) ~ — wpt?.
Pt) % BByl e
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Rysunek 28: Rzut na plaszczyzne xy toru czastki naladowanej dodatnio poruszajacej sie
w skrzyzowanych polach elektrycznym i magnetycznym E = Ee,, B = Be,, (E,B > 0).
Potozenia z i y sa tu mierzone w jednostkach F/Bwg. Po lewej: v = 0 - torem sa Arkady
Kubickiego. Po prawej: v¥ = —0.4 (w jednostkach E/B).

Wynika z tych przyblizen, ze gdy t ro$nie od zera, rosng zarowno x jak i y, ale y
rosnie szybciej - stad ostrosé “dziubkéw” (dzieki periodycznosci ruchu w zmiennej
y, ten sam charakter ma przechodzenie przez kolejne “dziubki”).

e v7 < 0. Rozwijajac Scisty wzér na x(t) wokét t = 0 znajdujemy, ze z(t) ~ vt
- dla malych dodatnich ¢ wspélrzedna x jest ujemna, czyli w swoim ruchu wzdtuz
osi # punkt przez chwile sie cofa (w chwili £ = 0 punkt jest w x = 0). Jest to
jednak efekt chwilowy (wiemy, ze w sumie wystepuje dryf do przodu i ze jest on
niezalezny od wartosci 7). Ponadto, poniewaz v§ < 0, zmienna y nigdy nie jest
ujemna. Wynika stad, ze “dziubki” arkad Kubickiego wygtadzaja sie, tj. przechodza
w precelki. Oczywiscie w punktach najwigkszego wzniesienia, tj. tam, gdzie y = 0
iy > 0, czyli gdy coswpt = —1 (wpt = 7(2n + 1)), predko$¢ w kierunku osi
x nie znika, @ = 2(F/B) — v§ > 0 (na dole za$, gdy y = 01z = 0, tj. gdy
coswpt = 1 dla wt = 2nm, jak juz stwierdziliSmy, predkos¢ w tym kierunku jest
ujemna, & = v§ < 0). Wielkos¢ precelkéw oraz maksymalny ich zasieg w kierunku
y sa oczywiscie tym wicksze, im bardziej ujemna jest warto$¢ v¥ (gdy —vf > E/B
rzut toru przypomina raczej kolejne okregi nieznacznie tylko przesuniete wzgledem
siebie w kierunku dryfu).

e 0 <o} < E/B. W tym przypadku zmienna y(¢) nadal nigdy nie jest ujemna, (bo
vy — E/B < 0) i narasta, gdy t 2 0 jak

1 (E
y(t)%§ 5 wpt + ...,

W punktach o y = 0 (czyli, gdy coswpt = 1) & = v > 0; takze w punktach
najwyzszego wzniesienia nad o$ z-6w (gdy coswpt = —1) @ = 2(E/B) — v >
0 (w istocie predkosé¢ #(t) jest stale dodatnia i zmienia si¢ w zakresie od v§ do
2(F/B)—uv}). Najwyzsze wzniesienie, czyli maksymalna wartos¢ y(t) maleje jednak
ze wzrostem vf i, gdy v§ = E/B, staje sie ono rowne zeru, y(t) = 0 - ruch przechodzi
wtedy w analizowany juz dryf.

36Najlepiej mierzy¢ v§ w jednostkach E/B, x i y w jednostkach E/Bwp, a czas w jednostkach 1/wp;
wtedy wzory, ktére analizujemy maja posta¢ x =t + (v — 1) sint, y = (1 — v)(1 — cost).
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Rysunek 29: Rzut na plaszczyzne xy toru czastki naladowanej dodatnio poruszajacej sie
w skrzyzowanych polach elektrycznym i magnetycznym E = Ee,, B = Be,, (E,B > 0).
Potozenia x i y sa tu mierzone w jednostkach F/Bwg. Po lewej: v§ = 0.3 (w jednostkach
E/B) - dziubki Arkad Kubickiego si¢ wygladzaja. Po prawej: v§ = 1.3 (w jednostkach
E/B) - wygladzone arkady przesuwaja sie ponizej osi y.

e F/B < v§ < 2(E/B). W tym przypadku z kolei zmienna y(¢) nigdy nie jest
dodatnia, predkos$¢ () jest tez stale dodatnia. Jakosciowo ruch wyglada podobnie
jak w poprzednim przypadku, tj. dla 0 < v < E/B, tylko wygtadzone “cokoty”
arkad sa ponizej osi y i sa przesuniete w prawo. Dokladniej: tory odpowiadajace
0 <vj < E/B1iE/B—v§ sa wzgledem siebie przesuniete o 2E/Bwp wzdluz osi y
iomFE/Bwg wzdhiz osi .

e vj =2(E/B). W tym przypadku powstaja dziubki w punktach o minimalnej (mak-
symalnie ujemnej) wartosci zmiennej y(t), czyli tam, gdzie y = 01y < 0 - predkosé
T jest tam réowna zeru (oczywiscie © = vf tam, gdzie y = 01y = 0). Tor wiec
przypomina znéw Arkady Kubickiego, tylko przesuniete w dét o —2(E/B)/wp i w
prawo o mE/Bwp.

e v > 2(E/B). Tor ponownie robi precelki, tj. # < 0 tam, gdzie y =01y < 0.

Scisle rzecz biorac tylko krzywa “Arkady Kubickiego” nazywa sie cykloida; krzywe
wygladzone i te z precelkami nosza inna zawita nazwe, ktéra mi uleciata z glowy. Wszyst-
kie te krzywe mozna jednak otrzymac jako tory wytyczane na plaszczyznie przez punkt
znajdujacy sie na kole toczacym sie bez poslizgu po prostej rownoleglej do osi x. Jesli
koto toczy sie po osi x, a punkt znajduje sie na jego obwodzie, dostajemy cykloide (“Ar-
kady Kubickiego”). Jesli punkt jest blizej srodka kota, otrzymujemy wygtadzone cokoty
arkad. Wreszcie, gdy punkt jest dalej od srodka kota niz obwdéd, ktéry toczy sie po prostej,
dostajemy precelki.
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Przypomnienie
Jedli sita F wystepujaca w réwnaniu Newtona

d
ﬁmV:F,

wyznaczajacym ruch jednej czastki jest potencjalna, tj.
F=-VV(x),
i potencjal V(x) nie zalezy jawnie od czasu, to

B d d (1 dr d (1 ., d
0=v <dtmv F>_dt <2mv)+dt VV(X>_dt <2mv>+dtV(x).

Stad rownanie Newtona ma w takim przypadku catke pierwsza

1

§mv2 +V(x)=FE.
Stata F jest energia catkowita (kinetyczna plus potencjalna). W przypadku ruchu jedno-
wymiarowego wykorzystanie tej calki - tzw. calki pierwszej energii - sprowadza problem
znalezienia ruchu do kwadratury (tj. do wykonania jednej calki):

V2 Ja=t [ 7e5m

— |dt=%4 | ——,

m E—V(x)

Zmak =+ jest znakiem predkosci. Ruch moze sie odbywaé tylko w obszarze, w ktérym
E > V(x). Punkty z;, w ktérych zachodzi réwnosé V(z;) = E nazywaja sie punktami
zwrotnymi. Czastka poruszajaca sie w kierunku takiego punktu nie moze go przekroczy¢:
albo po dojsciu don znak jej predkosci zmienia sie na przeciwny i zaczyna sie ona oden
oddalaé¢ (nalezy przy tym naogél “recznie” zmienié¢ znak w powyzszym wzorze), albo
dociera do tego punktu zwrotnego dopiero w granicy t — oo. Z kolei punkty xo, w
ktorych V'(xq) = 0 (ogdlniej, punkty xq, w ktérych VV (x) = 0) sa punktami réwnowagi
- znika z nich sila dzialajaca na czastke. Jesli V" (xq) > 0 (forma kwadratowa 0,0;V jest
w Xo dodatnio okreslona), punkt x¢ jest punktem réwnowagi trwalej.

W mechanice lagrangeowskiej, jesli uklad ma jeden stopien swobody, tzn. do podania
jego polozenia potrzebna jest tylko jedna wspdlrzedna uogélniona ¢(t), a jego lagrangian
L = L(q, ¢) nie zalezy jawnie od czasu, wykorzystanie calki pierwszej, jaka jest “hamilto-
nian” (ktéry czesto, choé nie zawsze, jest catkowita energia mechaniczna uktadu mierzona
w ukladzie inercjalnym)

L
'a——L:h:const,

q EX,
pozwala sprowadzi¢ rozwiazanie problemu do podobnej kwadratury.
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Czesto rowniez w przypadku uktadéow o wigkszej liczbie stopni swobody istnienie in-
nych wielkosci zachowanych (statych ruchu) pozwala sprowadzi¢ rozwiazanie problemu do
kwadratury. Typowym przykladem jest tu ruch masy m w polu sity centralnej (zob. roz-
dziat 10), tj. sity potencjalnej F(r) = —VV (r) = —e,.(dV(r)/dr), ktérej potencjal zalezy
tylko od r = |r|. Uktad taki ma a priori 3 stopnie swobody; stalo$¢ w tym przypadku
wektora momentu pedu L = mr X r pozwala jednak ograniczy¢ ruch do plaszczyzny (dwa
stopnie swobody), a stalosé¢ jego sktadowej prostopadlej do tej ptaszczyzny pozwala wyeli-
minowac jeszcze jedna zmienna i z pomoca calki pierwszej energii sprowadzi¢ rozwiazanie
do kwadratury. Statosci momentu pedu L dowodzi sie rézniczkujac go po czasie:

L d

E—mﬁ(rxi‘):m(fxi‘erxi‘):mrxi‘,

i wykorzystujac réwnanie ruchu mi = F. Poniewaz r x F, gdy F = —e,(dV/dr), otrzy-
mujemy ze L = 0.
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V(x)

Rysunek 30: Krzywa niebieska: potencjal Morse’a V(z) (na pionowej osi odtozono V/V4).
Przeciecie tej krzywej z linia zielona (odpowiadajaca V = E > 0) wyznacza punkt zwrotny
x_, a jej przeciecia z linig czerwong (V' = E < 0) wyznacza punkty zwrotne x_ i x.

Zadanie 3.1
Zmalez¢ jednowymiarowy ruch czastki o masie m w potencjale Morse’a

Viz) =V (e —2e7), Vo, a > 0.

W przypadku ruchu z ujemna catkowita energia E wyznaczy¢ jego okres. Pokazaé, ze
gdy € = Vy — |E| < Vp, ruch jest w przyblizeniu harmoniczny i sprawdzié¢, ze czestosé
tego ruchu harmonicznego (czyli takze okres) mozna znalezé rozwijajac potencjal wokdt
minimum. W przypadku E > 0, pokaza¢, ze dla t — 400 ruch jest niemal ruchem
jednostajnym. Podaé¢ odpowiadajaca tej granicy asymptotyczna postaé x(t).

Rozwiazanie:
Ruch moze sie odbywaé jedynie w obszarze, w ktérym E > V' (z). Punkty zwrotne x4, w
ktérych E =V (z+), znajdujemy, podstawiajac z = e=°%, z réwnosci E/Vy = 2% — 2z:

ze =121+ E/Vy.

Poniewaz zmienna z = e~** musi by¢ dodatnia, dwa rozwiazania istnieja tylko, gdy £ < 0,
tj. gdy /1 4+ E/Vy < 1; Jesli E > 0, rozwiazaniem jest tylko z_. Znajdujemy wiec, ze

s _ 1 171+ E/V

1+ /11 EV,  —E/Vy
czyli:

1 V2 E—
x_:—ln( Vi + V% VO), gdy E >0,

@ E

L (VoF VG = VlE]

=—1 dy F )
Tx Oén< ‘E‘ ) gay <0
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Gdy E = 0, wziecie granicy daje x_ = —(1/a)In2 (punkt =, istniejacy, gdy £ — 07,
ucieka wtedy do +00).

Dzieki zasadzie zachowania energii, zalezno$¢ x(t) wyznaczana przez réwnanie New-
tona (ktére jest rownaniem drugiego rzedu) jest, poniewaz badany ruch jest jednowymia-
rowy, dana jedna catka

dx

2 z(t) /m(t
\ —(t—t .
m ( 0) /to /E V (t0) \/E ‘/0 —2ax _ Q- am)

Znaki + odpowiadaja dwu mozliwym kierunkom predkosci @(t). Znalezione wyzej punkty
zwrotne sa punktami, w ktérych zeruje sie wyrazenie pod pierwiastkiem. Wyznaczaja
one dopuszczalne zakresy catkowania (wybory x(t9) i x(t)). Po podstawieniu y = e**
otrzymujemy (przechodzimy tu dla wygody do calki nieoznaczonej traktujac ¢y jak stala

catkowania)
/2 d
— (t—to) = 2
m VEY? +2Vy — Vo

Oczywiscie domy$lnie zakres calkowania w zmiennej y pozostaje nadal ograniczony do
obszaru, w ktorym wyrazenie pod pierwiastkiem jest nieujemne.

Zbadamy najpierw ruch zachodzacy z £ > 0, gdy jest tylko jeden punkt zwrotny x—.
Wprowadzajac oznaczenie a = Vy/E > 0, przepisujemy ostatnia réwnosé w postaci

20%°F (t— 1) / /
\/ T (t —to) ’
m VY2 —|—2ay—a V22— b?
po dokonaniu w calce podstawienia

z=y+a V' =a+ad’.
Calka jest standardowa. Po przeskalowaniu zmiennej, £ = z/b, podstawiamy ¢ = ché i
otrzymujemy:37

202F z z 22

3TRéwnowaznoéé dwu postaci wyniku tatwo ustalié: jedli Arch & = 0, to ch @ = &, a zatem, przy

oznaczeniu t = e?,

1 1

5 <t+ Z) =¢, czyli 2 -2t +1=0.

Stad (Arch&)y =01 =1In(§ £ /€2 —1). Sa oczywiscie dwa rozw1azan1a gdyz funkCJa ch 6 jest funkcja
parzysta; tatwo wiec zobaczy¢, ze 9, = —0+, bo In(§ + /& —1)+In(§ — /& —-1) =Inl =0. Tym

samym w rozwiazaniu wyzej mozna wzia¢ dowolne z tych dwu rozwiazan, bo i tak przed calym wyrazeniem
wystepuje +.
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Odwiktujac i wracajac do zmiennej y mamy stad

m

202F
y+a:\/a+a20h< a (t—t0)>.

Pamietajac, ze a = Vy/F, a y = exp(ax), otrzymujemy ostatecznie ruch w postaci

x():ll {‘g —1+,/1+%ch< 20:2E(t—t0)>]}.

Widaé, ze x(ty) = x_, tj. w chwili ¢t = ¢, czastka osiaga punkt zwrotny i w tejze chwili, co
takze widaé, @ (tg) = 0 - predkosé¢ zeruje sie, gdyz w punkcie zwrotnym musi ona zmieni¢
znak na przeciwny. Widacé tez, ze dla duzych wartosci |[t—to| funkcja ch(y/2a2E/m(t—tg))
staje sie niemal czysta funkcja 3 exp(\/202E/m |t — ty]), a zatem (—1 mozna pominac,
gdy kosinus hiperboliczny jest duzy)

2F (L) Yo 1 [m
w(t) ~ | — [t —to| + <§ ﬁth), gy [t—tol> —y/op-

Ruch przechodzi wtedy w ruch jednostajny. W taki sam sposéb ruch jednostajny (dla
wszystkich czaséw) daje granica o« — oo, w ktérej zanika potencjat V(z).

W przypadku ruchu o E < 0 przeksztalcamy zwiazek catkowy (taki sam, jak poprzed-
nio) w zwiazek

2a2|E| /
(t—to) =
m \/2ay—a—

ktérym teraz parametr a = Vy/|E|. Zatem

202|E|
(t—to) = ,
m «/62 _zz

gdzie teraz z = y —a i b*> = a® — a, przy czym wciaz b*> > 0, gdyz a > 1 (ruch moze

zachodzié tylko tam, gdzie |E| < V;). Ponownie traktujac o jak stala catkowania mozemy
przyjaé, ze calka daje funkcje arccos i po prostych przeksztatceniach otrzymujemy (dzieki
parzystosci funkgji cosinus znaki + daja to samo), ze

m

202|E
zzy—azx/cﬂ—acos( w(t—m)),

czyli ostatecznie

A %2—%|E|cos< 2a2|E|/m(t—t0))

t)=—1
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Zalezno$é polozenia od czasu jest okresowa. Okresem 7' ruchu jest®®

2 m
T=—=2 .
w T\ 2Bl

Ruch nie jest wiec harmoniczny, bo jego czestosé zalezy od calkowitej energii (w ru-
chu harmonicznym czestosé jest niezalezna od energii), czyli od amplitudy odchylent od
polozenia réwnowagi, ktérym tu jest punkt z = 0 (punkt, w ktérym znika pierwsza po-
chodna V(x)). Latwo zobaczy¢, ze punkty, w ktérych zeruje sie &(t) (w punktach tych
sinus znika, a cosinus jest réwny F1) pokrywaja sie z wyznaczonymi wczesniej punktami
zwrotnymi z.

Gdy wychylenia z polozenia réwnowagi = 0 sa niewielkie, tj. gdy ¢ = Vo — |E| < Vj,
ruch staje sie w przyblizeniu harmoniczny, a okres takiego ruchu jest w przyblizeniu réwny

~1/2
m 15 m £
T=or /- (1-2) ~om /- (14 2).
: 2a2VO< V0> : 2a2VO< +2V0>

Pierwszy (gléwny) wyraz w czestosci w = 27/T mozna oczywiscie znalezé rozwijajac
potencjal V() wokét polozenia réwnowagi

1 7
Viz)=-Vy + 5 2Woala? — Vyala® + D Vooltzt + ...

i przyréwnujac 2Voa? do mw?. Sposéb obliczenia poprawki do okresu zaleznej od energii
€ jest trescia Zadania 3.7. Oczywiscie, gdy wychylenia sa male, $ciste rozwiazanie mozna
przyblizy¢ nastepujaco

1 1—|—\/6/V0cos(\/2a2%/m(t—to)>
:c(t):aln i

= /o;Vo cos(\/m (t— to)) +0(e).

Wida¢, ze zaleznos¢ amplitudy A drgan jest, tak jak powinna by¢, zwiazana z catkowita
energia mechaniczng ruchu e (w ktérej energia potencjalna jest liczona od “dna” poten-

cjalu) wzorem A = /2¢/mw?.

38 Argument cosinusa mozna wiec zapisa¢ w postaci (27/T)(t — to), z ktérej widaé, ze przy n € Z,
x(to+nT)=x4,ax(to+ 2n+ 1)T/2)=x_.
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Zadanie 3.6

Zmalezé w pierwszym przyblizeniu zmiane 67" okresu T jednowymiarowego ruchu czastki
o masie m spowodowana mala zmiana 0V (x) wiazacego te czastke w ograniczonym ob-
szarze potencjalu V' (z), przy niezmienionej calkowitej energii E ruchu. Zakladamy tu,
ze zmiana 0V (x) potencjalu nie zmienia jakosciowo charakteru ruchu (czastka nadal
pozostaje uwieziona w ograniczonym obszarze). Obliczy¢ w tym przyblizeniu 67", gdy
V(z) = gmw?a?, a 6V (x) = ymf a*, gdzie § > 0. Sprawdzi¢ ten wynik na przykladzie
potencjatu z Zadania 3.2

Rozwiazanie:
Jedli z1 1 x5 sa punktami zwrotnymi ruchu okresowego czastki w potencjale V' (z), to

Vi e

a po zmianie potencjatu

T+6T  [m /“"’2”‘02 dx
2 2 1471 \/E - V(I) - (5V($) '

Przy zmianie potencjatu (przy ustalonej energii E ruchu) przesunieciu ulegaja w ogélnosci
takze punkty zwrotne. Zatem

T _ m / rton dz B / v de
2 2 T1+0x1 \/E - V(x) - 6‘/(1') 1 \/m
=4 l% (F[l’l +5.§L’1, To —|—5.§L’2, V+5V] - F[xh L2, V]) :

W pierwszym przyblizeniu zmiane 67" powinno sie da¢ otrzymacé z tego wzoru dokonujac
rozwiniecia pierwszej catki wokotV (z), z1 oraz .

Konieczny tu jest pewien komentarz. Mamy do czynienia z rozwijaniem nie funkcji,
lecz funkcjonatu, czyli odwzorowania z przestrzeni funkcji V(z) w R. W istocie bowiem
(przy ustalonej energii ruchu) x15 = x12[V]. Zatem bardziej prawidlowy bylby zapis
Flzy + 01, vo + 09, V 4+ 0V] = F[V + 0V, a rozwijanie nalezaloby wiec tu rozumie¢ w
sensie funkcjonalnym:

FIV +6V] — F[V] = /mzdx 5v () SELV)

) oV (x)
. r2 (SF[LUDSL’Q,V] 8F[:L’1,x2,V] 51’1[‘/] 8F[:L’1,:L’2,V] 51’2[‘/]
B /QE1 da oV (x) { oV (z) * Oxy oV (x) * Oy oV (x) }

Z praktycznego punktu widzenia mozna jednak potraktowaé F'xy,zs, V] jak “funkcjo-
funkcjonal”, tj. funkcje 1 i 9 oraz funkcjonal V' (z) i rozwija¢ w tych trzech zmiennych
niezaleznie (zawsze, jesli to konieczne, mozna na koricu odpowiednio skorelowaé zmiany
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0x1 1 dxy ze zmiana 6V (z)). Okaze sie bowiem, ze (przy odpowiednim potraktowaniu -
zob. nizej) przesuniecia 0z 2 punktéw zwrotnych nie wplywaja na zmiane okresu 7'
Zgodnie z powyzszymi uwagami, chcialoby sie zatem napisac:

Flzy + 01, 23 + 029, V 4 6V| — Flz1, 29, V]

oF oF 2 0 1
=0xr] — 0xy — —I—/ dz 6V (1) == —— + ...
8x1 x1,x2,V 81’2 x1,x2,V 1 8‘/ v E - V x1,x2,V
Pojawia si¢ tu jednak klopot:
or 1
0r] — = — 00 —F/—,
a:L’l z1,x2,V FE— V([L’l)

(pochodna funkeji F' po x; bedacym dolna granica calki jest po prostu réwna minus funkcji
podcatkowej obliczonej w x réwnym x;. Ale w tym punkcie wlasnie F — V(x) = 0! Tak
samo nieskonczonosé¢ da wyraz z pochodna F' po x5. Konieczny jest wiec jakis chwyt, bo
oczywiscie wyjsciowe wyrazenie na 071 jest zupelie “zdrowe” i zadne nieskonczonosci w
nim nie wystepuja.

Chwyt polega na napisaniu wzoru na 07" w nastepujacy sposob:

§T m O x2+0x2 z2
7 =2 V E a—E {/:v1+5w1 e \/E - V(x) - 6V($) - /901 VB V(:p)}

m 0
= 21/5 3E (G[:)sl + 01, To + 09, V + 6V]| — Glz1, 29, V]) .

Zysk jest podwojny: po pierwsze nie wystapia teraz nieskonczonosci, a po drugie
= —5.1’1 \ E— V(Il) =0.

Tak samo znika przyczynek do 7" od przesuniecia punktu z,! Otrzymujemy zatem prosty
wzOr:

or /m 0 2 d oV (z)
— == = T
2 20E Jo,  JE-V(2)
Wzér ten mozna zapisé inaczej, dokonujac zamiany zmiennych = = xy(t), gdzie xo(t) jest

po prostu funkcja zadajaca ruch czastki od ;7 w ¢t = 0 do xo w t = T'/2 w potencjale
niezaburzonym V' (x), i korzystajac z tego, ze

m dxo(t) _
2 E = V(xo(t))

Po takiej zamianie zmiennych otrzymujemy wzor

dt .

oT o [T
5 = _8—E/0 dt oV (zo(1)) ,
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lub
0T = 88E %dtcﬂ/(xo( ),

gdzie kéleczko na calce oznacza catkowanie po calym okresie T' ruchu niezaburzonego (ta
druga, bardziej ozdobna posta¢ wzoru jest jednak malo uzyteczna praktycznie).

W przypadku, gdy V(z) = smw?z?, a 6V (z) = tmfz* ruch x(t) czastki o masie

m i ustalonej energii E' w potenqale V( ) od x; = —\/2E/mw? do x5 = +4/2F/mw?

(punkty zwrotne wyznaczone przez réwnosé¢ V(z12) = E) jest dany wzorem

zo(t) = —\/2E /mw? coswt .

Zatem

T T/w 1 42 QBE [T
5_ — _i/ dt _mﬁ COS4 wt = — 5 / do COS4‘9.
0 0

2 oF 4 m2w* mwd
Calka daje

T 1 4 37

df cos’ 9 = — d9 e e 0 =

| 16 J, @) =3

(po podniesieniu nawiasu do czwartej potegi niezerowy wynik daje tylko catka ze srodkowego

wyrazu 6 ¢; pozostale wyrazy daja catki po pelnym okresie, ktére znikaja) i

3rBE

0T = — )
2mw®

Mozna tez wykonaé¢ bezposrednio catke we wzorze

T _ _ /Tilmﬁ xzde
2 2 OF 4 o E—V(z)
Mathematica daje®

x4 1 1 5 o
/dx = E——mw2x2(3+mwx)
/E_%mMQxQ Qmw 2

3E? . T /mw?/2
arctg
/2 mb/25 E— %mw2x2

Przy obliczeniu tego wyrazenia w granicach xy i 7 pierwszy czton daje zero, a argument
arctg jest rowny odpowiednio 400 i —oo i po prostych przeksztalceniach otrzymuje sie
ten sam wynik, co poprzednio. Bez Mathematici wymaga to jednak sporo cierpliwosci...

39Pewnie po odpowiednim przeskalowaniu bestia i tak podstawia y = sinf, tylko potem wraca do
wyjsciowej zmiennej...
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Wynik ten mozna sprawdzi¢ na przykladzie potencjatu

Vo 12V, s 2V
V = - :_V _
(I) Ch2({E/a) 0+ 2 2 x 3a 2

badanego w Zadaniu 3.2. Z poréwnania widaé, ze nalezy przyja¢ w = +/2Vy/ma? oraz
B = —(8Vy/3ma*). Podstawienie do otrzymanego wzoru na zmiane okresu daje

3rE ma? E ma?
0T = — —
2m 3ma4 4V2 Vo W\ 2W

co (po utozsamieniu F z ) jest doktadnie poprawka do okresu otrzymana w Zadaniu 3.2
z rozwiazania Scistego.
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Zadanie 3.7

Zmalezé zmiane 0T okresu T jednowymiarowego ruchu czastki o masie m spowodowana
maly zmiang 6V (x) = myx® potencjatu V() = imw?z? wiazacego czastke w ograniczo-
nym obszarze przy niezmienionej catkowitej energii mechanicznej E ruchu. Wykorzystujac
ten wynik znalezé pierwsza poprawke (tj. poprawke proporcjonalna do energii F ruchu),
o ktéra rézni sie okres ruchu w potencjale Morse’a (Zadanie 3.1) od okresu ruchu w poten-
cjale oscylatora harmonicznego o odpowiedniej czestosci i poréwnaé¢ wynik z poprawka
otrzymana z odpowiedniego rozwiniecia okresu wyznaczonego ze Scistego rozwiazania.
Wyrazi¢ takze zmiane 07 okresu, gdy potencjal jest doktadnie réwny V(z) 4+ 0V (z) w
postaci nieskonczonego szeregu i przypadku potencjatu Scigle réwnego %mwzxz + %mv 3
powiedzie¢, kiedy ten szereg jest zbiezny.

Rozwiazanie:

W przypadku poprawki 6V (z) = %mvz?’ do potencjatlu oscylatora harmonicznego trzeba
Scisty wzér na zmiane §7/2 (polowy) okresu z Zadania 3.6 rozwinaé¢ do drugiego rzedu.
Istotnie, pierwsza poprawka w tym przypadku znika:

6T o [ 1 2F \*? i
oL __ Y dt = — cos® wt df cos®0=0.
2 aE/(; 3m7 (mw2) ( COS W ) &A COS

Sprébujemy wiec napisa¢ ogélny wzoér na rozwiniecie poprawki 67'/2 do potowy okresu
wedlug poteg 0V. Rozwiniecie to powinno mie¢ ogdlna postac:

0T o~ [ n
o :;/ dx f,(x)(0V (2))".

Aby ustali¢ postaé¢ wspétezynnika f,(x), trzeba znéw wykazaé sie sprytem. Przepisujemy
mianowicie Scisty wzér

T vt )

40

w réwnowaznej formie

5T on m o xo+0x2 n—1 x2 ni
Ty 3 o, V@ -V - [ v

i nastepnie rozwijajac wyrazenie w nawiasie klamrowym do n-tego rzedu wlacznie bie-
rzemy 7z niego tylko wyraz, w ktérym wystepuje n-ta potega 6V (pozostalte wyrazy odrzu-
camy). Tak jak poprzednio (Zadanie 3.6) branie n-tego wyrazu rozwiniecia tego wzoru w
przyrostach 6V oraz dxy o (tzn. branie takich wyrazéw, w ktérych suma poteg dxy, dzo i

2kz*l,z1Sk§n—1Wpunkciex:xl

0V jest rowna n) wymaga obliczania [E — V()]

On—1M=02n—-1)-2n—-3)----- 3 -1, jak by kto$ nie wiedzial...
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lub o = x5, co zawsze daje zero i zostaje zawsze tylko ten jeden wyraz,*' w ktérym jest
(=6V)". n-ty za$ , szukany, wyraz rozwiniecia funkcjonalnego w JV daje?

I"G[V] N
Y1) -0V (yn)

Zmaleziony w ten sposob wyraz wykorzystujemy w wypisanym wyzej wzorze na rozwiniecie
0T /2 wedtug poteg §V. Prowadzi to natychmiast do wzoru (druga jego postaé otrzymuje
sie dokonujac takiego samego podstawienia, jak w Zadaniu 3.6)

5T )" 2 [0V (z)]™
RS L
1 oon [T

3 nl, e RO

n=1

GV +0oV] = —/ dy, 6V (y1)- / dy, 6V (yx) 5V

wyrazajacego calkowita zmiane okresu, tj. 07 = T[V 4 6V] — T[V], w postaci nie-
skoniczonego szeregu. Szereg ten oczywiscie moze by¢ niezbiezny: np. w rozwazanym tu
przypadku poprawki 6V (z) = smyaz?® do V (z) = $mw?2?, musi on by¢ rozbiezny dla ener-
gii E wyzszych od pewnej krytycznej energii F., (bedacej funkcja m, w i), gdyz poprawka
0V zmienia globalny charakter potencjatu - nie rosnie on juz do 400 w obu kierunkach -
co umozliwia czastce o energii wyzszej niz Viax = V(Tmax) + 0V (Tmax) = mw® /672, gdzie
Tmax = —w? /7, ucieczke do nieskoriczonosci; ruch czastki o takiej energii nie jest okresowy
i pytanie o poprawke d7 nie ma juz wtedy sensu (zob. rysunek 31). Oznacza to takze,
ze juz dla E bliskich E.,, kiedy to, jak wiadomo z Zadan 3.4 i 3.5 okres T ro$nie do nie-
skoniczonodci, szereg moze nie by¢ zbiezny; mogloby tez sie zdarzy¢ tak, ze dla wszystkich
wartosci energii szereg ten jest tylko szeregiem asymptotycznym.

Biorac wyraz z n = 2 (jak ustaliliémy, wyraz z n = 1 daje tu zero), otrzymujemy

ST 18> (™% 1 ,,(2B8\" 16 . ,, 8 [T 6
- 28E2/ dt§m7 (muﬂ) cos’ wt :§§Emfy m2w7/0 df cos® 0 .

Ogdlnie (catke obliczamy, tak jak w Zadaniu 3.6)

T 2k T (2k) " 2k+1
/Odﬁcos 0= 2%(/4:) 2% LIl /OdﬁcoerH:O.

UWyzsze wyrazy rozwiniecia tego wzoru, tj. te z potegami 6V wyzszymi niz n-ta beda juz osobliwe.
Na tym polega wladnie sztuczka: aby znalezé wyraz z (6V)" rozwijamy wzér z n-ta pochodna po energii
E.

42Korzystamy tu ze standardowego wzoru rachunku funkcjonalnego
oV (x)

GV _ 0 v = [ g 29V
SV(y)  oV(y) /m deG(V(z)) /w oy Vv V()

s —y) = 20

V=V(y)
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V(x)
05

0.4

03l
02l

NV

s s S S S S S B
-1.5 -1.0 -0.5 0.0 0.5 1.0

Rysunck 31: Potencjaly V(z) = smw?z? (krzywa niebieska) i V(z) = smw?a?® (krzywa
pomarariczowa). Na pionowej osi odlozono V (x)/(mw?/2). Poziomymi liniami: zielona i
czerwong zaznaczono dwie moliwe catkowite energie E ruchu: dla pierwszej szereg, ktérym
wyraza sie¢ poprawka do okresu moze by¢ zbiezny; dla drugiej, réwnej E., juz nie.

Calka z cos® @ wynosi wiec 57/16 i ostatecznie

_57T’)/2E_57T E
T3 mw” 18 wViax

oT

Potencjal Morse’a

1
V(x) =V (6—2(190 . 2€—aw) = -Vo+ 5(2‘/00z2)x2 . (Voa?,u)x?,\ + %Vba‘lx‘l T

z Zadania 3.1 odpowiada potencjalowi oscylatora harmonicznego o w = /2Vya?/m z po-
prawkami (w pierwszym nietrywialnym przyblizeniu) 65V (z) = mvya® z v = =3Vpa®/m
oraz 6,V(z) = ympa* z B = TVoa*/3m. Nietrudno sie zorientowaé, ze zaréwno po-
prawka d3V (x) w uzyta drugim rzedzie rozwiniecia wzoru na 67/2 (rozpatrywanego w
tym Zadaniu) jak i poprawka 6,V (x) uzyta w pierwszym rzedzie tegoz rozwiniecia daja
poprawke proporcjonalna do pierwszej potegi E, czyli tego samego rzedu, i musza zatem

by¢ uwzglednione razem.

5T_7TE 5% 3 N _mE (5.9 7\ Vo' 7wE m
Comwd \3 w2 2 ) mwd L6 2) m Vil 2Vpa?”

Zgadza sie to dokladnie (po utozsamieniu E z €) z rozwinieciem Scistego wzoru na okres
ruchu w potencjale Morse’a. W rozpatrywanym tu przypadku wiemy z rozwiazania
Scistego, ze okres T' mozna rozwina¢ w szereg zbiezny dla wszystkich ¢ < V4 (jest to
rozwiniecie funkcji (1 —e/Vp)~/2). Zatem takze szereg otrzymywany z rozwiniecia wzoru
na 07'/2 bedzie zbiezny, z tym, ze w kolejnych rzedach trzeba by uwzgledniaé wszystkie
wyrazy dajace dana potege E (tj. €), ktorych jest coraz wiecej (pochodza one z calek z
[03V (x) + 04V (x) 4+ 65V (z)+...]"; do wyrazu z dana potega E rozwiniecia 071" przyczynki
wnosza calki z réznymi n i réznymi iloczynami 0,V (x)).
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W przypadku potencjatu réwnego $cisle %mw2:£2 + %mvx?’ rozwiazanie $cisle nie istnieje
ale mozna zato wypisa¢ ogdlny wyraz rozwiniecia wzoru na d7/2. Po pierwsze, jest jasne,
ze w rogwinieciu tym znikaja wszystkie wyrazy z nieparzystymi n, gdyz

/ df cos®™9 =0,

0

jesli n nie jest parzyste. Zatem

5T 1 0% N2k (2B \* 1 [T o
5 =L amior= (5) (—W) | oo
STy (6k)! +E \"
S w = kI(2k)1(3k)! \ T2mw® )

Aby oszacowaé k-ty wyraz dla duzych k korzystamy ze wzoru Stirlinga*?
In(n!) ~nlnn —n.

Daje on tu

(6k)! B
BI2R)(3k) exp(kIn432).
Tak wiec wyrazy szeregu maja postac

2 k
T v E
— 432 —— .
w < 72mw’ )

Jest wiec to (dla duzych k, zeby wzorek Stirlinga byt stuszny) szereg geometryczny, ktéry
jest zbiezny tylko, gdy
72mw®  mwS

E < =
4322 672’

tj. doktadnie wtedy, gdy energia nie przekracza Vi, .x.

3Wzér Stirlinga jest jednym z tych, ktére fizyk musi pamietaé przez cale zycie. Na nim opiera sie
bowiem znaczna cze$é¢ réwnowagowej fizyki statystyczne;j.
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Zadanie 3.12

Czastka o masie m nadlatuje z nieskoniczonosci, gdzie ma predkos$¢ v, i zderza sie centralnie
(tzn. caly ruch odbywa sie wzdluz jednej prostej) ze spoczywajaca poczatkowo druga
czastka o takiej samej masie. Czastki odpychaja sie za posrednictwem sity o potencjale
]

V(xy,29) = V(|21 — 29|) =

o — @

Jaka bedzie minimalna odleglos¢ miedzy czastkami? Wyznaczy¢ potoznie punktu do
ktorego dotrze nadlatujaca czastka.

Rozwiazanie

Niech 7 i 2o beda polozeniami czastek na prostej. W chwili poczatkowej, to, z1(tg) =
—R (do granicy R = oo przejdziemy na koncu), za(ty) = 0, &1(to) = v, a @a(ty) = 0.
Przechodzimy nastepnie do zmiennych

X(0) = (i (8) + maza(8) = (8 + 22(t).

y(t) = zo(t) — 21 (1),

tak iz (bo my = my = m)

na(t) = X() ~ 3 u).
ra(t) = X(0) + 5 u(t).

W zmiennych X iy réwnania ruchu czastek maja postac

omX = ,

m d
=V
5=~V (lu)

7 pierwszego wynika, ze

X(t) = X(to) + X(to)(t —to) = —%R + %U(t — o).

Drugie ma calke pierwsza, ktora jest energia ruchu wzglednego:

1m , || m o K|
——y+—=FE= t. = —0v" + —.
2 2 Y ly|™ cons 4U R»

Poniewaz @ = X — 59, nadlatujaca czastka zatrzyma sie (i1 = 0), gdy X = 5y, czyli
(bo X = const. = 5v), gdy § = v.

Ze wzoru wyrazajacego zachowanie energii ruchu wzglednego wynika, ze y = v tylko,
gdy |y| = R. Warunek ten jest, oczywiscie, spelniony, w chwili ¢, gdy x; = —R, a
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x9 = 0. Poniewaz nastepnie, jak mozna sobie wyobrazi¢, y maleje do pewnej minimalnej
odleglosci ymin, & potem, gdy druga masa nabierze predkosci, y zaczyna znow rosnac i
warunek |y| = R jest znéw spelniony w pewnej chwili ¢,: y(t,) = R. Czas t, — to zmiany
y od wartos$ci R poprzez ymi, do R jest dany catka

—ty =2

Ymin \/’U2 4EL — 4|H7‘Z
m

B mvz+1 —1/n
Yuin =\ YJu] T Rr '

Wprowadzajac zmienna & = y/ymin calke mozna przepisaé w postaci

2ym1n R/ymln
t, —tog = .
L Alsl VI=-&n —5 n

mR”

gdzie

Zatem potozenie nadlatujacej czastki w momencie, gdy sie ona zatrzyma, jest dane przez

1 1 1
z1(te) = X () — §y(t*) = ——R+ (t —to) — §y(t +)
R/ymm
— —R + min
4|;\ J V1 —5 n

Aby przejé¢ do granicy R = oo, przepisujemy ten wynik w postaci

R ) R/ymind 1 R
t) = —R+ ———— Yin 1)+ -1
r1(ts) Ug_l_ﬂy /1 5(\/1_5_” ) Ymin

mR™
R/Ymin
v U Ymin 1
R —— 1 +7{—1+/ d§<7_—1)}.
v2+7i|—gll 1224-2'—;1 1 VI=¢

W granicy R = oo pierwszy wyraz znika, jesli n > 1, a istnienie skonczonej granicy catki
w drugim czlonie zalezy od wyktadnika**

1 V- \/gn 1 1 1

Zatem gdy n > 1, calka jest zbiezna w granicy R = co. Gdy n < 1 calka jest rozbiezna i
réwniez pierwszy wyraz nie znika (jest on skoriczony, gdy n = 1 i rozbiezny, gdy n < 1).

“Uzywamy tu standardowej sztuczki: a — b = (a? — b2)/(a + b).
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Oznacza, to, ze nadlatujac z nieskonczonosci czastka nie zatrzyma sie nigdy; jesli zas
n > 1, zatrzyma sie ona w polozeniu

xstop:ymin{_1+[ d§ (%—1)}

Gdy n = 2 calka daje sie tatwo obliczy¢ (trzeba tylko ja zregularyzowaé, biorac jako jej
gérna granice R i przechodzac do granicy R = oo dopiero na koniec) i otrzymuje sie
Tstop = 0. Jesli jednak 1 < n # 2, numeryczne calkowanie daje xgop # 0.
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Przypomnienie

Réwnanie ruchu ciala (traktowanego jak punkt materialny), ktérego masa m = m(t)
zmienia sie z czasem wedlug zadanego z géry prawa mozna otrzymac¢ na podstawie
nastepujacego prostego rozumowania. Niech w chwili ¢ cialo ma mase m i predkos¢ v, a
dodatkowy, infinitezymalny kawatek masy dm predko$é u (obie te predkosci sa mierzone
w pewnym ukladzie inercjalnym). Po uplywie czasu dt kawalek masy dm zlepia sie’® z
cialem, ktore ma teraz mase m + dm i predkos¢ v + dv. Zmiana catkowitego pedu tego
uktadu (ktérym jest cialo oraz dotaczajacy sie don kawalek masy) jest wiec réwna

dp = (m+dm)(v+dv)—mv—dnu
=mdv+ (v—u)dm+ O(dmdv)

=mdv —wdm,

gdzie w = u—v jest predkoscia kawatka masy dm w ukladzie spoczynkowym ciata. Zgod-
nie z druga zasada dynamiki Newtona, obliczona wyzej zmiana pedu catego uktadu musi
by¢ spowodowana popedem F dt zewnetrznej sity dzialajacej na rozpatrywany uktad (cialo
plus kawatek masy). Zatem, po podzieleniu zwiazku wyrazajacego te réwnosé stronami
przez dt otrzymuje sie

dt dt dt

czyli
d B dm(t)
= mt)vit) =F+ 2,
lub, w drugim wariancie,
d B dm(t)
m(t)ﬁv(t) —F+7W.

Oba te wzory sa poprawne. Zaleznie od tego, czy predkos¢ mas dotaczajacych sie do
poruszajacego sie ciala jest podana (musi byé to okreslone z géry) wzgledem ukladu
inercjalnego, czy wzgledem samego ciala, bardziej uzyteczny jest jeden badz drugi wzor.

Jesli do masy m o predkosci v dotaczaja sie w odcinku czasu dt dwie masy dm; i
dmy o predkosciach u; i uy (wzgledem uktadu inercjalnego), to analogiczne rozumowanie
doprowadzi do réwnania

d dml(t)

. dmg(t)

m(t) o

(w —v)+

(uy —v),

ktére nalezy rozwiazywaé z warunkiem dm/dt = d(my+ms)/dt, czyli m(t) = mo+mq(t)+

45 Jedli masa ciata maleje z czasem, to dm < 0.
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Zadanie 4.2

Rakieta wznosi sie pionowo z Ziemi wyrzucajac gaz ze stala predkoscia w do tytu wzgledem
siebie samej. Masa rakiety zmienia sie wskutek tego zgodnie ze wzorem m(t) = my —
Kk t, gdzie Kk jest stala. Znalez¢ zaleznos¢é potozenia rakiety od czasu, jesli jej predkosé
poczatkowa, w chwili £ = 0, byta réwna vg.

Rozwiazanie:

Wybierzmy uktad odniesienia o osi z skierowanej w gore. Problem sprowadza sie wtedy
do rozwiazania réwnania rézniczkowego (poniewaz w jest predkoscia gazéw wzgledem
rakiety, a nie wzgledem ukladu inercjalnego, zalezna od czasu masa stoi przed pochodna
po czasie predkosci, czyli przed % ):

m(t)Z = —-m(t)g —w dn;_t(t) :

czyli, po wykorzystaniu podanego prawa zmiany masy,

. WK
zZ=—9g+—-.
mgy — Kt
Proste scatkowanie stronami tego rownania daje
Z=A—gt—wln(mg — Kt).

Z warunku poczatkowego Z(0) = vy znajdujemy stala catkowania: A = vy + wInmy.
Zatem

K
t)=2(t)=v9g—gt—wln|1——1t].
o) = £(0) =0 gt = win(1 - 1)
Przy t bliskim zeru, gdy vg = 0 (rakieta startuje), v(t) ~ (wk/mg — g) t. Warunkiem
startu, jest wiec, by w > mgg/k. (To samo wynika z zadania, by w ¢ = 0 przyspieszenie
Z, czyli prawa strona wyj$ciowego réwnania ruchu, bylo dodatnie.)
Kolejne catkowanie daje

Lo L ko
z(t):zo+v0t—§gt —w [ dt'In[1——1],

0 mo

czyli®

1 m
2(t) = 2 + vt — —gt2+w—0{(1— it) 1n(1 _ it) +it}.
Oczywiscie wzdr jest stuszny, dopoki m(t) = mg — kt > 0. W przypadku prawdziwej

rakiety, zanim m(t) zmaleje znaczaco, przestaje obowiazywaé przyblizenie wzorem Fjy =
—myg sily grawitacyjnego przyciagania przez Ziemie.

16 [de¢Ing = £(—1 + In&)+ const.
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Wzér na predkosé rakiety, gdy porusza sie ona poza zasiegiem pol przyciagania i
rozpedza wskutek odrzutu gazow od predkosci zero

m(t)

) =o(t) = —wln(l - it) = —wln

mo mo

jest znany jako wzér Cioltkowskiego - zapoznanego rosyjskiego prekursora astronautyki.
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Zadanie 4.3

Wyprowadzi¢ wzér Ciotkowskiego v(t) = —w In(M(t)/M(0)) wyrazajacy zaleznosé¢ pred-
kosci rakiety rozpedzajacej sie w prézni (z dala od wszelkich sit zewnetrznych) wskutek
odrzutu gazu od stanu spoczynku od jej (zmieniajacej sie z czasem) masy, przyjmujac,
ze gazy sa wyrzucane impulsami, a z kazdym impulsem rakieta traci 1/(n + 1) czesé
swojej aktualnej masy. Przyja¢, ze gaz jest odrzucany z predkoscia w wzgledem rakiety
skierowana przeciwnie do predkosci rakiety.

Rozwiazanie:

Rozpatrzmy rakiete majaca w danej chwili mase (n + 1)Am w chwilowym ukladzie od-
niesienia z nia zwiazanym. W uktadzie tym jej ped jest réwny zeru i zeru musi tez by¢
rowny sumaryczny ped rakiety o masie nAm, ktéra uzyskala predkosé Av, po wyrzuceniu
masy Am z predkoscia Av,. Zatem

nAmAv, — AmAv, =0,
Av, + Avy = w.
Drugie réwnanie wyraza to, ze wyrzucony gaz ma wzgledem rakiety predkosé¢ w. Z tych
dwoch rownan otrzymujemy wniosek, ze

. w
Cn41°

Av,

Mozemy teraz rozpatrzy¢ kolejne etapy tracenia masy przez rakiete majaca poczatkowo
mase My. Po pierwszym impulsie ma ona mase M; i w uktadzie inercjalnym (w ktérym
poczatkowo spoczywata) predkosé v;:

n w

M, = M, =1- :

1= 1 05 U1 nt1
Po drugim, ma mase Ms i w uktadzie inercjalnym predkosc vs:
2
n n w
My = M, = M, =2- :
a1t <n+1) 0 2 n+1

Po k-tym etapie:

k
n w
M, = M, =k- :
g (n+1) 0 n+1

Zatem k = (n + 1)v,/w 1 mozemy napisac

(n+1) Uk /w nq —vg/w
( - ) ] MOE{<1+1)<1+E)} M, .
n+1 n n

Przechodzac do granicy n — oo otrzymujemy stad

My, =

My, = Mye /v czyli v(M) =—-wln —,
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czyli wzér Cioltkowskiego. Wzér ten wyprowadzony zostal takze w Zadaniu 4.2, przez
catkowanie réwnania Newtona przy zalozeniu pewnej konkretnej zaleznosci M (t) masy
rakiety od czasu. Poniewaz w podanym tu rozumowaniu czas nie odgrywa zadnej roli
(impulsy gazu moga nastepowaé¢ w dowolnych momentach), wyprowadzenie to pokazuje,
ze wzor Ciotkowskiego nie zalezy od konkretnej postaci zaleznosci M (t). Wniosek ten
mozna oczywiscie otrzymac takze z rownania Newtona

do(t) __ dM()

przepisujac je w formie

do(t) dt dv
dt dM(t) M

M(t)

I
=
I

|

E

i calkujac je z warunkiem poczatkowym v(My) = 0.
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Zadanie 4.5 (z Bialkowskiego)

Wyprowadzi¢ i przedyskutowaé¢ wzor na zaleznos¢ od czasu predkosci kropli spadajacej w
ziemskim polu grawitacyjnym g. Kropla spadajac albo paruje (jesli spada w prézni) albo
para wodna z otoczenia kondensuje na niej. Przyjac¢, ze szybko$¢ zmiany z czasem masy
kropli jest proporcjonalna do jej aktualnego promienia?” (traktujemy krople jak kulke i
zakladamy stalosé gestosci wody ja tworzacej), a takze iz dziala na nia sita oporu (gdy
spada w powietrzu) proporcjonalna do jej szybkosci i do aktualnego promienia. Przyjaé
tez, ze tracona lub zyskiwana przez krople woda ma zerowa predkosé¢ wzgledem osrodka,
w ktérym kropla spada.

Rozwigzanie:
Poniewaz zakladamy, ze szybkos$¢ zmiany masy jest proporcjonalna do promienia r kropli,
a przy stalej gestosci wody masa kropli jest proporcjonalna do 72, przeto jawny wzoér
wyrazajacy mase kropli w funkcji czasu jest rozwiazaniem réwnania

dm 1

_ /3

— =am’”,

dt
przy czym wspélezynnik o moze byé dodatni (gdy para z powietrza kondensuje na kropli)
lub ujemny (gdy kropla paruje i masa jej maleje). Rozwiazaniem jest

9 3/2
m(t) = (mg/3 + gat) .

Jedli przyjmujemy ze predko$é traconej przez krople (przylaczanej do niej) materii ma
zerowa predkos¢ wzgledem osrodka oraz ze sila oporu jest proporcjonalna do predkosci i
promienia, czyli do mt/ 3 to do rozwiazania jest réwnanie (kierujemy o$ z w dot, tak iz
g=e€.9 )

d 3

77 (mv) =mg —ym'S v,

ktore zapiszemy w postaci
. m _ .
0+ (a +ym 2/3>vzv+vf(t) =gq.

Funkcja f(t) jest jawnie dana wzorem:

F(t) = —2

my* + 2at

4TW istocie, gdy kropla spada w prézni, szybko$é zmiany jej masy jest proporcjonalna do pola jej
powierzchni, czyli do r2; gdy za$ para z otoczenia kondensuje na niej, szybko$é¢ zmiany masy jest mniej
wiecej o 3/2, gdy predkosé kropli jest niewielka i mniej wiecej o< /2 przy wiekszych predkosciach.
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Réwnanie jest liniowe z niejednorodnoscia, mozna wiec don zastosowacé standardowa, tech-
nike uzmienniania statej. Rozwiazujemy najpierw réwnanie jednorodne, ktére po rozdzie-
leniu zmiennych daje

i ma jako rozwiazanie

Vo (t) = 1o exp (- / dt f(t)) .

Zastepujac stala catkowania vy nieznana funkcja a(t) i wstawiajac tak uzyskana funkcje
Vszez (1) do wyjsciowego réwnania niejednorodnego, dostajemy na a(t) réwnanie

a:gexp</dtf(t)>.

Stad, po scalkowaniu, znajdujemy a(t) i dostajemy najogélniejsze rozwiazanie réwnania
niejednorodnego w postaci

t
o(t) = e~ Jodr F(7) {vo +g/ dr el % f(g)} .

0

Granice calek zostaly tak wybrane, ze stala vy ma sens predkosci poczatkowej (w chwili
t = 0) kropli. Wyglada to skomplikowanie, ale mozna z tym powalczy¢.

¢ ¢ dr 3 y 2 at
dr f(r) = 7+a/—:—<1+—>ln 1+2-2 .
/0 (=1 ) 0 m3/3+§0z7 2 @ 3m§/3

Zatem

exp (/Ongf(g)) = (1 + % %) o = (1+ar)’.

Idac dalej,

t t
- 1
Jo d€ f(&) — b _ b+1 _
/OdTe /0d7(1+a7') D [(1+ at) 1].

Laczac wszystko razem i przyjmujac, ze predkosé¢ poczatkowa znika, tj. ktadac vy = 0,
otrzymujemy

g 1 +1 SN !
Y= ST T anp (rat =1} = a(l +b) {1+at_ m}
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Rysunek 32: Predkosé w (jednostkach gmg/ % /la|) spadajacej i parujacej kropli (krzywa
czerwona) i spadajacej kropli, na ktérej zachodzi kondensacja (krzywa niebieska) w funkcji
czasu (w jednostkach |a|/mg

0.2

0.4

0.6

zielona pokazuje zalezno$¢ asymptotyczna.

czyli ostatecznie

Wspélezynniki sa réwne

Wstawiajac to rozwiniecie do uzyskanego wyzej wzoru, otrzymujemy

e

czyli, po uproszczeniach

1) = ————
oo+ Jry

t) = —~ —
oo+ 3y

2/3

2
+-—at—m

2/3
0/ 1

9
2/3

ba:m0_2/3(oz+7),

b(b+1)a® = =mg*?

1
3"

1
=m
6
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(a+7)t2.

.
5

Zbadajmy najpierw zachowanie predkosci tuz po starcie.
powyzszy wzor w szereg wzgledem ¢

(o +7v)(ba+ 3v) .

I
10

1
(1+at)™ = exp[—bIn(1 + at)] = 1 — bat + §b(b +1)a®t® + ...

I
50

(a+7)(5a+37)t2+...]},

.
t

100

bez sity oporu (v/|a| = 0). Po lewej: t < 1 - krzywa
zielona pokazuje predkos¢ spadku bez parowania i kondensacji. Po prawej: t > 1 - krzywa

Rozwijamy w tym celu
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Rysunek 33: Predkosé w (jednostkach gmg/ % /la|) spadajacej i parujacej kropli (krzywa
czerwona) i spadajacej kropli, na ktérej zachodzi kondensacja (krzywa niebieska) w funkcji
czasu (liczonego w jednostkach |« /mg/ %), gdy wystepuje sita oporu (v/|a| = 0.5). Po
lewej: t < 1 - krzywa zielona pokazuje predkos¢ spadku bez parowania i kondensacji. Po
prawej: ¢t > 1 - krzywa zielona pokazuje zalezno$¢ asymptotyczna (dla ¢ — 00).

Widaé stad, ze jesli o+« > 0, szybkos¢ kropli najpierw rosnie liniowo z czasem (tak jak
gdyby jej masa nie zmieniala sie, a sity oporu nie bylo) a nastepnie spada.

Z pelmego wzoru widaé tez, ze przy braku sily oporu (7 = 0) i kondensacji (o > 0)
predkos¢ kropli asymptotycznie roénie jak % gt. Sila oporu modyfikuje ten asymptotyczny
wzrost predkoscei do 2agt/(5 + 3v/a).

Przy parowaniu za$ (o« = —|a| < 0) i braku oporu wzdr przybiera postaé
3 2o AN
« «
v(t):—gm(z)/3 ettt 1——=53 -1
5|al 3my, 3my

Wida¢ z niej, ze kropla w skoniczonym czasie calkowicie wyparowuje, osiagajac w tym

samym momencie nieskonczona predkosé. Jest to oczywiscie nierealistyczne. 7 kolei jesli

sita oporu jest znaczna, tak iz v > |a] (tak, iz we wzorze na v(t) wyktadnik ostatniego

cztonu w nawiasie kreconym jest dodatni), predkosé kropli w momencie wyparowania jest

rowna zeru. Zalezno$¢ predkosci kropli w réznych sytuacjach pokazuja wykresy 32 i 33.
Jesli a = 0 (masa kropli nie zmienia si¢) wzdr na v(t) przepisujemy w postaci

/3

2
_gmg B _§< 1) 2 ot
v(t) = S ili%{l exp[ 5 1+a ln<1+3—m(2)/3 ,

z ktorej juz widac, ze otrzymany wzér przechodzi w otrzymany w dla pionowej skltadowej
predkosci w zadaniu 2.4 przy utozsamieniu v/ m(l)/ % ze wspolezynnikiem x/m (trzeba tylko
uwzglednié¢ ze o$ z tu jest skierowana przeciwnie niz tam). Przy ¢ — oo predkos$é v(t)

dazy do gmg/ 3 /7, co jest oczywiste, bo jest to punkt staly réwnania v = g — ymg/ 5,
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Przypomnienie

Dwaj obserwatorzy z ukladéow odniesienia O i (O’ charakteryzuja zmienno$¢ w czasie
wektoréw r(t) i r'(t) polozenia punktu P (zob. lewy rysunek 34). Wektory te speiaja
oczywista réwnosé (ktéra, jak kazda réwnosé wektorowa, mozna rozpisa¢ na sktadowe w
dowolnym ukladzie odniesienia, czyli np. w O lub w O’).

r(t) =ro(t) +r'(t),

gdzie ro(t) jest (zmieniajacym sie z czasem) wektorem laczacym poczatki uktadéw O i
O’. Poniewaz jest to réwnos¢ dwoch wektoréw, wiec zachodzi takze zwiazek
dr(t)  dro(t) N dr'(t)
dt —  dt dt -

Oczywiscie dr(t)/dt = v(t) jest wektorem predkosci punktu P mierzonej przez obserwa-
tora w O. Jedli jednak widziany z O uklad O obraca sie wokét osi przechodzacej przez
jego poczatek z predkoscia katowa w, wektor dr/(t)/dt nie jest tozsamy z wektorem v’
predkosci mierzonej w O'. Aby to sobie uzmystowié¢ wystarczy rozpatrzy¢ przypadek, gdy
punkt P pozostaje w ustalonym polozeniu wzgledem O’: mimo iz wtedy v/ = 0, pochodna
dr'(t)/dt # 0, gdyz widziany z O wektor r’ zmienia sie wraz z obrotem calego uktadu O'.

Rozpatrujac infinitezymalne zmiany wektorow zachodzace w infinitezymalnym od-
cinku czasu dt mozemy napisa¢ rownosc:

dr = drg + d'v' + (dr') et -

d'r’ jest zmiana wektora r’ widziana przez obserwatora w O (ktéry uwaza, ze to osie jego
ukladu sie nie zmieniaja; wobec tego d'r’ = 0, wtedy gdy punkt P nie zmienia polozenia
wzgledem (), wektor zas (dr’),o; jest wlasnie zmiana r’ widziana z O, uwarunkowana, w
calosci obrotem O’ wzgledem . Zmiana ta jest, jak latwo zrozumieé, réwna

(dr')or = dO X 1’

gdzie d@ jest wektorem reprezentujacym infinitezymalny obroét o kat df uktadu O wzgledem
O w przedziale czasu dt (zatem d@ = wdt). Wektor ten ma kierunek chwilowej osi ob-

rotu. Otrzymujemy zatem wniosek, ze gdy uktad O’ obraca sie wzgledem O wokdt osi

przechodzacej przez jego poczatek

dr  dry dr’ ,
— =0y
dt  dt dt

Powyzszy wzor pozostaje prawdziwy, nawet jesli o§ wokdt ktorej obraca sie ukltad O’
nie przechodzi przez jego poczatek. Aby sie o tym przekonaé¢ wprowadzamy pomocniczy
uktad O” o poczatku lezacym na osi, wokoét ktérej obraca sie O i osiach stale réwnolegltych
do odpowiadajacych im osi uktadu O’ (zob. prawy rysunek 34). Mamy wtedy wektorowy
zwigzek

1" 1"
r=ry+r,
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Rysunek 34: Lewy rysunek: Uklady odniesienia O i O'. Z punktu widzenia obserwatora
w ukladzie O uklad O obraca sie wokdt osi zaznaczonej linia przerywana z predkoscia
katowa w. Obaj obserwatorzy: w O i O charakteryzuja zmiennos¢ w czasie wektora
polozenia punktu P odpowiednio wektorami r, dr/dt, d*r/dt? oraz ', d't'/dt, d*r'/dt>.
Prawy rysunek: Pomocniczy uklad O” wprowadzany w sytuacji, gdy uktad O’ obraca sie
wokdl osi nieprzechodzacej przez jego poczatek. (Dla przejrzystosci, wektory r’; takie
same, jak na lewym rysunku, nie zostaly tu uwidocznione).

w ktérym r” jest wektorem wodzacym punktu P w ukladzie O”. Wobec tego, zgodnie z
poprzednim rozumowaniem mozemy napisac

dr =dry+d'v" +d0 x r".
Wykorzystujemy nastepnie réwnos¢ r” = rj + r':
dr =dry+d"(vg+ 1) +dO xry+dO x r'.

Poniewaz jednak uktady O” i O’ sa ze soba na sztywno zwiazane, d"r; = 0 (wektor 1|,
widziany z uktadu O” nie zmienia sie). Co wiecej, d'r’ = d't/, gdyz osie O” i O’ sa
nawzajem do siebie stale réwnolegte i zmiana wektora r’ widziana z obu tych uktadéw
jest takim samym wektorem. Wreszcie, wyraz d@ x r{, po dodaniu do dr{ daje po prostu
przesuniecie wzgledem O poczatku uktadu O’ czyli dry. Otrzymujemy zatem ponownie
ten sam wzor, ktéry mozna takze zapisa¢ jako (Vy, jest predkoscia ruchu postepowego O’
mierzong w O)

v=V,+Vv +wxr.

Z tych rozwazan wynika tez nastepujacy wniosek. Jesli wektor b taczy punkt Py (o
wektorach wodzacych r; i r] wzgledem odpowiedno O i ') z punktem P, (o wektorach
wodzacych ry i 1)), czyli jesli b = ry — r; = r), — r), to odejmujac stronami wzory taczace
ze soba pochodne w obu ukladach otrzymamy wazny wzér (por. Zadanie 5.1)

db db

ab _ ab b.
e
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Wzér wiazacy ze soba przyspieszenia punktu P mierzone w obu ukladach dostajemy
wykorzystujac powyzszy zwiazek (wyrazy w nawiasach sa pochodnymi d/dt):

azd—v—dV“Jr dlvl+wxv’ +d—w><r’+w>< d/r,+wxr’
T dt dt dt dt dt

Eatr+a'+cii—c: Xr'4+2wx v +wx (wxr).
Zgodnie ze wzorem wiazacym pochodne dowolnego wektora b obliczane w uktadach ob-
racajacych sie jeden wzgledem drugiego z predkoscia katowa w, dw/dt = d'w/dt.

Wazne jest takze, by zdawaé sobie sprawe z tego, ze powyzsze zwiazki miedzy pochod-
nymi wektoréw sa stuszne dla dowolnych dwu uktadéw O i O'. W szczegdlnosci zaden z
nich nie musi by¢ ukladem inercjalnym. Jesli jednak uktad O jest ukladem inercjalnym,
to zwykle prawo Newtona (tj. réwnanie ma = F) obowiazuje tylko w tym ukladzie. W
ukladzie O, ktéry jest wtedy (z koniecznosci, jesli w # 0) ukladem nieinercjalnym, mozna
jednak stosowa¢ “prawo Newtona” zmodyfikowane o fikcyjne “sity bezwladnosci”:

d
ma’:F—m(atr+d—i><r’+2w><v’+w><(wxr’)).
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Zadanie 5.1

Dany jest zmieniajacy sie z czasem wektor b(t). Powiaza¢ jego pochodne obliczone w
dwu réznych ukladach odniesienia O i O'. Uktady te maja wspdlny poczatek i obracaja
sie wzgledem siebie wokoét wspdlnej osi z = 2. Kat jaki tworzy o$ ' uktadu O’ z osia x
uktadu O jest pewna funkcja czasu ().

Uwaga: Zaden z tych ukladéw nie jest wyrézniony. W szczegélnosci zaden z nich nie
musi by¢ uktadem inercjalnym.

Rozwiazanie:
Jedli dane sa dwa rézne uklady odniesienia O i @', to dowolny wektor b mozna rozpisaé
na wersory i jednego i drugiego uktadu:

b = e,b, +eyb, +e.b. = e b, +e,b, +eb..
Wiedzac, ze wersory obu uktadéw sa ze soba powiazane wzorami

e, = €}, cos p(t) — e sinp(t),

e, = e, sinp(t) + e, cos p(t),
ie, = e, (wzory te latwo sprawdzi¢ robiac odpowiedni rysunek i rozpatrujac przypadki,
gdy ¢ =01 ¢ = 7/2) mozna tez napisaé

b = [b, cos p(t) + by sinp(t)] €], + [~b, sin (t) + by cos p(t)] €}, + b€ .

Oznacza to po prostu, ze b, = b, cosp(t) + b, sinp(t), a b, = —b, sinp(t) + by cos ¢(t).
Pochodng wektora b obliczong w uktadzie O

db . . .
T = eyb, +e,b, +e.b,,

(obserwator w O, rézniczkujac wektor, uwaza, ze to osie e; nie zmieniaja sie z czasem),
ktora jest pewnym wektorem, réwniez mozna rozpisa¢ na wersory uktadu O’ otrzymujac

db . . . . .
i [0 cos (t) + by sin p(t)] €], + [—by sin @(t) + by cos (t)] €], + b€, .
Jesli jednak obliczymy pochodna wektora b w ukladzie O'; to otrzymamy
!
b

A /77 v
i e b, +eyb, +e.b,
db

=t w[—bs sin p(t) + by cos @(t)] €], + w[—b, cos (t) — by sin(t)] €], .

Dodatkowe wyrazy proporcjonalne do w = ¢(t) biora sie stad, ze w uktadzie O’ oprécz
zmiennosci z czasem skladowych wektora b w bazie e;, uwzgledniona jest takze zmiana
wektora b spowodowana tym, ze same wersory e; obracaja sie wzgledem ukltadu O’ (ob-
serwator w Q' uwaza, ze to jego osie €} sa nieruchome!). Wprowadzajac wektor predkosci
katowej w = we, = w e, mozna sprawdzi¢, ze dodatkowe wyrazy daja sie zapisaé¢ jako
—w X b. Stad

db db db db

E_E—wxb lub E:%‘FWXb-
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Zadanie 5.2

Znalezé catke pierwsza réwnania “Newtona” (tj. réwnania z sitami bezwladnosci) wyzna-
czajacego ruch masy m w ukladzie nieinercjalnym O’ obracajacym sie wzgledem uktadu
inercjalnego O ze stala predkoscia katowa w tak, ze wektor taczacy $rodek uktadu iner-
cjalnego ze srodkiem ukladu nieinercjalnego pozostaje staly, gdy sity niebezwladnosciowe
w uktadzie nieinercjalnym sa potencjalne, a ewentualne wiezy, jakim poddana jest masa
m, sa w tymze ukladzie niezalezne od czasu. Znalez¢ zwiazek tej calki pierwszej z energia
mechaniczna masy m mierzona w ukladzie inercjalnym.

Rozwiazanie:

Po pomnozeniu skalarnie stronami przez v’ ogélne réwnanie “Newtona” w uktadzie nie-
inercjalnym O’ (uwzgledniajace sity bezwladnosciowe), zapisane tu w przypadku, gdy
predkos¢ katowa w jest stala

d/v/

dt

m =F+Fg—m(ay +2w X vV +w X (w x 1)),
(d' oznacza tu pochodna obliczana w uktadzie nieinercjalnym, a Fpr reprezentuje sity
reakcji ewentualnych wiezéw) mozna zapisa¢ w postaci

!
4 (an'z) =Fv —may v —mlwx(wxr')]-v'.
dt \ 2

Jesli wektor taczacy $rodek ukladu inercjalnego O ze srodkiem uktadu nieinercjalnego
O’ pozostaje staly, to a,, = 0. Zalozenie, ze wiezy, jakim poddana jest masa m, sa w
ukladzie O niezalezne od czasu (co naogdt oznacza, ze w ukladzie inercjalnym sa one od
czasu zalezne!) oznacza, ze Fg-v' = 0. Sila Coriolisa, jak wynika z jej postaci, réwniez
jest do v’ prostopadta. Ostatni czlon po prawej stronie mozna przeksztalci¢ wykorzystujac
tozsamosci wektorowe:

1d
[wx (wxr)] v = (v/xw) (wxr') = =5 = (wxr')>.
Jesli wiec sita F nie zalezy jawnie od czasu i F = —V'V (r'), istnieje calka pierwsza
1 2 / 1 n2 / /
5V +V(r') — im(wxr) =T"+V 4V 4, = h = const.

Pierwszy wyraz, T’, reprezentuje energie kinetyczna masy m mierzona w ukladzie nie-
inercjalnym, a ostatni, V., co§ co mozna nazwaé potencjalna energia sity odsrodkowe;.

Zauwazmy tez, ze wobec tego iz wielkosé¢ h jest skalarem,

d d
Eh_ﬁh_o’

- wielko$¢ h pozostaje stata takze w uktadzie inercjalnym. Nie jest ona jednak, jak poka-
zujemy nizej, tozsama z calkowita energia ruchu mierzona w ukladzie inercjalnym.
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Energie kinetyczna T = %mv2 mierzona w uktadzie inercjalnym O mozna oczywiscie
wyrazi¢ przez predkosé v/ mierzona w uktadzie O korzystajac ze zwiazku v = v’ + v, +
w X r’. Zatem jedli uktad O" wiruje tylko wzgledem O wokdt wspdlnego poczatku obu
uktadéw (tzn. vy, = 0) to®®

1
E=T+V + im(wxr’)2+mv’-(wxr’) =h+mwxr) +mv-(wxr).

Wielko$é¢ zachowana h nie jest wiec w takiej sytuacji tozsama z energia E mierzona w
uktadzie inercjalnym, ktora naogot nie jest stata. Wynika to z tego, ze wiezy, ktore nie
sa stale w uktadzie inercjalnym (nie sa skleronomiczne), naogdt wykonuja nad ukladem
prace.

Jedli dodatkowo r’ = r (poczatki ukladéw: inercjalnego O i nieinercjalnego O’ stale sie
pokrywaja), to calkowita energia F masy m mierzona w uktadzie O i wielko$¢ zachowana
h sa ze soba zwiazane relacja

EFE=h+w-L,

w ktiej L = mr x v.= mr’ x (v + w x r’). Jest to oczywidcie ten sam wniosek, ktory
otrzymuje sie przy okazji twierdzenia Larmora (Zadanie 5.10).

48Energia potencjalna V jest w obu ukladach, inercjalnym i nieinercjalnym, ta sama. Jest to bowiem
np. energia rozciagnietej sprezyny, czy energia grawitacyjna, ktorych wartosci nie zaleza od zmiennych
uzytych do okreslenia potozenia masy m.
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Zadanie 5.3

Przedyskutowaé jakosciowo wpltyw sit odsrodkowej i Coriolisa na ruch (w poblizu po-
wierzchni Ziemi) masy m wzgledem nieinercjalnego uktadu odniesienia majacego poczatek
w punkcie o szerokosci geograficznej ¢ na powierzchni obracajacej sie Ziemi.

Rozwigzanie:
W zwiazanym z powierzchnia Ziemi nieinercjalnym ukladzie odniesienia O’ w réwnaniu
Newtona oprécz sit rzeczywistych takich jak sita przyciagania Ziemi i inne, trzeba uwzglednié
takze sily pozorne (sity bezwladnosci):

d*r’ dw d'r’

m—=ma =Fr —m |ay + — XTI +2wX — + wx (wxr’
dt? : T dt ( )

= Frea — m[ay + w X' + 2w x v + wx (wxr)].

a;, jest tu przyspieszeniem punktu O' wzgledem punktu O (zob. rysunek 35). Ich
wzgledna predkos¢ vy, jest oczywiscie réwna v, = w X R. Wynika to takze natych-
miast z ogdlnego wzoru (zob. Przypomnienie) wiazacego obliczane w réznych ukladach
pochodne wektorow

i faktu, ze dR/dt = 0 - widziany z ukladu O" wektor R pozostaje staly. Z kolei

Ay = d;;tr :C;—‘;ijwa% = Cil—iXRerX(wXR)-

Jesli pomina¢ znikomo mala zaleznosé od czasu predkosci katowej w obrotu Ziemi,
rownanie pseudo-Newtona ruchu masy m wzgledem uktadu O mozna przyja¢ w postaci
d?r’

dr’
mﬁ :Fgraw‘l’Finne_m [wx(wa)—|—2wxd—z—l—wx(wxr')}

d/

gdzie r = R + r/. Druga postaé¢ tego rownania pokazuje, ze dzialajaca na mase m “sila
odérodkowa”®” zalezy, tak jak by sie nalezalo spodziewaé¢, od odleglosci masy m od rze-
czywistej osi obrotu Ziemi, czyli od osi z ukltadu O. W praktyce, tj. dla zwykle rozpa-
trywanych ruchéw przy powierzchni Ziemi, |r'| < |R|, wiec w réwnaniu mozna zastapi¢
r przez R.

49Jak u W.B. Yeatsa w “The Second Coming”: “Turning and turning in the widening gyre, the falcon
cannot hear the falconer. Things fall apart; the center cannot hold; Mere anarchy is loosed upon the
world,...” albo: “Coraz to szersze zataczajac kregi sokdt nie slyszy glosu sokolnika. Rzeczy pryskaja,
ciezar $rodka slabnie nad $wiatem huczy anarchia krwia ciemna.” (“Drugie Przyjécie”.)
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Rysunek 35: Po lewej: ruch punktu P rozpatrywany wzgledem zwiazanego z obracajaca
sie Ziemia nieinercjalnego uktadu odniesienia majacego poczatek w punkcie o szerokosci
geograficznej ¢ na powierzchni Ziemi. Po prawej: Uwzglednienie sily odsrodkowej przez
wprowadzanie lokalnego pola sity ciezkoSci geg-.

Najpierw sie zajmiemy sita ciezkosci, ktora zawsze dziala na ciata poruszajace sie w
poblizu powierzchni Ziemi. Ma ona postaé

mr GMz; R |r/|
Foraw =—-GMz = =5 07 1 Tyl ’
(1) = =Mz 15 ~ — R |R|m[ +O<|R|H

gdzie zastosowali§my rozwiniecie stuszne, gdy |r'| < |R|. Czynnik

GMy _ 6.67x 10" m’s kg™ - 5.97 x 10*'kg _  m
IR|2 (6.378 x 106 m)?2 s’
to stynne “szkolne” ¢ (z samych poteg widaé, ze g ~ 10) tu bedace jednak wektorem:
GMz; R
8= W @ = —gey

Jesli wiec w catym badanym ruchu |r'(¢)| < |R|, mozna korzystaé z przyblizenia
Foraw = mg = —mge,: .

W zasadzie gléwna czesé sily odsrodkowej —mw X (w xr) ~ —mw x (w x R) mozna
uwzglednié¢ wprowadzajac efektywne lokalne (tj. zalezne od szerokosci geograficznej) pole
sity ciezkosci geg (zob. prawy rysunek 35):

gt(r) =g —wx(wxr)rg—wx(wxR)=g+0g.
Wartos¢ poprawki dg zalezy od szerokosci geograficznej:

6g| ~ |wx (WxR)| = w?Rcosp.
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Poniewaz

2T 2
w=—

T A 73%10 s
T = 2236005 = (o0

wiec
6g| ~ (7.3 x 1077571 6.378 x 10°m cosp ~ 3.3 x 10 ?m -8 2 cos .

Pole g.g ma sktadowa radialna (tj. skierowana wzdliz wersora e, w przeciwnym niz
on kierunku) o wartosci (zob. prawy rysunek 35)

|(cft)rad| = |g] — 08| cos ¢ = |g| — w’Rcos® p,

oraz sktadowa horyzontalna (tj. réwnolegla do powierzchni Ziemi) o wartosci
|(eft )hor| = |0g]| sinp = w?Rcos psin .

Przy spadku swobodnym skiadowa horyzontalna g.; powoduje mate odchylenie spadaja-
cego ciata w kierunku réwnika (tj. w kierunku potudniowym na pétkuli péhocnej).

Poprawka dg jest jednak co do wartosci tego samego rzedu, co zmiana wartosci g
spowodowana odstepstwem Ziemi od $cisle kulistego ksztaltu (Ziemia jest na biegunach
troche splaszczona - ma ksztalt troche taki, jak pitka, na ktérej usiadt mis): réznica pola
g mierzonego na biegunie i na rowniku

‘gbiogun‘ — ‘grownik| 5 X 10_2 m - 8_2 3
wiec jesli pomija sie ten drugi efekt, nie ma sensu zastepowanie g przez g.g.
Z praktycznego punktu widzenia znacznie wazniejsza jest sita Coriolisa

Feor = 2mwxv =2mv xw.

Przy spadku swobodnym ciala na powierzchnie Ziemi, poniewaz Ziemia obraca si¢ na
wschdd (i jak méwia w Kacapii, “potomu solnce woschodit na Wostokie” ), sita Coriolisa
powoduje jego odchylenie na wschod (wbrew temu, co mozna w pierwszej chwili mniemaé
- proste wyjasnienie tego jest treScia Zadania 5.4). Jesli predkosé v’ jest skierowana
horyzontalnie (stycznie do powierzchni Ziemi) to wygodnie jest roztozy¢ predkosé katowa
w Ziemi na czes¢ prostopadla i czesé¢ réwnolegla do powierzeni Ziemi:

Vixw=v'xw, +v'xw,

przy czym |w, | = wsin g, |w|| = wcos . Pierwszy skladnik daje wtedy sile powodujaca
na pétkuli péhocnej skrecanie na prawo (na lewo na pétkuli potudniowej), co wyjasnia,
dlaczego brzegi rzek pltynacych na péinoc podmywaja bardziej prawe brzegi; drugi skladnik
przy ruchu na wschéd zmniejsza g (bo v/ dodaje sie wtedy do ruchu obrotowego samej
Ziemi).
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Zadanie 5.4

7 wiezy o wysokosci h = 125 m stojacej na rowniku spuszczono swobodnie kamien o masie
m. Jak daleko upadnie on od podstawy wiezy? Pomina¢ wszystkie mozliwe sity oporu.
Rozwiaza¢ ten problem w uktadzie zwiazanym z Ziemia oraz w uktadzie inercjalnym,
ktorym Ziemia (wraz z wieza) sie obraca.

Rozwiazanie:
W ukladzie obracajacym sie wraz z Ziemia, ktoérego poczatek umieszczamy u podstawy
wiezy, o$ z kierujemy “w niebo”, a o$ x na wschod, rownanie “Newtona”, ktore trzeba
rozwiaza¢ z warunkiem poczatkowym r(0) = e,h, r(0) = v(0) = 0, ma postaé:>
d*r
Mmoo = mg — 2mw Xv — mw X (wXr) .
W przyjetym ukladzie odniesienia w = e w. Poniewaz czas ts, spadku kamienia, czyli czas
trwania ruchu, nie moze si¢ wiele r6zni¢ od danego “szkolnym wzorem” ty, = /2h/g, wiec
w powyzszym réwnaniu ostatni wyraz daje mate efekty (drugiego rzedu w malej wielkosci
wtsp < 1) 1 mozna go pomina¢. Rozwiazujemy zatem réwnanie
d*r 5 "
m—— =mg — 2mwxVv,
a ~ "8
ktore rozpisane na sktadowe daje

i = —2w3,
j= 0,

Z= 2wr—g.

Srodkowe z tych réwnar jest trywialne i, uwzgledniajac warunki poczatkowe, daje y(t) =
0. Z kolei catkujac stronami pierwsze z tych rownan i dobierajac stata calkowania tak, by
dla t =0, tj. wtedy, gdy 2(0) = h, bylo #(0) = 0, znajdujemy

T =2wlh—2z).
Wstawiajac tak wyrazone & do trzeciego rownania otrzymujemy
5= —g+4w*(h—z).
Poniewaz zdecydowali$§my sie pomija¢ wyrazy z w?, rozwiazanie tego réwnania da z(t) =
h— % gt?, jak w szkole. Stad widzimy, ze rzeczywiscie z dokladnosdcia do efektéw liniowych

w w (a przy pominieciu efektéw kwadratowych), czas spadku wyznaczony przez z(ts,) = 0,
jest réwny ty, = /2h/g. Wykorzystujac znalezione z(¢) w réwnaniu na z(t)

& =2w(h—2) = wgt?,

500znaczanie wielkoéci w ukladzie nieinercjalnym symbolami z primem zostalo tu zarzucone.
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po scatkowaniu otrzymujemy

1
x(t) = 3 qwt?.

Odchylenie d kamienia od podstawy wiezy wynosi zatem

1 2h |2h
d:x(tsp):§gw? ?2075(311"1.

Poniewaz d > 0, kamient odchyla sie w kierunku wschodnim, a nie, jak by mozna oczekiwaé
na podstawie naiwnego rozumowania, ze w trakcie lotu kamienia, to raczej Ziemia z wieza

na niej obréci sie na Wschod.

Ten na pierwszy rzut oka dziwny wynik mozna lepiej rozumieé¢ rozpatrujac ruch w
uktadzie inercjalnym, w ktérym Ziemia z wieza na niej sie obraca. Poniewaz ruch zachodzi
w plaszczyznie rownikowej, wygodnie jest wprowadzi¢ w tej ptaszczyznie uklad biegunowy
(r,p) tak, by w t = 0 wierzcholek wiezy (czyli kamienia) miat wspétrzedne r(0) = R + h,
gdzie R jest promieniem Ziemi (poczatek ukladu inercjalnego umieszczamy w $rodku
Ziemi, aby jej ruch obrotowy mial prosta postac), ¢(0) = 0. Réwnanie Newtona rozpisane
w ukladzie biegunowym, ma, = F,, ma, = F, to dwa réwnania:

m(r - 7’@2> = —-mg,

m(ry + 2rp) =0.

Drugie réwnanie, po pomnozeniu obu stron przez r, daje sie zwina¢ do°*

dt

—(mr?p) =0, czyli mrip = L = const.,

i wyraza, jak latwo zrozumieé, zachowanie z-owej skladowej momentu pedu (poniewaz
jedyna dziatajaca na kamienn w ukladzie inercjalnym sita jest centralna, moment pedu

S'nnym sposobem dojscia do tego samego wniosku jest zapisanie tego réwnania w postaci

i scatlkowanie go stronami

co daje

czyli mr?(t)p(t) = mr?(0)9(0).
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kamienia jest stala ruchu; w uktadzie biegunowym, jawnie widoczna jest jednak tylko
stalo$¢ L, = L). Zatem z réwnania tego mozemy wyznaczy¢ ¢ i wstawié¢ do pierwszego:

mi — —— = —mg,
mr

Standardowym sposobem radzenia sobie z tym rownaniem jest pomnozenie obu jego stron
przez 1 i zwiniecie do

Dl 2 =0
dt 2mr 2mr? mr ) ==u

czyli do rownosci wyrazajacej stalos¢ catkowitej energii kamienia. Réwnanie to bedzie ba-
dane w zadaniach dotyczacych ruchu w polu grawitacyjnym. Tu upro$cimy sobie zadanie,
przyjmujac, co znajdzie swoje uzasadnienie nizej, ze L? ~ w? i wobec tego, czlon ten w
rowaniu na r mozna pominaé¢. Po szkolnym scatkowaniu daje ono wtedy

1 1
r(t) =r(0) +7(0) — §gt2 =(R+h)— §gt2 :
Stad, czas spadku, wyznaczony réwnoscia r(ty) = R, jest réwny, jak poprzednio tg, =

\/2h/g.

Majac r(t) mozna znalezé p(t):

tdr'L L [t dt’
p(t) = 2 o 1 212"
o mri(t')  m Jo [R+h— ;917

Calke te mozna wyliczy¢ Scisle, ale bylby to zbyteczny trud: poniewaz R + h > gt
mozemy rozwina¢ funkcje podcatkowa

(t)—#/tdt’ TN LA I VRO S [
7 ~ m(R+h)?J, R+h ) mR+h)?2  3m(R+h)3

2
sp’

Aby wyznaczy¢ L, zauwazamy, ze w chwili poczatkowej kamienn znajdujacy sie na wierz-
chotku wiezy ma niezerowa predko$¢ w kierunku e,, réwna (R + h)w. Zatem L =
mr?(0)w = m(R + h)?*w i

Trzeba jednak pamiata¢, ze w czasie, gdy kamien spadal z wiezy, jej podstawa obrécita
sie z wraz Ziemia o kat ¢z = wty,. Biorac to pod uwage, odleglos¢, w jakiej od wiezy
upadnie kamien wynosi

1 Rw

1
d=R(p(tsp) —¢z) = 3 Fih gt ~ ggwtg’p.
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Wida¢ ze przyczyna odchylenia kamienia na Wschéd jest naprawde to, ze w uktadzie
inercjalnym ma on w momencie rozpoczecia spadania wieksza predkos¢ w tymze kierunku,
niz podstawa wiezy.

Zadanie 5.5

Stosujac rachunek zaburzen (albo inaczej, zasade Banacha) podaé¢ rozwiniecie ogélnego
rozwiazania r = r(t) rownania Newtona wyznaczajacego ruch punktu materialnego w
nieinercjalnym ukladzie odniesienia zwiazanym z powierzchnia Ziemi stuszne w przypadku
ruchéw krétkotrwalych, w trakcie ktérych maltym pozostaje bezwymiarowy czynnik wt (w
jest tu predkoscia katowa obrotu Ziemi.

Rozwiazanie:
W przypadku ruchéw krétkotrwatych, o maltym zasiegu, w ktérych |r'(¢)| < R (R jest tu
promieniem Ziemi), mozna ogélne réwnanie

d
ma =mg—m (atr+d—jxr’+2w><vl+w><(w><r,)) + Finne ,

(stuszne w dowolnym ukladzie nieinercjalnym) uprosci¢ do (zob. Zadanie 5.3)
ma =mge — 2mwxv' + Fine,

poprzez wciagniecie w lokalne pole gy efektéw przyspieszenia a, = w X (w X R) (w
ktérym R jest wektorem laczacym srodek Ziemi z poczatkiem uktadu nieinercjalnego na
jej powierzchni) i pominiecie pozostatych efektéw przyspieszenia odsrodkowego reprezen-
towanych przez wyraz w X (w X r’). Pomina¢ tez mozna wyraz z pochodna w po czasie.

Jedli sily inne niz grawitacyjne nie wystepuja (tj. jesli Fime = 0) 1 jesli przyjmiemy,
ze w obszarze, w ktérym zachodzi ruch g.g jest stalym wektorem, do scatkowania jest
réwnanie (pomijamy odtad primy)

d*r(t)
dt?

dr(t)
dt '

=gt — 2WX

z warunkami poczatkowymi r(0) = rq, v(0) = vy, ktére raz catkuje sie natychmiast dajac

dr(t)
dt

= Vo + Zeit — 2w X (r(t) — 1) .

Jest to zwykle liniowe réwnanie rézniczkowe pierwszego rzedu z niejednorodnoscia, przy
czym jednorodna jego czesé¢ jest postaci

d(r —rp)

pn =A-(r—rp).

(A jest tu macierza liniowego odwzorowania wektora w jego iloczyn wektorowy z wekto-
rem —2w zapisana oczywiscie w bazie wektoréw e,, e, i e,). Mozna byloby je scatkowaé
scisle, rozwiazujac najpierw rownanie jednorodne i potem uzmienniajac stala. Otrzymane
rozwiazanie byloby jednak dosé¢ skomplikowane i uwzglednialoby takze wyrazy rzedu w?t?,
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w33, ktére, wobec pominiecia wyzej cztonu odérodkowego w X (w X r’), sa bez znaczenia
(pominiete w réwnaniu wyrazy powoduja efekty tego samego rzedu). Zamiast tego najwy-
godniej jest zastosowacé rachunek zaburzen. Numerujemy wiec rozwiazania wedtug rzedow
przyblizenia oznaczajac rozwiazanie n-tego rzedu r(")(t) i przyjmujac, ze r® (t) = rg
(pierwszym przyblizeniem ruchu jest oczywiscie bezruch!). Rozwiazanie (n + 1)-go rzedu
znajdujemy rozwiazujac rownanie

dr™ D (t)
dt
ktorego prawa strona jest juz jawna funkcja t, co umozliwia tatwe rozwiazanie go. Po-
niewaz r¥ (t) = ry, jako réwnanie wyznaczajace r(V)(t) otrzymujemy
dr(t)
dt

= V(o + Zeit — 2w X (r(")(t) —19),

=Vvo+ gefft .
Stad oczywiscie

1
r(t) =g + vot + 5gelcfz? .

7 kolei wykorzystanie r")(t) prowadzi do réwnania na r®(t) postaci

dr®(t)

7 = Vo + gt — 2w x (r(t) — 1)

:v0+gegt—2wxv0t—wxgeﬂrt2.

Po scatkowaniu go otrzymujemy

1 1
r?(t) =ro + vot + igeffﬂ — wtx (vot + ggeffﬂ) .

Przyblizenie r(t) ~ r®(t) jest juz (dla wiekszosci praktycznych zastosowan) wystar-
czajaco dokladne. Aby to zobaczyé, znajdziemy jeszcze r®(t) calkujac réwnanie:
dr®(t)
dt

1
= Vo + Beiit — 2W X Vot — w X et + 2wt X (wt X (vot + ggogt)) )
Otrzymujemy z niego

r®(t) = ro + vot + %geffﬁ —wt X (vot + %goﬁﬁ) + 2wt X (wt X (%Vot + %goﬁﬁ)) .
Widac¢ wiec, ze w wyrazach pojawiajacych sie w rozwiazaniach kolejnych rzedéw wystepuja
coraz wyzsze potegi bezwymiarowego czynnika wt. Rachunek zaburzen daje wiec roz-
winiecie pelnego rozwiazania, ktére mozna by byto uzyskaé¢ sposobem podanym wyzej)
wedhig poteg wt. Poniewaz w r® (t) wystepuja wyrazy z (wt)?, a w samym rozwiazywanym
rownaniu pominiety zostal czlon z przyspieszeniem odsrodkowym bedacy tego wiasnie
rzedu, jest jasne, ze nalezy sie ograniczy¢ do rozwiazania r(®(t).

150



Zadanie 5.6
Korzystajac z wyprowadzonego w Zadaniu 5.5 rozwiniecia

1 1
r(t) = 1o+ Vol + §gt2 —witx <V0t+§gt2) + O(w?t?),

w ktérym ry i vy sa odpowiednio poczatkowym polozeniem i poczatkowa predkoscia, w
wektorem predkosci katowej obrotu Ziemi, a g polem ciazenia, zbadaé¢ spadek swobodny
kamienia z wiezy o wysokosci h stojacej na szerokosci geograficznej®? ¢ i znalezé odchylenie
kamienia od podstawy wiezy.

Rozwiazanie:

Wprowadzamy uklad odniesienia o poczatku w podstawie wiezy, ktérego o$ z jest skie-
rowana w gore, o$ x na potudnie, a os y na wschdéd. W ukladzie tym wektor predkosci
katowej Ziemi ma postaé¢ w = w(—e, cosp + e, sin p), wektorem predkosci poczatkowej
jest vo =0, arg = he,. Aby skorzysta¢ z wyprowadzonego w Zadaniu 5.5 przyblizonego
rozwigzania rownania Newtona

1 1
r(t) & 1o + Vot + S8t — wix (vol + sgart’)

uwzledniajacego w pierwszym rzedzie efekty niezerowej predkosci katowej Ziemi, obli-
czamy iloczyn wektorowy w z g.s = —ge,:

€ e, e,
WXZg =wg |—cosp 0 sinp|=—-e,wgcosy.
0 0 -1

Poniewaz vy = 0, otrzymujemy

1 1
r(t) & 1o+ =get® + sgwt’cospe,

2 3
czyli, po rozpisaniu na sktadowe,
yt) | =10 |+ 5 0 |+ ggwt?’ COS ¥
z(t) h —g 0

7 ostatniej linii odczytujemy, ze w tym przyblizeniu obrét Ziemi nie wplywa na czas
spadku kamienia:

tsp =V 2h/g.

Poniewaz x(t) = 0, kamienri odchyla sie na Wschdd o odlegtosé

1
d=y(tsp) = ggwtg’p cos .

Modulo czynnik szerokosci geograficznej cos ¢, jest to ten sam wynik, co w Zadaniu 5.4.

52Korzystajacym z podrecznika G. Biatkowskiego przypominam, ze przyjeto sie liczyé szerokosé geo-
graficzna od réwnika (a nie od bieguna péhmocnego).
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4 mg

T x
Rysunek 36: Po lewej: Wahadlo Foucault zawieszone nad obracajaca sie powierzchnia
Ziemi i wychylone w kierunku osi x. ¢ jest katem szerokosci geograficznej (zdefiniowane;
normalnie). Po prawej: Obrét uktadu wspéhrzednych o kat 6.

Zadanie 5.9 (Wahadlo Foucault, takie jak u U. Eco)

Zmalez¢ w przyblizeniu matych wychylen od polozenia réwnowagi ruch wahadla Foucault
(tj. ciezarka) o masie m zawieszonego na (w przyblizeniu) niewazkiej i nierozciagliwej
lince o dtugosci £ nad punktem na powierzchni Ziemi (nad posadzka paryskiego Panteonu)
znajdujacym sie na szerokosci geograficznej .

Rozwiazanie:
Poniewaz ruch wahadta moze trwa¢ dowolnie dtugo i bezwymiarowy czynnik wt nie musi
by¢ maty, nie mozna tu korzystaé¢ z wyprowadzonego w Zadaniu 5.5 rozwiniecia rozwiazania
wedlug poteg tego czynnika. Trzeba inaczej rozwiaza¢ réwnanie ruchu wahadla, ktére w
nieinercjalnym uktadzie zwiazanym z obracajaca sie Ziemia ma postaé®
2

m% :mg+T—2mwx% —mw X (wXr).
r jest tu wektorem polozenia ciezarka (wzgledem ukladu zwiazanego z powierzchnia Ziemi;
wyraz —mw X (w X R) jest wlaczony do g), a T jest sila nan dzialajaca ze strony linki.
Ostatni czlon po prawej stronie jak zwykle pominiemy, bo jest on proporcjonalny do w?
i jest maly w poréwnaniu z zachowanymi przy typowych wartosciach |r| ~ 1 m, |f| ~ 1
m/s bo w =~ 107* s7!. Wybierajac uktad o poczatku w punkcie na Ziemi, nad ktérym
zawieszono wahadto i kierujac jego o$ z w gore, a 0§ x na poludnie mozemy jawnie rozpisac
sity. W tak obranym uktadzie

e e, e,
wXxv=w|—cosp 0 sing|=—e,vwsinp + e,w(v,sing + v, cosy) — e,v,w cos ¥.
Vg vy U,

W przyblizeniu malych odchylenn od pionu, czyli od polozenia réwnowagi, ruch mozna
przyblizy¢ przez ruch plaski, tj. przyjac, ze z ~const i v, ~ 0. Bilans sil w sytuacji, w

53Wiszystkie wielkoéci sa tu obliczane w ukladzie nieinercjalnym wiec primy pomijamy.
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ktorej y = 0, a z # 0 (wahadlo wychylone dokladnie w kierunku na potudnie) wyglada
wtedy tak (zob. lewy Rysunek 36):

sum __ :
F;™ =2muyw, — Tsina,

F>"™ = 2muyw cos p — mg + T cos .
Whprowadzone tu zostalo ulatwiajace zapis oznaczenie
w, =wsiny.

Poniewaz zakladamy, ze z ~ const, wiec sktadowa z-owa F;"™ wypadkowej sily musi
znikaé. Stad,

T Mg~ 2mu,w cos ¢

Y

COS «v

a zatem
F>' = 2muyw, — mgtga + 2muyw cos p tga .

Trzeci wyraz w F2"™ mozna pominaé, gdyz, bedac (w przyjetym przyblizeniu matych
wychylert) proporcjonalnym i do w i do tga < 1 jest on tu mala wielkoscia drugiego
rzedu. Ponadto w przyblizeniu matych wychylen, |o| < 1,

) T
tga =~ sina = —

7
Uogdlniajac te rozwazania do sytuacji, gdy zaréwno x, jak i y sa niezerowe mozemy
wypisa¢ rownania wyznaczajace ruch ciezarka w plaszczyznie xy:

T+ ng = 2w,y,
i+ wiy = —2w,i .

Wprowadzili$my tu oznaczenie wg = g/f. NajproSciej rozwiazuje sie te réwnania prze-
chodzac do zespolonej zmiennej ¢ = x + iy. W tej zmiennej staja sie one jednym jedno-
rodnym rownaniem liniowym drugiego rzedu

£ +wt +2iw.E =0.

Szukamy rozwiazania w postaci £(t) = Ae*™, co daje réwnanie charakterystyczne na A
_)\2 _2(,{]2)\—'—(,08 :07

ktérego pierwiastkami sa Ay = —w, +Q, gdzie Q = \/w? + w?. Najogdlniejsze rozwiazanie
ma zatem postac

E(t) = a(t) +iy(t) = e ™" (AL ™ + A_e ™).
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Zanim obliczymy czesci rzeczywista, i urojona prawej strony, dobrze jest sie zastanowi¢
nad czynnikiem e~*='. Jedli £ = x + iy jest (zespolonym) potozeniem punktu w uktadzie
xy, to, jak tatwo zobaczy¢ (zob. Rysunek 36), z jego (zespolonym) potozeniem &' = a’ +iy’
w uktadzie obréconym wzgledem xy przeciwnie do kierunku ruchu wskazéwek zegara o kat
6, wiaze sie ono wzorem & = ¢/, Zatem w uktadzie, ktéry obracatby sie w kierunku (na
pétkuli péocnej, gdzie sin ¢ > 0, czyli w, > 0) zgodnym z kierunkiem obrotu wskazowek
zegara ruch rzutu wahadia na plaszczyzne bytby dany przez

5/(1‘,) = x/(t) + iy’(t) = A, AL + A it

Wiadomo, ze torem w ukladzie tym jest w ogélnosci elipsa (zob. Zadanie 2.7), ktérej
ksztalt zalezy od stalych AL = AL + iBy (skrajnymi przypadkami sa prosta i okrag).
W uktadzie xy zatem tor ten jako calo$¢ obraca sie z predkoscia katowa w, = wsinp -
maksymalna na biegunie i znikajaca na réwniku.
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Zadanie 5.10 (Twierdzenie Larmora)
Pokazaé, ze jesli czastka o masie m wykonuje ruch r(¢) pod wplywem jakiejs zadanej sity
zewnetrznej F, to po zmianie sity

F—-F+emvxk,

gdzie k jest stalym wektorem, a |¢| < 1, tor ruchu r(¢) w pierwszym przyblizeniu (t;.
z dokladnoscia, w ktérej uwzglednia sie tylko efekty rzedu €) zacznie sie obracaé. Jak
zmieni sie wtedy energia kinetyczna (a wiec i energia catkowita) czastki?

W przypadku, gdy e mk = ¢B, gdzie B jest stalym i jednorodnym polem magnetycznym,
stwierdzenie bedace przedmiotem tego zadania jest trescia tzw. twierdzenia Larmora.

Rozwiazanie:

Aby pokazaé, ze tor ruchu zacznie sie obracaé jako calosé, czyli ulegaé precesji, wystarczy
napisa¢ rownanie “Newtona” spelniane przez czastke w uktadzie nieinercjalnym obra-
cajacym sie wzgledem wyjsciowego ukladu (inercjalnego) z predkoscia katowa w. Ma ono
postaé

d/2 r/

dt?

m =F+em(v +wxr')xk —m[2w x v + wx (wxr')].
SkorzystaliSmy tu ze zwiazku v = v/ + w x r’ laczacego ze soba predkosci czastki w obu
uktadach. Wida¢ z tego réwnania, ze jesli dobierzemy uklad nieinercjalny tak, by jego
predkos¢ katowa wzgledem wyjsciowego uktadu inercjalnego byta rowna

w=—-k,
2
to wyraz emv’ x k zniesie sie z czlonem Coriolisa, a pozostale wyrazy zalezne od w beda
rzedu (£/2)?, czyli beda do pominiecia. W tak obracajacym sie ukladzie réwnanie ruchu
czastki

d2/r/

= F +0O(g?).

m

pod dzialaniem zmodyfikowanej sity ma formalnie te sama posta¢, co rownanie ruchu ze
stara sita w wyjsciowym uktadzie inercjalnym. Rozwiazania tych réwnan r/(¢) i r(¢) beda
wiec dane ta sama (wektorowa) funkcja czasu, t.j. rozwiazaniami beda r'(t) = f(t) ir(t) =
f(t), pod warunkiem, ze formalnie identyczne beda warunki poczatkowe. Przyjmujac, ze
dodatkowa sita wlaczona zostala w chwili ¢ = 0 (tzn. obierajac te chwile za poczatek
liczenia czasu) mozemy wybraé poczatki obu ukladéw, inercjalnego i obracajacego sie
w punkcie, w ktérym w tym wilasnie momencie znajdowala sie czastka. Duzieki temu
r(0) = 01i1r'(0) = 0. Co wiecej, poniewaz v(0) = v/(0) + w x1'(0) = v/(0), warunki
poczatkowe obu réwnan rézniczkowych beda formalnie identyczne i tor ruchu w ukladzie
nieinercjalnym przy dzialaniu dodatkowej sity emv x k bedzie taki sam, jakim byl on
w uktadzie inercjalnym w nieobecnosci sity zaburzajacej. Dowodzi to tego, ze w tym
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przyblizeniu, tor czastki w wyjsciowym ukladzie zacznie sie obracaé¢ z predkoscia katowa
réwng w.

Jesli czastka ma ladunek elektryczny ¢ i polozymy emk = ¢B, to wynika z tego, ze po
wlaczeniu slabego pola magnetycznego tor jej ulegnie precesji zwanej precesjq Larmora o
predkosci katowej (zwanej czestoscia Larmora) réwnej ¢|B|/2m.

Aby lepiej zrozumie¢ ten wynik mozemy odwotaé sie do Zadania 2.14, w ktérym ba-
dany byl ruch naladowanej czastki o masie m i tadunku ¢ (zalézmy, ze ¢ > 0) w polu
elektrycznym E = e, E i magnetycznym B = e,B. Jedli czastka ma w punkcie r = 0
predkos¢ v = e, vf + eyvé’ , to, jak juz wiemy z rozwiazania Zadania 2.14, bedzie sie ona
poruszaé po cykloidzie danej wzorami

= Ep M 04— (g = L) sinwpt
2(t) = =t+ — (1 —cosw — v — = | sinw
B wp B wp 0 B B

Y

Uy . 1 ., L
y(t) = i sinwpt + o (vo — E) (—1 4+ coswgt),

czyli, przy t ~ 0, (przypomnijmy, ze wg = ¢B/m) co w przyblizeniu, gdy |wpt| < 1, czyli
gdy mozna ograniczy¢ sie do pierwszego rzedu w wpg, daje

1
z(t) = vjt + 5218@3152 :

1 E
y(t) = Ugt — 5 <'U6: — E) (.UBt2 .

Zgodnie za$ z rozwazaniami przeprowadzonymi wyzej, jesli pole magnetyczne jest stabe,
w ukladzie obracajacym sie z predkoscia katowa w = —(¢/2)k = —(¢B/2m) e, ruch
powinien pozosta¢ ruchem prostoliniowym jednostajnie przyspieszonym w kierunku pola
elektrycznego. W ukladzie tym zatem® 2/(t) ~ v&t oraz y'(t) ~ vjt+(¢E/2m)t?. Ogdlnie,
jesli ukltad O jest obrécony (w kierunku przeciwnym do kierunku ruchu wskazéwek
zegara) wzgledem uktadu O o kat 6 wokdt wspélnej osi z, to © = 2/ cosf — y'sinb,
y = 2'sinf + 3’ cosf. Tu zatem, przechodzac do ukladu nieobracajacego sie, trzeba
potozyé¢ 0 = —(¢B/2m)t = —(wp/2)t, co da

1 E 1
x(t) =~ vyt cos(—ngt) - (vé’t + g—m t2) sin(—int) :

1 E 1
y(t) = uit sin(—§w3t) + <vgt + g—m t2) COS(_§WBt)a

54Znaki przyblizonej réwnosci wynikaja z tego, ze w ukladzie obracajacym sie kierunek pola elektrycz-
nego zmienia sie. Poniewaz interesuje nas ruch tuz po wilaczeniu pola magnetycznego, kiedy kierunki osi
uktadu obracajacego sie sa wciaz niemal takie, jak osi uktadu inercjalnego, mozemy zmiane kierunku pola
elektrycznego pominag.
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czyli, po rozwinieciu,

qF

1
t)ymoit(l—...) — (vt + 2=t ) (—swpt + ...
o) gt =) = (ot + 20 ) (gt +-.0),

y(t) = vgt(—%w3t+ )+ (vgt+ %ﬁ) (1+...).

7 dokladnoscia do wyrazéw liniowych w wp zgadza sie to z tym, co otrzymaliSmy ze
Scistego wzoru. Przyktad ten pokazuje tez, jak nalezy rozumieé¢ twierdzenie Larmora:
jego zachodzenie z dokladnoscia do pierwszego rzedu w € oznacza zarazem jego shusznosé
tylko dla bardzo krétkich odcinkow czasu t po wlaczeniu zaburzenia. Niemniej rozumowa-
nie bedace jego trescia mozna “przedtuzaé” przechodzac do nowego punktu r, w ktérym
czastka znajdzie sie w ukladzie inercjalnym chwile pdzniej (punkt ten jest osiagany w
obecnodci zaburzenia ale mozna go w przyblizeniu wyznaczy¢ stosujac twierdzenie Lar-
mora), przyjmujac ten punkt za wspélny poczatek nowych ukladéw: inercjalnego i ob-
racajacego sie, 1 stosujac ponownie twierdzenia Larmora, by znalez¢é polozenie czastki w
chwili jeszcze troche pdzniejszej itd.

Po wlaczeniu sily zaburzajacej czastka ma w ukladzie inercjalnym predkosé v(t) =
v/(t) + w x r'(t), a predkosé v'(t) jest w kazdej chwili ¢ taka sama, jak predkoS$¢ vgara(t),
ktora czastka mialaby w ukladzie inercjalnym bez dodatkowej sity zaburzajacej, v/(t) =
Vstara(t). Zatem zmiana AT energii kinetycznej czastki (mierzonej w wyjsciowym uktadzie
inercjalnym) spowodowana wlaczeniem zaburzenia jest réwna

1

1
AT = §m(v’ +wxr)? - §mvsztara

=mv'-(wx 1)+ 0.

Wykorzystajac tozsamosé wektorowa v'(w xr’) = w(r’ xv’), mozna te zmiane zapisa¢ jako
AT = w-L(t), gdzie, poniewaz V' = Vgiara, a polozenie r'(t) jest tez identyczne z rypare(t),
L jest momentem pedu, jaki miataby czastka przy braku zaburzenia. Zatem zmiana
energii kinetycznej, a tym samym i calkowitej czastki (np. czastki krazacej jak elektron w
atomie wokél jadra) spowodowana wlaczeniem pola magnetycznego jest proporcjonalna
do wartosci tegoz pola i do rzutu momentu pedu czastki na jego kierunek.

Historycznie, twierdzenie Larmora pozwolito H.A. Lorentzowi wyjasni¢ odkryty przez
P. Zeemana efekt polegajacy na rozszczepieniu linii widmowych atomu po umieszczeniu
tegoz atomu w stalym polu magnetycznym. (Obaj ci holenderscy fizycy otrzymali na-
grode Nobla za 1902 r.) Wyjasnienie podane przez Lorentza stosuje sie jednak tylko do
tzw. normalnego efektu Zeemana, ktéry wystepuje tylko w niektérych atomach. Znacznie
czesciej ma sie do czynienia z tzw. anomalnym efektem Zeemana, ktérego wyjasnienie
wymaga uwzglednienia spinu elektronuu.
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Przypomnienie

Ruch ukladu N mas punktowych m) poddanych dziataniu sit F; (i = 1,..., N nume-
ruje te masy) moze by¢ ograniczony wiezami, tj. pewnymi dodatkowymi warunkami
nalozonymi na potozenia i predkosci czastek. (Zwykle rozpatruje sie tylko wiezy liniowo
zalezne od predkosci). Wiezy zalezne tylko od potozen nazywa sie holomomicznymi.
Niektore z wiezéw zaleznych od predkosci mozna scatkowaé (albo bezposrednio, albo z
pomoca czynnika calkujacego) i staja sie one wiezami holonomicznymi (zobacz Zadanie
6.1). Nizej bedziemy zajmowaé sie tylko wiezami holonomicznymi.

Wiezy holonomiczne moga mieé¢ postaé nieréwnosci (tzw. wiezy jednostronne)

gi(ry,re,. .. N, t) >0, l=1,...,r,

i liczba r takich wiezéw moze by¢ dowolnie duza (pod warunkiem, ze wyznaczany przez
nie w R™ obszar dostepny jest niepusty), oraz moga mie¢ postaé réwnosci (tzw. wiezy
dwustronne)

fr(ry,ro, ..., ) =0,  k=1,...,p.

Liczba p niezaleznych i niesprzecznych wiezéw dwustronnych® nie moze przekraczaé¢ 3N.
(Jesli p = 3N, zaden ruch nie jest juz mozliwy - masy w danej chwili moga znajdowaé
sie tylko w punktach catkowicie wyznaczonych przez wiezy). Dane wiezy mozna przede-
finiowa¢ biorac ich ich kombinacje liniowe, bo istotna jest w zasadzie tylko 3N — p wy-
miarowa podrozmaito$é R3*Y | ktéra one wyznaczaja (mozliwosé ta staje sie jednak troche
problematyczna, gdy wystepuja sity tarcia, ktérych wartosé jest zalezna od sit reakcji).
Jesli takie wiezy nie zaleza od czasu, nazywaja sie skleronomicznymi (zalezne zas od czasu
zwa sie reonomicznymi). Wiezy moga by¢ narzucone na polozenia zdefiniowane wzgledem
ukladu inercjalnego lub nieinercjalnego (w tym drugim przypadku nawet gdy sa one w
ukladzie nieinercjalnym niezalezne od czasu, zmieniaja sie w uktadzie inercjalnym i dlatego
wykonuja zwykle nad ukladem prace).

Rozpatrzymy najpierw przypadek jednej czastki poddanej dziataniu zadanej (wypad-
kowej) sity F. Mozliwe sa wéwczas dwa rodzaje holonomicznych wiezéw dwustronnych:
czastka moze by¢ zmuszona do pozostawiania stale na pewnej powierzchni zadanej np.
rownaniem

f(x7y7zﬁt):0?

lub do poruszania si¢ po pewnej krzywej, ktéra moze by¢ zadana dwoma niesprzecznymi
i niezaleznymi réwnaniami

fl(xvyvzat)zov fQ(xvyvzut):07

lub tez zadana parametrycznie. Przyjmuje sie, ze obecnosé¢ wiezow powoduje koniecznosé
uzupehienia znanej (tj. zadanej) sity F o dodatkows sile reakeji Fg, ktéra zmusza czastke

55Warunek niezaleznoéci i niesprzecznosci wiezéw mozna ujaé $cisle matematycznie ale nie bedziemy
tu tego robi¢, bo w typowych sytuacjach fizycznych jego spelnianie jest w miare oczywiste.
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do pozostawiania na powierzchni wiezow. Réwnanie Newtona wyznaczajace jej ruch ma
wiec postaé (a =)

ma=F+ Fpg.

Podstawowy postulat dynamiczny, uogélniajacy wyniki doswiadczen glosi, ze sita reakcji
Fr jest prostopadia do powierzchni wiezéw, czyli ze mozna ja zapisa¢ w postaci

FR = )\(t)Vf(I‘, t) ’ lub FR = )\1 (t)vfl (I‘, t) + )‘2(t)vf2(r’ t) )

odpowiednio w pierwszej i w drugiej sytuacji. Postulat ten umozliwia znalezienie zaréwno
samego ruchu (tj. funkcji r(¢) wyznaczajacej zgodne z wiezami polozenie czastki w kazdej
chwili), jak tez i sity reakcji: oba uktady

{ mi =F(r,0) +AVf(r,t) mi = F(r,t) +fA12Z£1(:r,£) + AV fo(r, 1) |

fen=0 Falr.1) = 0

maja tyle réwnan ile jest w nich niewiadomych (sita F musi by¢ zadana jawnie z gory
jako funkcja czasu, polozenia i ewentualnie predkosci czastki, ale sita reakcji nie).

Jedli réwnania wiezéw nie zaleza jawnie od czasu (wiezy sa skleronomiczne), wyrazenie
dr-Fg = Mdr-V [ lub \idr -V f; + Ao dr -V f5 jest réwne zeru. Wynika to natychmiast
z zupeklego zrézniczkowania po czasie funkcji f(r(¢),t) = 0 (lub funkeji fi(r(t),t) =01

fa(x(t), 1) = 0)

d . 0
= F(e(0),1) = £V F2(0), 1) + 5 (6(0),2) = 0.

Jesli pochodna czastkowa po czasie jest réwna zeru (funkcja f nie zalezy jawnie od czasu),
zwiazek ten oznacza wilasnie prostopadiosé rézniczki dr przemieszczenia czastki i gra-
dientu f, czyli takze sity Fg. (W drugim przypadku rozumowanie jest analogiczne). W
przypadku, gdy wiezy sa zadane w uktadzie inercjalnym oznacza to, ze sita reakcji nie
wykonuje pracy; nie musi to by¢ stuszne, gdy sa one zadane wzgledem uktadu nieiner-
cjalnego (w takim przypadku rozpatrywane tu pochodne po czasie oznaczaja pochodne
liczone wzgledem uktadu nieinercjalnego zob. Przypomnienie w poprzednim rozdziale).

Gdy wiezy zaleza od czasu, moga wykonywaé prace, gdyz rzeczywiste przemieszczenie
czastki nie jest juz naogét styczne do chwilowej powierzchni wiezéw (czyli przemieszczenie
to nie musi juz by¢ prostopadte do sily reakeji).

Jesli sita F jest potencjalna (tzn. jesli F = —VV/(r)), wéwczas zmiane energii mecha-
nicznej T'+ V', spowodowana zmiennoscia wiezow w czasie, mozna wyrazi¢ wzorem (droga
catkowania I' biegnie po torze czastki od r(ty) do r(t))

0

Tt)+V(t)=T(to) + V(to) + /dr~FR =T(to) + V(to) — /tdt/A(t’) %f(r(t’), 'y,

0

(i analogicznie w drugim przypadku) gdzie wykorzystana zostala wypisana wyzej tozsamosé
wynikajaca ze zrézniczkowania rownania wiezéw po czasie.
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W przypadku czastki zmuszonej do pozostawania na ustalonej krzywej, ktora nie zalezy
od czasu najprosciej jest rownanie Newtona z sila reakcji zrzutowac¢ na wektor styczny do
tej krzywej t:

ma-t = (F+Fg)t=F-t.

Poniewaz a-t = a; = [ (1 jest tu diugoscia krzywej mierzona od jakiego$ ustalonego jej
punktu - zob. Zadanie 1.7), po wyrazeniu F; = F-t przez [ i [, otrzymuje sie na funkcje
[(t) zamkniete réwnanie

mi = F(L01),

wyznaczajace polozenie czastki na krzywej. Jego rozwiazanie daje kompletna informacje o
polozeniu czastki w przestrzeni z kazdej chwili. Dodatkowymi réwnaniami pozwalajacymi
wyznaczy¢ sity reakcji sa rzuty réwnania Newtona na dwa wektory n i b prostopadte do
krzywej (w danym jej punkcie). Poniewaz a-b = 0, a a-n = a, = mv?/p (zob.
Zadanie 1.7), mamy stad dwie réwnosci

mu?

TIFn‘i‘FRn’ Fy+ Fry = 0.
Pierwsza z nich méwi po prostu, ze rzut na kierunek n sumy silty reakcji i sity zewnetrznej
musi powodowaé (znane ze szkoty) przyspieszenie dosrodkowe (n wyznacza kierunek w
ktérym lezy $rodek okregu o promieniu p lokalnie przyblizajacego tor). Druga zas méwi,
ze sity w kierunku, w ktérym przyspieszenie nie ma skladowej, musza sie rownowazyc¢.

Aby sformutowaé prawa dynamiki uktadéw sktadajacych sie z wielu mas, wygodnie jest
podaé najpierw nieco zmienione sformutowanie omowionych wyzej praw wyznaczajacych
ruch pojedynczej czastki. W przypadku ruchu po powierzchni f(r,¢) = 0, ukltad réwnan

{mi‘(t) =F(r,t) + AV f(r,1)
f(r,t) =0 ’

jest mianowicie réwnowazny uktadowi

(mi(t) — F(r,t))-or =0

f(r,t)=0
or-Vf(r,t)=0

W drugim sformutowaniu, zwanym zasada d’Alemberta, wystepuje wektor or przemiesz-
czenia wirtualnego zgodnego z wiezami. Zasada d’Alemberta méwi, iz rzeczywisty ruch
r(t) jest taki, ze pierwsze réwnanie jest spelnione dla wszystkich przemieszczen wirtual-
nych dr zgodnych z wiezami.?® Jej wynikanie z pierwszego ukladu réwnan jest oczywiste:
jesli pomnozymy skalarnie pierwsze réwnanie przez ortogonalny do V f(r,t), ale poza

56Zgodne z wiezami przemieszczenie wirtualne r nie jest tozsame z przemieszczeniem rzeczywistym
dr(t) = v(t)dt: jest ono mozliwym a priori przemieszczeniem sie czastki w sytuacji “zamrozenia” wiezéw,
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tym dowolny wektor dr, otrzymamy pierwsze réwnanie zasady d’Alemberta. Wynika-
nie zas z zasady d’Alemberta pierwszego ukladu réwnan uzyskuje sie stosujac metode
mnoznika(6w) Lagrange’a: mmnozymy ostatnie réwnanie przez funkcje A(¢) i dodajemy
stronami do pierwszego, co daje

(Mm@ — Fy — XOpf) 6z + (mij — Fy — X0, f) 6y + (mZ — F. —X\0.f) 52 = 0.

Rownosé dr-V f(r,t) = 0 wyznacza np. Jx w funkcji pozostatych sktadowych oy i
0z przemieszczenia wirtualnego, ktore pozostaja wobec tego catkowicie dowolne. W
zwiazku z tym, dowolna na razie funkcje A(t) wybieramy tak, by zapewnié zerowanie
sie wspétezynnika przy (zaleznej od oy i 6z) skladowej dx w powyzszej réwnosci. Aby
wiec byta ona spelniona, znika¢ musza takze wspolczynniki w nawiasach przy niezaleznych
sktadowych dy i 6z przemieszczenia. Otrzymuje sie w ten sposdb jako wniosek koniecznosé
zerowania sie kazdego z wyrazen w nawiasach z osobna, czyli zachodzenia pierwszego
rownania w pierwszym sformutowaniu.

Przeniesienie zasady d’Alemberta na przypadek czastki poruszajacej sie po krzywej
zadanej dwoma réwnaniami fi(r,t) = 0, fo(r,t) = 0 jest oczywiste. Przyjmuje ona wtedy
postaé

(mi(t) — F(r,t))-or =0

filr,t) =0, fo(r,t) =0 :
or-Vfi(r,t) =0, dr-Vfo(r,t)=0

W tym przypadku réwnos¢ pierwsza jest w ruchu rzeczywistym speliona dla wszyst-
kich wektoréw or przemieszczen wirtualnych spehiajacych dwa warunki (a nie jeden)
zgodnosci z wiezami. Zasada ta wynika w oczywisty sposéb z podanego juz wczesniej
prawa ruchu po krzywej; wynikanie za$ tamtego prawa z zasady d’Alemberta wykazuje
sie w podobny sposéb, jak w przypadku ruchu po powierzchni (warunki zgodnosci or z
wiezami wyznaczaja np. oz i 0y w funkcji dz, ale sa teraz dwa mnozniki Lagrange’a
A1(t) 1 Aao(t), ktére pozwalaja wyzerowaé wspotezynniki przy tych zaleznych skltadowych
przemieszczenia, a z dowolnosci 6z wynika konieczno$¢ znikania i trzeciego wspélezynnika.

Podsumowujac te rozwazania: ruch rzeczywisty zachodzi pod wptywem zadanej z gory
sity F i sity reakcji Fg, ktorej praca na przemieszczeniach wirtualnych zgodnych z wiezami
2nika.5”

Prawo dynamiki wyznaczajace ruch uktadu N mas m;), na kazda z ktérych dziala
sita Fy), i = 1,..., N, (bedaca wypadkowa dzialajacej na te czastke sily zewnetrznej

tzn. przyjecia ich postaci z chwili ¢t. Jedli wiezy zaleza od czasu, rzeczywiste przemieszczenie dr czastki
w przestrzeni jest zlozeniem jej przemieszczenia wzdiuz wiezdéw z przemieszczeniem samych wiezow wy-
nikajacym z ich zmiennosci w czasie. (Np. rzeczywiste przemieszczenie przestrzenne dr mréwki idacej
po rozdymajacym sie balonie nie jest styczne do powierzchni balonu w ustalonej chwili czasu). Ponadto,
nawet jesli wiezy nie zaleza od czasu, wektor dr reprezentuje wszystkie mozliwe przemieszczenia styczne
do powierzchni wiezéw, podczas gdy przemieszczenie dr jest, przy ustalonych warunkach poczatkowych,
jednoznacznie wyznaczone przez zadang sile zewnetrzna F.

STW przypadku wiezéw zdefiniowanych wzgledem uktadu nieinercjalnego nalezy to stwierdzenie rozu-
mie¢ w sensie znikania iloczynéw or - Fr w tymze ukladzie.
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i sit wywieranych na teze czastke ze strony pozostatych N — 1 czastek) i poddanych
(dwustronnym) wiezom holonomicznym fi(rg),...,rw),t) =0, k =1,...,p (p < 3N)
formutuje sie nastepujaco. Tak jak w przypadku jednej czastki, istnienie wiezow powoduje,
ze na kazda z czastek dziata dodatkowa sita reakcji Fr(;), wobec czego ruch i-tej czastki
jest wyznaczony przez réwnanie Newtona m)t;) = F() + Fpy) oraz rownania wiezow
Je(ray, .- rv),t) = 0, k = 1,...,p. Ponadto przyjmuje sie - i to jest gléwny postulat
dynamiczny - ze suma prac wszystkich sit reakcji na zgodnych z wiezami przemieszczeniach
wirtualnych 0r ;) jest zawsze réwna zeru:

N

Z FR(,') ~5I'(,~) =0.

i=1

Nalezy zauwazy¢, ze postulat ten nie wynika bezposrednio (tj. bez rozpatrywania mikro-
skopowych mechanizméw powstawiania wiezéw) z praw Newtona. Jego stusznosé jest po-
twierdzana przez zgodnos¢ wnioskow otrzymywanych na jego podstawie z do$wiadczeniem.
Przyjety tu postulat mozna w zwarty sposéb uja¢ w postaci zasady d’Alemberta. Aby
nadac jej ogélna postac, wprowadza si¢ pojecie 3N wymiarowej przestrzeni konfiguracyjnej
uktadu, ktorej osiami kartezjanskimi sa kolejne sktadowe wektorow potozen czastek:

) £3N

=zqy, E=yu, €=z, =109, = ZN) -

Wprowadzamy tez (nieco sztucznie) 3N mas m;, ktére tréjkami sa réwne masom praw-
dziwych czastek (m; = my = my = mq), My = M5 = Mg = M), itd.). W podobny
sposob zapisujemy tez sity zadane F;:

F'=F3, F*=F

3 z 4 T 3N __ z
N, FP=Fh, FY=Fg . ..., PV =Fy.

W tej notacji zasada d’Alemberta wynikajaca z przyjetego postulatu glosi, iz rzeczywisty
ruch &(t) ukladu w przestrzeni konfiguracyjnej jest taki, ze

3N

> (mi€(t) — F) 8¢ =0,

i=1

dla wszystkich zgodnych z wiezami wirtualnych przemieszczen 06° w przestrzeni konfigu-
racyjnej, tj. przemieszczen ograniczonych warunkami®®

3N 9 1 ¢3N )
Z fk(f,a€276 >t)5€z:0’ k;:l,,p

1=1

Warunki te, plus p réwnan wiezéw fi(€4, ..., 8N 1) =0,k =1,...,p, wyznaczaja (razem
z warunkami poczatkowymi, ktére musza by¢ zgodne z wiezami) ruch uktadu. W zapisie

58Tak jak w przypadku jednej czastki, rzeczywiste, tj. realizowane w trakcie ruchu, przemieszczenie
jest jednym z mozliwych przemieszczen wirtualnych tylko wtedy, gdy wiezy nie zaleza od czasu.
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operujacym polozeniami r; poszczegdlnych czastek powyzsze warunki na przemieszczenia
zgodne z wiezami mozna napisa¢ jako

N
S 6t Vi frTays ot ) =0, k=1,...,p.

=1

Symbol V ;) oznacza tu “wektor” (0/0x(;), 9/0yj, 0/0%;))-

Od podanej tu zasady d’Alemberta mozna z kolei przejsé do uktadu réwnan Lagrange’a
pierwszego rodzaju postugujac sie technika mnoznikéw Lagrange’a. Wprowadzamy w tym
celu p funkcji Ag(t) (po jednej na kazde réwnanie wiezéw) i dodajemy p warunkéw na
przesuniecia wirtualne 6¢%, kazdy pomnozony przez odpowiadajaca mu funkcje Ax(t) do
warunku prostopadlosci (w przestrzeni konfiguracyjnej) wektora m &(t) — F do wszyst-
kich dopuszczalnych przesunie¢ wirtualnych 0&. Stosujac dalej znane juz rozumowanie z
dobieraniem mnoznikéw Lagrange’a A\i(t), otrzymujemy réwnanie Lagrange’a pierwszego
rodzaju

mé(t) =F +Fg,

(wektor po lewej stronie nalezy rozumie¢ w ten sposéb, ze kazda skladowa Ei(t) jest
pomnozona przez odpowiednia mase m;), w ktérym (uogdlniona) sita reakcji Fr jest dana
przez

Fr= Al(t)vgfl(ga t)‘l’ s ‘I')‘p(t)vgfp(& t) )

gdzie Vﬁ jest 3N-wymiarowym “wektorem” o sktadowych 9/0¢!,...,0/063N. To samo
wyrazone przez zwykle wektory polozen czastek oznacza, ze spetniaja one rownania New-
tona z dodatkowymi sitami reakcji

m(i)f(i)(t) =Fu + Fru) 1=1,..., N,
i réwnania wiezéw fi(r(1), ..., rw), t) = 0, a sily reakcji sa dane przez

Frijy = MOV filtay, vy, O+ 00O Vi f(ray, -t t) .

W przypadku wiezéw niezaleznych od czasu zasade d’Alemberta mozna tez zasto-
sowa¢ do wyznaczania potozen réownowagi uktadu N mas m;. tj. rozwiazan réwnan
ruchu (odpowiadajacych szczegdlnym zgodnym z wiezami warunkom poczatkowym na
polozenia i zerowym predkosciom poczatkowym), ktére nie zaleza od czasu. Sprowadza
sie to do polozenia réwnych zeru przyspieszeii ¥'(; (lub, w notacji ogélnej, &) i obliczenia
sit Fr(;) (jesli zaleza one od predkosci czastek) dla zerowych predkodci #(;) (lub £). Za-
sada d’Alemberta (kt??ra - zeby byto wszystko bardziej po francusku poplatane - w tym
szczegblnym przypadku nazywa sie zasada prac wirtualnych Lagrange’a) méwi zatem,
ze polozeniami réwnowagi uktadu N mas m(; poddanych p skleronomicznym wiezom
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fe(ray,...,r@v)) = 0 i dzialaniu zadanych sil F;) moga by¢ takie polozenia rg))), przy

ktérych suma prac sit zadanych na zgodnych z wiezami przemieszczeniach wirtualnych
dr(;) (przemieszczeniach w stosunku do po?7ozen rg?))) jest réwnan zeru

N
Z 5[‘(2-) -F(i) =0.
i=1
W notacji ogdlnej warunek ten na polozenie réwnowagi § ) przyjmuje zas postac
3N
D 6F =0,
i=1

w ktérej sity F' sa wziete dla €8 =01 ¢ = §(o)» & przemieszczenia 6’ spelniaje p wypisa-
nych wezesniej warunkéw prostopadtosci (w 3N wymiarowej przestrzeni konfiguracyjnej)
do powierzchni wiezow.
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Rysunek 37: Potaczone osia o ustalonej dtugosci b dwa kota (oba o promieniu a) toczace
sie bez poslizgu po ptaskim podtozu (Widok z gbry). Kazde z kot moze obracac si¢ na osi
niezaleznie od drugiego. Predkos¢ katowa 6 jest skierowana (gdy € > 0) do gory.

Zadanie 6.1 (Raz zobaczy¢ wiezy nicholonomiczne)

Zmalez¢ wiezy, ktorym poddany jest uktad skladajacy sie z dwoch kot o takich samych
promieniach a potaczonych osia o ustalonej dlugosci b i toczacych sie bez poslizgu po
bedacym plaska powierzchnia podiozu. Kazde z kot moze obracaé sie na osi niezaleznie
od drugiego.

Rozwigzanie:

Niech 6 bedzie katem nachylenia osi taczacej kota w stosunku do osi  (zob. rysunek 37).
Brak poslizgu oznacza, ze chwilowe predkosci punktow stycznosci obu kot z podlozem
sa rowne zeru. Kazda z tych predkosci jest wypadkowsq trzech niezaleznych ruchéw. W
przypadku punktu 1 (punkt stycznosci z podlozem gdérnego kota) ruchami tymi sa: ruch
postepowy srodka geometrycznego catego uktadu, obrét kota wokot osi taczacej kota oraz
obrot wokoét osi pionowej przechodzacej prostopadle przez srodek osi taczacej kota. W
infinitezymalnym odcinku czasu dt ruchy te daja nastepujace przemieszczenia punktu
1 odpowiednio wzdluz osi poziomej: dx, —asinf d¢p; oraz —%b sinf df i pionowej: dy,
acos 0 d¢, oraz %b cos 0 df (jesli $1 > 0, to predkosé¢ punktu stycznosci z podtozem pierw-
szego kota wynikajaca z jego obrotu wokol poziomej osi jest skierowana uko$nie w gore i
w lewo podobnie jak (gdy 6 > 0) predkosé tego punktu wynikajaca z obrotu uktadu wokét
osi pionowej; czynniki sin 6 i cos  daja rzuty odpowiednich wektoréw przemieszczen na o$
pozioma i pionowa). Aby chwilowa predkosé punktu 1 znikala, przemieszczenia te musza,
wzajemnie sie znosi¢. Daje to dwa warunki

dr —asinfdp, — (b/2) sinfdf =0,
dy + acos@dp; + (b/2) cosfdf =0.

Rozpatrujac analogicznie przemieszczenia punktu 2 dostajemy dwa nastepne warunki

dx — asinfdps + (b/2) sinfdf =0,
dy + acosOdpy — (b/2) cosfdf = 0.

Po podzieleniu przez dt, wypisane wyzej warunki beda laczy¢ polozenia i predkosci.
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Mnozac pierwsze i trzecie rownanie przez cos # a drugie i czwarte przez sin f i dodajac
je parami do siebie (tzn. pierwsze do drugiego, a trzecie do czwartego), znajdujemy, ze
obie pary rownan daja te same wiezy nieholonomiczne

cosfdr +sinfdy =0.

Nastepnie mnozymy pierwsze i trzecie réwnanie przez sin # a drugie i czwarte przez cos 6
i odejmujemy od pierwszego drugie, a od trzeciego czwarte otrzymujac

sinfdz — cos@dy —adp, — (b/2)dd =0,
sinf dx — cos@dy — adps + (b/2)d0 = 0.

Wreszcie biorac sume i réznice tych dwu réwnan otrzymujemy drugie rownanie wiezéw
nieholonomicznych

sinfdx — cos 0 dy = (a/2)(dp1 + doy),

oraz jedno réwnanie wiezéw ad(¢y — ¢2) = —bdf, ktére daje wiezy holonomiczne, jako ze
moze by¢ przedstawione w postaci scatkowanej

9:C+%(¢2—¢1)-

Aby mie¢ pewnos$¢, ze pozostale wiezy nie sa holonomiczne, trzeba pokazaé jeszcze, ze
formy roézniczkowe

wy(x,y,0) = cosOdx + sinfdy,
wo(z,y,0,¢) =sinfdx — cosdy — ado,

(gdzie ¢ = %(¢1 + ¢2)) nie maja czynnikéw catkujacych. Jest na sprawdzenie tego odpo-
wiedni patent (zob. np. moje notatki do ¢wiczen z termodynamiki). Tu jednak jest to
oczywiste.

Jesli kota bytyby potaczone osia na sztywno, tzn. gdyby d¢; = dos (dodatkowe wiezy
holonomiczne), to zmiana kata 6 nie bylaby, jak wida¢ z warunku 6 = C, mozliwa (bez
poslizgu). W takiej sytuacji wiezy nieholonomiczne wy(z,y,0) = 0 1 wy(z,y,0,¢) = 0
staja sie holonomiczne

wy(z,y,0) = d(xcosf +ysind),
wa(z,y,0,0) =d(xsind —ycosh —ad),

i oznaczaja po prostu, ze ' = xcosf +ysinf =const, a y’ = —xsinf +ycosl = —a(p+
¢o), gdzie o', 1 y' sa wspotrzednymi ukladu obréconego o kat 6 wzgledem pierwotnego, a
¢o jest stalym katem. Drugi z tych zwiazkow oznacza po prostu (co jest jasne z rysunku
37), ze kola polaczone osia tocza sie, gdy ¢ > 0, w kierunku ujemnym osi ¢/
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Zadanie 6.3

Na ptaskiej powierzchni stotu lezy klin o masie M, kacie nachylenia « i wysokosci gérnej
krawedzi h. Po klinie, wskutek dziatania skierowanego pionowo w dét pola grawitacyjnego
g, moze zsuwacé sie klocek o masie m. Pomiedzy klockiem a klinem wystepuje sita tarcia
dynamicznego rowna co do wartosci sile nacisku klocka na na klin razy wspdtczynnik g, .
Podobna sita tarcia, o wspoélczynniku ps wystepuje pomiedzy klinem a stotem. Postugujac
sie réwnaniami Newtona z wiezami (czyli réwnaniami Lagrange’a I-go rodzaju) znalezé
silty reakcji pomiedzy klinem a klockiem oraz pomiedzy klinem a stolem w sytuacji, gdy
klocek zaczyna zsuwac sie z klina. Znalez¢ jawne wzory na sity reakcji i przyspieszenia,

gdy p11 = p2 = 0.

Rozwiazanie:
Jesli o$ z jest skierowana do gory, os x w prawo, a gbérna krawedz klina jest na prawo od
jego najnizszego punktu, to oznaczajac wspétrzedne klina (X, Z), a te klocka (x, z) (zob.

rysunek 38) otrzymujemy nastepujace dwa réwnania wiezéw:

X, Zz,2)=z2+ (X —x)tga—Z —h =0,
fo(X, Z,2,2)=Z =0.
Pierwsze wyraza fakt, ze klocek lezy na powierzchni klina, a drugie, fakt, ze klin lezy

na stole. Réwnaniami Lagrange’a I-go rodzaju (czyli po prostu réwnaniami Newtona z
uwzglednionymi sitami reakcji i réwnaniami wiezéw) sa

MX = Atgo — sy — Salla Mg,
MZ:—Mg—)\l —sl,ul)\ltgoz+ )\2,
mx = —Altga+51u1>\1,

mz = —mg+ \ + s1p A tga,

uzupehione o réwnania fi(x,2, X, Z) =01 fo(x, 2, X, Z) = 0. Aby uwzglednié sity tarcia,
napisalismy tu po prostu wektory prostopadte do wektorow sit reakcji stosujac zwykty trick
polegajacy na zamianie miejscami skltadowych wektora sity reakcji i zmianie znaku jednej
z nich. s1 1 s9 sa znakami zwiazanymi z kierunkami predkosci. Sily tarcia zostaly zapisane
tak, ze s1 = sy = +1, gdy klocek zsuwa sie z klina (klocek jedzie wzgledem klina w
lewo, a klin w prawo). W ogdlnosci jednak, w chwili ¢ = 0 klin moze mie¢ (gdy warunki
poczatkowe sa odpowiednio dobrane) predko$¢ V' (o dowolnym znaku) wzgledem stohu, a
klocek tez moze mie¢ dowolna predkosé v wzgledem klina (o znaku sity tarcia decyduje
wzgledna predkos$é stykajacych sie powierzchni klina i klocka). Dalej przyjmujemy, ze
aktualy ruch jest taki, iz s; = s9 = +1.

Aby rozwiazaé¢ te rownania (znalezé sily reakcji) wyznaczamy z drugiego réwnania

Ao algebraicznie (bo z fo = Z = 0 wynika tez, ze Z = 0) i wstawiamy do pierwszego.

% Pierwsze z nich otrzymujemy nastepujaco: wspétrzedne klocka (z, 2) musza spetniaé réwnanie prostej
ktéra stanowi gérna krawedz klina; zatem z = x tga + C; stala C ustalamy zadajac, by punkt (X, Z + h)
(tj. najwyzszy punkt klina) tez lezal na tej tej prostej.
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z X

Rysunek 38: Klocek zsuwajacy sie z szorstkiego klina, ktéry moze przesuwac sie po szorst-
kim podiozu. Definicje zmiennych.

Nastepnie dwakro¢ rozniczkujemy po czasie f; = 0 uzyskujac zwiazek

2= (% - X)tga,

do ktérego podstawiamy nastepnie drugie pochodne z, i X z wypisanych wyzej rownan
Newtona. Daje to rownanie
A AL

A1
— 2o | oo — 22 (toa —
g+m - ga M(ga H1) + pog +

AL

1 t t
M( + pitga)pa | tgo,

z ktorego mozna wyznaczy¢ A\;. Majac A\; obliczamy \; i majac juz jawne prawe strony
réwnan Newtona catkujemy je, by znalezé X (t), x(t) i z(t).

Poniewaz w ogélnym przypadku gy # 01 ug # 0 wzory sa malo przejrzyste, podamy
wzdr na A\; i przyspieszenia, w sytuacji, gdy p; = pa = 0. Mnozniki A; i Ay (sily reakeji)
nie zaleza wtedy od kierunku ruchu klocka i klina:

mg

>\121+(1+%)tg2a’ Ar= Mg =i

Wstawienie A\; do wzoréw na X i & daje

. m . mg tga mgsin o cos
X=-li= = = —
M M+ (M +m)tga M+ msin®«

Widaé, ze X = 0, gdy a = 0 (klocek lezy na ptlaskiej powierzchni) lub, gdy a = /2
(klocek spada po pionowej $cianie). Poza tym, X — 0, gdy m/M — 0 (pchta zjezdzajaca
na nartach po zadzie slonia, nie powoduje zauwazalnego przemieszczenia Trabalskiego,
nawet gdyby stat on na lodzie na tyzwach). Wreszcie®

y A1 g(m + M)sin® a
Z:—g“—_:_ ) .
m M + msin” «

Nalezy tu zauwazyc, ze wyprowadzajac ogdlne réwnania (uwzgledniajace sily tarcia)
najpierw obliczylismy gradienty réwnan wiezéw, a dopiero potem wykorzystywalismy te

60Dobrze jest sprawdzié, ze jest to to samo, co (i — X)tga.
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rownania. Powstaje wiec pytanie, co by bylo, gdyby przed obliczaniem gradientow wziac
zamiast podanych rownan wiezéw ich kombinacje liniowe? Np. mozna by bylo dodaé
drugie réwnanie do pierwszego, skutkiem czego w pierwszym nie wystepowataby zmienna
Z. Mozna tatwo sprawdzié, ze przy niewystepowaniu sit tarcia koncowe wzory na z, Z i
X bylyby niezmienione (cho¢ zmienilyby sie koricowe wyrazenia na A; i \y). Jednak po
takiej zmianie réwnan wiezéw nie otrzymaliby$my w pierwotnym réwnaniu na Z wyrazéw
proporcjonalnych do A, a zatem nie moglibysmy uwzgledni¢ wplywu tarcia miedzy klinem
i klockiem na ruch klina. Gdy wystepuja sily tarcia wybdr réwnan wiezow musi by¢ wiec
zgodny z fizycznymi oczekiwaniami, co do sit reakcji (brzmi to enigmatycznie, ale nie
wiem, czy mozna to jako$ scislej ujac).
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Zadanie 6.4

Punkt materialny o masie m moze poruszac sie po wewnetrznej stronie ustawionej pionowo
(tj. tak, ze jedna z jej Srednic jest réwnolegta do ziemskiego pola grawitacyjnego g)
nieruchomej obreczy o promieniu R (zob. rysunek 39). Pomijajac tarcie napisa¢ rGwnania
ruchu uwzgledniajace site reakcji wiezéw. Traktujac te wiezy jak jednostronne, znalezé
zaleznos¢ sity ich reakcji od potozenia punktu na obreczy, jesli w najnizszym potozeniu
punkt mial liniowa predko$¢ vy. Jaka musi by¢ minimalna predkos$¢ vy aby punkt nigdy
nie oderwal sie od obreczy? Znalez¢ ruch i jego czesto$¢ w przyblizeniu malych wychylen
z potozenia rownowagi. W przypadku, gdy catkowita energia jest akurat wystarczajaca
do osiagniecia przez mase m najwyzszego punktu toru, znalez¢ zaleznosé jej polozenia na
obreczy od czasu. (Czy jednostronne wiezy pozwola mu osiagnaé ten punkt?) Rozpatrzyc
takze przypadek, gdy masa m porusza sie bez tarcia po zewnetrznej stronie obreczy
i znalezé punkt, w ktérym puszczona swobodnie (z zerowa predkoscia) z najwyzszego
punktu obreczy oderwie sie ona od niej.

Rozwigzanie:

Wybierzmy uklad biegunowy tak, by kat ¢ = 0 odpowiadal najnizszemu potozeniu punktu
na obreczy, tj. tak, ze o$ x jest skierowana w dél, a o§ y w prawo (zob. rysunek 39).
Kat ¢ rosnie wtedy w kierunku przeciwnym do ruchu wskazéwek zegara. Pola ciazenia
rozpisane na wersory e, i e, ma wtedy postac

g=¢€.gCcosp—e,gsing.

W ukiadzie biegunowym rownanie wiezéw jest trywialne:

f(ryo)=r—R=0.
Zatem réwnania Newtona uwzgledniajace site reakcji maja postac

m (i —r¢*) =mg cosp+ X,
m(2re+rp)=—mgsing.

Po wykorzystaniu wiezow upraszczaja sie one do

—mRP* =mgcosp+ A,
mRp=—mgsingp.

Poniewaz réwnanie wiezéw zostalo juz w nich uwzglednione, stanowia one kompletny
uklad réwnan wyznaczajacych ruch masy m oraz czynnik A (i tym samym site reakcji).
W przypadku, gdy nie wystepuje tarcie, mozna skorzysta¢ z zachowania energii mecha-
nicznej (sita reakcji bedac stale prostopadta do przesuniecia masy m, nie wykonuje pracy).
Przyjmujac, ze energia potencjalna réwna sie zeru w najnizszym punkcie obreczy, mamy®!

1
Qm(Rgb)2+ng(1—cosgp) =F.

61To samo mozna oczywiscie otrzymaé z drugiego réwnania Newtona mnozac je obustronnie przez R¢
i zwijajac do pelnej pochodnej kazda z jego stron.
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Sy

Rysunek 39: Masa m $lizgajaca sie po wewnetrznej powierzchni obreczy.

Stad

o 2E - 2mgR(1 — cos @)
7 mR?

Wstawiajac to do radialnego réwnania Newtona znajdujemy, ze

2F
A= = + 2mg — 3mg cos p .

Jesli w najnizszym punkcie obreczy masa m ma predkosé vy, czyli, gdy E = %mvg,

2
mu
A= —?0 + 2mg — 3mgcos ¢.
W najnizszym punkcie obreczy (¢ = 0) sila reakcji (jest ona réwna po prostu A) jest
ujemna i rowna co do wartosci ciezarowi masy m zwiekszonemu o site odsrodkowa:

2
A=—10 g,

R

Aby masa m nie oderwala sie, A nie moze zmieni¢ znaku (punkt oderwania jest tam,
gdzie A = 0, tj. tam, gdzie znika sila reakcji) dla zadnego kata ¢. Naklada to warunek
_mvg

It + 2mg — 3mgcosp <0,

ktory jest speliony dla wszystkich katow ¢ jesli
ve > 5gR.

Ten sam wynik mozna takze dosta¢ z zadania, by w najwyzszym punkcie toru (¢ = 7)
sita odsrodkowa bylta wciaz wieksza niz sita ciazenia, tj. zadajac, by



znajdujemy, ze mv?(p = m) = mv? — 4mgR, a stad warunek
mug — 4mgR > mgR.

Prowadzi to do tego samego warunku na vy, co uzyskany poprzednio.

Zaleznosé¢ od czasu kata ¢ mozna otrzymac z zachowania energii. Po rozdzieleniu
zmiennych daje ono zwiazek

2 t @(t) d
Y / dt = i—/ Ld .
mR? J, ¢o VE—mgR(1 — cos )

Jesli wychylenia masy m z potozenia ¢ = 0 sa niewielkie, mozna w funkcji podcatkowej
po prawej rozwinaé cosinus:

2 (t—to) = L Y dy = 2 arccos ”m_gRSO .
mR2 E 2 mgR 2F

\/_ 70 \/1—<gp ng/QE)

\/@@(t) = COS<\/g(t - to)) :

Daje to ruch harmoniczny o czestosci w? = ¢g/R i amplitudzie A = /2E/mgR =
\/2E /mgRw?, jak nalezalo sie spodziewac.

7 kolei, gdy masa m ma w najnizszym punkcie obreczy energie akurat rowna E =
2mgR, zaleznosé polozenia od czasu daje sie otrzymaé z calki scisle (zaktadamy, ze masa
m przemieszcza sie po obreczy w prawo, czyli ze ¢ > 0, oraz ze ¢(0) = 0)

ey
R? \/ng 1 + cos ) gR cos 80/2

Caltka jest wykonalna (wystarczy funkcje podcatkowa zapisa¢ w formie cos(y/2)/(1 —
sin?(p/2)], podstawi¢ u = sin(p/2) i roztozyé na UAMKi proste) i daje

- ()

co po rozwiktaniu wzgledem ¢ prowadzi do wzoru

czyli

©(t) = 2arcsin(thwt) .
Ze wzoru tego widaé, ze gdyby wiezy byly dwustronne (tj. gdyby masa m nie mogta ode-

rwa¢ sie od obreczy), najwyzszy punkt obreczy, ¢ = m, bylby osiagany po nieskoniczonym
czasie. Jedli jednak wiezy sa jednostronne masa m oderwie sie od obreczy wczesniej,
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gdyz warto$¢ v2 = 4gR jest mniejsza od znalezionej wczesniej najmniejszej predkosci
umozliwiajacej osiagniecie najwyzszego punktu obreczy przy wiezach jednostronnych.

W przypadku, gdy punkt zsuwa sie po zewnetrznej stronie obreczy z jej najwyzszego
punktu bez predkosci poczatkowej, pela energia E ruchu jest réwna E = 2mgR i
zaleznos$¢ A (sily reakcji) od kata ¢ jest dana wzorem

A= —2mg — 3mgcos p.

Oderwanie sie masy m nastapi wtedy, gdy cosp = —2/3.
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Zadanie 6.5

Jaka predkos¢ nalezy w najnizszym punkcie obreczy nada¢ masie m z Zadania 6.4, aby
mogta ona, nie odrywajac sie od obreczy, osiagnac jej punkt najwyzszy, jesli wspotczynnik
tarcia dynamicznego masy m o obrecz jest réwny u?

Rozwiagzanie:

Gdy wystepuje sila tarcia Fr ma ona, gdy, powiedzmy ¢ > 0, postaé Fr = puA(p) e,.
Mozna zatem napisaé¢ rownanie wyrazajace straty energii kinetycznej masy m przy jej
przemieszczaniu sie po obreczy od ¢ do ¢+ dp na skutek wykonywania nad nia (ujemne;j)
pracy przez site grawitacji i sile tarcia:

dEyin(p) = mg-dr + Fr-dr.

Poniewaz z powodu wiezéw dr = d(re,) = Rde, = e,Rdyp (zob. Zadanie 1.4), g =
g(e, cos p—e, sin p), a z radialnej sktadowej réwnania Newtona (zob. rozwiazania Zadania
6.4), ktéra nie ulega modyfikacji, gdy wystepuje tarcie

. 2
M) = —mgcos p — mR$® = —mg cos p — = Buan(9)

(mnoznik A jest ujemny, gdy ruch zaczyna sie z polozenia ¢ = 0 z niezerowa energia
kinetyczna, dlatego Fr = uA(p) e, ma wlasciwy zwrot) réwnanie to ma postaé

2
dEin(p) = —mgRdpsiny — <mg cos ¢ + I Ekin(gp)) Rdyp,

czyli
dEkin
de

+ 2pEyi, = —mgR (sin @ + pcosp) .

Jego rozwiazanie jest suma ogdlnego rozwiazania Efo™(p) = Ce~2#% réwnania jednorod-
nego i szczegblnego rozwiazania réwnania niejednorodnego, ktorego szukamy w postaci
B () = A(p) e, Daje to

mgR

“Trap [Busing — (1 —2u%) cos ] 4.
u

A(p) = —mgR /dap e2He (sinp + pcos p) =

Stad spehiajace warunek Ey,(0) = %mvg rozwiazanie rownania rozniczkowego ma postac

mgR
1+ 4p?

Z rozwiazania Zadania 6.4 wiadomo tez, ze warunkiem, by masa dotarta do punktuo ¢ = 7w
jest niezerowanie sie wczesniej czynnika A, czyli [—=mg cos ¢ — (2/R) Exin(¢)]p=r < 0, tj.

1
Ein(p) = =muvg e 2% — [(1—2p%) e + 3using — (1 — 2u%) cos ] .

2

2
muv, 2m
mg — —2 e 2 4 J

R 1+4p?
Warunek ten (silniejszy niz Ey, (¢ = m) > 2mgR) daje przy u = 0 (brak tarcia) v2 > 5gR,
jak poprzednio.

[(1—=2p%) e + (1 —2p%)] < 0.
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Zadanie 6.6
Punkt materialny o masie m porusza sie w plaszczyznie xz w polu sity ciezkosci g = ge,
po gtadkiej cykloidzie zadanej (parametrycznie) réwnaniami

z=a(p—sing),
z=a(l —cosyp),

gdzie 0 < ¢ < 27. Znalez¢ ruch tego punktu postugujac sie rownaniem Lagrange’a
pierwszego rodzaju (ograniczy¢ sie do ruchéw, w trakcie ktérych punkt nie opuszcza
cykloidy albo przyjaé, ze wiezy sa dwustronne). Wyznaczy¢ sile reakeji jako funkcje
parametru . Rozwiaza¢ takze problem korzystajac z zachowania energii. Wyprowadzié¢
rownanie wyznaczajace ten sam ruch korzystajac z rownania Lagrange’a drugiego rodzaju.

Rozwiazanie:

W przyjetym ukladzie odniesienia g = ge,, g > 0 (oS z jest skierowana “w d6t”). Poniewaz
ruch odbywa sie po ustalonej krzywej parametryzowanej katem ¢, aby podaé¢ polozenie
punktu, wystarczy podaé zaleznos¢ kata ¢ od czasu (zob. Przypomnienie). W tym celu,

a takze by wyeliminowa¢ nieznana (na razie) site reakcji, rzutujemy réwnanie Lagrange’a

I-go rodzaju (czyli réwnanie Newtona z sila reakcji) na wektor t styczny do toru:®?

ma-t=(m-g+ Fg)-t,
co, poniewaz sita reakcji Fr jest prostopadia do toru, daje réwnanie
ml =m g-t.

Aby wykorzysta¢ réwnanie w tej postaci, musimy znalezé jawna postaé¢ wektora t. W tym
celu nalezy powiazaé dl z dy. 7 infinitezymalnego Pitagorasa, dl?> = da? + dz? mamy:

dl\? dz\? dz\” 2 2 2 ;2 2. 2%
<@> _<%) —|—<@) = a°(1 — cos ¢)” + a” sin” ¢ = 4a”sin 5

Poniewaz sin(p/2) > 0, gdy 0 < ¢ < 2w, wiec dl/dp = 2asin(p/2). Zatem

et () () = (e,

62Przypomnijmy tu potrzebne wzorki (zob. Zadanie 1.7):

bo rézniczka dtugosci krzywej dl = vdt, tj. v = [. Stad v=vut,a przyspieszenie

2

azijt—i—vfzk—i——n.
P

n jest jednostkowym wektorem prostopadlym do toru skierowanym do srodka lokalnej krzywizny tegoz.
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Otrzymujemy zatem prosto wygladajace réwnanie

[ = gcos 2.
2
Zgodnie z ogdlna metodologia (zob. Przypomnienie) nalezaloby teraz wyrazi¢ ¢ w lewej
stronie tego réwnania przez [. Mozna to tatwo zrobi¢ catkujac otrzymany wyzej zwiazek
dl = 2asin(¢/2)dy z warunkiem [(p = 0) = 0, co da
© [
cos—-=1——,
2 da
i rownanie rézniczkowe wyznaczajace zalezno$é [ od czasu przyjmie postaé¢ réwnania oscy-
latora garmonicznego poddanego dzialaniu stalej sity

. g

[ = 10 l+g,
ktorego rozwiazaniem jest [(t) = 4a+ Asin(y/g/4at+9) - masa m na cykloidzie wykonuje
drgania $cisle harmoniczne o czestosci y/g/4a i dowolnej (byle mniejszej niz 4a - by byt
to ruch po cykloidzie) amplitudzie A wokét punktu na cykloidzie odleglego o 4a od jej
poczatku (jest to oczywiscie najnizej potozony punkt cykloidy znajdujacy sie w polowie
jej catkowitej dlugosci rownej, co mozna odczytaé ze znalezionego wyzej zwiazku [ z ¢,
8a).

Ten sam wynik mozna tez uzyskaé¢ przepisujac rownanie rézniczkowe w zmiennej £ =

cos(p/2). Mozemy bowiem napisaé

codl Al d 4
_E_@ap—%zgpsmg— 4adt(cos2>.

Zatem po wprowadzeniu zmiennej £ = cos(p/2), otrzymujemy po prostu réwnanie oscy-
latora

§=—1.°

W zmiennej & ruch jest zatem, tak jak poprzednio, ruchem harmonicznym: &(t) =
Acos(wt +0), gdzie w? = g/4a. Zadanie amplitudy A wyznacza tez zakres zmiennosci
©(t). Poniewaz w od tego zakresu (amplitudy) nie zalezy, ruch po cykloidzie jest (rzadkim)
przyktadem ruchu drgajacego Scisle izochronicznego.

Znajdziemy teraz site reakcji. Ma ona oczywiscie kierunek wektora n (jest do¢ propor-
cjonalna ze wspétezynnikiem A(t), ktéry na razie jest nieznany), wiec najpierw znajdzmy
jawnie ten wektor.

1 dt  dt (di\T 1 cos(p/2)

-n=—=—|— = : :

p dl dp \dp dasin(p/2) \ —sin(p/2)
Poniewaz n® = 1 z definicji, n jest wlasnie wypisanym tu wektorem, a wspélczynnik
przed nim jest odwrotnoscia promienia krzywizny p krzywej; zatem p = 4asin(p/2). Aby

2
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znalez¢ Fg korzystamy, z tego, ze Fr = nFg, i rzutujemy réwnanie Newtona na wektor
n:

2 2

Fr, =n-(ma—mg) = % +mgsin§ = #ZP/Q) —|—mgsing.
Zgadza sie to z intuicja: sita reakcji musi zréwnowazy¢ reprezentowang przez “szkolne”
wyrazenie mv?/p (nalezy pamietaé, ze promient krzywizny p jest promieniem okregu przy-
blizajacego lokalnie tor) site od$rodkows (to sie tak niepoprawnie méwi; naprawde, musi
da¢ site w przeciwna strone, powodujaca zakrzywienie toru, czyli nada¢ masie m przyspie-
szenie dosrodkowe) i zrownowazy¢ prostopadla do toru skladowa sity ciezkosci. Podany
wzér nie daje jeszcze jawnie zaleznosci Fg, od czasu (a znajac Fg,(t) i n(t) mozna juz
zalezno$¢ A(t) znalezé; naogot zreszta wazna jest nie A(t), lecz po prostu sita). W tym celu
trzeba by tu jawnie wstawi¢ p(t) odwiktujac cos(p/2) = £(t) i wstawiajac jawna zaleznosé
od czasu v(t) = [ = 2ap(t) sin(p(t)/2). Mozna jednak, poniewaz sila mg ma potencjal
V = —mgz (0§ z jest skierowana w dét) wykorzystaé zachowanie energii, by wyrazi¢ sile
reakcji przez catkowita energie E ruchu i polozenie masy na cykloidzie, tj. np. przez ¢.
Daje to

1
§mvz = E+mgz =F +mga(l — cos ),

wiec

E +mga(1l — cosp)
Fry, =

. + mgsin L .

2asin(p/2) 2

Takie wyrazenie jest zwykle bardziej uzyteczne: naogdt bowiem chcemy wiedzie¢, jak sita
reakcji zalezy od punktu (bo wtedy wiemy, jaka sita dziala w tym miejscu na wiezy, co
moze interesowa¢ inzynierow z punktu widzenia wytrzymatosci materiatu) i od globalnej
charakterystyki ruchu (takiej jak jego energia), a nie jak zalezy ona od czasu.

Zachowanie energii mozna wykorzysta¢ takze do znalezienia samego ruchu. Wsta-

wiajac do wypisanego wyzej wzoru v = 2a¢ sin(y/2) mamy

d 2
2ma’¢? sin® g = 8ma’® <E cos g) = E +mgz = E + 2mgasin? g

Stad, przechodzac znéw do zmiennej £ = cos(p/2),

/dt:i/ ad .
\/E+2mga_l 2

8ma? 4a

Wystepuje tu £/ = E + 2mga, bedaca calkowita energia ruchu, wtedy, gdy energia po-
tencjalna jest mierzona, nie od poziomu z = 0, tylko od z = 2ma (0$ z jest skierowana w
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dét i V = —mgz), czyli od najnizszego punktu cykloidy. Scalkowanie tego zwiazku daje

oczywiscie
| B+ 2mga
g(t) = W COS(wt + 5) ,

z w? = g/4a, jak poprzednio.

To, ze ruch jest cisle izochroniczny (tj. jego okres nie zalezy od amplitudy wychylen)
jest szczegdlna wilasciwoscia ruchu po cykloidzie i zazwyczaj nie zachodzi dla innych
ruchéw. Jest jednak jasne, ze ruch polegajacy na malych wahaniach wokdlnajnizszego
punktu cykloidy (czy innej podobnej krzywej) mozna zawsze przyblizy¢ przez ruch har-
moniczny. Wobec tego na tym przyktadzie pokazemy ogdlny sposdéb wyznaczania czestosci
takich matych drgan. W tym celu w rownaniu wyrazajacym zachowanie energii rozdzia-
lamy zmienne i zapisujemy je w postaci

dp sin(p/2) _ 4 dp sin(p/2)

1
V2ma? /dt_i VE +mga(l — cos p) VE—-V(p)

Polozeniem rownowagi, wokét ktorego moga zachodzi¢ male drgania, jest punkt, w ktérym
V'(e) = —mgasing = 01 V"(p) = —mgacosp > 0, czyli ¢ = m. Rozwijajac V(p) w
szereg Taylora wokot ¢ = 7 i definiujac zmienna 6 = ¢ — 7 mamy

vV 2ma? /E/ _ %mga 62 .

Czynnik sin(¢/2) w liczniku calki po prawej stronie zostal przyblizony przez swoja warto$é

wo=m akl =FE+2mga=FE—V(r). Dalsze kroki sa juz oczywiste: otrzymujemy

stads3
B 2" . g
0(t) = p(t) — 7~ mga81n<”@t+6>’

co pokazuje, ze czestosé matych drgan wokét polozenia réwnowagi jest réwna +/g/4a (co
w przypadku ruchu po cykloidzie jest oczywiste).

Warto wreszcie, zastosowa¢ do badanego ruchu rownanie Lagrange’a drugiego rodzaju

4oL _ oL
dtdyp — Op’

63Moze sie wydawaé, ze jest tu jaka$ niezgodno$é z uzyskanym wyzej $cistym rozwiazaniem, bo
wyrazenie pod pierwiastkiem mnozacym cosinus nie jest takie jak poprzednio. Trzeba jednak zauwazy¢,
ze w Scistym rozwiazaniu do cosinusa jest proporcjonalna zmienna £(t) = cos(p/2). Jednak po pod-
stawieniu (¢(t) = 7 + 0(t) z |6(t))] < 1, okaze sie, poniewaz cos((m + 0)/2) = —sin(6/2) ~ 16(t), ze
zastosowanie do Scistego rozwiazania przybliénia maltych wychylen daje to samo.
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zapisane w naturalnej dla tego zagadnienia zmiennej uogélnionej, jaka jest po prostu kat
. Funkcje Lagrange’a L = T, — V skladamy ze znalezionych juz “kawatkéw”

L = 2ma*¢?* sin® g + mga(1l — cosp) .

Poniewaz nie zalezy ona jawnie od czasu, wielkoscia zachowana jest

W rozpatrywanym tu przypadku stata wielkosé h jest po prostu réwna T, +V . Utozsamienie
jej z caltkowita energia ruchu E daje natychmiast wypisane wyzej rozwiazanie. Interesujace
jest jednak jawne wypisanie rownania Eulera-Lagrange’a:

d @ o
— (4ma? sin® —) = 2ma’$?sin = cos = 4+ mgasing.
dt ( L 7Sy COR g T Imgasite

Pierwszy wyraz po prawej stronie bierze sie z rézniczkowania po ¢ energii kinetycznej T'.
Po jawnym obliczeniu pochodnej po czasie otrzymujemy

. . 9@ 2.9 . ¥ (%2 2.9 . @ 2 . P '
4ma*p sin® = + dma®¢? sin = cos = = 2ma?¢? sin = cos = + 2mgasin = cos = .

7SI T AmaTETsing o5 g 7SI Cosg T Amgasing sy
Po potaczeniu podobnych wyrazéw wystepujacych po lewej i po prawej stronie (uwaga:
jest to dos$¢ typowe w sytuacji, gdy energia kinetyczna Ti;, zalezy takze od zmiennych, a
nie tylko od ich pochodnych!) i po podzieleniu stronami przez 2ma?sin(p/2) (w punktach
¢ = 01 27, masa m opuszczalaby wiezy, dlatego takich mozliwosci tu nie dopuszczamy),
otrzymujemy

Y _ g ¥

.. P .9
2 - - = — .
psin + ¢ cos oS

Nie jest stad jednak tatwo dostrzec, ze daje sie to zapisa¢ w znalezionej wczesniej postaci
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Zadanie 6.12

Dwie masy, my i mo, moga przemieszczaé sie¢ po paraboli o rownaniu z = %amQ w polu sity
ciezkosci g = e,g (oS z jest skierowana w dét). Masy polaczone sa nierozciagliwa nicia o
dhugosci [, ktora uktada sie na paraboli (inaczej méwiac, odleglo$é miedzy masami liczona
po paraboli wynosi zawsze [). Korzystajac z zasady prac wirtualnych Lagrange’a znalez¢
polozenie réwnowagi uktadu tych dwéch mas.

Rozwiazanie:

Zasada prac wirtualnych w przypadku rozpatrywanego ukladu moéwi, ze sumaryczna praca
O0W wykonana przez zadane sity rzeczywiste (a wiec nie sily reakcji) dzialajace na uktad
przy jego zgodnych z wiezami wirtualnych przesunieciach dry, dry z polozenia rownowagi
znika:

oW =mqg-or; + maeg-0ry = 0.
Poniewaz uktad jest ptaski, wektory g, dry i 0ry mozna uwazaé za dwuwymiarowe:
o 0 . 5:171 . (SLUQ
s=(5) o= (i) =-(02)

Wiezy, z ktérymi zgodne maja by¢ przesuniecia dry, dry sa dane wzorami

1
f1(1“1,1‘2) =Z1— §CLZE% =0,

1
f2(r1,r2) = 29 — ial'% = 0,

2
f3(r1,13) 2/ deV1+a222 —-1=0.

z1

Ostatnia réwnoéé wyraza to, ze odlegtosé od m; do my liczona po paraboli®® wynosi [.
Przesuniecia zgodne sa zgodne z wiezami, gdy

ory- Vi fr(r1,re) + 012 Vafi(ry,re) =0,  k=1,2,3.
Symbole V1 i V5 oznaczaja tu gradienty liczone odpowiednio wzgledem zmiennych ry i
Irs.

W notacji ogélnej (zob. Przypomnienie), wystepuja tu cztery zmienne: (£1,&s,&3,&4) =
(1,21, T2, 22) stanowiace parametryzacje przestrzeni konfiguracyjnej uktadu dwu mas.

64Infinitezymalna dtugoéé tuku paraboli ds? = (dz)? + (dz)? mozna, korzystajac z réwnania paraboli

z= %axQ sparametryzowac x-em:

ds:\/m:dx\/<j—i>2+(j—;>2:dxm.

Liczona po tuku paraboli odlegloéé dwu punktéw, ktérych rzedne (a moze odciete? - ta prehistoryczna
terminologia!) sa réwne x1 i o jest wiec dana calka z ds od 1 do xs.
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Sita ciezkosci dzialajaca na uklad jest dana wektorem X = (0, myg, 0, mag), dowolne
przesuniecia (niekoniecznie zgodne z wiezami) sa reprezentowane czterowymiarowym wek-
torem 0& = (0xq, 021, 0x2,02), a warunek 0W = X - € = 0 przyjmuje prosta postaé

m1g0z1 +magdze =0.

W tej notacji warunki

4

Zafk(gg---,&)(;gj:o, k=123,
3

Jj=1

zgodnosci z wiezami przesunie¢ wirtualnych oznaczaja, ze wektor (0x1, 021, 22, d29) musi
by¢ prostopadly do czterowymiarowych wektoréw gradientéwS?

(_axh 17 07 O)v
(07 Oa —axy, ]-)7

(—y/14a222, 0, \/1+ a223, 0),

kazdej z trzech funkcji wiezow, czyli, ze jego iloczyny skalarne z tymi wektorami musza
znikaé.

Dalej wszystko jest juz proste. Warunek 6W = 0 po wykorzystaniu prostopadtosci
wektora (01,021, g, 025) do dwdch pierwszych gradientéw (co koreluje §z; z dx; osobno
dla i =11 2) przybiera postaé

mi1T 55(71 + MoXo 55(72 =0.

Prostopadtos¢ zas (0x1, d21, 0xs, d25) do trzeciego gradientu pozwala wyrazié np. dxs przez
jedyna niezalezna skladowa tego wektora, za ktéra mozna wzia¢ dx;. Zatem warunek
0W = 0 na przesunieciach zgodnych z wiezami mozna zapisa¢ jako

miry WD)
5 + 5 51’1 =0.
V1+a22? /14 a2}
Wobec dowolnosci dz1, zerowaé sie musi wyrazenie w nawiasie. Rownaniami (nielatwymi
do jawnego rozwiazania) wyznaczajacymi polozenie réwnowagi uktadu sa wiec dwa réwnania:

mixy Mmoo

V1+a?a? __\/1+a2x§’
X2
/ drvV1+a?z? =1.

x1

65Jedli traktujemy catke od z; do zo wystepujaca w trzecim réwnaniu wiezéw jak funkcje jej granic
(czyli w notacji ogdlnej funkcje & = x1 1 £3 = 22, niezalezna od & = 21 1 €4 = 22), to pochodne tej funkeji
po x1 1 29 sa réwne funkcji podcatkowej wzietej (z minusem dla pochodnej po z; iz plusem dla pochodnej
po x2) odpowiednio w punkcie 21 i 5. Wynika to oczywiscie z tego, ze f3(x1, 21, %2, 20) = F(x2) — F(x1),
gdzie F(x) jest funkcja pierwotna funkcji podcatkowej, tj. taka, ze F'(z) = V1 + a2a?.
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Podnoszac pierwsze z tych réwnan stronami do kwadratu, co da
22 2.2y _ 2 2 2,2
mizi(1 4+ a“z3) = myxs (1 4+ a“zy),

i wykorzystujac wiezy fi = 01 fo = 0 do wyrazenia 2?3 i 23 odpowiednio przez z; i 2s,
mozna to réwnanie przedstwi¢ takze w postaci

2 2 _ 2 2
miz — myze = 2az129 (M5 — m7) .

Drugie z réwnan po obliczeniu wystepujacej w nim catki® przybiera postac¢

T+ a222
21 = 29/ 1 + a223 — 214/1 + a?22? + In a2+ o :
ary + /1 + a?a?

Mozna ten uktad réwnan (przyjmujac 1/a za jednostke dtugosci: al — I, ax; — z;, etc.)
przepisa¢ w formie (trzeba tylko pamietaé, ze x1 < 0, wobec czego ax; = —v/2z1a czyli
teraz ry = —/221)

2 2 _ 2 2

VIT 2% + V2%
2Z:\/2z2(1—|—2z2)+\/221(1+2z1)+1n< ey 22).

\/1 + 221 - \/221

Réwnania te powinny mie¢ zawsze rozwiazania. Gdy m; = mgy oczywiste jest, ze
obie masy musza wisie¢ symetrycznie, kazda w odlegtosci (liczonej po paraboli) [/2 od
wierzchotka paraboli (z; = 29, 1 = —23). W drugim skrajnym przypadku m; > my
(np. stori i pchia) wyczucie fizyczne podpowiada, ze rozwiazaniem bedzie z; ~ 0 (stoni
niemal na czubku paraboli) i masa msy (pchla) niemal o [ (liczac po paraboli) oddalona
od wierzchotka, gdyz punkt z; = 0 jest polozeniem rownowagi, gdy mo = 0. W takim
przypadku uktad réwnan mozna uprosci¢ do

m%zl — mgzg ~ —221%9 mf ,
21~ /22(1 4 223) + In (V22 + V14 22) .

Drugie wyznacza wtedy zo (funkcja zo po prawej stronie ro$nie monotonicznie od zera), a
drugie, gdy juz 2o jest wyznaczone, daje iloczyn m?z;.

66Wprowadzajac = ax i nastepnie podstawiajac n = shé znajdujemy, ze

1 1 1
/da:\/l—l—anQ = —/dech29: —/d9 (e +e?+2) = — (e — e 1+ 40).

a 4a 8a

Poniewaz 6 = In(n + /1 4+ 1n?),

1 1 2 -2
dx\/1+a2x2_%ln(n+x/1+n2)+%[(n+\/1+n2) —(77+\/1+772) ]
1 1 2 2
—%ln(n—l—\/l—l—nQ)—i-%[(77—1-\/1—1-772) —(n—\/1+n2)}

1 1
= 5o O+ V1+72) + o= nv1+n?,

2a
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Zadanie 6.11

Postugujac sie zasada Lagrange’a prac wirtualnych znalezé polozenie réwnowagi w polu
grawitacyjnym g tancucha skladajacego sie z n segmentow w ksztalcie odcinkéw potaczonych
jedne z drugimi przegubowo. Kazdy z segmentéw ma mase m i dtugo$é¢ 2a. Jeden ko-
niec tancucha jest zaczepiony na stale, a na drugi dziala skierowana poziomo sita F'. Jak
zmieni sie rozwiazanie, gdy wektor sily dzialajecej na koniec tancucha bedzie tworzyt z
kierunkiem horyzontalnym kat 87 W otrzymanych rozwiazaniach przejs¢ do granicy, w
ktorej liczba segmentéw tancucha staje sie nieskonczona przy ustalonej jego dtugosci L.

Rozwiazanie:
Wygodnie jest skierowa¢ o$ z w dot, tak by g = ge,. Przy ustalonym polozeniu lewego
konca pierwszego jego segmentu, ksztalt jaki przybiera tanicuch jest catkowicie wyznaczony
przez podanie katéw aq, ..., «a,, jakie kolejne segmenty tworza z osia z. z-owa sktadowa
2 polozenia Srodka masy k-tego segmentu jest wtedy dana suma,

k—1

Z2E = ZQacosoq + acosay,
=1

a r-owa sktadowa xp punktu do ktérego przytozona jest sita F = e, F' suma

n
rg = g 2asin q .
1=1

Zasada prac wirtualnych moéwi, ze dla wszystkich zgodnych z wiezami wirtualnych prze-
sunie¢ ory = dxpe, + dzpe, z polozenia rownowagi zachodzi réwnosé

ng-érk +F-rz=0,
k=1

czyli, ze57

Ed

-1 n

2a da; sin o — a day, sin ak> + F Z 2a day, cos ay,
k=1

1

n
mg | —
k=1 l
n

day [-mga(2n — 2k 4+ 1) sinay + 2aF cosay] = 0.
k=1

67Druga linia warunku wynika z przegrupowania wyrazéw w podwdjnej sumie; rozpisujac ja jawnie
znajdujemy (kolejne linie odpowiadaja kolejuym k, od 1 do n):

mgal —da sin o
—2d0aq sin aq —dag sin arg
—20ay sin v — 28ep Sin ap —dag sin a3
—20ay sinap — 20ap sin ap — 203 sin g —d0uy Sin oy

—20a1sinag ... cer =201 Sinog,_1 —day, sin ay,].
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Stad, poniewaz wszystkie day sa niezalezne, wynika, ze w polozeniu réwnowagi

2F
mg(2n — 2k +1)

th&k =
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Zadanie 6.15

Punkt materialny o masie m zsuwa sie bez tarcia po zewnetrznej powierzchni sfery o
promieniu R znajdujacej sie w polu grawitacyjnym g. Sprowadzi¢ problem rozwiazania
réwnan wyznaczajacych ruch masy po sferze do kwadratur (tj. do wykonania calki).
Znalez¢ zalezno$¢ sily reakcji wiezéw od polozenia masy na sferze (dla dowolnych wa-
runkéw poczatkowych) i punkt w ktérym oderwie sie ona od sfery (jesli wiezy sa jedno-
stronne). Wyznaczy¢ jawnie ten punkt, gdy masa m zsuwa sie bez predkosci poczatkowej
z samego wierzchotka sfery.

Rozwiazanie:

Ruch masy m jest wyznaczony przez rownania Lagrange’a I-go rodzaju. Oczywiscie naj-
wygodniej rozpatrywaé to zagadnienie w ukladzie wspéhrzednych sferycznych (r,0, ), w
ktorym réownaniem wiezéw jest

f(r,0,0)=r—R=0.
Gradient funkcji f =7 — R jest rowny e,. Wobec tego rownania maja postac

m (i — r* — r¢?sin? ) =—mgcosf + A\,
m (16 + 27 — r¢? sin 0 cos 6) = mgsind,
m (rgsinf + 27 sinf + 2rfp cosd) = 0.
Po wykorzystaniu réwnania wiezéw, z ktorego wynika takze, iz 7 = 0 1 7 = 0, réwnania
te upraszczaja sie do Po wykorzystaniu rownania wiezow, z ktérego wynika takze, iz
—mR (0* + ¢*sin?0) =—mgcost + \,
mR (6 — ¢*sinfcosh) = mgsind,
mR (¢sinf +260¢cosh) = 0.
Pierwsze z tych réwnan wyznacza sile reakcji (czyli mnoznik \). Ostatnie zas, jak zwykle,
gdy znika z-owa skladowa momentu sity zewnetrznej (tu sity ciezkosci), powinno ozna-

czaé stalos¢ z-owej sktadowej L, momentu pedu masy m poruszajacej sie po sferze. I
rzeczywiscie, po pomnozeniu obu jego stron przez Rsin 6, zwija sie ono do

dL.

d (mR*psin®0) =

=0.
dt dt
Wielko$é L., jest zatem stala ruchu wyznaczona przez warunki poczatkowe. Zatem
. L
YT mR?sin?g’
co pozwala wyeliminowa¢ ¢ z pozostalych réwnan. Po tym zabiegu przyjmuja one postaé
. L2
—mR |0+ ——"—— ] = —mgcost + A
( m?2 R4 sin? 9) g
. L? cos
mR |0 — —=——— | =mgsind.
( m2R* sin® 9) J
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Poniewaz wiezy sa skleronomiczne (niezalezne od czasu) i nie wykonuja pracy, a sila
ciezkosci jest potencjalna, druga oprécz L, stala wielkoscia powinna by¢ energia mecha-
niczna. Ze tak jest w istocie, mozna zobaczy¢ mnozac obie strony drugiego z powyzszych
réwnan przez Rf: réwnanie to zwija sie wtedy do dFE/dt = 0, gdzie

L2

1
FE = T =
2mR2sin?f ~ 2

m(R)* + mgRcos  + m(RO)? + Vig ().

1
2
Wzér ten pozwala wyrazic 62 przez catkowita energie ruchu i polozenie masy m na sferze,
a tym samym, po wstawieniu #? do pierwszego z trzech réwnan, wyrazi¢ przez te same
wielkosci site reakeji, czyli mnoznik A (Fr = Ae,). Prosty rachunek prowadzi do wzoru

A= —% + 3mgcos .
Silta reakcji nie zalezy zatem od L,. Nie zalezy tez ona od kata ¢, co jednak jest prosta kon-
sekwencja, symetrii ukltadu wzgledem obrotéw wokétosi 2.5 Jesli wiezy sa jednostronne,
oderwanie si¢ masy m od sfery nastepuje w punkcie, w ktérym A = 0. Np. jesli masa m
zaczyna zsuwac sie bez predkosci poczatkowej z najwyzszego punku na sferze, jej catkowita
energia jest réwna F = mgR i oderwie sie ona od sfery w punkcie, w ktérym® cos@ = 2/3.
Zachowanie energii pozwala sprowadzi¢ ruch “do kwadratur”: obliczywszy catke we

WZzZOorze
2 6(t) do
(t— 1) = + /
7]

mi (o) VE — Ver(0)

znajdziemy (przynajmniej w zasadzie) zaleznosé kata 6 od czasu, a nastepnie catka

0~ ot = 2o [ 8
Y LA iy = 1 Sin® 0(t)
da zalezno$¢ od czasu kata ¢.
Jakosciowo charakter ruchu, zwlaszcza przy wiezach dwustronnych™ mozna okreslié
postugujac sie wprowadzonym wyzej potencjatem efektywnym Vi (). Poniewaz gdy L, #

68Qczywiscie dla konkretnych warunkéw poczatkowych kat ¢ polozenia masy m na sferze jest, poprzez
zwiazki 0 = 6(t) 1 ¢ = (t), jednoznacznie wyznaczony przez 6.

9 Jest to oczywiscie, poniewaz ruch jest wtedy jednowymiarowy (por. uwaga na konicu zadania), ten
sam wynik, co w Zadaniu 6.4 o zsuwaniu sie masy m po obreczy; jedyna réznica jest taka, ze tu kat 6 jest
mierzony od najwyzszego punktu sfery, a kat ¢ w Zadaniu 6.4 od najnizszego potozenia obreczy, czyli
0 =1 — ¢, co wyjasnia réznice w znakach.

""Powodujacych, ze masa m nie moze opuscié sfery, tj. takich, ze sila reakcji moze mie¢ dowolny
znak (zerowanie sie¢ mnoznika \ nie oznacza wtedy oderwania sie, a jedynie zmiane znaku sity reakcji);
w przypadku wiezéw jednostronnych sita reakcji musi mie¢ stale ten sam znak (dodatni, gdy masa m
nie moze wpasé do wnetrza sfery i ujemny, gdy nie moze spas¢ na zewnatrz, ale moze spas¢ do wnetrza
sfery) - wraz z calkowaniem wypisanych wzoréw trzeba wtedy kontrolowaé¢ mnoznik A: jego zerowanie sie
oznacza oderwanie sie masy m od sfery. Od tego momentu trzeba rozwiazywac¢ réwnania bez sity reakcji
z warunkami poczatkowymi wyznaczonymi przez ciaglo$é polozenia i predkosci.
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Rysunek 40: Potencjal efektywny Veg(6) w jednostkach mgR dla L?/m?gR3 réwnego 0.05
(krzywa niebieska) i 0.5 (krzywa czerwona). Przeciecie krzywej wyznaczajacej potencjal z
linig zielona (odpowiadajaca tu F = 1.8 mgR) wyznacza mozliwy zakres zmiennosci kata
f podczas ruchu.

0, potencjat efektywny Veg — oo dla @ — 0 1 m (czyli na koncach przedzialu zmiennosci
kata 6), ruch moze zachodzi¢ wtedy tylko pomiedzy katami O, i Oax Wyznaczonymi
przez réwnanie (zob. rys. 40)

‘/eff(emin,max) =L

Ruch w zmiennej 6 jest wiec (przy wiezach dwustronnych) ruchem z koniecznosci okreso-
wym, jak kazdy ruch jednowymiarowy tego typu (zob. Zadania 3.113.2). W szczegdlnosci
mozliwy jest ruch w trakcie ktérego zmienna 6 oscyluje nieznacznie tylko wokdét wartosci
0o, dla ktérej Veg(0) przyjmuje minimalna wartosé. Kat 6y jest rozwiazaniem réwnania

L? m2gR®
e (0) = TR s 0 ( 72 s1n49—|—cos9) =

Widaé, ze 0y > m/2 (cosinus musi by¢ ujemny), czyli ruch taki jest mozliwy tylko po
dolnej polowie sfery (gdy L, — oo, polozenie dynamicznej réwnowagi zbliza sie od dotu
do réwnika sfery). Mozna tez znalezé czesto$¢ malych oscylacji zmiennej 6 wokét 6y.
Piszac

Ven(60) = Vaa(00) + 5V 00) €.

gdzie £ = 0 — 0y (a Vig(0y) > 0, gdyz musi to by?? minimum) mamy catke (E' =
E = Vesr(60))

/ 2 Vi (6o)
——t+C == =+ 5~ e,
+ /\/E’ = e ) arccos( Yo f)

2eff

ktora jak zawsze daje ruch drgajacy

0(t) =0y + Acos(Qt +9),

187



o czestosci 2 = / Vi (0p)/mR? i amplitudzie A = \/2E'/V(6y). Oscylacje te w zmiennej
0 naktadaja sie na niemal jednostajny ruch obrotowy wokot osi z:

L, [t dt’
o(t) = po + /

mR? J, sin?[fy + Acos(Qt + 9)]
L 2L,cosfy, [*
R~ z - = dt' Acos(Qt +96).
po+ mR2 sin? 6, mR2 sin® 6, /0 cos(§t +9)

Odstepstwo od jednostajnego ruchu obrotowego, () = o+ (L./mR?sin?,)t, reprezen-
towane przez wyraz z catka (ktéra mozna tatwo wykonaé) jest niewielkie, gdyz amplituda
A musi by¢ mala, aby przybliZone rozwiazanie 6(t) mialo sens.

Gdy L, = 0, znika takze ¢ i ruch masy m staje sie ruchem jednowymiarowym po
wielkim kole sfery scharakteryzowanym przez ¢ = ¢y =const.
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Przypomnienie

Funkcjonatem nazywamy urzadzenie (skrzynke) z wlotem i wylotem - do wlotu wrzuca sie
funkcje (z jakiejs okreslonej przestrzeni funkcyjnej, czyli okreslonego jakimis warunkami
zbioru funkcji), a z wylotu otrzymuje sie w zamian liczbe (w mechanice naogétrzeczywista).
“Wlotéw” moze by¢ zreszta wiecej - wtedy trzeba wrzuci¢ tyle funkcji, ile jest “wlotéw”.
Tu beda nas interesowa¢ funkcjonaty lokalne postaci

JUf] = / dE T(E. F(©). F1©).... F™(©)),

gdzie n - rzad najwyzszej pochodnej funkcji, od ktérej zalezy funkcjonal jest skoriczony.”™
Ograniczymy sie tez do funkcjonatéw, w ktorych funkcja J zalezy tylko od samej funkeji
f (lub samych funkcji fi, ..., f, - zobacz nizej) i jej pierwszej pochodnej f’ (pierwszych
pochodnych f1, ..., f).

Najprostsze zagadnienie wariacyjne. Szukamy takiej ciaglej funkcji f(£), okreslonej
na odcinku [a, b] i przyjmujacej ustalone wartosci f(a) = fa, f(b) = f» na jego koncach,
na ktorej lokalny funkcjonal postaci

JUf] = / de T(€, 1(6). F(€)).

gdzie J (z,y, z) jako funkcja trzech zmiennych ma ciagle pochodne czastkowe do drugiego
rzedu wlacznie, przyjmuje wartosé¢ stacjonarna, tzn. taka, ze wariacja funkcjonatu J[f],
czyli funkcjonal liniowy 0.J¢[h] okreslony réwnoscia

b
AJlf] = / ELT(E f 4y f 4+ W) — T(E £ )} = 650 + Ry[h.

w ktérej funkcjonal Ry[h] bedacy “reszta” jest mala rzedu wyzszego niz pierwszy w h, tj.

lim | Rylh]l 0
Inll—0 || A]]

znika na wszystkich zachowujacych ustalone wartosci brzegowe funkcji f(£) jej waria-
cjach, tj. na funkcjach h(¢) majacych ciagla pierwsza pochodna i spelniajacych warunki

"'Funkcjonal zalezny pochodnych dowolnie wysokiego rzedu jest juz nielokalny, tak jak nielokalne by
byty funkcjonaly postaci

b b
Jif] = / e / dn X(€.0)f(€) F(n)

z jaka$ zadang funkcja X' (€,n) czy

-1

b b
Il = / de T(E, 1), F1©)..... FM(E) [ / dEK(E, (), F1E)..... [™(©)
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h(a) = h(b) = 0. Znikanie wariacji 0.J¢[h| jest warunkiem koniecznym (ale rzecz jasna,
nie dostatecznym), by na funkcji f(£) funkcjonat J[f] mial stabe™ ekstremum.

Standardowe rozumowanie prowadzace do warunku, jaki musi speliaé¢ funkcja f(&),
by 0.J¢[h] = 0 na zdefiniowanych wyzej funkcjach h(£), jest nastepujace. Korzystajac z
wihasciwosci funkeji J(z,y, z) rozwijamy ja we wzorze na AJ w szereg Taylora w przyro-
stach Ax =0, Ay=hiAz=h wokélz =& y=fiz=f"

* Jo 0 dh
AJ:/dg{a—Z _fh(€)+a—‘z7 _f/—d(fﬁ...}
’ 0T d 0J d | 0F
:/adg{lé‘_yy:f_d_sazzﬂ] h(ng_f[@z:f,h(g) +}

Wyrazy wypisane jawnie definiuja wlasnie funkcjonat liniowy, czyli wariacje dJ¢[h]. Ostatni
z nich przy warunkach natozonych na funkcje h(§) znika. Zatem warunkiem znikania
0J¢[h] na dowolnych rézniczkowalnych takich funkcjach h(x) jest spelnianie przez funkcje
f(&) rézniczkowego réwnania
oJ doJg 0
of deof
zwanego rownaniem Eulera-Lagrange’a.
Roéwnanie Eulera-Lagrange’a jest rownaniem drugiego rzedu, naogoét nieliniowym. Uprasz-
cza si¢ ono znacznie w trzech nastepujacych przypadkach:
o 7 =J(&, f) - funkcja J nie zalezy bezposrednio od samej funkcji f. Wtedy
N4

8—f’ = (C = const,
co sprowadza rownanie Eulera-Lagrange’a do rownania rézniczkowego pierwszego
rzedu.
o 7 =J(&, f) - funkcja J nie zalezy bezposrednio od pochodnej f’ funkcji f. Wtedy
0
_‘7 =0,
of

czyli, wobec niewystepowania f’ w J, rownanie Eulera-Lagrange’a sprowadza sie
do réwnania algebraicznego na funkcje f.

o 7 =J(f, f) - funkcja J nie zalezy jawnie od zmiennej catkowania . Wtedy, jesli
f spelnia réwnanie Eulera-Lagrange’a, to™

oJ
flaf’ — J = h = const,
"Slabe, tzn. w klasie ciagtych funkcji f na odcinku [a,b] z norma zadana przez ||f|| = max|f(£)| +

max|f’(&)|(b—a) dlaa <& <b.

73 Jako ze ten przypadek wystepuje najczesciej, dobrze jest sobie (w celu wbicia sobie wzoru w glowe)
uprzytomnié, ze wielkoscia stala jest w tym przypadku co$, co “prawie” jest hamiltonianem (ktéry po-
jawi sie dalej). Tak wiec gdy J nie zalezy od &, powinna sie natychmiast zapala¢ w glowie lampka:
“hamiltonian”!
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co znow sprowadza rownanie Eulera-Lagrange’a do réwnania rézniczkowego pierw-
szego rzedu. Ze funkcja spehiajaca powyzsze réwnanie pierwszego rzedu spehia
rowniez rownanie Eulera-Lagrange’a tatwo sie przekonaé bezposrednio: rézniczkujac
powyzsze réwnanie stronami po ¢ otrzymujemy

g ne T , T od aj
or T ggap I gy af oy

Skrajne wyrazy sie redukuja, a to co zostaje jest pomnozona przez f’ lewa strona
jawnie rozpisanego réwnania Eulera-Lagrange’a.

f

—f

Rozwiazanie réwnania Eulera-Lagrange’a zalezy od dwu statych dowolnych, ktore po-
winny umozliwi¢ spetlienie warunkow brzegowych narzuconych na funkcje majaca by¢
ekstremala funkcjonatu. Problem ten jest tu jednak troche inny niz w zwyklym przy-
padku, gdy narzuca sie warunki na funkcje i jej pochodna w jednym i tym samym punkcie
- wtedy mozna sie odwoltywaé do twierdzen o lokalym (w poblizu tego punktu) istnieniu
rozwigzania. Tu zas warunki wymagaja istnienia rozwiazania globalnego na skoniczonym
obszarze. Ponadto funkcjonal moze mie¢ ekstremale nie bedaca funkcja rézniczkowalna,.
Pouczajacy w tym wzgledzie jest przyklad ekstremali funkcjonatu

Jif) = / P =17

okreslonego na funkcjach spemiajacych warunki f(—1) = 0, f(1) = 1. Odpowiadajace
temu zagadnieniu rownanie Eulera-Lagrange’a sprowadza sie - poniewaz funkcja podcatko-
wa nie zalezy jawnie od x i mozna skorzysta¢ ze stalosci “hamiltonianu” - do réwnania

df b+ f?
dr 2

Dwie stale, h i C, od ktorych zalezy rozwiazanie
fl@) =@+ C) =

daje sie dobra¢ tak by funkcja f spehiata narzucone warunki: C' = 1/4, h = 9/16. Jednak,
jak mozna sie zorientowaé, funkcja f jest wtedy urojona na odcinku (—1,1/2), a wiec nie
nalezy do klasy funkcji, w ktorej szukamy ekstremali! Tymczasem przytomny rzut oka
na problem uswiadamia, ze ekstremala odpowiadajaca globalnemu minimum funkcjonatu
jest funkcja

fz) = 0 dla —-1<2<0
1z dla 0<z<1”

(bo wartosci funkcjonalu na funkcjach rzeczywistych sa zawsze nieujemne, a wartoscia
funkcjonatu na tej funkcji jest zero). Jest to jednak funkcja nierézniczkowalna (mozna
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jednak sprawdzi¢, ze poza x = 0, jedynym punktem, w ktorym jej pochodne nie istnieja,
spetnia ona réwnanie Eulera-Lagrange’a).

Pierwszym oczywistym uogélnieniem jest lokalny funkcjonalokreslony na funkcjach
zmiennej & ale przyjmujacych wartosci wektorowe, tj. J[f] = J[f1, fo, ..., [ul:

b
J[flaf2>afn]:/d§j(€> flaf2>"'afna f{?fé>afr/L)

Jego wariacja ma postaé (liczac pochodne czastkowe przy rozwijaniu w szereg Taylora
traktujemy J jak fukcje 2n + 1 niezaleznych zmiennych x, y;, z;, i = 1,...,n):

b n
6J:/ad§{z [g‘;

i=1

_dag
dg 8zi

]hi<£>+ i [8—j

d_§ i=1 0z

vi=fi zi=f] zi=f;

Przy warunkach h;(a) = h;(b) =0, i = 1,...,n, warunkiem koniecznym, by funkcja f(¢)
byta stabym ekstremum funkcjonatu JIf] jest spemianie przez jej sktadowe f;(£) uktadu n
sprzezonych rownan Eulera-Lagrange’a

07 _doJ _
ofi dgoff

Podobnie jak w przypadku pojedynczej funkcji, jesli J nie zalezy od jakiej$ sktadowej
fi, to i-te réwnanie catkuje sie raz od razu; jesli J nie zalezy od f/, to odpowied-
nie réwnanie Eulera-Lagrange’a stanowi algebraiczny zwiazek miedzy pochodnymi po-
zostatych sktadowych f} i funkcjami fi,..., fn; wreszcie, gdy J nie zalezy od zmienne;
catkowania &, calka pierwsza uktadu n réwnan Eulera-Lagrange’a jest “hamiltonian”:

1=1,...,n.

n ,&7 B B
;fiafi/—j—C’—const.

W tym przypadku jednak, jest to tylko jedno réwnanie pierwszego rzedu, ktérym mozna
zwykle zastapi¢ jedno z réwnan Eulera-Lagrange’a; pozostaje wiec wciaz kilka réwnan
drugiego rzedu i problem nie jest tym samym jeszcze sprowadzony do kwadratur.

Uogdlnienie na funkcje o wartosciach wektorowych umozliwia takze ogdlniejsze potrak-
towanie zagadnien szukania ekstremow funkcjonatow zalezacych od jednej funkcji jednej
zmiennej: pozwala on mianowicie traktowaé funkcje f(&) jak krzywe na plaszcezyznie (&, f)
i zadawac je parametrycznie. Przyklady sa w zadaniach.

Drugim uogélnieniem jest badanie funkcjonatéw funkcji wielu zmiennych &;,...,&p
(mogacych takze przyjmowaé¢ wartosci wektorowe)

1] = /Qd%I(sl, oy O O f).

gdzie dP¢ = & ... dép, O; = 0/0&;, a Q jest pewnym ustalonym obszarem w przestrzeni
zmiennych &;, na ktérego brzegu 0f) (tak fachowi geometrzy oznaczaja brzeg zbioru )
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funkcja f przyjmuje ustalone wartosci. Szukajac ekstremum I[f] rozpatruje sie wiec
wariacje df (&1, ..., &) takie, ze dflag = 0. Warunkiem znikania wariacji 6/ funkcjonatu
I jest by (sumy po i s??7 domyslne)

/Q‘Z%Hg_? ‘aiagf)] oo {%54} -0

Poniewaz zgodnie z twierdzeniem Stokesa (zob. méj skrypt Differential Forms and Vector
Analysis) ostatni wyraz daje sie napisa¢ jako

s
/aszds o

(ds® jest rézniczkowym elementem hiperpowierzchni 0€); catka jest “strumieniem” pola
wektorowego - indeks i funkcji podcaltkowej! - przez te hiperpowierzchnie), jasne jest, ze
znika on na mocy warunku narzuconego na wariacje ¢ f. Zatem warunkiem, by funkcja
f(&, ..., &) byta stabym ekstremum funkcjonatu J, jest spemianie przez nia réwnania
Eulera-Lagrange’a

0T 0T

of  o(0if)
ktore jest czastkowym réwnaniem rézniczkowym drugiego rzedu. Zagadnienia takie naleza
do (klasycznej) teorii pola i nie bedziemy sie tu nimi zajmowac.

=0,

Tak jak w przypadku funkcji wielu zmiennych i ich ekstreméw warunkowych mozna
tez stawia¢ problem istnienia ekstremum warunkowego funkcjonalu. Mozna tu wyréznié
dwie podklasy takich zagadnien:

e Problem istnienia ekstremum funkcjonatu

b
J[f]=/dw@,fl,...,fn,ff,...,f;>,

przy warunku, ze ustalone wartosci maja mie¢ inne funkcjonaly
b
mm:/%&mm,whﬂwwm i=1,...r

e Problem istnienia ekstremum funkcjonatu J[f] takiego jak wyzej przy warunkach
gk(é-?fh"'7fn7f{7---7f7;>:O nzl,...,'f’.

Oba rodzaje zagadnien rozwiazuje sie metoda mnoznikow Lagrange’a tj. szukajac ekstre-
mum funkcjonatu

B b
J[f]:/dg [j(é-?fl??fnaf{"frll)_z)\llcl(€7fl77f7l?-f{’7-f7,7,) )
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w pierwszym przypadku i funkcjonatu

b
J[f]:/df [j(fﬁf:l??fn?f{??frlz)_z)\k(g)gl(€7fl7?fﬂ?.f{??.f;?,) )

k

w drugim przypadku. Rdéznica miedzy nimi polega na tym, ze w pierwszym przypadku
mnozniki \; sa stalymi, a w drugim przypadku sa one funkcjami zmiennej &. Ten drugi
przypadek mozna tez rozwiazywaé inaczej, wprowadzajac odpowiednie zmienne (tj. inne
funkcje g;, 7 = 1,...,n — r zamiast funkcji f;, ¢ = 1,...,n), tak by narzucone wiezy
byly juz automatycznie spelione - méwimy, wtedy ze nowe zmienne sa zgodne z wiezami.
Na tym wtasnie polega zastosowanie formalizmu réwnan Lagrange’a drugiego rodzaju z
mechanice.
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Zadanie 7.1

Znalez¢ lezacy catkowicie w plaszcezyZnie zy tor promienia Swiatta wpadajacego (od strony
ujemnych z-6w) w punkcie (z,y) = (0,0) pod katem o w stosunku do osi « do osrodka,
w ktérym wspétezynnik zatamania zalezy od glebokosci x jak n(x) = +/1+ azx. Oprzeé
sie raz na prawie Snella, a drugi raz na zasadzie Fermata mdwiacej, ze promien swiatla
miedzy dwoma punktami biegnie po takiej drodze, ze czas przelotu jest minimalny.™
Przypomnienie: W osrodku o wspétezynniku zalamania n predkosé swiatta (lokalna)
jest réwna c/n.

Rozwiazanie:
Prawo Snella méwi, ze przechodzac z osrodka 1 o (stalym) n; do drugiego o$rodka 2 o ng
(réwniez statym) promien swiatla zalamuje sie w taki sposéb, ze

N 8in a; = ng Sin ag ,

gdzie oy 1 ap sa katami, jaki promien tworzy po dwu stronach z normalna do granicy
o$rodkow. Aby to prawo zastosowaé do osrodka, w ktorym wspfczynnik n sie zmienia z x,
trzeba postuzy¢ sie rozumowaniem granicznym i podzieli¢ pélptaszezyzne x > 0 na pasy
o stalych wspétczynnikach ng = 1 (dla x < 0), ny, ne, ns, itd. Do kazdej z powstalych w
ten sposéb granic dwu osrodkow stosujemy prawo Snella: ng sin a; = ngsinay = sin ay,
N9 Sin ap = N Sin ;. = Mg Sin g, N3 sin ag = ng sin ap, itd. Widaé¢, ze w takim przypadku
po przejsciu do granicy nieskonczenie gestego podzialu poéiptaszczyzny x > 0 na pasy
otrzymamy

npsinag  sinag

sina(z) = n@) - n@)

Przerobienie sinusa a(x) na tangens da wiec réwnanie toru w postaci

sin? a(z)

1—sin’a(z)  /n?(z) —sin® aq

dy(x) sin o

dx

=tga(r) =

)

bo a(z) jest doktadnie katem nachylenia krzywej y(z) po jakiej biegnie promien.

To samo rownanie toru promienia mozna takze uzyskac¢ z zasady Fermata, ktora jest
ogdlniejsza.” Niech A (punkt wlotu promienia do o$rodka o zmiennym n) ma wspéhrzedne

" Naprawde §wiatlo biegnie to takim torze, ze czas przelotu jest ekstremalny.

">Prawo Snella wynika z niej niemal natychmiast: wystarczy wyobrazi¢ sobie dwa punkty A i B jeden
nad granica dwu osrodkéw, w obszarze o staltym n; i drugi pod nia, w obszarze o stalym nsy; w obszarach
o stalym n promieni biegnie po prostej (co tez wynika z zasady Fermata, gdyz jest to droga najkrétsza i
wobec statosci n odpowiada ona najkrészemu czasowi przebiegu $wiatla miedzy dwoma punktami) wiec
wystarczy obliczy¢ czas T'(y) jego przebiegu od A do B jako funkcje wspétrzednej y na osi bedacej granica
osrodkéw punktu, w ktéorym promien przechodzi z jednego osrodka do drugiego; warunek minimalnego
czasu przelotu (tj. warunek by funkcja T'(y) miata w punkcie y minimum - do ktérego wypisania wystarcza
zwykly rachunek rézniczkowy funkcji jednej zmiennej) przyjmuje dokladnie postaé¢ prawa Snella.
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(0,0), a jakis$ inny punkt B (w pélptaszczyznie x > 0) niech ma ma wspélrzedne (z1,y1).
Czas przelotu od A do B po drodze v dany wzorem
B
dl
T[V] = )
AU
jest wtedy funkcjonatem, ktory wedlug zasady Fermata przyjmuje wartos¢ najmniejsza
na rzeczywistej drodze promienia $wietlnego od A do B. Aby mu nadaé¢ jawna postaé
przyjmijmy, ze drogi od A do B parametryzujemy x-em, czyli piszemy w postaci y = y(z).

Wtedy dl = +/(dz)? + (dy)? = dx /1 + (/)% 1 (bo v = ¢/n)

dx
10 = [ nle) VIF P
0 C
Mamy tu przypadek, gdy funkcja podcatkowa w funkcjonale nie zalezy od samej wario-
wanej funkcji, a tylko od jej pochodnej. Wobec tego rownanie Eulera-Lagrange’a mozna
od razu raz scatkowaé, co daje

M = D = const.
1+ (y)?

Po rozwiklaniu wzgledem v’ dostajemy stad réwnanie

dy D

dr ~ \/2(w) - D*

ktore daje po scatkowaniu funkcje y(x) zalezna od dwu stalych dowolnych. Stale te po-
winny by¢ wyznaczone z warunku przebiegania otrzymanej krzywej przez punkty A =
(0,0) i B = (x1,11), tak jak tego w zasadzie wymaga zasada Fermata. Nic nie zabra-
nia jednak, gdy juz réwnanie rézniczkowe na tor zostalo wyprowadzone, zastapi¢ drugi
warunek zadaniem, by kat wpadania promienia do o$rodka o zmiennym n w punkcie A
byt rowny «ag. Oznacza to, ze stala D trzeba wybraé¢ rowna sin g, bo wtedy nachylenie
krzywej w x = 0 bedzie takie jak trzeba (tzn. pochodna (dy/dz),—q bedzie réwna tgag, bo
n(0) = ng = 1). Z takim warunkiem brzegowym otrzymujemy zatem to samo réwnanie,
co z prawa Snella.

Warto jeszcze zobaczyé¢, co by bylo, gdyby droge v sparametryzowaé nie xz-em, a y-
kiem. W takim przypadku funkcjonal miatby postac

T d

70) = [ L) I+,
0 C

gdzie 2/ = (dz/dy). Funkcja podcatkowa J w funkcjonale bylaby niezalezna od zmiennej

catkowania i catka pierwsza rownania Eulera-Lagrange’a, sprowadzajaca je do réwnanie

pierwszego rzedu bytby “hamiltonian” tj.

0F o, n(@)a’ on(r) 1+ ()% —n(z)

= = h = const.

T J =z —
B VIH@2 I+ @)R  JI+@)?
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Po rozwiktaniu tego réwnania wzgledem x’ = dx/dy i narzuceniu, jak poprzednio warunku
(dz/dy).—o =ctg ag (ktéry wymaga, by h? = sin® ag) dostaje sie stad to samo réwnanie,
co poprzednio.

Jedli n?(z) = 1+4ax, proste scatkowanie prowadzi (przy wyzej narzuconych na rozwiazanie
warunkach) do réwnania toru

2 . 5 sin 20y
y(x) = — sinag/cos? o + ax — :
a a

Stata calkowania jest ustalona z warunku, by y(0) = 0. Gdy a > 0, wzér ten daje tor,
na ktérym y asymptotycznie, dla duzych z, ro$nie proporcjonalnie do /z. Jedli a < 0,
otrzymany wzér moze obowiazywaé tylko dla < (1/|al) cos® ap. Przyczyne tego tatwo
zobaczy¢, jesli sie pamieta, ze rOwnanie rozniczkowe typu

d
- = J(x,y),

wiasciwie nalezy zapisywa¢ w postaci
X(z,y)de+Y(z,y)dy =0,

(gdzie X i Y sa takie, ze™® —X/Y = f(z,y)), ktéra nie wyréznia ani z ani y; réwnanie
takie wyznacza (przy ustalonych warunkach poczatkowych) na plaszczyznie krzywa, ktéra
czasem da sie zapisa¢ jako y = y(x), czasem jako z = x(y), a czasem tylko parametrycznie.
Oczywiscie majac rozwiazanie takiego réwnania w postaci y = y(x) mozemy je “odkreci¢”
i dostaé * = z(y). W badanym tu przypadku toru promienia $wietlnego, po takim
odkreceniu, dostaniemy

a sin2ap\?  cos?ag
x = + - .
) 4 sin” oy (y a ) a

7 postaci tej od razu widac, co sie dzieje, gdy a < 0: promien $wietlny wchodzi do o$rodka,
lecz stale zakreca w lewo i po osiagnieciu glebokosci x = (1/|a|) cos® ag zaczyna zawracaé
spowrotem w kierunku osi y, czyli ku granicy osrodkéw.

Wytlumaczenie zakrecania toru promienia swietlnego odwotujace sie do falowej natury
Swiatta jest proste: przy a < 0 predkos¢ swiatta w osrodku réwna c¢/n(z) wzrasta wraz z
glebokoscia (ze wzrostem z); znaczy to ze prawa strona frontu fali (jego “prawa noga”)
porusza sie szybciej niz lewa; jest jasne ze musi to powodowaé zakrecanie frontu fali w
lewo.

Przy danej funkcji f(x,y) funkcje X(w,y) i Y(z,y) nie sa okreslone jednoznacznie: funkcje
g(x,y) X (z,y)ig(z,y)Y (x,y) daja te sama funkcje f(z,y). Niejednoznacznosé ta (poza ewentualnie punk-
tami, w ktérych funkcja g(x,y) znika) nie ma wpltywu na krzywe catkowe - krzywe te sa bowiem okreslone
warunkiem - patrzac na to geometrycznie - znikania jedno-formy rézniczkowej w = X (z,y)dz+Y (z,y) dy
na wektorach do nich stycznych; jesli wiec zero daje na nich forma @, to réwniez zero daje forma
1 = g(z,y) . Odpowiednim doborem funkeji g(z,y) mozna sprawié, ze & = do(z,y), co - jesli jest
mozliwe, a jest zawsze mozliwe w R2, ale juz nickoniecznie w RP? o D > 2 - pozwala krzywe calkowe
przedstawié w postaci ¢(z,y) = const. Forma & ma wtedy czynnik calkujqcy, czyli, zgodnie z pierwszym
twierdzeniem Carathéodory’ego, jest calkowalna.
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Zadanie 7.5

Jaki jest ksztalt majacej minimalne pole powierzchni obrotowej rozpietej na dwéch réwno-
legtych do siebie nawzajem kolach o promieniach R i Rs, ktorych srodki leza na tej same;j
prostej i sa oddalone od siebie o 2L7?

Rozwigzanie:
Pole powierzchni powstalej przez obrét wokdt osi z krzywej y(x), takiej, ze y(—L) = Ry,
a y(L) = Ry jest dane wzorem’"

L L
Ply] = / dxP(y,y') = / dx 2my/1 + y'2.
- L

L

Poniewaz funkcja podcatkowa P nie zalezy od z, calka pierwsza odpowiedniego réwnania
Eulera-Lagrange’a jest “hamiltonian” (czynnik 27 mozna spokojnie opuscié):
JaP —
' —p=——Y - (= const.

Yoy ERVAERZ

Rozwiktujac te réwnosé wzgledem 3 znajdujemy zwiazek

By 1,
Jii—-cz ~C v

Znak =+ jest znakiem pochodnej dy/dx, ktéra, nawet przy ustalonym znaku statej C', moze
by¢ na jednym odcinku ujemna, a na innym dodatnia; dlatego trzeba go tu w zasadzie
uwzgledniaé jawnie. Podstawiajac w calce po lewej y = C chf znajdujemy™

o) = can(“E2)

gdzie D jest druga stala dowolna. Stale C'1 D wyznaczamy z warunkéw y(—L) = Ry,
y(L) = Ry. Moze istnie¢ jedno rozwiazanie, albo dwa albo moze nie by¢ zadnego.
Najlatwiej zobaczy¢ to w przypadku R; = Ry = R. Bez straty ogdlnosci mozna tez
przyja¢é L = 1 (promiei R mierzymy w jednostkach L - charakter rozwiazania zalezy
tylko od stosunku R/L) Wtedy z symetrii wynika, ze D = 0 i dwa réwnania staja sie
jednym i tym samym warunkiem na C' = 1 /C

R= ch(C)
C

Graficznie, na plaszczyznie (C’ , 2), rozwiazanie jest rzedna (a moze odcieta? kto pamieta

te dziwne nazwy?! ale chyba jednak odcieta) punktu, w ktérym krzywa z = C~'ch(C)

""Uzasadnienie wzoru: jest to suma pdél powierzchni prostokatnych paskéw, na jakie dziela te po-
wierzchnie plaszczyzny prostopadle do osi z odlegle od siebie o dx: dlugoscia paska jest 27y, a wysokoscia

v/ dz? + dy?.

"8Na szczescie funkcja ch(z) jest parzysta i oba znaki, + i —, daja to samo.
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0 1 2 3 4 5

Rysunek 41: Wykres funkcji C~'chC'.

pokazana na rysunku 41 przecina sie z pozioma prosta z = R. Jest wiec jasne, ze gdy R jest
mniejsze od pewnej krytycznej wartosci, niema zadnych punktéw przeciecia i rozwiazanie
nie istnieje. Oznacza to, ze w takiej sytuacji minimalne pole ma powierzchnia, ktora
“przykleja” sie do kol, na ktérych jest rozpieta i redukuje sie do prostej taczacej ich
$rodki; pole takiej “powierzchni” jest réwne 7(R? + R3) (w rozpatrywanym tu przypadku
21 R?), a krzywa y(z) jest nierézniczkowalna; rozpatrywany funkcjonal nie ma ekstremali
(minimum) w klasie powierzchni zadanych krzywymi rézniczkowalnymi. Jednoznaczne
rozwiazanie jest tylko wtedy, gdy R przyjmuje pewna szczegdlng wartosé (przy jednej
szczegdlnej wartosei stosunku R/L). Dla R wiekszych sa zawsze dwa rozwiazania C’l i C'g.
Najlatwiej sie zorientowac jak one wygladaja, gdy R > 1 (R > L). Jednym rozwiazaniem
réwnania R = C~'ch C jest wtedy C ~ 1 /R i odpowiadajaca mu ekstremala funkcjonatu,
ktora mozna zapisa¢ w postaci

chCx _  ch(z/R)

y(x) =R Ché’ ~ Ch(l/R) )

schodzi tylko nieznacznie, poniewaz ch(xz/R) < 1, w d6l, ponizej wartosci y = R. Rozwia-
zanie to jest oczywiste fizycznie i rzeczy\msme odpow1ada najmniejszej powierzchni. Dru-
gim rozwiazaniem réwnania R = C~'ch C, gdy R > 1, jest C > 1. Odpowiadajacym
mu punktem stacjonarnym funkcjonatu jest wtedy funkCJa (jej formalna postaé jest taka
sama jak funkcji odpowiadajacej, pierwszemu rozwiazaniu, ktorej ktscista postaé jest wy-
pisana wyzej), ktéra przy z ~ 0, gdzie ch(é’:c) ~ 1 wyraznie “siada”’. Przypuszczalnie
nie jest to maksimum (lokalne) funkcjonatu, bo jest oczywiste, ze kazda powierzchnie
obrotowa mozna nieco “pomarszczy¢’ zwiekszajac dowolnie jej pole; trudno tez sobie
wyobrazi¢, by rozwiazaniu temu odpowiadato (lokalne) minimum; przypuszczalnie jest to
punkt siodlowy - ale dar “widzenia” takich rzeczy w przestrzeniach funkcji jest dany tylko
nielicznym, zaprawionym w analizie funkcjonalne;j.
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Zadanie 7.7 (Problem brahistochrony)

Po jakiej krzywej lezacej w plaszczyznie xz powinna w polu grawitacyjnym g = —g e,
zsuwaé sie (majaca zerowa predko$é poczatkowa) masa m zaczynajaca ruch w punkcie
A =(0,h), by w jak najkrétszym czasie dotrze¢ do

a) punktu B = (b,0),

b) pionowej prostej o réwnaniu x = b > 07

Rozwiazanie:
a) Jest to klasyczne zagadnienie brahistochrony. Minimalizujemy tu funkcjonat

B B
fou
A A

ktory lezacej w plaszezyznie xz krzywej « taczacej punkty A = (0,h) i B = (b,0)
przypisuje czas zsuwania si¢ po niej masy m. Jedli zapiszemy element dlugosci tuku
dl = dx+/1+ 22, tj. sparametryzujemy krzywa - zmienna x, to

14 22

Tl = T[2(x)] = /deT(x ) /d:c TUEEE

po skorzystaniu z zachowanie energii mechanicznej

1
§mv2 + mgz = mgh,

aby wyrazi¢ predkos¢ v w zaleznosci od wysokosci z.

Poniewaz funkcja podcatkowa T (z, z’) w otrzymanym funkcjinale nie zalezy jawnie od
zmiennej calkowania (tutaj: od x), wykorzystujemy “hamiltonian” jako calke pierwsza
rownania Eulera-Lagrange’a:

, 0T . -1
2 — —7T =h=const. czyli = —— = const.
0 N EE DR
(Stala \/2g zostala upchnigta w C: h = —1/6’\/ g). Po rozwiklaniu wzgledem 2z’ daje to

réwnanie rézniczkowe pierwszego rzedu’™

,  dz C?
2

T dr h—z

Gdyby krzywa sparametryzowaé zmienna z, tj. gdyby napisaé

Th / 1—|—x’2

to funkcja podecatkowa T (z, ') nie zalezalaby od samej funkcji x(z) i otrzymywane réwnanie Eulera-
Lagange’a calkowaloby sie natychmiast do

o !
o' \/2g(h—z)(1 + z7?) C\/%

co, po odwiklaniu, dawaloby to samo dxz/dz lub dz/dx.

= const.,
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Wybrany tu zostalznak minus, bo jest fizycznie oczywiste, ze krzywa v musi biec w doét,
czyli pochodna funkeji z(x) musi by¢ ujemna. Po rozdzieleniu zmiennych i podstawieniu
¢ = h — z otrzymujemy

B | & u? B ) du

W kolejnych krokach podstawilismy ¢ = 42 i nastepnie przedstawiliémy u? w liczniku jako
—(C? — u?) 4+ C?. Podstawiajac z kolei u = C'sin § dostajemy

r+ D= —202/d9 00829+202/d9 = C? (0 —sinfcosb).

W wyjéciowych zmiennych daje to uwiklane réwnanie krzywej

r+ D = C? (arcsinﬂ%—V%\/l—%),

ktére nie jest specjalnie przejrzyste. Jedyne, co z niego widaé, to to, ze D = 0 (bo dla
z = h musi by¢ z = 0).

Aby zobaczy¢ jaka krzywa wyznaczaja te wzory, najlepiej cofnaé sie do rozwiazania
W postaci

2
xr = %(29—sin29),

2

z=h—§=h—02sin29:h—%(l—cos%’),

i wprowadzi¢ parametry ¢ = 20 oraz R = C?/2. Otrzymujemy wtedy krzywa w postaci
parametrycznej,

x = R(p—sinyp),
z—h=—-R(1—cosyp),

w ktérej rozpoznajemy cykloide (odwrécona w dét - zob. Zadania 2.14 i 6.6). Stala
dowolna jest tu R (bo stala D juz zostala wyznaczona), ale gdy krzywa zadajemy para-
metrycznie parametryzujac ja zmienna ¢ € [0, @], trzeba takze ustali¢ py (parametr ¢
zostal wprowadzony w taki sposéb, ze ¢ = 0 odpowiada punktowi A); sa jednak teraz do
spelienia dwa zwiazki:

b= R(pr —sinyy),
h=R(1—cospy),

ktére razem ustalaja R i ¢y.
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b) Poszukamy teraz krzywej, po ktérej “zjazd” pozwala dotrzeé¢ w najkrétszym czasie do
prostej x = b. Mozna by to zagadnienie rozwiaza¢ znajdujac z rozwiazania poprzedniego
problemu czas dotarcia do punktu (z,y) = (b,0) jako fukcje wysokosci poczatkowej h
i minimalizujac nastepnie te funkcje wzgledem h; nie jest to jednak tatwe do zrobienia,
gdyz krzywa minimalna przy ustalonym h jest zadana parametrycznie, a zakres [0, py]
zmiennosci parametru ¢ jest wyznaczony réwnaniem przestepnym. Zagadnienie mozna
jednak latwo rozwiazaé szukajac ekstremum 7'() na drogach v majacych jeden koniec
ustalony (punkt A), a drugi czedciowo swobodny (nieustalona wspéhzedna y punktu B).
Szukamy wtedy drogi v, na ktérej pochodna wariacyjna

ST [h] = /Obd:): { (‘98—72' - %2—5) () + {g—z h(:):)] } ,

funkcjonatu T znika na wszystkich wariacjach h(z) drogi 7 takich, ze h(a) = 0, ale
mogacych przyjmowaé dowolna wartosé h(b) w x = b. Znikanie takie wymaga, by funkcja
z = z(x) zadajaca droge 7 spemiala to samo réwnanie Eulera-Lagrange’a, co poprzednio,
ale by dodatkowo jeszcze

Z/

o=b - V2g9(h—z)(1+ 27)

o1
0z

=0.
r=b

(Znikanie czlonu brzegowego w = = 0 jest nadal zapewnione przez warunek h(0) = 0).
Sprowadza sie to oczywiscie do warunku 2'(b) = 0, ktory trzeba nalozyé¢ dodatkowo na
uzyskane w pierwszym punkcie rozwiazania rownania Eulera-Lagrange’a. Poniewaz dane
jest ono w postaci parametrycznej musimy napisa¢ ten warunek w postaci

o=y A \dp
Pk

Sprowadza sie wiec on do zadania, by

dz

— =0.
dx

sin @

—— =0.
1 — cos py

Poniewaz ¢, # 0, musi to by¢ ¢p = 7. Zatem z warunku b = R(p, — sinyy), ktéry
uprzednio (przy B = (b,0)) wyznaczal @i, teraz znajdujemy, ze szukana krzywa jest
przesunieta w gore i odwrécona cykloida o R =b/7 (i ¢ € [0,7])

(p) = ; (¢ —sinp),
2(p) = h—%(l —cos ).

Dochodzi ona do prostej x = b ptasko (bo (dz/dx),—, = 0) na wysokosci z = h — 2b/7.
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Zadanie 7.8 (Szkoleniowe, bo odpowiedz jest oczywista)

Korzystajac z rachunku wariacyjnego znalez¢ najkrotsza droge taczaca na plaszezyznie
xy dwa ustalone punkty A = (x4,y4) 1 B = (zp,yp). Rozwiazaé problem w zmiennych
kartezjanskich i biegunowych. Rozwiaza¢ ten sam problem (w zmiennych kartezjanskich)
w przestrzeni o d wymiarach.

Rozwiazanie:
W dwéch wymiarach zadanie jest banalne: dlugos$é krzywej v taczacej punkty A i B jest
dana funkcjonatem

B B B
:/ dl:/ \/d:cz—l—dy?:/ dx/1+y?,
A A TA

ktéry prowadzi, poniewaz funkcja podcatkowa nie zalezy ani od x ani od y, do oczywistego
rownania

d
% = (' = const,

skad, jak nalezalo sie spodziewaé, y(z) = Cz + D.

Wartos¢ funkcjonatu J[7] obliczona na danej drodze + nie zalezy od wyboru zmiennych.
W zmiennych walcowych np.

Tl = /d(rcosw\/ulm] = [ Vi cos G s g

d(r cos @)

czyli, parametryzujac krzywa v katem ¢,
Il = [de g0 = [dpvimiee.

Odpowiadajace tej postaci funkcjonatu rownanie Eulera-Lagrange’a ma nieciekawa postac
d r B r
do /12 + 12 N ’

Na szczescie funkcja podcatkowa J[7] nie zalezy od zmiennej catkowania o, wiec stala jest
“hamiltonian”

, 0T r?

J = ———=—= = —(C = const.

r ar/ o ‘/T/2+T2

Po rozwiklaniu wzgledem 1’ i rozdzieleniu zmiennych dostajemy stad (£ jest znakiem
pochodnej dr/dy, ktéry a priori mégltby sie zmieniaé¢ na krzywej przy ustalonym C)

dr dr
+ [dp=C| —F/—m—==0C | —/——.
/ap /7“\/7’2—02 /Tz h-9
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Standardowym chwytem jest tu podstawienie u = C'/r, ktére daje

du
(o + o) = — i = —arccosu.

Zatem u = C/r = cos(¢ + ), czyli
C = rcos g cos vy — 7sin psin pg = T cos Yy — Y sin g ,

co oczywiscie jest réwnaniem prostej y = Ax + B z A = ctgpy i B = —C/ sin ¢y.

W przestrzeni D wymiarowej, aby traktowac¢ symetrycznie wszystkie wspotrzedne x;
najwygodniej jest przyjaé, ze krzywa 7 jest zadana parametrycznie x; = x;(§), przy czy,
parametr & € [0, &] tak, iz z;(0) = 27, x;(&) = xP. Dhugoéé drogi jest wtedy dana
funkcjonatem (kropki oznaczaja pochodne po &)

Ek &k

Funkcjonat J[v| jest niezmienniczy wzgledem reparametryzacji krzywej (czyli méwiac
gérnolotnie - prof. Meissner to uwielbia - wzgledem dzialania grupy dyffeomorfizméw),
tj. jesli & = &(7), to

p_ dwi _ dvidf _ . d§
A

i, poniewaz d¢ = dr(d&/dr),

Ek Th
LWﬂ:/)%\M%FH+$%:/‘%‘af+-~+f2
0 -

7z 0 = &(7i), & = &(mr). Ma wiec on te sama postac® (jedli nie liczy¢ innych oznaczen
pochodnych po £ i po 7), niezaleznie od wyboru parametryzacji krzywej.

Poniewaz J nie zalezy od x; wszystkie rownania Eulera-Lagrange’a daja sie raz
scatkowa¢ prowadzac do uktadu D réwnan:

T

34407

—~C,, i=1,...,D.

Wynika z nich, 77e

dSL’Z’ CZ

C;j = const,

d!lﬁ'j Cj

80Nalezy to poréwnaé z zamiana zmiennych z kartezjaiskich do walcowych, rozpatrywana wyzej: tam
warto$¢ funkcjonatu nie zalezala od wyboru zmiennych, ale sama postaé funkcji podcatkowej byla inna.
Nie byla wiec to niezmienniczo$é (czyli symetria).
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dla ka??zdej pary indekséw ¢ oraz j, czyli ze dowolna wspotrzedna x; wyraza sie przez
dowolna inng wspotrzedna x; funkcja liniowa (w sensie szkolnym, a nie w Scistym sen-
sie algebraicznym). Rozwiazaniem sa wiec zwiazki x;(§) = Sih(§) + i, w ktérych h(§)
jest dowolna funkcja, co odpowiada dowolnosci parametryzacji krzywej (prostej). Stale
catkowania C; sa wtedy réwne C; = 3;/+/Pi + -+ - + (3. Zwiazki te, to oczywiscie para-
metryczna reprezentacja proste;j.

Warto jeszcze zwroci¢é uwage na “hamiltonian”, ktéry, poniewaz funkcja podcatkowa
J w funkcjonale J[v] nie zalezy od £, powinien by¢ stala. Znajdujemy jednak, ze

D

N _

(2

Hamiltonian tozsamog$ciowo znika! Odpowiedzialny jest za to fakt, ze funkcja podcatkowa
jest funkcja jednorodna rzedu pierwszego predkosci &;, tzn, ma wlasnosé (w rozpatrywa-
nym wyzej zagadnieniu funkcja J nie zalezy od x;)

j(LL’l,...,LL’D, )\Lt’l,...,)\it’p):>\j($1,...,$D, i’l,...,i’D).

Jesli rowosé te zrézniczkuje sie po A i polozy A = 1, otrzyma sie zwiazek oznaczajacy
znikanie “hamiltonianu” (jest to tzw. twierdzenie Eulera o funkcjach jednorodnych -
w termodynamice prowadzi ono do tzw. réwnania Gibbsa-Duhema). Jest to typowa
sytuacja, gdy funkcjonal jest niezmienniczy, tak jak tutaj, wzgedem reparametryzacji, bo
niezmienniczo$¢ taka wymaga wiasnie, by funkcja podcatkowa byla funkcja jednorodna
rzedu pierwszego predkosci.
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Zadanie 7.11

Wyznaczy¢ ksztalt fancucha (o bardzo krétkich ogniwach albo nierozciagliwej jednorodnej
liny) o dhlugosci L i stalej gestosci p masy na jednostke dlugosci umocowanego swoimi
koncami w dwdch réznych punktach A i B nad ziemia i swobodnie zwisajacego (bez
dotykania ziemi) w polu sily ciezkosci g.

Rozwiazanie:

Wprowadzmy uklad odniesienia o osi z skierowanej do géry i osi = skierowanej poziomo
wzdhuz kierunku wyznaczanego przez punkty A i B zaczepienia koncéw lancucha. W
jednorodnym i stalym polu grawitacyjnym g = —ge, tancuch przybiera ksztalt minima-
lizujacy jego energie potencjalna E (przyjmujemy, ze tancuch wisi juz nieruchomo). Jest

ona dana calks
B
E = / dsgpz,
A

w ktérej ds jest elementem dilugosci, a z wysokoscia w stosunku do (dowolnie wybra-
nego) poziomu, na ktorej znajduje sie infinitezymalny fragment taricucha o dlugosci ds.
Jest wiec to funkcjonat E[y] zalezny od krzywej « jaka tworzy tancuch. Jedli krzywa te
sparametryzujemy zmienna z, otrzymamy

Ebl =g [ " dox(o)yTT G

Szukamy zatem krzywej bedacej minumum tego funkcjonatu, albo - bo state g i p nie maja

wplywu na to, jaki ksztalt tancucha jest optymalny - funkcjonatlu (réwniez oznaczonego
E)

By = /de;m(x) T+ (Z(@)".

Poniewaz jednak dlugos¢ tancucha jest ustalona, minimum tego nalezy szuka¢ w klasie
krzywych 7 o ustalonej dltugosci, czyli takich, ze drugi funkcjonat L[]

Lmzfﬁm1+wmﬂ

A

spelia warunek®! L[y] = L.
W takiej sytuacji wprowadzamy (staly) mnoznik Lagrange’a A i szukamy ekstremum
pomocniczego funkcjonatu E[y] = E[y] — AL[7], czyli

Ely] = /dea: (z(z) = N1+ (' (x))? = /dexé:(z, 2.

81Mamy nadzieje, ze czytelnik zdota odréznié¢ funkcjonat L[y] od konkretnej liczby L.
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Poniewaz funkcja podcatkowa nie zalezy jawnie®? od zmiennej , catka pierwsza rownania
Eulera - Lagrange’a wyznaczajacego krzywa bedaca ekstremum E [7] jest “hamiltonian”,
tj. wielkosé
O
7 —=E.
0z
Zatem
z— A

=~ - _C,
[+ (2)?

gdzie C jest stala. Wywiktujac stad 2’ otrzymujemy

dz 2 —2\?
— =4+ —1.
dz \/( C )

(Znak =+ jest znakiem pochodnej 2’, ktéry moze zmieniaé sie wzdtuz krzywej odpowia-
dajacej konkretnej statej C. Jest mniej wiecej jasne, ze tak wtasnie tu bedzie - od punktu
A lanicuch bedzie najpierw opadaé, a potem wznosi¢ sie do punktu B.) Rozdzielajac
zmienne, i dokonujac podstawienia u = (z — \)/C' sprowadzamy problem do catki

/dx—:tC/W

Standardowe podstawienie v = chf daje jako wynik calki po prawej stronie archu i osta-
tecznie otrzymujemy

=N T — X . . B T — X
G —ch( G ), lub, inaczej, z(:v)—)\+Cch( G )

Poniewaz ch jest funkcja parzysta, znak + znika.

W rozwiazaniu wystepuja trzy stale dowolne: =z, C' oraz mnoznik Lagrange’a .
Trzeba je dobrac tak, by krzywa dana powyzszym réwnaniem przechodzita przez punkty
Ai B (dwa warunki) oraz by dlugosé taiicucha byta réwna L (tzn. by odlegto$é od punktu
A do punktu B liczona wzdluz otrzymanej krzywej byta réwna L). Ten ostatni warunek
mozna teraz napisaé jawnie, obliczajac calke:

B B —
/ d:v\/1+sh2<x z()) :/ dxch(z 930)
T A TA C
o rp — Xo _ TaA— Xo
-clu(=) a(=z2)]

82Bo w zagadnieniach z wiezami “globalnymi” mnoznik(i) Lagrange’a jest (sa) rzeczywidcie stata(ymi).
Natomiast w przypadku wiezéw “lokalnych”, takich jak rozpatrywane w Zadaniu 7.15, mnoznik(i) jest (sa)
funkcjami zmiennej calkowania i nalezy je uwazaé za wprowadzajace jawna zalezno$c funkcji podcatkowe;j
pomocniczym fukcjonatu od tej zmienne;j.
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Jest od razu jasne (co od poczatku powinno by¢ oczywiste, ze aby problem miat rozwiazanie,
dtugos$¢ L tancucha musi by¢ nie mniejsza niz xg — x4, bo wartos¢ powyzszej calki jest
wieksza niz xp — x4 (funkcja kosinus hiperboliczny jest zawsze wieksza niz 1). Przyjmujac
(bez straty ogdlnosci), ze x4 = —b, a xp = b oraz, ze z(x4) = ha = 0 (poziom zerowy
wybieramy na wysokosci zawieszenia jednego z koncéw tancucha), a z(zp) = hp mozemy
warunki, ktére trzeba spemi¢ zapisa¢ w postaci

A (b1
F_Ch(T)’
hg — A b— xg
= ch
C ( C )

L_ b—SL’O —b—SL’O
E_Sh( C) sh( c )

Fizycznie rzecz biorac, jesli tylko L > (rp—x4) = 2b, warunki te powinny mieé¢ rozwiazanie.
W ogélnym przypadku dowolnego hp jest jednak niemozliwe ich spemlienie analityczne.
Dlatego ograniczymy sie do rozpatrzenia przypadku z hg = 0 (oba korice taficucha zacze-
pione na tej samej wysokosci. Jest wtedy jasne, ze stala g = 0 i dwa pierwsze warunki
redukuja sie do jednego, a w ostatnim warunku z uwagi na nieparzysto$¢ funkcji sh, dwa
czlony po prawej stronie sa identyczne. Bez straty ogdlnosci mozna tez potozyé¢ b = 1
(tzn. przyjaé¢ b za jednostke dtugosci). Wreszcie wygodnie bedzie wprowadzi¢ C' = 1/C.
Warunki, ktére trzeba speli¢ przybiora wéwczas postac

~AC = chC,
LC =2shC.

Drugi z nich wyznacza stata C (czyli C), a nastepnie pierwszy wyznacza mnoznik .
Woeciaz sa one trudne do analitycznego rozwiazania, ale tatwo je przeanalizowa¢ w dwdch
skrajnych przypadkach: L 2 2 (tzn. L 2 2b) 1 L > 2 (tzn. L > 2b).

Rozwiazanie drugiego warunku sprowadza sie do znalezienia odcietej (tak to sie chyba
za cara Mikolaja II - jednego z ghupszych caréw - nazywalo) punktu przeciecia wykresu
fukeji 2sh C z prosta L C' o nachyleniu L (poniewaz w C' = 0 nachylenie fukeji 2sh C jest
réwne 2, te dwie krzywe przecinaja sie tylko, gdy L > 2, co juz bylo przedyskutowane).
Jest tez jasne, ze gdy L 2 2, krzywe te przecinaja sie blisko poczatku wykresu, tzn. C 2 0.
Doktadniej, rozwijajac funkcje sh otrzymujemy pierwszy warunek w postaci

skad C' ~ /3(L —2). Rozwiazaniem pierwszego warunku jest wtedy A ~ —1/C, bo
kosinus hiperboliczny jest niemal réwny 1. Znéw doktadniej, rozwijajac funkcje ch

C+...

By 1. 1
-40:1+?ﬂ+nw czyli A= — 3
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Ksztalt tanicucha jest wtedy dany wzorem

R R VI R U G
z(z) ~ 5 2C’+ C~Ych(C'x) ~ 2C’+ 2C’x .
Zgodnie z oczekiwaniem, tancuch tworzy miedzy punktami A i B linie niemal prosta z
matym tylko ugieciem posrodku (tj. przy x = 0).
Gdy L > 2 (tzn. L > 2b), rozwiazniem drugiego warunku jest C > 1. Wtedy jednak
sh C' ~ ch C' wiec, wykorzystujac drugi warunek w pierwszym, znajdujemy ze A &~ —L /2
i ksztalt tancucha zadaje wzor

z(x) ~ —g +%Chél’ = —% (1 — cthC’f) :
c

(druga posta¢ wzoru wynika natychmiast z warunku z(1) = 0). Poniewaz chC > 1, przy
x = 0 laicuch schodzi, zgodnie z oczekiwaniem, niemal do z = —L/2.
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Zadanie 7.15

Korzystajac z rachunku wariacyjnego znalezé¢ najkrotsza droge lezaca na powierzchni
bocznej walca o promieniu R taczaca punkty A = (R,0,0)1 B = (0, R, h). Rozwiazaé pro-
blem wykorzystujac technike mnoznikéow Lagrange’a oraz inaczej, przechodzac do zmien-
nych zgodnych z wiezami. Uwzgledni¢ takze role topologii walca.

Rozwiazanie:
Szukamy ekstremum (minimum) funkcjonatu

B B
Lm:/ dl:/ VA2 + dy? + d2? |
A A

w ktérym calka jest obliczana wzdtuz laczacej punkty A i B drogi v. Krzywa v musi lezeé¢
na powierzchni walca, co narzuca warunek g(z,y,2) = 2% + y*> — R? = 0.
Sparametryzujmy najpierw droge v zmienna x. Wowczas

0
L[] :/ do\/1+y? 4272,

R

Warunek uboczny g(x,y, z) = 0 uwzgledniamy wprowadzajac zalezny od x mnoznik La-
grange’a (czyli wlasciwie funkcje mnoznikowa) A(z) i szukamy ekstremum funkcjonatu

fi[y]:/Rde{ 1+y’2+z/2—A(x)(:c2+y2—R2)},

przy warunku 22 + y? — R? = 0. Do rozwiazania sa wiec réwnania
d Y

% /1+y/2+z/2

d z

_ =0,
dr \/1 4 y? 4 22

?+y* =R,

= —2X\(2)y,

Pierwsze z nich wyznacza tylko A(z) (lub wlasciwie: czynnik A(z) dobieramy tak, by to
réwnanie bylo spelnione, gdy juz znamy y(x) i z(x)). Z drugiego wywiktujemy z’:
2

“i-ca!

(C jest stala calkowania drugiego réwnania). Z kolei z trzeciego réwnania (wiezéw) znaj-

dujemy y = £V R? — 22, czyli

Z/2 1 + y/2) ’

r_ +z
YT VR =2
co po wstawieniu do wzoru na 22 sprowadza go do
dz n C R
de T \1-C? VR =22
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Po scatkowaniu otrzymujemy stad (C' = RC/v/1— C?)
z(z) =+ C’arcsin% +D.

Stale C'i D trzeba dobraé tak, by z(R) = 0 i 2(0) = h. Latwo znajdujemy, ze

D=h oraz :I:Lz:—

VI_ 0?2
Ekstremala ma zatem postac

o 2h .x  2hym . T\ _ 2h

2(x) =h— —arcsing = — (5 - arcsmﬁ> =—_¢

gdzie ¢ jest standardowo zdefiniowanym katem cylindrycznego ukladu wspdlrzednych.
Ekstemala jest wiec linia sSrubowa. Oczywiscie gdyby rozcia¢ walec wzdhuz jego tworzacej
otrzymana ekstremala okazalaby sie linia prosta bo powierzchnia walca jest plaska (ma
zerowa wewnetrzna krzywizne).

Topologia walca ma jednak znaczenie przy szukaniu ekstremali: wszystkie bowiem
drogi biegnace po powierzchni walca taczace dwa zadane jej punkty A i B mozna podzieli¢
na klasy charakteryzowane catkowita liczba n (w topologii zwanej liczba nawinie¢ - ang.
winding number) méwiaca ile razy dana droga obiega walec dookola (mozna przyjaé, ze
n > 0 charakteryzuje drogi obiegajace walec n-krotnie w kierunku przeciwnym do ruchu
wskazéwek zegara, a n < 0 oznacza drogi obiegajace walec |1 + n|-krotnie w kierunku
przeciwnym). Nietrudno tez zrozumieé, ze w kazdej klasie drég powinna istnie¢ jedna
ekstremala. Parametryzacja drogi zmienna z nie pozwala jednak otrzymac tych innych
ekstremali (ani nawet odrézni¢ drogi o n > 0 od drogi o n’ = 1 —n), poniewaz na drogach
obiegajacych walec raz lub wiecej razy (w jednym badz drugim kierunku) jednej wartosci
x musialoby odpowiada¢ wiecej niz jedna wartos¢ zmiennej z - drogi takie nie sa wiec
zadane uczciwymi funkcjami z = f(x).

Ten sam problem mozna rozwiazaé¢ przechodzac do zmiennych (¢, z) zdefiniowanych
standardowo = = Rcos ¢, y = Rsin g, z = z, ktére sa zgodne z wiezami, tj. g(z(p),y(¢)) =
0. W tych zmiennych funkcjonat L[] przybiera postaé

Lk = / Vid(Beos P + d(Rsin )P + 4 = R / "l VT,

0

gdzie u = z(¢)/R, prim oznacza pochodna po ¢, a wartos¢ koficowa parametru ¢ zalezy
od liczby nawinieé¢, ktora trzeba zadac:

<pn:g+27m, news.

Poniewaz funkcja podcatkowa nie zalezy jawnie od zmiennej catkowania ¢, catka pierwsza
rownania Eulera-Lagrange’a wyznaczajacego u jest “hamiltonian”

, 0T R

U - —J = ———= = —C = const.

ou’ \/1—|—u’2
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Stad juz od razu wynika, ze ekstremala jest droga u’ = D =const., czyli ze z(p) = Dp+E.
Warunek z(0) = 0 daje £ = 0, a warto$¢ D wyznaczona przez warunek z(y,) = h zalezy
od liczby nawinie¢ D = 2h/(1 + 4n)w. Zatem ekstremale maja postaé

2h s
= 0<p< =4+ 2mn.
Z(QO) (1+4n)71'80’ S@P > B + 2mn

Dla n = 0 jest to to samo rozwiazanie, co poprzednio i fizycznie jest jasne, ze jest to
globalne minimum funkcjonatu (czyli rzeczywiscie najkrétsza droga). Pozostale ekstre-
male sa jednak takze minimami funkcjonatu, tyle ze jego minimami lokalnymi. Warto tez
zauwazy¢, ze gdyby punkt B lezal po przeciwnej stronie osi z, to ekstremale odpowia-
dajace n = 01in = —1 (nieodrdéznialne przy parametryzacji drég zmienna x) bylyby obie
globalnymi minimami funkcjonatu (i tak samo minima lokalne o n i n’ = 1 — n mialyby
réwne “glebokosci”).

Warto jeszcze zwrocié uwage na to, ze przejscie od pierwszego sposobu rozwiazywania
tego problemu do drugiego odpowiada dokladnie temu, co robi sie przechodzac od rownan
Lagrange’a I-go rodzaju (z sitami reakcji proporcjonalnymi do mnoznikéw Lagrange’a) do
rownan Lagrange’a II-go rodzaju, w ktorych wiezy sa juz automatycznie uwzglednione
przez wybér zmiennych.
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Przypomnienie

Problemy mechaniki, przede wszystkim, gdy wchodzace w gre sily i oddzialywania sa za-
chowawcze, a ewentualne wiezy sa holonomiczne i dwustronne, wygodnie jest formutowaé
jako problemy wariacyjne: rzeczywisty ruch ukladu mechanicznego, tzn. zaleznos$é¢ od
czasu zmiennych ¢' wybranych jako charakteryzujace jego stan (potozenie), jest wy-
znaczony przez warunek stacjonarnosci pewnego funkcjonatu I[g] zwanego dzialaniem:
0I[g] = 0 w klasie wszystkich mozliwych funkcji ¢'(t) przyjmujacych w chwilach ¢; i to
ustalone warto$ci. W mechanice nierelatywistycznej funkcjonat ten ma postaé

to t2
Mo = [ (. =vi) = [ deiiei,
1 1

w ktorej T' jest energia kinetyczna calego ukltadu (w jakim$ wybranym inercjalnym ukladzie
odniesienia), tj. suma energii kinetycznych wszystkich mas tworzacych uktad mierzonych
w tym ukladzie odniesienia, a V(q) suma energii potencjalnych jego elementéw (energii
potencjalnych mas w polu grawitacyjnym, energii sprezynek itp.); wielko$¢ L = L(q, q),
centralna w tym sformulowaniu mechaniki, nazywa sie lagrangianem (albo funkcja La-
grange’a) ukltadu fizycznego.

Réwnania Lagrange’a drugiego rodzaju sa bardzo wygodne. Nie wymagaja one jaw-
nego rozpatrywania sit reakecji powodowanych wiezami. (Gdy wiec znajomosé tych sit
jest potrzebna, trzeba wroci¢ do rownan Lagrange’a pierwszego rodzaju; mozna w nich
jednak wtedy wykorzystaé¢ znaleziony przy pomocy réwnan Lagrange’a drugiego rodzaju
ruch - zob. Zadanie 6.8). Rozwiazywanie problemu mechanicznego ta metoda spro-
wadza sie do ustalenia najpierw liczby stopni swobody badanego uktadu mechanicz-
nego, tj. liczby niezaleznych zmiennych, ktérych wartosci nalezy podaé, by jednoznacz-
nie okresli¢ jego polozenie. Liczba ta, n, jest oczywiscie réwna 3N — p, gdzie N jest
liczba ruchomych mas badanego uktadu fizycznego, a p liczba niezaleznych wiezéw ho-
lonomicznych. Drugim krokiem jest konkretny wybér tzw. zmiennych uogdlnionych
q',...,q" charakteryzujacych zgodne z wiezami polozenia mas. Moga one byé¢ wybrane
dowolnie; w szczegdlnosci moga one wszystkie, lub tylko niektére z nich, wyznaczaé
polozenia mas wzgledem jakiegos ukiadu niekoniecznie inercjalnego, ktorego polozenie
wzgledem inercjalnego uktadu odniesienia jest z gory zadane lub zadane przez pozostate
zmienne ¢°. Niektdre ze zmiennych ¢* moga np. charakteryzowaé polozenie jednej masy
wzgledem drugiej, ktérej polozenie i ruch jest z kolei scharakteryzowane innymi zmien-
nymi. Nalezy jednak podkresli¢ jeszcze raz: mimo iz energie wystepujace w lagrangianie
moga by¢ wyrazone przez zmienne uogélnione definiujace potozenie mas wzgledem dowol-
nego punktu odniesienia (czyli moga wyznaczaé polozenia mas wzgledem uktadéw nieko-
niecznie inercjalnych), to energie sktadajace sie na T musza by¢ energiami kinetycznymi
wzgledem jakiegos wybranego ukladu inercjalnego. To jest ta (czesto nieuswiadamiana
sobie) podstawa nierelatywistycznej mechaniki klasycznej, ktéra zostawit nam w spadku
Newton: istnieje absolutna przestrzen i absolutny czas i, wobec tego, cata klasa uktadow
zwanych inercjalnymi, ktére wzgledem absolutnej przestrzeni poruszaja sie jednostajnie
i prostoliniowo. I tego nie ukryje zadne przejécie do formalizmu lagrangeowskiego. Nie
wiadomo, dlaczego to dziata (por. w rozdziale 16-1 t. I Feynmana uwagi o kawiarnianych
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filozofach) ale tak jest. Mozna to kwestionowaé i niektérzy staraja sie skonstruowaé me-
chanike tak, by uwzgledni¢ w niej postulat E. Macha, ze znaczenie moga mie¢ tylko ruchy
wzgledne mas. Polecam tu bardzo ciekawa ksiazke Juliana Barboura “The discovery of
Dynamics” o historycznym rozwoju mechaniki szczegélnie skupiajaca sie na $cieraniu sie
podejs$é opartych na ruchu wzglednym i absolutnym. Autor utrzymuje, ze nawet ogdlna
teoria wzglednosci nie w pei realizuje postulat Macha. (Niestety ksiazka ta nie zostala
wydana po polsku; na Amazonie kosztuje jakies trzysta kilkadziesiat zlotych...)
W nierelatywistycznej mechanice klasycznej energia kinetyczna ma postac

1 N
2
T=352 maviy:
1=1

gdzie v(;) = I, a r(; sa wektorami polozenia poszczegélnych mas m(;) w wybranym
ukladzie inercjalnym. Po wyrazeniu potozen r; wszystkich N mas przez n = 3N —p < 3N
zgodnych z wiezami zmiennych uogdlnionych ¢’, energia kinetyczna 7' przybiera z reguly
postaé (dodatnio okredlonej) formy kwadratowej predkosci uogdlnionych ¢

1 <& ) o\ i
T=§ZE](Q>JJ )qua

ij=1

o wspdlezynnikach T;; bedacych w ogélnosci funkcjami zmiennych ¢*. Odstepstwo od
tej reguly powstaje, gdy niektére ze zmiennych ¢' sa zdefiniowane wzgledem jakichg
elementéw ukladu, ktére wykonuja zadany z gory (wymuszany przez jakies czynniki
zewnetrzne) ruch: T;; pozostaje wtedy forma kwadratowa wszystkich predkosci, w tym
takze predkosci elementéw uktadu wykonujacych zadany ruch; te jednak nie sa zmiennymi
dynamicznymi i energia kinetyczna T traktowana jako funkcja dynamicznych predkosci
¢" ma wtedy czlony niezalezne od ¢* i moze take mieé czlony liniowe w ¢*.

Po wyrazeniu za$ energii potencjalnych elementéw ukladu przez zmienne ¢ lagrangian
staje sie funkcja uogdlnionych potozen i predkosci

L:L(t7q17’"7qn7ql7"’7qn>7

przy czym zaleznos¢ od predkosci, jesli nie zachodzi konieczno$¢ wprowadzenia poten-
cjaléw uogélnionych - zob. nizej - (co jest konieczne, gdy wystepuja sity zalezne od
predkosci) jest forma kwadratowa.

7 lagrangianu otrzymuje sie n réwnan Lagrange’a

doL_ oL
dtog O’

1=1,...,n,

Jest to n réwnan rézniczkowych drugiego rzedu na n funkeji ¢'(t). Tak jak w przypadku
rachunku wariacyjnego, gdy lagrangian nie zalezy od zmiennej ¢° (a tylko od odpowia-
dajacej jej predkosci uogélnionej ¢'), i-te réwnanie catkuje sie natychmiast do

oL
— = (; = const,

g’
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i staje sie rOwnaniem pierwszego rzedu. Gdy zas lagrangian nie zalezy jawnie od czasu,
istnieje dodatkowa catka pierwsza - “hamiltonian”:

= const .

=1

Dobrze jest tez pamietaé, iz dwa lagrangiany L i L’ (bedace funkcjami tych samych
zmiennych) rézniace sie o wyrazenie bedace pelna pochodna po czasie

oy A
L(t7Q7"'?Q):L/(t7q17"'7q )_I_Ef(t?ql?"')?

daja te same rownania Larange’a. Innymi stowy, czlon lagrangianu bedacy pelna pochodna
po czasie mozna odrzucic.

Jesli masy m; maja tadunki elektryczne q(;), wpltyw na ich ruch pdl elektrycznego E
i magnetycznego B wymaga w tym formahzmle uzycia potencjaléw ¢ i A, takich, ze®3

0A
E=-Vo——, B=VxA.
7T o
Lagrangian N mas ma wtedy czlony zalezne od uogdlnionych predkosci liniowo (nie sa
one czescia energii kinetycznej uktadu)

Lt +Zq Altro () gm0 (t0) — ot (0)

Wprawdzie potencjaly ¢ i A nie sa przez pola E i B wyznaczone jednoznacznie - mozna
zawsze dokonac ich zmiany

00
sowp/:w—a, A A =A+V0,
to jednak transformacja taka zmienia lagrangian jedynie o czton bedacy pelna pochodna
po czasie:

> [ 000 T+ 2300000 = 25 tema)

i jako taki nie majacy wplywu na réwnania Lagrange’a. Wzieta z minusem czes¢ lagran-
gianu zalezna liniowo od predkosci uogélnionych r(;) nazywa sie potencjatem uogdlnionym.
Ze sformutowania dynamiki w jezyku lagrangianu wynikaja natychmiast prawa ska-

lowania. Jesli, jak to czesto ma miejsce, czlon energii potencjalnej V' w lagrangianie
zapisanym przez wspoOlrzedne kartezjanskie cial

N
1 2
— 5 Z m(i)v(i) — V(I‘(i), ceey I‘(N)) s
=1

83Uzywamy tu tego niby jedynego legalnego, choé w istocie idiotycznego, uktadu SI jednostek.
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jest funkcja jednorodna rzedu k:
V(Oél‘(l), NP ,OzI'(N)) = OékV(I'(l), c. ,I'(N)) s

mozna bez rozwiazywania rownan ruchu wywnioskowaé¢ prawa skalowania spetiane przez
ich rozwiazania. W tym celu transformacje skalowania potozen r;y — ar(;) uzupelniamy o
transformacje skalowania czasu t — [t, co powoduje, ze predkosci, jako pochodne polozen
po czasie, skaluja sie wedlug reguly i) — (o/B)i(;). Po takiej operacji skalowania

[

«

N
i=1

N | —

1—k/2

Jesli polozy¢ teraz = « , otrzyma sie zwiazek

L' =do*L,

7 ktérego wynika (poniewaz czynnik o mnozacy lagrangian jako calo$é nie ma wplywu na
réownania ruchu), ze jesli funkcje r(; (t) sa rozwiazaniami réwnan Eulera-Lagrange’a wyni-
kajacych z L, to funkcje ar(al=*/?t) tez sa rozwiazaniami tychze samych réwnan. Jesli
wiec dwa tory bedace rozwiazaniami tych samych réowanan Eulera-Lagrange’a i majace
jakie§ dhugosci charakterystycznea i a’ przechodza na siebie po przeskalowaniu o czyn-
nik « (réwny a = a'/a), to czasy charakterystyczne T i T” tych ruchéw beda do siebie

pozostawaé w stosunku
1-k/2
T e (0
T a ’

a predkosci charakterystyczne v i v’, w stosunku

v« k)2 (a’)k/2
_— = — = = — .
v 0 a

W przypadku ruchu masy m w potencjale keplerowskim V' = —k/|r|, ktéry jest funkcja
jednorodna rzedu k = —1 i ktérego wspdtczynnik x (z powodu réwnosci masy grawitacyj-
nej i masy bezwladnej) jest proporcjonalny do m, dzieki czemu funkcja Lagrange’a jest
do masy m proporcjonalna jako catosé¢ (i z tego powodu wartosé¢ masy m nie ma wplywu
na réwnania ruchu), wynika stad natychmiast trzecie prawo Keplera

"\° a\°®

() - (%)
(stosunki kwadratéw okreséw obiegu planet sa takie same jak stosunki szescianéw duzych
pélosi ich eliptycznych orbit). Z kolei w przypadku oscylatora harmonicznego, ktérego

potencjaljest funkcja jednorodna rzedu k = 2, a z prawa skalowania wynika niezaleznosé¢
okresu od amplitudy wychylenia: T7"/T = o° = 1.
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Zadanie 8.4

Rozpatrzmy punkt materialny o masie m poddany dzialaniu sity F = F(t), ktéra jest
niezalezna od polozenia. Translacje przestrzenne sa oczywistymi symetriami tego pro-
blemu (jesli r = r(¢) jest jakim$ rozwiazaniem réwanania Newtona, to jest nim takze
r'(t) = r(t) + a). Mimo to, ped p czastki nie jest stala ruchu. Wyjasni¢ to (pozorne)
pogwalcenie zwiazku symetrii z prawami zachowania.

Rozwiazanie:
Aby wyjasni¢ sprawe trzeba sie odwota¢ do twierdzenia Noether. Dzialanie I punktu
materialnego o masie m poddanego dziataniu sity F(t) ma postaé

I[r]:/tldtL(r,i",t):/tldt[ mi? 1 r-F(t )}

to to
Zmienna r nie jest jednak niczym wyrézniona i zamiast niej mozna by uzywaé r’ = r + a.
Powinien wiec istnie¢ lagrangian L'(r/, 1/, ), taki, ze jesli r'(¢) spelia wynikajace z niego
réwnanie, to r(f) = r/(t) — a bedzie automatycznie spemiaé¢ réwnanie wynikajace z
L(r,r,t). Nie chodzi tu na razie o symetrie, tylko o dowolno$¢ wyboru zmiennej cha-
rakteryzujacej potozenie ukladu w kazdej chwili czasu. Zeby tak bylo, wystarczy , by

t1 t1 t1 d
I’:/ dtL’(r’,i",t):/ dtL(r,f,t)—i—/ dtaA(,r).

to to
Jedli jednak wykorzystujac dowolnosé wyboru L' (polegajaca na dodaniu do niego pehej
pochodnej czasowej jakiej$ funkeji ') mozna sprawié, ze L'(-, -, t) = L(-, -, t), to mamy do
czynienia z symetria i wtedy jesli r(t) spelnia rownania wynikajace z L, to spehia je tez
r'(t) = r(t) + a. I tak wlasnie jest w tym przypadku: biorac za L' po prostu L mamy

1 d [*
L(r',#,t) = —mi? + (r +a) - F(t) = L(r,1,t) + d_/ dt'a-F(t'),

2 t ),

czyli whasnie (A(t)oznacza catke w ostatnim wzorze, tu niezalezna od r)

t t1 by
I/E/ dtL’(r’,i"’,t):/ dtL(r/,f’,t)zH/ dt —A(t).

to to to
Zapewnia to, ze r'(t) jest rozwiazaniem réwnania ruchu jesli jest nim r(¢). Odpowiadajace
tej symetrii prawo zachowania wynikajace z twierdzenia Noether otrzymuje sie rozpatrujac
infinitezymalne przeksztalcenie symetrii r’ = r + dr (tu ér = da), tak iz

t1 t1
OE[’[r’]—I[r]—/ dtiaA(t):/ dt {% PN LRI )}
to to

d 0 or dt dt
h oL d 8L 8L
Przyjmujac tudr = da oraz dA(t ft dt' da - F(t’ ), widzimy, ze jesli r(t) spelnia réwnanie

Eulera-Lagrange’a, wielkoscia zachowana jest nie p, lecz

@—g—f—/tdt F(¢) = ()—/tdt’F(t’).

to to
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Zadanie 8.8 (Proste, szkoleniowe)

Klin o masie M, kacie nachylenia « i wysokosci gérnej krawedzi h moze przesuwaé sie
bez tarcia po plaskiej powierzchni. Po klinie, wskutek dzialania skierowanego pionowo
w doét pola sity ciezkosci g, moze zsuwadé sie bez tarcia klocek o masie m. Znalezé ruch
tego uktadu wykorzystujac réwnania Lagrange’a drugiego rodzaju. Poréwnaé¢ wynik z
otrzymanym w Zadaniu 6.3 w granicy p; = e = 0.

Rozwigzanie:

Poniewaz klocek pozostaje zawsze na klinie, uklad ma dwa stopnie swobody. Jako dwie
zmienne dynamiczne (¢! i ¢> w notacji ogélnej) catkowicie wyznaczajace jego chwilowe
polozenie mozna wybraé X - polozenie tylnej krawedzi klina na osi poziomej (zob. rysunek
42) oraz z - wysokosé na jakiej nad plaska powierzchnia znajduje sie klocek. Przez te
dwie zmienne mozna wyrazi¢ wszystkie kartezjanskie wspéhrzedne polozen (w ukladzie
inercjalnym zwiazanym z plaszczyzna) srodkéw masy klina

xy = X + const, zZy = const.
i (traktowanego jak punkt materialny) klockas
Ty =X + (2 — h) ctga, Zm = Z.

Suma energii kinetycznych klina i klocka wyraza si¢ przez wybrane zmienne dynamiczne
wzorem
1
T=Ty+T,=-M(@3+32,)+ 5m(:z?m + 22)

) 1 )
MX? + §m[(X + Zetga)® + 7.

N DN -

Energia potencjalna uktadu (energia potencjalna klina i klocka) V- =V, +V,, = Mgz +
mgz,, redukuje sie, poniewaz z); = 0, do V = mgz. Lagrangian ukladu, L =T — V', ma
zatem postac

1 . 1 .
L= §.MX2 + §m[(X+2ctga)2+z'2] —mgz.

Dwoma réwnaniami Lagrange’a drugiego rodzaju wynikajacymi z tego Lagrangianu sa

(M +m)X +mictga =0,
m(1 + ctg?a)z + mX ctga = —myg.

Pierwsze z nich wyraza, oczywiscie, stalos¢ poziomej sktadowej catkowitego pedu uktadu

(M +m)X 4 m# ctg = const.

817 wiazek miedzy xm, a X i z (taki sam, jak w zadaniu 6.3) wynika np. z proporcji (h—2)/(X —2y,) =
tga (oczywistej z rysunku 42).
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T X TM,Tm

Rysunek 42: Klocek zsuwajacy sie z gtadkiego klina. Definicje zmiennych.
7, drugiego za$ otrzymujemy

X = —gtga — i(tga +ctga) = —gtga — —— |

sin a cos «v

co po wstawieniu do pierwszego daje zamkniete rownanie na zmienna Z:
(m+ M)tga

m+ M)(tga + ctga) — metg o’

Z=—g (
kt??re po pomnozeniu licznika i mianownika przez cos a sin a sprowadza sie do

(m+M)sin*a  (m+ M)sin’«

m+ M — mcos? « M +msin?a

Wstawienie wyrazenia na Z otrzymanego wyzej do wzoru na X daje

glm+ M)tga  msinacosa

X =—gtga+ = .
9'& M + msin? « M + msin? a

Wreszcie, mozna powyzsze wyrazenia na X oraz Z wstawi¢ do zwiazku ., = X + Zctga
i dostac

M sin « cos

Ty = — —————.
gM+msin2a

Sa to te same wyniki, co w Zadaniu 6.3. Dyskusja szczegdlnych granicznych przypadkow
jest wiec taka sama, jak tam.
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Zadanie 8.9

Klin o masie M i przekroju poprzecznym w ksztalcie tréojkata wysokosci h majacego
katy nachylenia ramion do poziomu réwne « i  moze przemieszczaé sie bez tarcia po
ptaskiej poziomej (w stosunku do pola g) powierzchni. Po jego bocznych ptaszczyznach,
polaczone nierozciagliwa i niewazka linka dlugosci [, moga przesuwaé sie dwa klocki o
masach my (ta od strony kata «) i my (zob. rysunek 43). Napisaé¢ lagrangian i réwnania
wyznaczajace plaskorownolegly ruch tego ukiladu. Zaktadajac, ze w chwili poczatkowej
masa m; znajduje sie w najwyzszym polozeniu (na wysokosci h nad podstawa klina)
obliczy¢ czas jej zjazdu do najnizszego polozenia, przyjmujac, ze my > mo i a > 3 (i ze
dhugosé linki to umozliwia). Obliczy¢ takze odlegto$¢ o jaka przesunie sie przy tym klin.
Rozwiazanie:

Ten uktad takze ma tylko dwa stopnie swobody. Oznaczmy x); polozenie rzutu wierz-
chotka tréjkata na o$ x uktadu inercjalnego. Jako druga zmienna uogélniona wprowadzmy
zmienng z zdefiniowana tak jak na rysunku. Analogiczna zmienna 2, jest zwiazana z

21 = z wzorem 2z + 2o = [. Wspodirzedne polozenia mas m; i my w ukladzie kartezjanskim
xry wyrazaja sie wtedy wzorami

1 =xy + zcosa, xo=xpy — (I —2)cosf,

y1 =h— zsina, yo =h— (I —2)sinf.
Energia kinetyczna uktadu jest wiec dana wzorem (aby uczynié¢ wzory bardziej przejrzy-
stymi wprowadzamy oznaczenia ¢, = cos «, itd.)

1 . 1 . . . 1 ) . .
T = §Mx?\4 + §m1[(:cM +2co)? 4 (£54)] + §m2[(xM + zcﬁ)2 + (2 sﬁ)z] ,

a energia potencjalna (skladajaca sie z energii potencjalnych masy m; i masy my) jest
rowna

V=(h—2zss)mig+ (h—(l—2)sg)mag.

Lagrangianem ukladu, po pominieciu statych, jest wiec:

1 . . o
= i(M +my +mg) i, + §(m1 +mg) 22 + (Mmyca + macg) Tar? + (M1Se — Masg) g2 .

Wynikajace z niego dwa rownania Eulera-Lagrange’a maja postac

L

(M +my +ma) @y + (Micq +macg) 2 =10,

(mq +mg) 2+ (mice +macg) Ty = (M1Sq — M253) g

Pierwsze z nich wyraza stalo$¢ poziomej sktadowej catkowitego pedu uktadu (w tym kie-
runku na uk??ad nie dziata zadna sila zewnetrzna), czego odbiciem jest takze niezaleznosé
lagrangianu od zmiennej xy;. Z pierwszego z nich znajdujemy, ze

miCqy + MacCg .
-_—Z
M+m1 + mo

Iy =
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Rysunek 43: Dwa klocki na dwu-klinie.

co po wstawieniu do drugiego daje

2

mM1Cq + MaC
( 5) Z = (m15, —Masg) g.

M—I—m1+m2

m1+m2—

(Wyrazenie w nawiasie kwadratowym jest, oczywiscie, dodatnio okreslone.) Przyspiesze-
nie Z klockow w ich ruchu wzgledem klina jest wiec stale i réwne

Lo (M + my + ma)(miSa — mass)

(M + my + ma)(mq + ma) — (Mmice + macg)?

a zalezno$¢ od czasu zmiennej z jest dana wzorem z(t) = z(0) +2(0)t + 3a.t?. Czas zjazdu
klocka o masie m; z najwyzszego potozenia (z zerowa predkoscia poczatkowa), czyli czas
przebycia przezen w zmiennej z odleglosci h/s, jest réwny tgj = 2h/a,$,, czyli

t, = % (M +my 4+ mgy)(mq +ma) — (micy + m2CB)2 2
“ Sa (M 4+ mq 4+ ma)(mysq — masg) '

Poniewaz przyspieszenie a, = 2 klina jako caloSci jest tez stale, w czasie t,; przebedzie
on odleglos¢

1 mM1Cq + macCp 2 miCq + macCp h

d=—a,t?, = —= a,ts, = — )
2 2M+my+mg 7 M +mq 4+ ma S,

Przemieszczenie to jest ujemne, bo klin przesunie sie w lewo.
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Zadanie 8.13

Napisa¢ rownania wyznaczajace ruch ukladu skladajacego sie z dwdéch mas, z ktorych
jedna, my, slizga sie bez tarcia po poziomym precie, a druga, ms jest z tamta potaczona
niewazkim pretem o dlugosci [ i moze wahac¢ sie w plaszczyznie wyznaczanej przez pole
sity ciezkosci g i pret (rysunek 44). Znalezé ruch ukladu w przyblizeniu matych odchylen
z polozenia réwnowagi.

Rozwiazanie:

Uktad ma dwa stopnie swobody. Jako dwie zmienne dynamiczne wybieramy potozenie x
masy m; na precie (punkt scharakteryzowany wartoscia = 0 mozna wybra¢ w dowolnym
miejscu preta) oraz zaznaczony na rysunku 44 kat ¢, o jaki drugi pret odchylony jest od
pionu (wyznaczonego przez pole g. Energia kinetyczna masy m; jest oczywiscie réwna
%mliz. Kartezjanskie wspétrzedne x5 i 2o masy mo w uktadzie inercjalnym sa dane przez

To =2+ lsing,
29 = —lcosp,
(0$ z kierujemy do gory), tak iz jej energia kinetyczna jest dana wzorem
1 1
§m2(:i:§ +23) = §m2(5&2 + P* + 2l picos ).

Energia potencjalna masy ms jest zas dana wzorem V = mogze = —moglcosp. Zatem
Lagrangian ma postac

1 1
L = 5(my4my) & + 5ma(I°3° + 21 ¢ cos p) + maglcos .

Poniewaz L nie zalezy od zmiennej x, jedna stata ruchu jest oczywiscie

0L . i

Frie (mq 4+ mg) & + mal pcosp = P = const.
Jest to oczywiscie z-owa skladowa catkowitego pedu uktadu. Druga stala ruchu jest -
poniewaz Lagrangian nie zalezy jawnie od czasu - “hamiltonian”:

0L 0L 1

1
To +S08_<p — L= §(m1 —I—mg):is2+§m2 (I?¢* 4+ 21 p i cos @) — magl cos p = E = const .

(W tym przypadku bedacy stala ruchu “hamiltonian” jest po prostu catkowita energia
mechaniczna ukladu). Wstawiajac tu & wyrazone prze zachowanuy catkowity ped uktadu
P mo

T = — lpcosp.
m1+m2 m1+m2 14 14

eliminujemy zmienna x:

P2 + 17’112[2 H? — 1 m%

1
1 1202 cos? o — I - FE.
2my+my 2 2 my + mg P OS P T gL oSy
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Rysunek 44: Wahadlo o masie my w polu g na niewazkim precie o dlugosci [; punkt
zawieszenia o masie m; moze slizgaé sie bez tarcia po poziomym precie.

Calkowity (z-owy) ped ukladu P daje tylko addytywny przyczynek do catkowitej ener-
gii £ a pozostale wyrazy od P nie zaleza.®> Wygodnie jest wiec zdefiniowaé energie
“wewnetrzna” E' = E — P?/2(m; + ms) uktadu (jest to energia jaka zmierzylby iner-
cjalny obserwator poruszajacy sie z predkoscia P/(my + msy) wzdhuz osi ).

Zachowanie energii F’ pozwala sprowadzi¢ ruch do kwadratur: rozdzielajac zmienne
w rownosci

1
—mal?$? (1 -2 cos? <p) = E' + mayglcos p,
2 my =+ Mo

otrzymujemy

d [2
t—tOZﬂ:/ Ld ma 1—&cos2ap :
VE + mayglcos ¢ 2 my + mo

W przyblizeniu matych wychylen od oczywistego polozenia rownowagi ¢ = 0, tj. dla
lo| < 1, przyblizamy cos? ¢ przez 1, a cos ¢ pod pierwiastkiem w mianowniku rozwijamy
do wyrazu kwadratowego w (:

mol2  my dp
t—ty==% 5 l .
ma + mo /E/ T mggl \/1 _ mag )902

2(E’'+magl
E’" 4+ maygl jest energia mierzona od polozenia réwnowagi. Standardowe calkowanie daje
w zastosowanym przyblizeniu matych drgan ruch harmoniczny
2(E" + magl)
mggl

g my + mg
W=,/ —.
) my

Gdy my > meg, czesto$¢ drgan zbliza sie do 1/g/l (na ruch wahadla jakim jest masa msq
duzo wieksza masa m; nie wpltywa, a sam ruch masy m; staje sie w tej granicy niemal
jednostajny & — const).

o(t) = cosw(t — tp),

z czestoscia,

857e tak musi by¢ wynika z symetrii wgledem przeksztalceri Galileusza - ruch w zmiennej ¢ nie moze
zaleze¢ od wyboru inercjalnego ukladu odniesienia, od ktérego to wyboru zalezy wartos¢ P.
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Zadanie 8.15 (“Waciak”)

Zmnalez¢ ruch “waciaka”, czyli regulatora Watta. Jest to ustrojstwo pokazane na rysunku
11: wokdl pionowej osi (w polu g) na wychodzacych ze znajdujacego sie na stalej wy-
sokosci pierscienia A, symetrycznie potozonych ruchomych ramionach o dtugosci | wiruja
z ustalona predkoscia katowa w dwie masy m polaczone kolejna para ramion o dlugosci
[ z mogacym przesuwac¢ sie po osi w gére i w dot obciazajacym pierscieniem o masie
M. Napisa¢ lagrangian waciaka i wynikajace zen Sciste rownanie ruchu. Znalezé stabilne
potozenie réwnowagi i ruch uktadu w przyblizeniu matych wychylen z potozenia rownowagi
trwalej.

Rozwigzanie:

Uklad ma oczywiscie tylko jeden stopien swobody - do calkowitego wyznaczenia jego
polozenia wystarczy jedna zmienna, za ktora najwygodniej jest przyjac¢ kat 6 zaznaczony
na rysunku 45. Wprowadzmy inercjalny uklad odniesienia o osi z skierowanej od punktu
A w gore i osiach = 1 y w plaszczyznie prostopadlej do osi. Wspolrzedna z); polozenia
masy M przez kat 6 wyraza sie wtedy wzorem

zy = —2lcosf,

a pozostale dwie wspolrzedne x,; i yyr masy M sa stale réwne zeru. 7 kolei wspéirzedne
1, Y1, 21 1 Ta, Y2, Zo dwu mas m sa dane wzorami

xy =lsinfcoswt,  x9=1Isinfcos(wt+ 7) = —Isinf coswt,
y1 = I sinfsin wt Yo = Isinfsin(wt + 7) = —Isinfsinwt,
z1 = —lcos@, 29 = —lcost.

Sumaryczna energie kinetyczna wszystkich elementéw uktadu wyrazona przez zmienna
dynamiczna 6 latwo juz teraz napisac:

T=Ty+Ti+T,= %Mzﬁ/[ + %m(x‘% + U7+ A7) + %m@g + s + 23)
= 2MI%6%sin® 0 +m <w2l2 sin? 0 + 1292>
Réwniez energia potencjalna sklada sie trzech przyczynkéw
V =Mgzy +mgz +mgze = —2(M + m)gl cos 6.
Kompletny lagrangian uktadu, L =T — V ma zatem postac
L= % 12(2m + 4M sin? 0) 67 + mw?1? sin® 0 4+ 2(M 4 m)gl cosf ,

a ruch wyznacza réwnanie

% [212(m + 2M sin? 6) 0] = 2mw?1%sin  cos @ — 2(M + m)glsin @ + 4M1%6? sin 6 cos 6 ,
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Rysunek 45: “Waciak” (czyli regulator Watta).

Przy wypisywaniu go nalezy pamietac, ze czlon z 02 w lagrangianie zalezy takze od 6 i
jego pochodng po 6 trzeba uwzglednié - jest to ostatni wyraz - po prawej stronie réwnania
Eulera-Lagrange’a. Po wykonaniu pochodnej po czasie po lewej stronie wyjdzie tam
podobny wyraz, ale z dwa razy wiekszym wspdtczynnikiem, wiec oba wyrazy nie zredukuja
sie calkowicie. Jako réwnanie ruchu otrzymujemy wiec ostatecznie

2(m + 2M sin® 0) 6 + 4M6? sin 0 cos 6 = 2mw? sin 6 cos O — 2(m + M)%sin@.

Jak zwykle, polozenia réwnowagi, sa to rozwiazania powyzszego réwnania z 0(t) =
0y = const. Musi wiec ono spehiaé¢ réwnanie

mw? sin O cos Oy = (m + M)% sin 0y .
Zatem albo®® 6, = 0 lub , albo

3 M
cos@ozﬂ, w35<1+—)g
w

oczywiscie tylko, jesli w2 /w? < 1. Powstaje wiec pytanie, ktdre z tych polozeri réwnowagi
jest stabilne i w jakich warunkach. W tym celu badamy réwnanie Eulera-Lagrange’a dla
matych odchylet od réwnowagi podstawiajac doni 6(t) = 0y+n(t) z |n(t)| < 11 zachowujac
w nim tylko wyrazy liniowe w 7(t) (wyraz 72 bioracy sie z cztonu z 62, réwniez pomijamy
- uzasadnienie, troche a posteriori, jest takie, ze w liniowym przyblizeniu, w ruchu, w
ktérym |n(t)| < 1 przez caly czas, réwniez || < 1 - jest to elementarna wiedza o ruchu
harmonicznym). W przyblizeniu takim réwnanie na 7n(t) ma postaé

1
(m + 2M sin® ) ij ~ imw2 sin(26y + 2n) — (m + M)% sin(fy + 1)

1
~ 57m;2(sin 200 + 21 cos 20y) — (m + M) = (sin 6y + ncosby),

~|

86Badamy teraz matematyczna strone problemu, abstrahujac od pytania, czy w realnym waciaku
polozenia 8y = 0 lub 7 sa rzeczywiscie mozliwe.
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czyli (bo pierwszy i trzeci wyraz po prawej stronie redukuja sie wzajem na mocy warunku
spetnianego przez 6)

(m +2M sin®0) i) = |mw?(2cos® by — 1) — (m + M) cos 90]

l

Stabilnosé¢ potozen réwnowagi 6 zalezy teraz w sposéb oczywisty od znaku kwadratowego
nawiasu po prawej stronie (nawias mnozacy f7j jest zawsze dodatni).

e Jesli Oy = m, znak ten jest dodatni i réwnanie ma postaé 7j = +x2n i, z wyjatkiem
szczegblnych warunkéw poczatkowych (1(0) = 0, (0) = 0), prowadzi do eksponen-
cjalnego narastania wychylenia |7)|.

o Jesli 0y =0,
[..] = mw? — (m+M)% = —m(wj —w?) = -mO?,

co pokazuje - poniewaz réwnanie na 7(t) staje sie wtedy réwnaniem oscylatora
harmonicznego, ktérego rozwiazaniami sa male, jesli male byly [n(0)| 1 |9(0)/€],
oscylacje wokét potozenia 6 = 0 - ze jest to polozenie réwnowagi trwalej (stabilnej),
gdy w2 — w? > 0, czyli, gdy predko$¢ katowa w waciaka jest mniejsza od predkosci
krytycznej wy.

e Jesli w > wy, stabilnym staje sie polozenie, w ktérym cos 6y = w2 /w?. Wowcezas
4 2 4 4
=mlw? (222 -1 — | =-m—F,

i mozliwe sa mate oscylacje wokdt tego polozenia z czestoscia,

‘b M -
Q- lu (1+2—sin290> ]
w m

Przejscie od polozenia réwnowagi w 6y = 0 (dla w < wy) do zaleznego od w polozenia w
cos By = w2 /w? jest przyktadem tzw. bifurkacji.

1/2

Poniewaz lagrangian ukiladu nie zalezy jawnie od czasu, calka pierwsza rownania
Eulera-Lagrange’a jest “hamiltonian”, tj. wielko$¢®”
oL
9 5 L = 1(m+ 2M sin®0) 0> — mw?? sin® 0 — 2(m + M)glcos§ = h = const.

Jej istnienie pozwala - bo uklad ma tylko jeden stopien swobody - sprowadzi¢ ruch do
kwadratur. Po rozdzieleniu zmiennych otrzymujemy ( h h/mi?)

L /dH 1+2(M/m)sin®6 / 1+2(M/m)sin®6
0 h + 2w cos ) + w? sin’ 6 h—Veg(0)

87Zauwazmy od razu, ze h nie jest tu energia uktadu £ = T + V (mierzona w ukladzie inercjalnym).
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(znak + jest znakiem pochodnej 9) Druga postaé¢ calki definiuje potencjat efektywny
Ve (0). Przyblizenia malych wychylei mozna teraz dokonaé¢ znajdujac potozenie 6, eks-
tremum potencjatu efektywnego

Veg(0) = —2wg cos ) — w?sin? 6,

podstawiajac w calce w mianowniku wyrazenia pod pierwiastkiem 6 = 6y +7 i zachowujac
wyraz do n?, a w liczniku ktadac 6 = . Aby znalez¢ rozwiniecie mianownika piszemy®®

2wa cos(By + 1) + w?sin® (0 + 1) = 2w; cos by + w? sin? b,
+[—2wg sin By + 2w? sin O cos G] n

—[w? cos By — w? cos 200|n°

Wida¢, ze wyraz liniowy w i znika dla 6y = 7, 6y = 0 lub cos 6y = w2 /w? (jesli w?/w? < 1).
W 6, = ™ wyrazenie w nawiasie kwadratowym przed n?, ktére oznaczymy 2, jest réwne
—w? — w?. Poniewaz jest ono ujemne, 6y = 7 jest lokalnym maksimum Vg (6). Jest
to niestabilne potozenie réwnowagi. W punkcie #, = 0 nawias kwadratowy jest réwny
wa —w?. Jest on dodatni, gdy w3 > w?, tj., gdy szybkos¢ obrotéw waciaka jest nie za duza.
Punkt 6y = 0 jest wtedy polozeniem réwnowagi trwatej. Wreszcie, gdy w2 < w? trwaltym
polozeniem réwnowagi jest to, w ktérym cosfy = wi/w? - nawias kwadratowy réwny
(wh—w]) /w? jest wtedy dodatni. Dyskusja ta jest doktadnie réwnowazna przeprowadzonej
poprzednio, na podstawie rownania Eulera-Lagrange’a.

Czestos¢ matych drgan wokot polozenia rownowagi trwalej znajdujemy standardowo:

piszemy (n =6 — b))
R /d@ 14+ 2(M/m) smﬁg’
C — Q22

(C'=h—Veg(f) > 0) i catkujemy:

1
V14 2(M/m)sin? 6,

1 dn 1 ) Q
(t—ty) = +t— = :t—arcsm( - ) :
‘@/\/1—(977/\@)2 .

Stad juz widac, ze czestosci drgan sa rowne

SIS

02
1+2(M/m)sin®6,’

tak jak poprzednio.

88Mozna oczywiscie zamiast rozwijania oblicza¢ pochodne Veg (6).
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Zadanie 8.24

Napisac lagrangian sferycznego wahadla, tj. masy m na sztywnym nierozciagliwym drucie
o dhugosci | zawieszonego na wysokosci h = [ nad Ziemia na szerokosci geograficznej ¢
uwzgledniajac dobowy obrét Ziemi. Wypisaé $ciste rownania ruchu (Eulera-Lagrange’a)
i znalez¢ ich rozwiazanie w przyblizeni malych wychylen z polozenia réwnowagi.

Rozwiazanie:

Wprowadzmy uktad O zwiazany z obracajaca sie Ziemia (a wiec nieinercjalny) o poczatku
w punkcie zaczepienia wahadta, osi 2’ skierowanej w gére, osi &' w kierunku wschodnim,
a y pélocnym, jak na rysunku 46. W tym uktadzie potozenie wahadla (masy m) zadaje
wektor r = ey2’ + e y’ + ey2’. Wahadlo ma dwa stopnie swobody. Jako zmienne
uogdlnione wybieramy katy 6 i ¢, tak ze

2’ =1Isinfcosy,
y = Isinfsin g,

2 =1lcos#.

Wprowadzmy ponadto uklad inercjalny O o poczatku w $rodku Ziemi i osi z skierowa-
nej ku biegunowi péinocnemu. Poczatek tego ukladu z punktem zawieszenia wahadta
laczy wektor R, ktéry w ukladzie nieinercjalnym ma postaé (zakladamy, ze dlugosé I
jest dobrana tak, iz wahadlo w najnizszym swoim potozeniu muska powierzchnie Ziemi)
R = eZ/(RZ + l).

Predko$é¢ V masy m wzgledem uktadu inercjalnego O wyraza sie wzorem

d d
V:%(R+r):£(R+r)+wx (R+r)=v +wx (R+r),

gdzie v/ = d'r/dt (wektor R jest w uktadzie O staly).
7 kolei energia potencjalna V' masy m jest Scisle rzecz biorac dana wyrazeniem

_GMZm _ GMZm
R+r]  VRZ+2Rr+r12
Jednakze jest jasne, ze [r| = | < |R| = Rz+1 =~ Ry, co pozwala przyblizy¢ V nastepujaco:
GMzm|R GM R-
V(r)~ — zmRY z——22m|R|<1——g+...).
R2\/T+ 2R-r/[R]Z+ r2/[R]? R IR
Poniewaz GMz/R? = GMz/(Rz +1)> ~ GMz/R% = g, a R-r = |R|l cos b,

V(r) =

V(r) = const. + mglcos + ...,

jak tez i nalezalo oczekiwaé. Tak wiec (energia kinetyczna jest tu ta, jaka masa m ma w
ukladzie inercjalnym!)

L=T-V==mH +wx (R+r))* = mglcosb

~
[\

+mv'-[w x (R+r)] —mglcosb,

Q

(NN ORI

3
<
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Rysunek 46: Wahadlo Foucault na obracajacej sie Ziemi (w polu g).

po pominieciu wyrazu rzedu w?. Drugi wyraz jest odpowiedzialny za przyspieszenie Co-
riolisa.

Wypisany wyzej lagrangian trzeba jeszcze wyrazi¢ przez wybrane wspolrzedne uogdlnione
01

Viwx (R+71)]=—w-[v x (R+71)]
oy VX (R 1) — s [V (R 1))

bo w = eywy +e w, = eywey+e wsy (cy = cos, s, = sin¢). Z kolel w tymze ukladzie
O’ (aby mniej pisa¢, niech R, = Rz + 1)

[sin 6 cos
R+r=| Isinfsinp |,
', + lcos @

wiec
w- [V x (R+r1)| =wy [—lzé sin 6 cos
—1(cosfcos o — psinOsin @) (R, + [ cos 9)}
+ w, [12 (6 cos 0 cos ¢ — psin fsin ¢) sin 0 sin ¢
—1% (A cos 0 sin ¢ + ¢ sin 0 cos ) sin f cos go] :

Jest to dosy¢ skomplikowane, ale na szczescie po wymnozeniu troche sie to wyrazenia
upraszcza:

w- vV x (R+71)] =wy [—129 cos i + [*¢ sin 6 cos 0 sin @
—R},16 cos b cos p + Rl ¢sin O sin <p]
+w, [—Ppsin® 0] .
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Zatem lagrangian wahadta Eco, pardon, wahadla Foucaulta, ma postac

1 .
L= §ml2(92 + ¢*sin* @) — mgl cos 0

—muw, 2 [—6 cos o + ¢ sin 0 cos 0 sin @]
—mwy Ryl [0 cos f cos ¢ + ¢ sin 0 sin ]

—mw, I*[—psin? 0] .
Trzecia linie tego lagrangianu mozna pominaé, jako ze jest ona pela pochodna
. . . d .
—6 cosf cosp + psinfsing = pr (—sinfcosp),

i jako taka nie ma wplywu na réwnania ruchu. Tym samym wypada catkowicie zaleznosc¢
od R/, (poza ta ukryta w g). Ostatecznie wiec

1 :
L= §ml2(92 + ¢?sin* @) — mgl cos §

— mwy I? (—9 cos ¢ + ¢ sin 6 cos fsin ) + mw., *psin® 6 .

Wypisujemy nastepnie rownania Eulera-Lagrange’a:

— ml? (9 + Wy cos go) = ml%¢?sin 0 cos 6 + mgl sin 0
—mw, 12¢ cos 20 sin ¢ + mw,/ 1> sin 20,
d

— ml? (@ sin® @ — Wy sin @ cos 8 sin ¢ + w sin? 6) = —muwy 120 sin ©

dt

—muw, [*¢sinf cosf cos p.

Po obliczeniu pozostalych pochodnych po czasie i podzieleniu przez mi? otrzymujemy
wiec

é—wyrgbsimp = ¢2sin90089+%sin9— Wy @ cos 20 sin ¢ + w,psin 20,

@ sin?0 + 0 psin 20 — Wy ¢ sin @ cos O cos ¢
— Wy 0 cos 20'sin ¢ + w0 sin 20 = — Wy fsin ¢ — Wy @ sin 6 cos 6 cos ¢
Drugie réwnanie tadnie sie upraszcza i ostatecznie (po uzyciu w obu tozsamosci cos 20 =

1 — 2sin?6 i podzieleniu drugiego przez sinf) dwoma réwnaniami ruchu wahadla sa
rownania

6 — p?sinf cosf = %sin@%—Q@(wy/ sin fsin ¢ + w, cos ) sin b,
gbsin@+2¢90089+2wyzésin9singp+2wzzécos9 =0.
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Szukamy najpierw polozen réwnowagi, czyli rozwiazan ze stalymi katami 6 i ¢. Drugie
rownanie jest zawsze spelnione przez 6 = ¢ = 0. Spelienie pierwszego wymaga, by
zerowal sie jeszcze sinf. Zatem potozeniami réwnowagi sa 0 = 0 i 7 (kat ¢ jest wtedy
niezdefiniowany) ale poniewaz potencjal mial posta¢ mgl cos 6, stabilnym potozeniem jest
¢ = . Zmieniamy wiec definicje katow ¢ — 7 — 6 (czyli sinf — sinf, cosf) — — cos¥,
oraz 6 — —0, § — —9) Roéwnania przybieraja wtedy postac

6 — p?sinf cosf = —%Siné’— 2¢ (wyy sinfsin p — w, cosP) sinf,
Gsind + 250 cosf = 29(wy/ sinfsin ¢ — w,, cosh).

W przyblizeniu malych wychylen z polozenia réwnowagi trwatej mozna potozy¢ sin 6 = 6,
cosf =~ 1, co sprowadza je do

9—9¢2:—%9+2w2/9gb,
G0+ 200 = —2w, 0.

Wida¢, ze rozwiazaniem drugiego rownania jest ¢ = 0, ¢ = —w,,. Pierwsze réwnanie
sprowadza sie wtedy do

92—(%%—@3)9.

Zatem ruch jest zlozeniem harmonicznych oscylacji kata 6 z czestoscia Q = /(g/1) + w?
i obrotu wokdt osi 2’ lokalnego uktadu O w kierunku zgodnym z kierunkiem ruchu
wskazéwek zegara (bo ¢ < 0).
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Zadanie 8.21
State pole magnetyczne o symetrii cylindrycznej, B = e, B(r), gdzie r = /22 + y?2, jest
zlokalizowane w obszarze, ktorego rzut na plaszczyzne xy jest kolem o promieniu R. Pole

to jest takie, ze
/ ds-B=0.
z=0

Pokaza¢, ze jesli czastka o tadunku elektrycznym ¢ startujaca z punktu r = 0 i pozo-
stajaca stale w plaszczyznie xy opuszcza obszar pola (tzn. obszar r < R), to w chwili
przekraczania granicy (tj., gdy r = R) pola jej predkosé jest skierowana radialnie. Podaé
warunek, jaki musi spelnia¢ predko$¢ vy czastki w r = 0, by mogta ona opusci¢ obszar
pola.®

Rozwiazanie:

Zatozmy, ze czastka dociera do r = R w chwili t = t 1 obliczmy zmiane z-owej skladowej
jej momentu pedu spowodowana oddzialywaniem z polem magnetycznym. Zmiana ta
musi by¢ rowna calce po czasie z z-owej skladowej momentu sity dziatajacego na czastke:

NG :/Omdt rx (qvx B[ :q/omdt v (r-B) — (r-v)B].

Jesli czastka porusza sie pozostajac stale w plaszczyznie xy, to r-B = 0. Stad

AL* = —q/o Cscdt (v-r)B(r(t)) = —q/dr-rB(T)

1 [ R q
:——q/ d(rz)B(r):—q/ drr B(r) = —— ds-B=0.
2" Jo 0 21 J.—o

Zatem zmiana AL? z-owej skladowej momentu pedu czastki znika, jesli znika strumien
pola magnetycznego przez plaszczyzne xy, a poniewaz czastka startujaca z r = 0 ma
w chwili poczatkowej zerowy moment pedu, musi mie¢ rowniez zerowa jego sktadowa z-
owa. Stad jej predkosé, gdy opuszcza ona obszar pola, musi by¢ skierowana radialnie,
by sktadowa L? jej momentu pedu znéw byla réwna zeru (oczywiscie wewnatrz obszaru
dzialania pola, gdy |r(t)] < R, ta skladowa momentu pedu czastki nie musi znikaé, bo
strumient [ds-B pola magnetycznego przez kolo o promieniu 7 < R nie musi znikac).

Aby znalez¢ warunek, jaki musi spelnia¢ predko$¢ poczatkowa vg, by czastka mogta
opusci¢ obszar pola, trzeba wykorzysta¢ wielkosci zachowane podczas ruchu w cylindrycz-
nie symetrycznym polu magnetycznym. Najlatwiej je znalezé¢ wykorzystujac formalizm
lagrangeowski. W przypadku czastki poruszajacej sie¢ w polu magnetycznym wymaga on
wprowadzenia potencjalu wektorowego A, takiego, ze B = V x A. Lagrangian ma wtedy
postac

1
L= imv2 +qv-A.

89]. Franklin i K. Cole Newton Am. J. Phys. 84 (2016) s. 263.
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W przypadku cylindrycznie symetrycznego pola B wygodnie jest przyjac® (r = /22 + y?)
A =e,A%(r).

Strumien pola magnetycznego mozna wyrazi¢ przez A wzorem (tzw. A-Ampsio)

/ds~B :7{ dl-A.
s 0%

W przypadku powierzchni ¥ bedacej kotem o promieniu R i potencjalu wektorowego
A =e A%(r), wzor ten daje

/ds-B = 2r RA?(R) .

Zatem znikanie strumienia pola przez kolo o promieniu R oznacza, ze A¥(R) = 0.
Lagrangian czastki ma w zmiennych cylindrycznych i przy tym wyborze potencjatu
wektorowego postac

1
L= §m(7‘2 + 12 + 2%) + rpqAP(r).

Poniewaz nie zalezy on jawnie ani od czasu ani od zmiennej ¢, wielkosciami stalymi sa
“hamiltonian” (bedacy tu catkowita energia - pole magnetyczne nie wykonuje pracy!)

oL oL oL 1
h:'— h— '——L:— -2 252 ;2 :E
T8f+(p8gb++z&é 2m(7‘ +répT + 29) :

oraz (bo Lagrangian nie zalezy jawnie od zmiennej ¢)

L
g_gb = mr?p +rqA?(r) = const.

Jesdli czastka startuje z r = 0, ta druga wielkoé¢ zachowana jest réwna zeru,”!

calym ruchu w polu magnetycznym zachodzi zwiazek

czyli w

ro = —% AP(r).

9OW zmiennych cylindrycznych, je??li A = e, A” + e, A? + e, A%, to

Ao (LA DATY (DA 04T\ 1(00A7) A
T\ 9y 0z Y\ 0z or r or dp )’

NZakladamy (tu i wyzej, gdy strumien pola B wyrazony zostal przez przez A¥) na razie, ze pole
A?(r) nie jest osobliwe w r = 0. Z postaci rotacji wynika, ze dla r ~ 0 mogloby ono zachowywa¢é sie
najwyzej jak ~ 1/r, by strumieni pola magnetycznego przez plaszczyzne xy byl skoriczony (przy r — 0
pole magnetyczne nie moze by¢é bardziej osobliwe niz B(r) ~ 1/r8 z 8 < 2); przypadek takiej osobliwosci
pola A®(r) uwzglednimy dalej.
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Zatem ze stalosci energii F, ktéra na poczatku ruchu jest réwna imvZ, otrzymujemy

2
(I"U.Ch jest plaski, wiec 2z =01 2z = O)
v =72 2% =2 4 A% (r
0 m ( ) .

Poniewaz 72 > 0, wynika stad, Zze aby czastka mogla opudci¢ obszar pola musi by¢
speliona nieréwnosé

|V0| 2 maXOSTSR ’i A¢(’f’)‘ .
m

Pozostaje jeszcze tylko pytanie o sens tego kryterium wobec tego, ze potencjal wek-
torowy A nie jest przez pole B wyznaczony jednoznacznie: A’ = A + Vx(r) daje to
samo pole magnetyczne (i zerowe pole elektryczne). Nalezy jednak zauwazy¢, ze wyko-
rzystana calka pierwsza rownania ruchu istnieje tylko wtedy, gdy lagrangian nie zalezy
od zmiennej ¢ i co wiecej, cale wyprowadzenie warunku jest oparte na tym, ze jedyna
niezerowa, skladowa potencjatu wektorowego jest A¥. Nalezy wiec zapytac¢, jaka jest swo-
boda wyboru skalarnej funkcji x(r, ¢, z), by nadal potencjal spelialt te warunki, tzn. by
AT =A% =01 A% = A% + f(r)? Funkcja x(r, ¢, z) musi wiec by¢ taka, ze

ox  Ox 0 Lox

o rap )
Ostatnia réwnos$¢ moéwi, ze
x(r ¢, 2) =ref(r)+g(r, 2).

Znikanie A’*| czyli zerowanie sie pochodnej dx/0z oznacza, ze funkcja g nie moze zalezeé
od z. Z kolei znikanie A" (czyli pochodnej 0x/0r) daje teraz warunek

p[f(r) +rf'(r)]+g'(r)=0.

Wynika z niego (bo réwnos¢ ta musi zachodzi¢ dla dowolnego kata ¢), ze g(r) = const,
oraz ze f(r) = a/r. Zatem jedyna dopuszczalna funkcja jest x(r,p,z) = ap + const.,
ktéra daje”?

A7(r) = A°(r) + =

Jesli jednak zamiast A?(r) uzyjemy A’?(r), to na poczatku ruchu, gdy czastka startuje
z v = 0, druga wielko$¢ zachowana nie jest juz réwna zeru, lecz qa. W trakcie ruchu
zachodzi wtedy zwiazek
a
oo (o)

m r

92Nie zmienia to strumienia pola B obliczanego z A-Ampsia, bo wobec osobliwosci A% (r) trzeba teraz
zastosowaé przejscie graniczne przyjmujac za brzeg obszaru catkowania duze kolo o promieniu R i male
(obiegane w przeciwng strone) o promieniu e: [ds-B = [dyp R(A?(R) + a/R) — [dpe (A%(e) + a/e) i
przejs¢ do granicy € — 0.
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Zatem do podania kryterium wylatywania czastki z obszaru pola wystarczy uzy¢ takiego
potencjalu wektorowego, ze A" = A* = 0, a pole A¥ jest tylko funkcja zmiennej r nie-
osobliwa w r = 0 i wybdr ten jest (dla danego pola magnetycznego) jednoznaczny; jesli
uzyjemy potencjatu z osobliwoscia typu a/r wchodzaca w A¥ addytywnie to i tak musimy
szuka¢ maksimum A% z cztonem osobliwym odjetym.
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Przypomnienie

Ogolna technika rozwiazywania tej klasy problemdéw polega na znalezieniu polozenia
rownowagi (q(lo), e ,q(g)) ukladu, ktéorego dynamike wyznacza lagrangian o ogdlnej po-
staci

L=T-V=54 Tilq',....q"d —V(d',....q"),

i zlinearyzowaniu réwnan ruchu przy zalozeniu, ze odchylenia od polozenia réwnowagi sa
mate. Osiaga sie to zazwyczaj rozwijajac potencjal V(q!, ..., ¢") w szereg Taylora wokét
punktu (q(lo), . .,qﬁ))) do drugiego rzedu i badajac ruch wyznaczony przez przyblizony
(“skwadratyzowany” ) lagrangian

1, )¢
Lkwadr — §q E](q%o) . q( ))q - _q V,/(Q(O . .,q(O))q]7

w ktérym ¢ oznaczaja teraz odchylenia od polozen rownowagi, tj. dokonane zostalo prze-
mianowanie ¢’ — ¢fy na ¢' (pierwsza pochodna V'(¢',...,q") znika w (q(1 01400 )) a
stala V(q(0 .+, q(py) mozna pominac). Macierz Tj; = Tij(q(lo), .-+, q(p)) musi by¢ dodatnio
okredlona i symetryczna (albo: tylko symetryczna czesé macierzy Tj; wchodzi do L<¥adr),
a symetryczna (z konstrukeji) macierz V! (q(o) . ,q(%)), oznaczana dalej V;;, musi by¢ do-
datnio okreslona (jako macierz formy kwadratowej; w sprawie warunkéw zapewniajacych
dodatniosé - zob. np. méj skrypt do algebry) lub przynajmniej dodatnio pétokreslona (tj.
dopuszczamy jej zerowanie sie na pewnych niezerowych wektorach).
Réwnania Eulera-Lagrange’s wynikajace z L<V*d" tworza uklad réwnan

Tyd +Vigd = 0.

Rozwiazania szuka sie w standardowej formie®

¢ (t) = Al e,

w ktorej A’ sa sktadowymi stalego (tj. niezaleznego od czasu) wektora speliajacego
algebraiczne réwnanie

—sz‘ijAj + V;']'Aj =0.
Réwnanie to jest rownowazne rownaniu wlasnemu
(F—w’l)-A=0,

macierzy F' = T~! . V. Mimo, Ze naogdét niesymetryczna, macierz F' jest zawsze diago-
nalizowalna, tzn. ma zawsze tyle wektoréw wiasnych, ile wynosi jej wymiar, poniewaz
powstala ze zlozenia macierzy T~! i macierzy symetrycznej V. Kwadraty w? czestodci

9Qczywidcie fizyczne rozwiazanie jest dane przez cze$é rzeczywista (lub urojona) postulowanego
rozwiazania.
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wihasnych sa pierwiastkami (niektére moga by¢ wielokrotne) wielomianu charakterystycz-
94
nego

Wr(w?) = det(F — w?I) = 0.

Wektory wlasne A,y odpowiadajace réznym czestosciom w, sa automatycznie ortogonalne
w iloczynie skalarnym zadawanym przez macierz T;; i mozna (i nalezy) je unormowaé
wzgledem tego iloczynu skalarnego; wektory wiasne A,y i A(,,) odpowiadajace tej same;
czestosci w, mozna zortonormalizowaé stosujac procedure Gramma-Schmidta tak, by

i J o
Aty Tij Apy = Oab -

Nizej przyjmujemy, ze zostalo to zrobione. Ogdlne rozwiazanie (zlinearyzowanych) réwnan
ruchu (tj. réwnan otrzymanych z Lkvadr)

¢(t) = Z Aga) (Cy coswat + S, sinw,t) = Z A{a) D, cos(wat + ¢a),

a=1 a=1

ma posta¢ superpozycji harmonicznych drgan wtasnych, czyli tzw. moddéw wiasnych,
ukladu o réznych czestosciach. Stosunki Aéa) /A{a) sktadowych wektora A, mowia, jak
sie maja do siebie wychylenia (z polozeri réwnowagi) poszczegdlnych zmiennych dyna-
micznych w a-tym modzie drgan wlasnych ukiadu, tj. zadaja niezalezne od czasu stosunki
q'(t)/¢’(t) w a-tym modzie drgaii.”

Wspotrzednymi normalnymi nazywa sie zmienne uogélnione, w ktoérych uproszczony
(skwadratyzowany lagrangian) rozpada sie na sume n lagrangianéw poszczegdlnych moddw
normalnych, z ktorych kazdy zalezy tylko od jednej wspolrzednej normalnej i jest lagran-
gianem oscylatora harmonicznego o odpowiadajacej temu modowi czestosci w,. Wspolrzed-
ne takie, Q(t), tworzy sie, gdy juz znane sa (zortonormalizowane w iloczynie skalarnym
zadawanym przez macierz Tj;) wektory Ay, wedlug przepisu:

¢ =3 ALy (1),

(Postawione na “sztorc” sktadowe A’@ kolejnych wektoréw A ) tworza tu macierz liniowej

91Qczywidcie te same kwadraty w? czestoéci wlasnych sa pierwiastkami réwnania
Wry(w?) = det(—w?T+V) =0,

gdyZ WT_Vv(wz) = WF(WQ) det(T).

95 (Czesto przytomne spojrzenie na uklad pozwala zgadnaé przynajmniej niektére z wektoréw A, co
pozwala od razu, bez rozwiazywania réwnania Wr(w?) = 0 znalezé (przez bezposrednie zadziatanie na
zgadniete wektory A (,) macierza F') takze odpowiadajace tym modom czestosci w, i tym samym - bo
juz jakies pierwiastki réwnania charakterystycznego sa znane - uprosci¢ sobie znajdywanie pozostalych
poprzez obnizenie rzedu réwnania je wyznaczajacego.
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zamiany zmiennych). Rzeczywiscie:

wads 1 y . 1 i . ]_ “a Ai .. 1 a Ai .
Livad =50 10 — 50 Vg =50 Aa)TijAgb)Qb_ﬁQAa)VijAgb)Qb

— 5@ @ 4@ = 3 (300 - ).
Po drodze wykorzystana zostala (dwukrotnie) ortogonalnoéé¢ wektoréw A, w iloczynie
skalarnym zadanym przez macierz 7T;; i rOwnanie wlasne wyznaczajace te wektory. Stare,
“fizyczne” (choé¢ przy ich wyborze, tak jak zawsze przy wyborze zmiennych uogélnionych,
jest spora dowolnoé¢) zmienne dynamiczne ¢‘(t) sa kombinacjami liniowymi wspéhrzed-
nych normalnych Q%(t) i vice versa (macierz A’@ jest oczywiscie odwracalna). 7 tego
powodu zmienne (Q® nie maja naogot oczywistej interpretacji przemieszczen jakichs po-
jedynczych czesci uktadu (cho¢ oczywiscie, gdy znany jest ich zwiazek z majacymi taka in-
terpretacje zmiennymi ¢¢, podanie wartosci wszystkich Q® wyznacza jednoznacznie polozenie
ukltadu); sa jednak koniecznym krokiem ku kwantowaniu, czyli budowie odpowiedniej
kwantowej teorii uktadu ztozonego wykonujacego male drgania na bazie jego teorii kla-
sycznej

Osobnym zagadnieniem jest wyznaczanie czestosci i modow wilasnych drgan czasteczek
zbudowanych z N atoméw? (traktowanych jak punktowe masy), ktérych wiazania (majace
w rzeczywistosci pochodzenie elektromagnetyczne) sa modelowane przez sily sprezystosci
zalezne (w przyblizeniu) liniowo od wychylen atoméw czasteczki z ich polozeri réwnowagi
r,0), @ = 1,...,N. W ogdlnosci, czasteczka zbudowana z N atoméw ma 3N stopni
swobody, z ktérych 3 odpowiadaja ruchowi postepowemu czasteczki jako catosci (ktéry
mozna wyeliminowa¢ przechodzac do uktadu odniesienia, w ktorym srodek jej masy spo-
czywa), a kolejne 3 obrotowi czasteczki jako calodci; wyjatkiem jest tu czasteczka, w
ktorej wszystkie atomy w potozeniach rownowagi leza na jednej prostej - tylko 2 stopnie
swobody takiej czasteczki odpowiadaja jej obrotowi. Pozostale stopnie swobody odpo-
wiadaja wewnetrznym oscylacjom czasteczki. Przy obliczaniu czestosci drgan wlasnych N
atomowej czasteczki wygodnie jest od razu wyeliminowaé¢ stopnie swobody zwiazane z jej
ruchem postepowym i obrotowym; innymi stowy chcemy rozpatrywaé¢ drgania czasteczki
w ukladzie, w ktérym jej sSrodek masy spoczywa, nie pozwalajac by wykonywata ona ja-

9%Majac (wyznaczone na podstawie mechaniki klasycznej) czestosci oraz momenty bezwladnosci
czasteczek mozna, traktujac czasteczki jak wzajemnie nieoddzialujace, zbudowaé¢ kwantowq teorie two-
rzonego przez nie gazu doskonalego przewidujaca poprawnie, jakosciowo i ilosciowo, zaleznosé ciepla
wladciwego od temperatury. Ciepla wlasciwe gazéw doskonalych (tzn. tworzonych przez czasteczki,
ktérych wzajemne oddzialywania sa pomijalnie stabe) nie sa bowiem - wbrew temu, co mozna wnosié¢ z
kiepskich kurséw termodynamiki - stale w calym zakresie temperatur, a tylko “kawatkami” prawie stale:
stopnie swobody zwiazane z obrotami czasteczki jako calosci oraz z jej drganiami “wlaczaja” poczynajac
od pewnych temperatur “progowych”, zwiekszajac tym samym pojemno$é cieplng gazu. Owe tempera-
tury progowe kwantowa mechanika statystyczna wiaze wladnie z momentami bezwiadnosci i czestosciami
wlasnymi czasteczek gazu. Jest zabawne, ze efekty Scisle kwantowe, jakimi sa te wzrosty pojemnosci
cieplnych gazéw niemal doskonalych zachodza przy temperaturach, ktére sa rzedu od kilkuset do kilku
tysiecy Kelvinéw, a nie, jak mozna by mniemacé, przy bardzo niskich temperaturach.
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kikolwiek ruch obrotowy. W przypadku czastek kilkuatomowych zmniejsza to wydatnie
liczbe stopni swobody, znacznie upraszczajac problem.

Eliminacje stopni swobody zwiazanych z ruchem $rodka masy i obrotami przeprowadza
sie nastepujaco. Zapisujemy wektory r,(t), a = 1,..., N polozenia atoméw w formie

ro(t) = ro) + (),

gdzie stale wektory rq), @ = 1,..., N sa jakims (jest ich nieskoriczenie wiele) niezaleznym
od czasu rozwiazaniem scistych réwnan ruchu, a u,(¢) sa (maltymi z zalozenia) wychyle-
niami z tych polozen rownowagi i graja role 3N zmiennych uogdlnionych. Na zmienne
u,(t) narzucamy najpierw wiezy

N N d N
P =) mta(t) =) mai(t) = yr > mau,(t) = 0.
a=1 a=1 a=1

Odzwierciedlaja one z to, ze chcemy rozpatrywaé uktad, ktérego srodek masy (w wybra-
nym inercjalnym ukladzie odniesienia) nie porusza sie. Wiezy te sa, jak widaé, catkowalne,
tzn. mozna je przedstawi¢ w postaci warunku wiazacego 3N zmiennych u,(t):

Z mqu,(t) = const.

Poniewaz w potozeniach rownowagi u, = 0, stala jest wektorem zerowym: const = 0.

Warunki

N
Z mau,(t) =0,
a=1

pozwalaja wyrazi¢ w lagrangianie 3 z 3N zmiennych przez pozostate 3N — 3.

Eliminacje stopni swobody zwiazanych z obrotami przeprowadzamy narzucajac waru-
nek znikania catkowitego momentu pedu J czasteczki (tj. chcemy rozpatrywaé uktad w
sytuacji, gdy jako calo$¢ nie obraca sie on):

T = " mara(t) xia(t) = Y malra) + ua(t)] x0,(t) = 0.

W tej Scistej postaci sa to wiezy nieholonomiczne,”” ktérych, wobec tego, nie mozna
uzy¢ do wyeliminowania z lagrangianu dalszych trzech (lub dwu) zmiennych. Jesli jed-
nak badamy tylko male wychylenia z polozen réwnowagi, to wiezy te w przyblizeniu sa

97Tzn. nie dajace sie przedstawié¢ w postaci

d
Ef(ul,...,u]v,t)zo.
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holonomiczne:
N ' g
J =~ ; MaTq(0) X Uq(t) = 7 ; MaTq(0) X Uq(t)
i warunek®
N
Z MaTq(0) X Uq(t) =0,
a=1

moze zostaé uzyty do wyeliminowania z lagrangianu dalszych trzech (lub dwu) zmien-
nych. Otrzymany w ten sposéb lagrangian efektywny zalezy od 3N — 6 (lub 3N — 5, w
przypadku czasteczki dwuatomowej) zmiennych uogdlnionych. Dalsze kroki prowadzace
do znalezienia czestosci wlasnych drgan czasteczki i odpowiadajacych im modéw sa juz
takie same, jak opisane w pierwszej czesci tego Przypomnienia.

98Tak jak w przypadku calkowitego pedu, stala, ktéra w ogélnosci jest Zivzl MaTq(0) X Ug jest réwna
zeru, bo wektory u, zeruja sie w polozeniu réwnowagi.
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Zadanie 9.1 (Instruktazowe)

W przyblizeniu matych wychylen z polozenia rownowagi znalez¢ ruch pokazanego na ry-
sunku 14 uktadu dwéch mas m mogacych slizga¢ sie bez tarcia po dwu pretach taczacych
sie pod katem 7/3 (prety leza w plaszczyznie prostopadtej do pola g, czyli pole to jest tu
nieistotne) i potaczonych jedna z drugéraz kazda z osobna z punktem ztaczenia sie pretow
jednakowymi sprezynkami o dlugosciach swobodnych [y i wspoélczynnikach sprezystosci k.
Zmalez¢ wspétrzedne normalne. Podaé przykitad warunkéw poczatkowych, przy ktorych
wzbudzony zostanie tylko mod drgan o wyzszej czestosci.

Rozwiazanie:
Uktad ma dwa stopnie swobody - wystarczy poda¢ polozenia kazdej z dwéch mas m na jej
precie. Jako zmienne wybieramy wiec x i z pokazane na rysunku 14. Energia kinetyczna
T uktadu jest suma energii kinetycznych obu mas:

L oo .

T = §m(x +2%).

Energia potencjalna V' uktadu jest suma energii potencjalnych kazdej z trzech sprezynek:
V =Vi+ Vo + V3. Dwie pierwsze z nich sa oczywiste:

Vl—i—‘/g:%k[(:c—lo)2+(z—lo)2].

Trzecia z nich ma bardziej skomplikowana postac

Vo= 3 [Vioa =P T a— gl — | = 5k [\/ (0= g2+ 22— zo] .

T —1lyiyp=2zsin

1 T V3
372 -

Y=z - zob. rysunek 47). Zatem

(Boxzsa=x,ys=0, 25 = zcos 3 5

V= %l{; {(x— ) + (2= 10)* + (VaZ =2z + 27 - 10)2] .

Poniewaz potencjat V' jest dodatnio okreslony, ma on minimum (absolutne) tam, gdzie
przyjmuje wartos¢ réwna zeru, tj. w punkcie x = z = [y. Dokonujemy wiec przesuniecia
zmiennych & = x — ly, Z = z — lp. W nowych zmiennych (pomijamy tyldy) ma on postac

1
V ==k
2

2
1’2—|—Z2—|—(\/lg+l0(l’—|—z)—l—x2—|—22—$2—lo) ]

Poniewaz zerowy wyraz rozwiniecia pierwiastka wokét z = z = 0 zredukuje sie z [,
wyraz kwadratowy potencjatu pochodzacy z pierwiastka bierze sie tylko z cztonu lo(z +
z). Ostatecznie wiec, rozwiniety do wyrazéw kwadratowych w wychyleniach z polozenia
rownowagi potencjal ma postac

1 2
V=-k x2+z2+<z+z>

2

1 5 1 5!
=k <1x2 + §xz + Ezz) .



k,lo m

Rysunek 47: Dwie masy na pretach polaczone sprezynkami.

Réwnaniami ruchu wynikajacymi z lagrangianu L =T — V sa

256 D0-0)

Podstawiamy

co daje réwnanie whasne (w? = (k/4m)n?)

(7 al) () -(0)

Warunek znikania wyznacznika wyznacza wartosci n: nf = 4, n3 = 6. Odpowiadaja one
czestosciom i wektorom wlasnym

g ()= () e=an () =(v2):

Poniewaz macierz energii kinetycznej Tj; byla proporcjonalna do macierzy jednostko-
wej, a odpowiadajace dwém wekorom wlasnym czestosci sa rézne, sa one ortogonalne
w zwyklym, “szkolnym” iloczynie skalarnym (tu zostaly one od razu unormowane do
jednostkowej dtugosci). Ogdlne rozwiazanie ma wiec postaé

(f) = (f{/@@) [C cos wit + Sy sinwit] + G?g) [C cos wat + S sinws],

a przykladowymi warunkami poczatkowmi wzbudzajacmi tylko czyste drgania o czestosci
wy sa np. 2(0) = 2(0) = a z dowolnym a # 01 #(0) = 2(0) = 0.
Zmienne x i z mozna wyrazi¢ przez wspolrzedne normalne ()1 i ()2 wzorem

(w(t)) _ ( 1/v2 1/@) (Ql(t))

2(t) —1/V2 1V2)\@au(t) )

Po wyrazeniu lagrangianu przez zmienne (); przyjmuje on posta¢ sumy
L= Sm(Q} — wiQ0) + yml@) — 3Q3).

Masy m pozostaly w wyrazach kinetycznych (nie zostaly wciagniete w definicje zmiennych
(i), bo w charakterze iloczynu skalarnego zostala wzieta nie macierz 7;;, a macierz 1;; /m.
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Zadanie 9.6

7, dwu koncéw belki o masie M i dlugosci 2a mogacej swobodnie przesuwacé si¢ poziomo
(w polu g) po niewazkich rolkach zwisaja dwa jednakowe sztywne, niewazkie prety o
dlugosciach [ zakonczone masami m kazdy. Masy te sa ze soba polaczone sprezyna o
wspotezynniku sprezystosci k i dlugosci swobodnej 2a (zobacz rysunek 48). Napisa¢ Scisty
lagrangian tego ukiadu a nastepnie wyeliminowaé¢ z niego stopnie swobody zwiaane z
ruchem ukladu jako calosci. W otrzymanym efektywnym lagrangianie dokonaé przy-
blizenia odpowiadajacego matym drganiom dwu wahadel. Znalezé w tym przyblizeniu
ruch uktadu.

Rozwigzanie:

Uktad ma trzy stopnie swobody. Jako trzy uogdlnione zmienne dynamiczne mozna przyjac
xpr (przesuniecie $rodka belki wzgledem srodka odleglosci miedze rolkami), ¢ i o zde-
finiowane na rysunku 17. Polozenia mas m w zdefiniowanym na tymze rysunku uktadzie
inercjalnym sa nastepujace:

x1 =xpy —a-+Isinp, To =2xpy +a+lsinps,

21 = —lcospy, 29 = —lcosps.

Zatem energia kinetyczna T ukladu to

1 1
T = iMx?w + §m[(x'M + 11 cos @1)? + 127 sin® 1]
1 ) ) 9 .
+oml(Ea + U cos @2)? + 125 sin’ o)
1 ) 1 ) ) . . )
— §(M + Qm)x?\/[ + iml2(<p% + wg) + mli s (1 oS P1 + P oS Pa) .

Energia potencjalna V' ukladu sktada sie z sumy energii potencjalnych V, mas m w polu
sity ciezkosci g:

Vy, = mgz + mgzy = —mgl(cos 1 + cos ¢2),

oraz energii potencjalnej Vj, sprezyny

Vi = 3 <\/(x2 —21)2 4+ (20— 21)% — 2@)2

k 2
=3 <\/(2a+ [sin g — Isin 1) + (I cos pa — [ cos p1)? — 2a> :

Pelny lagrangian L = T — V, — V}, jest wiec do$¢ skomplikowany. Nie zalezy on jawnie
od zmiennej x,;, wobec czego stala ruchu jest wielko$¢ P = (0L/0)s) bedaca oczywiscie
xr-owa sktadowa catkowitego pedu uktadu. Stala ruchu jest tez “hamiltonian” h, ktory
jest tu calkowita energia mechaniczng uktadu (mierzona w ukladzie inercjalnym).
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M, 2a @ 4,

'
& YA 77777777777~ - - - - »
'

Rysunek 48: Dwa wahadla podwieszone do ruchomej platformy.

Jesli w trakcie ruchu katy ¢ 1 o oscyluja wokodl zera, mozna lagrangian przyblizy¢
przez wyrazenie

1 1
L~ 5(M +2m)i?, + §mz2(¢% + 93)

! k
+ml ($1+ @2) Ear — 5mgl (0] +¢3) — 5 (o1 — p2)?.

Istotnie,

k 2k l ?
~ __ 2 — — — J— _
Vi ~ 5 <\/4a + dal(p; — 2) + ... 2a> 5 [2@ <1 + 2a(<p1 w2) + .. ) Qa] )

Aby przeanalizowa¢ male drgania wygodnie jest wielkos¢ zachowana, P

oL . N
gi = (M +2m)ia +ml (41 + 40) = P,

wykorzysta¢ do bezposredniego wyeliminowania z lagrangianiu zmiennej ;. Wolno tak
zrobi¢, gdyz rownanie wyrazajace stalo$¢ P mozna przedstawi¢ w postaci wiezow holono-
micznych

(M+2m):BM+ml(g01+g02)—Pt:O.

Podstawiajac

1

Ty = M om [P — mi(p1 + o],

do uproszczonego (“skwadratyzowanego”) lagrangianu otrzymujemy lagrangian efektywny

1 0
Legg = §ml2(90? + 3) —

1 m

. . 1 1
2M 1 om ml*(¢1 + ¢2)* — =mgl (97 + ¢3) — §krl2(g01 — ©9)?,

2

wyznaczajacy dynamike matych zmian zmiennych ¢; i 9. Pominieta zostala w nim, nie
majaca wplywu na réwnania ruchu, stala P? /2(M +2m) bedaca energia kinetyczna ruchu
postepowego calego uktadu. Macierz energii kinetycznej w L.g jest, jak tatwo sprawdzié,
dodatnio okreslona.
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Roéwnania ruchu otrzymane z Leg maja postaé (r = (M +m)/(M+2m), s=m/(M +
2m), a = g/l, b=k/m)

r  —s b1 a+b —b 01\
(L) @) (5 ) (2) -0
Podstawienie ¢(t) = Ae™! prowadzi do réwnania charakterystycznego
(a+b—rw?)?—(sw?—b)?*=0,

ktére najlepiej jest zapisa¢ w postaci (zamiast Slepo stosowaéc szkolne wzory z A = b*—4ac

a+b—rw?=+(sw’—b),
o pierwiastkach

a M g s a+2b g 2k
= — Ws = = — .
r—s M+2ml’ > r+s 1 0m

2 _
wl_

Odpowiednimi wektorami wiasnymi sa wektory, na ktérych zeruja sie macierze

a+b—rw? swi-b \ rb—s(a+b) 1 -1
swi—b a+b—rw?)  r—s -1 1)’
(a—i—b—rw% sws—b )_s(a+b)—rb<1 1)

swi—b a+b—ruwl r+s 11

Zatem po prostu

() a1

co zreszta mozna bylo przewidzie¢ patrzac na uklad. Z oczekiwaniami opartymi na intuicji
fizycznej zgadza sie tez to, ze czesto$¢ wy nie zalezy od wspotczynnika k sprezyny - jesli
wychylenia obu majtadet sa zgodne i réwne, tak jak to wynika ze stosunku sktadowych
wektora Ay, to w trakcie ich ruchu dlugosé sprezyny pozostaje (w liniowym przyblizeniu)
stale rowna 2a - oraz to, ze czestos¢ wy nie zalezy od masy M - przy przeciwnych i rownych
wychyleniach obu majtadel belka pozostaje w spoczynku.

Wektory A; i A, sa nawzajem do siebie ortogonalne w iloczynie skalarnym zadanym
przez macierz energii kinetycznej®

(7))

99Przypadkowo sa one takze ortogonalne w “szkolnym” iloczynie skalarnym.
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Po unormowaniu w tymze iloczynie skalarnym zadaja one wspdéhrzedne normalne @)1, Q2

ukladu
(10 T3 (a0 1y (1) et

Najogélniejsze rozwiazanie jest dane powyzszym wzorem z Q1(t) = Cjcos(wit + 1) i
Q2(t) = Cycos(wat + d2), a w zmiennych @ i Q2 “skwadratyzowany” lagrangian ma
postac

1 . 1 )
L = gmi® (O — Q) + ymi%(Q} — w3Q3).
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Zadanie 9.10

Zmalez¢ mody drgan i odpowiadajace im czestosci uktadu N jednakowych mas m mogacych
slizgac sie bez tarcia po prostym precie i potaczonych jednakowymi sprezynkami o wspot-
czynnikach sprezystosci x i dtugosciach swobodnych [ (zob. rysunek 49). Odlegtosé miedzy
Sciankami, do ktérych zamocowane sa skrajne sprezyny jest réwna (N + 1) 1.

Rozwiazanie:
Wyrazony przez wspolrzedne uogdlnione zdefiniowane na rysunku 49 lagrangian rozpa-
trywanego uktadu ma postac

N-1 1
(Ii o :L’i+1)2 _ §]€(SL’N)2,
i=1

1 Y 1 1
_ Z-iz 1,2

a réwnania ruchu tworza uktad N réwnan (w2 = k/m)

Vo= —wiat —wi (2! — %),

2 WP o) —uh (2P — ),

o W (e a?) -l (2P — ),
PNl 2 (N N2 g2 (N Yy
Vo=~ (@ — 2N — Wi

Standardowe podstawienie z!(t) = A’ e=** redukuje rozwiazanie tego uktadu réwnan do
problemu wlasnego (A = w?/w?):

2-X -1 0 0 .. Al 0
-1 2-XA -1 0 ... A2 0
0 -1 2-Xx -1 ... A o
-1 2—-) -1 AN-1 0
0 -1 2-2A AN 0

Obliczenie wyznacznika tej macierzy wymiaru N x N nie jest tatwe. Jeszcze trudniejsze
byloby znalezienie N pierwiastkéw réwnania charakterystycznego, a nastepnie odpowia-
dajacych im wektoréw wlasnych. Dlatego w przypadkach takich jak tu stosuje sie inna
metode.

Pomijamy najpierw zalezne od warunkoéw brzegowych pierwsze i ostatnie réwnanie
powyzszego uktadu N jednorodnych réwnan na skladowe wektora A i rozpatrujemy ty-
powe rownanie “Srodkowe”:

—An_1+(2—)\)An—An+1:O, n=23,...,.N—1.

Jego rozwiazania szukamy w formie!

A" =a".

10 waga: A™ oznacza n-ta skladowa wektora A; z kolei a™ oznacza n-ta potege liczby a. Ten konflikt
oznaczen bierze sie z checi porzadnego oznaczania kontrawariantnych sktadowych wektoréw.

247



Rysunek 49: Uktad N jednakowych mas m mogacych slizga¢ sie bez tarcia po pro-
stym precie i polaczonych jednakowymi sprezynkami o wspétczynnikach sprezystosci k
i dlugosciach swobodnych [. Odleglo$¢ miedzy Sciankami ograniczajacymi uklad z obu
stron jest réwna (N + 1) [. Pokazane sa wygodne zmienne uogélnione.

Liczbe a wyznacza wigc rownanie kwadratowe

a>+(AN=2)a+1=0.

A A2

ktére wygodnie jest przedstawi¢ w postaci a+ = e¥* utozsamiajac 1—%)\ z cos . Oczywiscie,
tak jak kaza wzory Viete'a

Ma ono dwa rozwigzania

a_+ay =2—\.
Ogolnie wiec
A" =C_a” + Cial,
gdzie C+ sa dwiema zespolonymi statymi (dopiero na koricu wydzielimy cze$¢ rzeczywista
zespolonego rozwiazania).
Na tym etapie sa wciaz jeszcze dwie niewiadome: jedna jest A, a druga stosunek
C_/C, (poniewaz réwnanie wlasne na wektor A jest jednorodne, nie da sie oczywiscie

wyznaczy¢ bezwzglednych wartosci statych Cs). Do spelnienia pozostaly jednak jeszcze
rownania skrajne, pierwsze i ostatnie:

(2—-NA'— A% =0,
—ANTL 4 (2-0)AN =0.

Podstawiajac do nich ustalona wyzej ogdlna postaé n-tej sktadowej wektora A otrzymu-
jemy

(2—-A)(C_a_ +Ciay) —C_a®> —Cia? =0,
(2- A)(C—CLJ_V + C+af) —C_aN 1 = (C+aJJ\r/—1 —0.

Po skorzystaniu ze wzoru Viete’a 2 — X\ = a_ + a, pierwsze z tych dwu rownan sprowadza
sie do

(C_+Ci)a_ar =0,
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i daje C_ = —C,, a po wykorzystanie tej réwnosci drugie mozna sprowadzi¢ do
a¥ a2 —=X) — 1] =aY May (2= N) —1].

To za$, po uzyciu wzoru Viete'a i wykorzystaniu przedstawienia a+ = e¥% (iloczyny a,a_
skasuja sie z jedynkami), daje warunek
o~ iN+1)0 _ +i(N+1)6

Y

wyznaczajacy dopuszczalne wartosci 0, czyli (znéw przez wzoér Viete'a) wartosci A, tj.
czestosci drgan ukladu. Zatem dopuszczalne wartosci 6 tworza zbiér dyskretny

™a

= L=12....N.
N+1 ¢

Wartosé a = 0 trzeba pomina¢, bo dawataby ay, = a_ =1, co w polaczeniu z C_ = —C,
prowadzito by do trywialnego rozwiazania x'(t) = 0; wartoéci a > N nie daja juz nowych
rozwiazan: a = N + 1, tak jak a = 0, daje wszystkie z"(t) zerowe, a = N + 2 jest
rownowazne a = N itd., az do a = 2N + 1 réwnowaznego a = 1, gdyz

N+2 N

T e Vi
N + 1 1
"N+1 TN

cosinusy wyznaczajace czestosci sa parzyste, a sinusy wyznaczajace skladowe wektorow
whasnych zmieniaja znaki na przeciwne (co nie zmienia stosunkéw sktadowych). Nastepnie,
poczynajac od a = 2(N + 2), caly cykl sie powtarza. Zatem czestosci drgan ukladu sa
dane wzorem

Ta
2y 2 _ 2 _ 2 A2 a2
wi=Awy = (2—a- —ay)wi = w; (Q—QCOS )—4wosm

™a
N+1 2(N+1)°

Ogolne rozwiazanie réwnan ruchu ukladu N mas przedstawionego na rysunku 49 jest dane
przez (CL = —-C_ =C)

N
Z’n(t) — Re {Z Ca (6in9a . e—mea) e—iwat} .
a=1

N dowolnych zespolonych stalych C, daje konieczne do spelnienia warunkéw poczatkowych
2N rzeczywistych statych dowolnych. Rozwiazanie to mozna przedstawi¢ na dwa réwnowa-
zne sposoby:

a) Niech C, = (C,/2i) €=, gdzie C, > 0 oraz p, sa stalymi rzeczywistymi. Wtedy

N
" (t) = Z C, sin(NWi 1
a=1
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jest superpozycja fal stojacych.
b) Niech C, = C, €** z rzeczywistymi C, > 0. Wtedy

N
z"(t) = Z Co [cos(Ban — wat + ©q) — cos(B,n + wat — @a)]
a=1

jest superpozycja fal biegnacych w lewo i w prawo z ustalonymi wzglednymi amplitudami
(co wlasnie oznacza, ze te fale biegnace skladaja sie w fale stojace). Interpretacje “falowa”
mozna uscisli¢ definiujac z = nl jako polozenie réwnowagi (na poziomej osi) n-tej masy, a
ko = 0,/ jako (jednowymiarowy) wektor falowy. Czynniki sin(d,n) i cos(6,n F wat + ¢a)
przybiora wtedy postaé¢ sin(k,x) oraz cos(k,x F wat + ¢,). Dhugoscia fali danego modu
drgan jest wtedy A\, = 2n/k, = 27l/0,. Gdy N > 1 najdluzsze fale (podtuzne) maja
dlugos¢ Ay = 2I(N + 1), a najkrétsze Ay = 21(N + 1)/N =~ 2[. Sa to oczywiscie odpo-
wiednio fale, w ktorych wszystkie masy przesuwaja sie zgodnie w tym samym kierunku
i fale, w ktérych sasiednie masy przesuwaja sie w kierunkach doktadnie przeciwnych. W
jezyku kwantowej teorii pola mozna to ujac¢ stwierdzeniem, ze skonczone rozmiary uktadu
stanowia, obciecie w podczerwieni, a jego dyskretny charakter zapewnia obciecie w ultra-
fioletowe.

W a-tym modzie drgan stosunki wychylen poszczegdlnych mas sa ustalone przez sto-
sunki odpowiadajacych im sktadowych wektora A 4, ktéry ma postac

Ta
N+1
2ma
N+1
3ma
N+1

sin

sin
A = | sin

Nma
N+1

sin
Poniewaz macierz energii kinetycznej rozpatrywanego tu uktadu mas jest proporcjonalna
do macierzy jednostkowej, wektory A i A sa, gdy a # b, wzajemnie ortogonalne w

zwyklym iloczynie skalarnym. Sprawdzenie tego jest prostym ¢wiczeniem z trygnometrii,
sumowania szeregow geometrycznych i manipulowania liczbami zespolonymi:

N
b
Agy-Ap = Z sin(Nﬂj ] n) sin<N7rjL ] n)

n=1
N
1 m(a —b) m(a+b)
1 m(a=b) 1 — eiﬂ(aNlbl)N
=1 {ez NI m—i—c.c. —[(a—0) — (a—i—b)]}.
— e N+1

c.c. oznacza tu wyrazenie sprzezone do poprzedniego.'’’ Nastepnie eksponens w liczniku

101Skorzystalismy tu ze znanego wzoru

— 1
a+ﬂsina2525(cosﬁ—cosa),

sin
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utamka przepisujemy w postaci

m(a—b)N (a—b)(N+1-1) ) . 7(a—b)
ezﬂ N+1 = elw > N+1 = ezw(a—b) e_zﬂN+1 ,

i “wpuszczamy” eksponens stojacy na przedzie na kreske ulamka, co daje

1 [ 5 _ pina-b)
A(a)-A(b) = Z ) iﬂl(\?flb) +c.c. — [(CL — b) — (CL + b)] .
—e +

Nalezy teraz odrézni¢ dwa przypadki. Jesli a —b (a wiec takze a + b) jest liczba parzysta,
to et = ¢im(a+h) — 1§ w nawiasie kreconym dostajemy {—1 — 1 —[-1 — 1]} = 0.
Jedli @ — b (i a+b) jest liczba nieparzysta, to e™(@=0) = ¢™(@+0) — _1 i wtedy, piszac a w
miejsce m(a Fb)/(N + 1), mamy

e +1 2 2 l—e™@+1—¢@

~ 4 ce=—2 . _ =942 . ___
[_ca ¢ M p— MR TG

Z rachunku tego mozna tez w zasadzie wyznaczy¢ normalizacje wektorow A, czyli
|A()|?, ale poniewaz dla b = a wystepuje tu wyrazenia typu 0/0, latwiej obliczy¢ od
poczatku:

=5 "1 N+1 | +c.c
e'N+1
. . . . . . j2ma N i27a _j2ma . . .
Po zrobieniu tej samej sztuczki, co poprzednio: e'N+F17 = 7% ¢T'NHT | zauwazeniu, ze
e = 1 znajdujemy, ze
, N+1
Al = —

Zadanie to mozna tez rozwiaza¢ nieco prostszym sposobem, ktéry jest uzyteczniejszy
przy bardziej skomplikowanych uktadach tego typu, postulujac od razu rozwiazanie “Srod-
kowego” réwnania ruchu

i 4wy (22" — 2" — 2" =0,

oraz ze wzoru na sume (od k = 1, nie od zeral!)
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w postaci fali stojacej 2™ (t) = e~“tet®"  Wypisane réwnanie daje wtedy od razu “zwiazek
dyspersyjny”

0
w? = wa (2 —2cos ) = 4w sin® 3
Ruch n-tej masy jest wtedy dany wzorem
l’n(t) — e—iwt (C+6in0 + C_e—inﬁ) ’

z dowolnymi (zespolonymi) stalymi C.. Warunek, by masa o numerze n = 0 (ktérej
niema) pozostawata nieruchoma daje zwiazek C_ = C,, a warunek by nieruchoma pozo-
stawala (réwniez nieistniejaca) masa o numerze N + 1 wyznacza (te same, co poprzednio)
dopuszczalne dyskretne wartosci “wektora falowego” . Reszta rachunkéw przebiega tak
samo jak poprzednio.

252



Zadanie 9.12

Wyznaczy¢ czestosci drgan podiuznych uktadu 2NV jednakowych mas m mogacych slizgac¢
sie bez tarcia po poziomym precie i polaczonych ze soba i z odleglymi jedna od dru-
giej o (2N + 1)l Sciankami sprezynkami o dlugosciach swobodnych [ i wspélezynnikach
sprezystosdci naprzemian k4 i kg. Wykazaé, ze otrzymane wzory na czestosci drgan i wy-
chylenia mas z polozen réwnowagi przechodza w granicy ks = kg = k w te otrzymanew
zadaniu 9.10.

Rozwiazanie:
Przy odrobinie wprawy réwnania ruchu 2n-tej i 2n + 1-szej masy w zmiennych zdefinio-
wanych na rysunku 50 mozna napisa¢ “od reki”, bez wypisywania juz lagrangianu:

i,2n + wi (l,2n o x2n—1) + w%(x%z _ x2n+1) — 0’

i,2n+1 + w% (:L,2n+1 o x2n) 4 wi(x2n+1 o x2n+2) =0.

Réwnania mas pierwszej i 2N-tej sa inne, ale jesli przyja¢, ze istnieja fikcyjne masy
zerowa i 2N + 1-a, to wypisane rownania beda stuszne dla wszystkich mas; warunek, ze
masy zerowa i 2N + 1-a nie przemieszczaja sie zostanie narzucony na koncu i postuzy
do wyznaczenia czestosci drgan uktadu. Takie podejscie pozwoli tez rozpatrzyé¢ i inne
mozliwe warunki brzegowe.

Poniewaz mozna oczekiwaé, ze mody drgan ukltadu beda miaty charakter (podtuznych)
fal stojacych, rozwiazania wypisanych réwnan poszukujemy w postaci (amplitudy Ay, By
moga by¢ zespolone)

l’2n(t) — A:I: e:l:z2n€ 6—zwt’
$2n+1(t) — B:I: 6:I:z(2n—|—1)€ e~ wt

Poniewaz wychylenia mas o numerach parzystych i nieparzystych moga sie rézni¢, do-
puszczamy rozne ich amplitudy. Podstawienie tych wzoréw do wypisanych wyzej réwnan
roznczkowych sprowadza je do réwnan algebraicznych:

—w?As + Wl (Ay — Biexw) + w? (Ay — Bieiw) =0,
—W2B:|: —+ wi (B:I: — Ai6:':i0) + w% (]Bi — Aieiw) =0.

Réwnania te wygodniej jest przepisa¢ w formie macierzowej (jako tzw. réwnanie “wie-
kowe” - ang. secular equation)

2 2 2 _ 2 F0 2 40
wy +wp —w wge wie Ary _ (0
—wieT —whet? Wi+ wh — w? B 0
Wida¢ wtedy, ze warunkiem istnienia niezerowych amplitud Ay i By jest znikanie wy-
znacznika wypisanej macierzy. Warunek ten majacy postac
2 2 2\2 2 _F6 2 40 2 _F0 2 40
(wA—I—wB—w) —(—wBe —wye )(—wAe —wpge )

4 A 22 (20 | —2i0
= wj + wp + wiwp (62 +e727)
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Rysunek 50: Uktad 2N jednakowych mas m mogacych §lizgaé sie bez tarcia po prostym
precie i potaczonych naprzemiennie sprezynkami o wspolczynnikach sprezystosci ka i kp.
Dlugosci swobodne wszystkich sprezynek sa réwne [. Odleglo$¢ miedzy Sciankami ogra-
niczajacymi uklad z obu stron jest réwna (2N + 1) [. Pokazane sa wygodne zmienne
uogolnione.

wyznacza zwiazek dyspersyjny, tzn. zaleznosé¢ czesto¢i modéw drgan ukiadu od “liczby
falowej” 6:

w® =wi +wh F \/(w?4 —w})? + dwiw cos? 6.

Zwiazek ten ma tu, jak wida¢, dwie galezie odpowiadajace dwém znakom przed pier-
wiastkiem. Widaé tez, ze gdy “liczba falowa” 6 dazy do zera, tj. w granicy fal dtugich,
czestosci w gatezi odpowiadajacej znakowi — tez daza do zera, ale czestosci drugiej galezi
daza do wartosci niezerowej. Mody drgan o czestosciach tworzacych pierwsza z tych gatezi
sa zwane drganiami “akustycznymi”, a te drugie “optycznymi”.

Nalezy teraz zapewni¢ spelnianie przez zapostulowane rozwiazania

Z’2n(t) — (A+ 6i2n6 +A_ e—i2n€> e—iwt’
x2n+1(t) _ (]B+ cient)f | g 6—i(2n+1)€) et

warunkéw brzegowych. Jesli pierwsza masa jest polaczona sprezynka ze $cianka, co jest
réwnowazne zadaniu, by 2°(¢t) = 0, nalezy polozy¢ A_ = —A_,. Zatem

r*(t) = e ™21 A sin(2nh),

a amplitudy B4 sa, przy zadanych czestosciach w, wyznaczone przez réwnania wiekowe.
Wybierajac dolne (gérne jest oden liniowo zalezne, gdy w spehia zwiazek dyspersyjny)
otrzymujemy

w? eT0 + w2 et
By = —5 2 7 A
wyqtwp —w
Zatem
2n+1 __ + 2 _—if 2 i0\ ,i(2n+1)0 2 0 2 _—ib\ ,—i(2n+1)07 —iwt
x = - |wpe "~ +wge)e —(wye” +wge e e
e (e ) (6 64 ) im0 it
albo, po uporzadkowaniu,
2iA .
At = —+2 [w? sin(2nf) + wisin(2(n + 1)0)] e=™".

2 2
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Rysunek 51: Graficzne rozwiazywanie warunku wyznaczajacego “wektory falowe” 6
ukladu 2N = 16 mas z rysunku 50 z naprzemiennie rozmieszczonymi sprezynkami o dwu
roznych statych sprezystosci. Przyjeto iz n = (wy — w%) /(w4 + w%) = 0.5 (krzywa czer-
wona) i 7 = 0.02 (krzywa zielona). Mozliwe wartosci 6 sa odcietymi punktéw przeciecia
krzywych niebieskich (tg[176]) z krzywa czerwona i zielona (1 tgf).

Jedli mas jest 2V (ostatnia sprezynka ma wspélezynnik sprezystosci k) i ostatnia z
nich jest polaczona sprezynka ze $cianka, nalezy zazadaé, by 22Vt (t) = 0. Wykorzystujac
wypisana wyzej ogdlna postaé¢ x?"T1(t) znajdujemy, iz warunek ten bedzie spemiony, gdy

wi sin(2N0) = — w3 sin(2(N +1)6) .

Warunek ten mozna zapisa¢ w bardziej czytelnej postaci, jesli napisa¢ najpierw sin(2N0) =
sin[(2N + 1)0 — 0)] i sin[2(N + 1)0] = sin[(2N + 1)0 + 6] i skorzysta¢ z tozsamosci
sin(a + f) = sinacos f £ cosasin 8. Po prostych przeksztalceniach mozna sprowadzi¢
warunek do postaci

W2 — w2
tg[(2N + 1)0] = ——L tgh.
A+ wh

Wyznacza on mozliwe wartosci “ficzby falowej” 6. Powinno by¢ ich doktadnie N: uktad
2N mas musi mie¢ 2N (ogdlnie rzecz biorac, niekoniecznie réznych, ale tu degeneracja nie
wystapi) czestosci, a zwiazek dyspersyjny ma tu dwie galezie. Graficzny sposéb wyzna-
czania wartosci 0 jest pokazany na rysunku 51.

Jak wida¢ z rysunku 51, gdy czynnik n = (w} — w%)/ (W} +w%), =1 < 7 < 1 jest
dodatni i niezbyt bliski zeru, oczywistych rozwiazan, czyli mozliwych wartosci “wektora
falowego” @ jest przedziale 0 < 6 < 7/2 o jedno za malo (na rysunku 51 przecie¢ krzywej
czerwonej z niebieska jest 7 zamiast 8). Jest tu jakis problem wyboru jeszcze jednego
rozwiazania. Gdy czynnik 7 jest bliski zeru lub ujemny problem znika - rozwiazan jest
przedziale 0 < § < /2 tyle ile by¢ powinno.

Gdy wy = wg, rozwiazanie rozpatrywanego tu problemu powinno sie sprowadzaé¢ do
rozwiazania zadania 9.10, w ktérym nalezy zamieni¢ N na 2N. Po takiej zamianie, “liczby
falowe” tam znalezione sa réwne 6, = ma/(2N + 1) za =1,...,2N, a czestosci sa dane
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2_ 2 l2-2 LI )
w wo[ o8| SN T

Nalezy jednak zauwazy¢, ze cos(ma/(2N + 1)) jest dla a = 1,... N dodatni, a dla a =
N +1,...,2N ujemny i, co wiecej,

T@N+1-a)\ _ Ta
O\ TN+ T aN 1)

co oznacza, ze z punktu widzenia czesto$ci mozna by a ograniczy¢ do a = 1,..., N
i uwzgledni¢ dwa znaki przed funkcja cosinus. Jest to dokladnie to, co daja w granicy
w? = wh = w? dwie galezie zwiazku dyspersyjnego uktadu z naprzemiennymi sprezynkami
(mozna pokazaé, ze niezaleznie od liczby N, dla dostatecznie bliskich sobie wartosci w? i
w% warunek tg[(2N + 1)0] = ntgf ma zawsze N rozwiazan w przedziale 0 < 6, < w/2).
Ponadto, wzér na zs, jest formalnie taki sam taki sam, jak otrzymany w zadaniu 9.10
(r6znica polegajaca na innych zakresach 6, zostanie wyjasniona nizej), a otrzymany tu
WzOr Na To, 11 W granicy wj = wh = wi przechodzi we wzér na xs,; z zadania 9.10: aby

to zobaczy¢, trzeba skorzysta¢ z tozsamosci trygonometrycznej

sina +sin § = 2sin(a+ﬁ) cos(a_ﬁ) ,

2 2
by napisac
w3 sin(2n0) + w sin(2(n + 1)0) — 2w cos b, sin[(2n + 1)6,].

Poniewaz w tej granicy mianownik w? +w% — w? przechodzi w +2wg cos 6, (gdy 0 < 6, <
7/2, cosinus jest dodatni) otrzymujemy xo,,1 o< £sin[(2n + 1)6,]. Aby zobaczy¢, ze jest
to to samo, co w zadaniu 9.10 trzeba uwzgledni¢ jeszcze to, ze tam a = 1,...,2N, a tu
a=1,...,2. Jednakze

2N+1—-a a
i — (2 1) | = —si 2 1
s1n(7r N 1 (2n + )) sm<7r2N+1(n+ )),

czyli, innymi stowy, watosci sinusow dla a = 2N, ..., N 4+ 1 sa doktadnie przeciwne odpo-
wiednim ich wartosciom dla a =1,..., N. Jest tez jasne, ze

. 2N+1—a2 . a 9
S111 —_—ZN = S1n .
i R YN M ToN 1"

Tak wiec rzeczywiscie w granicy otrzymane tu wzory przechodza w te z zadania 9.10.
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Zadanie 9.14

Postugujac sie metoda eliminacji translacyjnych i rotacyjnych stopni swobody znalezé¢
mody wilasne drgan i odpowiadajace im czestosci czasteczki zbudowanej z trzech iden-
tycznych atoméw tworzacych w polozeniu rownowagi (w stanie niewzbudzonym, méwiac
jezykiem mechaniki kwantowej) tréjkat réwnoboczny o bokach dtugosci I. Atomy trak-
tujemy tu jak punktowe masy m, a sily je wiazace (ktérych prawdziwym zrédlem sa
oddzialywania elektromagnetyczne) jak zwykle sprezynki o dlugosciach swobodnych [ i
wspotczynnikach sprezystosci k.

Rozwiazanie:
Uklad trzech mas ma lacznie 9 stopni swobody. Z tego trzy odpowiadaja modom transla-
cyjnym (przesuniecia czasteczki jako callosci), a trzy nastepne modom rotacyjnym. Tylko
trzy stopnie swobody odpowiadaja zatem modom oscylacyjnym. Aby nie rozpatrywac
skomplikowanego problemu z dziewiecioma zmiennymi nalezy tu zastosowa¢ metode eli-
minacji zbednych stopni swobody poprzez narzucenie odpowiednich wiezow.

Przyjmijmy inercjalny uklad odniesienia taki, jak pokazany na rysunku 52, w ktérym
w chwili poczatkowej trzy atomy (trzy masy m) znajduja sie kazdy na innej osi uktadu.
Ich polozenia w dowolnej chwili ¢ czasu mozna wtedy przedstawi¢ wektorami

1/\?2
ri(t) = 0 +uy(t) =0+ uy(t),
0

ro(t) = rog + us(t) oraz r3(t) = rag + us(t). Energia kinetyczna T' jest wiec réwna

moy Y (@)

a=1,2,3 i=x,y,z

N —

1
T:§m(u§+u§+u§):

Energia potencjalna jest suma energii potencjalnych trzech wiazan, czyli - w przyjetym
modelu - suma energii trzech sprezynek.

V=Via+Vig+ Vas.
Np.

K
Vig = 5 (|1“1 - I‘2| - l)2

2

K

=3 (\/(1“10 —T0)% + 2 (ryp — roo)- (W —ug) + (u; — up)? — l)
Poniewaz (r19 — ry0)? = [?, wyrazenie w nawiasie pod kwadratem mozna przepisa¢ w
postaci

(W —uy) | (u —uy)?

1/...—l:l\/1—|‘2612' ] + 2 _l%e12'(u1_u2>7
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Rysunek 52: Czasteczka zbudowana z trzech identycznych atoméw. Definicja inercjalnego
ukladu odniesienia.

w ktérej e1o = (r10 — rag)/|r1i0 — roo| = (r10 — r20)/l jest wektorem jednostkowym skiero-
wanym od masy drugiej do pierwszej. Jawnie

1 1 1 0 1 -1

ep=—| -1, e3=—4| 1], exz=—41| 0
12 /s . 23 NG 5 31 NG X

W przyblizeniu matych wychylen z potozen réwnowagi lagrangian ma zatem postac

L= %m (11% + ll% + 11:23) — g ([812'(111 — 112)]2 + [813'(111 — 113)]2 + [823'(112 — 113)]2) .

Aby wyeliminowaé¢ stopnie swobody odpowiadajace modom translacyjnym i rotacyj-
nym narzucamy na wektory u; odchylen z potozen réwnowagi warunki

111—|—112+113:0,

I'10><U1+I‘20X112+I‘30><113:0.

Warunki te stanowia uktad szesciu jednorodnych réwnan liniowych na dziewie¢ niewiado-
mych (dziewieé¢ kartezjanskich sktadowych wektoréw u; zdefiniowanych we wprowadzonym
na rysunku 52 inercjalnym ukladzie odniesienia) i pozwalaja wyrazi¢ przez wybrane trzy
zmienne szes¢ pozostatych. Jako trzy niezalezne zmienne wybierzemy q; = uf, ¢o = uj
i g3 = uj, tj. przemieszczenia kazdego z atoméw wzdluz “jego” osi. W skladowych
powyzsze warunki to:

¢ +u; +us =0, uy —uy =0,
ul + g+l = 0, i~ ui =0,
uj +ui+q3=0, uy —uj =0.

Po wyeliminowaniu z ukladu trzech wypisanych po lewej stronie réwnan zmiennych ug,
uy i uj z pomoca zwiazkéw podanych po prawej stronie przyjmuje on postaé

x z _

Uy + U] = —(q1,
x Yy __

Uy + U3 = —(2,
z Yy _

258



Rozwiazaniem jego sa

- 1
U2:U?1J:§(Q3—Q1—Q2),
.1
nguzzi((h—(h—%)’
z X 1
U1:U3:§(Q2_Q1—Q3)-

Nalezy teraz wyrazi¢ energie kinetyczna i potencjalna przez zmienne ¢, ¢2 i ¢3.

) ) 1, . ) ) 1, . ) )
11%IQf‘f‘i(%—Ch—Q2)2+1(Q2—Q1—Q3)27
) 1 . ) ) ) 1 . ) )
ugzZ(Q?,—C_Il—Q2)2+qg+1(Q1—Q2—Q3)2,
) 1, . ) ) 1, . ) ) )
11%:Z(Qz—éh—Q3)2+Z(Q1—Q2—Q3)2+Q§7

a zatem, jak tatwo obliczy¢,
T . 1 m ? ( -2 _'_ -2 _'_ .2) P o . P
~ 5 5 4y T 43 T g3 q192 — G293 — 4341 | -

Aby wyrazi¢ przez zmienne ¢, ¢o 1 g3 energie potencjalng rozpisujemy jawnie iloczyny
skalarne:

er- (U —up) = 7 (ui = u3 — uj + u3)

—1< 2><1( )+)—1(2 +2 )
\/5 q1 2613 q1 — 42 q2 \/5 q1 q2 —4q3) -

Wykorzystujac symetrie wybranych zmiennych nietrudno sie zorientowac, ze

Kk 1
V=33 (21 4 202 — 43)* + (242 + 205 — ¢1)* + (2g3 + 21 — @2)°]

k9
=§§(Q%+q§+q§)-

Rownania ruchu zatem, to

SRR S S S
m 2Q1 2612 2Q3 K2Q1— )

etc., lub w postaci macierzowej (wg = 9x/m)

e 5 -1 -1 ol wg 00 G
-1 -1 5 0 0 0 w qs



Postepujac standardowo, podstawiamy!"?
q= A e—iwt ’

i otrzymujemy problem wlasny (A = w?/w?)

1 -5\ A A Ay
A 1—5A A Ay | =0.
A A 1—5A As

Réwnanie charakterystyczne, po uporzadkowaniu ma postaé
—108X3 + 7202 —15A + 1= —4(3A)3+8(3BN)? —=5(BN) +1=0.

Aby je tatwo rozwiazaé, zauwazamy na podstawie symetrii uktadu, iz jednym z wektoréw
wtasnych powinien by¢ wektor

1
A(l) - ]_ 5
1

ktoremu, jak latwo zobaczy¢ dzialajac nan wypisana wyzej macierza, odpowiada wartosé
A = 1. Dzielac wielomian 463 — 8¢% + 5¢ — 1 (£ = 3)\) przez  — 1 otrzymujemy réwnanie

46 —46+1=(26-1)*=0.

Zatem rownanie charakterystyczne ma jeden pierwiastek A = % i podwdéjny pierwiastek
A= %, czyli czestosciami drgan rozpatrywanej czasteczki sa

o L9k 3k, 19k 3k
L om’ 7 6m 2m’
Jako dwa wektory A(g) i A(s) mozna wybra¢ na przyktad

1 1
A.(Q) = —1 y oraz A(3) = 0
0 -1

Latwo sprawdzi¢, ze wektory A ()i A oraz A(j) i A3 sa parami ortogonalne w iloczynie
skalarnym zadawanym przez macierz energii kinetycznej

5 -1 -1

-1 5 -1
-1 -1 5

102Nalezy pamietaé, ze utworzony tu wektor q nie jest wektorem w kartezjanskim ukladzie inercjalnym z
rysunku 52, lecz wektorem w abstrakcyjnej przestrzeni Rg (w “theory space” - jak powiedzieliby spece od
dekonstrukcji i dynamicznej generacji dodatkowych wymiaréw czasoprzestrzeni; niema to jak wymysli¢
madrze brzmiaca nazwe!).
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Wektory Ay i Az odpowiadajace tej samej wartosci wlasnej nie sa do siebie ortogo-
nalne - trzeba by je dopiero zortogonalizowa¢. Poniewaz nie bedziemy sie tu zajmowaé
wspothrzednymi normalnymi, nie bedziemy tu tego robic.

Majac wektory Ay, a = 1,2,3 modéw wiasnych drgan uktadu w “theory space” i
wyrazajac jawnie wektory u;, ¢ = 1,2, 3 przemieszczen atoméw w fizycznej przestrzeni
przez zmienne g;

. a1 %(Q?, —q1 — C_I2) %(% —q1— qg)
u = §(Q3—Q1—Q2) ) U = g2 ) U = §(Q1—Q2—Q3) )
%(CI2 —q1—q3) %(% —q2 — q3) qs

mozna takze podaé, jak wygladaja te trzy mody drgan w fizycznej przestrzeni. I tak, w
modzie drgan o czestosci w; odpowiadajacym wektorowi A )

1 —
w(t)=1|—5 | @), w@=| 1 @), w@)=|-

1
— —1 1

[N
NN

Q:1(1),

D=0 [ =

gdzie Q1(t) = Cycoswit + Sysinwit, w modzie drgai o czestosci wy odpowiadajacym
wektorowi A (o)

1 0 —1

w(t)=1 0 | Qt), wt)=|-1]0C(t), w()=] 1 |QA),
—1 1 0

gdzie QQ2(t) = Cqcoswat + Sy sinwst, a w modzie drgan o czestosci ws odpowiadajacym
wektorowi A )

1 —1 0

u(t)=| -1 |Qs3), w()=] 0 |Qs), w@)=] 1 |Qs),
0 1 —1

gdzie Q3(t) = C5 cos wat+ S5 sin wot. Oczywiscie w kazdym z modéw, jak tatwo sprawdzié,

uy(t) +uz(t) + uz(t) = 0 oraz (co juz zobaczy¢ jest trudniej) rig X uy(t) + rog X ua(t) +
Ir3p X 113(t> =0.
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Przypomnienie

Moment pedu L = mr X v = r X p masy m poruszajacej sie pod dzialaniem (wypadkowej)
sity F jest staly (dL/dt = 0), gdy znika moment D dziatajacej naii (wypadkowej) sity,'0
tj. gdy

D=rxF=0.

Jest tak zawsze (choé nie jest to jedyna mozliwos¢) w przypadku zachowawczej (poten-
cjalnej) sity centralnej

F=-VV(r)=—eV'(r).

Jesli moment pedu jest staly podczas ruchu, stala jest réwniez tzw. predkosé polowa
|L|/2m: wielkos¢

L 1
udt:—\rxdr\,
2m 2

jest bowiem polowa pola infinitezymalnego réwnolegloboku rozpietego przez wektor wodzacy
r i jego zmiane dr w infinitezymalnym odcinku czasu dt, czyli polem tréjkata tworzonego
przez wektory r, dr i r + dr.

Stalos¢ wektora L podczas ruchu w polu zachowawczej sily centralnej oznacza, ze
wyrozniona jest pewna plaszczyzna prostopadia do L: jest to ta plaszczyzna, w ktorej
zachodzi ruch. Umozliwia to rozpatrywanie go we wspélrzednych biegunowych (r, @) na
tej plaszczyznie (tj. zredukowanie zagadnienia znalezienia ruchu do problemu dwuwymia-
rowego). Mozliwe sa dwie metody rozwiazywania takiego zagadnienia.

Metoda 1. Wykorzystanie samej tylko stalosci w czasie skltadowej L* = L momentu pedu.
W réwnaniu Newtona ma = F(r) rozpisanym na sktadowe we wspéhrzednych biegunowych

m (i —r@?) = F(r) = =V'(r),
m2ro+ry) =0,

drugie z rownan wyraza wlasnie stalos¢ L: po pomnozeniu stronami przez r, jest ono
réwnowazne réwnosci d(mr?9)/dt = dL/dt = 0. Zatem,

. L
p=—.
mr?
Umozliwia to przeksztalcenie pierwszego z réwnan Newtona w réwnanie wyznaczajace

tor, czyli zaleznosé r = r(p):

dr . L dr L d1

r — [

:@SO—W%_ mdpr’

103Poniewaz mamy na mysli mase punktows, moment wypadkowej sily jest tym samym, co wypadkowy
moment sil.
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1stad

so_Ldfdly L &1
 omdt\der)  m2rdp?r’

Po wyrazeniu 7 w ten sposéb i wyeliminowaniu ¢ z pomoca L, pierwsze z rownan Newtona
staje sie wzorem Bineta

mr?

2 2
_L [1+d_1} = F.(r).
roode?r

Jesli znany jest tor ruchu, czyli zaleznos$é r = r(p), wzor ten pozwala znalezé site F,. wzdhuz
trajektorii. W ogdlnosci, gdy sita F, zalezy'® i od r i od ¢, tylko zaleznosé¢ F,(r(y), );
jesli jednak wiadomo, ze sita jest tylko funkcja odleglosci, wzor Bineta pozwala znalezé
F.(r). Jesli zas zaleznosé¢ F.(r) jest znana, wzdér Bineta jest zwyczajnym réwnaniem
rozniczkowym drugiego rzedu wyznaczajacym tor.

W przypadku sity F,.(r) = —k/r? wzér Bineta

d*u N Km
- u = — ,
dep? L?
zapisany w zmiennej u = 1/r daje sie latwo scatkowaé (potraktowany jak réwnanie

rozniczkowe na tor jest formalnie identyczny z rownaniem oscylatora harmonicznego pod-
danego dzialaniu stalej sily) i daje

__ Lem P
1+ Acos(p+6)  Fldecos(p+6)’

()

gdzie p = L?/|k|m. Jest to réwnanie krzywej stozkowej tj. krzywej bedacej przecieciem
stozka i plaszczyzny. W zaleznosci od wartosci parametru e (ktéry mozna przyjaé za
nieujemny - jego znak mozna wciagna¢ w faze 0) oraz znaku + (czyli, geometrycznie, od
nachylenia ptaszczyzny wzgledem osi stozka) jest to albo elipsa (w szczegdlnym przypadku
redukujaca sie do okregu) albo hiperbola albo parabola bedaca forma przejsciowa od elipsy
do hiperboli.

Metoda 2. Wykorzystujemy zaréwno stalosé L, jak i stalosé (wynikajaca z tego, ze F,.(r) =
—V'(r)) energii £

1
§m(7"2 +r2Y) +V(r)=E.

Po wyeliminowaniu z powyzszego wzoru ¢ na rzecz L/mr? otrzymujemy zwiazek!%®
y

L2
2mr?’

1
§m7'"2 + Veg(r) = F, Ve (r) =V (r) +

104Gita taka nie moglaby by¢ sita potencjalna.
105Przy okazji warto tu zwrécié uwage na to, iz postepowanie polegajace na podstawieniu ¢ = L/mr?
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Redukuje to znalezienie ruchu w zmiennej radialnej r do problemu jednowymiarowego
(takiego jak rozpatrywane w rozdziale I1I); ruch w zmiennej r jest wtedy dany w kwadra-
turach

Znak =+ jest tu znakiem pochodnej dr/dt. Jedyna réznica w poréwnaniu z prawdziwym
ruchem jednowymiarowym jest to, ze zakresem zmiennosci r jest zbiér R, (a nie R, jak
w przypadku zmiennej z w ruchu prawdziwie jednowymiarowym); nalezy tez pamietad,
ze w punkcie r = 0 zmienna ¢ uktadu biegunowego jest zle okreslona.

Skorzystanie w rézniczkowym zwiazku dt = £+/m/2 dr/\/E — Vig(r) z réwnosci
dt = (mr?/L)de (wynikajacej z tego, ze ¢ = L/mr?) pozwala'®® przeksztalci¢ powyzsza,
kwadrature (tj. catke) w kwadrature dajaca réwnanie toru, czyli zwiazek r z ¢:

Jar=sif e [t e [t

Znak =+ jest teraz znakiem pochodnej dr/dp. Jesli V(r) = —k/r, otrzymuje sie stad ten
sam wzér na zaleznosé r = r(p), co otrzymany ze wzoru Bineta ale ze stalymi p i € od
razu wyznaczonymi przez catkowita energie F i moment pedu L.

Wyznaczywszy r = r(p) albo ze wzoru Bineta, albo z powyzszej kwadratury (naogoét
w postaci uwiklanej), zalezno$¢ polozenia od czasu mozna otrzymaé catkujac zwiazek

L
Tz(gp) ng = dtv
m

do samego lagrangianu (ufamy, ze L - moment pedu i L - lagrangian nie pochrzania sie czytelnikowi...)
. 1 . .
L(r,7,¢) = 5m(2 +176%) = V(1)

i wykorzystanie niezaleznosci od czasu tak otrzymanego lagrangianu L' (r, ¢,7) = L(r,7, L/mr?) datoby
w efekcie bledny wniosek, jakoby stala ruchu byta wielkosé

1 L?
/ -2 vV
h gmr + V() - 2mr2

Powodem tego jest to, ze zwiazek ¢ — L/mr? = 0, albo lepiej, zwiazek dp — (L/mr?)dt = 0, nie jest
calkowalny, tj. nie daje sie przedstawi¢ w postaci df (r, p,t)/dt = 0 (nie ma on bowiem nawet czynnika
calkujacego) i jako taki nie reprezentuje wiezéw holonomicznych, a tylko zwiazki bedace (lub dajace sie
przedstawi¢ jako takie) wiezami holonomicznymi mozna wykorzystywaé bezposrednio w lagrangianie do
eliminowania zmiennych: wiezy holonomiczne mozna bowiem zawsze - na tym polega przeciez cala metoda
réwnan Lagrange’s II-go rodzaju! - wyeliminowaé¢ przez wybér odpowiednich zmiennych uogdlnionych
zgodnych z tymi wiezami i to wlasnie de facto czynimy, eliminujac z lagrangianu jakas zmienna wy-
znaczajac ja ze zwiazku reprezentujacego wiezy holonomiczne (por. uwagi o eliminacji zmiennych w
Przypomnieniu do rozdziatu IX).

106D tego samego prowadzi tez wyrazenie w podanym wzorze na energie E pochodnej r po czasie przez
pochodna r po ¢ zgodnie z wyprowadzonym juz zwiazkiem 7 = —(L/m)d(1/r)/de.
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ktory (znéw: naogdét w postaci uwiktanej) daje ¢ = p(t) a w konsekwencji takze r =
r(p(t)) = r(t).

Tak jak w przypadku ruchow jednowymiarowych, Metoda 2 pozwala tu przy ustalonym
momencie pedu L zbadaé¢ charakter ruchu jakosciowo w zaleznosci od catkowitej energii
EM7 Np. Jesli Vig(r) ma w r = rg minimum réwne V% zmienna 7 bedzie oscylowaé
wokél 1o pomiedzy wartosciami r_ < ro i 7, > ro wyznaczonymi przez warunki Veg(ry) =
F i, jesli energia F ruchu jest niewiele wyzsza niz V3" (jak bardzo musi by¢ bliska V2in,
to zalezy od bardziej globalnej postaci Vg (7)), mozna zaleznosé r(t) (lub r(p)) przyblizy¢
przez oscylacje harmoniczne wokét r = ry. Poniewaz ¢ o< L ma staly znak, ktéry przez
wybdr strony, z ktérej patrzymy na plaszczyzne ruchu, mozna przyjac za dodatni, masa
m, obiegajac centrum r = 0, znajduje sie zawsze (“falujac” pomiedzy nimi) pomiedzy
dwoma okregami o promieniach r_ i r,. Powstaje wtedy naturalne pytanie, czy tor ruchu
jest krzywa zamknieta. Odpowiedz daje calka

[I2 [~ d
_/ v :A(p, ’U,:tzl/?":t.
2mJu, JE = Veg(1/u)

Jesli Ap = 27(n/k) z jakimis naturalnymi n i k, tor jest krzywa zamknieta. Dowodzi sie
(zob. zadanie 10.13), ze tylko w potencjatach V(r) = —1|k|r? i V(r) = —|s|/r wszystkie
trajektorie ograniczone (tzn. nie rozciagajace sie do nieskoriczonosci) sa zamkniete

Na podstawie analizy potencjalu efektywnego Vg (r) widac tez, ze spadek ciata na cen-
trum sity przyciagajacej jest mozliwy tylko wtedy, gdy V' (r) “niweluje” skutki istnienia
bariery odsrodkowej (“centryfugalnej” w niektérych starszych podrecznikach) reprezento-
wanej w Vg (r) przez wyraz L*/2mr?. Jest tak, gdy

/9 L?
Np. gdy V(r) = —|k|/r? i |k| > L?/2m, lub gdy V(r) = —|&|/r’ i B > 2 i, oczywiscie,

zawsze (w przypadku potencjatu przyciagajacego na matych odleglosciach), gdy L = 0,
co odpowiada ruchowi po prostej przechodzacej przez centrum.

107Gtale £ i L sa dwiema niezaleznymi globalnymi charakterystykami ruchu; dwiema pozostalymi -
poniewaz ruch ptaski jest zadany dwoma zwyczajnymi réwnaniami rézniczkowymi drugiego rzedu, musza
by¢ cztery state dowolne (warunki poczatkowe) wyznaczajace jednoznacznie zalezno$é poltozenia od czasu
- sa wybdr chwili poczatkowej t = 0 i wybdr kierunku, od ktérego liczony jest kat ¢ - nie maja wiec one
charakteru globalnego.
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Zadanie 10.4
Wykaza¢ metodami geometrii analitycznej, ze wzor

rp) = 5,
1 +ecosyp
w ktérym parametr € jest z definicji nieujemny (tak wybrany jest spos6b odmierzania
kata ¢), rzeczywiscie zadaje znane z geometrii krzywe stozkowe: elipse (gdy 0 <e < 11i
znak +), hiperbole (gdy € > 1, oba znaki) i parabole (gdy € = 1 i znak +). Wyprowadzi¢
w ten sposéb zwiazki miedzy réznymi charakterystykami tych krzywych (np. miedzy
dtugoséciami a i b polosi elipsy, parametrami p i € oraz odlegtoscia 2¢ miedzy dwoma
ogniskami elipsy i suma 2f odleglosci dowolnego punktu na elipsie od jej ognisk).

Rozwiazanie:

Elipsa jest to krzywa plaska (przyjmujemy, ze lezy ona w plaszczyznie xy) tworzona przez
takie punkty o wspohzednych (z,y), ze suma (kartezjanskich) odleglosci r_ i r, (zob.
lewy rysunek 53) kazdego z nich od ustalonych dwu punktéw P_ i Py o wspélrzednych
odpowiednio (—c¢,0) i (¢, 0) jest stala i réwna 2f. Hiperbole z kolei tworza punkty, ktérych
réznica odlegtosci r_ ir, od punktéw P_ i P, jest réwna 2f lub —2f (zob. prawy rysunek
53). Wszystkie te przypadki ujmuje zwiazek

lr_ £ry|=2f, re =+ (r£c)?+y2.

Po podniesieniu obu stron do kwadratu daje on réwnanie (znak — po prawej stronie
odpowiada elipsie, a znak + hiperboli)

2yt =2 = 5 [a+ P+ Pl — P + o

ktore, po jeszcze jednym podniesieniu stronami do kwadratu, daje (majacy juz taka sama
postaé¢ dla obu krzywych) zwiazek 4(f?—c?)x?+4f2y? = 4f?(f2—c?) réwnowazny znanym
ze szkoly réwnaniom

LL’2 y2

i
FEE-a
(Znak +, gdy f? > ¢, a znak —, gdy f? < ¢?). Jest geometrycznie oczywiste, ze w
przypadku elipsy musi zachodzi¢ nieréwnoéé¢ f2 > ¢® (gdy f — c elipsa redukuje si¢ do
odcinka taczacego punkty P_ i P,). Z kolei z prostych rozwazan nietrudno wywnioskowac,
ze w przypadku hiperboli f2 < ¢? (tj. zbiér punktéw spehiajacych warunek |r_ —r,| =
2f jest, gdy f? > c?, zbiorem pustym). Zatem dlugosci a i b pdlosi elipsy we wzorze
r?/a® + y?/b* = 1 wiaza sie z parametrami ¢ i f wzorami
a'2:f2a b2:f2—02, (ehpsa)>

tj. ¢ = a® —b?, a parametry a i b we wzorze 2% /a® — y*/b? = 1 definiujacym hiperbole sa
dane przez

a>=f*,  bv*=c—f*  (hiperbola),



Yy WY y/f Ya

7“_”,.«"' 5

s r T
A RS ' LR S N a'
(¢, 0) (+¢, 0) T (—c,0) | \ (te,0)

Rysunek 53: Definicje wielkosci i primowanych uktadéw kartezjanskich (z',%’) przy kon-
strukeji elipsy (r— +r. =2f, f > ¢) i hiperboli (|r_ —ry| =2f, f < ¢).

tj. w tym przypadku ¢? = a? + b%.

Aby sprowadzi¢ réwnanie elipsy do postaci podanej w Przypomnieniu (tj. aby wy-
kazac¢, ze wzér tam otrzymany i przytoczony w tresci tego Zadania rzeczywiscie definiuje
elipse) zapisujemy je w zmiennych biegunowych (r, ) zdefiniowanych w uktadzie (2/,y’)
o poczatku w punkcie P, (zobacz lewy rysunek 53): o = c+ 2’ = c+rcosp = c+ rey,
y=vy =rsing = rs,:

1 1
E(c—l—r%)z—l— b—2T2Si =1,
i traktujemy ten wzér jak rownanie kwadratowe

a2

@+

s2)r? 4 2ccr — b =0,

(wykorzystany tu zostalzwiazek ¢ = a? — b%) wyznaczajace odlegtosé r od punktu P, w
funkcji kata ¢. Rozwiazaniem jego jest

1
e I S LA TR b

(a?/0%) + [1 —a?/0?]c2

(Fizyczny jest tylko jeden pierwiastek, bo zmienna 7 jest nieujemna; w drugim kroku
ponownie wykorzystana zostata réwnoéé ¢ = a? — b*). Wzdr ten jest wlasnie wzorem
otrzymanym w Przypomnieniu (w sytuacji, gdy £ > 0), jesli zdefiniowaé

/ b2

al—ec,) ba
(/)1 —e22]  14ecosp

g =

QIO

Wéwezas bowiem

Otrzymujemy stad ponadto zwiazek p = b*/a. Zakres zmiennosci kata ¢ nie jest w tym
przypadku niczym ograniczony: 0 < ¢ < 27.
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Réwnanie hiperboli 2% /a? — y?/b? = 1 przepisujemy na odmiane w zmiennych biegu-
nowych (r, ¢) zdefiniowanych w ukladzie (z',y’) o poczatku w punkcie P_ (zobacz prawy
rysunek 53): x = —c+ a2’ = —c+rcosp, y =y = rsiny:

é(c—rcgj)z— b%ﬁsi =1,
co, po skorzystaniu z tego, ze w tym przypadku ¢? = a? + b?, prowadzi do wzoru na r
T_f 3F1+sc¢_b_2 F1+ec,
a —1+e%  a (—1+ecy)(1+ec,)’

w ktérym teraz (parametr p = b?/a, tak jak poprzednio)

b2
:\11+—2>1
a

Oba pierwiastki réwnania kwadratowego sa w tym przypadku fizyczne i daja zaleznosci
r = r(p) odpowiadajace dwu réznym galeziom hiperboli: znak — daje gataZ lewa (przebie-
gajaca blizej lewego ogniska, tj. poczatku uktadu (z',y')), a znak + galaz prawa. Zakres
zmiennosci kata ¢ jest na obu galeziach ograniczony do —pnax < ¢ < @max przez warunek
dodatnio$ci mianownika; kat graniczny ¢m.x zalezy od galezi: na lewej 7/2 < @pax < T,
a na prawej 0 < Qmax < 7/2.

e =

ISENe

Geometrycznie parabola jest krzywa plaska (przyjmujemy, ze lezaca w plaszczyznie
xy), ktérej kazdy punkt jest réwnoodlegly od ustalonego punktu P - przyjmujemy, ze jest
to punkt o wspétrzednych (—p/2,0) - i ustalonej prostej ¢ (nieprzechodzacej przez wy-
brany punkt); bez straty ogdlnosci przyjmujemy, ze jest to prosta x = p/2. Wspdhrzedne
punktéw lezacych na paraboli speliaja zatem zwiazek ry = rp, czyli

_Z_":( Z_’>2 2
’:)3 5 \/:)H-Q + vy,

Aby wykazaé, ze wyprowadzony w Przypomnieniu tor ruchu w potencjale V(r) = —k/r
jest, gdy € = 1, parabola, zapisujemy réwnanie paraboli y?> = —2pz, otrzymane po pod-
niesiony stronami do kwadratu powyzszego zwiazku, w uktadzie biegunowym zwiazanym z
uktadem (2',y’) o poczatku w punkcie P: © = —p/2+2’ = —p/2+4rcos, y =y = rsinp.
Daje to rownanie kwadratowe na r

7’2530 + 2pc,r — p?=0.

Jego rozwiazanie (tylko jeden pierwiastek jest fizyczny, gdyz r > 0)

1 fia2 ame) _ PL—cp) p
= (=2 Ap2c2 422): L )
" 23?0( R e 1—c2 1+ cosyp

Tak wiec w przypadku paraboli, wprowadzony w Przypomnieniu parametr p jest tym sa-
mym, ktéry charakteryzuje parabole geometrycznie (jest odlegloscia punktu P od prostej
(). Zakresem zmiennosci kata ¢ jest tu przedzial otwarty (—m,+m).
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Zadanie 10.5

Wiedzac, ze torami ruchu masy m w polu sily centralnej o potencjale V(r) = —x/r (k > 0
- sita przyciagajaca, £ < 0 - odpychajaca) sa krzywe stozkowe: okrag, elipsa, parabola
lub hiperbola, wyprowadzi¢ zwiazki miedzy réznymi charakterystykami elipsy i hiperboli:
(c, f), (a,b) i (p,e) bez jawnego wyprowadzania (jak w Zadaniu 10.4) zwiazkéw miedzy
rownaniami w ukladzach kartezjanskim i biegunowym. Powiazaé¢ te charakterystyki z
momentem pedu L i catkowita energia mechaniczna E czastki. W przypadku ruchu po
elipsie wyprowadzi¢ z otrzymanych zwiazkéw trzecie prawo Keplera.

Rozwiazanie:
Jak to ustalone zostalo w Przypomnieniu, we wzorze

T(Qp):$
+1+ecosp’

w ktérym wystepuje znak +, gdy sila jest przyciagajaca (k > 0), a znak —, gdy sita jest
odpychajaca (k < 0). Parametr ¢ jest z definicji (tak wybrany jest sposéb odmierzania
kata ¢) nieujemny. Stala p > 0 wiaze sie z momentem pedu L wzorem p = L?/m]x]|.
Aby powiaza¢ parametr € z momentem pedu i calkowita energia mechaniczna F czastki,
wystarczy zauwazy¢, iz w punkcie toru, w ktorym r przyjmuje swa najmniejsza wartosé

-
we Wzorze
1, 1 ., & L*  L*[(d1\° & L
S+ Vig(r) = Smi* — = =) = = E,
2" + Ven(r) " r+2mr2 2m \dp r r+2mr2

na catkowita energie ruchu znika pochodna 7 (lub pochodna d(1/7)/dy). Zatem réwnos¢!%®

2 2 2

mek me
(5%_—1)2:$?(5j:1)+ﬁ(5i1)2,

E=Kﬂm@z¢%@in+

2mp?

stanowi réwnanie wyznaczajace € + 1, czyli ¢ w funkcji £ i L. Poniewaz ¢ > 0, tylko
jeden pierwiastek powyzszego réwnania kwadratowego jest fizyczny i otrzymuje sie stad
zwigzek

2E1L?

=41+ 222
+ml-€2

shuszny (poniewaz znak 4+ w e £1 jest skorelowany ze znakiem wyrazu liniowego wzgledem
niewiadomej € + 1 w réwnaniu) dla obu znakéw parametru s (tj. zaréwno dla sily
przyciagajacej, jak i odpychajacej).

108 Taka sama réwnosé zachodzi takze w punkcie o maksymalnej wartoéci rpax zmiennej r, jesli tor jest
zamkniety, tzn. jest okregiem lub elipsa, co z kolei jest mozliwe tylko w przypadku sily przyciagajacej
(k> 0).

269



Poniewaz gdy k < 0, potencjat efektywny Vig(r) jest wszedzie Scisle dodatni, energia
catkowita ruchu E musi by¢ tez Scisle dodatnia (energia kinetyczna ruchu radialnego %m%z
jest nieujemna, wiec tor ruchu moze przechodzi¢ tylko przez obszary, w ktérych zmienna
r jest taka, ze E > Veg(r)), przy ruchu w polu sity odpychajacej parameter ¢ jest zawsze
wiekszy od jednosci. Wzér

rp) = o,
—1+ecosep

wyznacza wtedy hiperbole:1% poniewaz zmienna r musi by¢ $ciéle dodatnia (przy L # 0

dotarcie do r = 0 jest przy skoniczonej energii ruchu E niemozliwe) zakres zmiennosci
kata ¢ jest ograniczony warunkiem cos > 1/e, czyli do zakresu —@pax < ¢ < ©max Przy
czym 0 < Qmax < 7/2; gdy @ — t@max, czastka oddala sie do nieskoniczonosci.

Przy ruchu w potencjale sity przyciagajacej (k > 0) potencjal efektywny Vig(r) jest w
pewnym zakresie zmiennej r ujemny i ma minimum V3"(L) = —mk?/2L? w (zalezacym
od L) punkcie 79(L) = L*/ml|k| = p. Jedli energia ruchu F jest (przy ustalonym L)
doktadnie réwna V2"(L), mozliwy jest tylko ruch po okregu (zmiana odleglosci r od cen-
trum sily jest niemozliwa, bo znika¢ musi %mﬁz). Jest to zgodne z otrzymanym wzorem:
w takiej sytuacji € = 0 i réwnanie toru redukuje sie do zwiazku r(¢) = p =const.

Gdy VBn(L) < E < 0, parametr € jest ograniczony przez nieréwnosci 0 < € < 1 i

wzOr

rp) = ———,
1+ecosp

wyznacza wtedy elipse: mianownik nigdy sie nie zeruje (kat ¢ przebiega caly zakres
od 0 do 27), a zmienna r, bedaca odlegloscia punktu na elipsie od jednego (przyjmujemy
konwencje, ze od prawego, czyli od punktu P, na lewym rysunku 53) z jej ognisk, zmienia
sie od

Tmin = S (gdy o =0+2nm) do 7Ty = (gdy ¢ =7+ 2nm).

_p
1+¢ 1—¢

Jak wiadomo ze szkoly, elipse (na plaszczyZnie xy) mozna zadaé albo wzorem

72 2
S+l
w ktérym a i b sa dlugosciami jej potosi, albo scharakteryzowac jako zbiér punktéw ktérych
suma odlegtosci r_ 4+, od dwu ustalonych punktéw (ognisk elipsy) P_ i P, plaszczyzny
odlegtych od siebie o 2¢ jest stala i réwna 2f (zob. Zadanie 10.4). Zwiazki miedzy
roznymi sposobami charakteryzowania elipsy latwo ustali¢: wybierajac osie x i y tak,
by wspéhzednymi punktéw P_ i P, byly (—¢,0) i (¢,0) - powyzsze szkolne réwnanie
elipsy jest napisane wiasnie w takim uktadzie odniesienia - rozpatrujemy punkt elipsy o

1097 rozwigzania Zadania 10.4 wiadomo tez, ze jest to galaz hiperboli dalsza od ogniska.
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wspotrzednych (—a,0) lezacy na osi x na lewo od punktu P_; jego odleglosci od ognisk,
czyli punktéow P_ i Py, sa, jak nietrudno zobaczy¢, réwne r_ =a —ciry = a+ ¢, czyli

2f =r_+ry =2a.

Wynika stad, ze f = a. Rozpatrujac nastepnie punkt elipsy o wspdhzednych (0,0),
z twierdzenia Pitagorasa znajdujemy, ze b = \/f2 —c* = Va? — 2. 7 kolei zwiazki
parametrow a i b z parametrami p i € mozna ustali¢ nastepujaco: po pierwsze jest jasne,
ze

2a = Tmin T Tmax = b + P 5
1+ 1-¢
skad wnioskujemy, ze
P
1—¢2’
Wynika stad takze, iz
Tmin=0a(l—¢€),  Tmax=a(l+g).

Chwyt pozwalajacy bez klopotéw wyrazi¢ b przez p i € polega na zauwazeniu, ze dlugosé
b jest réwna maksymalnej wartosci zmiennej y = rsin ¢; przyréwnujac do zera pochodna

d d psing

%y(gp) - dp 1+ccosg’

znajdujemy, ze znika ona w cos ¢ = —¢, gdzie y = (pv/1 —&2)/(1 — ). Zatem

R
V1—¢?’

1 zachodzi zwigzek

b =ap.

/ b? c
c a? o«

Alternatywnie mozna rozpatrzy¢ na elipsie punkt odpowiadajacy katowi ¢ = m/2.
Punkt ten w ukladzie kartezjanskim o $rodku w potowie odlegtosci pomiedzy ogniskami
elipsy (chodzi tu o uktad xy z lewego rysunku 53) ma wspélrzedne = = ¢+ r(p) cosp = ¢,
y = r(p)sing = p. Wspdhzedne te musza spelia¢ réwnanie elipsy (z/a)? + (y/b)? = 1.
Podstawiajac tu 2* = ¢* = a® — b* i y* = p* znajdujemy, ze p = b*/a, czyli ze b = \/ap,
co daje podany juz wzér wyrazajacy b przez p i €.

Zatem b*/a? =1 — €% i stad
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Zmalezione wyzej zwiazki prowadza natychmiast do trzeciego prawa Keplera. Przypo-
mnijmy bowiem (przypomnieliSmy to juz w Przypomnieniu), ze stalo$¢ momentu pedu L
jest réwnowazna statosci predkoscei polowej (A od “area”)

dA 1 i L
=_—r-rp=_—.

dat 2 2m
Calkujac obie strony po calym obiegu elipsy, czyli od zera do okresu ruchu 7', otrzymamy
po lewej stronie pole elipsy A = mab. Prowadzi to do zwiazku
L2
2 2;2 _ 23 2
ma*b* =nta’p = —=T
P= e
Jest to wlasnie trzecie prawo Keplera: stosunek kwadratéw okreséw obiegu planet (Uktadu
Stonecznego) do szescianéw dlugosci duzych pélosi ich orbit nie zalezy od planety. Rze-
czywiscie:

po uwzglednieniu tego, ze Kk = GMgm (Mg jest tu masa Storica). Wyrazajac z kolei we
wzorach a = p/(1 — &%) i b= p/v/1 — &2 parametry p i e przez F i L znajdujemy, ze

K L

= -, b:77
2|E| \/2m|E)|

co pozwala wyrazi¢ okres obiegu elipsy przez energie:

a

m
T =21 —ab= .
Tpab=m 2]

Okolicznosé, ze okres T' nie zalezy od momentu pedu L jest cecha szczegdlng ruchu Ke-
plerowskiego (i niekiedy istotna w dalszych Zadaniach).
Zauwazmy tez, ze wzor a = k/2|F| zapisany w postaci

Jo
2a
uogdlnia znany (latwy do wykazania) zwiazek £ = —k/2r miedzy calkowita energia ruchu
zachodzacego w potencjale V(r) = —k/r po orbicie kolowej, a promieniem tej orbity.

Zwiazki miedzy parametrami a i b wystepujacymi w “szkolnym” réwnaniu hiperboli
(x/a)? — (y/b)* = 1, a parametrami c i f, gdzie 2c jest odlegtoécia ogniska P_ od ogniska
P, ,a2f jest stala réznica |r_ — r,| odlegtosci punktéw hiperboli od jej ognisk, ustalamy
rozpatrujac najpierw punkt A hiperboli o wspéhrzednych (a,0) w kartezjanskim uktadzie
xy z prawego rysunku 53. Jego odleglosci od ognisk sa réwne r_ =c+a, ry =c—a, co
powala stwierdzi¢, ze f = a (tak jak w przypadku elipsy). Z kolei rozpatrujemy punkt B o
wspohrzednych (w tymze samym ukladzie kartezjanskim) (c,yp). Odlegtosci tego punktu
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od ognisk sa réwne r_ = \/(2¢)2 +y%, ry = yp, tak iz r_ —ry = 2f = 2a daje (po
podniesieniu stronami réwnosci r_ = 2a+r, do kwadratu) yp = (¢* —a?)/a. Wstawiajac
wspotrzedne punktu B do réwnanie hiperboli dostajemy zwiazek

= (2a® + b%)® + a*(a* + b°) = 0,
ktéry potraktowany jak réwnanie bikwadratowe na ¢ ma dwa rozwiazania: ¢? = a?, ktére

trzeba odrzuci¢, gdyz w przypadku hiperboli musi by¢ ¢ > a oraz drugie, dajace dobry
zwigzek

A =a’+b.

7 kolei zwiazek parametréw a i b z parametrami p i € znajdujemy nastepujaco. Naj-
pierw rozpatrujemy punkt na lewej galezi hiperboli odpowiadajacy katowi ¢ = m/2.
Ma on w kartezjanskim ukladzie zy z prawego rysunku 53 wspdhzedne (—c,p) gdyz
x = —c+r(p)cose, y =r(p)sinp, a na lewej galezi r = p/(1+e€ cosp). Wstawiajac je do
réwnania hiperboli (x/a)? — (y/b)? = 1 i wykorzystujac to, ze ¢ = a® + b* otrzymujemy
zwiazek p = b?/a. Nastepnie bierzemy na lewej galezi hiperboli punkt o wspétrzednych
(z,y) = (—a,0) najblizszy ognisku P_, ktére jest poczatkiem kartezjanskiego uktadu z'y/,
w ktérym zdefiniowane sa zmienne r i ¢ (zobacz Zadanie 10.4). Punkt ten jest od tego
ogniska odlegly o r_ = ¢ — a. Ta sama odleglosé¢ r_ jest tez réwna p/(1 + ). Zatem

p:(1—|—8)(c—a),

co po skorzystaniu z ustalonych juz zwiazkéw p = 0?/a i b? = ¢® — a? daje

Pt = (C-) (Ce) =+ (E-).

Stad, w przypadku hiperboli
/ b2
a a

W przypadku potencjatu sity przyciagajacej V (r) = —|k|/r potencjal efektywny Vg (r)
dazy przy r — oo do zera od dotu (Vog — 07) i mozliwy jest ruch nieograniczony z zerowa
energia catkowita (F = 0). Torem ruchu jest w tym szczegdlnym przypadku parabola,
bedaca tworem przejsciowym pomiedzy baaaardzo wydhiuuuzooooona elipsa a hiperbola.
Poniewaz wtedy € = 1, zmienna r dazy do nieskoniczonosci, gdy |¢| dazy do w. Gdy energia
ruchu jest dodatnia (E > 0) torem jest juz hiperbola, a zmienna r dazy do nieskoniczonosci,
gdy kat |¢| dazy do kata pnay lezacego pomiedzy 7/2 a m. Rdéznica miedzy ruchem po
hiperboli w przypadku sily przyciagajacej (k > 0) i odpychajacej (k < 0) jest wiec taka
(zobacz rysunek ?7), ze w pierwszym przypadku nadlatujaca z nieskoriczonosci czastka
zawraca za centrum sily (za dalszym ogniskiem), a w drugim przed centrum sity (tj. przed
dalszym ogniskiem, ale za blizszym).

273



Zadanie 10.6

Wyprowadzi¢ wzory zadajace (w sposéb uwiktany) zaleznosé od czasu polozenia masy
m poruszajacej sie w potencjale V(r) = —k/r (k > 0 - sila przyciagajaca, Kk < 0 -
odpychajaca) we wszystkich mozliwych przypadkach: ruchu po elipsie (mozliwym przy
k > 0), ruchu po hiperboli (trzeba tu odréznié¢ przypadki ruchu po gatezi hiperboli blizszej
centrum sily, co zachodzi, gdy x > 0 i po galezi dalszej, gdy x < 0) oraz w przypadku
ruchu po paraboli (mozliwym tylko, gdy x > 0).

Rozwiazanie:
Zaleznos¢ polozenia od czasu jest dana ogdlnym zwiazkiem

m O dr
t—t(]::l: —/ 3 37
2 Jowo) VE + K/ — L2/2mr

znak + dotyczy tu oddalania sie masy m od centrum sily, a — zblizania. W przypadku
ruchu po elipsie (k > 0, E' = —|E|) wzér ten, “zwijajac do pelnego kwadratu” wyrazenie
pod pierwiastkiem, przeksztalcamy do postaci

L [m /T(t) drr
V 21E] Jrwo) v/ (R2[AE?) — (L2 2m]E]) — (r — r/2[ E])?
\/%/’““ drr
(to) \/a2e2 — (1 — a)?
SkorzystaliSmy tu z tego (zob. Zadanie 10.5), ze (a jest dlugoscia duzej pétosi elipsy)

K K? L? ) 2|E|L? 5 5
, — = 1 — =a e .
S|E]"  4E®  2m|E] -

a =

Niech czas t bedzie liczony od r = ry;, (perygeum w ruchu wokdt Ziemi, lub peryhelium
w ruchu wokdét Slorica, a ogdlnie pericentrum). Zatem

. /ma drr
Fain \/a252 (r—a)?

W powyzszej calce robimy podstawienie

r(€) —a = —aecosf, dr =dfaecsiné.
Zmienna & biegnie tu od 0 do m: 7(0) = a(l — &) = rpm < a (stad znak minus po prawej

stronie wzoru na r — a) oraz r(m) = a(l + €) = Tyax. Wybleramy takze znak + przed
catka, gdyz na tym odcinku czasu 7 > 0. Stad (sin{’ > 0 w rozpatrywanym zakresie £’)

3 / _ / 3
b /@/dg a(l —ecos’) aasm& [ma /df (1—ccosg’).
Kk Jo ae sin &’
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Calka jest elementarna i otrzymujemy wyrazona w sposob parametryczny zaleznosé¢ r od

czasu
3
t = \/%(g—éwing),
K

r=a(l—ecosf),

przy czym (na razie) 0 < ¢ < 7. Bedacy potowa okresu 7' czas ruchu od 7y, do rpax jest

réwny t(m), czyli
ma? mk?
T=2m /T =y [ o
N T 2B

co zgadza sie z wynikiem uzyskanym na podstawie stalosci predkosci polowej (zobacz
Zadanie 10.5).

Zakres zmiennej £ mozna w powyzszych zwiazkach przedtuzy¢ do 27, o czym mozna
przekonaé sie nastepujaco. Gdy ¢ > T'/2 powinni$my napisaé¢ (poniewaz na tym odcinku
czasu 7 < 0, wybieramy przed catka znak minus)

L T \/% r(t) drr
2 K Tmax \/&252 - (/r - CL)2 .

Podstwiamy tu nastepnie r—a = +as cosnz 0 < n < 2w (teraz n = 0 odpowiada apogeum,
aphelium lub ogdlnie apocentrum, czyli rya.. > a), co prowadzi analogicznie jak wyzej, do

T 3 T 3
t:§+”%/o dn’(1+ecosn’):§+\/%(n+asinn)a
T ma3 ) ma3 )
t:§+ T(n+asmn)£ T(W+77+€Sln77),

r=a(l+ecosn).

czyli do

Wida¢ jednak, ze te same t i r otrzymamy ktadac we wzorze shusznym na razie w zakresie
0 < ¢ < 7zmienng £ = 7+ 10, jako ze —esin(w +n) = esinmn, ecos(m + 1) = —ecosn.
Pokazuje to, ze zaleznos¢ r od czasu jest w calym ruchu po elipsie dana w sposob uwiktany

zwigzkami
ma?
t=4/——(§—esing),
K

r=a(l—ecosf),

w ktérych 0 < & < 27,
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Wykorzystujemy teraz zwiazek r = p/(1 + € cos ¢) w postaci

1 1 2
cosgsz(Z—j—l), sinap:j:\/l—g—2<]—)—1>,
r r

do wyrazenia we wzorach x = rcos p, y = rsin ¢ kata ¢ przez r = r(£(t)):

a

1 1
x = :—(p—a+aecos§):a{cos§+—<£—1)},
€ 5
a poniewaz

¢ P
a a

Y

wiec 1 — p/a = €% Zatem (p — r)/e = a(cos€é — ). Otrzymujemy w ten sposéb (w
postaci uwiktanej) zaleznosé kartezjarskich zmiennych z i y od czasu masy m poruszajacej
sie po elipsie wokdl centrum (znajdujacego sie w punkcie (z = 0,y = 0)) w ukladzie

kartezjanskim:!1°

z(t) = a(—e + cos{(t)),
y(t) = av'1l —e? siné(t).

W przypadku ruchu po hiperboli, gdy £ > 0, zalezno$¢ zmiennej r od czasu jest dana

wzorem
b _i\/W/T(t) drr
" 2F Jy0) /(r + £2E)? — (n2/4E2) — (L2/2mE)

_ 4 ma/ drr ’
V V(r £ a)? — a2e2

gdzie, poniewaz teraz a = p/(e? — 1) = |k|/2F (zob. Zadanie 10.5), gérny znak (+) w
wyrazeniu pod pierwiastkiem odnosi sie do ruchu w potencjale sity przyciagajacej, a dolny
(—) odpychajacej (k = —|x|). Przyjmujac, ze t = 0, w punkcie 7 = ry;, i podstawiajac!!!

r+a=aschf, dr = d€assh,

HOW Zadaniu 10.4 uklad ten byl oznaczany (2’,y’). Zauwazmy (wracajac do oznaczen z tamtego
Zadania), ze otrzymane wzory sa zgodne z réwnaniem elipsy w pierwotnym uktadzie (z,y): o’ 4+ ac =
¥ +c=x=acos, ¥y =y=a\/1—c?/a?sin¢ = bsin¢, a zatem (x/a)? + (y/b)? =1

HlJest to zgodne z tym, ze rmin = a(e F 1) (gérny znak, gdy & > 0, dolny, gdy | < 0), gdyz

p p

fmin = T = 22 0

(eFl)=aleF1).
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otrzymujemy, po podobnych krokach jak wykonane wyzej,

t:,ﬁ13(§+amo

r=a(—1+echf),
w przypadku sily przyciagajacej (tj. gdy x > 0) i

t = 7ng+em@

r=a(l+4+¢echf),

w przypadku silty odpychajacej (tj. gdy x < 0). W obu przypadkach —oco < £ < oc.

Poniewaz w przypadku hiperboli
/ b2
a \ a

wiec 1 + p/a = €% i po krokach analogicznych do wykonanych w przypadku ruchu po
elipsie, znajdujemy, ze w ruchu po hiperboli

x(t) = a(e — ché(t)),
y(t) = ave? — 1shé(t),

gdy potencjal jest przyciagajacy (k > 0) oraz

x(t) = a(e + ch&(t)),
y(t) = ave® — 1sh¢(t),
gdy potencjal jest odpychajacy (k < 0).

Ruch po paraboli masy m (mozliwy tylko, gdy x > 0, tj. w polu sily przyciagajacej)
zachodzi z zerowa energia. Ogolny wzor daje wiec

m [T dr drr
t—ty =)= =+ .
2 Jrwo) /K[ — L2/2mr? V (26/m)r — L2/m?

Przyjmujac jak zawsze, iz r(0) = rp;, podstawiamy tu

2

r=— L (14 €?) =

p _
T SO+, dr=pede.

2

co po prostych przeksztatceniach prowadzi do zwiazkéw

mp mp3 1
= <§+ 5) \/ﬂ(f‘i‘gf?’)a
25(1+§),
w ktorych —oo < £ < o0.
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Zadanie 10.13 (tzw. Problem Bertranda)
Udowodni¢, ze tylko w potencjatach V(r) = —|x|/r oraz V(r) = 3|k|r? wszystkie ruchy
ograniczone z L # 0 zachodza po torach zamknietych.!?

Rozwiazanie:

Aby w potencjale V(r) mozliwe byly, przy L # 0, ruchy w obszarze ograniczonym,
Veg(r,L) = V(r) + L?/2mr? musi by¢ taki, ze dla pewnych wartoéci catkowitej ener-
gii £ ruchu warunek Vig(r, L) < E wyznacza pewien skorficzony zakres''® zmiennej r.
Dla tych to wartosci energii (ktérych widmo - méwiac jezykiem mechaniki kwantowej -
moze by¢ ciagle i/lub dyskretne) ruch bedzie zachodzi¢ pomiedzy jakimig™* r;, > 01
Tmax < 0O.

Rozpatrzmy taki skoriczony przedzial [ryin, "max]- Jesli potencjat jest funkcja rézniczko-
walna W r € [Fmin, Tmax), t0 musi istnie¢ w tym obszarze co najmniej jeden punkt rg, w
ktérym Vig(ro, L) = 0 (taka jest tres¢ jakiego$ twierdzenia Rolle’a, czy kogos takiego -
kto by tam te nazwy szkolnych twierdzeni pamietat). Mozliwy jest wtedy ruch z energia
E = Vg(ro, L) po orbicie kolowej o promieniu ry. V() = 0 jest réwnowazne stwierdze-
niu, ze

d L?

- V(r) . = F.(ro) = p—

Widaé stad, ze wartosé¢ F.(rg) musi by¢ ujemna - orbity takie sa mozliwe tylko (co w
sumie jest oczywiste), gdy sila jest przyciagajaca.

Rozpatrzymy teraz ruch o energii E nieco wiekszej niz Veg(rg, L) - jesli wszystkie tory
ograniczone maja by¢ zamkniete, to takze i takie. Tor takiego ruchu musi odchyla¢ sie od
kotowego, ale jesli w o potencjal Vog(r, L) ma minimum, odchylenie to moze by¢ dowolnie
mate, gdy E 2 Veg(ro, L). Ogdlnie, tor (kazdego) ruchu musi by¢ rozwiazaniem réwnania

Bineta (1/r(¢) = u(yp)):

d*u m d 1 m 1
U =g =2y ()= g ().
dp? Tu=J L? du (u) L2y? (u)

Ruch po orbicie kotowej o u(p) = ug = 1/rq jest rozwiazaniem tego réwnania, gdy'® ug =
J(ug). Poszukamy rozwiazania malo odbiegajacego od orbity kolowej, tj. rozwiazania
u(p) = ug + w(yp), zaktadajac, ze |w(y)|/ug < 1. Mozna wtedy prawa strone réwnania
Bineta rozwina¢ w szereg Taylora wokdt u = uyg:

ﬂwzjw0+wﬁ+éﬁk+éﬁk+nw

H2Ruchy, w ktérych L = 0 zachodza wzdtuz prostej przechodzacej przez centrum sity; jedli V(r) ma
“dotek” (albo dotki), to kazdy ruch w takim dotku jest okresowy - zobacz zadania w rozdziatu 3 - i jego
tor jest trywialnie “zamkniety”.

13Dl niektérych wartoéci E obszar dostepny zmiennej r moze sie skladaé z rozlacznych odcinkéw -
rozpatrujemy wtedy jeden z nich.

H4Tyrzeba zalozyé, ze Tmin > 0, gdyz ruchy z L # 0, w trakcie ktérych dla ¢ = t., zachodzi spadek
na centrum, sa “patologiczne” - ruchu naogét nie daje sie przedtuzyé na t > t., (zobacz zadania 10.15 i
10.16) i problem zamknigtosci toru traci sens.

HSRéwnosé ta jest oczywiscie tym samym, co warunek |F,.(ro)| = mv?/rog bo mv?/ro = L?/mr3.
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gdzie J; sa kolejnymi pochodnymi funkeji J(u) obliczonymi w u = wg
najpierw do pierwszego wyrazu rozwiniecia, co prowadzi do rownania
d*w

d—g02+(1_Jl)w:O’

d m 1
= (———F (=
(D),

2m FT(L)—F m  , dE.(r)

=53 T
24,3 2,20
L2uj Ug L2ug dr

na funkcje w(yp).

1/uo

. Ograniczymy sie

Korzystajac z warunku ug = J(ug) mozemy teraz w obu czlonach tej pochodnej zastapi¢

1/L? przez —uy/mF,(1/ug), co da

To dFr
Jp=-2—
! F.(ro) dr o
Zatem przyblizone réwnanie na w(y) ma postaé
d*w 5 roF(10)
et =0 2 =3 r

Jesli % < 0, rozwiazania w(yp), z wyjatkiem szczegdlnie dobranych warunkéw w jakims
ustalonym ¢ = g, rosna nieograniczenie z ¢ i dokonane przyblizenie réwnania Bineta
szybko przestaje by¢ shuszne. Poniewaz rozpatrywalismy punkt ry z przedzialu wyznaczo-
nego przez warunek Veg(r, L) < E, sytuacja taka moze sie zdarzyé¢, gdy Vig(r, L) ma w
ro = 1/ug lokalne maksimum mniejsze od E a nie minimum; ruch wokét takiego lokalnego
maksimum musi, oczywiscie - w powodu warunku Veg(r, L) < F - zachodzi¢ w ograniczo-
nym obszarze, ale z powodu zalamywania sie przyblizenia nie mozna powiedzie¢, czy jego
tor jest zamkniety, czy nie. Niemniej z tego samego powodu musza wtedy w rozpatrywa-
nym przedziale zmiennej r istnie¢ inne punkty, w ktérych Veg(r, L) ma lokalne minimum

i przenosimy wtedy analize do jednego z takich punktéow.
Jesli A% > 0, rozwiazaniem sa rzeczywiécie male oscylacje

w(p) = acos(By +0).
czyli

1 1
w = %%—acos(ﬁcpjtd).

Ruch zachodzi pomiedzy r_ osiaganym dla Sp+6 = 0, ar, osiaganym dla So+6 = 7. Kat
® zakredlany pomiedzy r = ry, a r = r_ w bogatej literaturze poswieconej problemowi
Bertranda nazywa sie katem apsydalnym (ang. the apsidal angle) i jest jak widaé réwny

o= T

Bl ~ B+ roEl(ro) [ Fr(rg)
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Pouczajace jest otrzymanie wzoru na kat ® druga metoda (tak, jak w swojej niezwykle
interesujacej, cho¢ fizyka troche denerwujacej, ksiazce o mechanice kaze W.I. Arnold). Jak

zawsze,
L2 [ L2
Vom ), 2 /E- veff Va2 / VE - W)

gdzie W(u) = Veg(1/u). Jesli odchylenia u od ug sa mate (tj. uy i u_ niewiele sie r6znia
od ug bedacego punktem ekstremalnym W (u), w ktérym dW/du = 0, to w powyzszej
calce mozna W (u) rozwina¢ do drugiego rzedu w u — ug:

& | L? /“+ du L?
~ o =T E——
2m /., \/E W, — %Wél(u — )2 mW{

(W polskim wydaniu ksiazki Arnolda jest tu misprint - zamiast W jest jakies niezdefi-
niowane V i zbedny czynnik 7?; poza tym Arnold ma m = 1, a jego M oznacza moment

pedu L).
d d L?
2 2 1%
wo "o dr( " dr( (r) 2m7‘2))

L2
= 7‘(2] <2T0V/(7’0) + TOV//(’F(]) -+ W) .

0

dQW(u)
wW! =
0 Cdu?

1/uo

Ponownie korzystajac z warunku Vle(ro) = 0 zastepujemy L?/m przez r3V'(ry), otrzy-
mujac ten sam wzor na ¢, co wyzej, jesli uwzgledni sie to, ze F, = —V".

Wazna cecha kata ® jest jego niezalezno$¢ (w tym przyblizeniu) od energii (lub raczej
nadwyzki energii nad energia odpowiadajaca orbicie kotowej), czyli od wielkosci zaburze-
nia.''® Cecha ta jest wykorzystywana w dowodzie twiedzenia Bertranda podanym przez
W.I. Arnolda. Jasne w kazdym razie jest, ze aby rozpatrywany tor byl zamkniety, 5 musi
by¢ liczba wymierna.

Wyrazenie L przez V'(rg) (tj. przez F.(ro)) jest waznym krokiem, bo umozliwia od-
powiedZ na pytanie, jak w okolicy ry musi zmieniaé¢ sie potencjal V' (r), zeby kat ® nie
zalezal od wyboru ry. Istotnie, poniewaz szukamy potencjatu w ktérym wszystkie ruchy
ograniczone odbywaja sie po torach zamknietych, mozna i nalezy rozpatrzy¢, jak bedzie
wygladat ruch po torze niewiele odchylajacym sie od nowego punktu r{, polozonego infini-
tezymalnie w bok od punktu r; punkt 7, musi oczywiscie odpowiada¢ troche zmienionej
wartoéci L? tak dobranej, by potencjat efektywny Vig(r, L) mial w nim minimum. Dzieki

16\ oze sie to wydaé dziwne na pierwszy rzut oka, bo w pierwszym odruchu ma sie wrazenie, ze orbicie
kotowej powinien odpowiadaé¢ kat ® = 0 i wtedy ciagloé¢ ® powinna prowadzi¢ do jego zaleznosci od
wielkosci odstepstwa od orbity kotowej. Tak jednak nie jest: kat ® jest dla orbity kolowej nieokreslony,
tak samo jak wspélrzedna ¢ uktadu biegunowego nie jest okreslona, gdy » = 0 - przy schodzeniu do r =0
z réznych kierunkow kat ¢ jest rézny.
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wyrazeniu L? przez V'(ry mozna uzyskany wzér na ® potraktowaé jak funkcje 9. Po-
niewaz rozpatrujemy punkt r{ przesuniety infinitezymalnie w stosunku do ry, nowy tor
bedzie (na mocy ciagtosci ® jako funkeji punktu r¢) zamkniety jesli ® nie zmieni sie (a
jest liczba wymierna). Niezalezno$¢ ® od 1y jest wtedy réwnowazna rownaniu (pomijamy
juz ten subskrypt 0)

r dF.(r) 9
3 —
* F.(r) dr s
ktére po scatkowaniu daje
]
Fr(r) == 3B

Zmak sity musi by¢ ujemny - sila musi by¢ przyciagajaca, co jest intuicyjnie oczywiste
(ale wyszlo tez juz wezesniej jako warunek matematyczny). Tak wiec potencjat musi by¢
potegowy. Co wiecej, wzér na kat apsydalny & méwi, ze aby zamkniety méglt by¢ tor
infinitezymalnie odchylajacy sie od kotowego, 8 musi by¢ liczba wymierna: § = k/n
(wtedy tor zamknie sie po n pelych oscylacjach promienia wokét r = rg).

W literaturze spotyka sie rézne metody obliczania kata ® dla nieinfinitezymalnych
odchylen toru od kotowego. Tu rozpatrzymy metode oparta na rachunku zaburzen. W tym
celu szukamy rozwiazania réwnania Bineta z funkcja J(u) po prawej stronie rozwinieta
do trzeciego rzed u wokot u = ug

d*w

1 1
d—g02 + ﬁ2w = §ng2 -+ 6J3w3,

w postaci szeregu (6 = Sy)
w(p) = Ay cos + Ay + Ay cos20 + Azcos360 + ... |

traktujac Ja, Ag i Ag jak male pierwszego rzedu (o €), a J3 i Az jak mate drugiego rzedu
(x €% A; jest oczywiscie rzedu €%). Szukana postaé¢ rozwiazania zapewnia zamykanie
sie toru (jesli 5 = n/k). Wstawiajac postulowane rozwiazanie do réwnania i zachowujac
tylko wyrazy do rzedu e? wlacznie dostajemy po lewej stronie

d*w

d—g02 + B%w = %Ay — 36%A, cos 260 — 83% A5 cos 30,

a po prawej'!”

1 1 1 1

§J2w2 + 6J3w3 = §J2 (A% cos? 0 + 2A0A; cos O + 24, Ay cos b cos 29) + éJgAi’ cos>0
1 1
§J2 514%(1 + cos20) + 2AgA; cos 0 + A1 Ay cos @ + Ay As cos 30

1
+ﬁJ3Ai’ [3 cos @ + cos 36].

H7Przeksztalcajac prawa strone korzystamy z tatwych do udowodnienia tozsamosci trygonometrycznych
2 cos ) cos 20 = cos ) + cos 30, 4 cos® @ = 3 cos 6 + cos 30.
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Réwnanie Bineta bedzie spelione (z doktadnoécia do wyrazéw rzedu €2) jesli réwne beda,
wspotczynniki przy takich samych wyrazach po obu stronach. Przyréwnania do siebie po
obu stronach wyrazéw rzedu e: stalych i proporcjonalnych do cos 26 oraz wyrazéw rzedu
£? 7 cos 30 narzuca zwiazki

A2 A2 1 [(AAydy, A3

Ag= B2 g A 1202 Ards
452 1242 832 2 24

Wstawiajac tak wyznaczone Ag i Ay do warunku zerowania sie po prawej stronie wyrazéw

rzedu 2 proporcjonalnych do cosf (bo po lewej cosf nie wystepuje)

1 1
A()AlJQ + 5141142«]2 + gA%J:; == 0,

znajdujemy, ze réwnanie Bineta moze by¢ spelnione przez taki szereg wyzszych harmo-
nicznych, tylko jesli

55, s 0 li, tylko gdy  5J2 + 33%J; =0
— = czyli 0 =0.
2452 ) yi, ty gay 2 3
Pozostaje wiec obliczy¢ Jy i Js dla F.(r) = —|k[r?* =3 czyli F.(1/u) = —|s|u®#°. Mamy
m|/<a| B2
T(u) = — s F (1) =
Zatem (pamictamy: L? = —mugy>F,(1/ug) = m|/{|u562, co jest tym samym, co warunek

J(ug) = uy wyznaczajacy ug; stad (m|/{|/L2) — ug )

d?J g 1
Jy = du<2u> . = mLW (1= (=B%ug ™" = =p*(1 - 5 e
a2J _o_ g2 1
Js = diff) . = mL|f| (1—BYH8%u; > " = (1 - B2 2

Warunek przybiera wiec postaé
51— 6%)° +36' (1~ B") =26 (1 - B*)4 - 7] =0

Poniewaz czynnik S ma by¢ wiekszy od zera, jedynymi dopuszczalnymi rozwiazaniami sa
p? =11 % =4, czyli sity postaci

F.(ry=——, (B*=1) oraz FE(r)=—|s|r, (3> =4).
Oczywiscie przedstawione tu rozumowanie nie dowodzi, ze dowolnie duze zaburzenia orbit
kotowych ruchu w polu tych dwdéch sit centralnych beda zawsze torami zamknietymi - to

wiemy z bezposredniej analizy rozwiazan - wyklucza ono jednak, by taka wlasciwos¢ mogty
mie¢ jakie$ inne sity centralne.
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Zadanie 10.21

Zgodnie z prawami elektrodynamiki klasycznej tadunek elektryczny ¢ poruszajac sie z
przyspieszeniem promieniuje i traci energie. Wypromieniowana (czyli stracona) w prze-
dziale dt czasu energia dFE jest dana (w tym nienormalnym ukladzie SI) wzorem

2 ¢
dE = —= —_a%(t)dt.
3 4mepc3 )
Przyjmujac ze spowodowana promieniowaniem strata energii elektronu na bohrowskiej

orbicie kotowej!® w atomie wodoropodobnym (jeden elektron krazacy wokét jadra o ta-

dunku Ze) jest mata, oszacowaé czas zycia takiego rzadzonego prawami fizyki klasycznej
atomu (tj. czas po ktérym elektron spadiby na jadro).

Rozwiazanie:

Na orbicie kotowej zachodzi zwiazek (|x| = Ze?/4mey, a m. jest masa elektronu) Ei, =
imev? = |k|/2r wynikajacy z tego, ze iloczyn masy i przyspieszenia dosrodkowego jest
réwny sile przyciagajacej. Stad energia catkowita elektronu E = Ey, — |k|/r jest réwna
E = —|k|/2r i dE = (|k|/27?) dr. Poniewaz powodujaca zmiane promienia orbity zmiana
energii dF elektronu jest skutkiem wypromieniowywania przez elektron energii, musi takze

zachodzié¢ zwiazek

Przyspieszenie a jest w przyblizeniu réwne przyspieszeniu dosrodkowemu (pomijamy takze
zwiazane z hamowaniem przyspieszenie styczne do orbity), zatem

mev? K]

mea =~ =5
r r

Wyrazajac stad a przez r otrzymujemy wiec zwiazek
K 2 2 2
16l ¢ x|
2r2

3 dmegc® m2rt

ktéry, po rozdzieleniu zmiennych i scatkowaniu stronami (od ry do 0i od 0 do 7 - czasu
zycia), daje

5 e he Ze* he
rg = — — T,
0 dmeghe ¢ dmeghe m?2
Pamietajac, ze e*/4dmeohc = apy = 1/137, i Ze za promien ry powinno sie przyjac¢ promieri
Bohra ag = hc/m.c*Zagy ~ 0.5 - 1071%m, znajdujemy, ze
1 (mec2 ) a3, 1 he 1

4Zaky \ he ¢ AZ*agy mec? ¢’

T

H8Jak wiadomo N. Bohr byl z matematyki noga (wielko$¢é Bohra lezala w czym$ zupehie innym)
i konstruujac swéj model atomu byl w stanie rozpatrzy¢ jedynie orbity kotowe; eliptyczne musial juz
opracowaé¢ A. Sommerfeld. Tu jednak jest to okoliczno$¢ szczesliwa, gdyz przyjeta tu metode mozna
zastosowaé w zasadzie tylko do orbit kotowych.
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Poniewaz hc = 197 MeV-fm= 197 - 107!®* MeV-m, a m.c®> = 0.5 MeV otrzymujemy, dla
Z =1, okolo 107! s.
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Zadanie 10.22 %Y

Postugujac si¢ mechanika newtonowska obliczy¢ jak zmienia si¢ z czasem czestotliwos¢ v
fal grawitacyjnych (rejestrowanych na Ziemi przez detektory LIGO) emitowanych przez
uklad dwéch czarnych dziur o masach M; i My wirujacych wokét swojego srodka masy,
jesli wiadomo, ze czestosé 2wr emitowanych fal jest réwna podwojonej predkosci katowej
w ich obrotéw, a moc P wypromieniowywana przez taki uktad jest dana wzorem

P =aG %W,

w ktérym a = 32/5, ¢ jest predkoscia $wiatla, a I jest momentem bezwladnosci wzgledem
osi obrotu uktadu dwéch czarnych dziur. Wyktadniki a, b i d w podanym wzorze na P
trzeba ustali¢ na podstawie analizy wymiarowej. Przyjac¢, ze srodek masy uktadu czarnych
dziur pozostaje w spoczynku w uktadzie, w ktérym emitowane przezen promieniowanie
jest rejestrowane, a ruch wzgledny czarnych dziur odbywa sie po orbicie kotowej.

Rozwiazanie:
Uktad réwnan wyznaczajacy ruch przyciagajacych sie grawitacjnie dwoch mas M; i M,
(/€ = GMl Mg):

d2r1 rs —Io d21'2 — rs —Io
g ——— =K
dt? ri—T9 3

! dt? - F ‘I'l — 1'2‘3 ’

mozna przepis¢ w rownowaznej postaci

2 2
%(erl—i‘Mzrz) =0, Mred% = _’%ﬁa
w ktérej r = ry — 11, a Mg = MoMs/(My + Ms). W ten sposéb ruch uktadu dwéch ciat
sprowadzony zostaje do swobodnego ruchu srodka ich masy i ich ruchu wzglednego. Zgod-
nie z zalozeniem, problem ruchu uktadu dwéch czarnych dziur rozpatrujemy w uktadzie
odniesienia, w ktérym ich srodek masy pozostaje w spoczynku; przyjmiemy tez, ze jest
on poczatkiem uktadu odniesienia, tj. ze Mir; + Mors = 0. Wéwcezas

M, M,

r=————r, rp=—ro.
! M, + M, 27 M, + M,

Ze zrézniczkowania tych wzorow po czasie wynikaja tez zwiazki

M LM
M, + M, 2T M, M,

Vi =

Jesli wzgledny ruch czarnych dziur odbywa sie po orbicie kolowej'?? wielkoéci takie jak
wzgledna predko$é v = |v| dziur i ich wzajemna odlegto$é r = |r| = |r1| + |ro| = 11 + 72,

H9H. Mathur, K. Brown, A. Lowenstein, Am. J. Phys. 85 (2017) 676.
120D okladniejsze rachunki pokazuja, iz wkutek wypromieniowywania przez taki uklad energii poczatkowo
eliptyczna orbita szybko staje sie orbita kotowa.
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a zatem takze predkosé katowa w = v/r ich obrotu oraz moment bezwladnosci uktadu
(wzgledem ich $rodka dziur) I = Mir3 + Moyr3 sa ze soba écisle powiazane: dowolne trzy
z tych czterech wielko$ci mozna wyrazi¢ przez czwarta. Poniewaz czestotliwosé rejestro-
wanych fal grawitacyjnych jest proporcjonalna do predkosci katowej w, wygodnie bedzie
od razu wyrazi¢ przez nia wszystkie pozostate wielkosci.

W szczegdlnosci moment bezwladnosci I dwéch dziur mozna wyrazi¢ przez ich wza-
jemna odleglosé¢ r korzystajac z wypisanych juz zwiazkéw:

M, 2 M, 2
I= M2+ Myr2 =0, (22 My [ — ) e,
111+ Mar 1<M1+M2T) + 2<M1+M2T) ar

Poniewaz, jak zawsze przy ruchu po orbicie kotowej, speliony jest zwiazek

U2 K

_ 2
Mred_: red "W — 2
r T

odleglos¢ wzgledna r jest powiazana z predkoscia katowa wzorem

7’3 . K - G(Ml + MQ)
N Mred w? N w? '

Zatem

G*SMIMy

[ == Mrod T2 = Mrod [G(Ml _'_ M2>]2/3 w_4/3 - W “

Ponadto, calkowita energia E ruchu wzglednego po orbicie kolowej jest réwnal?!

1 s k1 K K

—Mgt? — === Jw? — = = —— |

2 av ro 2 “ r 2r
Zatem

1 1 G*3M; M,
E=—Fgy=—-Jlw?=—-——""2_\?3
k 2 2 (M, + M) 3~

W analogiczny sposéb wzor na wypromieniowywana moc P mozna wyrazi¢ przez sama
predkos¢ katowa w. Najpierw trzeba jednak ustali¢ w tym wzorze wyktadniki a, b1 c.

Wymiarem fizycznym stalej G jest [G] = [L]*[M]7'[T]2. Z kolei moc P ma wymiar
[P] = [M][L]?[T]~3. Zatem zgodno$¢ wymiaréw obu stron zwiazku P oc GAI2wbc?:

d
M () b ()
Y
[T]? [M][TT]? [T]> \[T]
121Energia kinetyczna ruchu wzglednego jest oczywiscie tozsama z energia kinetyczna calego ukladu
liczona wzgledem inercjalnego ukladu $rodka jego masy:

1 M, 2 M, 2l 1
(Myv? + Mav3) = 2 lMl <mv> A <mv> - iMmdvz ) Iw*.

1
2

Tym samym réwniez calkowita energia ruchu wzglednego jest tozsama z calkowita energia uktadu.
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wymaga, by a =1, b =6, d = —5. Zatem

po G G gy MM
cd cd (M7 + My)?/3

Przyréwnujac teraz (zob. zadania 10.20, 10.21 oraz 2.15) szybkosé

dE 1 G*PM My g dw

dat 3 (Mt M) at

utraty energii uktadu do wypromieniowywanej mocy P, otrzymuje sie réwnanie

A1 s dw\P?
_o (L upde
M G<3a°" dt) ’

wyznaczajace zaleznos¢ predkosci katowej w, a wiec takze i czestotliwosci v rejestrowanych
przez detektory LIGO fal grawitacyjnych, od czasu. Majaca wymiar masy wielkos¢ M

(M1M2)3/5

M = _(Ml + M2)1/5 )

jest w literaturze zwana masa cwierkania lub swiergotu (the chirp mass). Po scatkowaniu
od w(ty) = wv(ty) = w1y do w(te) = wv(ty) = e (bo 2w = 27v) otrzymujemy stad
zwigzek

1 1 gj3 G MO/
— — —= =8ar™’ ———(ty — t1) .
Vf/s V;;/s i

Zgodnie z tym zwiazkiem, 15 — oo po skonczonym czasie to — t;. W rzeczywistosci w
momencie tym uktad dziur zaczyna sie zlewa¢ by, w koricu, stworzy¢ jedna czarna dziure.
Wykorzystywane proste newtonowskie rozwazania przestaja wiec by¢ wtedy stuszne (ten
etap ewolucji ukladu czarnych dziur musi by¢ juz modelowany przy uzyciu réwnan Ogélnej
teorii wzglednosci, ktére w tym celu trzeba rozwiazywaé numerycznie), a rzeczywisty
wykres v(t) urywa sie na pewnej wartosci Vp.,. Niemniej, znajdujac na wykresie zaleznosci
od czasu rejestrowanej czestotliwosci v punkt ¢y, w ktorym v zaczyna ostro i¢ do gory
(tak, iz mozna polozy¢ v(ty) ~ 00) i odczytujac wartosé v(t;) dla jakiego$ wezesniejszego
czasu t; mozna ze zwigzku

03

N GW8/5(8a)3/5V18/5(t2 )3/ '

wyznaczy¢ warto$¢ M. W ten sposob z oryginalnego przedstawionego przez kolaboracje
LIGO wykresu odpowiadajacego zdarzeniu oznaczanemu GW150914, na ktérym vy ~ 42
Hz w chwili t;, a t, — t; = 0.082 s, otrzymuje sie M ~ 35Mg (Mg = 1.988 x 103 kg jest
tu masa Storica).
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Masa M jest tylko pewna kombinacja mas obu czarnych dziur, ale ktadac My = £ M,
My = (1 — &) My, gdzie Myoy = My + Mo, a € € [0, 1], mozna tatwo sprawdzié, ze M, >
43/5 M. Tak wiec sumaryczna masa M, czarnych dziur uczestniczacych w zdarzeniu
GW150914 byla wiekszaniz 7T0Ms. Bardziej dokladnie mozna oszacowaé wartos¢ M.
przyjmujac, ze faza zlewania sie dziur rozpoczyna sie wtedy, gdy ich wzajemna odleglosé
staje sie réwna sumie ich promieni Schwarzschilda Rg(M;) + Rs(Ms), gdzie

2GM

c2

Rs(M)

)

jest ta odlegtoscia od (punktowej) masy M, po osiagnieciu ktérej predkosé (tzw. “druga
kosmiczna”) konieczna do ucieczki masy probnej do nieskoniczonosci musiataby by¢ wieksza
od predkosci swiatta c. Predkosé katowa w., z jaka uktad czarnych dziur obraca sie w
chwili, gdy m + ro = r = Rg(M;) + Rs(My) = 2G(M; + Ms)/c* mozna otrzymaé z
wypisanego wyzej zwiazku r® = G(M; + M,)/w?. Jest ona réwna

03

Wer = .
VBG(M; + M)

Jedli utozsami sie we, /7 z maksymalna czestotliwoscia Vimax =~ 300 Hz na przedstawionym
przez LIGO wykresie odpowiadajacym zdarzeniu GW150914 (tzn. z czestotliwoscia, na
ktorej ten wykres v(t) urywa sie, zamiast dazy¢ asymptotycznie do nieskoriczonosci), to
z powyzszego zwiazku otrzyma sie Mo, = My + Ms. 7Z wykresu mozna wiec otrzymac

C3

W\/g GVmax ’

co daje M,y = My + My =~ T6Mg. Laczac ten wynik z M =~ 30Mg mozna oszacowac, ze
M1 ~ 36M5, M2 ~ 29MS

Poczatkowa wzajemna odleglo$é¢ czarnych dziur mozna takze oszacowaé przyjmujac, ze
odpowiada ona czestotliwosci fal grawitacyjnych w chwili, gdy ich sygnal zaczyna by¢ re-
jestrowany przez detektory LIGO czyli, w przypadku zdarzenia GW150914, czestotliwosci
v(t;) &~ 42 Hz. Ze zwiazku r3 = G(M; + M) /w? = G(M; + M) /7?V*(t,) otrzymuje sie
w ten sposéb r; & 790 km. (Odlegto$¢ Rg(M;) + Rg(M,) jest réwna okoto 100 km.)

Jesli przyjac¢, ze chwila t;, w ktérej pojawia sie sygnal odpowiada pomijalnie malej
odwrotnosci wzajemnej odlegtosci czarnych dziur, a moment t5, kiedy czestotliwoéé v(t)
staje sie praktycznie nieskoriczona odpowiada r = Rg(M;)+ Rs(Ms) = 2G My /2, to wy-
promieniowana (w postaci fal grawitacyjnych) miedzy tymi chwilami energie F,,q mozna
obliczy¢ ze wzoru

Mtot -

B _(_n)_(_n)N ko K L MM, 2
2 20 (k) 2r(t1) )~ 2r(t)  2Rs(My)+ Rs(My) 4 My + My

Dla M; = 36Mg i My = 29Mg otrzymuje sie energie E,.q ~ 4Mgc® wypromieniowana w
czasie At = t5 —t; ~ 0.08 s.
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14 ROZPRASZANIE I PRZEKROJE CZYNNE

Przypomnienie

Przekréj czynny jest wielkodcia umozliwiajaca statystyczne (probabilistyczne) ujmowa-
nie rezultatu wielu zderzen wtedy, gdy nie $ledzimy toru pojedynczej czastki, a zaj-
mujemy sie grupa czastek o jednakowych masach i predkosciach tworzacych jednorodny
strumien padajacy na powierzchnie materialu zawierajacego wiele identycznych centrow
oddzialtywania, z ktérymi padajace czastki oddziatuja wedlug jednego i tego samego dla
wszystkich prawa.

Jesli na blok prostopadtoscienny o grubosci Az i polu powierzchni réwnym A, w
ktorym ze stala gestoscia n rozmieszczone sa centra oddzialywania, pada, prostopadle do
powierzchi tego bloku, jednorodny strumien ® czastek i rezultatem kazdego pojedynczego
aktu oddzialywania czastki padajacej z centrum moze by¢ pewne zdarzenie P, ktore z
jakichs powoddéw nas interesuje i podlega rejestracji (przez detektory), to liczba Np takich
zdarzenn P zarejestrowanych w czasie At jest dana wzorem'?2

Np=At-(n-A-Az) - ®-0,

w ktérym o - przekrdj czynny na zdarzenie'*® P - jest wielkoscia o wymiarze pola po-
wierzchni charakteryzujaca szanse zajscia P w pojedynczym akcie oddzialywania czastki
padajacej z centrum oddziatywania.

Jesli zdarzenia P charakteryzuja sie pewnymi parametramil = (Iy,...,[,), ktére moga
zmienia¢ sie w sposéb ciagly, to zwykle w takiej sytuacji interesuje nas liczba dN; takich
zdarzen, w ktérych zmienna 1 przyjmuje wartosci ze zbioru (1, 1+ dl); przekrdj czynny do
jest wtedy wielkosScia rézniczkowa.

Np. w typowej sytuacji, w ktorej blok zawiera centra sit rozpraszajacych nadlatujace
czastki, interesuje nas liczba dNy , czastek nadlatujacych z nieskonczonodci, gdzie miaty
energie F kazda, rozproszonych (w czasie At) w kat brylowy d2(0, ¢) = dpdfsin . W celu
znalezienia potrzebnego do obliczenia tej liczby (w konkretnych warunkach eksperymen-
talnych okreslanych przez ®, A, n Az) rézniczkowego przekroju czynnego rozpraszania
do(E) rozpatrujemy pojedyncze centrum oddzialywania i pojedyricza czastke nadlatujaca
z parametrem zderzenia b, tj. odlegtoscia w nieskonczonosci od prostej £ réwnolegtej do jej
predkosci i przechodzacej przez centrum oddziatywania (w ktérym umieszczamy poczatek
ukladu odniesienia) i wyznaczamy (na podstawie praw mechaniki) kierunek w ktérym
odleci ona w wyniku oddzialywania. Jesli o§ z wybrana jest wzdluz prostej ¢ i osie x,y
sa ustalone, to prawa te pozwalaja powiazaé¢ kierunek scharakteryzowany katami 6 i ¢
w ktérym czastka oddali sie po oddzialywaniu z jej polozeniem w stosunku do osi (z jej
odlegloscia b od osi i katem ) w nieskonczonosci przed oddzialywaniem. Jesli czastka
lecaca przez wycinek %[(ZH— db)? — b*]dyp =~ bdbdp powierzchni prostopadtej do osi ¢ oddala

1227akladamy tu, ze szeroko$é Az jest mala na tyle, by mozna bylo pominaé¢ przypadki oddzialania
czastki padajacej z wiecej niz jednym centrum oddzialywania.

123Utrwalil sie taki dziwolag jezykowy, ktérego jak niepodleglosci broni jakaé zgrzybiala Komisja
Jezykowa PTF; ja wole méwié¢ “przekrdj czynny zdarzenia” bo jest on wladnie pewna charakterystyka
(whasciwoscia) tego zdarzenia.
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sie po oddzialywaniu w kierunku wyznaczonym przez przedzialty (0,0 + df) i (p, ¢ + dp),
to rézniczkowy przekrdj czynny tego zdarzenia, do(E), jest réwny

ds.

2
d()—bdbdgp—b'—dé’ o= ‘@dﬂz L |db

=~ 2sind | df

sin 0 | do

Zatem w celu wyznaczenia do(F) = do(F, ) nalezy ztem znalez¢ (jednoznaczny) zwiazek
0 = 0(b), odwrdcié go, tj. znalezé¢ zwiazek b = b() i wykorzystaé go w powyzszym wzorze.
Poniewaz pochodna b* (lub b) po # moze by¢ ujemna, we wzorze tym musi sta¢ jej wartosé
bezwzgledna. Ponadto, jesli zwiazek b = b(f) nie jest jednoznaczny (a nie musi by¢ -
funkcja ta moze mieé kilka gatezi b = b;(f) i = 1,...,g), nalezy zsumowaé wszystkie
mozliwosci:

d62

g
do(E 2sin 6 ;

poniewaz w takiej sytuacji kazdy z przedzialéow (b;,b; + db;) prowadzi do rozproszenia
czastki w kierunku (6,60 + df).

Nalezy takze podkresli¢, ze przekrdj czynny jest wielkoscia do$¢ uniwersalna i mozna
pyta¢ o przekrdj czynny zaj$cia dowolnego zdarzenia w wyniku okreslonej reakcji (np.
wyprodukowania w wyniku rozpraszania czastek na centrum oddzialywania stonia z traba
o dhlugosci w przedziale od [ do [ + dl lub innego zwierzaka - w mechanice klasycznej
przekrdj czynny taki bedzie oczywiscie zerowy, ale w mechanice kwantowej, to kto wie...).

Proces rozpraszania mozna tez obserwowac z uktadu, w ktorym porusza sie rowniez tar-
cza. Znika wtedy w zasadzie rozrdznienie, co jest tarcza, a co padajaca wiazka. Przekrdj
czynny jest wtedy otrzymywany z obliczonego w ukladzie, w ktérym tarcza spoczywa
przez odpowiednia transformacje (Galileusza w przypadku nierelatywistycznym, lub Lo-
rentza, w przypadku relatywistycznym) do ukladu poruszajacego sie.
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Rysunek 54: Elastyczne rozpraszanie kuli o promieniu r na unieruchomionej kuli o pro-
mieniu R. Z rysunku widaé, ze 0 + 2a = 7.

Zadanie 11.1
Obliczy¢ rézniczkowy i catkowity przekrdj czynny elastycznego rozpraszania sztywnej kuli
o promieniu r na unieruchomionej kuli o promieniu R.

Rozwiazanie:

Jak zawsze, aby obliczy¢ przekrdj czynny trzeba znalezé zalezno$é kata rozproszenia od
parametru zderzenia b, tj. funkcje 6 = 6(b), a nastepnie odwréci¢ ja, by wyznaczy¢
b= b(0). W rozpatrywanym tu przypadku zwiazek 6 = 0(b) ma charakter czysto geome-
tryczny i nie zalezy od predkosci (czyli energii) padajacej kuli o promieniu r. Z rysunku
54 widaé, ze zachodzi zwiazek 2a + 0 = 7, czyli

a_7r—9
2

Takze z tegoz rysunku 54 mozna odczytac, ze

b:(r+R)sina:(r+R)cosg.

2
Stad
db(0 1 6 . 0
do = b(0) ‘%‘ dpdf = 3 (r + R)*cos 3 sin 3 dy db
1 1
=1 (r+ R)?sindy df = 1 (r + R)%dQ.
Zatem rézniczkowy przekrdj czynny nie zalezy od kata 6 (jest izotropowy)

do 1 9
=1 TR

a catkowity przekrdj czynny takiego elestycznego rozpraszania jest, zgodnie ze zdrowa in-
tuicja (i sensem przekroju czynnego, jako pola powierzchni, w ktora jesli czastka padajaca
leci, to sie rozproszy), rowny

oc=m(r+ R)>.
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Zadanie 11.2

Obliczy¢ przekrdj czynny o,qer,(E) na zderzenie z planeta o promieniu R i masie M me-
teorytu (traktowanego jak punkt) o masie m nadlatujacego z nieskoriczonosci i majacego
energie F.

Rozwigzanie:
Aby znalez¢ warunek, jaki musi spelnia¢ parametr zderzenia b nadlatujacego meteorytu,
by uderzyl on w Ziemie nalizujemy potencjal efektywny
Wl I
ro 2mr?’

Vet (1) =

w ktérym L = musob, czyli L? = 2mEb?. Przy ustalonej energii F, odlegloéci mniejsze
niz r = R sa dla meteorytu osiagalne tylko, gdy jego moment pedu L (a zatem parametr
zderzenia b) jest taki, ze Vog(R) < E, tj. gdy

|k L? k| *E

N B
R amm- R RS

Stad otrzymujemy warunek, ze przy ustalonej energii £ parametr zderzenia b musi by¢
mniejszy niz

2 2 _p2(q |’<0| .
b* <by .. =R ( +—RE
Stad

zerzE: 21 ﬂ
Oyderz(F) 7TR<+RE

Przekréj czynny jest réwny czynnikowi geometrycznemu 7R? pomnozonemu przez ma-
lejacy z energia F (im wyzsza energia E meteorytu, tym trudniej sile grawitacji “zagiac¢”
jego tor) “czynnik Sommerfelda”.

Spowodowany jakims$ stabym przyciagajacym oddzialywaniem (wciaz hipotetycznych)
reliktowych czastek ciemnej materii i zwiekszajacy przekrdj czynny ich anihilacji czyn-
nik Sommerfelda moégtyby tlumaczy¢ dlaczego moze ona w centrum Galaktyki zachodzié¢
znacznie wydajniej, niz wtedy, gdy czastki te anihilowaly w pierwotnej plazmie kosmicz-
nej pozostatej po Wielkim Wybuchu,'?* pozostawiajac tylko ich tzw. gestosé reliktowa,
stanowiaca dzis ok. 23% energii Wszech§wiata. Oczywiscie nie ma pewnosci, ze obser-
wowane w centrum Galaktyki procesy astrofizyczne sa wladnie anihilacja czastek ciemnej
materii. Rozwazania odwolujace sie do czynnika Sommerfelda spowodowanego jakims,
tez hipotetycznym, oddzialywaniem sa typowa ilustracja prob skladania kosmicznego
“puzzla”. Przyklad przekroju czynnego na zderzenie meteorytu z planeta zawsze jest
jednak przywolywany aby zilustrowac¢ role mozliwych dodatkowych oddzialywan miedzy
czastkami ciemnej materii.

1240 czywiscie Wielki Wybuch jest tu tylko umowna nazwa procesu, w ktérym po okresie inflacyjnej
ekspansji Wszechswiat “podgrzal“ sie do do$¢ wysokiej temperatury 7', tj. wypelnil réznymi czastkami
o do$¢ wysokiej éredniej energii.
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Przypomnienie

W dynamice bryly sztywnej role masy odgrywa wielkos¢ i(o) zwana tensorem jej mo-
mentu bezwladnosci wzgledem punktu O. Jesli z O poprowadzi¢ wektory wodzace r, do
wszystkich infinitezymalnych elementéw bryty o masach Am,, to tensor i(o) ma postac

Lo :ZAma [rl(e, e, +e,Qe,+e.®e,)—r,Q1,].

Tensor jest, tak jak “Zywe” wektory (w sprawie “Zywosci” wektoréw - zob. mdj skrypt
do algebry), obiektem geometrycznym i nie zalezy od uktadu odniesienia.'?® Zalezy tylko
od punktu O, wzgledem ktérego jest zdefiniowany. Jesli bryta obraca sie wokét osi prze-
chodzacej przez O z (chwilowa) predkoscia katowa w, to zwiazany z tym obrotem moment
pedu J oy (calkowity moment pedu bryly wzgledem poczatku jakiegos dowolnie wybranego
uktadu inercjalnego ma jeszcze inne przyczynki - zob. nizej) jest réwny!'26

Joy=Toyw=Y_ Amg{r?le, (e, w) + e, (e, w) +e. (e, w)] — 1, (r,w)}.

Jesli wprowadzi¢ uklad odniesienia o poczatku w punkcie O i wersorach e,, e,, e,, to
tensor mozna zapisa¢ w postaci

A

I(O) :ei®ej]g,

i reprezentowaé go jego dziewiecioma skladowymi (f(o))ij w bazie e; ® e;. Tworza one
macierz

2 2
R Yy, + 2, —2%?/@2 —T g2
[(O) = E Ama —Yalog T, + Za —Ya<a 5
2 2
a —Z2aZg —ZaYa Ty T Y,

lub, w notacji wskaznikowej,
p o
Loy = Z Amg (692 —rirl),
a w wersji ciaglej, w ktérej p(r) jest lokalna gestoscia masy bryly,

f(%) = /d3r p(r) (67r% = r'r7).

125Tensor e, @ €, + e, ®e, + e, ®e, ma te sama postaé niezaleznie od wyboru ortonormalnego ukladu
wersorow e;. Dzieki temu zdefiniowany podanym wzorem tensor i(o) rzeczywidcie nie zalezy od wyboru
ukladu odniesienia (wersoréw e;).

126D zialanie tensora na wektor wykorzystuje tu kanoniczny izomorfizm Frecheta-Riesza wektoréw i form,
ktéry w przestrzeni R? sprowadza sie do dzialania przez zwykly iloczyn skalarny. W rzeczywistosci tensor
Io powinien by¢ elementem przestrzeni V @ V* (V* jest przestrzenia form nad V - nad przestrzenia, w
ktérej “zyje” wektor w), ale tu nie musimy sie takimi szczegétami przejmowaé, bo nic z nich nie wynika
dla “zdrowej” fizyki.
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Zwiazany z obrotem wokol punktu O moment pedu bryly mozna zatem napisa¢ w postaci
7 rij k
J(O) =€ J(O) :e,I(Z)) (Sjkw .

Zatem sktadowe J/,, wektora J o) uzyskujemy dzialajac po prostu macierza I (0) na kolu-
mienke skladowych wektora predkosci katowej.

Jesli znany jest tensor i(CM) momentu bezwladnosci bryly wzgledem jej srodka masy
(CM), to tensor i(o) wzgledem punktu O, do ktorego biegnie od srodka masy wektor R
mozna otrzymac ze wzoru (twierdzenie Steinera, zob. zadanie 12.2)

Io)=Tcmy+ M [R*(e, ®e, +e,0e,+e.®e.) —ROR],

w ktérym M jest calkowita maa bryly.

Kazdy ruch bryly sztywnej (wzgledem wybranego uktadu inercjalnego) mozna zlozyé
z ruchu postepowego dowolnie wybranego punktu O w ukladzie zwiazanym na sztywno z
bryla (punkt ten moze by¢ punktem samej bryty, ale moze tez leze¢ poza nia) i obrotu bryty
wokot tego punktu z (w ogélnosci zmieniajaca sie w czasie) predkoscia katowa w. Predkosé
katowa bryly jest wektorem niezalezym od wyboru punktu O, ktéry wybrany zostal jako
ten, przez ktory przechodzi jej chwilowa o$ obrotu. Infinitezymalne przemieszczenie dT 4
(wzgledem wybranego ukladu inercjalnego) dowolnego punktu A bryly mozna zawsze
zapisaé jako

dTa=drp+dOxrpy,

gdzie rp jest wektorem wodzacym punktu O, rp4 wektorem biegnacym od punktu O
do punku A, a d@ infinitezymalnym katem obrotu bryty wokét jej chwilowej osi obrotu
przechodzacej przez A (tj. d@/dt = w). Wzér ten mozna wykorzystywaé do wyznaczania
wektora predkosci katowej w.

Dynamika bryly sztywnej rzadza dwa réwnania:

d

—J=D

dt ’

d2

— MR =F.
dt?

R jest tu potozeniem srodka masy bryly w dowolnie wybranym ukfadzie inercjalnym,
F wektorowa suma » F, wszystkich sit na nia dzialajacych (choéby byly przylozone
w réznych jej punktach), D = )" r, x F, suma momentéw tych sit liczonych wzgledem
poczatku wybranego ukladu inercjalnego, a J jest momentem pedu bryly rowniez liczonym
wzgledem poczatku tegoz ukladu inercjalnego. Wektor J jest w ogélnosci dany wzorem

J = MR x vo+ Mrp x (w x Rp) +Io)-w.

W powyzszym wzorze vp = To jest predkoscia wzgledem uktadu inercjalnego punktu O, a
o jest wektorem idacym od punktu O do srodka masy bryly; zatem R = rp + Ry, (zob.
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rysunek 55). i(o) jest tensorem momentu bezwtadnosci bryty wzgledem punktu O. Punkt
O, jak juz bylo powiedziane, moze by¢, podobnie jak uklad inercjalny, wybrany arbitralnie
ale (co bardzo wazne - zob. np. zadanie 12.15) jest przyczepiony do ukladu zwiazanego
a bryla i wobec tego zmienia wraz z nia swe polozenie wzgledem uktadu inercjalnego.
Pochodne po czasie wystepujace w podanych tu réwnaniach ruchu bryty sa pochodnymi
obliczanymi w ukladzie inercjalnym.

Y

3

F,

ro

HV

Rysunek 55: Ruch bryly sztywnej jako ztozenie ruchu postepowego (z predkoscia vp = 1)
wybranego (dowolnego, ale zwiazanego z bryla) punktu O i obrotu z chwilowa predkoscia
katowa w wokdtosi przechodzacej przez punkt O. Definicje wektorow.

Wazne uproszczenie wystepuje, gdy jako punkt O obrany zostaje srodek masy bryly
(jednak nie zawsze jest to najwygodniejsze), tj. gdy ro = R, a Rj; = 0. Wéwczas

J=MR xR+Ioy-w=MRxR+Jcw.

J o) mozna wtedy uwazac za “wewnetrzny” moment pedu (chcialoby sie rzec: spin) bryly
liczony wzgledem srodka jej masy, a pierwszy wyraz za jej “orbitalny moment pedu”. Co
wiecej, jesli wektory wodzace przylozonych do bryty sit F, zapisa¢ jako sumy r, = R+d,,
gdzie d, sa wektorami od srodka masy brylty do punktéw przylozenia sit (zobacz prawy
rysunek 55) i zapisaé momenty sit w postaci D, = R xF, +d, xF, =R xF, + DSM,

to réwnania dynamiki bryly zredukuja sie do'?”
j—; MR = ; F,.
%JCM = % (Iey-w) = DM = ;DSM.
Istotnie, mnozac wektorowo przez R z lewej strony réwnanie ruchu srodka masy
RX%MR:%(MRXR)ZRXF,

1277 szkoty wynosi si¢ zwykle mniemanie, ze to te wzory sa ogdélnymi prawami dynamiki bryty; jest
ono, jak widaé¢, bledne i jako takie, szkodliwe!
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i odejmujac je stronami od pelego réwnania

%J: % (MRxR+JCM) _R xF+DM,
otrzymujemy “zredukowane” réwnanie podane wyzej.

Nalezy tu jeszcze raz zwrdoci¢ uwage na to, ze pochodne po czasie wystepujace w wy-
pisanych wyzej prawach dynamiki bryly sa pochodnymi liczonymi w inercjalnym uktadzie
odniesienia. Aby je oblicza¢ bezposrednio trzeba wszystkie wektory ro, Ry, w i tensor I
rozpisa¢ na skladowe tymze ukladzie. Nie zawsze jest to wygodne, gdyz wzgledem tego
ukladu bryta obracajac sie, zmienia swoje potozenie, co powoduje, ze skladowe tensora
bezwtadnosci Ip nie sa stale (wyjatkiem - mylacym! - sa “szkolne” przyklady). Wyjsciem
w tej sytuacji jest wyrazenie pochodnej wektora J obliczanej w uktadzie inercjalnym przez
jego pochodna po czasie wzgledem uktadu zwiazanego z bryta:

dJ dJ 1
E = E +wXd.

W oznaczeniach wprowadzonych wyzej (zob. takze rysunek 55) energia kinetyczna
T bryly, ktorej ruch traktujemy jak zlozenie ruchu postepowego wybranego punku O
majacego ustalone wzgledem brylty potozenie i obrotu bryly wokoél chwilowej osi prze-
chodzacej przez punkt O jest dana wzorem

1 1
T = §MV2O + Mvo-(w x Rp) + §w~IO-w.

Taka wlasnie postac¢ energii kinetycznej bryly sztywnej nalezy w ogélnosci wykorzystywac
w lagrangianie L =T — V. Jest ona oczywiscie niezalezna od wyboru punktu O.
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Zadanie 12.1

Wyprowadzi¢ wzory na sktadowe (chwilowej) predkosci katowej w w uktadzie odniesienia
zwiazanym z obracajaca sie bryla sztywna, ktorego orientacja wzgledem uktadu nierucho-
mego (inercjalnego), majacego z nim wspdlny poczatek jest wyznaczona przez zdefinio-
wane standardowo przez trzy katy Eulera ¢, 6 i ¢ (trzy “trzy ruchy tapki”).

Sparametryzowane katami Eulera trzy obroty przeprowadzajace uklad trzech ortonormal-
nych wektoréw e,, e, i e, w trzy ortonormalne wektory e,», e, i e,» ukladu zwiazanego
z bryla sa nastepujace: najpierw dokonujemy obrotu wokdét wektora e, o kat ¢, co prze-
prowadza wektory e,, e, i e, w wektory e,/, e, i e, = e,. Nastepnie te primowane
wektory obracamy wokot osi zwanej linia wezlow o wersorze w, pokrywajacej sie z wek-
torem'?® e, o kat 6 otrzymujac w ten sposéb wersory e,s, e,, = e, i e,n. Wreszcie
obracamy bisowane wektory wokdét wersora e,» o kat ¢, co przeprowadza je w koncowy
uklad wersoréw ey, e, m i e,n = e,» ukladu zwiazanego z bryla. Predkosé¢ katowa w jest
wiec réwna

"

"
w=e,w +ww’tesw =e,w +ww’ +emw?
:ez(p+W9+eZ///¢.

"

Zatem (w* = ey -w, etc.):
" . .
wx = (ex/// -ez) (2 + (ex/// W) 9 + 0 s
1 . .
W' = (eyn-e.) P+ (eyr-w)0 40,
" . . .
wz = (ezw -ez) (2 + (ezw W) ‘9 + Qﬂ .
Zera na koncu pierwszej i drugiej linii biora si¢ z tego, ze e,m-eym = 01 eym-eym =0, aw
ostatnim czlonie trzeciej linii wykorzystane zostata réwnos¢ e, -e,» = 1. Poniewaz
W =e, = —€,SIny + €,Ccos Y,

(w/g konwencji przyjetej w mechanice klasycznej w = e,y = e, cos ¢ + e, sin @) wiec

"
x

w = (exw -ez) gO - (exm -ex) 9.830 + (exm -ey) éQP ,
W = (eyr-e.) ¢ — (eyn-e;) 0 Sp + (eyr-ey) écs@ ,
"

W = (eun-e,)p— (em-e;)ls, + (e.mn-e,)bc, +1.
Aby zatem podaé skltadowe predkosci katowej, trzeba znalezé iloczyny skalarne wer-
soré6w e;» z wersorami e;. Poniewaz oba uklady wersoréw sa ortonormalne, wystarczy

wyrazi¢ wersory e;» przez €;. Robimy to sukcesywnie (w sprawie porzadku w notacji zob.
moj skrypt do Algebry)

c, —5S, 0
(ey, €y, €)= (ez,€y,€) | s, ¢, O
0 0 1

128y istnieja dwie szkoty: wedtug jednej o$ wezléw pokrywa sie z osia 2’. Tak tez zwykle jest przyj-
mowane w podrecznikach Mechaniki. Tu jednak przyjmiemy konwencje drugiej szkoly, jako ze jest ona
standardowa w mechanice kwantowej, ktéra bedzie nam bardziej uzyteczna.
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Co 0 Sp

(€yr, €y, €)= (ey,€ey,€y) | 0 1 0
—Sp 0 Co
c, —5S, 0 cg 0 sy
=(e;, ey €) | Sp ¢, O o 1 0],
0 0 1 —s9 0 ¢
1 wreszcie
C¢ —Sw O
(ew///’ ey///7 eZ///> = (e(E”7 ey//7 ezn) de Cw O
0 0 1
c, —5S, 0 cg 0 sp cy —58y 0
=(e; ep€) | 5o ¢, O 0 1 0 Sy ¢y O
0 0 1 —syp 0 ¢y 0 0 1

Po cierpliwym wymnozeniu macierzy (Mathematica robi to szybciej) ostatecznie otrzy-
mujemy (w oznaczeniach z mojego skryptu do Algebry) e;» = €;[Recer ]’ ;m, czyli jawnie

CoCPCyp — SpSyy  —SpCy — CpChSy  CpSh
(em///, ey///, ezm) = (ez, ey, ez) 8500901/, + C¢8¢ CpCyp — S¢098¢ S50
—S59Cy S9Sqy Coy
Widniejaca tu macierz jest wlasnie macierza poszukiwanych iloczynéw skalarnych
e(E . ew/// ew . ey/// e(E . ezm

Re<_e/// = ey . ew/// ey . eym ey . eZ/// s
eZ -ex/// ez -ey/// eZ -eZ///

gdyz €€y = 5k] [Re(_e”’]],i/// = [Reﬁe///]ki///. Zatem
wmm = —gb S9Cy) + ésw s
W' = psgsy +0cy,
wzm _ (p Ce + ¢ ‘

Metoda tu wykorzystana pozwala takze bez trudu znalez¢ sktadowe wektora chwilowe;
predkosci katowej w wyjsciowym ukladzie zyz:

w' = (e,-e,)p— (ex-ex)ésgp + (ex-ey)é% + (ex-ezm)¢ = — 9s¢ + @bcgpse,
w! = (ey-€,)p— (e,-€,)05s,+ (e,-€)0c, + (ey-e.n)h = Oc,+1sysg,
w'=(e,-e,)p—(e,e)ls,+ (e,-e) écw + (e,-e.m) ) = ") + 'l/'JCg.

Jesli przyja¢ druga konwencje, wedlug ktérej w = e,s, to analogiczne kroki dadza

W = @ sgsy +0cy,
wym = QO S9Cy — éSu, s

lel

w® =pcy —|—¢.
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Zadanie 12.2
Poda¢ wzér wyrazajacy tensor Iy momentu bezwladnosci bryly sztywnej wzgledem
punktu O przez tensor Iicyry tejze bryly wzgledem jej srodka masy.

Rozwiazanie:
Tensor I oy momentu bezwladnosci bryly sztywnej wzgledem dowolnego punktu O jest
dany wzorem

IO—ZAma ex®em+ey®ey+ez®ez) ra®ra]7

w ktérym sumowanie przebiega po wszystkich elementach masy Am,, z ktérych sktada sie
bryta. (Gdy masa bryly jest rozlozona w sposéb ciagly, nalezy zastapi¢ masy Am, przez
d®r p(r), gdzie p(r) jest (lokalna) gestoscia masy, a sumowanie zastapi¢ catkowaniem).
Wektory r, biegnace od punktu O do poszczegdlnych mas Am, mozna zawsze zapisa
jako

= R+l

gdzie R jest wektorem od $rodka masy do punktu O. Wstawiajac tak zapisany wektor r,
do powyzszego wzoru na I o) otrzymujemy

Ip = Z Am, [l —R)? (e, ®e, +e,0e, +e,De,)

Po rozpisaniu wzoér powyzszy przybiera postaé
Ip = Z Am, [t (e, ® e, +e,@e, +e, ®e,) — M grc)]
+ZAma R2(ex®ex+ey®ey—|—ez®ez) —R®R]

+2Ama ((10M R(e$®ew+ey®ey+ez®ez)—i—rgCM)@R—i-R@rgCM)} )

Ostatnia linia tego wzoru, w ktérej wektory (&) wystepuja liniowo, znika, gdyz z definicji

srodka masy (CM)
Z Amrc =0,

a pierwsza jego linia jest tensorem Icny bryly wzgledem srodka jej masy. Zatem zapisane
tensorowo twierdzenie Steinera ma postaé

I(O):I(CM)—I—M[RQ(ex@ex—l—ey@ey—}—eZ@ez)—R®R} ,
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gdyz suma po Am, w srodkowej linii daje mase brylty. W konkretnym ukladzie odniesienia
zadawanym przez wersory'® e,, e,ie,. wktorym R =e, X+e,Y+e, 7, al =e;@e; 1"
“dodatek” wynikajacy z “przesuniecia”’ tensora momentu bezwladnosci od srodka masy
(CM) do punktu O ma w notacji wskaznikowej posta¢ Al = M(6R? — R'R), a w
macierzowej

) Y2422 -XY  -XZ
Ao=M| -YX X*+2° -YZ
—ZX  -ZY X’+Y?

Nalezy tu zwréci¢ uwage na to, ze tensor momentu bezwladnosci przesuwamy zawsze od
srodka masy bryly do danego punktu. Jesli ze znanego tensora I(o) chcemy otrzymac
tensor Ior) nalezy przejs¢ przez érodek masy (R’ jest wektorem skierowanym od érodka
masy do punku O’):

129Tensor e, ® e, + e, ® e, +e€, ®e, ma te sama posta niezaleznie od wyboru ortonormalnego uktadu
Wersorow e;.
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Zadanie 12.4

Znalezé tensor I© momentu bezwladnosci jednorodnego stozka o masie M, promie-
niu podstawy R i wysokosci h wzgledem punktu O bedacego srodkiem jego podstawy.
Nastepnie wykorzystujac twierdzenie Steinera, otrzymac¢ tensor momentu bezwladnosci
wzgledem $rodka masy stozka.

Rozwiazanie:

Wprowadzmy uktad odniesienia o osi z skierowanej wzdluz osi stozka do gory i osiach z i
y lezacych w plaszczyznie jego podstawy. Punkt O bedacy $rodkiem podstawy jest wiec
poczatkiem tego uktadu odniesienia. W tak zdefiniowanym ukladzie odniesienia sktadowe
Ii(jo ) tensora momentu bezwladnosci 1©) wzgledem punktu O sa dane calkami

I;(;):/// dzdydzp (y* + 2°) ,
Vol

O) _
19 = [ [ | azayazp o).

etc. przy czym granice calek tatwiej ustali¢c po dokonaniu w catkach zamiany zmiennych
na cylindryczne: x = rcosp, y = rsin @, dvdy = dp drr. Po takiej zamianie zmiennych

h 2 r(z)
I:Eg) = / dz/ dgo/ drrp (z2 + 72 sin? <p) ,
0 0 0
h 2r r(z)
Ig) = /0 dz/o dgo/o drr (—7"2 coSs  sin <p) ,

etc. Goérna granica wewnetrznej calki jest dana oczywistym wzorem (musi by¢ réwna R,
gdy z = 0 i znika¢, gdy z = h)

r(z)zR(l—%).

Od razu wida¢, ze catkowanie po kacie ¢ wyzerowuje wszystkie pozadiagonalne sktadowe:

I:Eg) =19 = ;?) = 0. Poza tym po wykonaniu catki po kacie ¢ otrzymujemy

h r(z) h
119 = 7rp/ dz/ drr (22° + r’sin® ¢) = 7Tp/ dz <227’2(z) + = 7’4(2)) .
0 0 0
Po przejsciu do zmiennej £ = z/h mamy stad

1
1;2>:7rp1-z2h/d§ h2§2(1—§)2+11~z2(1—§)4 = 1pR*h Ly gy,
0 4 30 20

Poniewaz jest jasne (z symetrii), ze 119 = Iéyo), a (ze szkoly jeszcze)

3M

p= TR2h’

301



otrzymujemy
M
0) _ 7(0 2 2
LY = 1) = 55 (3R* + 217).

Sktadowa, I ©) oblicza sie jeszcze prosciej

h r(z)
I§ZO>:/// dzdydzp(x2+y2):27rp/ dz/ drr?,
Vol 0 0

i po analogicznych krokach otrzymuje sie

3
19 = = MR*.
)= MR

Ostatecznie wiec, zapisujac tensor 1) we wprowadzonym ukladzie (czyli w bazie e; ® e;,
gdzie i, j = x,y, z) macierzowo

" 3R? 4 2h? 0 0
19 = % 0 3R2+2h2 0
0 0 6 R2

Aby napisac tensor momentu bezwladnos$ci wzgledem $rodka masy stozka trzeba naj-
pierw ustali¢, gdzie 6w srodek sie znajduje. Niewatpliwie (z powodu symetrii wzgledem
obrotéw stoska wokét jego osi) gdzie$ na osi stozka. Aby ustali¢ na jakiej wysokosci,
obliczamy catke

1 p [" ) 1
oM = 7 VleddepZ:WM i dzzr (Z):Zh'

Zatem wektor a, o ktéry trzeba “przesunac” tensor i(c ) by dostac z niego tensor i(o)

A~

zgodnie ze wzorem (1 jest tensorem jednostkowym)

~

I(O) = i(CM) + M (321 — a®a) ,

ma, we wprowadzonym ukladzie posta¢ a = e,(h/4). W sktadowych zatem

3R? + 242 0 0 s (1 0 0
I<CM>:% 0 3R2+2h2 0 —]\fg 01 0],
0 0 6 R2 0 0 0
czyli
AR? + h? 0 0
(M) % 0 AR? +h* 0
0 0 S R2
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Sktadowe te mozna tez otrzymaé wprowadzajac nowy uklad odniesienia przesuniety
do $rodka masy i catkujac bezposrednio. Teraz jednak zmieniaja sie granice calek i

3h/4
IeM) — 27Tp/ dz7(z2),
—h/4

gdzie wskutek przesunieciu ukladu

Zatem

Sh/4 3 2\' «
e T R4/ dz (2 -2) = Z sr'n.
=2 27 L \a T 10"

Analogicznie, po wykonaniu calki po kacie ¢

3h/4 7(z) 3h/4 ]
0

—h/4 —h/4

Oczywiscie dostaje sie w ten sposéb te same skladowe, co z twierdzenia Steinera.

303



S

Rysunek 56: Dwa potaczone przegubowo prety.

Zadanie 12.8

Zmalez¢ energie kinetyczna uktadu dwu potaczonych przegubowo pretéw o masie m i
dhugosci [ kazdy. Koniec lewego preta jest unieruchomiony w punkcie A (pret moze sie
tylko obraca¢ wokét A), a koniec B prawego preta moze tylko przesuwaé sie po ustalonej
prostej przechodzacej przez punkt A (rysunek 56).

Rozwiazanie:
Jak widaé¢ z rysunku 56 dwa katy ¢ i ¢’ nie sa niezalezne: ¢’ = m — . Uktad ma wiec
tylko jeden stopien swobody. Za uogélniona zmienna dynamiczna wybieramy kat . Osie
inercjalnego ukladu odniesienia wybieramy tak, jak na rysunku.

Energie kinetyczna obliczamy z ogélnego wzoru

1 1
T = §mV20 +mvo-(w x Ry) + §w-I(o)-w.

Nalezy przy tym pamietaé, ze rozpatrywany uktad sktada sie z dwoch niezaleznych (gdy
chodzi o obliczanie energii) poduktadéw, ktérymi sa dwa prety. Zatem T =Ty + Ty. W
celach instruktazowych obliczymy kazda z tych dwu energii dwoma sposobami.

T} - energia kinetyczna lewego preta. Najpierw rozpatrujemy ruch tego preta jako ztozenie
ruchu postepowego punktu A i obrotu preta wokottegoz punktu. Poniewaz punkt A jest
unieruchomiony, v, = 0; jesli kierunek wzrostu kata ¢ jest taki, jak na rysunku 18, to
wi = e, ¢, a tensor momentu bezwladnosci preta wzgledem osi z przechodzacej przez jego
koniec jest znany (paka - to zlowrézbne, rosyjskie siéwko...) ze szkoly:'** IZ%) = smil?.
Zatem

11 1
Ty = = —ml*¢* = —ml*p?.
PT 3™ T

Alternatywnie, mozna widzie¢ ruch lewego preta jako zlozenie ruchu postepowego srodka
jego masy i obrotu preta wokdl tegoz srodka. Zmieniajacymi sie wspéhzednymi (w
uktadzie inercjalnym) $rodka masy sa o = (1/2) cos p, your = (1/2) sin ¢, wiec viy, =
(I?/4)¢. Z kolei (znéw ze szkoly) IiG = (1/12)mi* i ponownie

11 11

1
— - l2'2 - l2'2:_ l2-2'
SRR R TUL 6" Y

130pozostale skladowe w ukladzie inercjalnym tego tensora zmieniaja sie w trakcie ruchu preta, ale
poniewaz w = e, ¢ stale, nie wchodza one w T7.

T
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Pouczajace moze tez by¢ obliczenie T} wybierajac za O drugi koniec pierwszego preta, czyli
punkt C - wtedy niezerowy jest srodkowy czlon ogdlnego wzoru na energie kinetyczna,.

T, - energia kinetyczna prawego preta. Najpierw rozpatrujemy ruch tego preta jako
zlozenie ruchu postepowego punktu B i obrotu wokdét tego punktu. Z rysunku 18 widag,
ze xp = 2lcosp, yg = 0, wiec vg = —e, 2l¢sin p. Z kolei wektor od punktu B (ktéry
teraz gra tu role punktu O) do srodka masy drugiego preta ma, jak wida¢ z rysunku,
postaé Ry = —e, ({/2) cosp + e, (I/2) sing. Ponadto ws = e, ¢’ = —e, ¢ 1 wobec
tego wy x Ry = (I/2)¢(e,sinp + eycosp). Zatem (oczywiscie IiGy,) = Lml? wicc
Iian + Tml? = 2mi?, ale wydzielamy Iy dla wygody)

1 1
Ty = = 4ml%p*sin® o — mi*¢? sin® ¢ + = 5 (Iiean + Zml2)<p2

OO'"‘[\DI}—k

1 1
ml?(1 + 8sin? p)p? + = 5 I’ = 5 ml?(1 + 6sin? p)p?.

Jesli za$ ruch prawego preta uwazaé za zlozenie obrotu wokoét §rodka jego masy i ruchu
postepowego tegoz punktu, to zoyme = (31/2) cos ¢, yome = (1/2) sin g, wiec
2 Lo g a2 2 L 5.9 . 9
Vi = Zl $°(9sin” ¢ + cos” ) = Zl $°(1 4 8sin” ),

co prowadzi do tego samej energii kinetycznej 7.
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Rysunek 57: Toczenie sie niejednorodnego walca.

Zadanie 12.9

Znalez¢ energie kinetyczng niejednorodnego walca o masie M i promieniu R toczacego sie
bez poslizgu po plaszczyznie. Srodek masy walca jest odlegly o a od jego osi, a 0$ gtéwna
jego tensora bezwladnosci Iicyry (z zalozenia znanego) jest réwnolegta do osi walca.

Rozwiazanie:

Najprosciej jest rozpatrzy¢ ruch walca jako ztozenie ruchu postepowego punktu A walca
(rysunek 57) i obrotu wokét tego punktu. Poniewaz przy toczeniu sie bez poslizgu chwi-
lowa predko$é¢ punktu A jest z definicji rowna zeru, wiec

1 1 1
T= §MV,%1 +Mva-(wx RY) + sw-lpyw=gwlnw.

Trzeba tylko korzystajac twierdzenia Steinera (zadanie 12.2) znalez¢ tensor I 4y, a wladciwie,
poniewaz przy ptaskoréwnoleglym ruchu walca

w=—e,p,

(0$ z ukladu inercjalnego, w ktérym tu rozpisujemy na sktadowe wszystkie wektory oraz
tensor bezwladnosci, jest skierowana przed rysunek), tylko jego sktadowsa I, n)- Jest ona
rowna

Iy =Iicwm + Md*(p),

gdzie zmieniajaca sie z katem ¢ odleglosé d(y) mozna znalezé z uogdlnionego twierdzenia
Pitagorasa!3!

d*(¢) = R*+a®> — 2Racosp.

Stad

1 1
T = 5 I p? = 3 [ ey + M(R? + a* — 2Racosap)} °.

131Jak by kto$ go nie pamietal (w konicu facet zyt tak dawno temu!), to zawsze mozna sie uciec do
(dwuwymiarowej) geometrii analitycznej: w ukladzie o poczatku w $rodku geometrycznym walca A =

(0,—R), CM = B = (—asinp, —acosy) wiec d(¢) = |[AB| = \/a2 sin® ¢ + (R — acos ).
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Alternatywnie, mozna widzie¢ ruch walca jako ruch jego srodka masy i obrét wokot
srodka masy. W ogdlnym wzorze na T $rodkowy wyraz znika wtedy (bo R’ = 0), a
predkosé ruchu srodka masy wynika z jego obrotu wokdét punktu A - ramieniem tego
obrotu jest d(¢) - i ma wobec tego wartos¢ |vem| = |¢]d(¢), co od razu daje energie
kinetyczna T taka sama, jak wyzej.

Wreszcie, mozna rozpatrzy¢ ruch walca jako ruch postepowy jego geometrycznego
srodka (tj. punktu O na rysunk 57) i obrét wokdt przechodzacej przez ten s$rodek osi.
Predkos¢ geometrycznego srodka walca jest wektorem vp = e, Rp. Wlasciwym momen-
tem bezwladnosci jest teraz [ ey + M a?, a wektor R}, = —e, asiny — e, acosp, tak
iz

vo(wx Rp) = vo-(—e,apcosp +e,apsing) = —Rap®cosp,
i znéw

1 1
T = §MR2@2 — MRa $? cos o + 5[ (G + Ma®]p? .
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Rysunek 58: Walec toczacy sie wewnatrz nieruchomego wigkszego walca. Przy pokazanym
na rysunku polozeniu uktadu kat ¢ jest ujemny.

Zadanie 12.10

Zmnalez¢ energie kinetyczna malego jednorodnego walca o masie m i promieniu a toczacego
sie bez poslizgu po wewnetrznej powierzchni nieruchomego duzego walca o promieniu R
(R > a). Osie obu walcéw sa do siebie stale réwnolegle (rysunek 58).

Rozwiazanie:

Ukiad ma jeden stopien swobody. Za zmienna dynamiczna przyjmiemy kat ¢ zaznaczony
na rysunku 58. Jest jasne, ze predkos¢ ruchu postepowego srodka masy matego walca jest
rowna

Ve = (R —a)’¢”.
Aby znalezé predko$é katowa obrotu malego walca (jest ona zawsze taka sama, nie-
zaleznie od tego, przez ktory punkt przeprowadzimy chwilowa os obrotu), rozpatrzmy
punkt stycznosci obu walcow. Gdy kat ¢ zmieni sie o Ay, punkt stycznosci przebywa
droge RAp (mierzac po powierzchni duzego walca); maty walec obréci sie o wtedy o kat
A, co musi daé te sama droge (bo toczy sie bez poslizgu).

Aoz:EAgo.
a

Zmak A« jest taki sam, jak znak Ay, bo, jak wida¢ z rysunku 77, gdy kat « rosnie, to
kat o rowniez wzrasta). Stosunek Aa/At (At - czas, w ktérym nastapit obrét o kat A«)
nie jest jednak predkoscia katowa obrotu malego walca wzgledem ukl adu inercjalnego:
A« jest katem, o ktéry maly walec obraca sie w stosunku do prostej, ktéra taczyta jego
srodek i punkt stycznosci obu walcéw; w tymze czasie uktad odniesienia (ktérego jedna
z osi jest ta prosta) zwiazany na sztywno z malym walcem dodatkowo obréci sie o kat
Ay w stosunku do nieruchomego ukladu inercjalnego i o ten kat trzeba pomniejszy¢ Aa.
Zatem

_Aa—-Ap R-a
B At — e 7

w

Zauwazmy, ze po prostu (tzw. “patent Landaua” - predko$¢ katowa jest réwna predkosci
srodka masy przemieszczajacej sie bryly podzielonej przez “ramie” jego obrotu wokot
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Rysunek 59: Znajdowanie wektora predkosci katowej. O$ z skierowana przed kartke.
Infinitezymalne przemieszczenie d7 4 punktu A jest rowne zeru wskutek niewystepowania
poslizgu.

nieruchomego punktu, ktérym tu jest punkt stycznosci obu walcéw)

~ |vew|
w| = —.

Tak wiec

1 o 1 (R—a)? .
Tzim(R—a)2g02+§I(CM)%<p2

Wektor predkosci katowej, ktéry tu zostal tu znaleziony z pomoca dosé heurystycznych
argumentéw mozna tez znalezé wykorzystujac inny patent (z ktérego patent Landaua
zapewne wynika, jako przypadek szczegdlny). Jesli bryta obraca sie w czasie dt o d@ = wdt
wokétchwilowej osi przechodzacej przez punkt O, to przemieszczenie dT4 jej punktu A
wzgledem uktadu inercjalnego jest dane wzorem

dTs=drp+dOxropa.

gdzie dro jest przemieszczeniem punktu O, a ros wektorem biegnacym od O do A. Sto-
sujac ten wzér do punktu A (lub punktéw), ktérego przemieszczenie dr 4 jest skadinad
znane (czy zadane warunkami problemu), mozna wyznaczy¢ wektor d@, czyli w. Poniewaz
w przypadku uktadu pokazanego na rysunku 77?7

roa = a(e, cosp+e,sinp),
dro = (R —a)(—e,siny + e, cosp)dp,

a d@ = e,df” - to mozna tu spokojnie przyjac - wiec (korzystajac z tego, ze e, X e, = e,,
e, X e, =—e,)

dTa = (R —a)(—e,sinp + e, cosp)dp + (e, cosp — e, sing)adh* =0,

bo chwilowe przemieszczenie punktu A, jako punktu stycznosci (toczenie bez poslizgu!)
musi by¢ réwne zeru. Zaréwno zerowanie sie skladowej z-owej i y-kowej daja ten sam
zwiazek a df? = —(R — a)dp, skad wynika, ze w ukladzie z rysunku 58

de R—a .

o =W = —€; a PR
tak jak to zostal ustalone poprzednio.
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Zadanie 12.11

Zmalez¢ energie kinetyczna jednorodnego stozka o catkowitej masie M, kacie rozwarcia 2«
i wysokosci h taczajacego sie bez poslizgu po plaszczyznie w taki sposob, ze jego czubek
pozostaje stale w tym samym punkcie ptaszcezyzny (rysunek 60). Nastepnie, przyjmujac,
ze plaszczyzna ta jest do pionu (wyznaczanego przez pole sily ciezkosci) nachylona pod
katem [, napisa¢ rownanie wyznaczajace ruch stozka po plaszczyznie.

Rozwiazanie:

Najpierw zajmiemy sie energia kinetyczna taczajacego sie stozka. Nachylenie plaszczyzny,
po ktérej on sie przetacza nie ma tu zadnego znaczenia. Wprowadzmy inercjalny uktad
odniesienia (', ktérego osie x’ i y' leza w plaszczyZnie, po ktoérej przetacza sie stozek
i o poczatku w punkcie A, w ktérym uwieziony jest czubek stozka. O$ z' tego uktadu
niech bedzie skierowana w gére w sosunku do tej plaszczyzny. Chwilowe potozenie stozka
jako bryly jest jednoznacznie wyznaczone przez podanie kata # pomiedzy osia a2’ uktadu
@', a prosta przechodzaca przez punkty A i B, wzdluz ktérej tworzaca stozka styka sie
z plaszczyzna (zob. rysunek 60). Uklad ma wiec tylko jeden stopienn swobody. Jako
zmienna uogdlniona przyjmujemy kat 6.

Pierwszym krokiem jest znalezienie wektora chwilowej predkosci katowej w. Jesli jest
oczywiste, ze ma ona kierunek prostej AB (zob. rysunek 60) - tj. kierunek linii wzdhuz
ktérej tworzaca stozka styka sie z plaszczyzna x'y’, to skoro $rodek masy stozka odlegly
oa = % h od czubka stozka (zob. zadanie 12.4) porusza sie po okregu z predkoscia
[vem| = afcosa, pozostajac stale na wysokosci a sin o nad punktem C, predkos¢ katowa
musi by¢ réwna (“patent Landaua’!)

_ |vewu]
lw| = ——

- zéctga.
asin o

Jesli nie jest to oczywiste, w celu upewnienia si¢, mozna postuzy¢ sie nastepujacym ro-
zumowaniem. Niech P bedzie dowolnym punktem poruszajacej sie bryly sztywnej, a O
punktem bryly przez ktéry przechodzi chwilowa o$ jej obrotu.'®? Niech ponadto rop
bedzie wektorem od punktu O do punktu P. Wektor drp o jaki przemieszcza sie punkt
P wzgledem uktadu inercjalnego w infinitezymalnym odcinku czasu dt musi by¢ réwny

drp =drp +dp X rop,
gdzie rp jest wektorem polozenia w ukladzie inercjalnym punktu O. W przypadku ta-
czajacego sie po plaszczyznie stozka wezmy jako O srodek jego podstawy. Aby uproscié
rozwazania zaltézmy, ze w danej chwili tworzaca stozka styka sie z ptaszczyzna wzdtuz osi

x'. Wtedy

dro = ey hdfcosa.

132Pamietamy, ze punkt ten jest wybrany dowolnie - ruch bryly uwazamy za zlozenie ruchu postepowego
punktu dowolnie wybranego punktu O o niezmiennym potozeniu wzgledem bryly i jej obrotu wokot tego
punktu.
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Rysunek 60: Stozek o unieruchomionym czubku taczajacy sie po plaszczyznie.

Punkty stozka, ktére nie powinny sie przemiesci¢ w odcinku czasu dt, to jego czubek A
(bo jest on w warunkach zadania nieruchomy) oraz wszystkie punkty tworzacej, ktéra
stozek styka sie z plaszcezyzna 'y’ (bo stozek tacza sie bez poslizgu) - wezmy do rozwazan
np. punkt B tej tworzacej wspdlny z podstawa stozka. Biorac zatem za P punkty A i B,
ktérych wektory roa i rop tatwo skonstruowaé patrzac na prawy rysunek 60, mamy

0=dry=eyhdfcosa+dp X [—e,y hcosa — e, hsina],

0=drp =eyhdfcosa+dp x [ex’ <
Cos (v

— hcosa) —ezzhsina} .

Odejmujac te dwa réwnania stronami widzimy, ze

dp X ey =0,

cosa
czyli, ze dp = ey dp® . 7 pierwszego mamy wtedy
ey hdfcosa+de x [—e, hsina] = e, hdf cosa + e, hdp™ sina =0,

czyli dp®™ = —df ctg o, tak jak wyzej. Nalezy pamietaé, ze wektor predkosci katowej jest
taki sam, niezaleznie od tego, ktéry ustalony w stosunku do bryty punkt przyjmiemy za
O, czyli za punkt, przez ktory przechodzi chwilowa os jej obrotu.

Obliczymy energie kinetyczna taczajacego sie stozka dwoma sposobami.

1) Traktujac ruch stozka jak zlozenie obrotu wokét érodka jego masy z ruchem postepo-
wym tego srodka. Rozkladamy wtedy znaleziony wektor predkosci katowej majacy kieru-
nek tworzacej, wzdhuz ktérej stozek styka sie z plaszczyzna na czes¢ w) réwnolegla do osi
stozka i w, prostopadla do niej:

lw)| = |w|cosa, |wi|=|w|sina.

Momenty bezwladnosci stozka (wzgledem srodka jego masy) wzgledem tych osi zostaly
znalezione w zadaniu 12.4 (R = htga jest promieniem podstawy stozka)

3 3

I _ 2 _ 2. 2
I(CM) __1OMR ——10Mh tg”a,
3 1 3 1
1 2, -+ 2\ _ 2 [ 2
](CM)__QO (MR +4Mh) —20Mh <4+tg a).
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Predkosé srodka masy jest, jak to juz zostalo ustalone, réwna |vey| = %hé’cos «. Zatem

2 1 Loy

1 I o 9
1 . 9 3 3 3

= §Mi126’2 (1—600$2a+Ecos2a+%cos2a+2—0sin2a)
3 .

= 4—0Mh292(1+5cosza).

2) Drugi sposéb polega na rozpatrzeniu obrotu stozka wokét punktu A. Poniewaz
punkt ten spoczywa, T = % w - Iay - w. W tym samym, co poprzednio ukladzie O’
zwiazanym ze stozkiem (0§ Z tozsama z osia stozka etc.) twierdzenie Steinera daje

72 13z _ 1l
Ity = ey = Liay
. - -~ 9
Tr __ JYY __ jIT 2 _ g7l
) =Ly = Licw + g Mh" = 1),
i od razu wida¢, ze dodatek (9/16)Mh? pochodzacy z przesuniecia tensora do punktu A
daje doktadnie to samo, co w metodzie pierwszej wyraz z vi,,.

Aby bezbolesnie znalezé energie potencjalna wygodnie bedzie wykorzysta¢ pomocnicze
uklady odniesienia. Pierwszym jest uklad O”, ktérego poczatkiem jest czubek stozka, A
osiag x” jest tworzaca stozka, ktéra styka sie on z nachylona plaszczyzna, a o$ 2” jest do
tej plaszczyzny prostopadia. W tym ukiadzie srodek masy stozka znajdujacy sie na jego
osi w odlegtosci (3/4)h od czubka ma wspétrzedne (3/4)h(cosa,0,sina). Drugim jest
wprowadzony juz uklad O, ktérego o$ 2/, jest tozsama z osia z” a o$ 2’ jest obrécona
w kierunku spadku plaszczyzny po ktérej przetacza sie stozek o kat 6. W uktadzie O’
wspohrzednymi srodka masy stozka sa (c, = cosa etc.)

3 [0 —Co 0 Co, 3, [ CaCo
— | So Co 0 0 = — | CGSo

%o o 1/ \s.) 1\,

Poniewaz uktad O" ma z ukladem O (w ktérym pole sity ciezkosci jest skierowane w dét
osi z) wspdlna o’s y = 3/ 1 jest w stosunku don wokél tej wspélnej osi obrécony o kat f3,
wspotrze” dnymi srodka masy stozka sa w nim

3 cg 0 sp Co,Ch 3 C3CaCo + SBSa
— 0 1 0 CaSe | = T CaSo
—sg 0 cp Sa —85CaCo + CpSa

Energia potencjalna taczajacego sie stozka jest rowna po prostu V = Mgz, ale wyraz
X €S, mozna, jako staly, pomina¢. Zatem lagrangian uktadu to

3 N 3
L= EMh2 (1+5cosza) 62 + ZMghsinﬁcosacos@,
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i rownanie ruchu stozka ma postac

. g sinfcosa .
0+5= ————sinf.
* h1+5cos2ozsm

Jest jasne, ze moze on wykonywa¢ male oscylacje wokét polozenia réwnowagi 6 = 0.
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Zadanie 12.13

Jednorodna bryla w ksztalcie stozka o wysoko$ci h i promieniu podstawy réwniez h obraca
sie ze stala predkoscia katowa w wokdl osi z pokrywajacej sie z tworzaca stozka (zob.
lewy rysunek 61). Jakie sity F4 i Fp musza na nia dziataé, jesli sa one przytozone w dwu
punktach: A bedacym wierzchotkiem stozka i zarazem poczatkiem inercjalnego uktadu
odniesienia oraz w punkcie B polozonym na brzegu podstawy stozka, ktérym styka sie
ona z osig z7

Rozwiazanie:

W zwiazanym ze stozkiem ukladzie O”, ktérego o$ 2" pokrywa sie z osig stozka, osie x”
i y” sa réwnolegle do jego podstawy, a poczatek znajduje sie w srodku masy, sktadowe
tensora bezwladnosci Icny maja w notacji macierzowej postac (zob. zadanie 12.4).

) 3 500
IgM:%Mhz 05 0
00 8

Tu jednak bardziej przydatne beda skladowe tego tensora w zwiazanym ze stozkiem
uktadzie ', ktdérego os 2’ jest rownolegla do osi z ukladu inercjalnego, a w wybranej
szczegolnej chwili (kiedy stozek dwiema tworzacymi styka sie z osiami y i z ukladu in-
ercjalnego) o$ ' jest réwnolegla do osi y ukladu inercjalnego. O” jest wzgledem uktadu
O’ obrécony o kat (zob. prawy rysunek 61) ¢ = 7 + § przeciwnie do ruchu wskazéwek
zegara wokol osi e, = e, Zatem

. 1
e, = €, CosQ+eysing = 7 (—ey/ +e.),
2
1
e, = —ey/ Sin¢ ‘l— €, COS¢ = — (_ey’ - ez’) .
V2

Napisany wyzej w postaci macierzowej tensor jest w istocie, tak jak i kazdy wektor,

obiektem geometrycznym i jako taki ma postaé¢'®3

3
ICM — %Mh2 (5 em” ® ex// —|— 5 ey” ® ey// + 8 ezu ® ez”) .

Wyrazajac tu wektory e;» przez wektory e; tak jak wyzej i korzystajac z regut
(_ey’ + ezz) X (_ey’ + ezl) =ey, ey —eyRey—eyRVey t+eyRe,y,

etc., znajdujemy
3

Iy = @]\Wb2 (10ey ®ey +13e, ®ey +13e, Rey +3ey ey +3ey Rey),

133Tak jak wektor w = eiwée) jest “zywym” wektorem, niezaleznym od konkretnej bazy e;, w ktoérej

podane sa jego skladowe wze), tak i tensor Iy jest “zywym” obiektem geometrycznym, niezaleznym od
bazy e;» ® ej» przestrzeni tensorowej w ktorej jego sktadowymi (I(%;):; sa elementy wypisanej wyzej
macierzy ng; Dlatego tez piszemy Iy juz bez zadnych priméw; zostaje jedynie symbol ¢y, bo taki
obiekt geometryczny jednak zalezy od punktu, wzgledem ktorego jest zdefiniowany.
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Rysunek 61: Po lewej: Stozek obracajac sie pod dzialaniem sit przytozonych w punktach
A1 B. Srodek masy zaznaczno kropka na osi stozka (potozona w jednej czwartej jego
wysokosci). Po prawej: zwiazki miedzy wersorami uktadéw O” i O'.

czyli, w notacji macierzowej,

) 5 10 0 0
Ity = ﬁMh2 0 13 3
0 3 13

Oczywiscie te sama macierz féM tensora (tj. jego skladowe w bazie ey ® ej) otrzymamy
7€ Wzoru

(féM)U = Oiksz (féM)kl =(0- ng 0",
w ktérym macierz

1 V2 0 0
O=—|0 -1 -1],
V2l 1

jest macierza zmiany bazy taka, ze'3*

Majac macierz tensora uktadzie O mozemy juz rozwiazaé postawiony problem. Roz-
patrzymy ruch stozka jako zlozenie ruchu postepowego srodka jego masy i obrotu stozka
wokoét tegoz punktu. Innymi stowy, obieramy punkt O w $rodku masy i korzystamy z
uproszczonych rownan dynamiki

d

7 Toww) = DY + DY,
d2

wMR - FA“—FB.

Aby obliczy¢ wystepujaca w pierwszym rownaniu pochodna po czasie unikajac problemu
zwiazanego z tym, ze w ukladzie inercjalnym O, w ktérym pochodna ta ma by¢ obliczona,
skladowe tensora Iy zmieniaja sie, stosujemy standardowy chwyt:

d d

E (ICM(-U) = E(ICMw) 4+ w X (ICMw) .

13W notacji z mojego stynnego skryptu do algebry macierz O jest wiec macierza R ).
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Poniewaz w ukladzie O’ zwiazanym ze stozkiem zaréwno skladowe tensora Icyp, jak i
sktadowe predkosci katowe] w sa stale (predkosci katowej, bo tak jest ona akurat tu
skierowana: jest stale réwnolegla do osi e, = e,), wiec cala pochodna d’'/dt jest réwna
zeru. Jako pierwsze réwnanie dynamiki zostaje zatem réwnosé¢ wektorowa

wx (Iey-w) =DM+ DEM,

ktora na skladowe mozna rozpisa¢ w dowolnym uktadzie (bo juz nie wystepuje w niej
pochodna). Oczywiscie najlepiej rozpisaé¢ ja w uktadzie O’ zwiazanym z bryta, w ktérym
skt adowe tensora Icy sa stale. W tym ukladzie

0 3 0 3 -3
w=|0], Ieyw=—MRw| 3 |, w X (Igpqw) = — Mh%? | 0
w 160 13 160 0

Do obliczenie DSM i DEM potrzebne sa wektory d4 i dp o sktadowych w O (fatwo je
odezytaé z lewego rysunku 61)

0 0

3ho [ . dg=ds+V2h|0

dy= -2
Y 1 1

Jesli sktadowymi przylozonych sit w tym ukladzie sa

!

FA - FX ) FB == Fg 3
FZ FZ

to skladowymi ich momentéw Dy =ds x Fyq, D =dg X Fp s

’ ’ ’ ’ ’

Fz _ Fy Fz _ Fy _Fy
3h A , A 3h B , B /B
M = ~1 Fe ., DM = v Fg +v2h | FE |,
42 iy 4?2 _p 0
tak, ze
CM | 1oCM s, [ (Fa+Fp)" — (Fa+ Fp)” Fg,
DSM + DS, =-17 (Fa+ Fp)” —V2h | —F%
—(Fy+ Fp)* 0

Poniewaz wektor w X (Icy-w) ma niezerowa tylko pierwsza sktadowa, musza zachodzié
réwnoscl
_ 3 (Fo+ Fg)™ +V2hFE =0
(FA—I—FB)II = O,
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ktére moéwia, ze F2 = Fg = 0. 7 kolei réwnosé¢ pierwszych skladowych wektora w x
(Icym - w) 1 wektora momentu sity daje zwiazek

9 3h , ) ,
—— MWW= ————[(F4+ Fg)* — (Fy+ Fg)Y] — V2hFY .

Jest wreszcie réwnanie ruchu srodka masy stozka M R = F4 + Fp. Druga pochodna
wektora R trzeba oczywiscie obliczy¢ w ukladzie inercjalnym, ale sam wektor bedacy
pochodna mozna juz rozpisa¢ w uktadzie OO'. Znalezienie tej drugiej pochodnej wektora
R jest proste: srodek masy stozka porusza sie po okregu i R musi by¢ zwiazanym z
tym przyspieszeniem dosrodkowym, a wiec |R| = 3hw?/4v/2. Wektor ten jest zawsze
skierowany od $rodka masy ku osi z = 2’; w ukladzie inercjalnym obraca si¢ on, a w
uktadzie O’ jest staly:

R = —€y ﬁ w2 .

42

Réwnanie ruchu srodka masy stozka daje wiec zwiazki
(Fy+ Fp)™ = (Fya+ Fp)” =0,
(Fy+ Fp)V = ——— Muw?.

Po ich wykorzystaniu nietrywialne réwnanie otrzymane z réwnosci w x (Icmy - w) =
DM + DEM przybiera postaé

1 wyznacza
FY = ) Mhe?.
40v/2
Zatem
YL VoA

W ten sposéb wykorzystane zostaly juz wszystkie informacje. Nie wyznaczaja one F g’
i F'4 7 osobna; tylko suma tych skladowych musi znikaé. Jest to fizycznie oczywiste.
Podkreslmy jeszcze, ze wyznaczylismy sktadowe sit F4 i Fg w ukladzie O', ktéry obraca
sie wraz ze stozkiem. Zatem w ukladzie inercjalnym sity te zmieniaja stale swoj kierunek
(tak jak trzeba ciagnaé i obracaé sie, by trzymajac stonia za uszy - musi by¢ afrykanski;
indyjskie maja za male uszy - zafundowaé¢ mu “karuzele”).

Sity F4 i Fg mozna tez znalezé rozpatrujac obrét stozka wokdétpunktu A bedacego
poczatkiem uktadu inercjalnego O (i zarazem poczatkiem ukltadu Q). Tensor bezwladnosci
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stozka wzgledem punktu A otrzymujemy wykorzystujac twierdzenie Steinera (zadanie
12.2):

211 11 11 511 1100

I+ MR — RTR"Y,

gdzie R = %hezu jest wektorem od punktu A do O (skladowe tensoréw Icy i 14 wektora

R sa tu podane w ukladzie O” o osi 2" pokrywajacej sie z osia stozka). Stad I5
oraz

_ 72’2
_[CM

"1 115,11 1.0 9 ].5 9 3
2" ry"y" _ rax 2 2 2 2
Ity =10 = I6F + pMh® = S MB + 2 M = 2 M,

czyli

3 2
IA — Z]\4}][2 <ex// X e, —+ eyu (29 ey// —+ g e, & ezll) .

Nastepnie, tak jak poprzednio, zapisujemy tensor Iy przez iloczyny tensorowe wersorow
e, etc., co daje

1
I, = 4—0Mh2 (30ey ®ey +2le, Rey +2ley, ey —9¢y Vey —9ey Qey),

lub, w notacji macierzowej,

1 30 0 0

71 - 2
Iy =Mt 0 21 =9
0 -9 21

Jesli punktem, wokdt ktorego stozek sie obraca, jest punkt A, to J - moment pedu stozka
wzgledem poczatku uktadu inercjalnego O - sie upraszcza, bo ry = 0, a tym samym
vy =14 = 0, wobec czego

J= I(A)~w.

Tak jak poprzednio pochodna J po czasie w ukladzie inercjalnym wyrazamy przez la-
twiejsza pochodna w uktadzie O’ i dostajemy

—J=wxIxw=Dg,

o (A) B

bo moment sity F4 wzgledem punktu A znika. Skladowe wektora w w uktadzie O sa
takie jak poprzednio, a wektor konieczny do znalezienia momentu sity Dg to wektor
rp = e, v/2h. Zatem po prostych obliczeniach iloczynéw wektorowych powyzsza réwnosé
jest réwnowazna zwiazkowi

9 / )
EMh%ﬂ e, = —V2h (emng — ey/F§> )
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Wynika stad od razu, ze F§ = 0, a Fg = —(9/40v2 )Mhw?, tak jak poprzednio.
Réwnania ruchu srodka masy walca sa w tym podejsciu takie same i ponownie daja
warunki

(Fa+4 Fp)® = (Fa+ Fp)* =0,

, h
(Fa+ Fp)¥ = _ 3 g :

ktore pozwalaja wyznaczy¢ F2' =0, FY = —(21/40v/2)Mhw?.

W rozwazaniach tych nie byla uwzgledniana dzialajaca na stozek sita ciezkosci i sita
reakcji podtoza aniich momenty. Nietrudno zobaczy¢, ze sa one nieistotne: zaréwno suma
tych sit jak i ich momentow jest réwna zeru.
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Zadanie 12.15

Pétwalec o promieniu R i masie M wykonany z jednorodnego kawalka materialu moze
toczy¢ sie bez poslizgu po poziomej w stosunku do pola g powierzchni i tym samym wy-
konywa¢ male drgania wokoét polozenia rownowagi. Wypisa¢ rownanie ruchu potwalca i
znalezé czestosé jego malych drgan. Problem rozwiazaé zarowno postugujac sie rownaniami
Lagrange’a II-go rodzaju, jak tez i metoda “newtonowska”.

Rozwiazanie:

Najpierw trzeba znalezé polozenie srodka masy pétwalca, tj. obliczy¢ odleglo$é a na
rysunku 62. Jedli poczatek uktadu O zwiazanego z pétwalcem umiescimy w punkcie O,
o$ 2’ skierujemy przez srodek masy, o$ 2’ przed rysunek, a os vy’ wzdhuz ptaskiego wierzchu
pétwalca, to polozenie X’ §rodka masy w tym uktadzie bedzie dane calka

x =2 / o / " dy’ / S cos g2l
M Jq —7/2 0 3 M 7

gdzie L jest dtugoscia (wzdhuz osi 2') pétwalca, a p jego gestoscia. Poniewaz M = %ﬂ'R2Lp,
znajdujemy, ze

4
pR— /__ .

To samo d mozna otrzyma¢ z twierdzenia aleksandryjczyka Pappusa (zobacz Feynmana
Wyklady z Fizyki, t. I), ktére méwi, ze jesli figura ptaska przemieszcza sie tak, iz predkos$é
kazdego jej punktu jest stale prostopadla do jej powierzchni, to objetosé powstalej przez
taki obrét bryly jest rowna polu powierzchni obracanej razy droga przebyta przez $rodek
masy tej powierzchni (przy zalozeniu, ze jej gesto$¢ masy jest jednorodna). Rzeczywiscie:
obracajac przekrdj poétwalca, czyli potkole otrzymamy kule o objetosci %ﬂ'R?’, ktora zgodnie
z twierdzeniem Pappusa powinna by¢ rowna %WR2 razy 2ma.

Uktad, jakim jest potwalec toczacy sie bez poslizgu ma jeden stopien swobody. Scigle
rzecz biorac jest to uklad o dwu stopniach swobody poddany wiezom nieholonomicznym,
ktére jednakowoz sa trywialnie'®® catkowalne, co pozwala wyeliminowaé¢ jedna z dwu
zmiennych dynamicznych, jakimi moglyby byé¢ (przed uwzglednieniem wiezéw holono-
micznych) zmienne x i ¢ zdefiniowane na rysunku 62. Brak poslizgu oznacza, ze chwilowa
predkosé tego punktu pédtwalca, ktérym w danej chwili styka sie on z powierzchnia jest
rowna zeru. Oznacza to, ze sumaryczne przemieszczenie tego punktu w infinitezymalnym
odcinku czasu dt jest réwne zeru. Przemieszczenie to jest kombinacja przemieszczenia
tego punktu spowodowanego obrotem bryly i ruchu postepowego bryty jako calosci. Jesli
rozpatrujemy ruch bryty jako zlozenie ruchu postepowego np. punktu O zaznaczonego na
rysunku 62 i jej obrotu wokét osi przechodzacej przez ten punkt, to przemieszczenie punktu
stycznosci P spowodowane ruchem postepowym punktu O wynosi dx, a przemieszczenie
spowodowane obrotem poétwalca wokdt osi przechodzacej przez punkt O wynosi —Rae.
Zatem warunek braku poslizgu oznacza istnienie wiezow

dr — Rdp =0.

13575, bez zadnego czynnika catkujacego.
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Rysunek 62: Kotyszacy sie pétwalec.

Przy ustalonych warunkach poczatkowych z(0) = zg, ¢(0) = o wiezy te sa rGwnowazne
wiezom holonomicznym

r—19= (¢ — )R,

ktore pozwalaja wyeliminowaé = na rzecz ¢ (tj. wybraé¢ zmienna uogdlniona zgodna z
wiezami).

Zmajdziemy réwnania ruchu pétwalca na kilka sposobéw aby zilustowaé rézne mozliwosci
i pokaza¢ putapki (ktére czynia dynamike bryty tak interesujaca).

Przyjmiemy najpierw, ze ruch pétwalca jest zlozeniem ruchu postepowego punktu O i
obrotu wokolosi przechodzacej przez ten punkt. Roztozymy wszystkie potrzebne wektory
na wersory uktadu inercjalnego O o osiach z, y i z pokazanych na rysunku 62. Mamy
wiec

Ry 0 —asin
vo=1| 0 |, w=| 0|, Rp=| —acosy |,
0 -y 0

gdzie Ry, jest wektorem od punktu O do srodka masy (oznaczonego “CM” na rysunku
62).

Zastosujemy najpierw metode oparta na rownaniu Lagrange’a Il-go rodzaju, ktéra
jest najpewniejsza. Energia potencjalna V' pdétwalca jest réwna M g razy wysokos$é srodka
masy, czyli

V = Mg(R — acosp) = —Mgacos ¢ + const.

Energia kinetyczna jest dana ogdélnym wzorem
1 1
T = §Mv20 + Mvo-(w x Ry) + sw Torw.

Wprawdzie w uktadzie inercjalnym O nie wszystkie sktadowe tensora I sa stale - jego
macierz w tym ukladzie ma postac

15 Igy 0

Io = Iéy Igy 0
0 0 Iy
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- ale dzieki temu, ze predkos$¢ katowa ma tylko sktadowsa z-owa, zalezne od kata ¢ elementy
I3, I 1 1Y nie wejda do wzoru na T'. Latwo znajdujemy, ze

vo-(w x Rp) = —Ray? cos ¢,
a stad

]O _22
M R? R

L:%ZWR2 (1+ cos<p) ¢ + Mgacosp.
Io oznacza tu skladows /5 tensora momentu bezwiadnosci, ktora jest rowna oczywiscie
]6’2’ = %M R? (moment bezwladnodci pétwalca wzgledem osi przechodzacej przez punkt
O i réwnoleglej do osi z jest oczywidcie taki sam, jak moment pelnego walca) - czyli
odpowiedniej sktadowej w uktadzie zwiazanym z pétwalcem.

Dalej dziala juz “maszynka lagranzowska”: réwnaniem Eulera-Lagrange’a jest

Io

d
7 []\/[R2 <1+ iE —Q%COSQO) gb} = —Mgasin ¢ + M Ra¢?sin ¢,

(drugi wyraz po prawej stronie bierze sie z pochodnej energii kinetycznej T' po ¢), czyli,
po wykonaniu pozostalej pochodnej po czasie

I
M R? (1 +-9 _ 2gcosg0) ¢ = —Mgasin o — MRap?sin ¢ .

M R? R
Zmiana znaku drugiego wyrazu po prawej stronie wzieta sie teraz ze zrézniczkowania po
czasie cos ¢ po stronie lewej, co dato tam wyraz 2M Ray? sin ¢.

Oczywiscie nie da sie uzyskanego pelnego réwnania ruchu poétwalca rozwiazaé $cisle
analitycznie. Jak zwykle w takich przypadkach rozwiazujemy je wiec w przyblizeniu
matych wychyleri z polozenia réwnowagi, tj. linearyzujac je. Polozeniem réwnowagi (czyli
Scistym rozwiazaniem ¢(t) = @) jest o = 0 1 zatrzymujac tylko wyrazy liniowe w ¢ (i
traktujac ¢ réwniez jak wielko$¢ mata, tak jak sam kat ¢) otrzymujemy

I
MR? (1 + M%’? - 2%) ¢ =—Mgap,

co jest rOwnaniem oscylatora harmonicznego o czestosci

Q= 94
~ VRY(1+1p/MR2 —2a/R)"

Alternatywnie, mozna rozwiazanie pelego rownania sprowadzi¢ do kwadratury, czyli do
jednej catki korzystajac z tego, ze Lagrangian nie zalezy jawnie od czasu i wobec tego
stata ruchu jest “hamiltonian”

oL 1
h=o% - ture(1
Y g 5 R<+

1 d
M%’Q — QE coS go) »* — Mgdcosp = E = const.
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(Nazwalismy te stala £, bo tu h =T + V, czyli jest to prawdziwa energia catkowita). Po
rozdzieleniu zmiennych dostajemy stad

M R? 14+ Io/MR? —2(a/R
/dt:i,/ /d<p + Lo/ (a/R)cosp
2 E + Mgacos ¢
Dalej postepujemy standardowo: mianownik pod pierwiastkiem zapisujemy w postaci
E — Vg (p), znajdujemy polozenie pg minimum V.g(p) = —Mgacosp i rozwijamy ten
potencjal w szereg Taylora wokét ¢y do wyrazéw kwadratowych w odchyleniu od mini-

mum, czyli w ¢ — . Jednocze$nie w liczniku przyblizamy ¢ przez warto$¢ ¢g. Poniewaz
tu oy = 0, otrzymujemy

2 2 _
/dt:i MR 1|1 1o/ ME? = 2(a/R)
2 E+ Mga — 5Mga p?
MR? 1+ Io/MR? —2(a/R)

1 d¢
2 E + Mga /\/1_ on ¢>2ig/m ok
)

2(E+Mga

= /Mygd/2(E + Mgd) ¢, co daje jako rozwiazanie harmoniczna zaleznosé¢ o(t) z
czestoseig €2, tak jak metoda linearyzacji rownania ruchu.
Zmajdziemy teraz réwnania ruchu pétwalca metoda Newtonowska, nadal traktujac jego
ruch jak zlozenie ruchu postepowego punktu O i obrotu wokét osi przechodzacej przez ten
punkt. Wektorowymi rownaniami wyznaczajacymi ruch pétwalca sa

d
—J=D,+D D
It + Dg+ Drp,

d2
dt2 MRCM = Mg+FR+FT

Ry jest tu wektorem wodzacym (z poczatku wybranego ukladu inercjalnego) $rodka
masy potwalca, Fr i Fr sa odpowiednio sitami reakcji i tarcia, Dg i D7 momentami tych
sit, a

J:MRCMXVO—I—MI'()X (wa’O)+IOw,

jest momentem pedu poétwalca obliczonym wzgledem punktu bedacego poczatkiem uktadu
inercjalnego pokazanego na rysunku 62. Momenty sit Dy, Dg i Dy sa réwniez liczone
wzgledem tego samego punktu. Pochodne po czasie figurujace w tych réwnaniach sa
pochodnymi obliczanymi w ukladzie inercjalnym. Skladowe wektoréow Ry, w zostaly juz
wypisane wczesnie;j.

x T T —asinp
ro=|R|, vo=to=|0], Reu=ro+R,=| R—acosyp
0 0 0
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Cierpliwie obliczamy potrzebne iloczyny wektorowe:

Rovu X vo=—2(R—acosp)e,,

ro X (wx Ry) =¢a(rsing+ Reosyp)e, .
Podobnie obliczamy momenty sit F;, = —Mge,, Fr = Fre, i Fr = Fre,:

D, =Rcu xF, = —-Mg(z —asing)e,,
DR:xexXFR:xFRez,
DT:[L’GIXFT:O.

Poniewaz wektor w ma niezerowa tylko ostatnia sktadowa, zmieniajace sie z ¢ (w ukladzie
inercjalnym) skladowe tensora I nie wejda w réwnania: Ip-w = —e, I5¢ 1 dwa pierw-
sze réwnania powstajace z rozpisania na skladowe w uktadzie inercjalnym pierwszego z
réwnan wektorowych sprowadzaja sie do tozsamosci 0 = 0. Trzecie z tych réwnan (z-owa
sktadowa), wyznaczajace szybkosé zmian z-owej skladowej momentu pedu ma postaé

%[—Mx’(R—acosgo) + Ma(zsing + Reos ) ¢ — I5¢] = aFp — Mg(z — asing).

7Z kolei w rownaniu ruchu srodka masy rozpisanym na sktadowe ukladu inercjalnego trzecie
z roOwnan jest tozsamoscia 0 = 0, dwa zas pierwsze to

d? )
ﬁM(x—asmgo) = Fr,

d2

ﬁM(R—acomp) =—Mg+ Fr

Dotad nie zostaljeszcze uzyty warunek braku poslizgu. Pozwala on jednoznacznie wyrazi¢
& jako R¢p, ale nie umozliwia (bez znajomosci warunkéw poczatkowych) wyeliminowania
samego x na rzecz . Nie jest to na szczescie potrzebne. Jesli zalozymy, ze ruch jest bez
poslizgu, to pierwsze z tych dwu réwnan wyznacza tylko konieczna do tego sile tarcia:

Fr=M(i+ap*sing —a@cosp).
7, drugiego wyznaczamy Fg
Fr=M(g+a@?cosp+apsing),

Po jej wstawieniu do réwnania wyrazajacego szybko$¢ zmian w czasie z-owe skladowej
catkowitego momentu pedu péltwalca otrzymujemy
d

7 [—Mi(R — acosy) + Ma(xzsing + Rcos ) ¢ — 15§

= Mgasin ¢ + Mx (a$? cosp + a@sin ).
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Wreszcie, po pracowitym wykonaniu po lewej stronie pozostalej pochodnej po czasie
wszystkie wyrazy z “golym” x sie zredukuja tak, jak powinny, i otrzymamy

~M#(R — acosg) + MRagcosp — MRap?sing — I57$ = Mgasin @,

co po wykorzystaniu warunku ruchu bez poslizgu, & = Ry, da uzyskane juz wczesniej
rownanie

MR* (1 —
R<+MR2 R

I a

© 2—cosg0)i—Mgasinap—MRagﬁsingp.
Majac zaleznosé ¢(t) mozna obliczy¢ site reakeji i sile tarcia konieczna do ruchu bez
poslizgu i sprawdzaé kiedy | Fr| < pisat| Fr|, co jest konieczne, by ruch taki mégt zachodzié.

Warto rozwiaza¢ to zadanie jeszcze raz przyjmujac tym razem, ze ruch jest zlozeniem
ruchu postepowego punktu P zaznaczonego na rysunku 62 i obrotu pélwalca wokdt tego
punktu, bo pozwoli to zobaczy¢ niebezpieczenstwa, na jakie mozna sie natkna¢ przy nie
do$¢ uwaznym trzymaniu sie zasad.

Aby poréwnaé to podejscie z poprzednim trzeba najpierw znalezé sktadowa 175 (ktéra
jest taka sama zaréwno w ukladzie inercjalnym, jak tez i w uktadzie zwiazanym z pétwalcem)
tensora momentu bezwiadnosci pétwalca wzgledem punktu P i wyrazi¢ ja przez I5. W
tym celu wykorzystujemy twierdzenie Steinera. Nalezy tylko pamietaé, ze punkt O nie
byl srodkiem masy, wiec 15 trzeba najpierw “cofna¢” do srodka masy, czyli obliczy¢ I (e
i dopiero z [ (M) obliczy¢ I7°. Niech ¢ bedzie odlegloscia od srodka masy do punktu P. Z
uogdlnionego twierdzenia Pitagorasa (patrzac na rysunek 62) znajdujemy, ze

2 =a*+ R*—2Racosyp,

wiec

zZz zZz zz o a
17 = Icw + Mc* =15 — Ma* + Mc* = MR? <1+ M%’z —2§cosgp) .

Jesli zastosujemy metode lagrangeowska, otrzymamy natychmiast poprawne rownanie
ruchu walca: z ogdlnego wzoru

1 1
T = §MV§3 +vp(wx Rp) + §w~Ip-w,

ale poniewaz chwilowa predko$¢ punktu P jest réwna zeru (warunek braku poslizgu!),
wiec

1 1 4
L= 5w.IP-w -V = §MR2 (1 + M%’Q —2%coscp) ¢* + Mgacosp.

Jest to ten sam lagrangian, co poprzednio.
Putapki czyhaja jednak, jesli bedziemy chcieli wypisa¢ réwnania Newtona. Aby uprosci¢

rachunki przyjmijmy ze teraz poczatek inercjalnego uktadu odniesienia przesuwamy w
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prawo, tak by punkt P (w chwili dla ktérej piszemy réwnania Newtowna) znalazl sie
dokladnie nad nim. Wtedy (w tym momencie) Dp = Dy =0, a

D, =e, Mgasinyp,

(t.j. ma te postaé, co poprzednio, tylko z x = 0). Wektor catkowitego momentu pedu
potwalca dany ogdlnym wzorem

J:MRCMXVP+MTPX (Q)XRIP)+IPUJ,
upraszcza sie do
J=1pw=—e, I5p,

bo vp = 0 (znéw warunek braku poslizgu!), a rp = 0 dzieki wyborowi poczatku uktadu in-
ercjalnego. Zatem rownanie wyrazajace szybkos¢ zmiany momentu pedu ma teraz postac
(znéw dwie pierwsze sktadowe tego wektorowego réwnania daja tozsamosci 0 = 0):

%(—fffsb) = Mgasin g,

i po zrézniczkowaniu po czasie (i zmianie znakéw obu stron) otrzymujemy réwnanie

2
MR <1+MR2 7

lo__ pad cosap) ¢+ 2MRagp?sin p = —Mgasin ¢ .
Wyglada ono podobnie do otrzymanego poprzednio (juz trzema sposobamil!), ale ma czyn-
nik 2 przed drugim wyrazem po lewej stronie, ktorego to czynnika poprzednio nie byto.
Stosunek wynikéw 3 : 1 (w tym dwa otrzymane niezawodna metoda lagrangeowska!)
wskazuje, ze to to ostatnie rownanie jest bledne. W istocie, przy wyprowadzeniu tego
rownania popetione zostaty dwa bledy.

Po pierwsze, wprawdzie moment pedu potwalca rzeczywiscie w chwili, w ktorej punkt
P jest dokladnie nad poczatkiem inercjalnego uktadu odniesienia ma podana wyzej prosta
posta¢, jednak w réwnanie Newtona wchodzi pochodna J po czasie

d . d d
%J:M RCMXVP—i—RCMpr—i—Vpx(wa})—l—rpx%(wa;)) +£Ipw

Trzy z wyrazéw w nawiasie kwadratowym rzeczywiscie znikaja (znikaja wektory vp i
rp), ale wyraz Roy X Vp = Reum X ap nie znika. Trzeba bowiem pamietaé, ze gdy
piszemy réwnania Newtona, punkt, wokdt ktérego rozpatrujemy obrét bryly (przez ktéry
przechodzi chwilowa o$ jej obrotu), porusza sie razem z brylta. Wprawdzie w danej chwili
punkt P spoczywa (z punktu widzenia ukladu inercjalnego), lecz chwile pézniej, gdy
potwalec sie nieco obréci, punkt P juz nie bedzie punktem stycznosci z podiozem i bedzie
mialniezerowa predkosé. A to oznacza, ze w chwili, gdy jest on punktem stycznosci
vp # 0! Latwo zobaczyé¢, ze przyspieszenie to musi by¢ réwne vp = e, R ¢?, bo w
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ukladzie inercjalnym (w ktérym obliczamy pochodng J) punkt P porusza sie po okregu o
promieniu R i ma predkosé¢ katowa ¢. Tak wiec w réwnaniu Newtona musimy uwzglednié¢
po lewej stronie wyraz

—|—MRCM X \"p = —eZMRd<p2 sinap .

Drugi blad, jaki zostalpopelniony, polega na zrézniczkowaniu po czasie tensora mo-
menu bezwiadnosci I7°. Reczywiscie, skoro punkt P, wokot ktérego rozpatrujemy obrét
bryly jest na sztywno przyczepiony do niej, to skladowa [7* pozostaje stata (kat ¢ w
niej nalezy utozsami¢ z wartoscia pp jaka kat ¢ miat wtedy, gdy punkt P byl punktem
stycznosci potwalca z podlozem. Aby rozwiaé wszelkie watpliwosci co do tego, czy nalezy
oblicza¢ pochodna skladowej I7° tensora, mozemy zastosowac znany wzor

d d

—Ipw=—(Ipw)+wx (Ipw).

dt " g L) +ex (lpw)
Drugi wyraz znika bo w rozpatrywanym problemie wektor Ip-w jest rownolegly do w.
Pochodna d'/dt w pierwszym wyrazie jest obliczana w ukladzie O’ na sztwno zwiazanym

z bryla i wobec tego w tym ukladzie skladowa I%* jest stala. Tu jednak I3* = %, wicc
istotnie przy rézniczkowaniu po czasie J nalezalo napisac

d

—Ipw=—-e I5p.

dt " S

Po tych poprawkach otrzyma sie juz to samo réwnanie, co poprzednio.3¢

W szkolnych rozwiazaniach zagadnien ruchu bryly sztywnej czesto pisze sie réwnania
ruchu przymujac, ze bryta obraca sie wokét punktu stycznosci z podlozem. Jednak dzieki
wysokiej symetrii tych bryl nie wpada sie w klopoty takie jak tutaj, poniewaz wektor
vp jest w tych szkolnych przykiladach réwnolegly do wektora Rey i1 stad dodatkowy
wyraz, ktéry tu trzeba bylo uwzgledni¢, automatycznie znika. Po drugie istotna dla
tych szkolnych zagadnien skladowa momentu bezwladnosci jest (znéw wskutek wysokiej
symetrii) niezalezna od zmiennych dynamicznych.

136Pouczajacym éwiczeniem moze byé otrzymanie tego réwnania ostatnia metoda bez zakladania, ze
punkt P w chwili, w ktérej pisane sa réwnania Newtona znajduje sie dokladnie nad poczatkiem inercjal-
nego uktadu odniesienia.
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Przypomnienie

Rownania kanoniczne. Rownania Lagrange’a drugiego rodzaju otrzymywane z lagran-
gianu, ktéry nalezy traktowaé jak funkcje 2 f zmiennych (f jest tu liczba stopni swobody
uktadu): f uogdlnionych potozen ¢ oraz f uogdlnionych predkosci v* = ¢*, sa uktadem f
zwyczajnych rownan rézniczkowych drugiego rzedu. Matematycy nauczaja, ze taki uktad
mozna zawsze sprowadzi¢ do uktadu 2f réwnan pierwszego rzedu. W mechanice osiaga
sie to przechodzac do formalizmu kanonicznego (Hamiltonowskiego), w ktérym centralna
role odgrywa hamiltonian bedacy transformata Legendre’a lagrangianu L = L(q,v,t) w
f zmiennych v, tj. funkcja f pedéw kanonicznych zdefiniowanych jako pochodne lagran-
gianu po predkosciach uogdlnionych:

OL(q,v,t »
pi(Qav):%, i=1,...,f.

Poniewaz w rézniczce (pomocniczej na razie) wielkosci'®” h(q,v,t) = (OL/0v)vi—L(q, v, t)

L . 0L ; oL O*L ., OL - 0L
dh(q,v,t) = ( ——.) dq’ + (%jLaviavjv —%) dv? — —dt

ovtoqI ! oq? ot
oL . . ([ 0’L , 0*L , oL

Gl O R j i) _ Y%
90 dg’ +v (8vi8qj dg’ + S0 D0 dv ) BT dt ,

rézniczki dv' predkoéci mozna jednoznacznie wyrazié przez rézniczki dg' oraz pedéw

0*L , 0*L

—— d¢’ —’ 17
ovioqi ¢ +8v’8v1 v

dp; =

tak iz dh = —(0L/dq")dq" + vidp; — (OL/0t)dt, funkcja H(q, p,t) = hiq, v(q,p), t) jest
w istocie funkcja ¢° oraz p; (i ewentualnie czasu t), gdyz startujac z zadanej wartosci
H w jakims$ punkcie (q,v(q,p),t) mozna zamknieta jedno-forme dh = dH “odcatkowad”
(tak jak to robimy w termodynamice) do peej funkcji H(q,p,t). Jako transformata
Legendre’a hamiltonian

7
H(q,p,t) = pid'(a,p) — L(g, i(q,p), 1),

i=1

w ktérym predkosei uogélnione v = ¢ sa wyrazone'® przez pedy p; i zmienne ¢*, koduje

137Zgodnie 7 zaleceniem wujka A.E. pomijamy symbole sum; powtarzajace sie (na réznych poziomach)
wskazniki traktujemy jak domyslnie zsumowane.

138y zaktadamy, ze zwiazki definiujace pedy p; daje sie odwrécié. Jedli nie jest to mozliwe, rozpatrywany
uklad fizyczny nalezy do klasy ukladow poddanych wiezom. Jesli sa to tzw. wiezy drugiego rodzaju,
hamiltonizacje uktadu daje sie przeprowadzi¢, ale wymaga to pewnych sztuczek wymyslonych przez Diraca
(zob. zadanie ?7); jesli wiezy sa pierwszego rodzaju, to uklad ma pewna symetrie cechowania i jego
ewolucja czasowa nie jest jednoznacznie wyznaczona nawet przez lagrangian. O tym wszystkim zwykle
wykladam w ramach kwantowej teorii pola.
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w sobie te sama informacje o ukladzie, co lagrangian.’®® W szczegdlnosci, uktad 2f

kanonicznych (Hamiltona) rézniczkowych réwnan pierwszego rzedu

- H
qZ: wa izlw"va
Ip;
H t
g 2Hapt)
0q*

jest réwnowazny uktadowi f réwnaniom Eulera-Lagrange’a. Istotnie, Jegli zmienne ¢*
speliaja rownania Lagrange’a, to

oL d L _ .
d¢t  dt O = b
i wypisane wyzej réwnania kanoniczne (oraz zwiazek 0H /0t = —0JL/0t) wynikaja natych-

miast z postaci rézniczki hamiltonianu H = d(—L(q, ¢(q,p),t) — pi¢*(q,p)):

9L ,, OL (0§ ,, 0f
oL ’ oy, oF
Tt ddps +pi [ 2L dgt + L ap,
gy At +d'dpitp (aqz ‘o p)
oL . , oL S oL
= T g+ vtdp — L dt = —pidg + § dps — — dt.
o q + v ap ot pidq +q ap ot

Wazna zaleta réwnan kanonicznych jest to, ze jesli jakas zmienna ¢ nie wystepuje w
Hamiltonianie, to sprzezony z nia ped kanoniczny p jest stala ruchu, co zmniejsza liczbe
rozwiazywanych sprzezonych réwnan. Niech np. hamiltonian zalezy tylko od n < f
zmiennych ¢'. Wtedy uklad 2f réwnan redukuje sie od razu do ukladu 2n réwnan na n
zmiennych ¢' i n pedéw p; i = 1,...,n, bo f — n pozostatych pedéw, od ktérych zalezy
hamiltonian mozna od razu polozyé¢ réwne statym ', [ = n +1,..., f. Po rozwiazaniu
tego zredukowanego uktadu 2n réwnan, zaleznosé od czasu f — n pozostalych zmiennych
¢' mozna otrzymaé calkujac osobny uklad f — n réwnan

ql = i H(ql(t)’ s '>qn(t)> pl(t)a cee >pn(t)a ﬁn—i-la .. ~>5f)>
9B,

139Nie bylo by tak, gdyby po prostu wyrazié sam lagrangian przez pedy p’. Niech bowiem bedzie dana
(wypukla - z niewypuklymi sa dodatkowe klopoty) funkcja f(£). Jesli odwrécimy zwiazek p = f/(€) i
skonstruujemy funkcje g(p) = f(£(p)), to funkcje g(p) odpowiadajace funkcjom f1(£) 1 f2(€) = f1(§ — a)
beda identyczne - najlatwiej to zobaczy¢ robiac odpowiedni rysunek - czyli znajac funkcje g(p) nie mozna
jednoznacznie odtworzy¢ funkeji f. Jesli jednak przez kazdy punkt wykresu funkeji f(£) poprowadzi sie
styczna do tego wykresu, to zbidér takich stycznych wyznacza funkcje f jednoznacznie. Kazda zas styczna
z tego zbioru mozna scharakteryzowaé podajac jej nachylenie p i rzedna (to jednak pionowa o sie nazywa
osig rzednych, a pozioma odcietych!) punktu jej przeciecia z osia y. Transformata Legendre’a funkcji f
jest to wlasnie ta rzedna w funkcji nachylenia: jesli weZzmiemy pukt & i f'(§p) = p, to prosta styczna do
wykresu funkcji f przechodzaca przez punkt (&, f(£o)) ma réwnanie y = p& + f(&) — p&o i rzedna g(p)
jej punktu przeciecia z osia y jest g(p) = f(€o0) — p&o- W mechanice bierze sie jako charakterystyke tej
prostej nie g(p), a —g(p) po to, aby hamiltonian mial (w wiekszosci przypadkdéw) sens catkowitej energii.
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w ktorych ¢i(t),...,q"(t) i pi(t),...,pa(t) sa juz dane jako jawne funkcje czasu.'?

Kanoniczne rownania Hamiltona mozna zapisa¢ w eleganckiej postaci wprowadzajac
tzw. nawiasy Poissona. Jesli F'(q,p,t) i G(q,p,t) sa dwiema funkcjami zmiennych kano-
nicznych ¢* i p;, i = 1,..., f, to ich nawiasem Poissona jest wielko$¢ dana wyrazeniem

f
{F(g,p,1), Gla;p,t)}ps = ) <8F 060G aF) .

1=1

Pelna (tzn. uwzgledniajaca takze zalezno$é od czasu zmiennych ¢' i p;) pochodna po
czasie dowolnej wielkosci F'(q, p,t) mozna za pomoca nawiasu Poissona napisa¢ w postaci

d OF
EF(an%t)_{F? H}PB“'E

a same 6wnania Hamiltona mozna zapisa¢ jako

i ={¢, H}ps, pi={pi, H}vs.

Nawiasy Poissona maja proste wlasciwosci: sa biliniowe, antysymetryczne ({F, G}pp =
—{G, F}pp) i speiaja regule “wysadzania”!¥! taka jak komutatory operatoréw w me-
chanice kwantowej:

{F, G1Ga}pp = G {F, Ga}ps +{F, G1}pB Ga,
oraz tzw. tozsamos¢ Jacobiego

{F1, {F3, F3}pa}rs +{F5, {F1, Fo}ee}es + {Fs, {F3, Filpe}re =0.

Jest tez jasne, ze jesli wielkos¢é F' nie zalezy od czasu jawnie (a tylko poprzez zaleznosé
od ¢' i p;), to jest ona stala ruchu (wielkoscia zachowana), gdy {F, H}pg = 0.

Tak jak rownania Lagrange’a drugiego rodzaju sa réwnaniami Eulera-Lagrange’a pro-
blemu wariacyjnego

to
6/ BL(g 4 t) =0, oagi(ty) = dgs(ta) — 0,
t

1

140Nalezy to poréwnaé z réwnaniami Lagrange’a w sytuacji, gdy lagrangian nie zalezy od f—n zmiennych
¢': wynikajace z tego réwnoséci

220, l=n+1,....f,

stanowia nadal réwnania rézniczkowe, wprawdzie juz tylko pierwszego rzedu, ale ktére nalezy rozwiazywacé
razem z pozostalymi n rézniczkowymi réwnaniami drugiego rzedu.

141 Jakoé mi sie ona kojarzy z takim dowcipem: jada mi$ i zajaczek pociagiem w jednym przedziale i
zajaczek sie zwierza misiowi (jak to zwierz zwierzowi), ze nie ma biletu; mi§ na to “a to nic takiego,
jak bedzie nadchodzil konduktor, to ja Ciebie, Zajaczku, zlapie za uszka i potrzymam za oknem i tak
unikniesz kary”; przychodzi konduktor, sprawdza misiowi bilet, a potem pyta: “a co Ty tam niedzwiedziu”
trzymasz za oknem?” a mis otrzepujac tapy: “a juz nic!”...
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tak i réwnania kanoniczne sa rownaniami Eulera-Lagrange’a wariacyjnego problemu

to ) . .
5/ dt{zplql_H(qv D, t)} :07 5ql(t1) :5ql(t2) :07
t1 i

w ktérym na wariacje 0p;(t) nie sa narzucone zadne warunki brzegowe. Mozna tez, i
tak zatozymy dalej, rozpatrujac przeksztalcenia kanoniczne, zawezi¢ klase dopuszczalnych
wariacji pedéw do speliajacych warunki dp;(t1) = 0p;(ta) = 0. Jest tez jasne, ze przy
takim zawezeniu klasy dopuszczalnych wariacji dodanie do wyrazenia podcalkowego w
powyzszej zasadzie wariacyjnej dowolnego wyrazenia bedacego pelna pochodna po czasie
nie ma wplywu na otrzymywane z niej rownania kanoniczne.

Przeksztatcenia kanoniczne. Roéwnania Lagrange’a drugiego rodzaju sa niezmiennicze
wzgledem dowolnej zamiany wspdhrzednych uogdlnionych. Jesli stare wspdhrzedne ¢* zo-
stana wyrazone przez nowe Q'

¢ =q'(Q,1),
(zakltadamy przy tym, ze jakobian det(9q/0Q) # 0), to zaleznosé od czasu zmiennych @
jest dana réwnaniami
d OLg  0Lqg
dt o 0Qi’

i=1,....f,

w ktérych wystepuje nowy lagrangian Lo(Q, @, 1), ktéry otrzymuje sie przez wyrazenie
starego lagrangianu L,(q, ¢,t) przez nowe zmienne:

Lo(Q, Q. 1) = Ly(q(Q,1), 4(Q,Q,1), 1).

Jest to oczywiste, gdyz lagrangian (w mechanice nierelatywistycznej) jest réznica fizycznej
energii kinetycznej (przypomnijmy: zdefiniowanej wzgledem jakiego$ uktadu inercjalnego)
i energii potencjalnej, ktore zachowuja swdj sens niezaleznie od tego, przez jakie zmienne
zostana wyrazone. (Pozostaje to stuszne takze w uogdlnieniach mechaniki, gdy lagran-
gian niekoniecznie ma taka wtasnie postaé¢; mozna sie wtedy odwola¢ do argumentu, ze
dziatanie I, ktérego punktu stacjonarnego jako funkcjonatu szuka sie rozwiazujac rownania
Eulera-Lagrange’a, jest pewna obiektywna wielkoscia, ktéra moze by¢ sparametryzowana
na rézne sposoby). Przy takich przeksztalceniach wspdhzednych uogélnionych sposéb
przeksztalcania sie pedow kanonicznie z nimi sprzezonych jest jednoznacznie wyznaczony:

f .
8LQ 8L 8(] 861]
Fi=25 Z i 90i Zp 790t
Q' o oa Q' o
Ostatnia réwnosé wynika z tego, ze

i 8(]’ 8qj
q] - Z an
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skad wynika, ze w rézniczce d¢/(Q, Q,t) wspdtczynnikiem przy dQ' jest wlasnie dg? /0Q".
Przy takich przeksztalceniach zmianie nie ulega takze posta¢ rownan kanonicznych: zalez-
noséé od czasu nowych zmiennych Q' i P; jest dana réwnaniami

0Hop(Q, P,t)

Q: 8PZ ) ZZla"'?.f?
S5 aHQP(Q,P,t) -
R,— aQZ ) 1_17"'7.]07

w ktérych wystepuje nowy Hamiltonian Hop(Q, P,t) otrzymany ze starego, H,,(q, p,t)
wedlug przepisu

HQP(Qv Pv t) = HQP(Q(Qvt)v p(P, Qvt)7 t)a

gdzie p; = p;(P, @, t) uzyskuje sie z odwrécenia (liniowych w p i P) zwiazkéw wyprowa-
dzonych wyzej. Przeksztalcenia nalezace do tej klasy nazywa sie punktowymi.
Réwnania kanoniczne sa jednak niezmiennicze takze wzgledem znacznie szerszej grupy
przeksztalcen, zwanych przeksztalceniami kanonicznymi, w ktérych niema bezposredniego
zwiazku miedzy przeksztalceniami zmiennych ¢° i zmiennych p;. Maja one ogdlna postaé

¢ =q'(Q P,
Di :pl(Q7P7 t)v

przy czym zaklada sie, iz niezerowy jest jakobian

(0q/0Q) (0q/0P)
det((é*p/a@) <ap/aP>) '

Przeksztalcenia te oraz nowy hamiltonian H(Q, P,t) sa skonstruowane tak, by ¢'(t) i p;(t)
otrzymane z powyzszych zwiazkéw spemialy réwnania kanoniczne (ze starym hamiltonia-
nem H(q,p,t)), gdy Q'(t) i P;(t) sa rozwiazaniami réwnani kanonicznych z hamiltonianem
H(Q, P,t). Dopuszczalng postaé takich przeksztalcen oraz posta¢ nowego hamiltonianu
ustala sie zauwazajac, ze powyzsze zadanie jest rownowazne temu, by réwnosé

5/t2dt{ZPZQi—H(Q, P, t)} =0,

t

przy 0Q'(t1) = 0Q'(t2) = 0, 0P;(t1) = dP;(ty) = 0, zachodzaca, gdy zmienne Q*(t), P;(t)
spetiaja kanoniczne réwnania z hamiltonianem H(Q, P, t), pociagala za soba znikanie
takze wyrazenia

to )

t

przy skorelowanych (za posrednictwem zwiazkéw q = q(Q, P,t), p = p(Q, P,t)) z §Q*(t) i
dP;(t) wariacjach dq'(t) i op;(t) (spemiajacych wobec tego warunki dq¢'(t1) = dq'(t2) = 0,

332



dpi(t1) = dp;(t2) = 0) na trajektorii ¢*(t), p;(t) zadanej wzorami ¢'(t) = ¢"(Q(t), P(t), t),
pi(t) = pi(Q(t), P(t), t). Dostatecznym warunkiem tego, by tak bylto jest zas, by przy
wariacjach zmiennych dQ(t) i dP;(t) o ustalonych koricach wokét dowolnej trajektorii
Q'(t) i Bi(t) (a nie tylko trajektorii spelniajacej kanoniczne réwnania z hamiltonianem
H) i skorelowanych z nimi wariacjach d¢*(t) i dp;(t) znikata wariacja funkcjonatu

J:/:dt{; (nid' - PQ) - (H—H)}.

To z kolei jest zapewnione, jesli wyrazenie podcalkowe powyzszego funkcjonatu .J jest
rézniczka zupeha, tj. gdy'4?

> (pidg' — PdQ") — (H — H) dt = d®(Q, P,t),
gdyz wowczas
J = / "4D(Q, Pot) = 2(Q(t), Plts), 1) — B(Q11), Pty), 1),

i automatycznie 6.J = 0 przy dowolnych wariacjach o ustalonych koncach. Jesli zas znika
dowolna wariacja o ustalonych koricach funkcjonatu J, to przy wariacjach 6Q(t) i dP;(t)
wokét trajektorii Q'(t) i Pi(t) speliajacych kanoniczne réwnania

OH(Q, P,t)

Q: 8PZ ; :1> ">.f7
Pi_ Tcya _]-7' '>.fa

kiedy to osobno znika wariacja czesci
tz . . —_
dt FQ —-H,,
%

funkcjonatu J musi tez znika¢ wariacja drugiej potowy J, czyli wariacja funkcjonatu

t2 )

142 Jedli kogo$ przerazaja formy rézniczkowe, to warunek ten mozna tez zapisaé jako

d

Z (pi i —P Qi) — (H—H) = 2 2(Q(1), P(), 1).

2
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Wspomniane na wstepie przeksztalcenia punktowe speliaja trywialnie ten warunek
z H = H (tj. whasnie z H(Q, P,t) = H(q(Q,t), p(Q, P,t), t), gdzie teraz Hop = H, a
H,, = H), tak jak to zostalo podane wyzej, gdyz przy takich przeksztalceniach

: : : 9g; 0Q; |
ZdZ—PZd Y = Z’dl— i —d =0.
> (pidg Q") zi:p ¢ —=> p 90, dg ™

7 ijk
Rézniczka funkcji tworzacej @ jest wiec tu tozsamosciowo réwna zeru. Stanowia wiec one
podklase (dos¢ trywialnych) przeksztalcenn kanonicznych.

Wyrazajac funkcje ® przez te zmienne, ktérych rozniczki wystepuja po lewej stronie,
tj. przez ¢' i Q' (zakladamy przy tym, ze zwiazki definiujace przeksztalcenie daja sie
odpowiednio rozwikla¢, co z kolei wymaga nieznikania odpowiedniego podwyznacznika
jakobianu), otrzymujemy wniosek, ze warunkiem dostatecznym, by dane przeksztalcenie
byto kanoniczne, jest istnienie takiej funkcji ®(q, @, 1), ze

p=2  p= g g0
0q’ 0Q¢ ot

Funkcja @ jest nazywana funkcja tworzqcq przeksztalcenia kanonicznego. (W bedacym
standardem swiatowym podreczniku H. Goldsteina funkcja & jest oznaczana Fi, a w
dalszych zadaniach bedzie ona oznaczanana W(q, @, t)). Jesli zwiazkéw definiujacych
przeksztalcenie nie daje sie odwiklaé¢ tak, by zmiennymi niezaleznymi byly ¢' i Q° (pod-
jakobian znika - jest tak np. w przypadku transformacji punktowych, przy ktérych
det(dq/0P) = 0), to warunek kanonicznosci mozna przez transformacje Legendre’a (znéw
ta transformacjal) przeksztalci¢ do innej postaci. Np. dodajac do obu jego stron rézniczke
zupelma!®® d >, Q'P; otrzymamy jako dostateczny warunek kanonicznosci réwnosé

> (pidg' +Q'dP) — (H — H) dt = dS(q, P,t),

)

gdzie S = @ + Y. Q"P;. Wykorzystanie tego warunku wymaga z kolei by zwiazki defi-
niujace przeksztalcenie daly sie odwiktaé tak, by niezaleznymi zmiennymi byly ¢* oraz P;.
Przeksztalcenie jest wiec takze kanoniczne, jesli istnieje taka funkcja tworzaca S(q, P,t)
(u Goldsteina zwana Fy), ze

oS . 0S _ oS
pi=--, Q=-5, H-H=—_.

oq’ 0P, ot
Nietrudno zobaczy¢, ze funkcja tworzaca transformacji punktowych jest np. funkcja
S(g, P) =", P.Q"(q). W podobny sposéb mozna sformutowaé inne dostateczne warunki
kanonicznosci.

1430dpowiada to zmodyfikowaniu wyrazenia podcatkowego z zasadzie wariacyjnej spetnianej przez tra-
jektorie Q(t) i P;(t) o pelna pochodna po czasie.
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