
9 S-matrix and Feynman rules

We are now going to show how the formula (7.63) derived within the time-dependent
formalism leads to covariant Feynman rules. These rules allow to organize perturba-
tive computations of S-matrix elements in a transparent way, maintaining (in relativistic
theories) manifest Lorentz invariance at every stage.1

We will begin by constructing simple interaction Hamiltonians of spin 0 and spin 1/2
particles represented by the simplest field operators constructed in Sections 8.2 and 8.3.
Before formulating covariant Feynman rules which apply to interactions of such particles,
what is a straightforward task, we will compute in the lowest order the amplitude (the
S-matrix element) of the muon decay by applying the formula (7.63) directly to the
realistic (effective) Hamiltonian of leptonic weak interactions. This example - although
somewhat at odds with the general principles on which the theory of interacting relativistic
particles developed here and in Chapter 7 is based (as all particles represented by the
states |α0〉 related to the states |α±〉 must be absolutely stable within this approach,
consistent treatment of decay processes requires investigating resonances of the partial
wave amplitudes corresponding to appropriate reactions in which only stable particles
take part, instead of computing their rates using S-matrix elements; however in the
first order of the perturbative expansion the S-matrix approach does not lead to any
troubles) - nicely illustrates how the “wave function” factors ul and vl in the notation of
Chapter 8 (u, ū, v and v̄ in the case of spin 1

2
fermions) appear in the computations of

rates of processes involving fermions in their initial and/or final state(s) and how they are
associated with the external lines (representing particles in the initial and in the final state)
of Feynman diagrams. After discussing these wave function factors in full generality and
explaining the origin of Feynman propagators, general Feynman rules will be presented.
Formulation of covariant Feynman rules pertaining to interactions of massive and massless
spin 1 particles (and to all particles represented in the interaction Hamiltonian density
by operators involving derivatives, like e.g. the operator (8.132) representing a spinless
particle) is more complicated and will be be discussed in separate sections.

In the last section of this chapter identified will be an important condition which the
interaction Vint (or Hint) must satisfy if the postulates of Section 7.3, on which the method
of direct computation of S-matrix elements with the help of the formula (7.63) is based,
are to be respected. Relaxing this condition is possible but requires going beyond the
formula (7.63) and reformulating the whole approach to the computation of S-matrix
elements (that is to base it on the LSZ prescription discussed in Chapter 13). Still,
within the perturbative expansion this will amount to a relatively small modification of
the Feynman rules presented in this section.

1The alternative approach to S-matrix elements computation consists of taking the interaction Hamil-
tonians Hint given in this section at t = 0 and in applying to them the “old-fashioned” time-ordered
perturbative expansion based on the formulae (7.37) and (7.62) Lorentz invariance is then not manifest
at intermediate steps because of the occurrence of “energy denominators”.
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9.1 Simple interactions

From the results of Chapter 8 it is clear that to obtain interaction Hamiltonian densities
Hint(x) leading to covariant S-matrices satisfying the cluster decomposition principle one
has to form Lorentz scalar densities out of field operators transforming as irreducible rep-
resentations of the Lorentz group. An additional constraint is the requirement that the
resulting Hamiltonians must be Hermitian - a condition which is necessary for unitarity
of the S-matrix. Finally, Hint must be such that the in and out states of the full Hamil-
tonian H are in the one-to-one correspondence with the free particle states |α0〉 (which
in particular implies - see Section 7.3 - that H and H0 have the same spectra). This last
requirement will be addressed in Section 9.7.

Let us consider first a theory of interacting massive (or massless) neutral spinless
particles of one kind. The simplest interactions which can be built out of the single
Hermitian field operator ϕ(x) = ϕ†(x):

ϕ(x) =

∫

dΓp

(

a(p) e−ip·x + a†(p) eip·x
)

, (9.1)

are of the form2

Hint(x) =
g

3!
ϕ3(x) +

λ

4!
ϕ4(x) +

h

5!
ϕ5(x) +

f

6!
ϕ6(x) + . . . (9.2)

with real (Hermiticity!) constants (called coupling constants) g, λ, h etc. In principle Hint

can consist of a finite or an infinite number of such terms. Each interaction term in (9.2)
is obviously by itself a Lorentz scalar and, because [ϕ(x), ϕ(y)] = 0 for (x− y)2 < 0, the
interaction (9.2) is locally causal (i.e. satisfies the local causality requirement (7.109)).
The interaction V I

int(t) entering the formula (7.63) is given by V I
int(t) =

∫

d3xHint(t,x).
Since the free part H0 of the full Hamiltonian must be (in order that the particles long
before and long after the interaction behave as free particles with the appropriate Lorentz
transformation properties) of the form

H0 =

∫

dΓpE(p, m) a†(p)a(p) , (9.3)

with E(p, m) =
√

p2 +m2, where m is the mass of the considered particles, the operator
(9.1) satisfies the relation

ϕ(t,x) = eiH0t ϕ(0,x) e−iH0t , (9.4)

2Hint can also have terms like

f ′

4
(ϕ(x)∂µϕ(x)) (ϕ(x)∂

µϕ(x))

in which spin zero particles are represented by vector operators ∂µϕ(x); discussion of the Feynman rules
for such interactions will be given in Section 9.5.
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and the interaction operator V I
int(t) has the necessary property (7.106)

V I
int(t) = eiH0t Vint(0) e

−iH0t ≡ eiH0t Vint e
−iH0t . (9.5)

Thus, V I
int(t) =

∫

d3xHint(t,x) fulfills all the conditions formulated in Section 7.5 necessary
for producing a Lorentz covariant S-matrix.

At this point a couple of remarks is in order. Firstly, the formula (9.3) and the adopted
normalization of the a(p) and a†(p) operators fix completely the normalization of the field
operator ϕ(x); any change in its overall scale (i.e. the arbitrariness in the real constants
α+ = α− in the formulae like (8.17)) can be absorbed in the coupling constants like g, λ,
h etc. in (9.2). In general, the free field operators (operators in the interaction picture)
constructed in Chapter 8 are normalized in such a way that at t = 0 they coincide with
the field operators which will be obtained by quantizing the corresponding classical fields
(possessing canonically normalized kinetic terms in the Lagrangian) in which procedure
their scale is fixed by the canonical commutation relations (see Chapter 11). In fact, as
said in the introduction to Chapter 7, relativistic quantum theories of particle interactions
which are constructed here by adding interaction terms Vint to H0’s can also be obtained
by quantizing classical field theories defined by appropriate Lorentz scalar Lagrangian
densities. We follow here a different approach (in which the underlying “ontology” are
particles) partly in order to show that any relativistic quantum mechanics of a finite
number of types of particles3 must necessarily take the form of a quantum theory of fields
and partly to display the connection of the relativistic field theory with the nonrelativistic
many-body theory formulated in the language of the second quantization. The approach
to the relativistic field theory based on quantization of classical fields has many advantages
(see Chapters 11, 16) but has the disadvantage, that it is much more abstract as far as
fermions are concerned.

Secondly, in mathematically oriented textbooks interactions are usually built out of
normal ordered products like :ϕ4(x) : (of the interaction picture field operators4) in which
(see Section 5.9) all creation operators (negative frequency parts of the field operators)
stand to the left of all annihilation operators (positive frequency parts). This is partly
motivated by the fact that the products like ϕ4(x) of operators out of which the inter-
actions similar to (9.2) are built here are easily seen to be ill defined because many of
their matrix elements between the state-vectors |α0〉 are infinite. Normal ordering does
not spoil all the necessary (for relativistic covariance of the S-matrix) properties of the

3The restriction to a finite number of types of particles is important: string theory is the best example
of a relativistic theory that is not a quantum field theory. Quantum theory of strings gives rise to an
infinite number of particle-like excitations with increasing masses and spins. Still, low energy interactions
of the lowest (i.e. zero mass) string states can effectively cast in the form of an appropriate ordinary
relativistic quantum field theory.

4The reader should be a warned that normal ordering of products of the (interaction picture) free
operators defined in Section 5.9 should be carefuly distinguished from the “normal ordering” of com-
posite operators built out of the Heisenberg picture operators, which are used in some more advanced
considerations. “Normally ordered” products of the latter type (unfortunately denoted frequently also
by double colon) require in each case precise definition in terms of some their matrix elements.
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interactions since any normal ordered product can be written as a linear combination of
the ordinary products of operators with appropriate (formally infinite) coefficients (Sec-
tion 5.9). However, even normally ordered interactions lead to ill defined expressions for
S-matrix elements in higher orders of the perturbative expansion and it is therefore better
to take care of all kinds of infinities by the uniform renormalization procedure discussed
in Chapter 14. In fact, it seems that the only reason for building interaction Hamilto-
nians out of products of the interaction picture operators ordered normally with respect
to the |void〉 vector is that this is necessary (see Section 5.3) for the strict equivalence of
Hamiltonians of nonrelativistic N particle systems constructed within the second quanti-
zation formalism with the corresponding treatement of these systems based on N particle
Schrödinger equations. Since the equivalence with the (many-body) Schrödinger equation
approach is not a requirement for a relativistic theory of particles, we will use interaction
Hamiltonians which will not be normally ordered.

Thirdly, to (9.2) the term ∝ ϕ2(x) as well as the term ∝ ∂µϕ(x)∂
µϕ(x) could be

added.5 In fact, it will turn out in Section 9.7 and in Chapter 14) that precisely such terms
(with appropriately adjusted coefficients) must be included in the interaction Hamiltonian
densities Hint(x) in order to ensure that the Hamiltonian H has the same spectrum as
H0. However, these terms are not necessary for the calculations of S-matrix elements in
the lowest order of the expansion of the formula (7.63) and for this reason will be ignored
in this section.

Finally, terms with operators of dimension6 higher than [M ]4, assuming that operators
like ϕ(x) of bosons have the dimension [M ]1 and those of fermions, like ψα(x) have dimen-
sion [M ]3/2 - this will acquire a justification in the approach based on field quantization
but it follows also from the way these operators have been constructed in Chapter 8 -
and that each derivative also counts as [M ]1, are known as nonrenormalizable (in four
space-time dimensions) interactions and were in the past considered as not allowed (in-
clusion of one such term in the interaction density Hint(x) of a theory enforces inclusion
of infinitely many of such terms with coupling constants which have to be determined
from the data; this (superficially) seemed to lead to the complete lost of predictive power
of such theories). At present renormalizability (discussed in detail in Chapter 14) is not
viewed as a necessary feature of quantum field theories of low energy (low compared to,
say, the electroweak or the Planck scales) particle interactions. In fact, nonrenormaliz-
able interactions appear in the Hamiltonian of the effective (phenomenological) theory of
a large class of important physical phenomena, like weak decays of leptons and hadrons,
rare decays of hadrons, etc. Nonrenormalizable interactions are also necessary to account

5With the terms built out of even numbers of the ϕ field operators only the theory has the Z2

symmetry ϕ→ −ϕ (the Hamiltonian commutes with the parity operator P even if the spin zero particles
are assigned negative intrinsic parity η = −1). This guarantees that no terms odd in the ϕ field operators
will be necessary to remove infinities. Inclusion of the term ∝ ϕ3 would require including also at least
the term ∝ ϕ.

6Since we work with ~ = c = 1, all dimensions of physical quantities can be expressed in terms of
mass units [M ].
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for neutrino masses in the Standard Model of particle interactions. The considerations of
this section apply equally well to renormalizable and nonrenormalizable interactions.

If the spin 0 particles of a mass M carry a conserved quantum number Q and are
therefore associated with the nonhermitian field operators φ(x) and φ†(x), the interaction
Hamiltonian density can take the form7

Hint(x) =
λ

2!2!

[

φ†(x)φ(x)
]2

+
h

3!3!

[

φ†(x)φ(x)
]3

+ . . . , (9.6)

where λ, h are two real coupling constants (the reasons for dividing these couplings by the
factors 2!2! and 3!3! will be explained below). Again, the interaction (9.6) is locally causal
and the interaction operator V I

int(t) =
∫

d3xHint(x) has the necessary property (9.5). In
this case

Hbosons
0 =

∫

dΓpE(p,M)
[

a†(p)a(p) + ac†(p)ac(p)
]

. (9.7)

Obviously, it is also possible to construct a theory of interacting neutral spin 0 particles
of mass m and charged particles of mass M . The interaction Hamiltonian density can
take e.g. the form

Hint(x) =
g

3!
ϕ3(x) + hϕ(x)φ†(x)φ(x) +

λ

4!
ϕ4(x)

+
κ

2
ϕ2(x)φ†(x)φ(x) +

η

2!2!

[

φ†(x)φ(x)
]2

+ . . . (9.8)

where for simplicity we have restricted Hint(x) to renormalizable (of dimension up to [M]4)
interactions only. The free Hamiltonian H0 is then given by the sum of terms (9.3) and
(9.7) and again the interaction V I

int =
∫

d3xHint(x) has the necessary property (9.5).

Out of the two field operators ψα(x) and ψ̄α(x) associated with charged spin 1
2
parti-

cles and their antiparticles carrying some conserved charges Q and −Q, respectively (for
simplicity think of Q as of the electric charge) one can form two different Lorentz scalars

ψ̄(x)ψ(x) ≡
4

∑

α=1

ψ̄α(x)ψα(x) scalar

ψ̄(x)γ5ψ(x) ≡
4

∑

α=1

4
∑

β=1

ψ̄α(x)γ
5
αβψβ(x) pseudoscalar

7The more general interaction

Hint(x) =
g3
3!
φ3(x) +

g2
2
φ2(x)φ†(x) +

g∗2
2
φ†2(x)φ(x) +

g∗3
3!
φ†3(x) +

λ4
4!
φ4(x)

+
λ3
3!
φ3(x)φ†(x) +

λ2
2!
φ2(x)φ†2(x) +

λ∗3
3!
φ†3(x)φ(x) +

λ∗4
4!
φ†4(x) + . . .

although Hermitian, does not commute with the charge operator Q̂ = Q
∫

dΓ(a†a− ac†ac) and would in
higher orders split the masses of the two states, which in the zeroth order approximation seem to represent
a particle and its antiparticle (thus breaking the assumptions which form the basis of our approach).

371



which can be used to construct interactions of these particles with neutral spin 0 particles.
The simplest such interactions are:

Hint(x) = hϕ(x)ψ̄(x)ψ(x) , or Hint(x) = ihϕ(x)ψ̄(x)γ5ψ(x) , (9.9)

(i in the second type of interactions is necessary for its Hermiticity). Interactions of
this general form are called Yukawa interactions. Both terms written above are Lorentz
scalars and (after integration over d3x) commute with the parity operator P provided the
field ϕ(x) transforms under the space reflection as a scalar and a pseudoscalar, respec-
tively. Coupling of a scalar field operator ϕ to the combination ψ̄(a + ibγ5)ψ inevitably
breaks parity conservation.8 Since the sum of charges of each of field operators in both
interactions (9.9) is zero (Q − Q + 0 = 0) they commute with the charge operator Q̂.
As previously, the interaction operator V I

int(t) =
∫

d3xHint(x) satisfies (9.5) if the free
Hamiltonian is the sum of (9.3) and of

H fermions
0 =

∫

dΓpE(p, mf )
∑

σ

[

b†(p, σ)b(p, σ) + d†(p, σ)d(p, σ)
]

. (9.10)

The interactions (9.9) are locally causal and have therefore properties discussed in Section
7.5 necessary to produce Lorentz covariant S-matrices.

If the spin zero particles carry the same kind of charge as do the fermions, the simplest
possible interaction conserving this charge and preserving parity is the nonrenormalizable
(of dimension [M ]5) interaction of the form

Hint(x) = h
[

φ†(x)φ(x)
]

ψ̄(x)ψ(x) . (9.11)

Renormalizable (of dimension [M ]4) couplings of fermions to charged spin 0 particles
(and their antiparticles) of charge Q (−Q) are possible only if there are two kinds of
fermions (and antifermions) a and b with charges Qa (−Qa) and Qb (−Qb), such that
Q +Qa −Qb = 0:

Hint(x) = φ(x) ψ̄b(x)Γψa(x) + φ†(x) ψ̄a(x)Γ̄ψb(x) , (9.12)

where Γ = a + ibγ5 (we allow for parity non-conservation here). Hermiticity of Hint(x)
requires that

Γ̄ = γ0Γ†γ0 . (9.13)

Indeed,

(

ψ̄bΓψa

)†
=

(

ψ†
bγ

0Γψa

)†

= ψ†
aΓ

†γ0ψb = ψ†
aγ

0γ0Γ†γ0ψb = ψ̄aΓ̄ψb ,

8Parity is indeed broken by weak interactions.
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where we have used (γ0)† = γ0, (γ0)2 = 1. Another important (nonrenormalizable, of
dimension [M ]6) interaction of spin 1

2
particles is the so-called four-Fermi interaction of

the general form9

Hint =
∑

A

(

ψ̄aΓ
Aψb

) (

ψ̄cΓAψd

)

+H.c., (9.14)

in which ΓA are some matrices in the spinor space (with real coefficients playing the role
of the coupling constants) and H.c. stands for the Hermitian conjugation of the term
written down explicitly. For example, if parity is to be conserved one can take Γ ∝ I,
Γ ∝ γ5, Γ ∝ γµ, Γ ∝ γµγ5, Γ ∝ γ[µγν] (in other words, the whole basis (8.59) of the
gamma matrix algebra can be used here). Interaction of the form (9.14), with γλ(1− γ5)
(the combination 1 − γ5 accounts for parity non-conservation) playing the role of ΓA’s
accounts for a large part of low energy weak interactions of leptons.10 The interaction
Hamiltonian density takes then the “current-current” form11

Hlept
weak =

GF√
2
Jλ
lept(J

†
lept)λ , (9.15)

with the weak leptonic “current” operator given by

Jλ
lept = ψ̄(e)γ

λ(1− γ5)ψ(νe) + ψ̄(µ)γ
λ(1− γ5)ψ(νµ) + . . . (9.16)

(the ellipses stand for the third term with the τ lepton and its neutrino field operators)
and GF the real coupling constant (called Fermi constant) of dimension [M ]−2. This
interaction gives rise, among other processes, to the decay

µ− → e− + ν̄e + νµ . (9.17)

9.2 An example: the muon decay amplitude

We will now use the interaction (9.15) to calculate in the lowest order the S-matrix
element corresponding to the muon decay (9.17) directly from the general formula

Sβα = 〈β−|α+〉 = 〈β0|Texp

(

−i
∫

d4x Hint(x)

)

|α0〉

=
∞
∑

N=0

(−i)N
N !

∫

d4x1 . . .

∫

d4xN 〈Ω0|b . . . d . . . a . . . (9.18)

T{Hint(x1) . . .Hint(xN )} a† . . . d† . . . b† . . . |Ω0〉 .
9This form is the most general one if parity conservation is imposed. The discovery of parity violation

enforced admitting a priori also other terms in the realistic effective Hamiltonian of weak interactions;
the history of developement of the weak interactions theory is largely the history of elimination of most
of the initially assumed interaction terms by using the experimental data.

10The development which led to this form of Hlept
weak is recalled in Chapter 12.

11The factor 1/
√
2 is traditional.
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This example will clearly show how the “wave function” factors - the functions ul(x,p, σ)
and vl(x,p, σ) introduced in constructing free field operators (c.f. the formulae (8.2)) -
enter the amplitudes of processes with fermions and antifermions in the initial and/or
final states.

The state-vectors |α0〉 and 〈β0| which we have to consider in (9.18) are12

|α0〉 = b†(µ)(q, σq)|Ω0〉 ,
〈β0| = 〈Ω0|d(νe)(k1, σ1) b(e)(p, σp) b(νµ)(k2, σ2) , (9.19)

(the notation should be obvious). We will apply the formula (9.18) with the exponent
expanded only to the first order

Sβα = 〈β0| − i

∫

d4xHweak
I (x)|α0〉+ . . . , (9.20)

because a nontrivial contribution to the S-matrix element corresponding to the process
(9.17) arises already in this order being generated by the term

GF√
2

(

ψ̄(e)γ
λ(1− γ5)ψ(νe)

) (

ψ̄νµγλ(1− γ5)ψ(µ)

)

, (9.21)

present in the interction Hamiltonian density (9.15); we have also taken into account that
〈β0|α0〉 = 0 (the initial and final states (9.19) are different). Due to the structure of the
initial and final states (9.19) the Hamiltonian entering (9.20) can be restricted to

Hweak
I (x) ⊃ GF√

2

(

ψ̄
(−)
(e) γ

λ(1− γ5)ψ
(−)
(νe)

)(

ψ̄(−)
νµ γλ(1− γ5)ψ

(+)
(µ)

)

, (9.22)

as it is only this part which can contribute in the first order (i.e. the only one which
annihilates the muon and creates the electron, its antineutrino and the muonic neutrino).
Using now the general structure (8.105) of the fermionic field operators one gets from
(9.20):

Sβα ≈ −iGF√
2

∫

d4x

∫

dΓq′

∫

dΓp′

∫

dΓk′

1

∫

dΓk′

2

∑

σ′

q

∑

σ′

p

∑

σ′

1

∑

σ′

2

e−iq′·xeip
′·xeik

′

1·xeik
′

2·x

×
[

ū(e)(p
′, σ′

p)γ
λ(1− γ5)v(νe)(k

′
1, σ

′
1)
][

ū(νµ)(k
′
2, σ

′
2)γλ(1− γ5)u(µ)(q

′, σ′
q)
]

×〈Ω0|d(νe)(k1, σ1) b(e)(p, σp) b(νµ)(k2, σ2) b
†
(e)(p

′, σ′
p) (9.23)

d†(νe)(k
′
1, σ

′
1) b

†
(νµ)

(k′
2, σ

′
2) b(µ)(q

′, σ′
q) b

†
(µ)(q, σq)|Ω0〉 .

The integrals over dΓ’s, the summations over the primed indices as well as the exponential
factors e−iq′·x etc. come directly from the field operators present in (9.22) . Notice, that
only b’s and d’s (and b†’s and d†’s) are operators; the rest are c-number factors - owing

12In our notation the operator d(νe) annihilates the antiparticle of νe, that is ν̄e.
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to this they could be pulled outside the brackets. Moreover, the spinor indices of the
functions u and v are completely contracted with the spinor indices of the gamma matrices
just as they were in the original Hamiltonian (9.22); they are contracted within the square
brackets, so that these brackets are just complex Lorentz vectors (they carry Lorentz
indices λ). It should be also noted that the absolute sign of Sβα is unphysical because the
state 〈β0| in (9.19) could be defined with a different ordering of the annihilation operators.
However, once the initial and final states are specified, e.g. as in (9.19), this definition
should be kept in computing other contributions to Sβα arising from higher order terms
of the expansion of the formula (9.18) or from other terms of the interation Hamiltonian
density contributing in the same order (absent in the considered example).

We now have to evaluate the matrix element in the expression (9.23). This can be done
straightforwardly but in order to illustrate the general procedure which will be disscussed
later (which is essentially the application of the Wick theorem of Section 5.9), we will do
it in two steps. First we rearrange the operators, so that each creation operator stands
to the right of the annihilation operator corresponding to the same type of (anti)particle.
In the case at hand there is only one such ordering:

[

b(e)(p)b
†
(e)(p

′)
][

d(νe)(k1)d
†
(νe)

(k′
1)
][

b(νµ)(k2)b
†
(νµ)

(k′
2)
][

b(µ)(q)b
†
(µ)(q

′)
]

(9.24)

(for simplicity we have suppressed the spin labels). If there were for example two b(µ)’s

(carrying of course independent momentum and spin labels) and two b†(µ)’s (also with

different momentum and spin labels) two different orderings would be possible and one
would have to sum expressions corresponding to both possibilities. To arrive at the order-
ing (9.24) from the one in (9.23) one had to pull d†(νe) to the left past three operators and

then to pull b†(e) to the left past one operator. Since all the operators are fermionic, these

operations produce four minus signs.13 In the second step we replace the pairs of opera-
tors enclosed in square brackets by the delta functions appearing in their anticommutation
rules

{b(e)(p′, σ′), b†(e)(p, σ)} → (2π)32E(p, m) δ(3)(p− p′) δσ,σ′ , (9.25)

etc. The four integrals over dΓ’s, as well as four sums over spin labels, can be then
performed. The last integral over d4x produces then the delta function expressing the

13In principle in this particular theory and, more generally, in the entire formalism of second quanti-
zation as presented in Chapter 5, there is nothing which would force one to adopt the convention that
the creation and annihilation operators corresponding to different types of fermions anticommute. One
could also adopt the prescription that only the annihilation and creation operators of the same particle
and its antiparticle obey the anticommutation rules (because only this is required for the local causality
to hold) and the ones corresponding to different particles commute. However, it sometimes turns out
that particles which appeared to be unrelated to one another, are, from the point of view of a more
fundamental theory, two internal states of the same particle (this is for example the case of e and νe,
which in the Standard Model become the internal states of a doublet of the SU(2) symmetry; the same
is also true for µ and νµ and τ and ντ ), so it is better to assume that fermionic operators always obey
anticommutation rules and bosonic ones always the commutation rules.
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×
×

×

×

uβ(q, σq)
q

µ−

ūα(k2, σ2)k2
νµ

vδ(k1, σ1)
−k1
νe

ūγ(p, σp)

p

e−

Vαβ;γδ

×
×

×

×

Figure 9.1: The Feynman diagram corresponding to the lowest order contribution to the
amplitude of the muon decay. The lines closed (on one side) with × represent initial or
final state particles. The spinor indices of the vertex factor Vαβ;γδ = −i(GF/

√
2)[γλ(1 −

γ5)]αβ[γλ(1− γ5)]γδ are contracted with the indices of the “wave function” factors uβ, ūα,
vγ and uδ.

conservation of the four-momentum and one gets:

Sβα = (2π)4δ(4)(q − p− k1 − k2) (−iAβα) , (9.26)

with

−iA = −iGF√
2

[

ū(e)(p, σp)γ
λ(1− γ5)v(νe)(k1, σ1)

]

×
[

ū(νµ)(k2, σ2)γλ(1− γ5)u(µ)(q, σq)
]

. (9.27)

The presence of the overall delta function in the S-matrix element (9.26) is expected on
general grounds discussed in Chapter 7. The amplitude −iA can be directly read off from
the Feynman diagram shown in Figure 9.1. It is easy to see which element of the diagram
corresponds to which factor of the expression (9.27). We stress only that the structure
of the vertex reflects the structure of the interaction term (9.21): The two operators ψ
which in (9.21) can annihilate µ− and νe are in figure 9.1 identified with the lines entering
the vertex (arrows pointing towards the vertex). Similarly, the two operators ψ̄ which
can create e− and νµ are represented by the lines leaving the vertex. Note that one
refers here to particles only, not to antiparticles! For this reason the lines entering and
leaving the vertex are marked by the symbols of the particles which can be annihilated and
created by the operators represented by these lines, respectively. Obviously, the same field
operator ψ(νe) which can annihilate νe can also create ν̄e and it is this second part of ψ(νe)

which contributed to the matrix element (9.22). Nevertheless, by convention the arrows
in diagrams always show the possible “flow” of particles. This is why the arrow on the
line representing in Figure 9.1 the electron antineutrino ν̄e produced in the muon decay
is marked by νe (and not by ν̄e) and the four-momentum of this line (−k1) is opposite to
the physical four-momentum carried away by ν̄e.
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9.3 Wave functions, propagators and vertices

We now consider evaluation of the expression (9.18) with arbitrary initial and final states
|α0〉 and 〈β0| and interactions Hint which are sums of arbitrary interaction terms like the
ones discussed earlier: Hint =

∑

iH(i), with each H(i)’s being a local product of field
operators. (Recall that derivatives of field operators, like those in (9.2), are, at this stage,
treated as another kinds of operators). All terms in the perturbative expansion of the
formula (9.18) can be organized according to powers of the different interaction terms
they contain:

T exp

(

−i
∫

d4xHint(x)

)

=
∑

{n1,n2,...}

(9.28)

(−i)n1

n1!

(−i)n2

n2!
. . .

∫

d4xi1 . . .

∫

d4xin1

∫

d4xj1 . . .

∫

d4xjn2
. . .

T
{

H(1)(xi1) . . .H(1)(xin1
)H(2)(xj1) . . .H(2)(xjn2

) . . .
}

.

In writing (9.28) we have used the fact that all interaction terms H(i)(x), being necessarily
bosonic operators - there is no way to couple an odd number of fermionic field operators
to form a Lorentz scalar - commute under the symbol T of the time ordering operation.

We now concentrate on evaluation of one particular term in the expansion (9.28)
labeled by {n1, n2, . . .} (sandwiched as in (9.18) between some initial |α0〉 and final 〈β0|
states). This could be done “mechanically” by applying to it the Wick theorem disscussed
in Section 5.9 but in order to better understand the role played by causality built in into
the the formalism we will do it here step by step. Therefore we pick up first one particular
ordering of the time variables x0i1 , . . . , x

0
in1
, x0j1, . . . , x

0
jn2
, . . ., so that the Hamiltonians H(i)

in (9.28) stand in a well defined fixed order. We split all the field operators present in
H(i)’s into their positive (containing an annihilation operator) and negative (containing a
creation operator) frequency parts. (As a result we get a sum of several matrix elements
which must be computed.) We then pick up one, say the positive frequency part, of an
operator (or an annihilation operator building the final state), and push it to the right
with the aim of acting with it on the vacuum state |Ω0〉. This is done by successively
(anti)commuting the selected operator with all other operators standing originally between
it and |Ω0〉. Each (anti)commutation gives two terms: one in which the selected operator
is already closer to |Ω0〉 and the second one in which there are two operators less and
the remaining string of operators is multiplied by the value (which may be zero) of the
(anti)commutator; in this second term we have finished with this particular operator and
we repeat the same with another one. In the first term the selected positive frequency
operator can either already act on |Ω0〉 and gives zero, or we again (anti)commute it with
the next operator, get two terms and so on. After a finite number of steps we get rid
of the selected operator and repeat the whole procedure with another positive frequency
operator. We proceed similarly with the negative frequency parts of all operators (and
with the creation operators building the initial state), except that we push them to the
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left so that they eventually act on 〈Ω0| and give zero. After a finite number of steps we
get rid of all operators and, after using 〈Ω0|Ω0〉 = 1, we are left with the expression which
is a sum of products of c-number values of (anti)commutators and of other c-number
factors originating from the Hamiltonians H(i). Each term in the sum corresponds to one
possible way of pairing annihilation operators (originating from the final state 〈β0|) and
positive frequency parts of field operators with creation operators (from the initial state
|α0〉) and/or negative frequency parts of field operators, where “pairing” means replacing
as in (9.25) the product of the annihilation (or positive frequency field) operator and
the corresponding creation (or negative frequency field) operator of the same type by the
c-number value of their (anti)commutator14 (in the computation of the matrix element
in (9.23) there was only one possible way (9.24) of pairing the operators). This sum has
to be then multiplied by the appropriate theta functions enforcing the selected ordering
of the time variables x0i1 , . . . , x

0
in1
, x0j1, . . . , x

0
jn2
, . . . The same has to be repeated with all

other possible orderings of these variables and the results have to be added and finally
integrated over all d4x’s.

As we are now going to explain, the contribution of the considered term {n1, n2, . . .}
of the expansion (9.28) to Sβα can be obtained without splitting the operators into their
positive and negative frequency parts as a sum of unrestricted integrals (i.e. without
explicit theta functions introduced by the T-operation in (9.28) to divide the integration
domains into regions with different fixed orderings of interaction Hamiltonians H(i)) over
all d4x’s the integrands of which have the form of a product of factors which are of three
basic types.

Factors of the first type are the initial and final state wave function factors (called
shortly wave functions). They arise when a selected positive (or negative) frequency
part of a field operator on its way to the right (left) gets paired with a creation (anni-
hilation) operator building the initial (final) state. One then gets one of the following
(anti)commutators

[

ϕ(+)(x), a†(p)
]

= e−ip·x ,
[

a(p′), ϕ(−)(x)
]

= e+ip′·x ,
[

φ(+)(x), a†(p)
]

= e−ip·x ,

[

φ†(+)(x), ac†(p)
]

= e−ip·x ,
[

a(p′), φ(−)(x)
]

= e+ip′·x ,
[

ac(p′), φ†(−)(x)
]

= e+ip′·x , (9.29)
{

ψ(+)
α (x), b†(p, σ)

}

= uα(p, σ) e
−ip·x ,

14If in a string of operators standing between 〈Ω0| and |Ω0〉 the number of creation operators of a given
type (counting also those contained in the negative frequency fields) is different than the number of the
corresponding annihilation operators (again counting those contained in the positive frequency fields),
then not all operators can get paired and such a matrix element vanishes. For this reason some of the
terms in the expansion (9.28) may trivially give zero.
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{

ψ̄(+)
α (x), d†(p, σ)

}

= v̄α(p, σ) e
−ip·x ,

{

b(p′, σ′), ψ̄(−)
α (x)

}

= ūα(p
′, σ′) e+ip′·x ,

{

d(p′, σ′), ψ(−)
α (x)

}

= vα(p
′, σ′) e+ip′·x ,

[

V (+)
µ (x), a†(p, σ)

]

= ǫµ(p, σ) e
−ip·x ,

[

a(p′, σ), V (−)
µ (x)

]

= ǫ∗µ(p
′, σ′) e+ip′·x ,

where ϕ(x) is the field operator of neutral spin 0 particles, φ(x) and φ†(x) are the field
operators of charged spin 0 particles and their antiparticles, ψα(x) and ψ̄β(x) are the
operators of spin 1

2
particles and their antiparticles and finally Vµ(x) is the field operator

of a neutral (massive or massless) particle of spin 1. These are the factors corresponding
to the initial and final states. Four of them have already been encountered in writing
down the amplitude (9.23) of the muon decay.

The second type of factors are the vertex factors. These are c-number factors (i.e. not
Hilbert space operators) like the factor Vαβ;γδ corresponding to the vertex in the diagram
of Figure 9.1, present in the interaction terms H(i). They are composed of coupling
constants, matrices in the spinor space etc.15 that are left over after stripping off all field
operators present in H(i).

The third type of factors are the propagators. To understand their origin we note that
a selected positive frequency operator originatiging from the interaction term H(i)(x) can
on its way to the right get paired with a negative frequency operator of the same type
originating from another interaction term H(j)(y) (or even from the same interaction
term, if the normal ordering is not assumed) . This can only happen when x0 > y0. For

example, the operators ϕ(+)(x), φ(+)(x), φ†(+)(x), ψ
(+)
α (x), ψ̄

(+)
α (x) and ∂µφ

(+)(x) can get

paired with ϕ(−)(y), φ†(−)(y), φ(−)(y), ψ̄
(−)
β (y), ψ

(−)
β (y) and ∂νφ

†(−)(y), respectively. Such
pairings give e.g.16

θ(x0 − y0)
[

ϕ(+)(x), ϕ(−)(y)
]

,

θ(x0 − y0)
[

φ(+)(x), φ†(−)(y)
]

,

θ(x0 − y0)
[

φ†(+)(x), φ(−)(y)
]

, (9.30)

θ(x0 − y0) {ψ(+)
α (x), ψ̄

(−)
β (y)} ,

θ(x0 − y0) {ψ̄(+)
α (x), ψ

(−)
β (y)} ,

θ(x0 − y0)
[

∂µφ
(+)(x), ∂νφ

†(−)(y)
]

,

etc. The factors θ(x0 − y0) come from the strings of the theta functions enforcing the
considered ordering of the time variables. However, among all the orderings of the time

15Note that at this stage derivatives acting on field operators in H(i)’s are treated as parts of these
operators and are accounted for in pairings. Later the Feynman rules will be reformulated so that the
derivatives will be treated as parts of the vertex factors.

16Of course pairings of the operators built out of the annihilation and creation operators of different
particles vanish.
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variables x0i1 , . . . , x
0
in1

, x0j1 , . . . , x
0
jn2
, . . ., which must be considered in connection with the

presence of the T-operation in the formula (9.28), there are also ones in which y0 > x0

and all the other time variables are in the previous order. In some of the terms arising in
evaluation of the matrix elements corresponding to these orderings the operators ϕ(+)(y),

φ†(+)(y), φ(+)(y), ψ̄
(+)
β (y), ψ

(+)
β (y) and ∂νφ

†(+)(y) will get paired with ϕ(−)(x), φ(−)(x),

φ†(−)(x), ψ
(−)
α (x), ψ̄

(−)
α (x) and ∂µφ

(−)(x) yielding

θ(y0 − x0)
[

ϕ(+)(y), ϕ(−)(x)
]

,

θ(y0 − x0)
[

φ†(+)(y), φ(−)(x)
]

,

θ(y0 − x0)
[

φ(+)(y), φ†(−)(x)
]

, (9.31)

θ(y0 − x0) {ψ̄(+)
β (y), ψ(−)

α (x)} ,
θ(y0 − x0) {ψ(+)

β (y), ψ̄(−)
α (x)} ,

θ(y0 − x0)
[

∂νφ
†(+)(y), ∂µφ

(−)(x)
]

,

etc. The “miracle” which happens when contributions arising from different time orderings
of the variables x0i1 , . . . , x

0
in1

, x0j1 , . . . , x
0
jn2
, . . . are added is that the (anti)commutators

arising for x0 > y0 and for y0 > x0 always combine together into the Feynman propagators
like

i∆F(x− y) ≡ θ(x0 − y0)
[

φ(+)(x), φ†(−)(y)
]

+θ(y0 − x0)
[

φ(+)(y), φ†(−)(x)
]

(9.32)

= θ(x0 − y0)∆+(x− y) + θ(y0 − x0)∆+(y − x)

≡ 〈Ω0|T(φ(x)φ†(y))|Ω0〉 ,

corresponding to scalar field operators associated with spin 0 particles and17

iSF
αβ(x− y) ≡ θ(x0 − y0) {ψ(+)

α (x), ψ̄
(−)
β (y)}

−θ(y0 − x0) {ψ̄(+)
β (y), ψ(−)

α (x)} (9.33)

≡ 〈Ω0|T(ψα(x)ψ̄β(y))|Ω0〉 ,

corresponding to the four-component spinorial field operators associated with fermions.
(Propagators corresponding to vector fields will be discussed in Sections 9.5 and 9.6). The
minus sign between the two terms in the last formula arises because fermion field operators
have to be anticommuted to get the required parings. The “miraculous” combination
of the (anti)commutators can be expected on the basis of our discussion at the end of
Section 8.2 explaining how antiparticles save causality. The pairings (9.30) represent the
probability amplitudes that a particle (antiparticle) born at y in the interaction H(i)(y)

17The function ∆+(x − y) has been defined in (8.21); SF
αβ denotes here the propagator and its spinor

indices; it should not be confused with the S-matrix element Sαβ ! The representations of the propagators
i∆F (x − y) and SF

αβ(x − y) as the H0 ground state expectations values of the chronological products of
the free field operators follow also directly from the Wick theorem discussed in Section 5.9.
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propagates to x, where it is annihilated by the interaction H(j)(x). This can happen only
for x0 > y0. But obviously, if y0 > x0 its antiparticle (particle) can be created at x
by H(j)(x) and can propagate to y to be destroyed by H(i)(y). For (x − y)2 < 0 this is
required by causality; but the the structure of field operators is such that if it is required
for (x− y)2 < 0 it must hold also for any x and y.

This directly leads to the technique of Feynman diagrams in the position space, which
represent some sort of a space-time picture of the physical process in which the initial
state |α0〉 evolves into the final state |β0〉. According to this picture, the total probability
amplitude is given by the sum of probability amplitudes corresponding to all particular
ways the system can go from |α0〉 to |β0〉. In this sense it is directly rooted in the basic
principles of quantum mechanics stating that amplitudes corresponding to all physically
indistinguishable alternatives should be added.

To show how the theta functions introduced by the T-operation in (9.28) can be
encoded in the propagators we now derive compact representations for these objects.
Consider the spin zero particle propagator (9.32) first. Using the integral representations
of the theta function

θ(t) =
i

2π

∫ +∞

−∞

dω
e−iωt

ω + i0
= − i

2π

∫ +∞

−∞

dω
e+iωt

ω − i0
, (9.34)

i∆F(x− y) defined in (9.32) can be rewritten in the form

i∆F(x− y) = i

∫

d3p

(2π)32Ep

∫ +∞

−∞

dω

2π

e−i(ω+Ep)(x0−y0)e+ip·(x−y)

ω + i0

−i
∫

d3p

(2π)32Ep

∫ +∞

−∞

dω

2π

e−i(ω−Ep)(x0−y0)e−ip·(x−y)

ω − i0
.

Substituting next ω = p0 − Ep in the first integral and ω = p0 + Ep in the second one
(and changing in the latter p → −p) we obtain the covariant form of the propagator

i∆F(x− y) =

∫

d4p

(2π)4
i

p2 −M2 + i0
e−ip·(x−y) . (9.35)

The propagator (9.33) corresponding to pairings of the operators ψα(x) and ψ̄β(y) is
obtained similarly (but some manipulations with the gamma matrices are necessary) and
reads

iSF
αβ(x− y) =

∫

d4p

(2π)4
i( 6p+m)αβ
p2 −m2 + i0

e−ip·(x−y)

≡
∫

d4p

(2π)4

(

i

6p−m+ i0

)

αβ

e−ip·(x−y) , (9.36)

The spinor indices αβ are explicitly shown here.18

18It is perhaps worth saying that the functions (9.35) and (9.36) satisfy the equations

(∂µ∂
µ +M2) i∆F(x − y) = −iδ(4)(x− y) ,
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Before summarizing the evaluation of the formula (9.28) between arbitrary initial and
final states let us illustrate using a simple example how the propagators arise. Let us
consider a theory of neutral spin 0 bosons and spin 1

2
fermions and their antifermions the

interaction of which is given by

Hint(x) = ϕ(x) ψ̄α(x) Γαβψβ(x) , (9.37)

with Γ = hI or ihγ5 (h is a real coupling constant), so that H†
int = Hint, depending

on whether the spin zero particle is a scalar or a pseudoscalar, and let us compute the
amplitude of the elastic scattering of two fermions. The first nontrivial contribution to
the relevant S-matrix element comes from the second term of the expansion (9.28):

(−i)2
2!

∫

d4x

∫

d4y 〈Ω0|b1′b2′T {Hint(x)Hint(y)} b†2b†1|Ω0〉 , (9.38)

where we have simplified the notation: b(p1, σ1) ≡ b1 etc. The first order term in the
expansion (9.28) gives zero, because with a single Hint(x) not all operators can be paired.
By definition the zeroth order term

〈Ω0|b1′b2′b†2b†1|Ω0〉 = δΓ(1− 1′)δΓ(2− 2′)− δΓ(1− 2′)δΓ(2− 1′) , (9.39)

does not contribute to the amplitude A. Taking into account the composition of the initial
and final states, we can restrict the field operators in (9.38) to the following two terms

(−i)2
2!

∫

d4x

∫

d4y
{

θ(x0 − y0)
[

ψ̄Γψ(+)ϕ(+)(x)
][

ψ̄(−)Γψϕ(−)(y)
]

+θ(y0 − x0)
[

ψ̄Γψ(+)ϕ(+)(y)
][

ψ̄(−)Γψϕ(−)(x)
]}

.

The terms we have dropped can act directly on |Ω0〉 or 〈Ω0| and give zero.19 In the x0 > y0

term ϕ(+)(x)ϕ(−)(y) = ϕ(−)(y)ϕ(+)(x) + ∆+(x − y) but then ϕ(+)(x) can act on |Ω0〉
(i 6∂ −m) iSF

αβ(x− y) = iδαβδ
(4)(x− y) ,

that is, they are the (Feynmanian) Green’s functions of the Klein-Gordon and Dirac equations respectively.
In many textbooks (see eg. the ones of Bjorken and Drell or of Itzykson and Zuber) propagators appear
in the prescription for computing S-matrix elements as Green’s functions of the wave equations (taking
the Feynmanian Green’s functions - which propagate positive frequency waves forward and negative
frequency waves backward in time - and not e.g. the advanced ones which might seem more appropriate
on the basis of causality - is then decided by appealing to the messy idea of Feynman that while particles
propagate in time forward, antiparticles propagate backward) making the false impression that quantum
field theory is based on wave equations. This is not the point of view adopted here.

19It is tacitly assumed here that that the interaction Hint(x) is normally ordered, Hint(x) =:Hint(x) :

so that : ψ̄
(+)
α (x)ψ

(−)
β (x) := −ψ(−)

β (x)ψ̄
(+)
α (x) and therefore there is no extra anticommutator term when

e.g. ψ
(−)
β (x) in the first term is moved to the left to act on 〈Ω0|. Alternatively, without normal ordering,

we would get some extra (divergent) contribution to the S-matrix element, which would be proportional
to the zeroth order term (9.39) and would have to be renormalized away - see the discussion at the end
of Section 9.4.
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giving zero, so only ∆+(x−y) remains. Likewise, in the y0 > x0 term we are left with the
∆+(y−x) term. Next we move ψ(+)(x) in the x0 > y0 term to the right past ψ̄(−)(y). This
gives two terms: −ψ̄(−)(y)ψ(+)(x) and the anticommutator

{

ψ(+)(x), ψ̄(−)(y)
}

. Similarly,

in the y0 > x0 term we get −ψ̄(−)(x)ψ(+)(y) and the anticommutator
{

ψ(+)(y), ψ̄(−)(x)
}

.

Let us consider first the terms with −ψ̄(−)(y)ψ(+)(x) and −ψ̄(−)(x)ψ(+)(y) in the x0 > y0

and y0 > x0 pieces, respectively (the other terms will be briefly considered below). Let
us pick up the negative and positive frequency parts of the operators ψ̄ and ψ standing
on the extreme left and right, respectively in both these pieces. The terms arising from
taking their negative and positive frequency parts, respectively, give

− (−i)2
2!

ΓαγΓβδ

∫

d4x

∫

d4y θ(x0 − y0)∆+(x− y)

×〈Ω0|b1′b2′ψ̄(−)
α (x)ψ̄

(−)
β (y)ψ(+)

γ (x)ψ
(+)
δ (y)b†2b

†
1|Ω0〉

− (−i)2
2!

ΓαγΓβδ

∫

d4x

∫

d4y θ(y0 − x0)∆+(y − x)

×〈Ω0|b1′b2′ψ̄(−)
α (y)ψ̄

(−)
β (x)ψ(+)

γ (y)ψ
(+)
δ (x)b†2b

†
1|Ω0〉 .

In the second term we simultaneously interchange the order within the two pairs of op-
erators: in ψ̄

(−)
α (y)ψ̄

(−)
β (x) and in ψ

(+)
γ (y)ψ

(+)
δ (x) so that the two resulting minuses cancel

each other. In addition we interchange the names of the spinor indices α ↔ β and γ ↔ δ.
After these operations the string of operators in the y0 > x0 piece is the same as the one
in the x0 > y0 piece. Hence, using the definition (9.32), the considered contribution to
the S-matrix element takes the form

−(−i)2
2!

ΓαγΓβδ

∫

d4x

∫

d4y i∆F(x− y)

×〈Ω0|b1′b2′ψ̄(−)
α (x)ψ̄

(−)
β (y)ψ(+)

γ (x)ψ
(+)
δ (y)b†2b

†
1|Ω0〉 . (9.40)

There are now four possible pairings of the fermion field operators with the creation
and annihilation operators building the initial and final states. They give pairwise equal
contributions, so that the factor 1/2! in (9.40) arising from the expansion of the exponent
in (9.28) is canceled out and the result is

(−i)2 [ū(1′)Γu(1)] [ū(2′)Γu(2)]
×
∫

d4x

∫

d4y eip
′

1·xe−ip1·x i∆F(x− y) eip
′

2·ye−ip2·y

−(−i)2 [ū(2′)Γu(1)] [ū(1′)Γu(2)] (9.41)

×
∫

d4x

∫

d4y eip
′

2·xe−ip1·x i∆F(x− y) eip
′

1·ye−ip2·y .

Taking now the integrals over x and y and using (9.35) one obtains the following contri-
bution to the S-matrix element:

(S − 1)βα = (2π)4δ(4)(p′2 + p′1 − p2 − p1)
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x y

p1 p2

p′1 p′2

i∆F(x−y)
−iΓβα −iΓδγ

e−ip1·xuα(p1) e−ip1·yuγ(p2)

e+ip′1·xūβ(p
′

1) e+ip′2·y ūδ(p2
′)

× ×

× ×

x y

p1 p2

p′2 p′1

i∆F(x−y)
−iΓβα −iΓδγ

e−ip1·xuα(p1) e−ip2·yuγ(p2)

e+ip′2·xūβ(p
′

2) e+ip′1·yūδ(p
′

1)

× ×

× ×

Figure 9.2: Graphical interpretation of the two contributions (9.41) to the fermion-fermion
scattering amplitude. The amplitude is obtained by integrating the expressions corre-
sponding to these diagrams over d4xd4y - the space-time positions of the two interaction
points.

×(−i)2
{

[ū(1′)Γu(1)]
i

(p′1 − p1)2 −M2 + i0
[ū(2′)Γu(2)] (9.42)

− [ū(2′)Γu(1)]
i

(p′2 − p1)2 −M2 + i0
[ū(1′)Γu(2)]

}

.

The two terms enter in (9.41) with the relative minus sign (which comes out automatically
from the the parings) because they correspond, loosely speaking, to interchanging two
fermions in the final (or in the initial) state. These two terms are represented graphically
by the two Feynman diagrams in Figure 9.2.

Having identified three basic types of factors we can reformulate the procedure of
evaluating the {n1, n2, . . .} term of the formula (9.28) as follows. We first pull all the
c-number vertex factors and integrals over d4x’s out of the Dirac brackets. This leaves
between the vacuum vectors 〈Ω0| and |Ω0〉 only a string of creation and annihilation
operators building the initial and final states and field operators (under the sign of time
ordering) arising from H(i)’s. To evaluate this vacuum matrix element we write down all
possible groupings of these operators into pairs in which the operators ψα, φ, ϕ and the
annihilation operators (building the final states) stand to the left of the operators ψ̄β ,
φ†, ϕ and the creation operators (building the initial state). That is, only the orderings
consisting of pairs (note that now we do not split field operators into their positive and
negative frequency parts)

[bψ̄], [dψ], [ψb†], [ψ̄d†], [ψψ̄], [bb†], [dd†],

and

[aφ†], [acφ], [φa†], [φ†ac†], [φφ†], [aϕ], [ϕa†], [ϕϕ],

etc. are considered. The sign of each ordering is + or − depending on how many inter-
changes of fermionic operators are needed to get a given ordering20 from the original one.

20Note that pairs of operators, that is the entire brackets [. . .], in a given sequence of pairs can be
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For example, the matrix element of the chronological product of operators in (9.38) yields
the following strings of pairs (not assuming normal ordering of Hint)

〈Ω0|b1′b2′T
{

ψ̄α(x)ψγ(x)ϕ(x)ψ̄β(y)ψδ(y)ϕ(y)
}

b†2b
†
1|Ω0〉

→ +[b1′ψ̄α(x)][b2′ ψ̄β(y)][ϕ(x)ϕ(y)][ψδ(y)b
†
2][ψγ(x)b

†
1]

−[b1′ ψ̄β(y)][b2′ψ̄α(x)][ϕ(x)ϕ(y)][ψδ(y)b
†
2][ψγ(x)b

†
1]

−[b1′ ψ̄α(x)][b2′ ψ̄β(y)][ϕ(x)ϕ(y)][ψγ(x)b
†
2][ψδ(y)b

†
1]

+[b1′ψ̄β(y)][b2′ψ̄α(x)][ϕ(x)ϕ(y)][ψγ(x)b
†
2][ψδ(y)b

†
1]

−[b1′b
†
1][b2′b

†
2][ϕ(x)ϕ(y)][ψγ(x)ψ̄β(y)][ψδ(y)ψ̄α(x)]

+[b1′b
†
2][b2′b

†
1][ϕ(x)ϕ(y)][ψγ(x)ψ̄β(y)][ψδ(y)ψ̄α(x)]

+[b1′b
†
1][b2′b

†
2][ϕ(x)ϕ(y)][ψγ(x)ψ̄α(x)][ψδ(y)ψ̄β(y)]

−[b1′b
†
2][b2′b

†
1][ϕ(x)ϕ(y)][ψγ(x)ψ̄α(x)][ψδ(y)ψ̄β(y)]

−[b1′ ψ̄α(x)][ψγ(x)b
†
1][ϕ(x)ϕ(y)][ψδ(y)ψ̄β(y)][b2′b

†
2]

−[b1′ ψ̄β(y)][ψδ(y)b
†
1][ϕ(x)ϕ(y)][ψγ(x)ψ̄α(x)][b2′b

†
2]

+[b1′ψ̄α(x)][ψγ(x)b
†
2][ϕ(x)ϕ(y)][ψδ(y)ψ̄β(y)][b2′b

†
1]

+[b1′ψ̄β(y)][ψδ(y)b
†
2][ϕ(x)ϕ(y)][ψγ(x)ψ̄α(x)][b2′b

†
1] (9.43)

−[b2′ ψ̄α(x)][ψγ(x)b
†
2][ϕ(x)ϕ(y)][ψδ(y)ψ̄β(y)][b1′b

†
1]

−[b2′ ψ̄β(y)][ψδ(y)b
†
2][ϕ(x)ϕ(y)][ψγ(x)ψ̄α(x)][b1′b

†
1]

+[b2′ψ̄α(x)][ψγ(x)b
†
1][ϕ(x)ϕ(y)][ψδ(y)ψ̄β(y)][b1′b

†
2]

+[b2′ψ̄β(y)][ψδ(y)b
†
1][ϕ(x)ϕ(y)][ψγ(x)ψ̄α(x)][b1′b

†
2]

+[b1′ψ̄α(x)][ψγ(x)ψ̄β(y)][ψδ(y)b
†
1][ϕ(x)ϕ(y)][b2′b

†
2]

+[b1′ψ̄β(y)][ψδ(y)ψ̄α(x)][ψγ(x)b
†
1][ϕ(x)ϕ(y)][b2′b

†
2]

−[b1′ ψ̄α(x)][ψγ(x)ψ̄β(y)][ψδ(y)b
†
2][ϕ(x)ϕ(y)][b2′b

†
1]

−[b1′ ψ̄β(y)][ψδ(y)ψ̄α(x)][ψγ(x)b
†
2][ϕ(x)ϕ(y)][b2′b

†
1]

+[b2′ψ̄α(x)][ψγ(x)ψ̄β(y)][ψδ(y)b
†
2][ϕ(x)ϕ(y)][b1′b

†
1]

+[b2′ψ̄β(y)][ψδ(y)ψ̄α(x)][ψγ(x)b
†
2][ϕ(x)ϕ(y)][b1′b

†
1]

−[b2′ ψ̄α(x)][ψγ(x)ψ̄β(y)][ψδ(y)b
†
1][ϕ(x)ϕ(y)][b1′b

†
2]

−[b2′ ψ̄β(y)][ψδ(y)ψ̄α(x)][ψγ(x)b
†
1][ϕ(x)ϕ(y)][b1′b

†
2] .

To obtain the amplitude (9.41) only the first four terms of (9.43) have been used. The
remaining ones will be discussed briefly in the language of Feynman diagrams at the end
of the next section.

In the next step, after all possible sequences of pairs of operators are written down, the
operators in the brackets are paired, i.e. the brackets are replaced by the corresponding

interchanged without changing the sign; permutations of entire brackets are not counted as different
orderings. It is the composition of pairs that matters, not their relative place in the sequence.
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c-number propagators:

[ψα(x)ψ̄β(y)] → iSF
αβ(x− y) ,

[

φ(x)φ†(y)
]

→ i∆F(x− y) , (9.44)

etc., the factors (9.29) for the brackets like [ψγ(x)b
†
1], and deltas δ

(3)
Γ (1 − 1′) for brackets

like [b1′b
†
1], etc. The sum of the terms obtained in this way multiplied by the c-number

vertex factors is (after contracting appropriately all the spinor indices) the value of the
matrix element.

9.4 Feynman diagrams and rules

From the discussion of the preceding section it follows, that (9.28) evaluated between the
initial |α0〉 and final 〈β0| states takes schematically the form

Sβα =
∑

n1,n2,...

∫

d4xi1 . . .

∫

d4xin1

∫

d4xj1 . . .

∫

d4xjn2
. . . (9.45)

∑

all possible pairings

(

product of wave functions, vertex factors and propagators
)

.

(The factors (−i)n1 . . ., which were present in (9.28), have been included now into the ver-
tex factors; the omission of factors 1/(n1! . . .) will be explained below.) Each of Feynman
diagrams, which we are going to introduce now, represents graphically the content of one
bracket in (9.45) corresponding to one of the possible pairings (and fixed n1, n2, . . .) and
the Feynman rules allow to quickly write down this content. Comparison of the two terms
of the amplitude (9.42) with their graphical representation in Figure 9.2 should facilitate
understanding of the general procedure described below.

Applying the Feynman diagrams technique we begin by drawing lines representing
particles and antiparticles in the initial |α0〉 and final 〈β0| states. Let us adopt the
convention that the time flows from the bottom to the top of the diagram. Each fermion
(particle) in the initial (final) state is represented by a solid line with the arrow starting
with a cross21 (ending) at the bottom (top) of the diagram. The lines are marked with the
values p1, . . . , pr (p′1, . . . , p

′
s) of the four-momenta carried by these particles. In contrast,

antifermions (antiparticle) in the initial (final) state are represented by solid lines with
the arrows ending (beginning) at the bottom (top) of the diagram. Initial (final) state
antiparticle lines are marked −pr+1, . . . ,−pN (−p′s+1, . . . ,−p′M) where +pr+1, . . . ,+pN
(+p′s+1, . . . ,+p

′
M) are the values of the physical four-momenta of these antiparticles. The

21Marking lines representing (anti)particles in the initial/final state with a cross is not a common
convention. We do it in order to distinguish such lines (to which no propagator is associated) from the
external lines of off-shell Green’s functions (to be introduced in Section 13.1) to which in the analytical
expressions appropriate propagators do correspond.
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ψ̄β

χα

φ

−ihδβα

χ̄β

ψα

φ†

−ih∗δβα

φ

φ†

φ

φ†

−iλ

χα

ψ̄β

χ̄γ

ψδ

−i∑A(Γ
A)βα(Γ̄

A)γδ

Figure 9.3: Interaction vertices arising from the interaction Hamiltonian density (9.46).
The factor written below each vertex is the corresponding vertex Feynman rule.

rule for antiparticles follow from the fact that the four-momentum we ascribe to a line
refers always to the direction of the arrow carried by this line, which in turn always
(by convention) shows the direction of the possible flow of particles (opposite to that
of antiparticles). Similar rules apply also to spin 0 charged particles except that by
convention instead of solid lines dashed lines are used to represent them (spin 1 particles
- to be discussed in Sections 9.5 and 9.6 - are represented usually by wavy lines). Lines
representing spinless, spin 1

2
or spin 1 particles which are their own antiparticles do not

carry arrows related to the “flow” of particles. Four-momentum variables marking lines
representing such particles in the initial or final state can be, therefore, assigned naturally:
+p and +p′, respectively. Thus, a neutral spin 0 particle in the initial (final) state is
represented simply by a dashed line starting (ending) with a cross at the bottom (top) of
the diagram and marked by the value of the physical four-momentum of these particle.

Interaction terms H(i) will be represented in Feynman diagrams by dots called ver-
tices. Each operator ψ (ψ̄) in H(i) is represented by a solid line with an arrow entering
(leaving) the vertex. Similarly, each φ (φ†) in H(i) is represented by a dashed line with
an arrow entering (leaving) the vertex. Finally, to each Hermitian field ϕ in H(i) there
corresponds a dashed line without an arrow attached to the vertex. For example, all
vertices corresponding to the theory in which interactions of two different kinds of spin
1
2
particles (and their antiparticles) with spin 0 particles and their antiparticles are built

using the field operators ψ, χ and φ, φ† are given by

Hint = hφ ψ̄αχα + h∗φ†χ̄αψα +
λ

4

(

φ†φ
)2

+
∑

A

[

ψ̄β(Γ
A)βαχα

] [

χ̄γ(Γ̄
A)γδψδ

]

, (9.46)

(h, λ are coupling constants and ΓA are some matrices in the spinor space with Γ̄A =
γ0ΓA†γ0 and summations over repeated spinor indices is understood) are shown in fig-
ure 9.3.

In order to write down the products of factors corresponding to a fixed set of numbers
{n1, n2, . . .} in the schematic formula (9.45), one draws first lines representing particles
(and antiparticles) in the initial and final states according to the rules given above. One
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draws also n1 vertices labeled by their space-time positions xi1 , . . . , xin1
corresponding to

the interaction H(1), n2 vertices labeled by their space-time positions xj1 , . . . , xjn2
corre-

sponding to the interaction H(2), etc. all together with the attached lines corresponding
to field operators in these interaction terms. To obtain Feynman diagrams one connects
lines in the diagram in all possible ways, but respecting their orientations (if the lines
carry arrows distinguishing the direction of the flow of particles), so that each line rep-
resenting an initial state particle gets connected to some line (of the same type) in one
of the vertices or to a line representing a particle of the same type in the final state.
Similarly, each line representing a final state particle is connected to a vertex or to a line
representing an initial state particle. Finally, all lines from vertices must be connected
either to lines of similar type in some vertices22 or to lines representing initial or final
state particles. Usually there is more than one way23 of connecting the lines (the number
of possibilities grows quickly with the number N = n1 + n2 + . . . of interaction vertices)
and one obtains many different Feynman diagrams (for a given set {n1, n2, . . .}). Each
of the diagrams obtained in this way corresponds to one particular product of factors in
the formula (9.45) and is therefore in a one-to-one correspondence with some term arising
from direct evaluation (described above) of the {n1, n2, . . .} term of the expansion (9.28)
inserted between states 〈β0| and |α0〉. Moreover, the analytic form of the corresponding
product in (9.45) can readily be written down just by looking at the diagram: to each
initial or final state particle line connected to a vertex there corresponds one of the factors
listed in (9.29); to a line going through the whole diagram without being connected to
any vertex (this happens when an initial state particle line is directly connected to a line
representing a final state particle) corresponds a factor (2π)32Epδ

(3)(p′−p)δσ′σ (where p,
σ and p′, σ′ are the momentum and spin labels of these particles); to each dashed (spin 0
particle) line connecting two vertices having space time labels x and y there corresponds
a propagator factor i∆F(x − y) while to each solid line (spin 1

2
fermion) corresponds a

propagator factor iSF
αβ(x − y); similar propagator factors correspond also to other cases

(to be discussed in Sections 9.5, 9.6); if a line carries an arrow, x in the propagator factor
is the space-time label of the vertex into which the line enters. To each vertex of the type
(i) corresponds −i times the appropriate vertex factor which can be obtained directly
from H(i) by stripping off the field operators (modulo some combinatoric factors to be
explained below). The vertex factors corresponding to the interaction Hamiltonian (9.46)
are given in Figure 9.3 (notice that the coupling λ in the rule for the third vertex in Fig-
ure 9.3 does not have 1/4 present in the corresponding term H(i) in (9.46) - this is related
to combinatorics which will be explained below). All these factors have to be assembled
together in a unique way dictated by the structure of the diagram (since the amplitude is

22If the interaction terms are normal ordered :H(i) := H(i), a line originating from a given vertex cannot
be connected to another line in the same vertex. This restriction does not apply if the interaction terms
are not normal ordered.

23If one or more lines of some type cannot be connected anywhere (because e.g. the number of lines of
this type associated with the initial and the final state and vertices is odd, or the orientation of lines do
not allow for that) then a diagram cannot be drawn. This simply means that the corresponding term in
(9.45) gives vanishing contribution to the considered S-matrix element.
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a pure complex number, all spinor indices have to be summed, etc.) and integrated over
the space-time positions of the vertices. The sum of analytic expressions corresponding
to all topologically distinct diagrams is just the sum over all pairings of products in the
formula (9.45) and thus gives the complete contribution of the {n1, n2, . . .} term of the
expansion (9.28) to the S-matrix element Sβα.

Assembling analytical factors corresponding to a given Feynman diagram is easy. We
describe it here only for diagrams corresponding to interactions H(i) built out of the ψ,
ψ̄, φ, φ† and ϕ operators. Generalization to other cases is straightforward. We select
a fermion line (passing throughout at least one vertex) and begin with its end to which
the arrows point. If this end of the line is at the top (bottom) of the diagram we write
the factor24 ūα(p

′, σ′)eip
′·x (v̄α(p, σ)e

−ip·x). As we follow this line back, we encounter a
vertex labeled x, whose vertex factor necessarily has a spinor index (which in H(i) was
contracted with the spinor index α of ψ̄α) with which the spinor index of ūα (or v̄α)
has to be contracted. This same vertex factor must necessarily have at least one more
spinor index, say γ, (contracted in H(i) with the spinor index of ψγ) which now has to
be contracted either with with the spinor index of uγ(p, σ)e

−ip·x or vγ(p
′, σ′)e+ip′·x (if the

fermion line we are considering after leaving the vertex at x goes directly to the bottom
or the top of the diagram, respectively), or with the left spinor index of the fermion
propagator iSF

γδ(x− y), if the line passes through another vertex labeled y. In the latter
case the spinor index δ of iSF

γδ(x − y) has to be contracted with the appropriate spinor
index δ of the vertex factor and another spinor index of this vertex factor, call it β,
is contracted either with uβ(p, σ)e

−ip·y or vβ(p
′, σ′)e+ip′·y or with the spinor index of a

successive propagator iSF
βρ(y − z) etc. Having finished with one fermion line we proceed

to the next one and do the same. To write down the analytical expression corresponding
to a sequence of fermion line which together form a closed loop we begin with any vertex
through which such a line passes and write down its vertex factor. Next, we follow the
line in the direction opposite to its arrow multiplying for each line segment connecting
successive vertices by the propagator iSF and for each vertex by the corresponding vertex
factor. The spinor indices of the propagators should be contracted appropriately with
the spinor indices in the consecutive vertex factors. Since the line returns to the vertex
from which it has started, the summations over spinor indices can be concisely written as
the trace in the spinor space. In addition we multiply the resulting expression by (−1).
As a result, to a closed fermion loop going through vertices labeled x1, x2, . . . , xK there
corresponds the expression

(−1)tr
[

Γ1 iS
F(x1 − x2)Γ2 iS

F(x2 − x3)Γ3 . . .ΓK iS
F(xK − x1)

]

(9.47)

in which Γi’s denote vertex factors of the consecutive vertices. Spin 0 particle lines
are dealt with in a similar manner. They are easier as no spinor indices are involved
and final and initial state factors are simply e+ip′·x and e−ip·x, respectively. To lines
connecting vertices there correspond propagators i∆F. No extra minuses are associated

24In this description we do not pay attention to the labeling of the particle’s momenta and spins; we
only use primes to denote momenta and spins of particles in the final state.
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with closed loops formed by lines of spin 0 particles. As follows form the formula (9.45),
the contribution of a Feynman diagram to the S-matrix element Sβα is given by integrating
this expression over space-time positions of all vertices.

At this point one has to comment on the combinatoric factors. We first note that
drawing all Feynman diagrams corresponding to the {n1, n2, . . .} term of the expansion
(9.28) we get n1!·n2!·. . . identical diagrams in which ni vertices representing ni interaction
terms H(i) differ only by their space-time labels xi. After integration over these variables
one gets n1! · n2! · . . . identical contributions. Hence, it is sufficient to draw only one of
these diagrams dropping at the same time the factor 1/(n1! ·n2! · . . .) in the formula (9.28).
This is why we have omitted 1/(n1! ·n2! · . . .) in (9.45). Secondly, if in an interaction term
H(i) there are m identical field operators (operator and its Hermitian conjugate are not
considered identical), the corresponding vertex has m identical legs to which a line of the
appropriate type can be connected. One gets therefore m! identical Feynman diagrams,
all of which give the same analytical expression. Hence, a factor 1/m! is usually inserted
in the interaction vertex which in most cases compensates for m! identical diagrams. The
Feynman rule is then written without the 1/m! factor and one draws only one Feynman
diagram instead of m! identical ones. (This is why there is no 1/4 = 1/(2!2!) in the
third vertex Feynman rule in Figure 9.3). These 1/m! factors are not always completely
canceled, though. Consider for example the self-interaction of neutral scalar particles of
the form Hint(x) = (λ/4!)ϕ4(x) and the diagram shown in Figure 9.4. The two lines which
are connected to the same vertex can be attached to any of its four legs; there are 4 · 3
ways of doing this at each vertex. But having connected the four external lines pairwise
to the two vertices we are left with two free legs in each vertex. These lines have to be
sewn together and there are clearly only two ways of doing this. Hence, one has only
2 · (3 · 4)2 indistinguishable possibilities to build the diagram shown in figure 9.4 and the
two factors 1/4! arising with the two vertices are not completely canceled; the factor 1/2
is left and it has to be included in the analytical expression corresponding to the diagram
of figure 9.4. Note, that the counting would be different for the same diagram if the
lines carried arrows! Similar symmetry factors arise in many cases and with a little bit of
practice can be easily calculated by counting the number of ways in which the lines and
vertices can be connected to each other to yield a given diagram.

In some special situations even the 1/N ! factor in the formula (9.18) or one of 1/ni!
in the formula (9.28) can be canceled only incompletely. Consider the interaction term

Hint = ψ̄(x)Γ[ϕ(x)]ψ(x) , (9.48)

in which Γ[ϕ(x)] is some matrix function of a classical external field ϕ(x) (which is,
therefore, not a field operator). With this interaction term we can consider calculation of
the following matrix element25

〈Ω0|Texp

(

−i
∫

d4xHint(x)

)

|Ω0〉 (9.49)

25At this stage this matrix element does not have clear physical interpretation.
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p1 − p2 + q

q

p1

p′1

p2

p′2

×

×

×

×

Figure 9.4: One of the three second order contributions to the amplitude of the elastic
scattering of two spin 0 neutral particles. In the other two diagrams (not drawn) the lines
marked by p1 and p′2 and p1 and p2 join in the same vertex.

=

∞
∑

N=0

(−i)N
N !

∫

d4x1 . . .

∫

d4xN 〈Ω0|T
{

[ψ̄Γψ(x1)] · · · [ψ̄Γψ(xN)]
}

|Ω0〉 .

Consider now computing the N -th term in this sum. Following the rules formulated above,
we draw N vertices each having one incoming and one outgoing fermion line. All these
lines should be connected with other lines entering/leaving vertices because there are no
lines corresponding to initial/final states (we consider the vacuum to vacuum transition).
Let us concentrate on the connected diagram, i.e. the one which consists of a single
closed loop formed from all these vertices. It is clear that the outgoing line from the first
vertex marked x1 can be connected to the incoming line of any of N − 1 other vertices.
The outgoing line of the second vertex can be connected to the incoming line of any of
N − 2 remaining vertices, and so on. Thus, there are only (N − 1) · (N − 2) · . . . · 2 · 1 =
(N − 1)! possible connected diagrams which, after integrating over d4x1 . . . d

4xN give
identical contributions. Hence, there remains a factor (N − 1)!/N ! = 1/N .

The signs of various terms contributing to the amplitude of a given process are unam-
biguously determined by the procedure described at the end of Section 9.3. For example,
as has been said, each closed fermion loop in the diagram gives rise to a minus sign,
so that the amplitude corresponding to a diagram with Lf closed loops of fermion lines
acquires an extra factor (−1)Lf . The origin of these minuses is easy to understand. They
correspond to the following sequences of pairs of fermion field operators

. . . [ψαN
(xN)ψ̄β1(x1)][ψα1(x1)ψ̄β2(x2)] . . . [ψαN−1

(xN−1)ψ̄βN
(xN )] . . .

To obtain such strings of pairs out of the string

. . . ψ̄β1(x1)ψα1(x1)ψ̄β2(x2)ψα2(x2) . . . ψ̄βn(xN )ψαN
(xN) . . .

arising under the sign of the T-operation from several H(i)’s bilinear in fermion field oper-
ators it is necessary to make an odd number of interchanges of fermionic field operators.

The relative signs of various contributions to the amplitude can frequently be read
off directly from the relevant Feynman diagrams. One example is the amplitude (9.42):
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1 2

2′ 1′

× ×

× ×

1 2

2′ 1′

× ×

× ×

Figure 9.5: Lowest order diagrams corresponding in the theory (9.37) to the f f̄ → f f̄
scattering. Time flows from the bottom upwards. The expressions corresponding to these
two diagrams have a relative minus sign.

the two terms have a relative minus sign because their corresponding Feynman diagrams
shown in Figure 9.2 can be obtained one from another by interchanging the labels of the
fermions e.g. in the final state: (p′

1, σ
′
1) ↔ (p′

2, σ
′
2). Less obvious can be the relative

minus sign of the two contributions to the f f̄ → f f̄ scattering amplitude shown in
Figure 9.5. It follows from the general procedure in the same way as does the relative
minus sign in (9.42). It can also be justified on the ground that, as will be explained
in Section 13.1, both amplitudes: the ff → ff scattering amplitude and the f f̄ → f f̄
one, can be obtained from one and the same off-shell Green’s function by continuing its
four-momentum arguments analytically to two different kinematical domains. Hence, at
the level of the Feynman diagram it matters only that the two diagrams of Figure 9.5
are obtained one from another by interchanging fermion particle labels, e.g. (p2, σ2) ↔
(p′

1, σ
′
1) (or, more precisely, the labels p2 and p

′
1 ascribed to these lines). In cases in which

the relative signs cannot be unambiguously determined from Feynman diagrams (this is
so if e.g. Majorana fermions are involved) one can always return to the general procedure
described at the end of Section 9.3.

In the Feynman rules formulaed as above, interaction vertices are marked by their
space-time positions over which one has eventually to integrate. In this form they make
clear the quantum-mechanical foundation of the method: one sums amplitudes of all
indistinguishable alternative ways the system can go from the initial to the final state:
there can be arbitrary number of each type of interactions (summation over numbers
{n1, n2, . . .}) which can occur at arbitrary space-time points (integrations over d4x’s).

As we have seen in considering the example of the fermion-fermion elastic scatter-
ing, expressions for amplitudes obtained by using Feynman rules formulated above can
be further simplified by inserting the propagators in the form of the Fourier transforms
(9.35) and (9.36). Integrals over all d4x’s can be then explicitly taken and are replaced
by integrations over independent four-momenta of all internal lines (i.e. lines connecting
vertices) of the diagram. Hence, when a Feynman diagram is interpreted in the momen-
tum space, each of its internal lines should be marked with a four-momentum q flowing
through this line (in the direction of the arrow, if the line carries one). Since integrations
over space-time positions of the vertices give four-dimensional delta functions (times (2π)4
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′
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′

1)

× ×

× ×

Figure 9.6: Lowest order momentum space Feynman diagrams corresponding to fermion-
fermion scattering mediated by a neutral spin 0 particle. The four-momenta p1, p2, p

′
1, p

′
2

are “on-shell”, i.e. such that p21 = m2 etc., whereas q2 6=M2.

each) which express the four-momentum conservation in each of the vertices, some of the of
integrals over four-momenta of internal lines associated with propagators can immediately
be performed. This reduces to eliminating those four-momenta of internal lines which can
unambiguously be expressed by the combinations of the four-momenta of other lines by
using the four-momentum conservation in each vertex. It is not difficult to understand
that the number of independent integrals over the four-momenta which are left equals the
number of independent closed loops formed by internal lines in the Feynman graph. For
example, integration over d4x and d4y in both terms of (9.41) gave (in each term) two
delta functions which allowed us to integrate over d4q obtaining (again in each term) a
single delta function (2π)4δ(4)(p′1 + p′2 − p1 − p2) expressing the overall four-momentum
conservation, and the momentum space propagator with q replaced by the linear combina-
tion of the four-momenta of incoming and outgoing fermions. The result (9.42) could have
been obtained by drawing from the beginning the two Feynman diagrams as in Figure 9.6
and ascribing to their internal lines the propagators

i∆F(q) =
i

q2 −M2 + i0
, (9.50)

with q = p′1 − p1 in the first one and q = p′2 − p1 in the second.

The diagrams shown in Figure 9.6 give directly the scattering amplitude −iA appear-
ing in the formula (7.87). The spinless particle mediating interaction of the two fermions
in figure 9.6 is said to be virtual because its four-momentum is off shell, that is, it does
not satisfy the relation q2 = M2 (where M is the mass of the physical particle). This
should be contrasted with the old-fashioned perturbation calculus based on the formula
(7.62) in which intermediate states consists of particles which are on shell, but instead
energy is not conserved (only three-momentum is).

Thus, the Feynman rules can be formulated directly in the momentum space as follows:
i) Draw lines corresponding to all initial and final state particles at the bottom and top
of the diagram respectively. Mark them with the particle four-momenta according to the
rules already explained. ii) To evaluate the contribution of the {n1, n2, . . .} term to the
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formula (9.28) draw n1 vertices corresponding to H(1), n2 vertices corresponding to H(2),
etc. together with the lines entering/leaving these vertices as already explained. Connect
the lines representing the initial and final state (anti)particles with the lines entering and
leaving vertices in all possible ways (respecting the directions of arrows and the types of
lines). iii) Ascribe to the l-th internal (i.e. connecting two vertices) line an independent
four-momentum ql flowing in the direction of the arrow (if the line carries one) or in the
arbitrary direction (if the line does not carry any arrow). iv) Write down the product
of external line wave function factors, vertex factors and propagators following the same
procedure previously. The difference is that the external line wave function factors do

not have now the e±ip
(′)
k

xl factors and the propagators ascribed to internal lines of spin 0
particles are now given by

i

q2l −M2 + i0
(9.51)

and, those ascribed to internal lines of spin 1
2
particles, by

[

i( 6ql +m)

q2l −m2 + i0

]

αβ

(9.52)

The vertex factors are unchanged.26 v) Supply per each interaction vertex the delta
function

(2π)4δ(4)(
∑

pin −
∑

pout) ,

in which
∑

pin (
∑

pout) is the sum of all four-momenta flowing into (flowing into out of)
the vertex, which expresses the conservation of the four-momenta of lines entering and
leaving the vertex. The combinatoric factors (and relative minus signs) are as previously:
identical vertices are indistinguishable (their permutations give identical contributions - so
the factors 1/(n1! ·n2! · . . .) are canceled), lines entering/leaving a vertex corresponding to
identical field operators in H(i)’s are also indistinguishable. vi) Integrate over d4ql/(2π)

4

per each internal line l.

Going further in automatizing the procedure of computing amplitudes, instead of
writing delta functions corresponding to vertices and integrals over d4ql/(2π)

4 for each
internal line, one can from the beginning ascribe to each internal line the four-momentum
following from the four-momentum conservation in the diagram’s vertices.27 If a diagram
contains L independent closed loops, there are L four-momenta of internal lines which

26In formulating in the momentum space the rules for propagators arising from pairings of field opera-
tors involving explicit derivatives it will be possible (after ensuring proper cancellations of noncovariant
terms - see Section 9.5) to replace the corresponding propagator factors by the propagators obtained
from pairings of operators without derivatives and to include the derivatives in the vertex factors as the
appropriate four-momentum factors ascribed to lines on which the derivatives acted.

27Different ways of introducing four-momenta over which one integrates may, if the integrals are linearly
divergent, lead to different results; this is related to anomalies discussed in Chapter 23.
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Figure 9.7: Additional diagrams arising in the calculation of the matrix element (9.38).
To each of these diagrams there is a companion diagram with momenta p′1 and p′2 inter-
changed.

are not determined by the four-momentum conservation (see for example the diagram
of Figure 9.4, in which q is an independent - i.e. not determined by the conservation
law - four-momentum) and the contribution of such a diagram has to be integrated over
d4q/(2π)4 only for each independent four-momentum. In this approach the overall delta
function in the S-matrix element (more precisely, in the matrix element of the T0 operator)
is restored by just appealing to the four-momentum conservation. More precisely, if
a diagram can be divided into C disconnected pieces without cutting any of its lines,
then, as a result of eliminating delta functions arising in vertices, one obtains C four-
dimensional delta functions expressing conservation of the four-momenta within disjoint
groups of the initial and final state particles. However, computing amplitudes of physical
processes one is interested only in the connected part of the S-matrix. The reason is that
non-connected parts of the S-matrix combine to the transition amplitudes of all possible
far-away processes that can occur along with the particular process we are interested in
(characteristics of which are measured by our detector). When the sum over all possible
final states which can be realized in these far-away processes is performed, unitarity plus
cluster decomposition property of the S-matrix (see Section 7.8) ensure that they sum up
to 1 (multiplying the S-matrix element we are interested in).

Using the Feynman diagrams language it is easy to complete the analysis of the matrix
element (9.38), that is to give an interpretation to each of the remaining terms in (9.43)
(only the first four terms of (9.43) contributed to the amplitude (9.42)). In the considered
order we have two interaction vertices Hint, two incoming and two outgoing fermion lines.
Hence, in addition to the two diagrams shown in Figure 9.2 one can draw the diagrams
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shown in Figure 9.7. They correspond to the remaining terms in the list (9.43) of all
possible strings of pairings of the operators.28 Diagrams 9.7b - 9.7d arise only if the
interaction Hint is not normal ordered. If present, they can be treated in a similar fashion
as the others shown in this figure. All expressions corresponding to the diagrams shown
in figure 9.7 involve divergent integrals.

The entire contribution of the diagrams 9.7c - 9.7f can be removed by adding to the
original interaction Hamiltonian density Hint extra terms of the form

∆Hint = C ψ̄ψ +D ψ̄ i6∂ ψ , (9.53)

where C and D are called renormalization constants. With ∆Hint assumed to start at
order g2 there are additional two order g2 contributions to the considered S-matrix ele-
ment. The constants C and D can be then adjusted in such a way to cancel the entire
contribution of the diagrams 9.7c - 9.7f, or at least its divergent part.

Canceling unwanted contributions by adding extra terms to the interaction is at the
heart of the renormalization procedure discussed in detail in Chapters 13 and 14. Here
let us only remark, that if all divergences arising in perturbative expansions of all pos-
sible S-matrix elements can be removed by introducing only a finite number of operator
structures like the ones in (9.53), multiplied by the renormalization constants (like C
and D) which get adjusted order by order in the perturbative expansion, the theory is
said to be renormalizable. Other theories, which require introducing new operator struc-
tures at each order of the perturbative expansion (so, in effect, and infinite number) are
called nonrenormalizable. The renormalization procedure does not affect computations
of the S-matrix elements from diagrams which do not contain closed loops, i.e. from tree
diagrams.

From the perspective of the general renormalization procedure as it is applied to
Green’s functions (to be defined in Chapter 13), canceling the entire contribution of
the diagrams 9.7c - 9.7f is a special choice. However, as will be argued in Section 9.7,
it is enforced by the consistency of the whole scheme of calculating S-matrix elements
developed here: it is necessary to ensure that the full Hamiltonian H and H0 have the
same spectrum (one of the basic assumptions made in Chapter 7). Other choices of the
renormalization scheme are possible but they require going beyong the scheme developed
here. This will be discussed only in Chapters 13 and 14.

Finally, we consider diagrams 9.7a and 9.7b which are also divergent. By carefully
analyzing the combinatorics of Feynman diagrams it can be shown that the contribution
of all such vacuum diagrams factorizes and exponentiates, that is any matrix element of
the operator S0 between the free Hamiltonian eigenstates can be written in the form

〈β0|Texp

(

−i
∫

d4xHint(x)

)

|α0〉 (9.54)

28In Figure 9.7 there are less diagrams than terms in the expression (9.43) because some of the terms
of (9.43) give identical contributions and simply cancel the appropriate numerical factors (of the type
1/ni!) arising from the expansion.
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+ + + + + . . .

Figure 9.8: Connected vacuum diagrams. Their sum equals −iΞ.

= e−iΞ × 〈β0|Texp

(

−i
∫

d4xHint(x)

)

|α0〉without vacuum graphs ,

in which the purely imaginary factor −iΞ is the sum of all connected vacuum diagrams,
i.e. it is given by the matrix element

−iΞ = 〈Ω0|Texp

(

−i
∫

d4xHint(x)

)

|Ω0〉connected graphs . (9.55)

Diagrams contributing to −iΞ if the interaction has the form (9.37) are shown graphically
in Figure 9.8. The phase factor e−iΞ is just the scalar product of the in and out vacum
state-vectors:

〈Ω−|Ω+〉 = e−iΞ . (9.56)

Indeed, since H0|Ω0〉 = 0, from the formula (7.39) it formally follows that

|Ω−〉 = lim
τ2→∞

lim
τ1→−∞

ei(τ2−τ1)H |Ω+〉 . (9.57)

so that Ξ is just29

Ξ = lim
τ2→∞

lim
τ1→−∞

(τ2 − τ1)EΩ =

∫

d4xEΩ . (9.58)

(In the actual calculation of Ξ using Feynman diagrams the space-time volume
∫

d4x
arises as the factor (2π)4δ(4)(0); obtaining a finite value of the vacuum energy density
EΩ requires expressing it in terms of properly defined renormalized (finite) parameters of
the theory like particle masses and coupling constants). Since the energy of the ground
(vacuum) state of H0 is EΩ0 = 0, it follows that, to satisfy the assumptions made in
Chapter 7, one should add to ∆Hint a constant term (another renormalization constant)
allowing to remove also the contribution of all vacuum diagrams, i.e. to “renormalize the
vacuum energy” (or, in the context of coupling to gravity, the cosmological constant). In

29This agrees with the formula (1.38) (for EΩ0
= 0) but cannot, of course, be taken for a rigorous

proof; a better justification of the statement that the sum of all connected “vacuum diagrams” gives the
difference of EΩ−EΩ0

is provided by the appropriate analytic continuation of the formula for the partition
function of a given system of interacting particles.
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practice, instead of doing ths one simply drops all the vacuum diagrams. The “vacuum
- to - vacuum” amplitude (9.56) becomes important in cases of systems interacting with
external agents (i.e. with external classical fields). It cannot be then simply discarded
(renormalized to zero).

9.5 Propagators of vector-like field operators

As we have explained in Section 8.4, with spin 0 particles also field operators of the form
∂µφ(x) transforming as Lorentz vectors can be associated. Suppose an interaction (one
of H(i)’s) of spin 0 particle is of the form

H(i) = ∂µφ(x)J
µ(x) , (9.59)

where Jµ(x) is a Lorentz vector constructed out of field operators of other (or the same)
particles and consider a pairing of two operators ∂φ from two such interaction vertices in
T [...∂µφ(x)J

µ(x) . . . ∂νφ(y)J
ν(y) . . .]. According to the general procedure, the propagator

ascribed to the line corresponding to this pairing arises as the ombination

i∆F
µν(x− y) ≡ θ(x0 − y0)

[

∂µφ
(+)(x), ∂νφ

(−)(y)
]

+θ(y0 − x0)
[

∂νφ
(+)(y), ∂µφ

(−)(x)
]

= θ(x0 − y0) ∂(x)µ ∂(y)ν

∫

dΓp e
−ip·(x−y)

+θ(y0 − x0) ∂(x)µ ∂(y)ν

∫

dΓp e
+ip·(x−y) (9.60)

= −θ(x0 − y0) ∂(x)µ ∂(x)ν

∫

dΓp e
−ip·(x−y)

−θ(y0 − x0) ∂(x)µ ∂(x)ν

∫

dΓp e
+ip·(x−y)

= 〈Ω0|T(∂µφ(x)∂νφ†(y))|Ω0〉 .

This differs from −∂(x)µ ∂
(x)
ν i∆F(x − y) because in the latter expression derivatives with

respect to x0 act also on the theta functions present in (9.32). Since the integrals are over
the three-momentum p and the time-like component p0 in the exponents is just

√

p2 +M2

the factor (p0)2 under the integral can be replaced by p2 +M2. This means, that ∂
(x)
0 ∂

(x)
0

can be replaced by ∆−M2 (as it produces the same factor under the integral). In (9.60)
we have therefore three possibilities:

i∆F
ij(x− y) = −∂(x)i ∂

(x)
j i∆F(x− y) ,

i∆F
i0(x− y) = −∂(x)i ∂

(x)
0 i∆F(x− y)

+ ∂
(x)
i δ(x0 − y0)

∫

dΓp e
−ip·(x−y) (9.61)
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− ∂
(x)
i δ(y0 − x0)

∫

dΓp e
+ip·(x−y)

= −∂(x)i ∂
(x)
0 i∆F(x− y) ,

i∆F
00(x− y) = −

(

∆−M2
)

i∆F(x− y) .

In the case of mixed time-spatial derivatives the two terms cancel each other because the
function ∆+(x− y) defined in (8.21) is symmetric and for (x− y)2 < 0 (enforced by the
delta functions) the two integrals give the same result - see the discussion around the
equation (8.22). Thus the pairing (9.60) can concisely be written as30

i∆F
µν(x− y) ≡

∫

d4p

(2π)4
i e−ip·(x−y)

p2 −M2 + i0

[

pµpν − δ0µδ
0
ν

(

p0p0 − p2 −M2
)]

= ∂(x)µ ∂(y)ν i∆F(x− y)− iδ0µδ
0
ν δ

(4)(x− y) , (9.62)

where we have used the explicit form (9.35) of i∆F(x− y).

Thus, pairings of the vector field operators built out of the creation and annihilation
operators of spin 0 particles acquire a noncovariant term. One may wonder, what is the
reason for the appearence of this term: unlike the case of massless spin 1 particles which
will be discussed in the next Section, the operators ∂µφ transform as true vectors and,
moreover,

[∂µφ(x), ∂νφ(y)] = 0 for (x− y)2 < 0 , (9.63)

so that all conditions for Lorentz covariance of the S-matrix formulated in Section 7.5 are
satisfied. The answer is that while the condition (9.63) is indeed satisfied when x 6= y,
vanishing of the (anti)commutators at x = y is not guaranteed by the construction of
Chapter 8 of free field operators (which are in factoperator valued distributions): their
products taken at the same space-time point are singular objects. For this reason, matrix
elements of the commutator (9.63) may not vanish at x = y and this manifests itself in
the noncovariant term (nonvanishing only for x = y) in the propagator (9.62).

The noncovariant term in (9.62) can be compensated for by adding to the interaction
Hamiltonian density (9.59) a noncovariant term

∆Hint =
1

2
J0(x)J0(x) , (9.64)

which in Feynman diagrams gives rise to a local contact interactions shown in Figure 9.9.
To each Feynman diagram in which somewhere two currents Jµ and Jν are connected by
the propagator i∆F

µν (9.62) there is a companion diagram in which all other elements are
the same but the propagator i∆F

µν is replaced by the contact interaction vertex and the

30From the above analysis it readily follows that contraction of ∂µφ(x) with φ(y) (such operators may
e.g. originate from two different terms of the interaction Hamiltonian delsity Hint(x)) does not lead to
any noncovariant terms; it simply gives ∂µi∆

F (x − y).
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x y
(−i)2

∫

d4x
∫

d4y Jµ(x)i∆F
µν(x− y)Jν(y)

x
(−i)

∫

d4xJ0(x)J0(x)

Figure 9.9: Cancellation of the noncovariant term in the pairing (9.62) by the local contact
interaction (9.64).

two noncovariant contributions to the amplitude cancel each other in the sum of these two
diagrams. As we will see in Section 11.9, precisely the contact interaction (9.64) appears
in the interaction Hamiltonian density if Hint if a derivative interaction of spin 0 particles
is obtained by canonically quantizing a classical field theory.

Since the only role of the additional interaction term (9.64) is to cancel the noncovari-
ant term in the propagator, in practical calculations one can replace everywhere (9.62)

by ∂
(x)
µ ∂

(y)
ν i∆F(x − y) forgetting at the same time about the interaction (9.64). Deriva-

tives acting on φ or φ† can be then treated as part of the vertex factors rather than of
the propagator. In the momentum space each derivative ∂µ acting in the vertex on an
operator ψ, φ or ϕ (ψ̄, φ†, ϕ) translates then into the factor −iqµ (+iqµ) where q is the
four-momentum of the line entering (leaving) the vertex “through” this operator.

A noncovariant term similar to the one in (9.62) arises (for the same reasons) in the
propagator of massive spin 1 particles represented in the interaction Hamiltonian density
by the vector field operator (8.143):

i∆F
µν(x− y) ≡ θ(x0 − y0)

[

V (+)
µ (x), V (−)

ν (y)
]

+θ(y0 − x0)
[

V (+)
ν (y), V (−)

µ (x)
]

(9.65)

= θ(x0 − y0)

∫

dΓp

(

−gµν +
pµpν
M2

)

e−ip·(x−y)

+θ(y0 − x0)

∫

dΓp

(

−gµν +
pµpν
M2

)

e+ip·(x−y) ,

where the sum (8.137) over polarizations has been used. Repeating the arguments one
gets therefore

i∆F
µν(x− y) =

∫

d4p

(2π)4
i

p2 −M2 + i0

(

−gµν +
pµpν
M2

)

e−ip·(x−y)
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− i

M2
δ0µδ

0
ν δ

(4)(x− y) . (9.66)

As in the previous case the noncovariant terms in the propagator of spin 1 massive
particle can be canceled by adding to the interaction Hamiltonian density a noncovariant
local contact interaction term

∆Hint =
1

2M2
J0(x)J0(x) , (9.67)

which arises automatically if such interactions of massive spin 1 particles appear as a result
of the canonical quantization of a classical vector field coupled to other fields through a
current Jµ. Again, in practical calculations one can simply forget about the interaction
term (9.67) dropping at the same time the noncovariant piece of (9.66). The rest of the
Feynman rules for massive spin 1 particles can be formulated as in the case of spin 0 and
spin 1

2
particles.

9.6 Feynman rules for massless spin 1 particles

In Section 8.5 we have learned that constructing a field operator transforming as a true
Lorentz vector out of the creation and annihilation operators of a massless spin 1 particle31

is impossible. The operator (8.180) transforms inhomogeneously (see the formula (8.175))
and moreover it does not satisfy the local causality requirement, i.e. the commutator
[Aµ(x), Aν(y)] does not vanish for (x − y)2 < 0 (it vanishes only if x0 = y0). These
deficiencies of Aµ(x) result in noncovariant terms in the photon propagator and must be
appropriately compensated by a very special form of interactions.

The propagator of a massless, spin 1 particle (the photon) arises as a combination of
two commutators

iDF
µν(x− y) ≡ θ(x0 − y0)

[

A(+)
µ (x), A(−)

ν (y)
]

+θ(y0 − x0)
[

A(+)
ν (y), A(−)

µ (x)
]

= θ(x0 − y0)

∫

dΓk e
−ik·(x−y)

∑

λ=±1

ǫµ(k, λ)ǫ
∗
ν(k, λ) (9.68)

+θ(y0 − x0)

∫

dΓk e
+ik·(x−y)

∑

λ=±1

ǫν(k, λ)ǫ
∗
µ(k, λ)

=

∫

dΓk Pµν(k)
[

θ(x0 − y0) e−ik·(x−y) + θ(y0 − x0) e+ik·(x−y)
]

,

in which

P00(k) = Pi0(k) = P0j(k) = 0 , Pij(k) = δij −
kikj
|k|2 . (9.69)

31For definiteness we will speak about photons.
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Figure 9.10: Examples of the Feynman diagrams with a single spin 1 massless particle ex-
change (the two left ones contribute to the invariant amplitude of the fermion-antifermion
scattering; the right one is strictly speaking unphysical for the process f → ff f̄ is for-
bidden by the four-momentum conservation).

Using the same trick as the one used to derive the propagator of spin 0 particles one
obtains

iDF
µν(x− y) =

∫

d4k

(2π)4
iPµν(k)

k2 + i0
e−ik·(x−y) . (9.70)

With the help of the time-like vector tµ = (1, 0, 0, 0) = δµ0 the “tensor” Pµν can be
rewritten in the form

Pµν(k) = −gµν +
k0(kµtν + kνtµ)− kµkν − k2tµtν

|k|2 . (9.71)

Let us now see if the noncovariant terms in the photon propagator arising from the
second term in (9.71) can be dealt with. Suppose Aµ couples in the interaction Hamil-
tonian density to the current Jµ = Q ψ̄γµψ constructed out of field operators of spin 1

2

particles carrying the charge Q (in units of e > 0):

Hint(x) = e Jµ(x)Aµ(x) = eQ ψ̄(x)γµψ(x)Aµ(x) . (9.72)

This Hamiltonian density is not a Lorentz scalar, of course, because while Jµ(x) does
transform as a four-vector (we assume it is constructed to transform in this way), Aµ(x)
does not: A0(x) ≡ 0 in any Lorentz frame.

The arguments will be now inductive. We consider first the lowest order diagrams
shown in Figure 9.10 and check that in these diagrams the terms in the propagator pro-
portional to kµ and/or kν can be dropped. Indeed, in the momentum space using the
vertex factor from the interaction (9.72) (as well as the rules formulated in the preced-
ing section) the first diagram of Figure 9.10 leads to the expression (spin labels σ are
suppressed)

(−ieQ)2 ū(p′
1)γ

µu(p1)
iPµν(q)

q2 + i0
v̄(p2)γ

νv(p′
2) , (9.73)

in which q = p1 − p′1 = p′2 − p2. It is then easy to check that owing the properties (8.100)
of the spinors u and v

ū(p′
1)γ

µu(p1) qµ = v̄(p2)γ
νv(p′

2) qν = 0 . (9.74)
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(t,x) (t,y) −ie2
∫

dt
∫

d3x
∫

d3y J0(t,x)J0(t,y)
4π|x−y|

Figure 9.11: Noncovariant nonlocal current-current contact interaction and the corre-
sponding Feynman rule.

The same is true of the other two diagrams of Figure 9.10.

The vanishing of the terms proprtional to kµ and/or kν can be in this case attributed
to the fact that in (9.72) the current Jµ(x) as the interaction picture operator (built
out of the free field operators satisfying the “Dirac equations” (8.106)) is conserved,32

∂µJ
µ(x) = 0, but vanishing of the four-divergence of the interaction picture operator is

by itself not enough (as will be seen below on the example of spin 0 particles coupled to
photons) to ensure the covariance of all S-matrix elements.

The only noncovariant piece in the amplitude (9.73) (and in the amplitudes corre-
sponding to the other two diagrams of Figure 9.10) arises therefore only from the k2tµtν
term in (9.71). In the position space this part of Pµν(k) gives in the propagator the term

iDF
µν(x− y) ⊃

∫

d4k

(2π)4
δ0µδ

0
ν

−i
|k|2 e

−ik0(x0−y0)e+ik·(x−y) (9.75)

= −iδ(x0 − y0) δ0µδ
0
ν

∫

d3k

(2π)3
e+ik·(x−y)

|k|2 (9.76)

= −iδ(x0 − y0)
δ0µδ

0
ν

4π|x− y| .

Its contributions to amplitudes can however be canceled if, in addition to the term (9.72),
the operator V I

int(t) =
∫

d3xHint(t,x) coupling charged particles to the massless spin 1
particle (the photon) is completed with the spatially nonlocal term

V I
nonlocal(t) =

e2

2

∫

d3x

∫

d3y
J0(t,x)J0(t,y)

4π|x− y| , (9.77)

in which J0(x) = Q ψ̄(x)γ0ψ(x). Through the formula (9.28) such a term of V I
int(t) gives

rise to a new interaction vertex having the form of the contact interactions (it differs from
the standard ones in that one integrates afterwards not over its space-time position but
over its variables t,x,y) of the particles the creation and annihilation operators of which
enter the current Jµ in (9.72). The Feynman rule this new vertex gives rise to is shown in
Figure 9.11. The factor 1/2 present in (9.77), is absent in the rule in Figure 9.11 due to

32This should not be confused (as in Weiberg’s textbook) with vanishing of the divergence of the
Heisenberg picture current operator Jµ

H(x).
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Figure 9.12: Example of a diagram in quantum electrodynamics of spin 1
2
particles. Black

blobs represent all possible diagrams (at a given order in e) that can be drawn with the
given set of lines entering them.

combinatorics. It is clear that if somewhere in a Feynman diagram a photon line connects
with the propagator (9.70) two vertices through which fermion lines are passing (i.e. a
photon is exchanged between two currents Jµ), a similar diagram with this photon line
replaced by the contact interaction of Figure 9.11 can be drawn. It follows, that when
the contributions of both these diagrams are added, the contact interaction will precisely
cancel the contribution of the noncovariant term in the photon propagator. As will be
shown in Section 11.7, the interaction term (9.77) is obtained automatically if the classical
electromagnetic field coupled to a curent Jµ is quantized in a consistent manner.

By analyzing amplitudes obtained from Feynman diagrams which include insertion(s)
of the vertex(ices) arising from the term (9.77) added to the interaction Hamiltonian, their
following important property, usually called gauge invariance (of the quantum theory),
can be proved33 (as the second step of the induction). Consider the complete set of
Feynman diagrams contributing (at a given order in the coupling constant e) to one of
the black blobs (say, the left one) shown in Figure 9.12. Some of the photon lines entering
or leaving this blob can be connected (as in the figure) to some other interaction vertices
forming a more complicated Feynman diagram and some may represent photons in the
initial and/or final state. Provided all lines of charged particles passing through the left
blob in Figure 9.12 are on-shell (i.e. provided all such lines represent particles in the
initial and final states which means that their four-momenta satisfy the respective mass-
shell conditions, p2 = m2, and are “closed up” with the appropriate “wave functions”
u(p, σ), v(p, σ) or ū(p′, σ′), v̄(p′, σ′)), the analytical expression corresponding to this

33In the approach based on quantization of the classical electromagnetic field coupled to particles of
to other fields this property comes out formally as the so-called Ward-Takahashi identity related to the
gauge symmetry of the classical action. In actual calculations based on the operator approach (as opposed
to the one exploiting path integrals) it is satisfied due to a delicate cancellation of the Schwinger terms
in the equal time commutator of two electromagnetic current Heisenberg picture operators against the
so called sea-gull contributions covariantizing the chronological product of the current operators. The
cancellation holds automatically in special regularization prescriptions which mafestly preserve gauge
invariance.
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blob Nµ1,µ2,...,µn(k1, k2, . . . , kn,p1, . . .) satisfies the gauge invariance condition34

kµi

i Nµ1,µ2,...,µn(k1, k2, . . . , kn,p1, . . .) = 0 . (9.78)

With this property holding35 for any such blob up to order en in the coupling constant e,
in diagrams (which as wholes are of higher order in e) in which photon lines connect like
in Figure 9.12 blobs of order ek, where k ≤ n, the noncovariant terms in the propagators
connecting blobs can be dropped: the kµ and/or kν terms will not contribute and the
terms originating from the tµtν parts of the propagators iDF

µν(x − y) are canceled by
the contact interaction as in Figure 9.11. The argument can be inductively extended to
arbitrary orders in the coupling constant e. Thus, the S-matrix of a theory involving
massless spin 1 particles coupled to spin 1

2
particles will be Lorentz-covariant provided

the interaction (9.72) is supplemented with the contact interaction (9.77).

Things are a little bit more complicated if the photon couples to spin 0 particles.
Consider first the interaction of the form

H(1) = e Jµ(x)Aµ(x) = ieQ
(

φ†∂µφ− ∂µφ†φ
)

Aµ , (9.79)

(i is inserted for Hermiticity). The current operator Jµ(x) in (9.79) is conserved, ∂µJ
µ(x) =

0, because the interaction picture field operators φ(x) and φ†(x) out of which it is formed
satisfy the “Klein-Gordon equation” (8.27). It is easy to check that the terms proportional
to kµ and kν arising in the photon propagator in the first diagram of Figure 9.13 (rep-
resenting the lowest order contribution to the S-matrix element corresponding to elastic
scattering of a spin 0 antiparticle on its particle) again do not contribute if the four-
momenta of all spin 0 particles are on-shell (the u and v functions are both trivial - equal
unity - in this case). Indeed, in the momentum space to the diagram 9.13a corresponds
the expression

−iA = (−ieQ)2(−p1 − p′1)
µ iPµν(k)

k2 + i0
(p2 + p′2)

ν , (9.80)

and since36 kµ = p1−p′1, the kµ term in the photon propagator gives (−p1−p′1)·(p1−p′1) =
p′21 −p21 =M2−M2 = 0. The term with kν gives zero in the same way. The remaining term
in the photon propagator can be canceled by adding to the interaction (9.79) the contact
interaction (9.77). However if to the blob in the diagram 9.13b (representing the lowest
order contribution to the S-matrix element corresponding to the Compton scattering of

34In the position space kµ is replaced by the derivative ∂µ; as we will argue, (9.78) generalizes the
conservation of the current formed out of free field operators to the conservation of the current formed
out of interacting Heisenberg picture field operators which will be introduced in due course.

35In higher orders in e one has to ensure that divergences of integrals corresponding to closed loops
inside diagrams contributing to such blobs do not spoil this property. This can be achieved by judiciously
choosing the regularization procedure (see Chapter 19).

36Lines corresponding to neutral particles like the photon do not carry arrows. Yet, one has to choose
a direction of the flow of the four-momentum through such a line. Here we choose it from the left to the
right.
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photons off charged spin 0 particles) contributed (in the order e2) only the diagrams 9.13c
and 9.13d, the corresponding analytical expression would not have the property (9.78).
The analytical expression the sum of these two diagrams gives rise to has the form

−iA = N µν(k1, k2,p1,p2) ǫµ(k1) ǫ
∗
ν(k2) , (9.81)

with

N µν = (−ieQ)2i
[

(2p2 + k2)
ν(2p1 + k1)

µ

(p1 + k1)2 −M2 + i0
+

(2p2 − k1)
µ(2p1 − k2)

ν

(p2 − k1)2 −M2 + i0

]

.

Contracting N µν with e.g. kµ1 keeping lines representing initial and final state spin 0
particles on-shell (i.e. setting p21 = p22 = M2, so that the denominators of the two
propagators become 2k1 ·p1 + k21 and −2k1 ·p2 + k21, respectively) we get

kµ1Nµν = −ie2Q2 [(2p2 + k2)ν − (2p1 − k2)ν ] = −2ie2Q2kµ1 gµν . (9.82)

We have used here the equality p2 − p1 + k2 = k1 (note that the conditions k21 = k22 = 0
have not been imposed!). Satisfying in order e2 the identity (9.78) requires an additional
contribution (despite the fact that the current Jµ(x) is conserved as the interaction picture
operator). Such a contribution is provided by the diagram 9.13e which arises if the
interaction (9.79) is supplemented by the yet another term

H(2) = −e2Q2φ†φAµA
µ , (9.83)

which gives rise to the diagram 9.13e and contributes to N µν in (9.81) a term37

∆N µν = +2ie2Q2gµν , (9.84)

(the factor of 2 comes from two possible ways to attach two photon lines to the two lines
in the vertex arising from (9.83)).

With the interaction Hint consisting of the sum of H(1) (9.79), H(2) (9.83) and of
V I
nonlocal(t) (9.77) the property (9.78) can be proved38 to hold to an arbitrary order in the

coupling constant e also in the theory of massless spin 1 particles (photons) interacting
with charged spin 0 particles and their antiparticles.

It will become clear in Sections 11.7 and 11.9 that the interactions (9.72) and (9.79)
together with (9.83) which ensure the gauge invariance property (9.78) of amplitudes are
precisely those which arise39 from the canonical quantization of the classical theory of a

37From the point of view of the Ward-Takahashi identity this term is just the so-called “seagull diagram”
contribution which covariantizes the chronological product of the electromagnetic currents which ensures
cancellation of the (regularization independent part) of the Schwinger term in the equal-time commutator
of the Heisenberg picture electromagnetic current operators in such a theory.

38We do not attempt to prove it here; firstly, because we have first to consider renormalization and,
secondly, the property (9.78) will be proved in a different way in Chapter 19.

39Since the interaction (9.79) involve derivatives of the field operators, in higher orders in e extra
noncovariant terms in the interaction Hamiltonian will be needed to covariantize the contractions of
operators involving space-time derivatives; also such terms come out automatically from the canonical
operator quantization procedure.
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Figure 9.13: Examples of the Feynman diagrams in electrodynamics of spin 0 particles.
The leftmost one contributes to the particle-antiparticle scattering; the remaining ones
give the order e2 contribution to the amplitude of the Compton process (photon scattering
off a charged particle).

vector field coupled to a spinor or a complex scalar field in a gauge invariant manner, i.e.
in such a way that the classical theory is invariant under the gauge transformations

Aµ(x) → A′
µ(x) = Aµ(x) +

1

e
∂µΘ(x) ,

ψ(x) → ψ′(x) = e−iQΘ(x)ψ(x) , (9.85)

φ(x) → φ′(x) = e−iQΘ(x)φ(x) .

In particular, we will see in Section 11.7 that when the electromagnetic field interacting
with matter is quantized in the Coulomb gauge ∇·A = 0, the interaction V I

int(t) expressed
in terms of the interaction picture operators takes the form

V I
int(t) = −e

∫

d3xJ(t,x)·A(t,x) +
e2

2

∫

d3x

∫

d3y
J0(t,x)J0(t,y)

4π|x− y| . (9.86)

Because in any Lorentz frame the time-like component of the photon field operator (8.180),
(8.162) vanishes, the first term above can be written in the formally covariant form (9.72).
The second term is precisely the nonlocal interaction required to cancel the contributions
of the noncovariant term in the propagator. Summarizing, provided the theory is regular-
ized and renormalized in the appropriate manner so that the property (9.78) is maintained
order by order in the expansion, one can simply drop the nonlocal term (9.77) in the in-
teraction and use everywhere the covariant photon propagator

iDF
µν(x− y) =

∫

d4k

(2π)4
−igµν
k2 + i0

e−ik·(x−y) . (9.87)

There remains however an intriguing question what happens then to the Coulomb
interaction energy represented by the second term in (9.86)? It is of course hidden in the
covariant propagator (9.87). To see this, let us consider the photon propagator connecting
two conserved currents Jµ(k) (in the momentum space) and take without loss of generality
a Lorentz frame in which kµ = (ω, 0, 0, |k|). Since the photon is off-shell (lines connecting
vertices represent virtual particles) ω 6= |k|. In the chosen frame the current conservation
condition kµJ

µ(k) = 0 implies

J3(k) =
ω

|k| J
0(k) . (9.88)
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The momentum space analytical expression which in the amplitude corresponds to the
photon propagator connecting two currents can be then rewritten with the help of the
relation (9.88) as

Jµ gµν
k2 + i0

Jν =
J0J0

k2 + i0
− JT ·JT

k2 + i0
− J3J3

k2 + i0
(9.89)

=
J0J0

k2 + i0

(

1− ω2

k2

)

− JT ·JT

k2 + i0
= −J

0J0

k2
− JT ·JT

k2 + i0
. (9.90)

where JT is the current component orthogonal to the photon three-momentum. The first
term is just the Coulomb interaction in the momentum space.

The property (9.78) of amplitudes (their gauge invariance) can be exploited to sim-
plify the sums over polarizations of the incoming and/or outgoing photons. Consider
an amplitude corresponding to an S-matrix element between initial and final states with
one or more massless spin 1 particles. Concentrate on one of these particles carrying the
(on-shell) four-momentum k and write the S-matrix element in the form

−iA = ǫ(∗)µ (k, λ)N µ(k, . . .) , (9.91)

factorizing explicitly the polarization vector ǫ
(∗)
µ (k, λ) of the considered incoming (outgo-

ing) photon. Gauge invariance (9.78) means that

kµN µ(k, . . .) = 0 . (9.92)

Owing to this relation, when the modulus of the amplitude squared is summed over spin
projections of the photon present in the initial or final state, the rule

∑

λ=±1

ǫµ(k, λ)ǫ
∗
ν(k, λ) = Pµν(k) , (9.93)

can be effectively replaced by the simpler (covariant) one40

∑

λ=±1

ǫµ(k, λ)ǫ
∗
ν(k, λ) → −gµν . (9.94)

Indeed, let Jµν(k, . . .) ≡ Nµ(k, . . .)N ∗
ν (k, . . .). Summing over polarizations one should in

principle write
∑

λ=±1

ǫµ(k, λ)ǫ
∗
ν(k, λ)Jµν(k, . . .) = Pµν(k)J

µν(k, . . .) . (9.95)

40A warning: in general this rule does not apply in non-Abelian gauge theories! The relation (9.78)
holds provided external lines of all charged particles are on shell (that is also “closed up” with the
appropriate functions u, u∗, v or v∗); since in non-Abelian theories massless spin 1 particles analogous to
photons are charged, their external lines must be “closed up” with the true polarization vectors ǫµ(k, λ)
or ǫ∗µ(k, λ). It follows that if the amplitude has several external lines of such massless spin 1 particles the
rule (9.94) can be applied only to one of these line if the remaining ones are on shell.
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However - taking without loss of generality the (on-shell) photon four-momentum kµ in
the form (|k|, |k|, 0, 0), and using the explicit form (9.69) of P µν(k) - one can write:

Pµν(k)J
µν(k, . . .) = J22(k, . . .) + J33(k, . . .)

= J00(k, . . .)− J11(k, . . .)− Jµ
µ(k, . . .) . (9.96)

Since kµJ
µν(k, . . .) = kνJ

µν(k, . . .) = 0, in the chosen frame in which kµ = (|k|, |k|, 0, 0)
one has J0ν = J1ν and Jµ0 = Jµ1. Hence, setting ν = 0 and µ = 1, one finds that
J00 = J11 and the first two terms in the second line of (9.96) cancel each other. This
proves the rule (9.94).

9.7 Corrections to external lines

In the preceding sections we have formulated the general method for computing S-matrix
elements by perturbatively evaluating the right hand side of the formula

Sβα = 〈β0|Texp

(

−i
∫ ∞

−∞

dt V I
int(t)

)

|α0〉 . (9.97)

The resulting expansion has been conveniently encoded in the Feynman diagrams and
the Feynman rules. The method allows, in principle, to compute the desired S-matrix
element in a given theory to arbitrarily high orders of the perturbative expansion.

However, in computing contributions to matrix elements arising from diagrams con-
taining closed loops one encounters ill defined expressions which require introducing ad-
ditional rules to correctly handle them. Within the approach to computing S-matrix
elements formulated in Chapters 7, 8 and this one, these new rules require modifying
the original interaction operator Vint one started with by adding to it in each order of
the expansion (in powers of the coupling constant) new terms which can be used to
cure the encountered problems. The most important class of ill defined expressions is
due to integrating over arbitrarily large four-momenta of (virtual) particles in loops and
is, therefore, related to ultraviolet properties of the considered theories. Their system-
atic treatement will be outlined in Chapter 14. Another class of ill defined expressions
is associated with corrections to external lines of Feynman diagrams.41 Although their
treatement by modifying the interaction is intimately related to the treatement of the
divergent integrals, their origin is conceptually different and because they seem (at first
sight) to render the rules of calculating S-matrix elements invalid they must be therefore
discussed already here. It should be said that this type of ill defined contributions to the
S-matrix elements does not appear in nonrelativistic theories (formulated in the language
of second quantization of Chapter 5) - indeed no such problem has been encountered in

41Yet another class of ill defined contributions is encountered in theories of interacting massless particles.
Their treatement is different (also different is the physical reason for their appearance) and they will be
discussed in Section 19.6.
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the computation of the elastic scattering amplitude within a nonrelativistic effective the-
ory in Section 7.4. In such theories the interaction Hamiltonians of which have the form
(5.75) or (7.70) by construction - see Section 5.3 - normally ordered with respect to the
vector |void〉 and preserving the number of particles of each kind separately (processes
of creation or annihilation of particle-antiparticle pairs are impossible), scattering ampli-
tudes can be computed using directly the formula (9.97) essentially (apart for the need of
renormalization of the couplings) along the lines outlined in this chapter.

The problem is best illustrated by considering the computation of the elastic scattering
amplitude within the theory of spin 0 particles of mass M with the original interaction
of the form Hint = (λ/4!)ϕ4. It should be clear (this will be shown rigorously in Chapter
17) that all Feynman diagrams contributing to this amplitude can be organized as shown
in Figure 9.14, that is into (one-particle irreducible) diagrams contributing to the central
white blob in the upper left skeleton diagram and the ones contributing to one of the
four white blobs on the external lines. In turn, diagrams contributing to the blobs on
the external lines can be organized into black blobs (consisting of one-particle irreducible
diagrams), called self energies and denoted −iΣ, connected with one another by the
ordinary propagators. As a result, the considered scattering amplitude, written down
according to the Feynman rules discussed in this chapter, takes the schematic form

−iA = −i (λ+ . . .)
4
∏

j=1

{

1 +
i

p2j −M2
(−iΣ(p2j ))

+
i

p2j −M2
(−iΣ(p2j ))

i

p2j −M2
(−iΣ(p2j )) + . . .

}

, (9.98)

With the interaction consisting of the single operator Hint = (λ/4!)ϕ4 the first (−iΣ is by
definition at least of the one-loop order) contribution to the self-energy42 Σ is given by
the diagram shown in the upper right panel of figure 9.14.

Σ(p2) =
λ

2

∫

d4k

(2π)4
i

k2 −M2 + i0
+ . . . (9.99)

Since to obtain from (9.98) the S-matrix element each of the four-momenta pj must
be taken on-shell, i.e. one has to set p2j = M2, the scattering amplitude (9.98) is plainly
infinite due to the presence in the curly brackets of the propagators i/(p2j −M2) and this
singular behavior is independent of the question of finitness of the self-energy Σ(p2) itself!

The resolution of the problem lies in recalling the postulates underlying the approach
to calculating S-matrix elements developed in Chapter 7. This approach is based on the
assumption that the Hamiltonians H and H0 have the same spectrum, and that there

42It is the peculiarity of the ϕ4 interaction that the one-loop contribution to Σ(p2) is independent of
the four-momentum p. For the sake of illustration we can however ignore this pathology because in higher
orders Σ(p2) does depend on p.
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Figure 9.14: The “skeleton” representation of the amplitude −iA of the elastic scattering
of spin 0 particles the interaction of which is given by Hint = (λ/4!)ϕ4. The representation
makes the factorization of corrections to external lines explicit. The central white blob
represents the sum of all one-particle irreducible Feynman diagrams. The sum of diagrams
contributing to the white blobs on external lines of the upper left “skeleton” diagram is
organized as in the lower part of the figure into sums of self energy insertions −iΣ(p2) (to
which only one-particle irreducible diagrams coontribute as shown in the upper right part
of the figure) connected by the ordinary propagators. Crosses on lines mean that these
lines are on shell. The white and black blobs do not include the propagators corresponding
to the lines entering into them.

is a well defined, specified by the relation (7.39), one-to-one correspondence between the
full Hamiltonian in and out eigenvectors and the eigenvectors of H0. These postulates
imply, in the first place, that the ground states of H0 and H must have the same energies
(as we have already discussed at the end of Section 9.4, this can trivially be satisfied by
adding to Hint a constant term allowing to cancel the relative phase between the in and
out vacuum vectors) and, secondly, that the mass parameter(s) M in H0 (and hence also
in free propagator(s)) is (are) exactly equal to the mass(es)Mph of the physical particle(s)
represented by the in and out states. Moreover, the postulated relation (7.39) implies that
the matrix element of the Heisenberg picture field operator ϕ̃H(x) constructed out of the
free field operator ϕ(x) (obtained in Chapter 8) according to the prescription43

ϕ̃H(x) = ϕ̃H(t,x) ≡ eiHt ϕ(0,x) e−iHt , (9.100)

between the in vacuum |Ω+〉 (the out vacuum |Ω−〉) state-vector and the in one-particle
vector |(p)+〉 (the out vector |(p)−〉) is exactly equal to the matrix element of the free (in-
teraction picture) field operator ϕ(x) between the corresponding free Hamiltonian eigen-
vectors. This follows from taking formally the limit

lim
t→∓∞

〈Ω0|ϕ(x)|(p)0〉 = lim
t→∓∞

〈Ω0|eiH0te−iHteiHtϕ(0,x) e−iHteiHte−iH0t|(p)0〉
= lim

t→∓∞
〈Ω±|ϕ̃H(t,x)|(p)±〉 , (9.101)

43We denote the Heisenberg picture operator constructed in this way ϕ̃H(x) (in Section 11.10 this
operator will be denoted ϕph(x)), and not just ϕH(x), because it will turn out to be related to the canonical
operator ϕH(x) obtained by quantizing the corresponding classical field theory by an appropriate rescaling
(renormalization) transformation.
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using the assumed relation (7.39). But since 〈Ω0|ϕ(x)|(p)0〉 = e−ipx and, by Poincaré
invariance,

〈Ω±|ϕ̃H(x)|(p)±〉 = 〈Ω±|eiP̂x ϕ̃H(0) e
−iP̂x|(p)±〉 = e−ipx 〈Ω±|ϕ(0)|(p)±〉 = Const. e−ipx ,

(assuming that P̂ µ|Ω±〉 = 0) the relation (9.101) implies that the equality must hold
for any instance t, not only asymptotically. As will be shown in Chapter 13, these two
conditions (the equality ofM in the propagator to the physical mass and (9.101)) together
imply that the momentum space two-point Green’s function G̃(2)(p2) defined as the Fourier
transform

(2π)4δ(4)(p+ p′) iG̃(2)(p2) ≡
∫

d4x

∫

d4y e−ip·xe−ip′·y 〈Ω−|T[ϕ̃H(x)ϕ̃H(y)]|Ω+〉 , (9.102)

of the position space Green’s function G(2)(x− y) - the relativistic theory counterpart of
the nonrelativistic single-particle Green’s function considered in Section 5.7 - has a simple
pole at p2 =M2 =M2

ph with the residue exactly equal to i.

Obviously, in the presence of the interaction term such as Hint = (λ/4!)ϕ4 physical
particles experience self-interaction (the upper right diagram in Figure 9.14 represents
one of its possible effects) which cannot be switched off and which inevitably shifts the
pole of the two-point Green’s function G̃(2)(p2) away from p2 = M2 and causes the pole
residue to deviate from i. Therefore, to satisfy the postulates, the original interaction
(λ/4!)ϕ4 has to be supplemented by some additional self-interaction terms which must
cancel out the effects of the particle self-interaction due to the (λ/4!)ϕ4 term. In the case
of the theory of interacting spinless particles the terms which can ensure this are44

∆Hint = −1

2
δZ∂µϕ∂

µϕ+
1

2
∆M2ϕ2 − 1

2
δZ ′∂0ϕ∂0ϕ . (9.103)

The coefficients δZ, δZ ′ and ∆M2 in (9.103) should be treated as power series in the
coupling constant(s) (here λ) and adjusted in each order of the perturbative expansion so
as to satisfy the conditions specified below. In computing amplitudes in the perturbative
expansion, the terms of (9.103) with the coefficients determined in lower orders of the
expansion must be then used as interaction vertices in building diagrams of higher orders.
Since the first of the added terms involves derivatives acting on the field operators, in some
Feynman diagrams it will give rise to noncovariant terms in the propagators as discussed
in Section 9.5. For this reason one has also to add to ∆Hint the last, noncovariant term,
the only role of which is to cancel the noncovariant terms in the propagators in order to
produce a Lorentz covariant S-matrix.45 Thus, in practice the last term can be dropped
provided one neglects simultaneously noncovariant pieces of the propagators.

44The proper notation for these “counterterms” will be fixed in Chapter 14 in which the general
procedure of removing divergences arising from integrations over four-momenta of internal lines of loop
diagrams with the help of suitable counterterms will be discussed.

45Again, it will be seen that precisely such terms with δZ ′ appropriately correlated with δZ will come
out automatically in the approach based on quantization of fields.
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If the terms (9.103) are included in the interaction and used as specified above, the
self energy Σ(n)(p2)complete which includes all contribution up to (and including) the n-th
order can be written as the sum of two parts:46

−iΣ(n)(p2)complete = −i
[

Σ(n)(p2)− δZ(n)p2 +∆(n)M2
]

, (9.104)

where to −iΣ(n)(p2) contribute, in addition to the interactions generated by the original
termHint = (λ/4!)ϕ4, also the terms (9.103) with coefficients up to the (n−1)-st order and
δZ(n) and ∆(n)M2 denote the n-th order contributions to δZ and ∆M2. If now Σ(n)(p2)
is expanded in the Taylor series around p2 =M2

Σ(n)(p2) = Σ(n)(M2) + (p2 −M2)Σ(n)′(M2) +
1

2
(p2 −M2)2Σ(n)′′(M2) + . . .

it becomes clear that to eliminate the problem with corrections to external lines, it is
sufficient to adjust (in every order of the perturbative expansion) δZ(n) and ∆(n)M2 so
that the first two terms in this Taylor expansion of Σ(n)(p2) are canceled. In this way
the resulting “subtracted” self-energy Σ(p2) (which will be called renormalized self-energy
and denoted ΣR(p

2)) will always (in every order in the coupling constant(s)) satisfy this
condition. Since the remaining terms of ΣR(p

2) vanish faster than p2 −M2, the whole
curly bracket in (9.98) will, when the limit p2j → M2 is taken, reduce to unity (thus will
no longer be singular). As a result, if the original interaction is completed with the terms
(9.103) the coefficients of which are recursively fixed by the procedure described here, one
can simply omit all contributions to the scattering amplitudes which in the language of
Feynman diagrams can be interpreted as corrections to external lines (the white blobs on
external lines in Figure 9.14).

Similarly, in the case of external lines corresponding to spin 1
2
particles the necessary

additional interactions which must be added to Hint are those given (omitting possible
noncovariant terms) in (9.53). Their contributions to amplitudes allow to cancel out,
order by order in the expansion, the first two terms in the Taylor series expansion of the
fermionic self-energy47

Σ(n)( 6p) = Σ(n)(m) + ( 6p−m)Σ(n)′(m) +
1

2
( 6p−m)2Σ(n)′′(m) + . . . , (9.105)

and to avoid in scattering amplitudes the dangerous terms which arise as corrections to
external lines.

46In these manipulations one assumes that the theory is regularized and is successively being, order by
order, renormalized. This will be descussed in Chapter 14.

47Since the fermion self-energy Σ is a matrix in the spinor indices, it depends on 6p (it should be written
as Σ(6 p)); therefore m as the argument of Σ and its derivatives should be understood as m times the
unit matrix in the spinor indices. The limit 6 p → m must be then understood as taken on amplitudes
“closed up” with the wave functions u(p, σ), ū(p, σ), etc. (because 6 pu(p, σ) = mu(p, σ) etc.). This is
precisely how Σ(6 p) appears in the expression resulting from the diagrams 9.7c - 9.7f. Since Σ(6p) is in
this expression taken for p2 = m2, canceling the first two terms in the Taylor series in (9.105) eliminates
the entire contribution of the diagrams 9.7c - 9.7f, as suggested at the end of section 9.4.
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In the following chapters it will become clear that canceling the first two terms of the
Taylor expansion around the value p2 = M2 in the case of bosons and around 6p = m in
the case of fermions of the self-energy insertions Σ against the additional interactions like
those specified in (9.103) or (9.53) is precisely what is required to ensure that the physical
masses of the particles represented by the in and out state-vectors |α±〉 are identical
to masses of free-particles represented by the H0 eigenvectors |α0〉 and that the relation
(7.39) of these eigenvectors of the full H (which now includes the additional terms (9.103))
and of H0 is preserved because the two-point Green’s function iG̃(p), which in the case of
spin 0 particles takes the form i/[p2 −M2 − ΣR(p

2)] will have a simple pole at p2 = M2

with the residue i as is implied by these relations. The subtraction procedure described
above will be shown in Chapter 14 to work (in a special class of theories) to all orders
of the perturbative expansion. As said, in higher orders the additional terms (9.103) in
the total interaction Hint will generate interaction vertices entering also those parts of
Feynman diagrams that cannot be interpreted as corrections to external lines and will
prove necessary to remove some of the divergences of the first class (related to the UV
behaviour of amplitudes). In this way, the procedure outlined here, called the On-Shell
scheme is part of the general renormalization procedure which will be discussed in Chapter
14. However, it is important to stress that from the conceptual point of view the On-Shell
scheme is enforced by the assumptions specified in Section 7.3 and is therefore a necessary
ingredient of the direct (i.e. based on the formula (9.18)) calculation of S-matrix elements.

It should, however, be said that the procedure of avoiding singularities on external
lines outlined here may turn impossible to be carried out in some theories because the
factors like δZ(n) and ∆(n)M2 must be real (to maintain Hermiticity of the interaction
operator) while the self energies evaluated on shell, like Σ(M2), may turn out to have
a nonzero imaginary part. By the unitarity relations discussed in Section 7.6 such an
imaginary part signals that the particle corresponding to the considered external line is
in fact not stable (can decay) and, therefore, the corresponding in and out one-particle
state-vectors do not exist (the full Hamiltonian H does not possess the eigenvectors which
would represent such particles). In this way the assumed one-to-one correspondence od
H0 and H spectra breaks down and such theories cannot, strictly speaking, be developped
along the lines adopted here - they should be formulated using the approach based on
Green’s functions. In fact, carrying out the procedure discussed here, and therefore the
preservation of the assumed one-to-one correspondence, is possible only in very special
theories (of which quantum electrodynamics is the most prominent and, among realistic
theories, almost the unique example).

In Chapter 13 a more general approach to investigating properties of quantum field
theory models will be formulated. It will be based on Green’s functions and will not rely
on the assumptions (impossible to satisfy in many theories) about the one-to-one corre-
spondence between the free Hamiltonian eigenvectors |α0〉 and the in and out eigenvectors
of the full Hamiltonian H = H0 + Vint. In this more general approach S-matrix elements
are accessible (if particle-like in and out states of the full Hamiltonian do exist) through
the Lehman-Symanzik-Zimmermann (LSZ) prescription (described in Section 13.4) ap-
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plied to appropriate Green’s functions. This approach will give a considerable freedom in
setting the perturbative expansion (of Green’s functions) which will imply a correspond-
ing freedom in formulating renormalization conditions (specification of how subtractions
in self-energies and other important functions are made). This flexibility will be then
exploited in the renormalization group methods discussed in Chapter 18. The On-Shell
scheme formulated here is, from this point of view, only a one particular possibility (singled
out by its relation to the old-fashioned, shaped by the historical development of quantum
electrodynamics and not always applicable, way of computing S-matrix elements) out of
many other possible, renormalization prescriptions.
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