11 Canonical quantization of classical fields

In Chapters 6-9 relativistic quantum field theory was formulated adopting the view that
the underlying physical system (the basic “ontology”) are particles. Therefore the natural
starting point was the relativistic (in the sense of the existence in the Hilbert space
of the Poincaré group generators P and J{") theory of free particles which could be
built by exploiting the formalism of second quantization of Chapter 5. Making strong
assumptions about the relation between the spectra and the eigenvectors of the full and
free Hamiltonians, H = Hy+ Vi, and Hy, it was possible to show that interaction operators
Vine constructed according to a certain set of rules can lead to relativistic (again, in the
sense of the possibility to construct the Poincaré group generators P* and J*”) theories
of interacting particles and a perturbative scheme (strongly relying on these assuptions)
of computing S-matrix elements was developed.

Here we present another approach to the formulation of the theory of interactions
of relativistic particles. It is based on the canonical quantization of relativistic fields.
Particles emerge in this formalism as quantum states (“excitations”) of fields. The basic
entities - at least as far as bosonic degrees of freedom are concerned - are, however, fluc-
tuating fields. The advantage of the field theory approach is twofold: firstly, it provides a
well defined prescription for constructing the full Poincaré group generators (the structure
of which in terms of the creation and annihilation operators in the approach of Chapter
7 could only be guessed at) and, secondly, allows to easily discuss various internal sym-
metries (providing through the Noether theorem a concrete prescription for constructing
the associated conserved charges), especially gauge ones and their spontaneous breaking.
Moreover, in the case of fields “the quanta” of which! are bosons (integer spin particles)
the picture of fluctuating field values at different space-time points (complementary to
viewing the system as a collection of particles) seems more fundamental; it allows for
deeper understanding of global aspects of the theory (such as the role of topologically
nontrivial classical field configurations, symmetry breaking etc.) and proves extremely
useful in diverse modern applications of quantum field theory (e.g. in cosmology and in
statistical physics of critical phenomena).

The picture of fluctuating fields seems however not naturally applicable to quantum
fields, the “quanta” of which are fermions (half-integer spin particles). While it is possible
to take as a starting point of quantum theories of fermions the Lagrangian formalism
which has formal aspects analogous to that of bosonic classical fields (Section 11.8),
the basic entities in this case are anticommuting generators of an abstract Grassmann
(or Bieriezin) algebra which have no classical counterpart and can hardly be considered
physical. The difference between bosonic and fermionic fields? becomes particularly clear

'We put the quotation marks because, as will become clear in Chapter 13, the correspondence between
the fields entering the Lagrangian and the particle states predicted by a given theory need not be direct,
nor one-to-one.

2The reason for this sharp difference between bosonic and fermionic fields seems to be that in the
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in the path integral approach to field quantization (see Chapter 16). While quantizing
in this way bosonic fields one integrates functionally over (that is performs summation of
contributions of ) all possible classically realizable (and measurable) field configurations,
for the purpose of quantizing fermionic fields one uses an operation (formally defined
in terms of operations on Grassmann algebra generators) only formal aspects of which
resemble the integration. Thus no “classical fermionic fields” can be measurable and the
only physical picture that in quantum field theory can be associated with fermions seems
to be that given in Chapters 5 and 6. Quantization of classical fermion fields is only a
mathematical trick allowing to easily reproduce the results of the formalism presented
there. In particular it cannot be viewed (as is sometimes presented in older textbooks) as
“quantization of the wave function satisfying the Dirac equation”.

In this chapter quantum theories of fields are constructed by using the operator
method, that is by applying to their classical counterparts the so-called canonical quan-
tization procedure. It consists of choosing a set of field variables in terms of which the
Lagrangian is written, identifying the associated set of canonical momenta and construct-
ing the corresponding Hamilton’s formalism, imposing on operators which are going to
represent the canonical variables the canonical commutation rules (anticommutation rules
in the case of Bierezin algebra valued fields) and constructing a Hilbert space (and select-
ing in it a proper Fock space) in which these operators act. Therefore, in the first section
a brief review of the classical theory of relativistic fields and their symmetries is given.
As the next step we show, that quantum theory of noninteracting fields, Lagrangians of
which consist of terms at most bilinear in field variables, leads to the interpretation of the
corresponding Hamiltonian eigenstates in terms of (noninteracting) particles. In principle,
quantization of classical fields is very similar to the quantization of the system of many
coupled harmonic oscillators discussed in Section 5.6: the field value at a given point x of
the space can be treated as an oscillator coupled to other oscillators in neighbouring points
(in particular, the common features of both systems: of quantized coupled anharmonic
oscillators and of interacting quantized fields, is the nonconservation of the numbers of
phonons and particles, respectively). However, despite these similarities, quantization of
some classical fields (e.g. the electromagnetic one) require special treatment because di-
rect construction of the Hamilton’s formalism cannot be carried out. The proper operator
quantization of such fields requires developing the formalism of constrained system which
will be presented in Section 11.6. The formalism allowing to treat fermionic fields on for-
mally equal footing with bosonic ones is outlined in Section 11.8. After quantizing various
types of classical field theories we apply to the theories of interacting fields the so-called
transition to the interaction picture which allows to compute the S-matrix elements using
the methods developed in Chapters 7 and 9.

classical, i — 0, limit bosonic quantum fields go over into true, measurable (at least in principle) classical
fields of forces (like the electromagnetic forces, and various potential forces), whereas fermionic fields get
replaced by matter particles the behaviour of which is first, at low energies, captured in terms of wave
functions satisfying the Schrédinger (or Pauli) equation (as in Chapter 3) and ultimately, in the i — 0
limit, become particles of classical mechanics.
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11.1 Action and the Noether theorem

Dynamics of a system of classical fields® ¢; is determined by the action I[¢] which is a
functional over all differentiable space-time field configurations. Actions considered in
connection with quantum field theories are given in terms of Lagrangians L obtained as
space integrals of local Lagrangian densities

B t1 B 1 ; _ .
I[(;S]—/to dtL_/tO dt/vd X£(¢,8u¢)_/ﬂdx£(¢,8u¢). (11.1)

The Lagrangian density £ is a function of fields ¢;, i = 1,..., N and of their space-time
derivatives. In the following we consider Lagrangian densities depending on first order
derivatives only. The volume V may be finite or infinite; in the latter case one assumes
that all the fields ¢; vanish sufficiently fast at spatial infinity;* in the finite volume V
some spatial boundary conditions must be specified. The action I[¢] must be a real and
- if the field theory is to be relativistic (which is possible only if the volume is infinite) -
Poincaré invariant quantity. In general the fields ¢; transform nontrivially (as some, in
general reducible, representation of the SO(1,3) group or, in the case of fermionic fields
to be discussed in Section 11.8, of its universal covering SL(2,C)) under changes of the
inertial frame and can also transform nontrivially under some internal symmetries.

Equations of motion of a system of fields are obtained by requiring that the true field
configurations ¢;(z) are stationary points of the action functional (11.1), i.e. that I[¢]
does not change to first order in d¢;(x) when the substitution ¢;(z) — ¢;(z) + d¢;(x)
is made, provided the variations d¢;(x) of the fields configuration around the stationary
configuration ¢;(x) are bound to vanish at ¢t = t; and t = ¢, as well as in the limit |x| — oo
(if the volume V' in (11.1) is finite, d¢;(z) are assumed to vanish at the boundaries).
Concisely this requirement is written as 6/[¢] = 0. If the action (11.1) depends only on
fields and their first derivatives, its variation 61 due to any variations d¢;(x) of fields (not
necessarily subject to some specific boundary conditions) reads®

_ [ |9 s, 9L |
51_/de {a@ 00, + G o (0.0) (11.2)

(summation over the index ¢ is understood). In the following we will consider variations
oi(x) = ¢i(x) + d¢i(x) such that §(0,¢;) = 0,(d¢;). The variation 61 of the action can

3The formalism presented in this section carries over unmodified to fermionic fields discussed in Sec-
tion 11.8 provided all derivatives of the Lagrangian with respect to field variables are treated as right
derivatives and the variations stand to the right of these derivatives.

4In the case of gauge fields this condition should most probably be imposed only og the field strengths.

®Generalization to Lagrangian densities depending on higher derivatives of field is straightforward
but requires imposing appropriate boundary conditions also on derivatives of field variations. However
the Hamilton’s formalism presented here, which is crucial in formulating the transition to the quantum
theory (without appealing to functional integrals which will be introduced in Chapter 16), is adapted to
Lagrangian densities depending on first derivatives only. It can be extended to theories Lagrangians of
which depend on higher derivatives using the formalism of constraints presented in Section 11.6.
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be then rewritten in the form

oL oL oL
5[:/Qd4at{{a¢i —Oym] 5¢i+8y{m5¢i]}~ (11.3)

Owing to the boundary conditions imposed on the variations d¢; considered in connection
with the determination of the true field configurations, the second, surface, term in (11.3)
vanishes and the condition 0/[¢] = 0 leads to the Euler-Lagrange equations of motions:

o OL(9,00)  9L($,09)
Y 0(0,01) 0

For further discussion it is important to observe that two Lagrangian densities which differ
from one another by a total derivative of an arbitrary function of fields®

~0. (11.4)

L'=L+0,X8), (11.5)

give the same classical equations of motion (due to the assumed vanishing of the field
variations on the boundary of the domain ).

Canonical quantization of a system of fields requires’” going over to the Hamilton’s
formalism. To this end one defines the momenta II;(¢,x) canonically conjugated to the
field variables ¢;(t,x) by

0L oL

IL;(t,x) = 5 (t.%) = (000i(t,x))’

(11.6)

and forms the Hamiltonian density
'M@ZE:m@Wmﬁ—a@, (11.7)
and the Hamiltonian
H = /d3xH(t,x). (11.8)

We have assumed here that the momenta II; and the field variables ¢; are not subject to
any constraints and that the relations (11.6) can be inverted to give

di(x) = oi(ll(x), d(x)), (11.9)

6x#[¢] depending only on fields but not their derivatives (as is required to get £’ independent of
higher field derivatives) can be constructed only in the presence of fermionic (the four-vector index p can
be then carried by a gamma or a sigma matrix) or four-vector fields; admiting X'* depending also on
field derivatives is possible provided the allowed class of variations d¢;(z) is restricted to variations with
derivatives vanishing at the boundaries of .

"In the alternative approach based on path integrals (see Chapter 16) fields are quantized using directly
the action I[¢], but in fact a proper justification of thus approach also requires the Hamilton’s formalism.
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where the dependence on ¢ means possibly also a dependence on 0;¢(x). As we will see,
in physically interesting cases this assumption is not always true and we will have to
consider appropriate modifications of the canonical formalism. If no such problems arise,
the equations of motions in the Hamilton’s formalism read

Q.Si(t’x) = {¢i(t>x)a H}PB >
I1;(t,x) = {TL;(t,x), H}pg (11.10)

where the Poisson bracket (PB) of any two functionals F[¢,II] and G[¢,I]] is defined as

[ (SF[o.11) 561011 6G[6, 1] 6F[5. 1]
{FWHL G[¢’H]}PB = ;/d x (5(;52-(15,)() STL(Ex) oot ) 5Hi(t,x)) » (1L11)

so that

{0i(t,x), TL(t,y)}ps = 0 0P (x —y), (11.12)
{¢z(ta X)> ¢j(ta y)}pB = {Hz(t, X), Hj (t, y)}PB =0.

If the canonical variables ¢; and II; are not subject to any constraints, the canonical equa-
tions of motion (11.10) are exactly equivalent to the original Euler-Lagrange equations
(11.4).

Formulation of the field dynamics in terms of the action I allows to easily identify
symmetries of the field equations of motion and, owing to the Noether theorem, to con-
struct the corresponding conserved quantities. We begin with the case of symmetries
which do not affect space-time coordinates (these can be ordinary global symmetries or,
in the case of theories involving fermionic fields, “rigid” supersymmetries). We consider
first a general change of the field variables which can be written in the form

¢i(x) = ¢i(x) = ¢i(d(x)) . (11.13)

The dynamics in the new field variables ¢}(z) is detemined by a new Lagrangian density
L’ which depends on the fields ¢}, and which can be chosen so that®

L(¢,0.8') = L, 0u9) . (11.14)

8This is just as in classical mechanics in which one is allowed to use any set of dynamical variables,
qi(t) or ¢i(t) = ¢}(q(t),t), to characterize the state of motion of a given system. The equations of motion
in the new variables follow then from the new Lagrangian L’

i aL/(q/v q/a t) _ 8L/(q/7 q/a t)

dt 04 g

Because the Lagrangian has a well defined physical interpretation (e.g. L =T — V in nonrelativistic me-
chanics), the new Lagrangian L'(¢’, ¢, t) is obtained just by inverting the relations ¢, = ¢;(q(t),t) and in-
serting g;(t) = ¢;(¢’(t), t) into the original Lagrangian: L'(¢'(q), ¢'(q), t) = L(q(¢'(t),t), ¢(¢'(t),d (t),1), t)
where ¢(q'(t),q'(t),t) = (0qi/0q;) 4 + 0qi/Ot.

449



In this case

I'— 1= /d%ﬁ'(gb',ﬁugb') - /d%ﬁ(qﬁﬁugb) =0, (11.15)

i.e. I' = I provided the field configurations ¢;(z) and ¢.(x) are related by (11.13).
Consequently, if the configuration ¢;(z) of the original fields is a stationary point of I,
that is, if ¢;(x) satisfy the equations (11.4), then the configuration ¢}(z) related to ¢;(x)
by (11.13) is a stationary point of I’, which implies that the fields ¢}(x) satisfiy the
equations

8£/(¢/,8¢,) 8£,(¢,,8¢/) B
. (11.16)

which are in general of different form than the equations (11.4) because L'(-, -) is in
general a different function of its arguments than £(-, -).

%

The choice of £’ satisfying the condition (11.14) is not the only possibility: any £’
such that

L(¢,0u9") = L(6,0u0) + . X"(9), (11.17)

is equally good. In this case, the relation (11.15), gets replaced by

I'=1+ /d4x 0, X" (@) =1+ /da“ X,(9), (11.18)

but still, if a configuration ¢;(z) is a stationary point of I[-], then ¢}(z) related to ¢;(x)
by (11.13) is the stationary point of I'[:] because ¢ [d*z 9,X*(¢p) = 0 for variations d¢;
vanishing at ¢; and at ¢, and in the limit |x| — oc.

It is important to realize, that we are not yet speaking of a symmetry of the field
equations of motion, but rather of the well known fact that in the Lagrangian formalism
states of a given system can be specified by an arbitrarily chosen set of dynamical variables.
A change of variables® ¢; — ¢/(¢) is a symmetry of the equations of motion if £L'(-, )
leading to (11.17) is such that for some choice of X (:)

L, )= "XI() = L, ), (11.19)

or - using the freedom to redefine £ by subtracting from it a total four-divergence - if
for £'(-, -) leading to (11.17) one can just take L(-, -), because then the equations of

9Mathematically speaking, the fields ¢;(x), i = 1,..., N define mappings from the space-time into
some N-dimensional “target” space T)| called by physicists the internal space. Therefore ¢i(x) should
be viewed as coordinates of a point of a manifold 7N) onto which the space-time point (that is a point
of the so-called base manifold), characterized by the coordinates x* is mapped. A change of variables
¢; — ¢, can be due to changing the coordinate system on TW) | in which case we have to do with a

passive transformation, or due to considering a transformed system (active transformation) - cf. Section
4.1.

450



motion (11.4) satisfied by the fields configuration ¢;(x) which is a stationary point of I]:]
have the same form as the equations of motion (11.16) satisfied by the configuration ¢}(z)
which are stationary points of I'[:]. In other words, ¢;(x) and ¢;(x) are both solutions of
the same Euler-Lagrange equations. Thus, the condition that the change ¢; — ¢.(¢) is a
symmetry reads

L(¢',0¢') = L(d, 0) + 0,X"(6) . (11.20)

Restricting now the discussion to transformations depending on some parameters 6,,,
a = 1,...,n, which can be continously deformed to the identity transformation (see
Section 4.2),'% we consider an infinitesimal symmetry (in the sense specified above) trans-
formation!!

di(x) = ¢i(x) = ¢i(x) + 00, F(¢) = ¢i(x) + dobs(2) (11.21)

we write

with 0L being of first order in dp¢; (i.e. in 66,). Using then (11.3) as well as the con-
dition (11.20) combined with (11.18) we can write the equality (correspondingly to the

infinitesimal character of the considered field transformations we write dX* instead of
Xu)12

= [ @£, 00) ~ £(6.00) - 3,62"(0) (11.23)

- e [ae - man] v ey e =)+

The first bracket in the above formula vanishes for the fields ¢; satisfying the equations
of motion (11.4). Thus, for such a configuration ¢;(z) of the fields the quantity

8£

is conserved, i.e. satisfies the equation
My (z) =0, (11.25)

0Tn theories with fields taking values in Grassmann-Bieriezin algebras - see Section 11.8 - one can
also consider transformations of the supersymmetric type the parameters 6, of which are anticommuting
Grassmann variables; although in such a case the notion of continuous parameter changes is only formal,
the results obtained below still apply.

"The reasoning can be straightforwardly generalized to local transformations with Jo¢;(z) =
56, (2) F2(9).

12This reasoning can easily be generalized to Lagrangian densities depending on higher field derivatives.
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because if (11.21) is a symmetry transformation, (11.23) is identically equal to zero,
and no special requirements on the values at t = ¢; and ¢t = t5 of the field changes
So¢i(x) related to a symmetry transformation are imposed!® (of course, dy¢;(x) should
preserve the boundary conditions imposed of the fields ¢; at spatial infinity or, in the
finite volume). If the transformations depend on n independent parameters, there are,
therefore, n conserved canonical Noether currents

-a oL a a
]N:WE(QS)_XN(QS)’ a:1>"'>n> (1126)

(since X" must be of first order in the transformation parameters 66,, it must take the
form d &, (¢) = 60, X (¢)). The Noether charges Q given by

Q" = /d3xjg(t,x), a=1,...,n, (11.27)

are then time independent (conserved) quantities provided the fields fall off sufficiently
rapidly at spatial infinity (or, in a finite volume, satisfy the appropriate boundary con-
ditions). This can be seen directly from (11.23): upon using the Stokes theorem this
equality reduces, for fields ¢;(x) satisfying the equations of motion, to

0= /mda“ju(:z) : (11.28)

which, if € is the part of the space-time bounded by two hyperplanes t = ¢t; and t = to,
means precisely that!?

/d?’xjo(tl,x) = /d3xj0(t2,x). (11.29)

In most cases the transformations (11.21) are linear'® in the fields ¢;

60,7 (¢) = —id0, 13505 , (11.30)

J

(summations over a and j are understood) with 7% being a set of Hermitian matrices -
a matrix representation of the generators of a symmetry group G - forming a basis of a

13For this reason the second term on the right hand side of (11.18), if present, is nonvanishing - it
receives contributions from the ¢ = t; and ¢t = t2 hypersufaces.

4Notice that the situation is quite different in the case of theories formulated in the Euclidean space
with coordinates Z*: because in this case fields and, therefore, also the symmetry changes dg¢; are bound
to vanish for |Z| — oo in all directions, one cannot infer from (11.23) the existence of conserved currents
and, hence, there are no conserved charges (11.27).

5However, symmetries realized on fields nonlinearly also play an important role, mainly in effective
quantum field theories. E.g. the so-called chiral Lagrangians of effective theories of strong interactions
of low energy lightest mesons are invariant with respect to nonlinear transformations of fields.
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representation of the dimension n Lie algebra of G (see Chapter 4). The matrix generators
T* satisfy then the commutation rule

[T°, T"] =4T°f,*, (11.31)

with some structure constants f,% and will be assumed to be normalized by the condition
tr(T*T") = $0°°. The transformations (11.13) are then infinitesimal forms of finite sym-
metry transformations of fields. The characteristic feature of such internal symmetries'¢
is that X7 = 0 and it is then easy to see that in the canonical Hamilton’s formalism
the Noether charges QQ® generate via Poisson brackets the infinitesimal symmetry trans-
formations (11.30) of field variables. Indeed, the time component of the current is then
simply

Jo (t,x) = —illi(t,x) T35 ¢;(t, x), (11.32)
and using (11.12) one gets
00.{Q", ¢i(t,x)}pp = 100135 d;(t,%) (11.33)
so that ¢j(x) ~ ¢i(x) — 00, {Q", di(2)}pg-

Finally it is important to know that the canonical Noether currents (11.26) associated
with a given continuous symmetry of the system can be modified by adding to them
vectors yf(x) such that 9#y%(z) = 0 and [d*x y§(t,x) = 0, i.e. not spoiling the cur-
rent conservation and formally (this depends on the behaviour of yi(x) at infinity) not
affecting the conserved charges. For instance, if out of the available fields tensors I$, ()
antisymmetric in their Ay indices can be constructed, the modification of the canonical
currents by y¢(x) = 0§ () is possible. These remarks are especially important in the
context of constructing the quantum theory. The point is that in the quantum theory
the operators representing proper symmetry currents should be also conserved and their
matrix elements between physical (i.e. identifiable experimentally) states - as quantites
having direct physical meaning - should be finite (more precisely: finite after expressing
them in terms of other measurable quantities - this will become clear in Chapter 14) but
the canonical Noether currents not always satisfy this latter criterion. It turns out, how-
ever, that if in the quantum theory a given continuous symmetry is not anomalous (the
meaning of this will be clarified in Chapter 23) it is always possible to find an appropriate
modification of the canonical currents. The most prominent example of this situation
is encountered in Quantum Electrodynamics (see Chapter 19) in which the canonical
Noether current (to which in the Lagrangian couples the photon field A,) associated with
the global U(1) symmetry turns out to have infinite physical matrix elements (despite
being conserved). The proper conserved symmetry current having finite matrix elements

6More generally, whenever X*(¢$) cannot be removed by a suitable redefinition of £ by a total four-
divergence, we have to do with transformations having a space-time character (for example, X*(¢) cannot
be removed in the case of supersymmetric transformations); if X} = 0 one speaks of genuinely internal
symmetries.
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(and, simultaneously, yielding the conserved charge which is just right for the Gauss law
to hold) can, however, be constructed (see Section 19.5) exploiting the fact that the elec-
tromagnetic field strength tensor fy,(z) has all the necessary features to play the role of
the tensor [y, (z).

In order to discuss space-time transformations (like translations, rotations or Lorentz
boosts, etc.) the formalism has to be generalized. An infinitesimal such transformation
ot — ™, where

't =gt + dat(x) = 2" + 60, f (), (11.34)

should be accompanied by a corresponding infinitesimal transformation ¢;(x) — ¢}(z) of
the fields:'"

¢i(2') = ¢i(x) + 6¢i(x) = di(x) + 00, F (4()) . (11.35)
For example, in the case of the infinitesimal transformation x# — z/* with
' =t + St ¥ — dat, (11.36)

corresponding to a change of the reference frame, the fields ¢;(x) transform under some
regular (in general reducible) matrix representation (J"*);; of the Lorentz group'®

(') = () — 5 B (T, 65(2). (1137)

One can also consider other space-time transformations x# — 2/# (and the associated
transformations of fiels) such as e.g. scale or conformal transformations which are believed
to play a very important role in aplications of quantum field theory to critical phenomena.

If the system is in the new space-time coordinates z'* represented by the new field
variables ¢/ (z), there must exist a new Lagrangian density £’ such that when any two field
configurations ¢;(z) and ¢}(z’) are related to each other by (11.34) and (11.35) fulfilled
is the identity

I'—-I= /,dﬁ‘:):' L(¢(2'),0,0' (') — /Qd4x L(¢(x),0,0(x)) =0, (11.38)

in which &), denotes the derivative with respect to 2’# and (2’ is the image of the integration
domain €2 under the change of variables (11.34). The identity (11.38) is a sufficient condi-
tion for the new fields ¢}(z) obtained via (11.35) from the solutions ¢;(x) of the equations
of motion (11.4) following from L to be solutions of the equations of motion following from

1"This means that the change of the space-time (base manifold) coordinate system entails a related
coordinate change of the internal (target) space.

8The simplest nontrivial is the vector representation with (J%) #H given by (D.3) acting on vector
fields ¢; = V", but higher rank tensor or spinorial representations can also be considered.
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L'. As previously, the same conclusion concerning ¢;(z') obtains if £L'(¢'(2"), d;,¢'(2')) is
chosen so that

d'2'L(¢'(2'), 0,¢'(2')) = d*x [L($(w), D (2)) + 0 X" (6(2))] (11.39)

with some four-vector function X*(¢).

Again, one speaks of a space-time symmetry, if (by an appropriate choice of the factor
X} (¢')) for the new Lagrangian density £'(-, -) leading to (11.39) one can take the original
function L(-,-):
LI(¢(2), 9,9 (")) = L(¢(2), 0,¢(x')), (11.40)
because then the equations of motion satisfied by ¢/(z’) (in the space-time coordinates x'*)
have the same form as the equations of motion (in z*) satisfied by ¢;(x). Thus, if (11.34)
combined with (11.35) are symmetry transformations of the theory, the condition (11.39)
implies, taking into account the arbitrariness of the domain €2, the following identity

d*a' L(¢'(2'),0,¢' () = d*z [L(P(x), Dud(x)) + 0 X (B(2))] (11.41)

in which one understands that 2/# in the left hand side is expressed in terms of z* using
(11.34), so that in (11.38) ' — Q (for a general change (11.34) of the coordinates d*z’ #
diz, i.e. det(dx'/0x) # 1).

The transformations (11.36) accompanied by (11.37) should be symmetries in the
above sense of the action I of a relativistic field theory. In this case det(dz’/0x) = 1 and
the condition (11.41) takes the form similar to (11.20), except for different space-time
coordinates on both sides.

Conserved quantities corresponding in the general case to the (infinitesimal) space-
time symmetry transformations (11.34) and (11.35) can be found exploiting the condition
(11.41). For an infinitesimal transformation its left hand side can be written as'®

' £(0(a). ,000) + 52 001(0) + 5 [000ia) = O,6)oselo)] }.

because® &,¢;(z') = 9upi(x) + 0, (00 (x)) — (9,(027))0r¢i(x) + O(66%). After expressing

d*z’ through d*zr using the Jacobian?!

oz, , 00z, (x) doxy
the condition (11.41) becomes equivalent to the identity
oL oL
doi(x) + [0,60i(x) — (8,(627))Ori(2)] + (0r62™) £ — 9, 0X* =0,

% a(au¢i)

19We again assume, that £ depends only on fields and their first derivatives. Conserved Noether charges
corresponding to more complicated Lagrangian densities can be derived using similar methods.

2°From (11.34) it follows that 02’ /0" = 6} + 8(62*)/0x", and x> /0x'™ = 6} — 8(6a™)/Ox*. Thus,
0, =0y — (0(0z™)/0xH)Dy.

21'We use the relation det(1 + A) = exp{trin(1 + A)} ~ 1 + tr(4).
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or, using the equations of motion to write the first two terms as a total divergence, to

L (o _L - (r N b
5ﬂ{a<au¢i>5¢z< ﬂ 570,57 (On(02)056:(@) + 0362%) £ = 9,02 = 0.

Adding now zero in the form

oL oL
56, 2ot B 58

the identity can be rewritten in the form

81 O\ L — o [ 00, ¢i(x )] ,

oL oL » (z
o8 [(a 967 6¢i(x )] 0,00, (0,02 0r4 ()

oL oL
L?az o)+ 555

Writing now the second term in the first line as the total four-divergence one finds that
the term which has to be subtracted to achieve this precisely cancels (if the equations of
motions are satisfied) the first term in the second line and the identity takes the form
0, J" = 0 with

n\Oui(x )} 62 + O\ (62 L) — 9,6X" = 0.

oL

oL
= Onds — gy L] 62 —
{wm SAREE }z

0 (au ¢Z)
Thus the condition (11.41) implies that the current (11.43) evaluated on field configuration

¢;(x) satisfying the equation (11.4) is conserved. It plays, therefore, the role of the Noether
symmetry current of space-time transformations.

5 + SXM(¢) . (11.43)

We now consider the Noether currents (11.43) associated with the Poincaré trans-
formations of the form (11.36). Translations correspond to dw,, = 0, de* # 0 and
¢i(x') = ¢i(x), so that in this case d¢; = 0. The corresponding Noether current which
(assuming that 0X* = 0, which is usually the case) reads

oL
T = &6s — gL, 11.44
is called the canonical energy-momentum tensor density. It is by construction conserved:
0T () = 0. (11.45)

The four constants of motion (i.e. time independent quantities)

P = /d3x7;gﬁ(t X), (11.46)
play the role of the total energy P° of the system of fields and of its total momentum
vector P'. Tt can be shown that if 7%* is conserved (and only then!), P* given by (11.46)
transforms as a true four-vector when the reference frame is changed.
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In the case of Lagrangian densities which are of the general form

L(bi, 0u¢i) = %@@8“@- —V(9), (11.47)

with a function V(¢) called the field potential, going over to the Hamilton’s formalism,
one finds

can

7::?1];1 — Hlakqbl .

T = ST+ SV6e Vi + V() = H, (11.48)

In this case it is easy to check that the transformations of the field ¢;(x) corresponding
to spacetime translations are generated by the Poisson brackets:

{P", ¢i(x)}pp = —0"di(x), (11.49)

so that ¢(z) = ¢i(x) — {P", ¢i(2)}pp O,

The canonical energy-momentum tensor density (11.44) is not always symmetric in its
indices pur and, moreover, in electrodynamics it is not given by a gauge invariant expres-
sion. In the context of the quantum theory it is, however, more important that matrix
elements between physical states of the canonical tensor are not always finite. Similarly
as in the case of the canonical Noether currents associated with global symmetries, in
such cases one can always construct a modified tensor

TH () = T (z) + H" (2) (11.50)

in which H""(x) is a conserved tensor, 0,H"(z) = 0, and such that
/d?’xHO”(x) =0. (11.51)

The associated conserved charges P* obtained from the modified tensor 7+ are then (if
the fields vanish sufficiently fast at spatial infinity) the same as the ones obtained from
ThHv. These conditions are met if

Wi (z) = O, H (x), (11.52)

where HPM () is antisymmetric in its pp indices. Using this freedom one can always
replace T4, by a symmetric tensor Thy = Tk . In the case of fields which transform
nontrivially under the Lorentz group (as in (11.37)) of particular interest is the Belinfante

symmetric tensor obtained by taking

PMVZE L Ty '_i Ty oL ey
H 2 8(8[)(;52.)( iT"); b5 8(%@)( iT"),; 65 78(@@-)( T, 6| . (11.53)
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It is the Belinfante symmetric energy-momentum tensor which appears as the right hand
side of the Einstein’s equations of General Relativity.?? More generally, it turns out that
a modification of the canonical energy momentum tensor can be always found that the
operator representing it in the quantum theory is conserved and has finite matrix elements
between physical states.

Conserved currents associated with the Lorentz transformations (d¢* = 0, dw*, # 0 in
(11.36)) are derived in a similar way. Using dz/ = dw,z" and d¢; = —5 éw,u (T"),; ¢4(x)
following from (11.37) we get (as previously asuming that 0X* = 0)

oL
MR () = oV TEY — o™ Th + —iT""),: 05 - 11.54
The conserved (i.e. time independent) charges
JU = /d3xM2;g(t,x), (11.55)

are antisymmetric J** = J*. Again, it can be shown that if M?* is conserved, J"*
transforms as a true four-dimensional second rank tensor. The spatial components J¥ of
(11.55) play the role of the total angular momentum of the considered system of fields. It
is straightforward to check that if the Lagrangian density has the form (11.47), the tensor

J¥" generates, through the Poisson brackets, Lorentz transformations of the fields ¢;(z):
{J", 6i(@)}pp = — [CCM@V — 2" 0") 0 + (—iT™);5 | ¢4(x), (11.56)

so that ¢j(z) = ¢i(z) — 3 dwu {J*, ¢i(x)}ps. It can also be shown, that the tensor
(11.54) differs by a total four-divergence from the tensor®
MR = gV Tl — TR (11.57)

symm symm

in which 7&v  is the Belinfante symmetric energy-momentum tensor obtained from
(11.53), which gives therefore the same conserved Noether charges J* (for field con-
figurations satisfying the equations of motion (11.4) and vanishing sufficiently fast at

spatial infinity).

22That is, it coincides with the energy-momentum tensor defined as the variational derivative with
respect to the metric tensor g,,(z) of the action I[¢] written in the generally covariant form (g =

—det(gu))

g ) = 6I[¢] — J 417
Thim®) = 50 05 = 5 [tavac.

ZThe tensor (11.57) is conserved due to the symmetry and conservation of T

symm-*
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11.2 Canonical quantization of a real scalar field

In this section we discuss in details quantization of the simplest example of a relativistic
field - the real scalar field ¢(z). No special difficulties, beyond those inherent in treating
systems of infinitely many degrees of freedom, arise in this case. More complicated cases
of vector (in particular of the electromagnetic field) and spinor fields will be discussed
sections 11.7 and 11.8, respectively. We consider first quantization of the noninteracting
field ¢(x) and then outline modifications introduced by interactions. At the end of this
section these results are generalized to systems of many interacting fields.

The simplest dynamics of a real field transforming as a scalar when the inertial ref-
erence frame is changed is given (in units in which ¢ = h = 1) by the Poincaré invariant
Lagrangian density

1 1
Lo = 3 Ot — §M2<p2. (11.58)

By a rescaling of the field variable ¢ (i.e. by a simple canonical transformation) the first
term quadratic in the first derivatives, called the kinetic term, can always be brought into
the canonical form as above. In the absence in the Lagrangian density of powers of ¢
higher than the second (a feature which makes this theory solvable both classically and
quantum mechanically) the negative sign of the second term is indispensable to ensure,
as will be seen, the boundedness from below of the spectrum of the resulting quantum
Hamiltonian and the relativistic relation E?(k) = k?® + M? between three-momentum k
and energy E of the Hamiltonian eigenstates identified with one-particle states. To stress
the similarity to the system of coupled oscillators discussed in Section 5.6 we write the
corresponding Lagrangian in the more general, a priori spatially nonlocal, form

Ly = %/d3x¢2(t,x) — %/d?’x/d?’y o(t,x)K(x,y) p(t,y), (11.59)

with a real and symmetric, K (x,y) = K(y, x), kernel. Formally, the value of ¢ at every
point x can be treated as an independent canonical variable Qx(t) = ¢(t,x). Accordingly,
the Euler-Lagrange equation of motion of the system defined by (11.59) can be written
in the form
d L 0 Lo
dt dp(t,x)  dp(t,x)

(the derivatives with respect to ¢ and ¢ are functional derivatives). Applied to (11.59)
this gives the equation
d2

2 #(tx) +/d3}’K(X>Y) p(ty) =0. (11.61)

The kernel K (x,y) of the local Lagrangian density (11.58) takes (restoring the constants
¢ and h for decoration) the form

—0, (11.60)

M3t

= ¥ (x—y), (11.62)

K(x—-y)=-Vi ¥ (x—-y)+
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so that??

M3

Ly = ;/dg [ 2(t,x) — A (V(t,x))* — 72 ©*(t,x)| . (11.63)

The Euler-Lagrange equation (11.60) is in this case equivalent to the field equation (11.4)

and reads
2 M2
(% — AV 4+ h; ) o(t,x)=0. (11.64)

To quantize the system one has first to set up the canonical (Hamilton’s) formalism.
To this end one defines the canonical momenta Py (t) = I1(t,x) conjugated to the canonical
variables Qx(t) = ¢(t, x):

0Ly

I(t, x) = = p(t 11.
and constructs the Hamiltonian
Hy = /d3x (¢, x)p(t, x) — Lo, (11.66)
in which ¢(¢,x) has to be expressed in terms of II(¢,x) and ¢(t, x):
1
H, = 3 /d?’xl_[2 (t,x) /d3 /d?’ygp (t,x)K(x—y)p(ty). (11.67)
It is easy to check, that the classical Hamilton’s equations
d oH
il - H 7
dtgp(tax) {(p(t,X), }PB 6H(t,X) )
d 0H
—II(t, x) = {I1(t H =—— 11.
(030 = (0.3, H}py = s (11.68)

are fully equivalent to the Euler-Lagrange equation (11.4), i.e. to (11.64).

Quantization in the Schrodinger picture of a classical system means promoting (a set
of) its real canonical variables Q° and P; taken at one particular instant, usually ¢ = 0, to
time independent Hermitian operators )* and P; satisfying the canonical commutation
rules?

Q, P]=in{Q", P;},, =ihd';, (11.69)

24In units [M], [T] and [L] (mass, time and length) the action I = [dtL has dimension of A, that
is, [M][L)?[T)~*. Tt follows from (11.63) that the field ¢ has dimension [M]Y/2[L]~'/2. Furthermore,
since IT = ¢, it has dimension [M]Y/2[L]~'/?[T]~! and the Hamiltonian (11.67) has the right dimension
[M][L]?[T)~? of energy. See also Appendix L.

25 A stronger requirement, that for any pair of classical observables F(Q, P) and G(Q, P) such that
{F(Q,P), G(Q,P)}pg = A(Q, P) the corresponding operators in the quantum theory satisfy the relation

[F(Q.P). G(Q.P)| = ihA(Q. P),

cannot in general be imposed because of problems with ordering of operators; it can hold only for
observables F(Q, P) and G(Q, P) which are at most linear in the canonical variables @ and P.
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and [QZ, Q”] = [}A’Z, Pj] = 0 and representing the resulting algebra of operators in some
Hilbert space of states. Following this prescription, in the considered case one imposes
on the operators ¢ and II the conditions

[p(x), (y)] =i
[p(x), ¢(¥)] =1

>

Dx-y).
x), Ti(y)] = 0. (11.70)

hé

(
Upon quantization the Hamiltonian (11.67) also becomes a Hermitian (owing to the Her-
miticity of ¢ and II) operator:

1

H02

/ d*x [ﬂ?(x) (V)2 + M2¢2(x)] . (11.71)

In principle, in full analogy with the ordinary quantum mechanics of a system having
n degrees of freedom formulated in the position space, i.e. in Ly(R"™) as the Hilbert
space, in which the system’s states are represented by wave functions ¥(Q', Q?, ... t)
(the probability amplitude of finding the system in the classical state characterized by
the values Q' of its canonical variables) on which Qs act by multiplication by Q' and
Py’s act as —ihd/dQ?, one can represent the algebra (11.70) of the operators ¢(x) and
II(x) in the space of all functionals ¥[¢] defined on (classical) field configurations ¢(x)
vanishing at [x| — co. In this nonseparable Hilbert space ¢(x) and II(x) act through

GOVt = Wt TGOV =i e

and the “wave functionals” U]p, t] = (p(x)|W(t)) can heuristically be treated as repre-
senting the probability amplitude that the field takes on at time ¢ the configuration ¢(x).
While this approach can offer a useful insight into the global structure of the theory’s
Hilbert space (which proves indispensable when e.g. topological aspects of gauge theories
are to be investigated), it does not immediately lead to the interpretation of field states
in terms of particles (in the nonseparable Hilbert space the fundamental commutation
relations (11.70) are not realized irreducibly). Such an interpretation emerges naturally
(at least in the case of free field theories) if one finds a representation of the ¢(x) and
f[(x) operators in terms of some other operators the commutation relations of which (their
algebra) can be represented in some Fock space (cf. Chapter 5) - a separable subspace of
the “big” Hilbert space H (the one specified above) of all possible state-vectors. In the
case of field theories defined on the flat Minkowski space-time, Hamiltonians of which are
time independent, this Fock space should be chosen in ‘H in such a way as to include one
of the lowest energy eigenvectors (some field theories, like e.g. supersymmetric ones or
gauge theories can have in the nonseparable Hilbert space multiple such vectors) of the
Hamiltonian operator of the theory. In free field theories it is relatively easy to chose the
Fock space so that the Hamilonian lowest energy eigenvector |€2y) is just the vector |Opck)
out of which other Fock state-vectors are built by the action of the creation operators. In
theories of interacting fields the lowest energy eigenvector of the full Hamiltonian H, the

(11.72)
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true vacuum |Q2), is at best a complicated formal superposition of vectors belonging to
the the chosen Fock space to which the vector |€)) belongs (and usually is identical with
the vector |Ogock)), but usually, from the orthodox mathematical point of view, it does
not belong to this Fock space. (Renormalization consisting essentially of working with
some cutoffs making effectively the number of degrees of freedom finite can be viewed also
as a way of going around this difficulty). In most cases®® representing the algebra of the
field operators in the suitable Fock space has also the welcome effect of giving the free
part Hy of the complete Hamiltonian the form similar to the one of uncoupled harmonic
oscillators (thereby making its spectrum explicit).

To illustrate the programme oulined above and to show how the Fock space vectors are
related to the states of the quantized field we consider first quantization of the classical
real scalar field p(x) satisfying periodic boundary conditions in the box of finite volume?”
V = L. To implement these conditions every field configuration is written in the form?®

1 ik-x
p(x) = N ;wk e, (11.73)

with the wave vectors k forming a countably infinite (i.e. discrete) set: k = (27/L)n,
where n = (n,,n,,n,), n; € Z. Since the field ¢(x) is real, p_x = ¢j. Expressed in
terms of the coefficients ¢y, which play now the role of new variables, the lagrangian L
corresponding to the Lagrangian density (11.58), which sets the dynamics of the field
¢(x), takes the form?

1
LO = /d3X 'CO = 5 Z (gpk(pl*{ — wigpk@;)
v k

1 . . .k *
=5 (98— wawo) + ) (wdic — wicwwsid) - (11.74)
k>0

Here wi = k?+ M?. In the second line the sum over discrete wave vectors k has been split
into the term with k = 0 and the sum over only half of nonzero vectors k (this is somewhat
heuristically denoted by k > 0) accounting for the fact that Yxpf = Pxp_k = $_kPxk, etc.
To completely reduce the considered field to a system characterized by an infinite set of

26The exception is e.g. the Hamiltonian of the electromagnetic field quantized using the Gupta-Bleuler
method (Section 11.11) with the gauge parameter £ # 1 or the nonabelian Yang-Mills fields (Section
20.3) quantized in an analogous gauge.

2"Do not confuse this L with the Lagrangian.

28The reasoning presented here is essentially identical with the one used in Section 3.8 in quantizing
the free electromagnetic field (in the gauge ¢ =0, V-A = 0.

29The necessary orthogonality and completeness relations read

/ dBx eix (k=) _ V Sk s Z ek xY) Y 5B (x —y) .
v k
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ordinary real canonical variables one writes
1 -
PO=do, k=5 (g +iq)  for k>0, (11.75)

so that the Lagrangian takes the form
L. 1 : R y
Lo = 5(d5 —wgad) +5 D (qﬁ — w2t + G — wﬁqi) . (11.76)

2 2
k>0

Going over to the Hamiltonian is then straightforward:

1 1 ) )
Ho = S +wda0) + 5 ), (v + il + 7 + o) (1L.77)

k>0

and the quantization just means promoting the new canonical variables qq, po, gk, px and
J, Px (with k > 0) to Hermitian operators satisfying the standard commutation rules

(g0, po] =ih,  [qx, Pw] = Gk, Pw] = Phdkk - (11.78)

etc. One can then construct the field operators ¢(x) and II(x):

. 1 Ok + 10k jiex Ok — 1k _jiex
““X)Eﬁ(q”z VR D ml £
1

k>0 k>0
A _ Pk 1Pk jiex Pk — Pk ik
x)=—=[po+ ) —=—e“*+>» ———e : (11.79)

Writing them in the form (thereby defining the operators ¢y and f[k)
. 1 N A 1 Sk
P(x)=—= ) e, Ix)=—7) Ige™™, (11.80)
o o
(with the sums extending now to all k) one finds, using the rules (11.78), that

(D1, The] = ihowwe, [P ¢w] = [, ] =0. (11.81)

This ensures that the canonical commutation relations (11.70) are satisfied® by the op-
erators ¢(x) and II(x).

The “big” Hilbert space H, the vectors of which represent all possible states of the
field as the quantum system, consists of all functions ®(qo, Gi,, Gx,, - - -) of the countably
infinite set of variables qg, qx and gx. The natural scalar product in H is given by

(©2]®y) = /qu HkodCYk ®3(q0, qu1» Gy - - -)P1(q05 Qi Gy - --) - (11.82)

k>0

300ne can also take the viewpoint that this is the proper justification of these relations.
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(Due to the infinite number of variables, finiteness of such scalar products and normal-
izability of the “wave functions” @ is, of course, a delicate question). Since each set of
values of qg, qx and g uniquely specifies a configuration of the classical field ¢(x), the
“wave function” ®(qo, qk,, Gk,,--.) of the system (the field) can be given the standard
probablistic interpretation: the quantity

12 (go, s s - - ) *dgo | | dawda .
k>0

can be treated (provided the product ], .,dqkdqc of the differentials is finite), as the
probablity that in the field quantum state represented by ® the classical configuration of
the field will be found between ¢(x) and ¢(x) + dp(x), where dp(x) is related to dgx and
A

The peculiar feature of the “big” Hilbert space H introduced above is its nonsepara-
bility. As a result, a choice of a set of functions which would constitute the basis of the
whole Hilbert space H if the number of variables were finite, specifies only a particular
subspace of H; two different choices of such sets can specify subspaces which are mutually
orthogonal in the scalar product (11.82). As such a set of functions one can take the
products

\Dno nklﬁkl---(QOa qx, , qkp .- ) = 77bno(qo) ¢nk1(qk1) ¢ﬁk1(qk1) S (11'83)

of functions ,(q), n = 0,1,2,... of one variable forming a complete discrete set of
normalizable functions of Ls(R). Such complete sets of functions can be different for
different variables qo, qx,, Gk, , - - - For instance, as 1,,(q) one can take the sets of harmonic
oscillator wave functions corresponding to frequencies €2 which can arbitrarily change from
one variable to another (i.e. Qg, O and Qy can be arbitrary functions of k); it should
be clear that a priori this dependence needs not be correlated in any particular way with
wk = VK% 4+ M?2. State vectors (11.83) can be denoted |ng, nk,, fix, , - - .). Singling out the
“Fock-vacuum” vector®® [0,0,...) = |Ope), introducing the operators Ag, Al Ay, Al
and Ay, Al (k > 0) acting on the vectors |ng, ny, , fix, , - - .) as do the bosonic creation and
annihilation operators in the occupation number representation (see Section 5.2) that is,
so that

Ao|O0rock) = Ax|Opock) = Ax|Opoek) = 0,
ALi\no,...,nki,ﬁki,...) = \/nki+1\n0,...,nki—i—l,ﬁki,...),

etc., and chosing as the basis the vectors |ng, ny,, M, - - -) With®? ng +ny, + g, +... < 00
(and taking the Cauchy completion of the set of such vectors) one constructs the separable

31 An “ontological” difference behind the formal similarity to the |void) vector introduced in Section
5.1 and the vector |Opock) is perhaps worth noting: while in the second quantization formulation of many
particle quantum mechanics the vector |void) represents an artificial state of no particles (the literal
“void”), here |Opock) is a real state of a fluctuating quantum field.

32Recall that the set of all vectors |ng, nk,, Nk, , - - .) without any restiction on the sum of n’s is still
uncountably infinite.
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Fock space Since the operators qo, po, qx, Px, Gk, Pk, can be expressed through Ag, A 0
Ay, A} and Ay, Al their algebra (11.78) and therefore also the algebra (11.70) in this way
gets represented (irreducibly) in a separable Fock space. If the oscillator wave functions
are used in the products (11.83), the operators qo, Po, 9k, Pk, Gk, Dk, are related to the
operators Ay, AO, Ay, AL, Ay, AT and the frequencies Qq, Qi, Oy in the standard way.

To explain why different choices of the sets of functions (11.83) can select orthogonal
subspaces in the “big” Hilbert space H, suppose Wpgpn 7, ... and Ppgny 7, ... are two such
sets constructed using the oscillator wave functions with different assignments of the
frequencies g, Oy, Qi to the complete sets of functions of variables qg, gx and g (which
may also be centered at different values ql({o), qlio)). Since the individual integrals in the
scalar product (11.82) are then certainly such that

' / A & (@) Y (01)] < 1,

for any ny and my (also if ny = my), it is easy to figure out that typically

((I)momklr_nkl ‘ \I]nonklﬁkl ) = O )

for any choice of the quantum numbers momy,my, ... and nenk,Nx, ... This means that
vectors of H constructed as normalizable superpositions of the basis vectors \Ifnonklﬁkl___
spanning the first Fock space cannot be obtained as superpositions of the vectors (I)momklmkl
spanning another Fock space and vice versa. Since the algebra of the operators qo, po, gk,
Px, Gk, Px can be represented (through the respective annihilation and creation operators)
on any of the sets of functions, \Ifnonklﬁkl___, or @nonklﬁklm, it follows that the big Hilbert
space ‘H furnishes a reducible representation of the algebra (11.78). Thus, in principle
selecting (by chosing the right Fock space) a subspace of H in which the algebra of the
operators qo, Po, Gk, Pk, Qx, Px is realized irreducibly is an important part of constructing
the quantum theory of any field. Note also that the existence of many possible Fock spaces
in which the algebra of the operators can be represented is not related to the particular
form of the function wy in Hy, that is to the Hamiltonian of the free field. It is also clear
that if the Hamiltonian is not quadratic in field variables (an interaction term is added
to Hy and the field is no longer free) the construction of the Fock spaces presented here
does not change because the form of the Hamiltonian has nowhere been used.

If the field is quantized in the flat Minkowski space-time, in which the time-independent
Hamiltonian operator plays a distinguished role, physically motivated is the choice of the
separable H subspace containing the lowest energy eigenvector of the theory Hamiltonian.
In a curved space-time, in which the notion of the Hamiltonian is more delicate, or if the
Hamiltonian is explicitly time-dependent (the field is coupled to some varying in time
external agents), the choice of the subspace of H is more problematic and one tries to
develop methods allowing, at least in the case of free fields defined on curved space-times,
to extract out of the theory a physical information without making a concrete choice of
the Fock space. In the physical (as opposed to mathematical) practice, however, one is
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forced to accept that in all field theories one has to impose some sort of an UV cutoff on
lengts of the considered wave vectors k and, therefore, at least in the finite volume V| as
long as there is an UV cutoff, any choice of the Fock space is equally good - any “wave
function” ®(qo, ¢k, , Gk, - - -) depending on a finite (due to the cutoff) number of variables
can be expressed as a superposition of the vectors of a basis of an arbitrarily chosen Fock
space.

In the case of the free Hamiltonian (11.77) which is simply a sum of an infinite number
of independent harmonic oscillator Hamiltonians, the choice of the proper separable sub-
space of H is rather trivial: it is the one spanned by the vectors \Ifnonklﬁkl,,, constructed
out of the harmonic oscillator functions centered at g = 0 and corresponding to frequen-
cies O = Qi = wyi. The eigenvector |Qy) of Hy corresponding to the lowest energy is then
the Fock space “vacuum” vector |0,0,0,...) = |Opock). To see this it suffices to introduce

the operators (k > 0)

o Ay + i Ay g Al — AT
V2 o § V2 o
Ay —iA Al +iA]
a_y = kizk’ al, = ﬁ’ (11.84)
V2 V2
and ag = Ag, aI, = A(T), satisfying the standard rules
[ak, CLL,] = 5k,k’7 [CLk, CLk/] = [CLL, CLL,] = O, (1185)
and form the basis of the same Fock space out of the state-vectors (kg = 0)
1
|7’Lk0,nk1,...> = ﬁ |k0,...,ko,kl,...,kl,...>
\ Nky: Nky v - - -
nko 1’Lk1
() ™ (k)
.- |OFock> ) (1186)

- \/nkO! nkll ‘

in which now the vectors k; are not restricted to k; > 0. These vectors can be interpreted
(see below) as representing ny, bosons having momentum ko, ny, bosons having momen-
tum ki, etc. Using the standard relations g = (A + Al)/v/2wy ete. and (11.75) one
then finds that for all k

R . 1 jw
DK = (ak + aT_k) , Iy = 7 ?k (ak - aT_k) , (11.87)

so that

~ 1 Ay . )
fl(x) = = i ( ikx _ of —Zk'X> . 11.88
(x) ; zk: ax e a,e ( )



The Hamiltonian (11.77) takes the form
a ZEZ(ﬁkﬁﬁw?@k@ k):wak ol an + = (11.89)
"2 k ) ) ) k ) 2]’ '

and the basis vectors (11.86) are (here by construction) its (normalizable) eigenvectors.
In particular it is clear that3 [Qg) = |Opoa).

The interpretation of the H, eigenvectors in terms of noninteracting particles (bosons)
suggested above3! is supported by the statistical properties of the quantized (free) field:
To show this let us consider the quantum field (still enclosed in the box of volume V = L?3)
in contact with a heat bath of temperature T" and compute, using the Gibbs Canonical
Ensemble, the statistical sum Zg., = e P, where® 3 = 1/kgT and F(T,V) is the
Helmholtz free energy. This reduces to

00 () A
Zstat :Tl"e_BHO = Z Z (nko,nkl,...\6_6H0|nk0,nk1,...>

Nk, =0ny, =0

_ H [e—hwk/QkBT i (e—hwk/kBT)nk] ) (1190)
k

TLkZO

The geometric series can easily be summed and one finds

1
F(T,V) = —kpT I Zygas = 5 zk: huo + kBTZk: In (1 — e~ w/keT) | (11.91)

or, going over, with the help of the prescription (5.48), to the continuous normalization,

P’k [1
F(T,V)= V/ - [ihwk + kgT'In (1 — e—ﬁwk/kBT)} : (11.92)

(2m)?

with wi = \/c2k? + ¢tM2/h2. Apart from the first term which represents the contribution
of the zero point oscillations (which could have been subtracted from the beginning by
redefining H, o) the temperature dependent part of F' is precisely the free energy of a system
of nointeracting relativistic bosons which do not carry any conserved quantum number
and the total number of which - similarly to the total number of photons - is therefore
determined solely by the condition of thermal equilibrium. Thus, one of the arguments

330ne can go further and show that the “wave function” of the ground state has the form
_ Wk 1/4 1
(0, 1 Gy - - - [Q20) = Vo [p] = 1;[ (ﬁ) exp <—% ;wmﬂk(ﬂt) .

34Notice that having quantized the field in a finite box one cannot appeal to the Poincaré transformation
properties of these state-vectors.
35kp = 8.617343 x 1075 eV/K is the Boltzmann constant.
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that allow us to interpret states of quantized fields as particles is essentially identical to
the statistical argument used by Einstein in 1905 to argue that electromagnetic radiation
behaves as a collection of noninteracting particles (photons).

Calculation of the partition function Z,; of an interacting quantum field is most easily
formulated in the path integral approach. Still, presenting that approach in Chapter 16 we
will need the result (11.92) to fix an additive constant in F'(7', V') which in the functional
approach is difficult to compute.

It is clear that the choice of the proper Fock space, fairly obvious in the case of a free
field, ceases to be such when the Hamiltonian of the field involves an interaction term. In
connection with this it is perhaps instructive to consider a slightly less trivial example of
the field p(x) satisfying as previously periodic boundary conditions in the box of volume
V = L3 and the dynamics of which is set by the Lagrangian density

1

L= 20,00

1
. = MG — gf () (t,%) = Lo+ L (11.93)

2
in which ¢ is the coupling constant and f(x) is a given real function also satisfying the
periodic boundary conditions. It can therefore be written as

P = o ST e, with f = fo
k

Introducing as previously the variables ¢, = (g + iG)/v2 for k > 0 etc. one can
represent the algebra of the operators qg, po, qx, Px, qx and py or, alternatively, of the
operators ay and af defined in (11.84) in the Fock space spanned by the vectors (11.86).
The Hamiltonian takes in this case the form H = f[o + f/int with f[o given by (11.89) and

1
Vzn:
t g{\/Q—(ao—i_aOfO_'_kam

It is clear that now the basis vectors (11.86) are not eigenvectors of H and that |Op,ck) is
not the lowest energy eigenvector of H. To find the eigenvectors of H one can notice that
if one introduced the new operators®®

[ak+a WS-k + (a- k—i—ak)fk]}

ax = ax + ELLECLL—G—CI*U (11.94)

(satisfying the same commutation relations as do the operators ay and aL, because the
factors ¢y’s are c-numbers) with

O = gfk C* — gf—k
\/Qwi’ k \/2w1§’

36The steps performed below are essentially the ones done in Section 1.3 in solving the problem of the
harmonic osillator subject to the action of an external force.

468



the Hamiltonian would take the form (h =1 again)
9* fifx
H = Z Wk (CLkCLk ) Z 2wk

It follows that the vectors |7, ik, - . .) built out of the vector 0,0,...) = |Opoex) annihi-
lated by all @y are also the eigenvectors of H and therefore |Opye) = |€2). These vectors
are given by

[Tgs Ty s - - o) = U(€) |y, Maeyy - - -)

where the formally unitary operator U(c) is given by

U(c) = exp ( Z cxal + Z ckak> . (11.95)

Indeed, because?”

U Ne)aU(e) = ax—a, U Ne)alU(c) =al — ¢, (11.96)

H|’7Lk0,7~lk1, . > = U(C) U_I(C)I:IU(C)‘HkO,nkl, .. >
k

1 2 2
= U(C) [wk (aLak + —) - 92|fl;| :| |nk0,nk1, .. >
Wi

2 2
= {Z {Wk (nk—|— %) — %] } ‘flko,flkl,...>.
k

Since U(c) can be written also in the form?®

U(e) ( Zg‘fk )exp<_;cka:<> exp@c;;ak),

it is clear that all scalar products

<mk0,mk1, ce |’7Lk0,7~lk1, . > = <mk0,mkl, ce |U(c)|nk0,nk1, . .>,

are proportional to exp( 3 Zk and vanish either if the sum over k diverges or in

2 3
the infinite volume limit V' — oo in Which the sum over k is replaced according to the rule
(5.48) by the integral. In particular this is the case when f(x) = 1, so that fi. = vV g .

In such cases the true ground state-vector |€2) of the system and all other H eigenvectors

3TNotice also that U(c) axU~(c) = ax, U(c) aI{U_l(c) = dL. Therefore, on the vectors [N, 7k, ;- - -)
the operators ax and dL act the same way as do the operators ax and aI{ on the states |ny,, N, , - . ).

3Recall, that eAtB = eAeBe2[4Bl if as here, [A, [4, B]] = [B, [4, B]] = 0.
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inhabit, if V' = oo, a subspace of H orthogonal to the Fock space (11.86) in which the
algebra of the operators has originally been realized. It is also easy to see that while
<0Fock‘¢(x)‘OFock> = 07

(Q2(x)12) = (Opock|?(¥)[0rock) = (Opoa U~ (¢) @(x ) ( )IOFock>
1
:—vz %k( ) , (11.97)

- the expectation value of the field operator ¢(x) in the H ground state is nonvanishing.

zkx_'_cii —ik-x

Of course to build the Fock space in which the algebra of the operators qg, po, g,
P, Gk, Px, is realized one could use the wave functions of displaced harmonic oscillators
(i.e. of harmonic oscillator the origins of which are at ql(f) # 0) with the displacements
appropriately correlated with the factors fx. The basis vectors of such a Fock space
would then precisely be the vectors |fy,, fik,,...) and the corresponding creation and
annihilation operators would be ay and dL defined in (11.94), while the relation (11.87)
would in this case read

. 1 . 1

P = o (cx + ) + N (ak + a_k>

-

= - % (ak - a*_k) , (11.98)

leading to (Opoek|P(X)|0pock) = h(x), where |Opoq) is the Fock vacuum vector of the “dis-
placed” Fock space which is now the lowest energy eigenvector |(2) of H. One can say
that the algebra of the field operators ¢(x) and II(x) is in this case realized in another,
in general unitarily inequvalent, Fock space.

Yet another way of quantizing the theory defined by the classical Lagrangian density
(11.93) consists of introducing first (before quantization) another canonical field variable
x(t,x) related to ¢(t,x) by p(t,x) = x(t,x) + h(x), with the function h(x) satisfying (in
addition to periodic boundary conditions in the volume V') the differential equation

(0:0; — M*)h(x) = gf(x).

Obviously,

- T ()

is precisely the same function as in (11.97). The Lagrangian density (11.93) expressed in
terms of x(¢,x) is (after integrating by parts) equivalent to

1 1 1
P wa, 2.2  —
L 5 L X0 X 2MX 29hf.
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Upon quantization the resulting algebra of the operators x(x) and ﬂx(x) would be then
from the beginning realized in the Fock space spanned by the vectors |fu,, T, , - - .) (which
are directly related to probabilities of finding a given classical configuration of the field
X(x)), because the creation and annihilation operators entering y(x) and I, (x) would
be precisely the operators ay and ELL defined above. Thus quantization of systems char-
acterized by infinite numbers of degrees of freedom using different sets of their canonical
variables (at the classical level related to each other by decent canonical transformations)
may lead to realizations of the respective operator algebras in orthogonal Fock spaces
(orthogonal subspaces of the same “big” Hilbert space).

Of course, in the case of quantum theories of truly interacting fields (for example
if in (11.93) Ly o< o) finding the right Fock space is practically impossible and one
contents oneself by realizing the algebra of field operators in the Fock space built on the
lowest energy eigenvector of some appropriately chosen free hamiltonian H, after making
an educated guess at which classical canonical variables are the most appropriate for
quantization in the given case.

Quantizing in the infinite space the real scalar field ¢(x), one could try to follow closely
the approach adopted in the finite volume: taking a complete set of real functions f;(x)
vanishing for [x| — oo and orthonormal,® i.e. such that

[0 i) =8, Y560 ) =00 x = x).

one could write every field configuration ¢(x) in the form

p(x) = afi(x), (11.99)

introducing thereby a countably infinite set of canonical variables ¢;. If the field is free
its Lagrangian (11.58) would then take the form

1 ) 1
Ly = /ngﬁo = 5 ZI:Q? - 5 Z‘/m qrq , (11100)

'l

with
Vin = M26[’l + /d?’xaifl/(x) 82fl(x) . (11101)
The free Hamiltonian would then read

1 1
Hy = - 24 = Laqrq . 11.102
0 2;171—1-2;‘/”%% ( 02)

390mne assumes here that all configurations of the fluctuating quantum fields vanish at spatial infinity;
in some cases this may be too strong a requirement, especially when the gauge fields are considered
because classically they are not by themselves observable.
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If the field is not free and its Lagrangian and Hamiltonian is not quadratic in the canonical
field variables, nothing changes except that the Hamiltonian would have in such a case
additional terms expressed through the variables ¢;. Quantization would now just mean
promoting the canonical variables ¢; and p; to Hermitian operators ¢; and p; and imposing
the standard commutation relations [;, py| = ihdy. The Hermitian field operators

P(x) = afi(x),
I(x) = > pufix),
1

woud then satisfy the canonical commutation relations?® (11.70). Introducing for each
variable ¢, a set of basis functions ¥y, (g;) of La(R) one could then form the Fock space,
a separable subspace of the “big” Hilbert space of all states of the system, spanned by
the vectors |nq,no,...) with the Fock “vacuum” state |Opoec) = [0,0,0,...) in which the
algebra of the operators ¢(x) and II(x) would be realized. (Of course, different choices of
the basis functions f;(x) select different and in general mutually orthogonal Fock spaces in
the big Hilbert space of all states of the quantum field). However, the vectors |ny, ns, .. .),
although having direct interpretation in terms of probabilities of finding various classical
field configurations would not be eigenvectors of Hy. Therefore in this case it is better
to follow a slightly different approach which is equivalent to taking instead of the set
of normalizable functions f;(x), a set of nonnormalizable plane waves; as a result one is
essentially constructing a basis of H*, the dual of H which admits nonnormalizable state-

vectors. To this end one first defines the new operators (from now on we omit “hats”)
¢(k) and II(k) by

(k) — / Pxp(x) e Ti(k) = / P TT(x) e~ % (11.103)
which (because of Hermiticity of ¢(x) and TI(x)) satisfy the relations
of(k) = ¢(—k), I (k) = II(—k). (11.104)
From the commutation relations (11.70) it then follows that
(B(k), TI()] = ih (2709 + 1)
B, B(K)] = |Ti(k), ()] = 0. (11.105)

Expressing the Hamiltonian (11.67) with K(x —y) given by (11.62) in terms of H(k),

[I(k) and w?(k) given by

M2
h?

wi(k) = / dPx K (x) e ™ * = 2k? + (11.106)

40 Again, this can be viewed as a justification of these relations.
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one obtains

Hy = E/dg—k [ﬁ(k)ﬁ(—k) 4w (k) p(k) ~(—k)] (11.107)
By analogy with the harmonic oscillator case we define now the operators
wk) (. i =
k)=14/—=2 k Ik
ot =/ 5 (209 + 51100
k) (. i =
) = /25 (o) I(—k 11.1
9 =y 5 (10 - S 180, (11.108)
the commutation rules of which:
[ ] (2) 35<3 (k—X),
[a(k = [d'(k), a'(K")] = 0. (11.109)

follow directly from (11. 105) In terms of a(k) and aT( ) the operators (11.103) are given
by

h

PUK) = gy (a0 ' (K] 109 = 2/ T [alk) — (K]

Inserting these expressions in (11.107) we get the Hamiltonian in the form

Hy = % / % heo(k) [al ()a(k) + a(k)al (k)]

= / (;lwl;) E(k) {aT(k)a(k) + %(2@35(3)(0)] : (11.110)

with (k) = hw(k). The delta function (27)36®)(0) in the second term should be inter-
preted as the (infinite) volume factor. The term

3 3
%/% E(k) (27)36®3)(0) — V x %/% E(k), (11.111)
can be therefore identified with the contribution to the field energy contained in the
volume V' of the zero point oscillations of infinitely many field modes (numbered by the
wave vectors k). This infinite constant contribution can be discarded so long as the effect
of the quantized field on gravity is not considered and so long as one does not compare
energies of vacuum states of quantized fields subject to different boundary conditions (see
Section 11.3).

Expressed in terms of the operators af(k) and a(k), the Schrédinger picture (time
independent) field operators ¢(x) and II(x) take the form

¢00 = [\ i (@00 €%+ al ) e%). (11.112)
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1160 = [ s |/ (el e = allig e ) (11.113)

It is then easy to check, that with (11.109) the basic commutation rules (11.70) are
satisfied.

One can now construct a separable Fock space in which the algebra (11.109) of the
operators can be naturally represented. To this end one can take an arbitrary complete
countable set of normalizable functions f;(k), { = 1,2,..., 00 such that

/ (d3‘§ A0 = D07 () = (255 k= k),

(for instance, fj(k) can be the momentum space three-dimensional harmonic oscillator
functions) and define the new operators®!

d®k d*k
* T T
a; = /(27T)3 (k) a(k), a = /(%)3 filk)a'(k), (11.114)
satisfying the familiar rules
[al/, a” = 5” s [al/ CL[] [a;,, CL“ 0 .

The inverse relations read
=Y ahl, a0 =Y d (k). (11.115)
1 l

It is then possible to use the same argument as for the ordinary harmonic oscillator (see
the first footnote in Section 1.3) that in the space in which a; and alT act there must exist
a vector |0,...,0,...) = |Opock) annihilated by all a;’s and to construct the states

(a))™ ()™ (a)"™

with n; + ng + ... < oo, which span the Fock space.*? In terms of these creation and
annihilation operators the Hamiltonian (11.110) takes the form

=Y | [555“ 150009] (ahan+ ae)

=D U L (k) fi(k )fz(k)} (a},aw%&q). (11.117)

'l

| OFock) » (11.116)

|ny,no,...,ng,...) =

41The operators a'(k) and a(k), and therefore also ¢(x) and II(x), are operator-valued distributions
which acting on normalizable vectors of the proper Fock space throw them out of it.

42As discussed in Chapter 5, the Hilbert space spanned by all vectors |ni,na,...,n;,...) with no
restriction on the sum of the numbers n; is not separable and the abstract algebra (11.109) can be
represented in infinitely many unitarily inequivalent ways.
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It is then clear that the Fock space “vacuum” vector |Opoe) = [0,0,0,...) is the normaliz-
able eigenvector |Q2g) of Hy with the infinite eigenvalue given by (11.111). The remaining
eigenvectors can be easily constructed but are not normalizable: it is straightforward to
check (using the formulae (11.115) and the completeness relation) that the vectors

k) = a'(k)|0) .
ki1, ko) = af (k1) a¥(ks)[Q) ,
ki, ko, k3) = a'(kp) a'(ky) a' (k3)|Q) (11.118)

where all momenta k, ki, ko, etc. are arbitrary are eigenvectors of Hy. (These state-
vectors are also not properly normalized - in the generalized sense - when two or more
momenta coincide; this has to be taken care of in the completeness relation as it was done
in (5.18)). Although non-normalizable (if we assume that the state |€)y) has the norm
equal to 1) the vectors (11.118) are true (generalized) eigenvectors of the Hamiltonian
Hy (11.110). Their particle interpretation follows now from their Poincaré transformation
properties which we discuss at the end of this section. The normalizable basis state-vectors
(11.116) of the Fock space represent quantum excitations of the field ¢, which can also be
given a particle interpretation: the state |ni, nso,...) is interpreted as the state in which
n, particles are in the first one-particle state characterized by the momentum space wave
function f;(k), ng particles are in the second one-particle state characterized by f>(k), etc.
The particles can occupy infinitely many one-particle states (in the case of N coupled
oscillators there were only N types of phonons corresponding to N possible 1-phonon
states). Although the state-vectors (11.116) are not eigenvectors of the Hamiltonian
(11.110), they can, with the appropriately chosen functions f;(k) - essentially modeling the
delta functions 6® (k —k;) - be made arbitrarily close to the true generalized eigenvectors
(11.118) of H,.

If the Lagrangian defining the theory is, unlike (11.58), not quadratic in the field ¢,
but instead takes the more general form (we set ¢ = 1 but for decoration keep A in some
formulae below)

1 1 1
L= 50u0"0 = V(p) = 50,000 = SM*9* = Hini (), (11.119)
in which H;n (), and therefore also the whole field potential V (), is usually a polynomial
of fields,® e.g. Hint(p) = (A/4!)p?, the quantization in the Schrodinger picture proceeds
in the same way as described above: the commutation rules (11.70) of the operators ¢

and Il remain unchanged. The Hamiltonian takes then the form

H = H(] + ‘/Ent = HO + /d3XHint(QO) s (11120)

1 1 1
Hy = /d3x {5112 + 5(V<p)2 + §M2gp ] :

43We will see that in the presence of Hin(¢) the sign of the term of (11.119) quadratic in ¢ can also
be positive (negative M?).
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The form (11.120) of H remains valid also if Hiy(¢), or even V(¢), explicitly depends on
time (e.g. if the quantized field ¢ interacts with some external agents). As in the case of
the free field, one can now expand the Schrédinger picture operators ¢(x) and II(x) as
in (11.112) and (11.113) into the operators a(k) and a'(k) with the same commutation
rules as previously but the Hamiltonian (11.120) will now contain terms (a(k))?, (af(k))?,
etc. and the generalized state-vectors (11.118) will not be its eigenvectors.** Still, if the
coefficient M? does not depend on time, they are eigenvectors of the free part Hy of the
Hamiltonian (11.120) and will play an important role in the formulation of the S-matrix
approach to the scattering theory. This will be discussed in Section 11.9.

In older formulations one used to define the quantum theory by taking for the Hamilto-
nian operator not the expression (11.120), but its counterpart H = : H(11.120): ordered
normally with respect to the vector |Qy) = |Opoer). Operators ordered in this way have all
(except for the unit operator) zero expectation value in the Fock state |Op,q) annihilated
(by definition) by all the annihilation operators. This prescription for H removes some of
the infinities encountered in practical calculations, in particular it removes the additive
infinite part (11.111) in the expectation value of the free field Hamiltonian (11.110) in the
state |Q)p). Normal ordering, ubiquitous on older approaches to quantum field theory, has
been now largely abandoned. First of all, it does not remove all divergences which must
be renormalized anyway (see Chapter 14) and there is no point to invoke two different
prescription for removing divergences having a common ultraviolet origin. Furthermore,
normal ordering of operators defined in terms of the creation and annihilation operators
diagonalizing H, (i.e. normal ordering with respect to the Fock state |Opoc)) does not
imply that (] :Og: |Q2) = 0, where |Q2) is the lowest energy eigenvector of the Hamilto-
nian - the example (11.97) clearly shows that matrix elements of operators ordered with
respect to the Fock space “vacuum” can have nonzero expectation values in the true vac-
uum.®> Finally, and probably most importantly, in the modern functional approach (see
Chapter 16) quantum field theory is viewed as a formalism allowing to take into account
real quantum fluctuations of fields; from this point of view® every quantum field theory
is defined with Fourier momenta bounded by an ultraviolet cutoff A which (as we expect)
should have a real physical meaning. All contributions to amplitudes, expectation values,
etc. one computes using the quantum field theory formalism are then equally physical
and should not be subtracted using an arbitrarily defined prescription. The divergences
(arising in the limit A — oco) disappear however if the computed quantities are expressed
in terms of some other measurable quantities; subtracting divergences is then merely
done for computational convenience and has no fundamental meaning; hence defining the
Hamiltonian as a normal ordered operator becomes then a completely useless and obsolete

40Of course, if Hins depends explicitly on time, the Hamiltonian H does not, strictly speaking, possess
time-independent eigenstates.

45Tn nontrivial models of quantum field theory this may result as a consequence of interactions which
cannot be treated by perturbative methods based on the expansion exploiting the Gell-Mann - Low
construction of Section 1.2.

46This point of view is possible also in gauge theories although it entails in this case serious technical
complications.
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prescription.*”

The classical real scalar field ¢ has been quantized here in the Schrodinger picture
in which the operators ¢(x) and II(x) satisfying the rules (11.70) do not depend on
time. The canonical commutation rules (11.70), the Hamiltonian expressed in terms
of the operators ¢(x) and II(x) constitute, together with the choice of the appropriate
Fock space, the complete formulation of the theory. It can be then used to investigate
various problems using the standard methods of quantum mechanics. Since in the case of
relativistic theories one is interested primarily in scattering processes and in preserving
manifest covariance it is, however, convenient to go over to the Heisenberg picture, in
which the operators depend on time whereas the the state-vectors do not. In general
(see Section 1.1), this is achieved by choosing the moment ¢, at which the two pictures
coincide and defining Heisenberg picture operators Op(t, x) corresponding to Schrodinger
picture operators Og(t,x) = O(t, ¢(x),1I(x)) by the formula

Ou(t,x) = Ul (£, 16)Os(t, X)U (£, t0) = Ot ou(t, %), Ty (£, ), (11.121)
in which
Ult,to) = Texp <—% / tdt’H(t’)) | (11.122)

is the Schrédinger picture evolution operator. By construction the operators Op(t, x)
satisfy then the Heisenberg equation (see Section 1.1)

d 1 00
G Qutx) = - Onlex). Huto)+ ()
- %UT(t,to) (0s(t,x), H(to)|U(t, 1) + (%—?)H , (11.123)

in which Hy(t) = U'(t,to)H(t)U(t,to). (Most of the Schrédinger picture operators Og
do not depend on time and the second term in (11.123) is absent; one notable exception
is the boost generators given by the space integrals (11.55) of M given by (11.54)).

It is easy to check that the Heisenberg picture operators ¢y (t,x) and I1g(¢, x), corre-
sponding to the canonical variables and obtained from the prescription (11.121), satisfy
the canonical equal time commutation rules

lon(t,%), Mu(t,y)] =id®(x—y), (11.124)
[@H(tv)c)’ @H(tv Y)] = [HH(t7X>7 HH<t7 Y)] = 07

for arbitrary times ¢. These rules together with the Hamiltonian H (following from the
action I[¢]) are in fact the basic relations defining the quantum version of the classical field

4TNormal ordering remains relevant (as a technical tool) for the Wick theorem - see Section (5.9) - used
to set the perturbative expansion.
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theory model. Furthermore, if H is of the form (11.120) (even if V(¢) in the Lagrangian
density (11.119) depends explicitly on time, i.e. even if the system interacts with external
agents) the Heisenberg equations (11.123) satisfied by ¢ (¢, x) and I1g(t, x),

S on(t,x) = = lou(t%), Halt),
d 1
% HH(tvx) = % [HH(tvx)v HH(t>] ’ (11125>

yield ¢ = Hy and [y = AV%py — M?py — H.. (¢n). As a result, the Heisenberg
operator ¢ (t,x) satisfies the “classical” field equation of motion

0? ,
(@ ~ Vit MZ) wr(t,x) = —Hiy (eu(t, %)), (11.126)

while the operator Iy (¢, x) satisfies the equation

82 "
(@ —V M ’Him(w(t,X))) My (t,x) =0. (11.127)

Together with the equal time commutation rules (11.124) these two equations can also
constitute the complete specification of the theory.

Of course, in the case of closed systems, which the system of fields usually are, H is
independent of time. The evolution operator U(t, ty) (11.122) reduces then to the ordinary
exponent, Hy(t) = H, so that in the considered theory (11.119) it takes the form

H= /d3x Eni,(t,x) + %(V@H)2(t,x) + V(pu(t,x))|, (11.128)

formally the same as in the classical theory, and choosing ty = 0 as it is customary, one
has

iHt/h —iHt/h

er(t,x) =" p(x)e :
Iy (t,x) = B/ TI(x) e HHY (11.129)

In the case of the free scalar field the Hamiltonian Hy (11.67) of which can be rep-
resented in the form (11.110), the equations (11.125) can be easily solved. g (t,x) and
[y (t,x) are then given by the expressions (11.112) and (11.113) but with a(k) and a'(k)
replaced by ag(t, k) and al, (¢, k) satisfying the equations

d 1
EaH(t’k) = % [aH(t,k), H()],

d 1

%a}{(t,k) = [ah, (¢, k), Hy, (11.130)
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with the initial conditions ag (0, k) = a(k), aL(O k) = a'(k). One then finds [ag (¢, k), Hy] =

hw(kK)ay(t, k) and [al, (¢, k), Ho) = —hw(k)a},(t, k). The equations (11.130) can be then
easily integrated*® to give
ag(t, k) = e #® k), al,(t, k) = e“® qf (k) (11.131)
so that
d*k h . . . .
— k —iw(k)t+ik-x T k iw(k)t—ik-x 11.132
SOH(t’X) /(27’(’)3 QW(k) [a( )6 +a ( )6 }7 ( 3 )
3k k . . . .
II (t X) /(;l ) th( ) [a(k) 6—zw(k)t+zk~x _ aT(k) 6zw(k)t—zk-x}’ (11133)
T

that is, the exponents in the Heisenberg operators depend on the Lorentz invariant prod-
ucts a#'k,, where z* = (ct,x) and k* = (w(k)/c, k). Both field operators, ¢y and Iy,
satisfy in this case the free Klein-Gordon equation.

It should be said, that in certain cases (the most notable being the one of the free
electromagnetic field quantized using the approach of Gupta and Bleuler (discussed in
Section 11.11) with the gauge fixing parameter £ # 1) eventhough the free Hamiltonian
is quadratic in field variables and conjugated momenta, their expansions analogous to
(11.112), (11.113) are not easy to find and do not render the free Hamiltonian diagonal;
the time dependent operators (11.129) are then not simply given by replacing e*** in
(11.112) and (11.113) by e¥%#* as in (11.132) and (11.133). Still, the explicit form of the
time dependent field operators and their associated canonical momenta operators can be

found by directly solving (though not so easily) the canonical equations (11.125).

At this point, in order to simplify the notation, we set also A = 1 and drop the
subscript H on Heisenberg picture operators. In addition, it is convenient to change
the normalization of the the Creation and annihilation operators a(k) — a(k)/+/2E(k),

) — al(k)/+\/2E(k), where E(k) = hwy, so that their commutator becomes
[a(k), af(k’)} = (27r)32E(k)6(3)(k — k) =k - k), (11.134)
and the (Heisenberg picture) free field operators (11.132), (11.133) take the simple form
p(r) = /df‘k la(k) e *" + al(k) e* 7], (11.135)
1 . .
(x) = - / Al By [a(k) e”** — al(k) 7], (11.136)
i

48Notice, that if the Lagrangian contains terms with ¢ in powers higher than the second one, the
Heisenberg equations resulting from (11.130) are more complicated and their solution, the operators
ap(t, k) and aL(t, k), cannot be found in a closed form. Hence, the Heisenberg picture operators g (x)
and Iy (z) corresponding to the interacting field cannot be written in the forms (11.132) and (11.133);
only at t = 0 ¢ (0,x) = ¢(x) and Iy (0,x) = II(x) (recall, we have chosen to equate the Schrodinger
and Heisenberg pictures at ¢y = 0) can be written as in (11.112) and (11.113).
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where the measure dl'y = d°k/(27)32F (k) is separately Lorentz invariant.

In theories of interacting fields (when in the full Hamiltonian there are terms with
powers of fields higher than the second one) the time dependent operators termed the
interaction picture operators obtained by solving the equations (11.125) but with time
independent Hy replacing the full Hy(¢) and hence given in closed form by (11.129) again
with Hj instead of H, play an important role in formulating the perturbation expansion
of S-matrix elements. This will be discussed in Section 11.9.

We can now discuss the Poincaré transformations. Using the rules given in Section 11.1

one finds the canonical energy-momentum tensor corresponding to the Lagrangian density
(11.119)

1 1
Ty = 0"pd” o — g 58%&@ — §M2 2 — Hin(p) | - (11.137)

It is in this case automatically symmetric.*® In the quantum theory 9°¢ must of course
be expressed in terms of the canonical variables ¢ and II. One gets in this way (we drop
the subscript H)

T, (%) = 5 [IP(1,%) + Vi1, %) - Viplt, ) + M2 (1,%)] + Ha (1, )
T2 (t,x) = (t,x) I p(t,x) . (11.138)

can

PP given by the integral of T2, over dx is just the Hamiltonian (11.120) written in terms

of the Heisenberg field operators whereas the momentum operator is given by
P = /d3x T (t,x) = /d3x I1(¢, x)d"p(t, %) . (11.139)

The generators of the Lorentz transformations are obtained using 74 according to the
formulae (11.54) and (11.55):

J = /d3x (2" Toow — ¥ Tk . (11.140)

The Poincaré symmetry generators P?, H, J' and K* are by construction independent of
time. This can be checked by using the Heisenberg equation (11.123). As such they can
be computed for any time ¢. A particularly convenient is the choice of ¢t = 0, because
then the Heisenberg picture operators ¢y and Il can be expanded into the creation and
annihilation operators and can be shown, using the canonical commutation rules (11.70)
(or 11.134)) to satisfy the commutation rules of the Poincaré algebra (6.19) or (6.21).

498till, as it turns out, even in this simple case M*” must be modified by adding to it a tensor
H' = 0,HP* as in (11.50), in order to ensure finiteness of matrix elements of the energy-momentum

tensor (treated as an operator) in the theory of the interacting field.
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Moreover, exploiting their time-independence, P* and J*” can be easily seen to generate
transformations of the field operator ¢(z) related to changes of the reference frame:

i Iz
ia, P

o(x) ¢l (x+a),

e =@
E%W’WJ‘LVQO(Z') 6_%“%”‘]“” _ @(A_l(W) Zlf) , (1]_]_4].)

or, in the infinitesimal form,

i[PY, p(a)] = 9"p(x),
i[J", p(x)] = (240" — 20" p(x) . (11.142)

It is important to stress that the operators P!, H, J* and K* (the components of J*)
satisfy the commutation rules (6.21) of the Poincaré algebra and generate the field trans-
formations as in (11.141) solely by virtue of the canonical commutation relations (11.124),
independently of the form of Hix(p) in (11.119), i.e. also in the quantum theory of the
interacting field .

If V(p) = $M?¢?, ie. in the quantum theory of the free field (with M, = 0), H takes

in terms of the creation and annihilation operators the form (11.110) and the generators
Pt and JY and K = J% are given by

P = / dly k' al(k)a(k),
JI = z'/dFk a' (k) (ki£ — @%) a(k), (11.143)
(k).

. 0
K'=i [dlkal(k) B
i / xa' (k) Ex i a
In this case, the vectors (11.118) are the generalized eigenvectors of H and P with the
eigenvalues (Fk, hik), (Ex, + Ex,, ik, + hks), etc., where Ey is given by the relativistic
formula By = v/h?k2c2 + M2c* = hw(k). One can also check that the one particle state-
vectors |k) transform properly under the Lorentz transformations,

U(A)[k) = U(A) a' (k) U™ (A) U(A)|Q0) = al (ka)I0) , (11.144)

i.e. that they transform in the way appropriate for states of a spin 0 particle (see Sec-
tion 6.2) provided the vacuum state-vector |§y) is Lorentz invariant U(A)|Q) = |Q0). In
the interacting field case, if ¢y (0,x) and IIy(0,x) are expanded into creation and an-
nihilation operators, the operators P* and J% obtained from (11.139) and (11.140) take
usually® the same form as in (11.143), whereas the boost generators K are, as argued
in Section 7.5, modified by the interaction.

Quantization of a single real scalar field discussed above can immediately be general-
ized to the case of many real scalar fields ¢;(x) where i = 1,..., N, the classical dynamics

S0Exception are theories quantized around a nontrivial classical background ¢c1(x) in which the field
operator takes the form ¢ (t,x) = @a(x) 1 + Xm(t,x).
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of which is governed by the Lagrangian density (11.47). Furthermore, a system of N clas-
sical complex fields can always be represented as a system of 2N real fields and quantized
using the same prescriptions.

A Lagrangian density depending on several fields ¢; may be invariant (or invariant up
to a total divergence - see the formula (11.20)) under the action of a group of continuous
transformations which in the infinitesimal form can be written as p; — ¢; = ©;+00, F* ().
In this case, upon replacing classical fields ¢; and their derivatives by the corresponding
field operators (as 0%p; one has of course to use the expressions ¢; = ;(II, ) given by
the canonical formalism), the classical expressions for Noether currents Jp; become current
operators and the quantities

Q" = /d3xjg(t,x), (11.145)

become the symmetry generators acting in the Hilbert space.’® By using the canonical

commutation rules (11.124) one can show that independently of the precise form of £
(provided it is symmetric) the time-like components of the Noether currents satisfy the
commutation relations

[t y), do(t,x)] = jo(t. %) if, " 0P (x —y), (11.146)
which ensure that the Noether charges (11.145) satisfy the symmetry algebra relations
[Q°, Q" =Q°if.™. (11.147)

Moreover, by virtue of the canonical commutation rules (11.70) the Noether charges Q“
generate symmetry transformations of the field operators

060, [Q%, ¢i(x)] = 60, F(o(x)). (11.148)

In contrast, space-like components of the Noether currents usually can satisfy the com-
mutation rules analogous to (11.146) only in the theory of noninteracting fermionic fields
(to be discussed in Section 11.8). In the general case, it is only possible to infer (using
the Lorentz covariance) that

[jg(tv Y)v .]zb(tv X):| = jzc(tv X) ch “ 5(3) (X - y) + kab(t, X) 82{)5(3) (X - y) )

where S%(t,x) are the so-called Schwinger terms. Even in theories (like electrodynamics
of spin 1/2 particles) in which the canonical (anti)commutation relations formally imply

51Of course, the operators Q“ in (11.145) are well defined if their matrix elements between physical
states: <I>|Q“|\IJ Jd*x (®]52(t,x)|¥) are well defined; it may happen that the right hand side is not
integrable due to the presence in the H spectrum of massless particles which mediate long range forces.
This is so whenever a classical continuous symmetry of the Lagrangian is spontaneously broken by the
vacuum state (see Chapter 22).
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the absence of Schwinger terms,”? it is possible to prove, using arguments based on general
principles of quantum mechanics, that they cannot vanish. The contradiction with the
reasoning based on the canonical (anti)commutation relations stems from the fact that
Noether currents are composite operators (products of elementary field operators taken at
the same space-time point) which are in general singular objects - their matrix elements
require some regularization; Schwinger terms can therefore depend on the adopted regu-
larization prescription, and a regularization can, a priori, also induce nontrivial Schwinger
terms in the commutators (11.146) of the time components of the currents. If a given sym-
metry can be recovered after regularization in the renormalized theory, Schwinger terms
in the commutators like (11.146) are absent (although are generally nonvanishing in the
commutators involving spatial components of the Noether currents). In fact, anomalies
discussed in Chapter 23 can be understood as manifestation of nontrivial Schwinger terms
induced by the necessity of regularization in the commutators like (11.146) of the time
components of the currents.

Finally, if the Hamiltonian commutes with the Noether charges Q° and the symmetry
is not spontaneously broken by the vacuum state, i.e. if Q“|Q> = 0 for all a (see Chap-
ter 22), the Hamiltonian eigenvectors (the in and out state-vectors) form multiplets of
the symmetry algebra. Usually also the Hy part quadratic in field operators of the full
Hamiltonian H commutes with Q“’s separately, and the Hj eigenvectors, i.e. particles
created and annihilated by the Hermitian free-field (interaction picture) operators ¢;(x)
out of |) also form multiplets of the symmetry algebra. As all members of the sym-
metry multiplets have the same mass (the P*P, operator eigenvalues), one then forms
linear combinations of the particle states (both in, out and the free-particle ones) which
diagonalize the Noether charges Q“ forming the Cartan subalgebra (see Chapter 4) of
the full symmetry algebra. It is then convenient to form also the appropriate (complex
in general) linear combinations of the free-field operators p;(z) creating and destroying
free one-particle eigenstates of the the Cartan subalgebra generators.® In the case of the
symmetry multiplets transforming as complex representations, such that each particle
(except for essentially neutral ones) finds its antiparticle within the same multiplet, this
corresponds precisely to forming (non-Hermitian) field operators creating a particle and
annihilating its antiparticle as described in Section 8.2.

Existence of conserved charges has also important consequences for statistical proper-
ties of the system of quantum fields. If the Hamiltonian commutes with Noether charges
Q“, the quantum numbers corresponding to the Cartan subalgebra generators can have
simultaneously definite values (because all these generators commute with one another)
which are constants of motion. This would have to be taken into account in the Gibbs

2In theories in which symmetries are realized on scalar fields, the presence of nontrivial (regularization
independent) Schwinger terms is usually revealed already by using the canonical commutation relations.

53The corresponding Heisenberg picture operators obtained from the free-field ones as in (11.129) (or,
more generally, as in (11.121)) have then “diagonal” matrix elements between the one-particle states of
the full Hamiltonian H and the vacuum: (Q|¢%;|p, 0, j) o 6% with the same proportionality constant for
all ¢%; and all states |p, o, ) belonging to the same symmetry multiplet.
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Canonical Ensemble statistical sum Zg. (7, V'), making it essentially intractable analyti-
cally (similarly as in the case of a system consisting of a fixed number N of particles) even
for noninteracting fields. One then passes to the Grand Canonical Ensemble introducing
the chemical potentials y, for each Cartan subalgebra generator. Choosing in the Hilbert
space the basis in which the Cartan subalgebra generators are diagonal facilitates then
computation of the statistical sum Z(7T,V, p1,).

For example, the Lagrangian

2
L= (0updo— M*g}), (11.149)

=1

N —

of two noninteracting scalar fields ¢ and 9 has the O(2) ~ U(1) symmetry the conserved
Noether current of which is j, = p20,¢01 — ¢10,p2. After quantization it is the operators
af(k) and a“f (k) formed as appropriate linear combinations of a (k), [ = 1,2 which, acting
on the vacuum [§), generate the state-vectors |ny, ..., ng,...) of the Hilbert space basis
in which the Hamiltonian

H = 3" hn (afonc + alag + 1) (11.150)
k

where wy = \/c2k? + ¢*M2/h?, and the Noether charge
Q=> (afax—ajlag), (11.151)
k

are simultaneously diagonal. Obtaining the potential Q(7T,V, ) = —kgT In = by comput-
ing the statistical sum

Z =P = Tre PH-1Q) (11.152)
is then straightforward:
AT, V,u)=V d?’_k [h + knT1 (1 _ —(ﬁwk—u)/kBT)
Vo lb) = (277')3 Wk B4 I €
+kgTn (1 — e~ tw)/koTy] (11.153)

We have passed already to the continuum (thermodynamical) limit as in (11.92). The
value of the chemical potential ;1 determines the mean (in the sense of the ensemble) total
charge @ of the field in the box V. Convergence of the summations leading to (11.153)
imposes the constraint |u| < M =mingwy, where M is the mass of the particles. Of course,
for p = 0 the system is neutral () = 0 on average), and |u| grows as the (mean) charge
|Q| of the system grows. Eventually, if |)| becomes so large that || — M, the occupancy
of the zero momentum (k = 0) state becomes macroscopic (it has to be extracted before
the transition to the continuous normalization) and the usual Bose-Einstein condensation
occurs.
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The states created by the operators af (k) related to the mode functions v(n,k) and by
the operators a (k) related to the mode functions u(n,k) can be then interpreted as
normal particles in the far past and in the far future, respectively. Using the Bogolyubov
coefficients one can compute then probabilities of creating some number of particles by a
variable gravitational field.

11.4 Lagrangian of the electromagnetic field

Canonical quantization of fields transforming under changes of the reference frame as
nontrivial representations of the Lorentz group requires special treatment because the
assumption that all generalized velocities (time derivatives of canonical variables) can
be expressed as in (11.9) through the conjugated momenta is in the case of such fields
usually not fulfilled. This is, in particular, the case of the electromagnetic and Proca
fields the elementary excitations of which, should, after quantization, be respectively
massless and massive spin 1 particles. One method of dealing with this difficulty consists of
eliminating some of the canonical variables (thereby reducing the number of independent
ones and therefore also the number of the conjugated momenta). This can be achieved
either directly, before quantization (as it is possible in the case of the Proca field - see
Section 11.5) or in the course of quantization, through the use of the Dirac’s quantization
formalism adapted to system with constraints. This very important formalism, most
useful when direct elimination of redundant variables is either difficult or not possible,
will be presented in Section 11.6.

We first discuss possible forms of the action I (11.1) setting classical dynamics of vector
fields. We begin with the familiar case of the electromagnetic field. The Maxwell equations
(in the Gauss’ system of units, in which the fields E and B have the same dimension -
the relation of electromagnetic quantities in the Gauss system to their counterparts in the
“official” ST - Systéme des Idiots - of units is recalled in Appendix I) read

1 6B

vxE+19B g, V-B=0, (11.233)
c Ot
10E 4

vxp_ LB _dr, V-E = 4rp. (11.234)
c Ot c

The first two are automatically satisfied if the scalar and vector potentials, forming to-

gether a four-vector A* = (p, A), are introduced, in terms of which
1 0A
B=VxA, Ez—V@——%;. (11.235)
c

The remaining two equations, (11.234), follow from the Lagrangian density%

1 1
- W I
»CEM 167 fw,f g &]MA . (11236)

65In the context of the quantum theory it is more natural to factorize e > 0 - the fundamental coupling
constant - out of the four-current J".
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The electromagnetic antisymmetric field strength tensor f,, is defined as
f;w = 8;LA1/ - 81/Au . (11237)
As it is easy to find,

Ley 1 0 b
a(a“Ay) - 8_7T |:8(8“Ay) f)\p:| fA - A f . (11238)

The Euler-Lagrange equations (11.4) which in the case of a four-vector field have the
general form
OLgm  OLpm

a”(?((?MA,,) T (11.239)

therefore read

4
DM = g eJ”. (11.240)

Since the four-divergence of the left hand side of (11.240) vanishes by antisymmetry of
the field strength tensor f** (11.237), the current J¥, to which the electromagnetic field
couples, must be conserved 9,J* = 0 (otherwise the equations (11.240) are inconsistent).
It is instructive to examine the content of (11.240). Setting in (11.240) v = 0, since
% = 0 by antisymmetry, on the left hand side one gets®®

O (O A° — OAT) = 9,(—0, A0 — 9y AT) = v-(—w - % 88—‘:‘) . (11.241)

The second Maxwell equation (11.234) is then recovered if
e’ =cp. (11.242)
For v = k (11.240) yields the equation

47

0(0pA* + 0, A°) + 0, fF = — eJ" . (11.243)

Furthermore, it is easy to check that
fil=—0,A +0,A" = —FBF

so that (11.243) is equivalent to the equation

19 19 P

66Since we want to keep contact with the ordinary three-dimensional notation, we convert all expressions
to a form in which A° and A’ have always upper indices whereas the derivatives 9y and 9; have always
lower indices, so that 9; = 9/0x" is the ordinary gradient in the contravariant coordinates x°.
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which, if the second relation (11.235) is taken into account, is just the first equation
(11.234), provided one identifies eJ with j. Thus eJ* = (cp, j).

It is sometimes useful to have explicit forms of the tensors f,, and f#” in terms of the
Cartesian components of the ordinary three-vectors E and B:

0 E* EY E° 0 —E* —EY —FE°
o0 - g | BT 0 =BT B
w=\| _g» B> 0 —B°[ “|E B2 0 -B"

~E* —-BY B 0 E* —BY B* 0

Having the explicit formulae it is easy to see that (11.236) can equivalently be written as

1 1
Levy = — (B> —B?) — —eJ'A,. 11.245
EM = o ( ) c € " ( )
There exist yet another term bilinear in the field A, which, being a scalar with respect
to proper ortochroneous Lorentz transformations,’” could be added to the Lagrangian
density (11.236): it is the term

AL < f* f, (11.246)
in which (recall that we use "% = 41)
0 -B* -BY —B*

; B* 0 £ —EBY
Y — 2 HVAp _
== gy g 0 E

B* EY —FE° 0

(11.247)

AL is, however, a total four-divergence: fH fuw = 0,(2¢* A,00A,) and, as such, it does
not modify the Euler-Lagrange (i.e. Maxwell) equations. It neither has any impact on
the dynamics of the quantized electromagnetic fields, because no topologically nontriv-
ial configurations of the electromagnetic field exist classically (this statement cannot be
given a justification here). Nonabelian gauge fields (see Chapter 20) can, however, form
topologically nontrivial configurations and the nonabelian analog of AL is not innocuous
in the quantum theory of such fields.%®

The Maxwell equations (11.233), (11.234) are written in the Gauss system of units,
in which the Coulomb potential looks simple (it does not have the 1/4m factor nor the
go factor) and the fine structure constant (defined by the Thomson limit of the Compton
scattering cross section) is apy = €*/hc = 1/137.035999679(94) ~ 1/137. This is not

67Under the parity and time reversal transformations AL changes sign; it is therefore neither P- nor
T- (and, hence, neither C'P-) invariant.

%8The reasons for complete absence or an unnaturally smal value of the (effective) coefficient of a term
analogous to (11.246) in the Lagrangian of quantum chromodynamics is a still unsolved problem, called
the strong CP problem - that is the problem why CP symmetry is not violated in strong interactions.
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very convenient in the quantum theory of the electromagnetic field because of the factor
V47 which would appear in many places (e.g. in the free field operators - see Section
3.8 and e.g. the textbook Quantum FElectrodynamics by W.B. Bierestecki, J.M. Lifshitz,
L.P. Pitaevski). It is much more practical to go over to the Heaviside-Lorentz system
of units in which electromagnetic quantities have the same physical dimensions as in the
Gauss’ system but are rescaled by the appropriate factors of v4x:

A, = ViarA,, eJ' —=eJV/Vir, (11.248)

ie. Asauss = 47rAECaV‘S‘dC_L°mntZ and €gauss = CHeaviside—Lorentz/ V47m. The rescaling of

A, amounts to the rescalings E — v4m E and B — V47 B, while as a result of the
charge rescaling, the fine structure constant agy; expressed through the charge in the
Heaviside-Lorentz units reads

(11.249)

The current J*, from which the elementary charge has been factorized out, remains, of
course, unaffected® by the rescalings (11.248). In the rescaled variables the Lagrangian
density (11.236) takes, therefore, the form

1 1
Loni = = 3 fuf™ = — e, AV (11.250)

In the Lagrangian density (11.250) the current J* couples to A, linearly. The task of
quantizing the electromagnetic field coupled to a given external classical current would
be therefore similar to the second example discussed in Section 11.3, were it not for the
complications which will be discussed below.

If the electromagnetic field interacts with “matter” (particles or other fields) and both,
the electromagnetic field and the matter, are treated as a single dynamical quantum sys-
tem, the current j and the charge density p, that is J#, are given in terms of the dynamical
variables representing matter. In such a case the current J* can, if the electromagnetic
field is coupled e.g. to a system of (complex) scalar fields, depend on the variable A,
(but not on its derivatives if the canonical quantization is to be carried along the lines
described below); A,, is then coupled to “matter” nonlinearly. In all these cases quanti-
zation of the system as a whole in the Schrodinger picture, as in (11.2), should proceed
essentially as if the electromagnetic field was free - the interactions do not modify the mo-
menta conjugated to the canonical variables of the electromagnetic field itself (although
can modify canonical momenta of the “matter” variables). The canonical quantization of
systems involving the electromagnetic field encounters, however, immediately an obstacle.

%In more complicated versions of electrodynamics, e.g. when the electromagnetic field interacts with
(complex) scalar fields, J,, does depend on A, but always in the combination eA, which remains un-
changed by the rescaling.
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If all four components A" are taken for independent dynamical variables, one finds that
the momentum canonically conjugated to A° vanishes identically:

8£EM - 8£EM

I DAv  O(cOAY)

1
=~ fo, (11.251)
C

which implies that Il o foo = 0. Systems coupled to the electromagnetic field are
therefore necessarily systems subject to constraints.

In fact, the peculiarity of the electromagnetic field is twofold: one peculiarity is I, = 0.
The other one is gauge invariance - the symmetry of the Lagrangian density (11.250) under
the (local) transformations™

Au() = AL(z) = A, () + % 9,0(x) (11.252)

in which 6 is an arbitrary differentiable function of the space-time coordinates z*. In-
variance of the f*f,, term of (11.250) is obvious as under the transformations (11.252)
the tensor f,, does not change. Assuming that the current .J, does not change when the
transformation (11.252) is performed (i.e. that it is gauge invariant), the eJ, A" term in
(11.250) transforms into eJ*A, + J*0,0; the term J*0,0 = 00,J" — 0,(6J*) does not
contribute to the action I = [d*z Lgy if the current is conserved, which is anyway the
necessary condition for consistency of the field equations (11.240).

Invariance of the current .J,, with respect to the transformations (11.252) is obvious and
its conservation, 9,J" = 0, is easy to check, if it depends, as in the case of nonrelativistic
charged particles coupled to the electromagnetic field, discussed in Section 11.7, only on
dynamical variables of the “matter” (particles or fields, as opposed to the ”"radiation” i.e.
the electromagnetic field). In more complicated cases, for example in the case one of scalar
fields representing “matter” coupled to the electromagnetic field, the basic assumption on
which the theory rests is the gauge invariance of the complete action

1
I[A,,"matter”| = —Z/d% S f* + Liest[ Ay, "matter”] (11.253)

by which one understands its invariance with respect to the transformation (11.252) of the
electromagnetic field potentials supplemented with appropriate, dependent on 6(z), that
is local, transformations of other canonical variables (of the "matter”). For # independent
of x, these transformations must form the U(1) group of global symmetry transformations
(the consequences of which were discussed in Section 11.1) of the action I.g. For -
dependent 6 this group becomes the local U(1) symmetry group of the complete action
I[A,,, "matter”]|. Gauge invariance of the complete classical action (11.253) may be viewed
as a fundamental principle, which must always be respected. This principle, generalized

"0The same two problems: vanishing of time components of the canonical momenta and gauge invari-
ance with respect to transformations slightly more complicated than (11.252) are also characteristic of
systems coupled to nonabelian gauge (Yang - Mills) fields discussed in Chapter 20.
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to nonabelian symmetry groups (see Chapter 20), constitutes in fact the cornerstone
of the whole modern development of quantum field theory.”r Within this generalized
formulation of (classical) theories in which the electromagnetic field couples to matter
and/or to other fields, it is the gauge invariance of the action Ie[A,, " matter”] which
ensures that the generalized electromagnetic current J#, which enters the right hand side
of the Euler-Lagrange equation of the electromagnetic field

74 e 14
8uf” - E J y
which is defined as
J— 6 7 7
—ed,(z) = SAR (D) Lest[A,, " matter”] (11.254)

is gauge invariant and conserved (even if it depends on A,). To see this let us consider
L5t of the general form

Irest [A/m ¢z] = /d4I ﬁrest(A/m ¢i> a¢z) ) (11255)

depending on A, and a set of (real) fields ¢;, which under the changes (11.252) of the
gauge transform according to the rule

di(x) = gi(x) = (e"7T) . 65(x) ~ dilx) — i6(2)Tij0;(x), (11.256)

in which 7" is the matrix of the (ordinary global) U(1) group generator represented on the
fields ¢;. The assumed gauge invariance of I,.; means that I [A;“ ;] = Lest[ Ay, i) = 0.
Applied to an infinitesimal gauge transformations (11.252) and (11.256) this gives the
identity

1 5Irost . a»Crost a»Crost
de - —"2_0,0(x)—i[d* 0(x)T;;p; ——— 0, [0(x)T;;0,] ¢ =
Jate? s a0 i [ate { o b0 + g a0l | <0,
which should hold for arbitrary functions €(z), in particular for ones vanishing both at
spatial and temporal infinity. For such functions 6(x) the second integral is zero, as can
be seen by integrating by parts and using the Euler-Lagrange equations of motion™ (11.4)

"1t will be seen, however, (Section 20.3) that to properly formulate quantum theories of gauge fields
corresponding to nonabelian symmetry groups it is advantageous to take a more general approach and to
start with an extended action I = Izauge inv + Inon—gauge inv, Which as a whole is not gauge invariant but
possesses a continuous global symmetry of the supersymmetric type, called the BRST symmetry (Section
20.2). Quantization with the help of the Dirac method of Section 11.6 is then fairly easy and the BRST
invariance of the quantum theory ensures that all the implications of gauge invariance are recovered in
the properly defined physical subspace of the extended Hilbert space. Moreover, in some special cases,
e.g. of gauge theories coupled to chiral femions, or when an explicit momentum cutoff is implemented
in the Lagrangian, even the BRST invariance of the classical action must be abadoned if the resulting
quantum gauge theory is to be consistent.

2The reasoning remains valid also if the action I,est depends on higher derivatives of the fields ¢;,
provided one uses the appropriate generalization of the Euler-Lagrange equations of motion.
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satisfied by the fields ¢;. Integrating by parts also the first term gives then the condition
of the conservation™ of the current (11.254) because the surface integral vanishes for the
considered functions f(x). Gauge invariance of the current (11.254) is of course guaranteed
by the gauge invariance of the action (11.255).”* The same identity also shows that the
current (11.254) is identical with the Noether current of the global U(1) symmetry: after
writing 0,[07;;¢;] as 0T;;0,¢; + 0T1;;¢,0,0 the first two terms under the second integral
must vanish (because one can consider 6 independent of z - in this case the integration
by parts leads again to the equations of motion) and the remaining one gives just the
mentioned Noether current of the global U(1) symmetry multiplied by 0,6; in view of
the arbitrarines of this factor, the vanishing of the sum of the two integrals requires the
equality of (11.254) and of the Noether current. Thus, gauge invariance of the complete
action ensures that this latter current is conserved also in the presence of the coupling
to the electromagnetic field. But it is precisely the gauge invariance of the complete
action I[A,, matter”] of the electromagnetic field coupled to “matter fields”, that is
responsible for additional difficulties which one will have to overcome in quantizing the
electromagnetic field in Section 11.7.

11.5 The Proca field and its quantization

Before dealing with the difficulties of the electromagnetic field, it is instructive to quantize
first a simpler system with constraints, the so-called Proca field”™ V* (a vector field with
a nonzero mass) the classical dynamics of which is governed by the Lagrangian density

1 1
Loroea = = 7 Vi V" + iMQVuV“ — gV, J", (11.257)
in which V,, = 9,V, — 0,V,, and g is the coupling constant (we have set h = c=1). In
the following we assume that the current J* is independent of V,,. Conservation of the
current J* is not assumed here (it is not necessary for consistency of the field equations).

The transformation (11.252) is not a symmetry of the the Lagrangian (11.257) due
to the mass term 2M?V,V# by which it differs from (11.250). Still (11.257) leads to the
similar (at first sight) obstacle in the canonical quantization as (11.250): IIy = 0.

Before disscussing this problem we comment on the form of the Lagrangian density
(11.257). Since it is not invariant under the gauge transformations (11.252), there is a

"3In the case of nonabelian gauge fields infinitesimal transformations of which analogous to (11.252)
involve the covariant derivative instead of the ordinary one, this reasoning leads to the covariant conser-
vation of the current to which the gauge fields couple.

"To see it, notice that the variation with respect to A4, in (11.254) is simply the linear in §A4,, part of
the difference ILest[A 4+ J A, ”matter”] — Lest[A, " matter”] and under the gauge change A+ JA transforms
exactly the same way as does A (because 64, is not affected), so that both terms of the difference are
separately gauge invariant.

"5We denote this field V,,, instead of A4, to distinguish it from the electromagnetic field.
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priori no reason for which its derivative part should take the restricted form (11.257). In
principle, one could write down the most general Lagrangian density, at most quadratic
in V,, and with at most two derivatives in the form

1 1 1
ﬁProca = - 5 aﬂvyauvv - 5 Kauvuauvu + §M2VMVM — g VMJM s (11258)

with an arbitrary real £ (any other Lagrangian density satisfying our requirements differ
from this one by a total derivative; an arbitrary real negative constant, which could
multiply the first term, can always be made equal to —1/2 by appropriately rescalings
of V,,, k, M* and ¢ J,,). However, taking the four-divergence of both sides of the Euler-
Lagrange equation

0,0'VY + kO (O, V) + MV =g J", (11.259)

resulting from (11.258), we discover that the four-divergence 0,V" = ¢ satisfies the inde-
pendent equation

(14 k)9, 0"p + M>¢ =g J, (11.260)

in which J = 0,J*. Therefore, the Lagrangian density (11.258) gives rise, among other
things, also to the independent propagation of a scalar field”® which couples to the scalar
current J. To remove the propagation of this scalar field ¢ (that is, to remove the
homogeneous part of the classical solution for ¢, which would remain even if the current
J# was conserved, leading to J = 0), we set kK = —1; taking then the four-divergence of
both sides of the Euler-Lagrange equation (11.259) we find the relation

M9, V* = gd,J", (11.261)

which shows that now ¢ can be expressed algebraically in terms of the external current
(which depends on dynamical variables of other parts of the system). In particular, now
¢ = 0if 9,J" = 0. With x = —1 the Lagrangian density (11.258) is just the Proca
Lagrangian density (11.257).

We now quantize the Proca field. From its Lagrangian density (11.257) one obtains
the canonical momenta II, conjugate to the variables V*:
_ OLproca
oV
As has been said, IIy = 0 is an obstacle in the canonical quantization. The problem lies

in the fact that the naive Hamilton’s formalism constructed ignoring the difficulty would
not lead to equations equivalent to the original Euler-Lagrange equations

1I;

= —Vy =Vi4+9,V°, I =0. (11.262)

VM = —M*VV +gJ", (11.263)

76That an unconstrained vector field V), contains in it in addition a massive spin zero particle was also
revealed in Section 8.4 in the course of constructing the free-field operator transforming under changes
of the reference frame as a vector representation of the Lorentz group.
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following from the Proca Lagrangian density (11.257), that is to the equations

VO =MV 4 gJ°, (11.264)

(0 VF + OV + 0;(=0VF + 0,V = —M*VF + g J* | (11.265)

obtained by setting in (11.263) ¥ = 0 and v = k, respectively. Trying to construct the
Hamiltonian corresponding to the Proca Lagrangian and following the standard recipe
one would write:

H =TV’ +TLV" — Lproca

) 1 . . 1 . . .
=V + LV — §(VZ +0,VO)(V' +9,V0) + 50V (VI — 9,V
1 1 -
+§M2V’VZ - 5M?VOVO —gViJ 4 g V0. (11.266)

Eliminating V* by using (11.262), i.e. substituting V? = II; — 9;V'°, one would then get

1 : 1
H = SILIL + I, VO (VA L) — IL0, VO + 5(V X V)2
1 | o
+§M2VZVZ — 5szovo —gV'J' +g V0. (11.267)

Of course, since 11y = 0, there is no way to express the generalized velocity Vo through the
canonical variables V* and II,. Let us therefore see, what one gets, setting naively I1y = 0
in the Hamiltonian (11.267). The canonical equations following from the Hamiltonian
H = [d*xH obtained in this way would read

V= {V ) H}PB = a—l—lia Hz = {H27 H}PB = _W, (11268)
} OH. . OH
Voz{vo’ H}PB:a_HOEo, IT, = {II,, H}PB:_W#Q’

and would evidently be incompatible with the Euler-Lagrange equation (11.263): the
latter imply firstly that II, = O for any time ¢, whereas here, even if one sets Il = 0
for t = 0, a nonzero Il would be generated for ¢ # 0 due to a nonzero derivative IL,.
Secondly, from (11.264) expressed in terms of II; it follows that the time evolution of V°
is fully determined in terms of J° and ;I1;:

1
VO = 7 (0,15, + g .J°). (11.269)

In contrast, the third canonical equation (11.268) would imply that V? is constant. Thus,
the dynamics of V# following from the Hamiltonian (11.267) would not be the same as
the one generated by the Euler-Lagrange equations (11.264) and (11.265).
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The equivalence is restored if in the Hamiltonian (11.267), in addition to setting Iy =
0, one substitutes for VV? the expression (11.269), that is, if one “algebraically” eliminates
one of the canonical variables (in other words, if one expresses its value at any ¢ by a
combination of other canonical variables taken at the same instant ¢). One then obtains
(after integrating by parts) the “physical” Hamiltonian:

1 1 s 1 9
—ILII; 11 = A%
HPP =3 +2M2(6‘1 )+ (Vx )
Lo ot rivri iy g’ 0 70 0
+2M ViV —g V' + 2M2J J+ M2J oill; . (11.270)
As the canonical equations one now gets
.. OHPh 1 g
g =1I. — I1. JO 11.271
V I, i TR 0; (0;11;) — e o J" ( 71)
- ath ijk _klm m 21714 i
I; = — YT = —e MY OV — MPV 4 g J" . (11.272)

Their equivalence with the Euler-Lagrange (11.263) equations can be established as fol-
lows: If we define an auxiliary variable V° as in (11.269); the equation (11.264) is
then automatically satisfied. Next, the equation (11.271) can be written in the form
II, = V' + §,V°. Differentiating this relation with respect to time and inserting II; ob-
tained in this way into (11.272) transforms the latter equation into (11.265). Thus, by
eliminating “algebraically” one of the variables, we have constructed the Hamilton’s for-

malism which is equivalent to the field equations following from the original Lagrangian
(11.257).

Quantization is now straightforward: one promotes V*(x,t) and II;(x, t) taken at t = 0
to operators in the Schrodinger picture and imposes the standard canonical commutation
relations

A

Vi(x), ILi(y)] =i {V'(x) y}PB 151 (x—y),
[V (%), VI(y)] = [Hi(x), I1(y)] = 0. (11.273)

on the operators representing the independent canonical variables. In this way canonically
quantized get only independent physical degrees of freedom of the system of fields. If
the current J* depends on field variables ¢, and II, other than V* and II; themselves,
the states |¥) of the system can be represented as wave functionals W[V*(x), @q(x),t] =
([V7], [#a]]® (t)) on which the operators Vi(x) and II;(x) act as

N ) A )
Vix)=V" I(x) = =1 ————. 11.274

(9 =V, TG0 = i s (11.274)
Of course, the Hilbert space of all functionals W[V*(x), ¢,(x)] is nonseparable and one
seeks an appropriate separable Fock space in which the algebra of operators can be rep-
resented irreducibly. As usually one choses the Fock space in which the free Hamiltonian
has its lowest energy eigenvector.

509



In order to realize the algebra (11.273) of field operators in this separable Fock space
it is necessary to find a representation of the operators”” V?(x) and IT;(x) in terms of the
creation and annihilation operators (having the standard commutation rules) To simplify
this task we can apply the method outlined in Section 11.3 allowing to easily quantize
the free field (i.e. for J* = 0) in the Heisenberg picture; the free-field Heisenberg picture
operators V},(t,x), TIf(¢,x) taken at ¢t = 0 will then provide the sought representations of
the Schrodinger picture operators of the interacting (i.e. coupled to J* # 0) Proca field.

To this end first write down the the most general solution to the classical field equations
(11.259) and (11.261) following from the free (with J# = 0) Proca Lagrangian which read

(0,0" + M*)VH(t,x) =0, 9, VH(t,x) =0. (11.275)

The most general classical solution of the first equation can be written in the form (11.156)
but with the coefficients a(k) and a*(k) replaced by some four-vector coefficients a,, (k)
and a},(k). In order to satisfy the second of these equations we write them in the form

a'(k)= >  a(k N e'(k ), (11.276)

A=0,+1
with three four-vectors e*(k, \) satisfying the condition
ke (k, \) = 0. (11.277)

Since k? = M? # 0, the are three linearly independent such four-vectors. Two of them,
corresponding to A = +1, can be chosen to have only space-like components (in the plane
perpendicular to k) and will be normalized so that

e (k, \) € (k, \) = —1. (11.278)

(i.e. e(k,\)-€"(k,\) = 1). As the third one, corresponding to A = 0, we take the
four-vector

k| 5E(k)) , (11.279)

6“(k>)\ = 0) = (M? |k|7

which also satisfies the conditions (11.277) and (11.278). The vectors €”(k, \) satisfy then
the sum rule

ko,
>l Ve d) = —gu + S5 (11.280)
A=0,+1

Thus, when J* = 0, the most general solution of the Proca field equations of motion has
the form

VE(t x) = / Ny > alk,A) e (k,A) e PHEx 4 he], (11.281)
A=0,+1

7TWe suppress hats on operators from now on.
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where, as usually, d['y = d°k/(27)32F and E = vk2 + M2. Since there are only three
independent vectors e*(k, \), out of the four components of V# only three, for which
one can take Vs, are independent. To explicitly write down their canonical momenta
I1;(t,x) which are the corresponding solutions to the classical canonical equations, one
recalls that in the classical Proca theory II;(t,x) = Vi(t,x) + d;V°(t,x). In agreement
with this relation one postulates that

IL(t,x) = 1 / ATy E(k) Y [a(k,A) &k, \) e Pk —hel, (11.282)
t A=0,%1
where
k) =e(k, N\ — %eo(k, A). (11.283)

Obviously, €(k,\) = €(k,\) for A = +1, while for A = 0 one finds é'(k,\ = 0) =
(k'/|k|)(M/E). Tt is then easy to verify that V°(¢,x) as given by (11.281) is correctly
reproduced by (11.269) with J* = 0.

One can then check, that the time dependent Heisenberg picture operators V (¢, x)
and TI7(¢,x) of the free Proca theory are obtained by simply promoting the coefficients
a(k,\) and a*(k, \) to operators satisfying the

la(k, \), a'(K,\)] = (27)*2E (k)66 (k — K'),
[ak,A), a(K, \N)] = [a'(k,\), a'(K,\)] =0, (11.284)

because the canonical equal-time commutation rules (11.273) and all necessary operator
equations are then satisfied.

It follows that for the Schrodinger picture operators V(x) and IT;(x), which at t = 0
will be equal to the Heisenberg picture operators of the interacting Proca field one can
take (11.281) and (11.282) with ¢ set to zero and the coefficients a and a* replaced by
the operators a(k, \) and af(k, \). (Of course, at t # 0 the Heisenberg picture operators
Vi (t,x) and Ig(t,x) of the Proca field coupled to a nonvanishing current J* operator
will, unlike the Heisenberg picture operators of the free Proca field constructed above,
not have the simple forms (11.281) and (11.282) with a and a* replaced by the creation
and annihilation operators!)

In terms of the creation and annihilation operators introduced in this way, the free
part H, of the Hamiltonian (11.270) takes the form

Hy = / AN E(k) Y~ af(k, M) a(k, A), (11.285)

A=0,£1

plus an infinite constant which we discard. Thus, the free part Hy of the Hamiltonian
H (that is, its part independent of the current J*) becomes diagonal. It is also easy
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to see that the operators obtained by substituting into the classical solutions (11.281)
and (11.282) (for t # 0) the operators a(k,\) and a'(k, ), will in the theory of the
interacting Proca field be the interaction picture operators V}(z) and II/(z) (see Section
11.9), because they are related to the Schrodinger picture ones by the standard rules

Vli(t, X) — tHot VZ(X) ¢ iHot ’ H{(t, X) — eifot HZ(X) o~ iHot

Finally, one can compute the commutators of V°(x) which, if the Proca field V#
is coupled to some “matter”, is given by (11.269). Assuming that J° depends on the
canonical variables of systems coupled to the Proca field but not on the canonical variables
V' or II; of the vector field itself, one finds

1

Vi), Vo)) = =5

Vi), B(y)] = 17 0500 (x — ),
[IL(x), V(y)] =0. (11.286)

Thus, the operator representing the time component of V# does not commute with the
operators representing the remaining components, contrary to what could naively be
expected.

11.6 Systems subject to constraints

In Section 11.5 the Proca vector field, which is an example of a system subject to con-
straints which in the Dirac terminology are second class constraints, has been quantized
by expressing “algebraically”one of its components (V°) in terms of the remaining inde-
pendent canonical variables (II; and the variables out of which J° is built). The form
of the canonical commutation relations imposed on the independent canonical variables
(that is, the right quantization prescription) was then obvious and they determined also
the commutation relations satisfied by the operator V°. Explicit solutions for dependent
variables (like V?) in terms of the remaining variables, chosen as independent, even if
possible in principle, may not always be easy, especially in systems composed of several
mutually interacting subsystems (in field theories expressing “algebraically” may mean
solving differential equations in the space variable x - the term “algebraic” refers only to
the fact that no time derivatives are involved). Moreover, simple “algebraic” elimination
of dependent variables is not directly applicable to the electromagnetic field which is also
an example of a system subject to constraints. Therefore in this section we present a sys-
tematic and general method proposed by Dirac, which allows to “hamiltonize” systems
subject to constraints and to quantize them canonically. In the case of systems subject
to constraints, called second class, similar to the ones encountered in the Proca theory
of the vector field, the Dirac method allows to find, without solving explicitly for depen-
dent variables, the right commutation relations which must be imposed directly on the
original set of canonical variables along with a set of identities which must be satisfied by
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operators representing these variables, in order to properly quantize the system.” The
same method proves useful also in quantizing systems subject, like the electromagnetic
field, to constraints of the first class. Such constraints reflect invariance of the (classical)
physical state of the system with respect to changes of “gauge” - i.e. with respect to
appropriate transformations of the canonical variables (which are therefore not uniquely
specified by the physical state of the system). Such systems can be quantized either by
fixing the gauge, that is by introducing additional constraints which convert them into
systems subject to second class constraints only, or by treating the first class constraints
as conditions which select in the Hilbert space (or in the selected Fock space) a subset
of vectors (rays) which represent physical states of the system. The Dirac method al-
lows, among other things, for an easy canonical quantization of theories of non-Abelian
Yang-Mills fields which in the BRST formulation become systems subject to second class
constraints (see Section 20.3).

Canonical quantization consists of the identification of the canonical variables ¢', i =

1,...,n and the conjugated momenta p;, their subsequent promotion to the Schrodinger
picture operators ¢’ and p; satisfying the commutation rule
(@ B5] = in{d", pj}py = ih0';, (11.287)

and, finally, realization of the resulting algebra of operators in some Hilbert (or Fock)
space. The method in this simple form is applicable if the canonical variables and their
momenta are all independent. Classical systems may, however, be subject to constraints as
a result of which not all their canonical variables are independent. The primary constraints
Oy (q,p) =0, M =1,...,n—r, follow from the structure of the Lagrangian and reflect

the impossibility to solve the equations™
= 0 L(q. g 11.288
b = a—qj (Q> q) ) ( . )
for n—r velocities ¢/, j = r+1,...,n. In such a case the original Euler-Lagrange equations

of motion are equivalent (see Appendix J) to the set of canonical equations which follow
from the total Hamiltonian Hr (Dirac’s terminology) of the form

oL .
Hr(q,p) = (Z a7~ L(q,q)) + > Oy
i=1

i'=¢'(gpu) M=l

n—r

"The method itself, however, does not give any clues, how to satisfy these commutation relations and
identities, that is how to obtain a representation of the resulting algebra of operators in the Hilbert or a
Fock space - in the latter case by expanding field operators taken at ¢ = 0 into creation and annihilation
operators.

™ As aready said, in the case of gauge systems primary constraints can be also imposed on the system’s
variables from the outside.
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combined with the set of (primary) constraints ®,,(q,p) = 0. The quantitities u™ with
M =1,....,n —r, are the n — r generalized velocities ¢"* with respect to which the
equations (11.288) cannot be solved and my; = p,4 s are the canonical momenta associated
with the variables ¢"™. The subscript ¢ = ¢%(q,p,u) on the bracket in the first term
of (11.289) means that r of the generalized velocities ¢' (those with respect to which
the relations (11.288) can be solved) are expressed in terms of the canonical variables
q, the conjugate momenta p;, i = 1,...,r and the remaining velocities u = ¢"*M. In
Appendix J it is shown that the Hamiltonian H(q,p) in the second line of (11.289), is
independent of the n — r velocities ™. The sum in the second term runs over the set
of n — r primary constraint functions ®,,(q,p) - the equality ®;; = 0 is not used at
this stage.®* By construction (see Appendix J) the primary constraints ®;(q,p) = 0,
M =1,...,n — r following directly from the the Lagrangian have the structure m,; —
fa(g,p1, ..., pr) = 0. The mentioned equivalence is to be understood in the sense that the
constraints ®,,(q, p) = 0 differentiated with respect to time, combined with the evolution
equations ¢' = {¢', Hr}pg and p; = {p;, Hr}pp, in which the Poisson brackets with the
total Hamiltonian Hy (11.289) are computed as if all canonical variables ¢* and p; were
independent (i.e. as if there were no constraints at all), yield second order differential
equations for ¢'’s which are equivalent to the original Euler-Lagrange equations. This
classical dynamics can be cast into a fully Hamiltonian form by giving the factors u™ an
appropriate dependence on p; and ¢°. The prescription for achieving this, formulated by
Dirac, is as follows.

As in the Lagrangian formalism the primary constraints ®,,(q,p) = 0 are identities
relating the canonical variables at any instant ¢, one should ensure that they are also
preserved by the dynamics generated by the Hamiltonian (11.289) - in this case it will
suffice to impose them on the initial data only. This means that @N(q,p), that is the
Poisson brackets {®y, Hr}pp, must be made vanishing. Investigating these Poisson
brackets one can encounter different situations. Barring the case of obvious contradictions,
like 1 = 0 (which would mean that the Lagrangian itself leads to inconsistent Euler-
Lagrange equations), the first possibility is that the Poisson bracket {®y, Ht}pp vanishes
when the already identified constraints are imposed after computing it. This is written as

{®n, Hr}p ~0,

where the symbol ~ 0 means “vanishes weakly” (Dirac’s terminology again). Also in this
case the Poisson bracket should be computed as if the variables were unconstrained and
independent; the constraints ®;; = 0 are imposed only afterwards. Thus, in general, the
symbol ~ 0 is equivalent to the equality to a combination o™ (q,p)®(q, p) of the con-

80The factors u™ (t) in Ht can also be interpreted as Lagrange multipliers allowing to take into account
the constraints ®5s(q,p) = 0 in the standard variational formulation
6 [ dtlpid' — H(q,p)] =0, 6q'(t1) = dq'(t2) = 0,

t1

of the Hamilton’s equations of motion.
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straints. The second possibility is that the investigated Poisson bracket of the constraint
¢,y with the Hamiltonian (11.289) does not vanish, even weakly, and the result does
not depend on the (yet) unknown coefficients u”. This means that the new constraint
b (q,p) = {Pn, Hr}ps = 0 has to be added to the list of constraints. Constraints iden-
tified in this way are called secondary. The obvious next step is to investigate the Poisson
bracket of the newly identified constraint ®x with the Hamiltonian (11.289) which can
lead to a yet new constraint and so on. Proceeding in this way, one eventually identifies
all the constraints ®,;, =0, M =1,... k, where n —r < k < 2n, the investigated system
is subjected to. Finally, there are Poisson brackets of ® with the Hamiltonian Ht which
do not vanish weakly but depend on the coefficients ©™. Requiring that all such Poisson
brackets, of the primary as well as of all secondary constraint (weakly) vanish one gets
the system of linear equations

n—r

{(I)N, H}pB+ Z{(I)N, @M}pBUMZO, N = 1,...,]{3, (11290)

M=1

in which the sum runs over the n — r primary constraints. The solution of this system of

linear inhomogeneous equations takes the general form®!
p
uM =M (q,p) + > vih(a,p) s, (11.291)
a=1
in which ¢ (g, p) form a particular solution of the inhomogeneous system (11.290), while
v(]‘f)(q, p), a=1,...,p, are all linearly independent solutions of the homogeneous system
Z{(bNa Dar}pp Vfny(¢:p) =0, (11.292)
M=1

Plugging the solution (11.291) into the total Hamiltonian (11.289) completes the hamil-
tonization of the classical system: once the constraints ®,,(q,p) =0, M = 1,... k, are
imposed on the initial data, they are automatically preserved by the time evolution.

An important feature of the total Hamiltonian (11.289) is its possible dependence,
after inserting in it the solution (11.291), on the coefficients s*, which may be arbitrary
functions of time. They are present whenever there exist nontrivial linear combinations

D4(q,p) = Par(q,p) v (¢,0) (11.293)

of the primary constraints which, as follows form (11.292), have (weakly) vanishing Poisson
brackets with all other constraints (the primary and secondary ones). Generally, one calls
a quantity (a function of ¢ and p) a first class quantity if its Poisson brackets with all the

81Since the number n —r of unknowns u™ is smaller than the number k of the equations, the existence

of a solution is a nontrivial fact; it follows from the assumption that the original Euler-Lagrange equations
are not inconsistent.
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constraints ®,,(q, p) weakly vanish. Correspondingly, linear combinations ®,(q, p) such
that

{On, Bolpy~0  forall N (11.294)

are called first class constraints. The remaining ones, which have at least one nonzero
Poisson bracket with the other constraints, are called second class. It can be noted at this
point that the total Hamiltonian

Hr=H+ Y  ®ulep)cMap)+ Y ®ule.p)s"()

M eprimary a€Eprimary

=H'(g,p)+ Y Pulg,p)s"(1), (11.295)

aEprimary

obtained using the Dirac procedure outlined above is the sum of two terms, which are
separately first class. It is also straightforward to prove, using the Jacobi identity, that
the Poisson bracket of two first class quantities is also a first class quantity.

Due to the presence of the arbitrary functions s*(t), which is always the case if there
are primary first class constraints, the time evolution of the canonical variables ¢‘(t) and
pi(t) generated by the Hamiltonian (11.289) is not unique - the initial data ¢'(ty) and
pi(to) set at some t = ty do not specify uniquely the values of ¢*(t) and p;(t) at other
times ¢t. This can only make sense if the physical state of the system does not uniquely
determine the variables ¢* and p;. In other words, characterization of the system in terms
of canonical variables exhibits some kind of “gauge invariance” by which term one means
the situation in which the (classical) physical state of a system does not change when
the variables used to characterize it are transformed in some specific way. In such a case
infinitely many different values of the same canonical variables correspond to the same
(classical) physical state; owing to this the time evolution generated by the Hamiltonian
(11.295) (and by the Euler-Lagrange equations, to which it is equivalent) can lead, despite
the presence of the arbitrary functions s%(t), to a unique evolution of physical states.

Let us identify possible gauge transformations of the variables ¢* and p;. One obvious
class of such transformations is of the form

5(]1 = 59a{qi’ QQ}PB )
opi = 00*{pi, Patrm, (11.296)

where @, are the system’s first class primary constraints and 00* are arbitrary param-
eters. Indeed, starting at t = t; from a given point in the phase space and using two
infinitesimally different Hamiltonians (11.295), one with s%(f) and the other one with
s%(t) + ds*(t), one reaches, after an infinitesimal time At two different phase space points
the coordinates of which are related by (11.296) with d6* = At ds*(tp). Thus, variables
connected by the transformations (11.296) generated through the Poisson brackets by the
primary first class constraints must define the same physical state. Furthermore, taking
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the difference of the results of two successive transformations (11.296) performed in two
different orders one concludes that Poisson brackets of two primary first class constraints
must also generate admissible gauge transformations. Finally, considering changes of the
variables generated by applying in two different orders: a transformation (11.296) and
an infinitesimal time evolution generated by Hr, one concludes that the Poisson brackets
of H' (a first class quantity) defined in (11.295) with the primary first class constraints
are also generators of admissible gauge transformations. Since, as has been noted above,
Poisson brackets of first class quantities are also first class quantities, that is,

{®CL7 ®CLI}PB = aaa}’@b’
{H', ®u}pp = B,/ P,

where the indices b run over all first class constraints (not necessarily the primary ones),
it follows that some gauge transformations can be also generated by first class constraints
which are not primary. The only difference at this point between gauge transformations
generated by the first class secondary and primary constraints is that only the latter class
of gauge transformations contributes to the arbitrariness of the time evolution generated
by Hr (and by the corresponding Euler-Lagrange equations). Although it is possible
to construct examples (nonrelativistic) in which not all secondary first class constraints
generate transformations not affecting (in the classical theory) the physical state of the
system, one assumes that in all physically sensible cases all first class constraints (includ-
ing all secondary ones) are generators of gauge transformations which can be iteratively
reached from the identity transformation.®? It also seems that adopting this assumption is
necessary for consistent quantization. Accordingly, one defines the extended Hamiltonian
Hyg (Dirac’s terminology again) by including in the second term of (11.295) all the first
class constraints. The classical dynamics generated by Hg has more arbitrariness than
does the one generated by Hrt and that is inherent in the time evolution determined by
the underlying Euler-Lagrange equations. Such an extension of the evolution, possible
in the Hamilton’s formulation is, however, fully admissible since it still leads to a unique
evolution of the physical state of the system.®3

The final remark is that the secondary second class constraints also could have been
included in the sum in (11.289) - in the resulting set of equations (11.290) there would be
then more factors u” to determine (their number would in this case match the number
of equations), but it can be shown that the solutions for additional u”’s would vanish
weakly, i.e. would be proportional to a linear combination of constraints (and therefore the
corresponding extra terms in (11.289) would not change the canonical equations for ¢* and
pi, just because {f(q,p), PuPn}rs = Pu{f(q,p), Pntrn + {f(¢,p), Prar}re®Pn =~ 0).
Thus, all constraints, primary and secondary of both classes can be from the beginning
included in (11.289) and treated on the same footing.

82This very important fact is crucial in discussing topological properties of quantized nonabelian Yang
Mills theories.

83The fact that the Hamiltonian formulation allows for a more general time evolution of gauge system’s
variables should not surprise: the Hamilton’s formulation allows also for a wider class of transformations
of the canonical variables than does the Lagrangian one.
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Hamiltonization is the necessary first step towards the canonical (operator) quantiza-
tion. We will consider first systems subject to first class constraints only. There are two
major methods of quantizing such systems. One consists of promoting all the canonical
variables ¢' and p; to independent operators satisfying the standard commutation rules
(11.287) and representing their algebra in a Hilbert (or in a Fock) space of states |W).
The classical constraints ®, = 0 are in this method not imposed as operator relations
but instead become conditions selecting in the full Hilbert (or Fock) space vectors (rays)
|Wohys), forming a subspace, which represent physical states. Physical are then only the
states satisfying the conditions

o4, 9)|Vpiys) =0, all @ (11.207)

As the first class constraints generate gauge transformations, this means that physical are
those states which are invariant with respect to such transformations.®* This is possible
provided the operators ® (q D) can be ordered in such a way as to ensure the operator
relations [®,, ®y] = ific,, “(4,p) ®, (necessary for consistency of the conditions (11.297))
and [H', ®,] = ihb,%(§,p) Py, where H' is defined in (11.295) (necessary to ensure that
the time evolution does not map physical states into unphysical ones or the other way
around).

A variant of this approach, called the Dirac-Fock quantization is employed when, as
it is the case in quantum field theories, the first class constraints ®, expressed in terms of
the canonical variables promoted to Schrédinger picture operators the algebra of which
is realized in some Fock space naturally split into . + q)g_), where ¢ (@&‘)) involve
only the annihilation (creation) operators defined with respect to the vector |Opye) of the
chosen Fock space and imposing the conditions (11.297) would either lead to inconsistency
due to commutators of ®, with some other operators or would just leave in the Fock space
no physical state-vectors at all (or both). In this case one identifies physical states by the
weaker conditions,

DU ) =0,  all a, (11.298)

(so that still (W], |Pa|Wpnys) = 0). A characteristic feature of this approach is the pres-
ence in the Fock space of state-vectors of negative or zero norm. If the system is properly
quantized in this way, all state-vectors of negative norm are manifestly unphysical (in
the sense of the condition (11.298)), whereas the zero norm ones, while being classified as
physical, have zero scalar products among themselves and with all physical, positive norm
states. Arbitrary linear combinations of “physical” zero norm vectors can be then added
to a positive norm physical state-vector without changing its norm or scalar products
(transition rates). A physical state of the system is then in the Fock space represented

84More precisely, the conditions (11.297) ensure invariance of physical states with respect to those
gauge transformations (called “small”) which can be reached iteratively from the identity transforma-
tion. The requirement that the states |¥pnys) are invariant also with respect to so-called “large” gauge
transformations, if imposed, is an extra assumption not following from the consistency of the quantization
prescription.
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not by a ray but by a larger equivalence class of state-vectors differnig one from another
by a zero norm vector; the zero norm vectors represent in this approach a residual gauge
invariance not removed by the conditions (11.298). This approach is one of possible meth-
ods of the electromagnetic field quantization (free or interacting with other fields) and
leads to the same structure of the theory as the Gupta-Bleuler quantization in the covari-
ant Lorentz gauge 9, A" = 0 outlined in Section 11.11. It is also used for quantization of
the relativistic string (see the old review by C. Rebbi).

The second method of quantizing systems subject to first class constraints, which will
be used in Section 11.7 to quantize the electromagnetic field in the Coulomb gauge, is
to fix the gauge completely. This is done by imposing additional constraint(s), called
gauge firing conditions, ®(q,p) = 0 from the outside,® so that the entire system of
constraints (determined as described at the beginning of this section, treating the gauge
fixing conditions as all other primary constraints and including them together with all
second class constraints multiplied by the corresponding u* factors in the Hamiltonian Hyp
(11.289)) becomes second class and the time evolution of the canonical variables becomes
uniquely determined by the equations of motion and the initial data. The resulting
classical systems subject to second class constraints can be quantized with the help of the
Dirac prescription described below. The method works outside the perturbative expansion
provided the gauge can be fixed globally, that is in such a way that the canonical variables
satisfying the chosen gauge condition are uniquely determined. This is not always the case.
For example, it is known that in the case of non-Abelian Yang-Mills theories (Chapter
20), there are multiple solutions to the Coulomb gauge condition (this is known under
the name of Gribov ambiguity). In this case the validity of the method is restricted to
the perturbative expansion only. In field theory a consequence of imposing extra gauge
conditions may be the spatial nonlocality of the resulting Hamiltonian.

To quantize a theory in which first class constraints are absent from the beginning or
have been eliminated by imposing additional constraints from the outside, one forms the
matrix Cys:

CNM = {(I)N, (I)M}PB . (11299)

Since the matrix Cy )y is antisymmetric (the basic property of the Poisson brackets defined
for commuting variables, to which we restrict ourselves in this section) and det(Cyps) # 0
(vanishing, even weak, of this determinant would mean that one can form at least one
more linear combination of the constraints which has zero Poisson brackets with all others
and is, hence, a first class constraint which we have assumed to be already eliminated),
it must be of even dimension. The Dirac prescription for quantizing systems subject to
second class constraints then reads

[4, Bl = ih{a. PIol, g pop - (11.300)

85This is possible because, as explained above, the physical state of the system does not fix the values
of the canonical variables uniquely; the added constraints can be then made consistent with the dynamics
generated by Hr from which the arbitrary functions s, are now absent.
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On(q,p) =0, forall N,

that is, the commutators (or anticommutators in the case of fermionic fields - see Section
11.8) are determined by the Dirac brackets (instead of Poisson brackets) and all the
constraints are realized as strong operator identities ®y; = ®y(G,p) = 0. The Dirac
bracket {A(p, q), B(p,q)}p of two functions of the canonical variables is defined as follows:

{A, Bl = {4, Blpy— Y {4, ®n}py (C71)" {@u1, Blpg , (11.301)

N,M

(again the Poisson brackets have to be computed as if there were no constraints). The
Dirac bracket shares with the Poisson bracket all the algebraic properties: it is bilinear
in canonical variables, antisymmetric and satisfies the Jacobi identity. It is also a matter
of a simple algebra to check that the definition (11.301) is invariant with respect to linear
changes

®11(q,p) = ON(a,p) Pn(a,p),

of the basis of constraints, provided the matrix O} (g, p) is nonsingular (invertible) on the
surface of constraints, that is provided its determinant does not vanish weakly. Finally,
the Dirac bracket has the (easy to verify) property

{A, dy}p =0, foral N, (11.302)

which ensures compatibility of the commutation relation (11.300) with the constraints
®y = 0 realized as strong operator identities. This also means that the Hamiltonian
operator is obtained from the H part of the total classical Hamiltonian Hr (11.289): the
sum of the primary constraints (which in the classical theory must be kept in order to
ensure the compatibility of constraints with the dynamics) is in the quantum theory just
a zero operator. Obviously, the entire algebra (11.300) must be realized by operators
acting in a Hilbert or a Fock space and finding this realization may turn out to be the
most important difficulty in carrying out the quantization a la Dirac, especially when not
all right hand sides of the first set of relations in the prescription (11.300) are c-numbers.

The Dirac prescription can be justified as follows. First of all, if the first class con-
straints are absent, the second term, depending on arbitrary functions s* in the solution
(11.291) of the consistency conditions (11.290) is absent and the factors u entering
the Hamiltonian Ht (11.289) in which all second class constraints have been included
multiplied by the corresponding u factors are given by

UM(Q>p) = CM(Qap) = _(C_I)MN{(I)]\U H}PB .
The classical canonical equations of motion ¢ = {¢', Hr}pp and p; = {p;, Hr}pp take
then just the form
2%

¢ ={q', Hr}es = {¢’, H}pp + Z{qiv Outesc(g,p) ={d¢', H}p,

M=1

861t is assumed now that all second class constraints, primary and secondary, have been included in
Hr in agreement with the remark made earlier.
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and similarly for p;. Since in the quantum theory the equations of motion satisfied by the
Heisenberg picture operators are given by their commutators with the Hamiltonian, the
above form of the classical equations of motion strongly supports the Dirac quantization
rule. More formally, exploiting the fact that the number of the second class constraints
Dy, M =1,2,...,2k is always even, it can be shown that there always exists a classical
canonical transformation (¢;, p;) — (Q:(q,p), Pi(q,p)), i = 1,2,...,n, such that in the
new canonical variables the constraints ®,; take the simple form

Q,=0, P=0 for i=1,...,k (11.303)

One can therefore quantize the system in the remaining new variables @);, and P; with
1 = k+1,...,n forgetting about the first k + k£ = 2k variables which are zero. The
commutators of the quantum operators ¢;, and p; when derived from the commutators
[Qi, Pj] =ihd;; with 4, > k turns out to be given by the Dirac bracket (times i). The
advantage of the Dirac method for finding the right commutation relations which must
be satisfied by the canonical variables is that one does not have to find the canonical
transformation (g¢;, p;) — (Qi(q,p), Pi(q,p)) explicitly nor does one have to solve the
constraints for some variables in terms of others.

Quantization of a system subject to both, first and second class constraints can be done
either by fixing the gauge and turning them into systems with second class constraints
only or by handling the second class constraints with the help of the Dirac prescription
(11.300), while imposing the first class ones as subsidiary conditions selecting those vectors
of the Hilbert space which represent quantum states of the physical system. As has been
remarked above, practical implementation of the Dirac prescription for treating second
class constraints may in more complicated cases be very difficult because realization of
the operator algebra defined by (11.300), especially if some of the right hand sides of
the commutation relations (determined by the Dirac bracket) turn out to be operators,
and not c-numbers as in the case of the Proca theory or the electromagnetic field. It
is then helpful to know that in principle any system subject to second class constraints
can be turned into a (gauge invariant) system subject to first class constraints only by
appropriately enlarging the number of its canonical variables; this opens the possibility
of realizing all constraints as subsidiary conditions selecting physical states in the whole
Hilbert of Fock space and not as complicated operator identities.

We end this section by applying the Dirac prescription for quantizing systems sub-
ject to second class constraints to the Proca theory of the vector field. The primary
constraint®”

o =T1lg(t,x) =0, (11.304)

follow in this case from the structure of the Lagrangian (11.257). The total Hamiltonian

87In field theory the index i of ¢* in the formulae (11.288)-(11.303) includes also the space variable x.
Hence, each ®); stands for an infinite set of constraints @y = P pr(x).
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takes in this case the form

1 1 1o,
Hr = SILIL — IL,0;V° + §(V><V)2 + §M2V’V’

1 o
—§M2V°V° +Igut — g ViJ 4+ g VIO, (11.305)

with an initially unknown function u!. Since b, = {®,, Hr}pp neither vanish (even
weakly) nor depens on u', the secondary constraint

®y = M?*VO(t,x) — O;1L;(t,x) — g J(t,x) =0, (11.306)

must be imposed as the consistency condition. There no more constraints in this case
- vanishing of ®, = {®,, Hr}pp can be ensured by adjusting the function u'. This
completes the Hamiltonization of the classical dynamics of the Proca field.

In the quantum theory ®; = 0 and ®, = 0 become strong operator identities; therefore,
in the Hilbert space I1y must be represented by the zero operator and through (11.306) the
operator V9 becomes completely determined by II; and J°. The canonical commutation
relations of the V¢ II;, V? and Il operators are given by the Dirac prescription (11.300)
which ensures their compatibility with the operator relations ®; = 0 and $5 = 0. The
antisymmetric matrix Cyps (11.299) has in this case the form

C(1x,2y = {(I)lx> (I>2y}PB = {(I)l(x)> (I>2(Y)}PB - _M26(3)(X - Y)a (11307)
and its inverse reads
-1 _ 0 # 5(3)(X - y>
= (_%5(3)0{_},) 0 ) (11.308)

The Dirac bracket of any two functions A(x) and B(y) of the canonical variables V#* and
I1,, therefore reads

{A(X), B(y)ip = {Ax), B(y)}es
_# /d3z {AX), Mo(2) }pp {M2V0(Z) — 011;(2) — gJ°(2), B(Y)}PB

1
—I—W /d?’z {A(x), M?*V(z) — 0,11;(z) — gJO(z)}PB {Io(z), B(y)}pg -
Computing using this formula the commutator
[Vi(x), V(y)] =ik {V'(x), V°(y)} . (11.309)

one finds the same result as was obtained in Section 11.5 by treating the V° operator as
constructed out of II; and J° in agreement with the constraint ®, = 0. It is also easy to
check that the Dirac prescription gives all the remaining commutators in their standard
forms. The rest of the quantization procedure is then unmodified: the expansions (11.281)
with g = 7 and (11.282) give the Schrodinger picture operators V*(x) and I1I;(x) satisfying
the commutation relations following from the Dirac quantization procedure, ITp(x) is just
the zero operator and V9(x) is a sum of (11.281) with = 0 (and ¢ set to zero) and of a
term depending on the matter variables.
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11.7 Quantization of the electromagnetic field

We now depart a little bit from the main logic of this chapter (devoted mainly to quanti-
zation of systems of relativistic fields) and consider quantization of the system consisting
of the classical electromagnetic field coupled to N classical nonrelativistic charged parti-
cles. The reason for this departure is that in this way we will obtain a working theory,
called nonrelativistic quantum electrodynamics (NRQED), which is applicable to a wide
range of physical phenomena related to interaction of light with nonrelativistic matter, so
long as spin effects can be neglected. In this way we complete here the quantum theory
of radiation presented in Section 3.8. The resulting theory constitutes also the starting
point of modern calculations of properties of bound states in the fully relativistic quantum
electrodynamics.

The Lagrangian which determines classical dynamics of such a system is given by the
sum of three terms: L = Lgyv + Limatt + Lint:

1
Lov =7 / 5 o, (11.310)
1 N N 1 N
_ 2
Ly = 5 D miv; = Z Vr) -3 Z Vi, —1;), (11.311)
i=1 i=1 i#£j
N ' e
Ly, = —e [qm(ri) - q—C’A(ri) v} =— /d3x Ju(x) A% (x) (11.312)

where the current in the last formula has the form (g; are particle charges in units of
e>0)

JO(t,x) = Z gicd® (x —1;(t))

J(t.x) = qvid® (x —r;(t)). (11.313)

It can be checked that the current J* defined by (11.313) is conserved: 9,J" = 0. For
greater generality we have allowed in L, also for 1-particle interactions V(r;) with
external potentials (which can be also of electromagnetic origin - e.g. the electrostatic
interactions binding electrons in atoms, which we may treat separately from the dynami-
cal electromagnetic field) and two-particle interactions V (r; — r;) of non-electromagnetic
origin.

To build the quantum theory of this system we first try to take for its canonical
variables and conjugated momenta r;(t), P;(¢), A*(¢,x) and II,,(¢,x). In the matter part
everything goes in the standard way:
oL

Pi(t) = mvi(t) + % eA(t,ri(t)). (11.314)
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Expressing v;(t) in the matter part of the Hamiltonian through P;(t) we get

|
ey o
i=1 v

(Pi - %eA(ri))2

N N |
+e (1) + Vir;) + = Vir,—r;), 11.315
Y wole) + 2V e)+ 53 Vis =) (11.315)
where H™ is the current-independent (here “current-independent” before expressing ¢
in terms of J° - see below) part of the (total) electromagnetic field Hamiltonian (11.340)
which we derive below. Quantization of the matter part is standard: we promote r;(t)
and P;(t) taken at t = 0 to Schrodinger picture operators satisfying the commutation
rules [r;, IE’J] = thd;;. We can then work either in the position representation in which
P, = —ih 0/0r;, or we can go over to the second quantization formalism (presented
in Chapter 5), which is especially convenient if the matter particles of the system are
numerous and indistinguishable.

The electromagnetic part of the system is more troublesome. Written in terms of the
potentials the Lagrangian density £ (11.250) of the electromagnetic field coupled to the
current J# reads (c is kept for decoration, ¢ = A°):

v _ 1 (10 Pl > 1 oo, 1 o
LM =S (-5 A+ Ve 5 (V<A —eJ'+ —eJ-A (11.316)

Of course, [d*x Lrm = Lgm + Ling in the notation of (11.310-11.312). As already checked
in Section 11.4, the Euler-Lagrange equations following from this Lagrangian density are

(p=e"/c)
10E 1

B—-—=-¢e] E=p. 11.31
V x pirralE \Y% P (11.317)
As the canonical momenta II; we get
1 04" 1 1 .
I, = — - 0,0 =——FE", 11.318
2 ot * c ¢ c ( )

and 11y = 0, similarly as in the case of the Proca vector field. We get therefore the primary
constraint &y = Il; and we have to check whether it is compatible with the Hamilton’s
canonical equations. To this end following the procedure given in Section 11.6 we form
the total Hamiltonian density Hp = HEM +H ™2 (the interaction of the field with matter
is now included in HEM) expressing A’ through II; by using the relation (11.318) and
adding the primary constraint with an unknown coefficient u°. This gives:3®
HEN = I1, A 4 0, — £V
e 1 ) S B
= EHiHi —cll;0;0 + 5 (VxA) + Tgu’ + EeJ ¢ — EeJ-A

2

8 Note, that J depends now on #; as well as on P;.

1 1
:—(E2+B2)+E~V¢+H0u0+pq§—zeJ-A, (11.319)
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Using this Hamiltonian density we find®’

' OHEM ou’ 1
Oy =< 11 d? = 2T = My —cIl; — —eJ°
0 { 0, / XHT}PB a¢ 08/10 cO, CeJ

1
~ —cOll; — . eJ?, (11.320)

(the constraint IIy = 0 has been imposed after computing the Poisson bracket). As this
is not zero (even weakly), the secondary constraint ®; = 2011, + eJ° has to be imposed.
This is obviously the Gauss law, which is the second of the Euler-Lagrange equations
(11.317), but is lost in the naive Hamilton’s formalism because of vanishing of II;. The
constraint @, is already compatible with the dynamics: {®s, Hy}pp = cJ,(eJ*) vanishes
provided the current is conserved” - as remarked, the current (11.313) doe satisfy this
requirement.

The system is therefore subject to two constraints, &, and 5, but they turn out to
be the first class:

{(I)o, (I)2}p]3 = 07

and the Dirac prescription for quantization cannot be applied because the (classical)
state of the electromagnetic field, fully characterized by E and B, does not determine
uniquely the potentials A*. The mathematical reason for this is the gauge invariance
of the Lagrangian (11.316). The Euler-Lagrange equations do not determine A*(¢,x)
uniquely at ¢ # 0 from initial conditions A*(x) and A¥#(x) specified at ¢ = 0: one can
always imagine a function 6(t,x) such that 9*6(¢,x) = 0 and 9*0(t,x) = 0 at t = 0, but
nonvanishing at ¢ # 0. If A*(¢,x) solves the Euler-Lagrange equations with the given
initial conditions, then so does A*(t,x) + 0"6(t,x) with the same initial conditions at
t = 0. Since the constraints &, = 0 and ®, = 0 essentially make the canonical Hamilton’s
equations equivalent to the Euler-Lagrange equations, it is clear that they cannot help to
determine A*(¢,x) uniquely at all ¢ as it was possible in the case of the Proca vector field.

Unique determination of the time evolution of A*(t,x) becomes possible if one chooses
a gauge. In a fixed gauge the Euler-Lagrange equations can determine A*(t,x) for all
t unambiguously and it should be possible to find an equivalent Hamilton’s canonical
formulation too. One possibility is the Coulomb gauge

V-A=0. (11.321)

89Tn computing Poisson brackets all variables and momenta have to be treated as independent; therefore,
for any two functionals G and H we have

{G[A”,H#], H[A“,Hu]}PB = /d3X (6/;162;) 51—?/51(;) - 52/{1(;) 51‘?,\%)) '

9To derive the relation {®2, Hr}pp = cdy(eJ”) crucial is taking into account the full Hamiltonian
Hr = H%M + Hmatt which in the case considered here includes, in addition to the terms displayed in
(11.319), also the term Hp,att setting the dynamics of the nonrelativistic particles; as should be expected
{JO, H™at o = 9y J°.
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Another, convenient in some applications, is the temporal gauge A° = 0. However, while
the latter makes the time evolution unique, it does not fix uniquely the initial data: gauge
transformations with time independent function 6(x) are still possible. As a result, the
constraint @, = 0 (the Gauss law) remains in this approach first class and has to be
imposed as a subsidiary condition selecting physical state-vectors of the Hilbert space.
For this reason we here choose to work in the Coulomb gauge (11.321) which classically
has a clear physical interpretation: it separates electrostatic effects from those due to
radiation.

We restart, therefore, the whole procedure with the same Lagrangian density (11.316)
and one primary constraint

P, =V-A=09,4", (11.322)

imposed from outside. As previously one finds &y = Il as the primary constraint and
has to consider the extended Hamiltonian which now involves two initially unspecified
functions v’ and u':

2 1 1 1
HEM — %Hin,- — cIL;0ip + 3 (VxA)? + Do’ 4+ dyu' + = e — —eJ-A .
C C

The consistency condition {®q, Hr}pp =~ 0, leads again to the secondary constraint (the
Gauss law)

Dy = 11 +eJ°. (11.323)
In turn, the requirement that {®;, HF™}pp ~ 0 leads to yet another constraint

O3 = POl — ;0,0 (11.324)

There are no more constraints: conservation of the current J* implies vanishing of D,
provided the function u' is set to zero, while u° can be adjusted to ensure ®5 = 0.

It is convenient to replace the constraint ®3 (11.324) by the linear combination @3 of
(11.324) and (11.323):

Py =000 +eJ’ =0. (11.325)

This new constraint implies that in the quantum theory the operator A°(¢,x) = ¢(t,x) is
related to the operator J° by the identity:%*

o(t,x) = — /d3yJ0(t’Y) (11.326)

drc x—y|

Thus, the operator A°(t,x) = ¢(t, x) becomes completely determined in terms of operators
representing the matter canonical variables only (note, that J° given by (11.313) does not

M Recall that V2 = —47 66 (x).

526



depend on v; and, hence, J° unlike J, when expressed through t; and P, does not
depend on AY). Since @5 = 0, the canonical momentum II, must be represented by the
zero operator, while the constraint ®3 = 0 realized as an operator identity effectively
eliminates the variable ¢ = A° as an independent operator from the quantum theory.

The complete system of constraints ®y, ®;, 5 and Pz is of second class. The cor-

responding 4 x 4 matrix Cy;y = —Cny is nonsingular - it has nonzero elements on its
antidiagonal:
C’lx,2y = {(I) (X) (1)2( )}PB
= 20OV Al (x), T(y)}py =~ 06 (x —y), (11.327)
and
]‘ X X
Coxiy = {2o(%), @z (y)}rn = — Crxzy =~ 760 (x ~y). (11.328)

The canonical commutation relation which must be imposed on the operators A?, I,
A and TI, are determined by the Dirac prescription (11.300). The inverse (C1)V*My of
the C';y matrix has also nonzero elements only on its antidiagonal. These are

1 1 0x,3’
E——— e A R 11.329
drd|x —y| ¢ ( ) ’ ( )

(C_l)lx,2y _
Using this matrix one determines the basic commutator:
[A’ (%), I(y)] = {A'(x), I(y)}p = {A"(x), Ty }pg (11.330)
- [ / Pw { A1), @3(2)}pp, (O™ {01 (W), T (¥) o

(terms with the remaining pairs of constraints give all zero). Using the Poisson brackets

[Al(x), Ts(2)},y = 2000 (x — 2)
{@1(W), T(y)}py = 08P (w —y)

it is easy to find that

1 1 X X 1
[Al(x), W(y)}, = 0000 (x —y) + 90

- . 11.331
! Amlx —y (11.331)

Proceeding in the similar way, one can check that all the remaining Dirac brackets among
the system of variables A’, II;, A° and II, vanish (vanishing of the Dirac brackets of
Il = &y with all functions of the canonical variables of the entire theory is ensured by
the property (11.302)). In particular,

{A'(x), A(y)}p = {li(x), i(y)}, =0. (11.332)
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Therefore, the basic quantization conditions read

_

dr|x —y|’

[A(x), A(y)] = [L(x). T(y)] = 0. (11.333)

[A'(x), TL(y)] = ihd: 6@ (x — y) + oo™

J

The function on the right hand side of the first commutation rule (11.333) is called the
transverse delta function. It has the following momentum space representation

g L 1
i 5(3) . i
OO = )+ O O inlx — ]
i PR o KK
which makes it explicit that
o (660 (x — y) + 80— ) =9 (11.335)
% CO ax—yl) T |

and, therefore, that the commutation rules (11.333) are compatible with the constraint
(11.322).

The resulting Hamiltonian density operator

2

HEM = %HZHZ + % (VXA)2 — Cﬂzﬁl(ﬁ + % €J0Q§ — %eJ-A, (11336)
in which ¢ is now a shorthand for the operator (11.326) and ®, as well as ®; have been
set to zero, together with the quantization rules (11.333) specify in principle the dynamics
of the quantized electromagnetic field. There is, however, one technical problem that the
operator I1;(x) does not commute with matter sector canonical variables. This is because
the Dirac brackets of II;(x) with functions F' depending on the matter sector canonical
variables do not necessarily vanish.?? Indeed, according to the Dirac prescription such
commutators are given by ¢h times the Dirac brackets

{F(mat), ()}, = {F(mat), L)}
= @2 [ dw (Fmat), e (€)1 (@p(w), L)}

The Poisson bracket in the first line is of course zero. To the second line contributes only
the term with M N = 21. This line therefore gives

1 (w)
- /dgz /d3W {F(mat), ®o(z)}pp Trcz —w] O™ 6B (w — x)
(o 1
- /d?’z {F(mat), eJO(z)}PB 0, P p—

921t is easy to check that {F(mat), A'(x)}p = 0.
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This is evidently nonzero, if F is a function of P; because J°(z) given by (11.313) depends
on r;, and {r;, P;},5 = d;;. Dealing with such an operator would be difficult. Therefore,
one defines another operator

1
My =11 — =00, (11.337)

which in fact is just (1/c¢*)A’ (cf. (11.318)), i.e. the transverse (the divergenceless) part
of the electric field, which has better properties. Firstly,

O (Fmat), 6(x)}
= o /d?’ /dgw{F mat), ®y(2)bps (C1) "™ {n(w), 6()}pp

Loeo [ 1
082 /dz{F(mat),e

JO(Z>}PB drclz — x|

(only the element, (C~1)¥#% contributes to the sum over constraints; the Poisson bracket
{F(mat), ¢(x)}pp obviously vanishes), so this precisely cancels out the unwanted term
in the Dirac bracket of II; with F(mat). Hence, the operator IT¥ does commute with the
matter variables. Secondly, since

Lok, d3)), =0

C

(the Poisson bracket of A’(x) with ¢(y) vanishes, A’ has nonzero Poisson bracket only
with ®,, while ¢ only with ®y and (C~1)?%0% = 0, so the second term in the Dirac bracket
vanishes too), it follows that

; . % i X X 1
[Al(x), T (y)] = ih6i 6 (x —y) + ik )m, (11.338)

i.e. the commutator of IT} with A’ is the same as that of II;(y). Finally, one has to check
the Dirac bracket

{I760), T}, = {109, () + 5 0808 {60, 63}
0O, T — - 0PI, 603}

As already has been established in (11.332), the first term on the right hand side is zero.
To show that the remaining three terms also vanish, we note that

Ml = {6, $(3)}es
/d?’ /d3w{¢ By (@) b (C) MM (D (W), 6(y)}ps =0
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the Poisson bracket of two ¢’s vanishes and the second term vanishes because ¢’s have
nonzero Poisson bracket only with Ty and (C~1)%% = (. To complete the proof, we
consider {II;(x), 8;’¢(y)}D: the corresponding Poisson bracket is zero and

_ / &’z / AW {T1(%), Das(2) by (C) ™ {Dx(w), ¥ o(y)} o

also vanishes because II; has a nonzero Poisson bracket only with ®,, ¢ only with &, and
(C~H)120% — (. We have thus shown, that the new operator II¥ has all the properties
required from the canonical momentum operator but in contrast to II;, it commutes with
operators representing the matter sector variables. In addition, IT] satisfies a simpler
constraint than &, = 0:

by = 9,111 = 0. (11.339)
Expressing now the Hamiltonian density operator (11.336) through II} we obtain
2 1 1 1 1
HEM — %HEHE 5 (VXA = 201006+ —eJ°— —e-A
c c

2 1 1 1
N Sy AV + —eJ% —ZeJ-A. 11.34
51l Z+2(V>< )+2ceJq§ ~e (11.340)

The noncovariantly looking term eJ%p/2¢ (obtained after integrating by parts and using
the constraint &3 = 0 (11.325)) produces in the Hamiltonian the term representing energy
of the ordinary electrostatic Coulomb interaction

HM 5 /d3 /d3 462 L)L) (11.341)

T x -yl

It remains to find the representation of the Schrodinger picture operators A* and I} in
terms of the creation and annihilation operators satisfying simple commutation rules and
diagonalizing (if it is possible) the Hamiltonian HF™ = [d*xHEM obtained from (11.340)
by setting J# = 0. In addition, these representations should automatically ensure that
the constraints ®; = 0, $o» = 0 hold as operator identities. It is easy to guess that

Al(x) = / Pk | he 3 [ (k, Nay (k)e™™ + *(k, A)ag(k)e—ik'X], (11.342)

2u A=+1
where wy = clk| and €'(k, \) are two polarization vectors such that
k-e(k,\) =0 (11.343)
(so that the constraint ®; = V-A = 0 is satisfied) and

G(k, )\)6*(1{, )\/) = 5)\>\/ . (11344)
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Because together with k/|k| the two vectors e(k, \) form an orthonormal basis of the
three-dimensional space, the following summation rule holds

i j* ij 'k
D €k N (kN =07 — e (11.345)
A==+1

We then postulate the expansion of the operator I} in the form

I (x) = %/ (;lﬂl;?) \/ % Z [ei(k, A) ax(k) e * — €*(k, \) al (k) e**| . (11.346)

A==1

It is then straightforward to check that with the commutation rules

lax(k), ab (k)] = (27)*6\wi(k — K'),
[ax(k), ax (k)] = [a}(k), ax (k)] =0, (11.347)

imposed all the fundamental commutation relations between A’(x) and II} (x) together
with the constraints ®; = 0, &5 = 0 are satisfied and the free part of the Hamiltonian
(11.340) takes (after discarding an infinite constant) the form®?

EM _ d?’—k w aT a
H} _/(%)371 kA:Zﬂ f (k)ay (k). (11.348)

As the full Hamiltonian of the electromagnetic field coupled to a system of N charged
particles we therefore obtain

d°k A Y R
H= /W hoe 3 al (K)ax (k) +§; (B, — % eal)) (11.349)

2m; c
A==+1 i= v

N N
1 1 2 J0(x).J0
Y VE) 5 Y V(fi—fj)+§/d3></d3y4e ()T y)
=1

ol T2 |x—y|

93By the rescaling v/2hwi ax(k) — ay (k) the first of the rules (11.347) can be brought into the standard
relativistic form

[ax(k), al,(K')] = 0 dr(k — K).

The expansions of the operators A* and II} then take the simple forms

Al(x) = hc/dfk Z (€' (k, A) ax(k) ekx 4 He],
A=+1
Il (x) = _f/drk hwi [e'(k, A) ax (k) e™> — H.c.],
c
with d®k/(2m)3 in (11.348) replaced by dl'y = d3k/(27)32hw.
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where A(r;) is the operator (11.342) depending now on the charged particle position
operators 1;. This dependence is introduced into A by the integral in L, (11.312) and
the delta functions in the current (11.313). Since in the considered NRQED J° is of the
form (11.313), the last term in the Hamiltonian (11.349) is just

- Z 6 QZQQ
Am|t; — ;]

7.]_

which is just the Coulomb electrostatic energy of a system of charged pointlike particles
(in the Heaviside system of units). Note however, that the summation includes infinite
terms arising for ¢ = j which have to be subtracted by hand.

There can be no question about the relativistic covariance of the theory just con-
structed, because matter particles are treated nonrelativistically. Therefore we consider
here covariance of the quantum theory of the free (not coupled to matter particles) elec-
tromagnetic field. In this case from the Lagrangian density (11.250) one obtains the
canonical energy-momentum tensor (we set i =c = 1)

1
Toon = —["0"Ax + 2 9" ™" o (11.350)

which is not symmetric and manifestly not gauge invariant (a disqualifying feature accord-
ing to some). The symmetric Belinfante energy-momentum tensor obtained according to
the prescriptions (11.50), (11.52) and (11.53) takes the form

1
T = =" f5+ 9" P P (11.351)

which is already symmetric and gauge invariant. In the Coulomb gauge (11.321) it gives™

1 .
P /d3x7§;9nm —5 /d3x [AZAZ + (VxA)z] , (11.352)
which is just (11.340) for zero external current J* and
P = / PxI1,0'Ay, . (11.353)

Of course, the same P° and P! are obtained from the nonsymmetric and not gauge
invariant canonical energy-momentum tensor (and in this sense it is not worse than the
Belinfante one). The canonical tensor M#** (11.54) of the electromagnetic field also takes
the non gauge invariant form

M = o Thiy = T i (Ti) ", A7 (11.354)

94Gince we consider now the free electromagnetic field, A° = 0 and I} = II; = A
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and in the Coulomb gauge yields the generators J¥ and J% of the Lorentz transformations
Ji = / dix { AN @0 — ) A" — (AT - Har)

JO = ¢pi /dsxxi% [A’“A’“ + (VxA)z} : (11.355)

The operators H = P°, J' = €M J¥ P' and K' = J% can be shown to satisfy
the Poincaré algebra commutation rules (6.21) by virtue of the canonical commutation
relations (11.338). It is also easy to check that

el AR (g) e iwP" — AF(x 4 a). (11.356)

However, while
6§wijJJAk(x) 6—§wijJ] _ (6—50-12'3\7\}&) l AI(A_l(CU)'ZE') ,

if A is a pure rotation, performing the transformation of A*(z) corresponding to a Lorentz
boost one finds that

eZUJOZ-JOAk;(x) 6—ZUJQZ‘JO — (6_1w0i\7\9cc) l AI(A_l(w)[L') + AAk(:I:) = A,k(x)7

where the extra term AAF(z) ensures that the 9, A”(z) = 0 as it must be for consistency:
the divergence of the left hand side of the above formula obviously vanishes. This means
that transformations of the photon field operator A*(z) generated by K* consist of the
corresponding Lorentz boost supplemented with a suitable gauge transformation. Thus,
transformations generated by the conserved Noether charges (11.350) and (11.354) in the
Coulomb gauge automatically preserve this gauge.

Finally we consider the thermodynamical properties of the free electromagnetic field
in equilibrium with the walls of a box of volume V = L3. If the field is quantized in the
box, the Hamiltonian takes the form

HEM = Z Z hwk CLLACLk)\, (11357)
k A==£1

where now the wave vectors k are discrete, k = (2r/L)n, wy = c|k| and
[ak/)\/, CLL)\] = 5k/k5/\//\ . (11358)

The Hilbert space is spanned by the Hgy eigenstates |ny, L M oAy - - .}, where each
occupation number ny;), can run from 0 to infinity. This allows to easily compute the
Gibbs Canonical Ensemble partition function

00 00
_ E —hwy /kT\ kX4 E —hwy kT ™k
Zstat - H (6 i/ ke ) (6 e/ ks )
k nk>\+:0 nkx_ =0

1 2
“T1 (1 . 6—mk/kBT) , (11.359)
k
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The Helmholtz free energy is then?

F(T,V)=kpT Y 2In(1— e "x/tT)
k

or, in the thermodynamical limit,

2V
F(T7 V) = ]{ZBT (27T>3 /d3k In (1 o e_hwk/kBT)
= kT % dww?In (1 — e/t ). (11.360)
0

All well known properties of the electromagnetic radiation in equilibrium, including the
celebrated equation of state p = su(T), where u(T) = U(T)/V is the radiation energy
density, can be derived from the free energy F(T,V).

11.8 Canonical construction of half-integer spin quantum fields

As demonstrated in Sections 11.2, 11.3, 11.5 and 11.7, the formal procedure of canonical
quantization (supplemented in the case of systems subject to constraints by the Dirac
methods described in Section 11.6) applied to classical (c-number) fields, which under
spatial rotations of the reference frame transform as integer spin representations of the ro-
tation group, allows to build theories of quantum fields elementary excitations (“quanta”)
of which are bosons. In the interaction picture (see Section 11.9), i.e. when the basic field
operators of such quantum theories are represented in Fock spaces of eigenvectors of the
free Hamiltonians of such theories, one recovers the same Feynman rules for comput-
ing S-matrix elements, which in Chapters 8 and 9 were obtained in the approach based
on quantum mechanics of relativistic particles, without any reference to classical fields.
Apart from making (owing to the Noether theorem presented in Section 11.1) extraction
of consequences of various possible symmetries more straightforward, the most important
virtue of the approach based on field quantization is that being essentially nonperturba-
tive, it leads more straightforwardly to a deeper insight into the structure of the quantum
theory (see Chapter 13).

Here we want to lay similar foundations for relativistic interactions of half-integer spin
particles. Superficially, it could seem it should suffice to apply the same formalism as pre-
viously to classical c-number fields but transforming under changes of the Lorentz frame
as half-integer spin representations of the Spin(1,3) ~ SL(2,C) group (the universal cov-
ering of the Lorentz SO(1,3) group). This indeed seems to be so in the case of the best
known kind of half-integer spin particles - massive charged fermions accompanied by their
antifermions: as in many textbooks one can in this case start with a relativistically in-

11

variant Lagrangian density of a c-number complex Dirac field 1/ transforming as the (3, 3)

9% Had we left unsubtracted the (infinite) energy of the zero point oscillations, we would get in F(T, V)
an extra term »_, hwg.
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representation of the SL(2,C') group arguing that to obtain a sensible quantum theory
it is necessary to replace the Poisson brackets with the anticommutators instead of com-
mutators (one usually passes freely over the fact that the ordinary Poisson brackets and
aticommutators have different symmetry properties and over the presence of constraints
in this case). Yet, relativistic interactions of not all types of half-integer spin particles
can be obtained in this way. The simplest counterexample is the massive neutral spin
1/2 particle (called Majorana fermion) the field operator of which was constructed at the
end of Section 8.3. This is because already the corresponding classical free Lagrangian
density cannot simply be written down: in the expression

L = Nicg" O\ — %m()\)\ + AN (11.361)

(see Section 8.6 for the Lorentz transformation properties of A\, and A%) the term propor-
tional to m is simply zero, if A, and A% are treated as c-number spinors. This shows that
the consistent field-based approach to constructing quantum theories of fermions must
start with Lagrangian densities which are (bosonic) functions of fields taking values in
the Grassmann algebras generated by infinite sets of anticommuting generators.

To get acquainted with these notions it is convenient to consider first a classical bosonic
system having a finite number of degrees of freedom. Dynamics of such a system, a
physical state of which is characterized by the values of n generalized (real) variables
q', can be formulated as a mapping from R (time) into the n-fold direct product F x

. X F of an abstract algebra F of functions f(a!,...,a*") of 2n variables a!,..., a*"
which are identified with initial values ¢(, ..., qy, 43, - -, 45 of the variables ¢’(¢) and the
corresponding generalized velocities ¢'(t). Indeed, the values ¢'(t) at different instants ¢
of time can be treated as a set of n functions ¢'(t) = fi(¢,a',...,a*") of the variables
a',...,a*. With an appropriate topology (to define convergence of sequences) functions
like f'(t,a', ..., a*") can be viewed as elements of an abstract commutative and associative
algebra over R generated by the set of 2n commuting generators a', . .., a*" (afa' = d'a®):

2n 2n 2n
i 1 1
f(al, cey a’ ) = f(] —+ Ek fk a® + 5 E fk1k2 akak? -+ 5 E fklekS akrak2qh +. (11362)

k1,k2 k1,k2,k3

Differentiation can in the algebra F be defined as a linear algebraic operation by the basic
rules

o . 0 0
—a' =46, and —da'...d". . .d==—"d%'  d=da. . .d.
da’ J dak dak
and their extension to arbitrary elements of F using linearity. Thus, at a fixed instant
t each ¢'(t) is an element of F; a classical trajectory (¢*(t),...,q"(t)) can be, therefore,

viewed as a mapping t = F X ... x F.

A Lagrangian which determines the dynamics of such a system is in this picture a
mapping of the 2n-fold direct product of the algebra F into F itself: F x ... x F —
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L(f',..., f*) € F and the action functional I[g(t)] is given by

t2
I[q(t)] — / dt L(al, ey a2n)|a1:q1(t) ..... a2"=d2"(t)

t1

t2
= / dt L(a',. .. ,aZ")}
t1

Its variation with respect to the trajectory is to be understood as

5I[q(t)]:/t2dt2(aL i) + 2L %&zi(t)), (11.364)

— |6 —
t1 i=1 da’ a(t) + Oanti

/tzdtL(ql(t), LGP (11.363)

t1

where each §¢‘(t) is again a mapping from R into F which reduces to the zero element of
F for t =t and t = t».

The fermionic counterpart of the algebra F of functions introduced above is the Grass-
mann algebra G over C generated by 2m elements (generators) &1, ..., €™ which anticom-
mute:

gl = —gPee (11.365)
Each element of G is of the form
9=go+ Zgag + ) 00D Garan, €€ (11.366)
a1 <ag a1<...<a2m

In contrast to (11.362), the number of terms in the above sum is finite owing to the
property (11.365) which implies that £¢“ = 0 (the zero element of the algebra G). In
the natural way the Grassmann algebra splits into the direct sum of Geyen, and Goqq (the
only common element of these two subspaces being the zero element of G) the elements
of which have the general forms

Goven = G0+ Y Jonen €6+ D Gy £ 0

a;<ag a1 <...<a2m

Godd = Y Gal®H it D Gurag s T
[e a1<...<a2m-—1
respectively. Elements of Geven and Gogq can be distinguished by assigning them the G-
algebra parities P, which assume values 0 and 1 respectively (a general element of G has
no definite parity).

In the algebra G one defines two linear operations called left- and right-derivatives
with respect to the generator &% by the rules

B _— B
aga’g 350/5 0%
a 0 «@ o _ (__ «@ o _ (_1\L o
g &€& = (1) Ma&@ &= ()R,
a 0 «@ o _ (_1\R a orca _ (_1\R o
G &€ = (—1) e &€ = (—1)R¢7.. ¢,
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where L (R) as a power of (—1) stands for the numbers of interchanges of the generators
needed to place £* to the left (right) of the string of the generators.

Analogously to the bosonic case, “classical” dynamics of a fermionic system character-
ized by m variables ¢® is a mapping from R into an m-fold direct product Goqq X . . . X Goaa
with the generators £!,...,&™ and £™F!, ..., £2™ having the interpretation of the initial
“values” 9§ and ¢3 of the fermionic variables ¥*(t) and 1&“(1&), a=1,...,m. The La-
grangian is in this case a mapping of the 2m-fold product Gogqq X ... X Goaq iNt0 Geyen:

L (), 01 (1), - ) = LIE - €™, emtiziigo,.. - (11.367)
Dynamics (the equations of motion) follows from the condition §I[¢)(t)] = 0 where the
variation is written in terms of the right derivatives”®

2o~ OL oL | d
olY(t)] = dt o™ (t — | =0 (¢t 11.368
pol = [ a3 (o] o0+ | o).

where each §1*(t) is an arbitrary mapping from R into G,qq reducing to the zero element
of Goqq for t = t; and t = t5. The resulting “classical” dynamics is then rather abstract
and, as has been discussed in the introduction to this chapter, no picture of fluctuating
fields can be associated with the corresponding quantum theory.

Finally, the mathematical structure allowing for a uniform treatment of mixed bosonic
and fermionic systems is the Bieriezin algebra B obtained from the Grassmann algebra
by treating the coefficient functions g,,.. in (11.366) as elements of the algebra F of

functions.”” Thus, the Bieriezin algebra is generated by 2n + 2m elements (generators)
20 2 =a'i=1,...,2n and 22"t = £* o = 1,...,2m, which have the property
202b = (—1)Falbby (11.369)

with the natural assignments of the B-algebra parities P, (which as in the Grassmann
algebra can assume values 0 and 1). Obviously, the parity of a product b;bs of two elements
of B having well-defined parities Py, and P, is Py, + Py, (mod 2) and byby = (—1)"1 20,0, .
Similarly as the Grassmann algebra, the Bieriezin algebra naturally splits into the direct
sum of the even and odd subspaces Beyen and B,gq the elements of which have well defined
parities (0 and 1, respectively). Left- and right derivatives with respect to the generators
2% are linear operations defined by the rules similar to the ones in the G-algebra

9 k
9, P = ;(—1)“52" 2 (no2%) . 2t
5 k
v A = ;(—1)&53 21 (noz%) ... 2t (11.370)

96 Alternatively it can be written in terms of the left derivatives with the variations placed to the left -
see the formula (11.371).
970f course real and imaginary parts of each Ja, ... are treated as two independent elements of F.
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where L; (R;) are the numbers of odd generator interchanges needed to place z% on the

extreme left (right) of the string of the generators. Left- and right-derivatives with respect
to bosonic generators a' are, of course, identical. A useful property of derivatives with
respect to fermionic generators £* are

0 0
fga (bodd) = Wga (bodd) )

0 0

T (beven) = AT (boven ) - (11.371)

Dynamics of a mixed bosonic-fermionic system is determined by the action principle

t2 oL oL d
5Ilg,ql = [ dt 5"+ —— —5¢" ) =0,
g, 4] /tl ( onge O B q)

in which L(z!,...,2%""?™) is a function taking values in Been and its derivatives with
respect to ¢* and ¢* have to be understood as in (11.364) and (11.368). The equations of
motion take the standard form
d oL 0L
dt 8Rqa N 8Rqa

a=1,...,n+m. (11.372)

Hamiltonization of the dynamics of a bosonic-fermionic system is analogous to the
one of the ordinary bosonic systems except that one has to fix a convention (which is
arbitrary) for the definition of the canonical momenta. We chose to define the momenta
pa(t) as right derivatives

oL
o(t) = — . 11.373
Pa(t) ) ( )
Consequently, the Hamiltonian must take the form
H=> pd L, (11.374)
b

in order for its differential dH to be independent of the differentials d¢® of the velocities.
Indeed, with this definition the differential of H can be written as

L 0 0 L L
dH:—a'bq'b< J dq® + 0 dq’“)— 0 dq® — 0 dq®

Orq Orq® Orq*® Orq* Orq®
oL 0 oL oL 0 oL oL
— — da ‘b+—'5bd'a+<—,—,d‘a) b da_ : d-a
<8qu Orq® 1 ) 1 Orq® 1 Or¢® Org® )1 Orq® 1 Orq® 1

The second term cancels now against the last one and the first one combined with the
third one can be replaced by dps ¢° because

0 oL 0 oL
dpy = — | d¢* + —— | =—= ) dq*,
P Orq® (8qu) 1 Orq® <8qu) 1
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so that finally

. oL
dH = dpy " — wdqb,

demonstrating that H is in fact a function of only the variables ¢* and of the conjugated
momenta p,.

The Poisson bracket of the two functions F' and G of definite B-algebra parities must
be defined in agreement with the adopted convention. The correct definition is

- OF 0G pop, 0G OF
U Ghes = Za: <8Rq“ ILPa =1 Orq (9Lpa) ’ (1L.375)

with the left derivatives with respect to the momenta. It has the easy to check properties:

{F7 G}PB = _(_1>PFPG {Gv F}PB ’
{F7 GH}PB = {F7 G}PB H + (_1)PFPGG{F7 H}PB :

With the definition (11.375) of the Poisson bracket in the B-algebra the canonical equa-
tions of motion ¢* = {¢°, H}pp, pa = {pa, H}pp, are, in the case of systems not subject to
constraints, equivalent to the Euler-Lagrange equations derived from the action principle

01g(t)] = 0.

Canonical quantization of such systems consists of promoting their canonical variables
q, p; having 0 G-parities and ¢, 7, of negative G-parities to Schrodinger picture operators
q*, pi, Y™ and 7, satisfying the (anti)commutation relations:

[gi’ ﬁ]] = ZH’{an pj}PBa {,J}a’ 7A.(-B}-i‘ = ih{waa WB}PB) (11376)

in agreements with the symmetry /antisymmetry properties (11.376) of the corresponding
Poisson brackets. The resulting equations satisfied by the Heisenberg picture operators
G (t) and ¢%(t) are then formally identical with the classical Euler-Lagrange equations
(11.375).

The Dirac procedure allowing to handle systems subject to second class constraints
extends to the case of mixed bosonic-fermionic systems essentially without modifications.
The only difference is that the C' matrix defined by (11.299) is in this case a superma-
trix and has more complicated symmetry/antisymmetry properties (the Poisson bracket
(11.375) in the B-algebra is not simply antisymmetric).

Transition from classical mechanics to classical field theory is achieved, as usually, by
passing with the number of variables ¢® (and therefore also with the number of generators
of the Bieriezin algebra) to the continuum, that is by ascribing a certain number of
independent variables to each space point x.

As an example of the application of this formalism we consider here quantization of the
relativistic Grassmann field ¢ transforming as the spinor representation of the Lorentz
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group, or more precisely, as the representation of the group Spin(1,3) - the universal
covering of the Lorentz SO(1,3) group. The extension to Spin(1,3) is possible because
(what is clearly reflected in the formalism of the Grassmann and Bieriezin algebras) such
fields are not classically measurable; all observables must be bosonic (i.e. belong to Geyen OF
Beven) that is bilinear or quadrilinear etc. in the fields ¢) and transform as representations
(scalar, vector, tensors) of the true Lorentz group.”® We assume therefore that under
the change of the reference frame x — 2’ = A-x the Grassmann algebra valued field v
transforms as

W (@) = e 5T () (11.377)
where the matrices J/j, of the spinor representation satisfy the commutation rule
my Ao | vA X 7Vp vp THA VA THp
|: spin’ ‘7spin] - (gup*7spin - gM \7spin -9 pt7spin +9g ‘7spin) . (11378)

As discussed in Section 8.3 the matrices J), can be constructed either by means of the
Clifford algebras or by exploiting the isomorphism of Spin(1,3) and SL(2,C). Here, as
in (8.52) we take
y 1
‘7sl;in = Z
with the 4 x 4 matrices 7* satisfying the basic Clifford algebra relation (8.51) in the
representations (8.63) or (8.65).

¥, 2" = 5 0k, (11.379)

N —

The most frequently encountered Lagrangian density (leading to the theory of nonin-
teracting fermions) has the form®

£ = 17030, — m 00 = ("8, — m) (11.380)

(Lorentz invariance of this Lagrangian density can be shown using the formulae given in
Chapter 8). The Grassmann algebra-valued fields 1, and ¢! are four-component spinors.
They are all treated as independent Grassmann algebra valued variables. The Euler-
Lagrange equations derived from (11.380)

V(I8 —m) ¢ =0, (11.381)
Y (—iv’@u — m) =0,

98 At the “classical” level this is the only argument why to consider fields transforming under a larger
symmetry group than SO(1,3) despite the fact that only the Lorentz group of symmetries can be inferred
from physical experience. In the quantum case, as was discussed in Chapter 4, going over to the universal
covering of the SO(1,3) group is a natural consequence of the possible occurrence of the projective
representations of SO(1,3).

99 Another, less frequently encountered, is the symmetric form:

; i
L=3 PIy 091 9,1 — 3 0Ty 1p — mpTy 9.

Using the Dirac formalism it is easy to check that it leads to the same quantum theory as (11.380).
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are just the Dirac equations.

To set up the canonical formalism for this system we first find the canonical momenta
(recall that the derivatives are the right ones)
oL oL
My, = — =iyt My = —— =
OrY OpT
It is clear that it is impossible to express w and W through I, and IL,:. The system is
therefore subject to constraints (we suppress spinor indices)

®,(x) = Hy(x) —ip(x) =0, Py(x) = i (x) =0, (11.383)

(11.382)

which are of second class. Although in this case the Dirac procedure described in Section
11.6 is not really indispensable, because the canonical equations when restricted to ¢ and
11, are fully equivalent to the original Euler-Lagrange equation (11.381), it is instructive
to go through this procedure to see how it leads to the well established results.

The total Hamiltonian density constructed according to the rules of Section 11.6 reads
Ho = Myt + Lyt — hi) — iy’ dp + m )
= Iy (=iy'0; + m) P + Byut + Pou’. (11.384)

The functions u! and u? are just the velocities ¥ and W. Equating to zero the Poisson
brackets of the constraints with the Hamiltonian Hr = f d*x Hr

{®1, Hr}pp = —0(iv" 0y +m) — iu?,
{®y, Hrlpp =°(—iv"0k + m)y —iu',

determines these functions. No new (secondary) constraints are needed. Combining

u' and u? obtained in this way with the canonical equations ¢ = {¢, Hylpg = u',

@bT = {yf, Hr}pp = u? one obtains the equations which are fully equivalent to the Euler-
Lagrange ones (11.381).

In order to quantize the theory one computes the Dirac brackets. The nonzero elements
of the C' matrix are Cix 2y = Cox 1y = {P1(x), P2(y)}rs = —i6®) (x —y) (it is in this case
symmetric). Its inverse reads

(C~H2y — (O~ — 5O (x —y). (11.385)
The Dirac brackets computed as in (11.301) read

{v(), Ty(¥)}p =¥ (x—y),
{v(x), ¥(y)tp = —idP(x—y),
{¥(x), My (y)}p =0,

{v'(x), My(y)}p =0,

{1 (x), y(y)}p =0,

{¢1(x), My (y)}p = 0.
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The canonical quantization rule is now {A, B}, = ih{A, B}p which leads to the canon-
ical anticommutators

{¥a(x), ¥h(y)} e = hoas 6P (x—y), (11.386)
{ta(x), ¥s(y)}+ = {l(x), ¥i(y)}+ =0.

Since in the quantum theory the constraints are realized as operator identities, 1L+ be-
comes the zero operator and Il, can everywhere be eliminated in favour of i)!. The
Hamiltonian density operator therefore reads

H =PIy (—iv* 0, +m)y. (11.387)

The next step is to expand the basic operators 1,(x) and ] (x) into creation and
annihilation operators, satisfying simple anticommutation rules. Since 1, has four inde-
pendent components, there must be four annihilation and four creation operators. As the
Grassmann variables 9, and 9] are not real c-numbers, the corresponding operators ),
and ¢! need not be Hermitian. Making an educated guess (based on the construction in
Section 8.3 of the operators associated with spin 1/2 particles) we write therefore their
expansions in the forms

Po(x) = /de P Z [ua(P, 0) au (P, o) + Vo (=P, 0) ay(—p, 0)], (11.388)

o

$ix) = / ATy ®* ™ [ut(p, 0) al)(p, 0) + vi(~p, @) al(~p,0)]

g

using the functions u,(p, o) and v,(p,o) constructed in Section 8.3 and with dI', =
(27)32E,, E, = \/p? +m?. Computing the anticommutators (11.386) and anticipating
that {a,, a,}+ = {af, af}, =0 we get

(a0, }(3)}s = far, [ary e 375
[10(,0) w3 (0s) {0u(,), al (0,0}
+a(=p,0) 15 (P ) {au (., a0} ].

Recalling the summation rules (8.104):
D (P, o) up(p,0) = Y ua(p,0) us(p,0)7" = [(Epy’ —p-y +m)N°]

Y val=p,0) v5(=p. o) = [(Epn* + Py —m)Y] 5

o

it is easy to check that the commutation rules (11.386) are satisfied if

{QU(p> U)’ aL(p/a UI)}+ = 5F(p - p,) 500’ )
{av(p> U)a a':[;(p,a OJ)}-l— - 51“(1) - p/) 500’ 3 (11389)
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and the other anticommutators are zero as anticipated.

To express the Hamiltonian through the operators a,, etc. we use the equality!®

V(=170 + m)(x) = /de Ep ™Y " [au(p, o) u(p, 0) — ay(—p, o) v(—p, 0)],

o

and the normalization conditions

uT(p> ) u( a ) - 2Eﬁp 5aa’a
vi(p, o) -v(p, o) = 2E, 0y, (11.390)
uT(p> U) ( b, o ,) T( -b, U) ’ U(p, OJ) =0,

which can be derived from the rules of constructing the functions u(p,o) and v(p, o)
given in Section 8.3. In this way one gets

H = [dx 01 (-0 '0s + m)u()
/dF E, Z ) au(p, o) — al(p, o) a,(p, )] . (11.391)

If the basic rules (11.386) and consequently (11.389) involved commutators (instead of
anticommutators) this form of the Hamiltonian would be a disaster: from the commutation
rules it would unambiguously follow (at least if the system is quantized in a finite box)
that there is a state |(y) annihilated by all a, and a, and that all other states are
created by acting on |Qg) with a!l and af. But the states created by al would then
have negative energy! In the Fock space there would exist states with arbitrarily large
negative energy and, therefore, the spectrum of the Hamiltonian would not be bounded
from below. Fortunately, with the anticommutators such a conclusion does not follow:
since the anticommutation relations are symmetric with respect to interchanges a < af
we can call a, the creation operator. More formally, one can make the substitution

a,(p,0) = b(p, o), al(p,o) =b'(p,0),
a,(p,0) =d'(p, o), al(p,o) =d(p,o), (11.392)

which allows to rewrite the Hamiltonian (discarding the infinite constant) as

H = / ATy By 3 [(p, o) b(p, 0) + d (p, 0) d(p, 0)] (11.393)

1007t follows from the equalities

YO (=i O +m) u(p, o) eP* = A°(v-p + m) u(p, o) eP>* = E, u(p, o) P>
(=i 0 +m)v(—p,0) P> =1 (y-p + m)v(—p,0) eP* = —E,v(—p,0) P>,

which in turn follow from the formulae (8.100) written in the form (\"Ep —~ - p — m)u(p) = 0 and
(7’ Ep +~-p +m)v(—p) =0.
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The Hamiltonian (11.393) is positive semidefinite and the operators b'(p, o), b(p, o) and
d'(p, o), d(p, o) satisfying the rules

{b(p, U>7 bT(pla U/)}+ = 5F(p - p/) 500’ )
{d(p> U)’ dT(p,> Ul)}_,_ = 5F(p - p/) 500’ ’ (11394)

(with all other anticommutators zero) are the creation and annihilation operators of par-
ticles and antiparticles, respectively. This interpretation follows from the fact that states
created by b'(p, o) and d'(p, o) have the same energies (and, hence same masses). More-
over, the Lagrangian (11.380) is invariant under the global transformations

P =@y Pl gl = 90yT (11.395)

forming a U(1) symmetry group with () being the charge (arbitrary in the free field theory)
and 0 the transformation parameter. The corresponding conserved Noether!®! current is

3" = Qi "y, (11.396)

and the states created by b and d' are eigenstates of
Q= [#xi00 = Q [ar, Y (9.0 bp.o) — di(p.0)dipo)] . (11397

with opposite eigenvalues

Q b (p,0)[) = Qb'(p,0)[),
Q d'(p,0)|) = —Qd'(p, )| %) (11.398)

Quantization of the theory defined by the Lagrangian (11.361) can be performed along
the same lines. Quantization of theories of fermionic and mixed fermionic-bosonic systems
of fields the complete Lagrangians of which consist of (11.380) (or (11.361)) plus terms
involving higher powers of fields than the second (examples of realistic such theories will
be discussed in Section 11.12), also proceed along the same lines.

As in the case of the scalar field ¢ discussed in Section 11.2, one can now introduce
time dependent field operators (¢, x) = 1 (z), 1’ (t,x) = ¥(z) by the formulae

Y(t,x) = eflp(x) e it x) = )l (x) et (11.399)

They satisfy the canonical equations of motion

d , d .
Ew(t,x) = i[H, ¥(t,x)], EwT(t,x) =i[H, ¢'(t,x)], (11.400)

101The Noether theorem is for theories of Grassmann algebra valued fields derived exactly as described
in Section 11.1.
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which take the form formally identical with the classical equations of motion derived
from the underlying Lagrangian (that is with the equations (11.381) in the case of the
Lagrangian (11.380)). The time-dependent operators 1 (¢,x) and (¢, x), which in the
theory of free fields are the Heisenberg operators and in the theory of interacting fields
in which the Hamiltonian (11.387) or (11.393) play the role of the free part Hy of the full
Hamiltonian, are the interaction picture operators, take the forms

() = / 0Ty 3 (77 ta(, 0) b(D, 0) + € 0 (p,0) d! (. 7)) .

g

$i(z) = / 0Ty 3 (7% 03D, 0) d(p, 0) + €= 42, (p, 0) b (p, 7)) .

One can also find the canonical energy-momentum tensor

oL
= 9 gy gvr.
o) VI

As long as the Lagrangian is linear in ¢ and ¢! (as in (11.380)), the time dependent
(Heisenberg picture) operators satisfy the equations of motion which make £ vanishing
(as the operator) and TX* simplifies to the first term only. Thus, in the theory (11.380)

T = ity 0"y (11.401)

When expressed through the field operators [d*x 720 is just the Hamiltonian (11.393)
and

P [ex7s = a3 Pe.obp.0) + d (po)dpo)] . (11402)
is the momentum operator commuting with H. Finally, the canonical tensor
M = g T T O (g, (11403
(9R((9u¢)
gives the operators generating rotations and boosts
J = i/d?’X@bT (x”@“ — 270" — %0'41/24)7#. (11.404)

To see that the particles which are “quanta” of the field ¢ have spin s = 1/2 it is enough
to act with J'2 = J* on the one-particle states representing particles at rest

1
JE0T(0, 45 )[Q0) = £57(0, 45 )[00) ,

1
J*d(0, £1)|Q) = +5 d'(0, £3)[) . (11.405)
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More generally, one can check the commutation rules of the operators H, P, J and K
and verify that the one-particle states bf(p, £5)[Q) and d'(p, +3)[€) transform under
the action of the U(A) ~ 1 — fw,,J* + ... operators in the way appropriate for spin 1,2
particles.

Statistical properties of the quantized fermionic field can also be readily obtained. If
it is quantized in the box of volume V = L? the Hamiltonian (before subtracting the
infinite constant) is

H =33 Ep (bybos +dbydps — 1), (11.406)
P g
and the Hilbert space is spanned by the states [nl,,...,n%,,...) with n_ nd =0 or 1.

Since there is a conserved charge Q, one computes the Grand Statistical Ensemble sum

E(T,V, ) = Tre P+

2
1 1
— H Z e2BEp o=B(Ep—pmny, | H Z 03 8Ep o —B(Eptu)ng
P P

2

n%=0 ng=0
=TI (1+ e Tp=)? (1 4 ¢=BEptm)? (11.407)
P
(the squares come from the two spin states). Thus, for Q(7,V,u) = —kgT InZ, after
going over to the continuous normalization, one gets the formula
T, V,p) = —QV/dgip {Ep + kpT'In (1 + e PFom)
T (2rh)3 VP

+kpTIn (1 + e PPt} (11.408)

where E, = /c?*p?+ m?2c* and the factor of 2 accounts for two spin states per each
p. Notice that the temperature independent contribution to the potential Q(7T,V, u), i.e.
the contribution of the ground state state (of the bosonic and fermionic fields zero point
fluctuations), is absent if the system consists of a single four-component Dirac fermion
field and two complex scalar fields (cf. (11.153)) having the same mass term as the
fermionic field - such a set of fields forms the simplest multiplet of supersymmetry.

11.9 Transition to the interaction picture

As in the approach to quantum field theory based on quantum mechanics of relativistic
interacting particles, also in the approach relying on quantizing fields one can assume
that the full Hamiltonians of interacting fields possesses (in the infinite space) in and
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out particle-like generalized eigenvectors |ay) which, owing to ther Lorentz transforma-
tion properties, can be interpreted as representing particles entering or emerging after
interactions. One is therefore primarily interested in obtaining S-matrix elements

Spa = (B-loy)

allowing to compute various transition rates using the recipes formulated in Chapter 10.
It is therefore necessary to discuss how to recover in the approach based on quantization
of interacting classical fields the perturbative expansion (and the related Feynman rules)
which in Chapter 9 was formulated within the approach based on constructing interac-
tions of relativistic particles. As we will see, the procedure by which this is achieved,
called transition to the interaction picture, when applied to classical relativistic fields au-
tomatically produces all the additional interactions which in the previous approach had
to be included by hands in order to obtain a Lorentz covariant S-matrix.

We begin with the simplest example of the theory of a single scalar field p(z) defined
by the Lagrangian density

1 1
L= §8ug08“<p — §M2g02 — Hine () . (11.409)

in which H;u(¢) is some interaction Hamiltonian density. After performing quantization
as in Section 11.2, the Hamiltonian of this system, expressed through the Schrédinger
picture (time independent) operators ¢(x), II(x) satisfying the rules (11.70) takes the
form of the sum of the free Hamiltonian

Hy = % / d*x [T2(x) + (Vip(x))? + M2 (x)] (11.410)

which is quadratic in the field operators and the of interaction'??

Vi =[x Mo, 100 (11.411)
The formula
+o0
Sga = (Bo| T exp (—z’ / dt V&(zﬁ)) ) , (11.412)

for S-matrix elements established in Section 7.3 using general rules of quantum mechanics
should apply also to the field theory case. In (11.412), as in (7.64),

VI () = citit / 05 Mo (12(x), T1(x)) ¢t

= /d?’x?-[int(gpf(t,x),HI(t,x)) = /dgx’HiInt(t,x). (11.413)

102 be more general we write the formulae as if H;,; depended also on TI(x).
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and for the states |ap) one should take the generalized eigenvectors of Hy (11.410) con-
structed in Section 11.2. The time-dependent operators r(z) = ¢;(t,x) and II;(z) =
I1;(t,x) given by

iHot e—iH()t

pi(t,x) = e p(x)
II;(t,x) = o' [I(x) e~ ot (11.414)

)

are called in this context the interaction picture operators and have the structure of the
free-field operators constructed in Chapter 8:

or(z) = /dFk (a(k) e~ 4 gt (k) eik-m) 7

I;(z) = % / dl'x E(k) (a(k) e *" — al(k) ™). (11.415)

with k- x = Ext — k-x. They satisfy (by construction) the equal-time commutation rules

[or(t,x), T, (t,y)] = i6® (x —y), (11.416)
etc. and the “Klein - Gordon” equations

(aﬂa“ + Mz)gpj(t, X) = 07
(0,0" + M) (t,x) = 0. (11.417)

It should also be clear that the free Hamiltonian Hy (11.410), remaining time-independent,
can be also written in terms of the time dependent interaction picture operators

. . 1
Hy = ¢ Hy ™Mot = o / d*x [T17(t, %) + (Veor(t,x))* + M2@3(t,x)] .

In the case of the theory (11.409) it is obvious that ¢(t,x) = II;(¢,x). In more
complicated cases like the one of the electromagnetic field interacting with other fields
(to be discussed below) it is useful to remember that ¢;(t,x) and II;(¢,y) satisfy the
equations

¢I(t>x) = Z-[}IOa @I(t>x)] )
I1;(t,x) = i[Hy, TI;(t,x)], (11.418)

with the initial conditions ¢(0,x) = ¢ (0,x) = @(x), II;(0,x) = II15(0,x) = II(x). The
first of the equations (11.418) unambiguously fixes the relation of ¢ (¢, x) to II;(¢, x).

In this way the perturbation expansion of the S-matrix (which leads to the Feynman
rules discussed in Sections 9.3-9.6) derived from principles of quantum mechanics in the
framework of Chapters 8 and 9 is recovered in the approach based on quantization of
relativistic fields. It should be obvious, that this perturbative expansion is based on the
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same assumptions as those formulated in Section 7.3, namely that the particle-like in and
out eigenstates of the complete Hamiltonian are in the strict one-to-one correspondence,
specified by (7.39), with the eigenstates |ag) of the free Hamiltonian (11.410).

Transition to the interacting picture is more subtle in the case of vector (massive and
massless) fields. Let us first consider the Lagrangian density

1 1
L= 3 Ot — 5M2 2 — Hi(o) — JOu0+ . . ., (11.419)

in which J# is some four-vector constructed out of fields other than ¢ itself (the ellipses
stands for terms depending on these other fields). The canonical momentum is given by

oL
Il = 5 Ao — Jo (11.420)

and the Hamiltonian constructed according to the rules takes the form
1= [@x1160500 ~ [d'x L6, 6(x)
- /d3x {H (IT + Jo) — %(H +Jo)2 + % (V)
+%M2¢2+Him+J-V¢+J°(H+J0)}. (11.421)

Upon canonical quantization ¢(z) and II(z) become Schrédinger picture operators ¢(x)
and I1(x) satisfying the standard canonical commutation rules. Splitting the full Hamil-
tonian into the free part Hy and the interaction Vi one gets Hy(Il(x), p(x)) of the same
form as in (11.410) and

Viee = / Px [60.°0) +3(x) Vol + 5 ()" + Hawlp(x)]. (11.422)

As in the preceding case, H, gets diagonalized upon introducing the creation and anni-
hilation operators and the Fock basis of Hy eigenvectors is constructed to play the role
of the |ap) states in the formula (11.412). The interaction picture operators ¢;(t,x) and
I1;(t,x) are obtained as in (11.414). The important point is that the first of the equations
(11.418) tells that the operator II;(¢,x) is related to dyp;(t,x) by

HI(ta X) = aOQDI(ta X) ) (11423)

and not by dypr(t,x) — J?(t,x) (as in the case of the corresponding Heisenberg picture
operators). For this reason the interaction Vi (¢) used in the perturbation expansion for
the S-matrix takes the form

VE(t) = / d*x {J}L(t, x) O,up1(t, ) + % (J2(t, %)) + Himi (01 (8, %)) | (11.424)
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i.e. it acquires a noncovariant term (J?)2, so that the expression under the integral over
d®x in (11.424) is not a Lorentz invariant interaction density (as was assumed in (7.108)).
However, as we have seen in Section 9.5, precisely such a noncovariant term had to be
added (by hands in the approaches of Chapters 7, 8) to compensate for the noncovariant
term in the propagator of the vector field 0,p;(x) (arising due to the singular nature
of products of field operators taken at the same space-time point) and to restore the
Poincaré covariance of the S-matrix. Similarly, in the case of the Proca theory (quantized
in Section 11.5) the Hamiltonian density of which takes (after exploiting the constraint
(11.306) realized as a strong operator identity) the form (11.270) the same procedure (in
which for Hy one takes the first four terms of (11.270)) gives

. 1
Vit x) = T (t,%) = 55 G, (1)

as in the free theory, i.e. with J#* = 0, which again leads to the presence in the interac-
tion Hamiltonian density Hiy (Vi (¢, x), [1Z(¢,x)) of the noncovariant term (9.67), which is
necessary for the covariance of S-matrix elements.

In electrodynamics in which the electromagnetic field couples to a conserved current
J# one takes (when it is (quantized in the Coulomb gauge) the free part

HO = %/d3x{|:HT(X):|2 4 [VXA(X)]2} + Hénat — H(})EM + H(r)nat’ (11425>

of the full Hamiltonian consisting of (11.340) plus H™ which is built out of the operators
forming the current J*, and, in order to realize the algebra of the field operators in a
Fock space, one expands the operators A(x), II' (x) into the creation and annihilation

operators al (k), ax(k):

AG) = [ 3 (a0 el n) e+ a1 e e Ay e ] (11.426)
A==%1
HT(X> = %/drk k| Z [CLA(k) ek, \) elkx _ a;(k) € (k, \) e—ik.x] '
A==£1

The electromagnetic part HE™ of the free Hamiltonian Hy gets then diagonalized, that is
takes (up to a c-number constant) the form

HPM = /dFk > k| al (k) ax(k). (11.427)
A==+1

The interaction picture operators

Aj(t,x) = ot A(x) e7HHot |
I, (t,x) = oM TTT (x) e 70! | (11.428)
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which enter the formula (11.413), are related by II;(¢,x) = A;(t,x). This again follows
from computing the commutator

J

Aj(t,x) = i[Ho, Aj(t,x)] = ZHOt/dg’ Oy = x) I (y) e " =11j(t, %),

(because @-H? = 0, the transverse delta function acts as the ordinary Dirac delta). Notice
that because in the quantum theory A°(x) is given by (11.326), the interaction picture
operator A%(¢,x) is identically equal to

Ji(t,y)
At x) = [ dPy S50 11.42
fex) = [y EE0 (11.429)

and can everywhere be replaced by this combination. This allows to introduce a dummy
operator A%(¢,x) = 0, with the help of which the first term of the time dependent inter-
action (7.64)

T (1) _ iHot 3 3 3 )\ —imot
V() =e { /de( /d /d 47r|x—y| }e

0 0
/d x J;(t, %) A (t, x) /d3 /d3 it x)Jr(ty) (11.430)

Amlx -y

can be written in the formally covariant form!“

vf()—e/d3xjf(t x)- Ak (1, %) + —/d3 /d3 Jr(tx) (L y) (11.431)

Ar|x =y

(Hy = HE™ + Hat in all these formulae is the free part of the Hamiltonian of the entire
system of fields, 1nclud1ng the fields forming the currents J?). As explained in Section 9.6,
the Coulomb part of the interaction (11.431) can be dropped provided one simultaneously
drops noncovariant pieces in the photon propagator.

11.10 Corrections to external lines

In the preceding section we have shown that quantizing classical fields one arrives essen-
tially at the same scheme for calculating S-matrix elements (assuming that particle-like
in and out eigenstates of the full Hamiltonian H exist) as in the approach of Chapters 7

1930f course, if one is interested in computing amplitudes with insertions of the AY (z) operator (see
Chapter 13)

outl BT (A% () .. )ahin = (BolT (AD(x) ... e™ T4 Vi) Jag)

in the pre-exponential factor on the right hand side one has to use as AY(x) the combination (11.429),
and not the dummy operator A%(x) = 0.
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and 9 based on constructing interactions Vi, of relativistic particles. Therefore, also in
the approach discussed here one has to solve the problem what to do with the corrections
to external lines like the ones discussed in Section 9.7. There the problem was solved us-
ing the freedom in constructing interaction terms. Here it seems superficially we are not
given such a freedom: quantized is a well defined classical theory with a fixed Lagrangian
density and no new terms should be added to it.

However, in quantizing fields there is another freedom which allows to find the solution
of the problem!® (from the practical point of view this solution is equivalent to the one
given in Section 9.7). As usually, we will illustrate this on the example of the theory of a
real scalar field defined by the Lagrangian density

L= % L pOHp — %M2ap2 - %gpA‘. (11.432)
To quantize this theory we have first to choose the canonical field variable. Instead of
©(t,x) (to which corresponds the canonical momentum II(¢,x) equal by construction
Dop(t,x)), one can chose another field variable 3(t,x) related to ¢(t,x) by ¢ = ZY2,
where Z is an arbitrary positive (as the square of Z'/?) constant. The canonical mo-
mentum II(¢, x) conjugated to ¢(t,x) is then equal Zyg = Z/2II and after quantization
the canonical equal time commutation rules satisfied by the corresponding Schrodinger
picture operators $(x) and II(x) are the same as the ones satisfied by ¢(x) and II(x):

[$(x), Ti(y)] = 0@ (x— ),
(50), @(y)] = [T1(x), Ti(y)] =0.

Working with @(x), II(x) and performing the standard steps one arrives at the Hamilto-
nian density

1 ~ 1 1 A
H= 52—1112 +57 (V@) + 5ZM%2 + EZ2@4. (11.433)
In what follows we will call the Heisenberg picture operator ¢y (x)
pr(r) = on(t,x) = p(x)e, (11.434)

obtained from ¢(x) singled out by the canonical form of the Lagrangian kinetic term in
(11.432) the canonical or, in the context of renormalization, the bare field operator and
the Heisenberg picture operator

pr(r) = on(t,x) = 'g(x)e M,

104Recall, that the problem of external lines, we are now concerned with, has nothing to do with
the question of finiteness of integrals corresponding to loops in Feynman diagrams. One can therefore
think that an ultraviolet cutoff is imposed on all loop integrals. Nevertheless, as it will become clear in
Chapter 14, only a special class of classical theories gives rise to quantum theories (called renormalizable)
in which avoiding ill defined expressions of the sort discussed here and all other divergences (arising
from integrations over loop four-momenta) indeed does not require adding new terms to the original
Lagrangian.
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(in which for H is taken the space integral of the density (11.433); this is, of course the
same Hamiltonian as is used in (11.434), but expressed in terms of the new variables),
the renormalized (although from the point of view of the Lagrangian dynamics ¢ is also
a “canonical” field variable; in this context renormalized simply means rescaled) field
operator'® and the factor Z will be called the field renormalization constant (the name
“wave function renormalization constant” is also in use). Applying the canonical equations
of motion to the operators @y (x) and Iy (z) (as in the formulae (11.125)) one finds that
©on(x) satisfies the equation
2y ~ A3

(0,0 + M) () = 5 76y (0). (11.435)
which, when confronted with (11.126) means that it is related to g (z) by ¢p(x) =
Z7 Y20y (x) at all times t.

In order to formulate the perturbative expansion this Hamiltonian density is split into
the free part

1 ~ N ~
Hy =5 /d3x [HQ(X) +(V@(x)* + M§h<p2(x)} : (11.436)
and the interaction Hamiltonian density
| =2 1 N 2 a2y 2, A
Hing = 3 (z7'-1)I +§(Z—1) (Von) +§ (ZM? — M) & +IZ " . (11.437)

In this approach one has to admit that due to the self-interaction the physical mass
squared Mgh of the particles represented by the one-particle eigenstate of H is not equal
to the bare mass squared parameter M? in the Lagrangian (11.432). Performing now the
transition to the interaction picture as in Section 11.9, i.e. representing the commutation
relations (11.433) in a Fock space with the help of the standard creation and annihilation
operators diagonalizing Hy (11.436), we introduce the interaction picture field operators'®®

iHot ~

B(x) e Hot = /dFk (a(k) e=* + af (k) i)

I, (¢, x) = e TI(x) e 7ot = Gy, (¢, %) . (11.438)

or(t,x) =e

Expressing the interaction Hamiltonian density similarly as in (11.413) in terms of ()
we get

int —

1 1
7 - _5(2 — 10,010 pr + 3 (ZM? — M) o7

A 1
+EZ2¢‘} +5 (Z7' + Z —2) Bop100pr1 - (11.439)

105For this reason in Chapter 14 the operators like @y (z) will be denoted pr(x).
1%Notice that II; = dops does not conflict with the fact that by the operator equations of motion
Iy = Z0opp: the limit limy;_,¢ (Qo@m (t,x)) may differ from lim; o (Oopr (¢, %)).
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Thus, we get the additional interaction terms of the same structure!®” as in (9.103). They
allow, by properly adjusting, order by order in the perturbative expansion, the factors
0Z =Z—1and 6M? = M? — M}, ., to cancel the dangerous corrections to external lines
in the way explained in Section 9.7. Notice, that quantizing the theory defined by the
Lorentz scalar Lagrangian density (11.432) using the variable ¢ we automatically obtain
in the resulting interaction Hamiltonian density the noncovariant term o dypr0yp; the

necessity of which in the approach of Section 9.7 could only be guessed at.1%®

As will become clear in Chapter 13, the choice of 6Z and of dM? such that the
corrections to the external lines are absent altogether is necessary to satisfy the conditions
underlying the scheme, developed in Chapter 7, on which direct calculation of S-matrix
elements is based.'® The choice of §M? is obvious: the one-particle eigenstates of H
must correspond to a particle the mass of which is the same as the mass (we will call it
M,y,) of the particle represented by one-particle eigenstates of the complete Hamiltonian
H. The choice of Z is more subtle. In principle, any choice of the canonical field variable
is suitable for quantization. However, the postulated correspondence (7.39) between the
H, eigenvectors and the in and out eigenvectors of H singles out, through the argument
presented in (9.101), one particular variable ¢ which as the quantum operator ¢y creates,
for t — Foo, from the physical vacuum |Q21) (the ground state of H) the physical one
particle states |(p)+) with the amplitude equal to ((p)o|¢rs(t,%x)|€2). As will be shown in
Chapter 13, this is equivalent to working with the particular renormalized operator Qg
which can be called physical (or renormalized in the physical way) ¢pn, Which leads to
such a splitting of H into Hy and Vi, that the residue of the simple pole at p? = M? on of

the (connected) Green’s function G®(p?) defined by the formula

@n) 5+ )G = [ [atye e e 0 TEn()ou(0))2)

is exactly equal to i.''® In the perturbative expansion this is ensured by adjusting Z
and dM?, order by order, in such a way that they cancel the two first terms in the
Taylor expansion of the self-energy ¥(p) around p? = Mgh. From the perspective of the
general renormalization procedure (to be discussed in detail in Chapter 14) the direct

107\More systematic notation for coefficients of these terms will be introduced in Chapters 13 and 14.

108Ttg coefficient is also automatically fixed in terms of the coefficient of the first, covariant term.
Moreover, if Z = 1+ O()), i.e. deviates from 1 starting with one-loop approximation only (in fact, in
the considered example it starts only with two loops), the noncovariant term, the coefficient of which is
Z~YZ —1)?, contributes starting from a yet higher order.

109Gtrictly speaking Hins should be also supplemented with a constant term allowing to renormalize to
zero the energy of the vacuum state. This is equivalent to the usual practice of discarding all vacuum
graphs.

H0Guperficially it may seem that the free particle Hilbert spaces spanned by the action of the creation
and annihilation operators contained in ¢;(z) obtained from g (0, %) and from @ (0,x) are “identical”,
so there should be no difference in the choice of the canonical variable. The mathematical subtlety here
is again that the canonical commutation relations of systems with infinite number of degrees of freedom
can have unitarily inequivalent representations. Thus, the free particle Hilbert spaces constructed from
v (0,x) and ¢ (0,x) are in fact “different”.
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method of calculating S-matrix elements is intimately related to the so-called On-Shell
renormalization scheme.

It will be shown in Chapter 13 that in the approach to quantum field theory based
on Green’s functions, which is more general, it is possible to work directly with the
canonical (bare) field operator ¢y (or any other renormalized, i.e. rescaled, operator ¢y
that differs from the physical one). Moreover, the approach of Chapter 13 will not rely
on the assumptions formulated in Section 7.3; S-matrix elements are then not computed
directly, but must be obtained with the help of the Lehman-Symanzik-Zimmermann (LSZ)
prescription (see Section 13.4) applied to appropriate Green’s functions of the theory.
However, within the perturbative expansion the LSZ prescription reduces to only a minor
modification of the rules for external lines of Feynman diagrams given in Chapter 9.

11.11 Indefinite metric quantization of the electromagnetic field

Quantization of the electromagnetic field in the Coulomb gauge outlined in Section 11.7
may appear inconvenient, as it is not manifestly covariant. It is also technically rather
complicated. It is possible to quantize the electromagnetic field in a fully covariant way
but this requires working in the Fock-Hilbert space some vectors of which have the norm
(defined by the natural scalar product) which is not positive. The simplest method of
this kind is known under the name of the Gupta-Bleuler quantization. We will briefly
discuss it here because it is a prototype (or more precisely, the special case) of the modern
canonical quantization based on the so-called BRST symmetry of nonabelian gauge fields
which will be presented in Chapter 20. In both cases by a condition similar to (11.298)
one singles out in the Hilbert space a class of vectors (forming a subspace) which represent
physical states of the field A* and which have nonnegative (but not necessarily strictly
positive) norm. Other vectors of the Hilbert space, which have a negative norm, are
treated as unphysical. In order to be sure that a sensible theory (with a unitary physical
S-submatrix) is constructed in this way, one has therefore to demonstrate that the full S
operator (or the Sy operator defined by (7.16)) of the theory does not map physical states
into unphysical ones nor the other way around. Although in the Gupta-Bleuler quantiza-
tion given below the hamiltonization procedure does not require considering constraints,
the resulting quantum theory is clearly equivalent to the one which would be obtained
by using the Dirac-Fock method, briefly mentioned in Section 11.6 of treating systems
subject to first class constraints.

The Gupta-Bleuler method starts by modifying the Lagrangian of the electromagnetic
field compared to its usual form (11.250):

1
%

¢ is here an arbitrary real parameter called gauge fizing parameter. We omit the La-
grangian density L, of the degrees of freedom to which the electromagnetic field couples

1
LR = = " fuw = 5 (0uAY) — A", (11.440)
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I Electromagnetic units

In comparing electromagnetic quantities in the SI and Gauss systems one should keep
in mind that this is not only the question of using different units (in mechanics the
difference between the SI and the cgs systems is only the one of units): electromagnetic
quantities in the two systems have different physical dimensions. Hence we use below the

sub(super)scripts distinguishing quantities in different systems.
The Maxwell equations in the SI system read

0Bg;

VXESI—I— It :0, V'BSIZO,
OE .
V xBgr — 1€ atSI = Mo Jsr, eoV-Egr = pgr,

with gopo = 1/c%. The action giving rise to (1.2) is

ASI, /dt/d3 ( 6062 SI ASI €s1 JV)

Here f5, = 9,A5" — 0, A% (recall that 2° = ct) and

2
SI puv 2 2
purd ST — _g ESI + 2BSI

In this system of units the following identifications® hold:

1 )
Ag = (E Psi, ASI) ; esiJ" = (cpst, js1),
and
1 10A
_ESI:_V@__ Sl Bg1 = VX Agr.
c c c Ot

The dimensionless fine structure constant agy = 1/137.03599 is given by

In the Gauss’ system of electromagnetic units

1 0B auss
V x EGauss + - < = U, v 'BGauss =0 )
c Ot
1 0E auss 4dm
V x BGauss - - gt = _7T JGauss » V'EGauss = 47TpGauss .
&

LAll components of a four-vector have the same physical dimension.
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The action giving rise to (1.9) is

1
I[Acauss, J] / dt / d3x (—— flauss pur _  pGauss eGaussJ”) . (1.10)
C

fGauSS —2 EGauss + 2BGauss : (111)

Gauss

Here the identifications are

Alauss = (PGauss; AGauss)s  CGaussd” = (€ PGauss, JGauss) - (L.12)
and
Ecauss = —V¢@causs — laAaGtauss : BGauss = V X Agauss - (1.13)
In this system
apM = % . (1.14)

he

Outside electromagnetically active media (dielectrics or magnetics) in the SI units one
has Bgr = poHgr, whereas in the Gauss’ system Bgauss = Hgauss: For this reason in most
textbooks using the latter system one uses H in place of B.

The following pairs of quantities in the two systems have the same physical dimension

lest] _ [M]Y2[L]?

[eGauss] = [50]1/2 = [T] ’
o [eGauss] _ 1/2 [QSI]
[@Gauss] - [L] [ ] [9031] 80] [L] )
_ eGauss] — [ V2 _ [es1]
Fowel = = 8] = iz
[BGauss] = [EGauss] = [C] [60]1/2 [BSI] = [50]1/2 [ESI:| . (115)

In both systems the physical dimension [/] of the action I is obviously [I| = [h] =
[M][LP[T]

The SI system quantities are related to their Gauss’s system conterparts by

est/ VATey = eGauss )
Vimeg ¥sI = $PGauss s

Ve e AgI = A%auss )

VireocAst = AGauss (1.16)
VireoEst = Egauss »

VAreocBsi = Bagauss -
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It is easy to check that inserting these relations converts Maxwell’s equations (1.8), (I1.9)
into (I.1), (1.2).

The Heaviside-Lorentz system of electromagnetic units, the one which is implicitly
used in quantum field theory formulae, differs from the Gauss’ system only by rescaling
the physical quantities back by the v/4rw factor (see section 11.4). Thus, in the Heaviside-
Lorentz system electromagnetic quantities have the same physical dimension as in the
Gauss’ system.

In d = D+1 space-time dimensions the electromagnetic quantities have (in the system
of units corresponding to the Heaviside-Lorentz one for d = 4) the units
[A] = [M
[B] = [B] = [M]*[1)7[L]= . (1.17)

The dimension of A* follows from [I| = [A], the dimension of E and B from the fact that

they are elements of f,, = 9,4, —0,A, and that of e from the Gauss’ law in (I1.8), given
that [p] = [e][L]7".

The non-Abelian gauge fields and coupling constants have the same physical dimen-
sions (I.17) as the electromagnetic fields (i.e. [g] = [e], [A}] = [A,]). The full field strength
tensor then is

FL = 0" A% — 07 AL~ (g/he) £, ALAY,
and the covariant derivatives with the dimensionfull constants restored read

D" =0/0x, + i(g/hc)T* AL .

For the basis of the mechanical units one takes ¢ and & (the two fundamental units).
The natural third unit would be the Planck mass

hC 1/2
Mo = [ 22
Pl (GN) )

set by the third fundamental constant of Nature - the Newton constant G - but since it
is not very practical from the point of view of elementary particle physics, one normally
uses for the third unit a conveniently chosen mass unit like e.g. eV/c? or GeV/c?%

Unlike the electromagnetic fields which do have a classical limit the physical dimen-
sion of fermionic fields can be chosen arbitrarily. In ordinary nonrelativistic quantum
mechanics the probability [dPx |¢|? is dimensionless and the dimension of 1 is [L]~P/2,
However, since the fermionic fields ¢/ are not directly related to the nonrelativistic wave
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functions, it is more convenient to chose the dimension of the fermionic fields so that the

kinetic part of the action
I= /dt/dezmegw
ot

has the right dimension without any compensating factors of ¢ or h. Similarly, it is

convenient to take
Op 2
[ — D 2 2
/dt/dx[(—at) c(W)],

for the kinetic part of the action of a scalar field ¢. The physical dimensions of the fields
(canonical dimensions of the corresponding field operators) then are
D D

[ = [M]2[T)72[0) 57 ] = [M)2[L) % .

Dimensions of the other terms in the field theory Lagrangians can be then easily
established. For example, the action describing a multiplet of complex scalar fields ¢
of mass M interacting with the gauge fields Aj with all dimensionfull constants written
down explicitly has form

I= /dt/dD { *0 —i(g/he)p* T  A™) (8,6 + i(g/he) T AL p)
M2 4

asas——was)}

Notice that the coupling A has dimension [L]P~3, i.e. it is dimensionless only in D = 3
(d =4); in D # 3 this dimension cannot be removed by adjusting the powers of ¢ and &
- for this a mass unit is necessary.
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J Primary constraints

Here we give the derivation of the starting point for quantization of systems subject
to constraints. To this end we consider a system described by some variables ¢* and
their generalized velocities ¢*, i« = 1,...,n. The dynamics is assumed to be determined
by a Lagrangian L = L(q, ¢). It is convenient to treat it as a function of ¢' and v’
L?(q, v) = L(q,v). Standard transition to the Hamilton’s formulation is obstructed if the
matrix
2T
A = 0°L

U Quigi
is singular, because then some of the generalized velocities v* cannot be expressed through
the canonical momenta p;. Hamiltonization of the system requires then a special approach.

(J.1)

The standard Euler-Lagrange equations corresponding to the Lagrangian LY can be
written in the equivalent form as the set of first order equations

L. OLY  PLY

My =54 " avag

qi=0 (3.2)
oLy

b= -

The last group of the equations (J.2) is at the moment redundant - it only serves to define
the momenta p;. The equations (J.2) can be rewritten in another, equivalent form

. oL

bi = 8—qiv

§t =", (J.3)
oL

pi = o0l

The equivalence follows by differentiating the last set of equations with respect to time
and substituting the result in the first set of equations.

One now introduces the quasi-Hamiltonian
Hv(qvpa U) = pivi - Lv(qa U) . (‘]4)

which is treated as a function of three sets of independent variables: ¢, p and v. This
allows to cast the equations (J.3) in the form:

33 7 v OH"
¢ ={q", H'}pp = I
Di
OH"
.i = ) av = ———, J.5
pi={p }rB o7 (J.5)
OH"
— =0
vl ’
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in which the Poisson brackets are taken with respect to the variables ¢* and p; treating
the velocities v’ as independent variables. The quasi-Hamiltonian system (J.5) is fully
equivalent to the equations (J.3) and, hence, to the original Euler-Lagrange equations.
Moreover, if the last group of equations (J.5) is satisfied, one can treat v’ in the first two
groups of equations as (unknown) functions of ¢ and p; even in computing the Poisson
brackets.

Suppose now the matrix M}; (J.1) is of rank r < n. It is then possible to express r
velocities v* in terms of the variables ¢’, the momenta p; and the remaining n—r velocities.
Labeling the variables so that it is the first r velocities which can be expressed in this
way, it is convenient to introduce the following notation:

IT; = p;, Vi=ot, for i=1,...,r,
™ = Dram, U =0 , for M=1,...,n—r
Of the last group of equations (J.5), which in this notation read

OH' _ oL OH® o _
gvi — T ayi U M ™ T g T

the first 7 ones can be solved yielding V* = Vi(q, I u) = Vi(q, I1, u), while the remaining
n — r equations become the primary constraints.

Next we introduce the total Hamiltonian Hy = H"|,,_3
HT(q7 H7 , U) = Hlvl(qv H7 U) + 7TJ\/IUZM - Lv(qa V(qa H7 U), U) : (‘]6)

After substituting Vi(q, IT,u) for V* the primary constraints take the form

oY
M:
8UM V=V

= mu — fu(q 1), (J.7)

with fa(g,11) = (0L%(q,V,u)/0u™)\_w. The constraints ®,; can be also obtained as

Oy = (OHr/0u) because the additional contributions vanish for V'’ = V' It is impor-
tant to realize that the constraints (J.7), ®,; = 0, do not depend on v - if they did, one
could solve for more velocities, contary to what has been assumed.

The system of equations (J.5) is now fully equivalent to the following one

qi = {qi, Hr}pg, qi = (Xi, IL"M),

IT; = {II;, Hrl}ps, (J.8)
7y = {7, Hrles,

By =0,

because, as has been noted, it is admissible to substitute in (J.5) Vi(q, IT,u) in place of
V% in computing the Poisson brackets.
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The final step is to make clear the structure of Hy. To this end one can use the
identity®

v ,  OHY . (OL" ., v oH" ,
H_E+8Uivz<8viv_L)+8viv'

Using it one can write

oHY . oM’
= ey = (E vV “M> v

= Ey_v + opu™ = H + 0 pu, (J.9)

because (OH"/OV"),,_y = 0. The Hamiltonian H defined in this way does not depend on
the primarily unsolvable velocities ©™. Indeed, on one hand,

OHr  OH
—— = —— 4+ Py
ouM  ouM T Ou
On the other hand, as has been noted below the formula (J.7),

oHr 0

ouM — guM

Hence, (0H/0uM),,_y must vanish.

(HU|V:V) =Dy .

1To justify it just insert in the right hand side H" as given by (J.4).
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