be interpreted and used.

2.1 Perturbative expansion of the evolution operator

The first step in formulating the standard perturbative expansion of the (interaction
picture) evolution operator Uj(t,ty), called usually the time-dependent perturbative ex-
pansion, is the observation that without loss of generality the solution |U(t))s = |¥(t))
of the Schrodinger equation (1.1) can be at any instant ¢ written as a superposition of
the Hy (time dependent) eigenvectors? |n(t)) = |n)exp(—iE,t/h) with time dependent
coefficients a,(t):

(U(t) =D In(t)) an(t) = Y |n) e " ay(t). (2.1)

The symbol ) = denotes here summation over the discrete and integration over the con-
tinuous parts of the Hy spectrum. Inserting (2.1) in the Schrédinger equation (1.1) gives

Y ) e (1) = 30 Wi (D) €5 (1)
Taking the scalar product with the Hj eigenvector |k) one obtains

(1) = = S 0 AV (1)) 1) (2.2)

where wy, = (Ey — E,)/h. The infinite system of coupled equations (2.2) is, of course,
fully equivalent to the original Schrodinger equation (1.1). It is easy to check that (2.2)
is simply the equation (1.19) written in the basis of the Hj eigenstates.

In order to obtain the expansion in powers of A of the solution of the system of
equations (2.2), one seeks it in the form of the power series a;, = a,(fo) + Aa,(j) + A2a§f) +...
Equating then the coefficients of the same powers of A on both sides of (2.2) yields the
hierarchy of equations (s =0, 1,...)

@ (t) =0,
. (s 1 W S
it () = = e (R Va(B)ln) ol (1) (2.3)

Integrating them successively it is convenient to fix the constant coefficients a,(f) so that3

(T(to)) = [k e Exto/m gl (2.4)
k

2The set of (time independent) vectors |n) is assumed to be complete, that is to form a basis of the
Hilbert space. It may also include generalized (non-normalizable) eigenvectors of the Hamiltonian Hy
which is assumed to be time independent.

3In other words |¥(t))r =Y., |n) ald).
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and to impose on the remaining time dependent coefficients a,(f)(t) with s = 1,2,...

the condition a,(f) (to) = 0. In this way ax(ty) = a,(fo) and the coefficients al(:)(t) (which
implicitly depend also on ty) are explicitly given by

1 [t .
aV(t) = = / dr €™ (Vi (ry)n) (2.5)

1 S t Ts T2 ) )
a,(f) (t) = (—) / dTS/ drs_1 ... / dry €WknsTs gWnsns 1 Ts—1 | plngn T1
Zh to to to

x D (K[Vi(m)lng) . (na| Viws (1) [a) af)

Ng...N1

As in (2.1) the sums over n; denote summations over the discrete and integration over the
continuous parts of the Hy spectrum. Since (k|VL (t)|n) = ekt (k|VS (t)|n), it is clear
that, omitting the constant factor aslol) and the sum over ny, the expression on the right is
precisely the s-th terms of the iterative formula (1.22) for Uj(t,ty) sandwiched between
the Hy eigenvectors (k| and |ni). It makes, therefore, sense to write

ar(t) = D |Oun + UL (1 10) + U (1,10) + | ¥ = D" Upa(t, o) an (),

so that al” (t) = 32 U (t,19) aY) and

Upn (t,to) = (kUL (L, to)|n) . (2.6)

Having the solution |W(t)) (usually only an approximation to it, consisting of only a
few terms of the above expansion) one can in principle ask (independently of whether
the interaction Vi, is constant or time-dependent) what is the probability of finding the
system at an instant ¢ in a particular normalizable state |®) (probabilities of transitions
to non-normalizable states, or, more precisely, to a group of non-normalizable states, e.g.
belonging to the continuous part of the spectrum of Hj,, will be considered in Section
2.5), if at o it was prepared? in a state |¥y) = |¥(t)) of the general form (2.4). This
probability P(Vy — ®; t,tg) is given by:

P(Wy — ©; 1, 1) = | (BT ()]7. 2.7)
In general it strongly depends on ¢ (and on ty).

Even if the interaction depends explicitly on time and stationary eigenstates of the
system the Hamiltonian of which is H = Hy + Vi (t) do not exist in the strict sense, one

41t is a standard wisdom that systems can really be prepared only in normalizble states. Nevertheless,
one can consider also non-normalizable initial states |¥o) (this may require introducing in expressions
some extra factors ensuring convergence of integrals) as an idealization of well collimated (normalizable)
states.
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may formally still ask about the probability of finding the system at an instant ¢ in a
normalized eigenstate |k) of Hy (if Hy has some proper eigenvectors) if at ¢, the system
was prepared in the state |¥(). Because one projects in this case |¥(¢)) onto the exact Hy
eigenvector |k) and takes the modulus, the oscillatory factor exp(—iEjyt/h) drops out and
resulting transition probability is then simply equal |a(¢)|* (it may still depend on time
if Viye(t) is still nonzero at the instant ¢ which is always true if Vi, is time independent).
The same probability is, of course given by |Us, (¢, %) an(to)|?, that is, by the modulus
squared of the amplitude

(k[ (8)) = (k[W(1)r = (k|UI(2,t0) U (t0))1 (2.8)

Although the general principles allow to ask about such a probability of finding the system
in a normalizable eigenstate of Hy, because of the still significant dependence of (2.8) on
t and t, it is physically interesting mostly in some special situations, in particular when
at the instant ¢ the interaction Vi, is already absent and the time evolution of the system
is already governed by Hj. It is only in such cases that ¢t may also be taken to correspond
to the infinite future (f — oo). Similarly, taking ¢y to correspond to the infinite past (i.e.
to — —o0) is possible, strictly speaking, only if Vi, switches off there. If the interaction
is active at any time (e.g. because Vi, is just a constant operator), using probabilities of
transitions to Hy eigenstates requires some care as will be seen below - such probabilities
are well defined only in the lowest order of the perturbative expansion.

In many situations of interest the perturbation Vi (¢) acts indeed only during a finite
period, i.e. it vanishes when ¢ — Foo, the system is prepared in the far past, (practically
at to = —o0) in a Hy eigenstate |n) (so that one particular a!?) =1 and a,§°> = 0 for k # n),
and one is interested in the probability of finding it in a normalizable Hj eigenstate |k) in
the far future, after the interaction has already switched off. The corresponding transition
amplitude which has well defined ¢ — oo and ty — —oo limits is then Uy, (¢, %). It should
also be clear that this double limit, Uy, (00, —c0), of the transition amplitude is just the
element Sy, of the S-matrix introduced in the second example considered in Section 1.3.
The transition probability P(n — k) of interest is in this situation equal |[Uy, (0o, —00)|? =
|Sknl?. In the lowest nontrivial approximation, if k # n, P(n — k) =~ |Lll£i)(oo, —00)|?
with

1 [t o,
UL (1,10 = = / At (e[ Vi (#) ) en” (2.9)
t

0

In Section 2.2 this method of computing P(n — k) will be applied to the second example
treated in Section 1.3. This will allow to discuss how unitarity of the S-matrix is realized
in the perturbative expansion.

Another class of physically interesting situations is when V,(¢) does not vanish for ¢ —
+00 but instead tends to well defined limits V.= where Vlflti) are some time independent

int >
Hermitian operators. It is then most convenient to include Vlfl;) in Hy and the most

relevant question is one about transitions from a normalizable H, eigenstate prepared

39



in the far past (tp = —o0) to a normalizable eigenstate of H(oco) = Hy + Vu(n; in the
far future. Here the expansion of U;(t,ty) in the basis of the H, eigenvectors becomes
less useful,® but, as will be shown in section 2.3, in the first order in Vi, the relevant

probabilities can, nevertheless, be extracted from it.

The two types of changes of the Hamiltonian discussed above can occur at different
rates. It will be seen below that in the two extreme cases - of a very fast change (occurring
in a very short time interval) and of a very slow one (in the limit, occurring infinitely
slowly) one can give useful special approximations which go beyond the perturbative
expansion of the evolution operator Uj(t,ty). In the first case it is called the instant (or
impulse) approximation. In the second case the special approximation is called adiabatic.
It is based on the adiabatic theorem which was already exploited in Section 1.2 in the
Gell-Mann - Low construction of the (normalizable) ground state vector of H out of the
(normalized) ground-state vector of Hy. The theorem will be discussed in Section 2.4. An
interesting aspect of the adiabatic approximation in the situation when the Hamiltonian
returns after a long time to its initial form is the emergence of a phase, called after its
discoverer the Berry’s phase, of an essentially topological origin.

If the (Schrodinger picture) interaction operator Vi, does not depend on time, the
equations (2.3) can be straightforwardly integrated yielding in principle the explicit form
of the perturbative expansion of the interaction picture evolution operator Uy(t,to) (1.22)
written in the basis formed by the H, einenvectors. The expansion turns out however to
be highly singular, a fact which has already been observed on the simplest example of
the evolution operator of the harmonic oscillator (see the formula (1.52)) the spectrum of
which is purely discrete. One way of regularizing the expansion, particularly convenient if
one is interested in the limit ¢, — —o0, is to replace Viy, as in Section 1.2, by €'V, and to
take the limit ¢ — 07 at the end. The explicit example considered in Section (1.3) shows
(when solved exactly) that these singularities, if regularized in this way, should factorize
into a singular phase factor at least in situations in which the interaction switches off
asymptotically owing to the e factor (and using the basis of Hy einegvectors makes

sense physically). Setting ¢y = —oo one then gets (recall, Wpyn, + Wnyn, = Wngn, and
wnjnl - _wnlnj)
(iwkn, +sE)t 17 1/ Vv
e 1 ns Vnsns—1 + -+ Vnan
Z/l]m (t, —00) E . - - _—, (2.10)
! h (Wiyk +15€) .« (Wnyng + 92€) (Wnyny + 0€)

where V., = (13| Ving|n;). In the limit ¢ — 0" the factors ie in the denominator specify
the way of going around the possible singularities. In this form the formula (and the
one below) remain valid even if the labels nq,...,ngs run over a continuous (or partly
discrete and partly continuous) set of values and the summations over them are replaced

50One would rather preferred to find directly matrix elements of U (¢, o) between the eigenvectors Hy
and the eigenvectors Hy + 1A%

int
different bases “on its two sides”.

i.e. matrix elements of the operator Us(t,ty) between vectors of two
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by appropriate integrals (or sums and integrals). In this limit one obtains

6etvlm
W(t)) = k) | Opn, + =—————
) = 18 (3o +
;1
e25th V, :
—I— . ng ¥ nani : ‘I‘ o 6—2En1t/ﬁ aSLO) ’
Zm (En, — By + 2i0)(Ey, — En, +10) ) :

where al) are the expansion coefficients of limy, oo €00/ 7| W (0)) = limy,_o0 [¥(tg)) 1

into the Hy eigenvectors |n;). However, in most cases of interest the basis of Hy eigen-
vectors is not very physical (the true Hamiltonian of the closed system being Hy + Viy),
particularly when Hj, has no normalizable eigenvectors, and beyond the first order the
transition probabilities between the Hy (generalized) eigenvectors become ill defined. Only
if the interaction Vi, is adjusted properly (essentially order by order), can these transition
probabilities make sense. This will become clear in due course.

2.2 Perturbation active over a finite period of time

Let us consider first a perturbation Vi (¢) which vanishes in both limits, ¢ — —oco and
t — +00. One is then usually interested in probabilities of transitions from a H, eigenstate
|m) at t = —oo to other Hj eigenstates |k) at t = +o00. To this class of problems belongs
also the one-dimensional harmonic oscillator perturbed with a constant in space force
F(t) vanishing at ¢t = Foo, which was solved exactly in Section 1.3 using the Heisenberg
picture and the formalism of the in and out states (and the corresponding in and out
operators). In the approach based on the perturbative expansion discussed in Section
2.1, to obtain the amplitudes of the system’s transitions from the Hj eigenstate |m) in
the far past to another Hj eigenstate |k) in the far future, that is the element Sk, of
the S-matrix, one considers instead the time evolution of the system’s interaction picture
state-vector |W(to)); which in the far past, i.e. in the limit ty — —o0, has the form

(W (to))r = [m)
and projects |W(t)); given by

(U())r = Y k) U (t, —00)
k
~m)+ > [k) (u,i}}b(t, —00) + U (t, —00) + .. ) :

onto the Hy eigenvector |k). Since the perturbation vanishes asymptotically, the amplitude

Uy (t, —00) obtained in this way, as well as the amplitudes Z/{,gp,g(t, —00), tend to well
defined limits as t — oo. To the above expansion of |¥(t)); corresponds, of course, the
expansion

Stm = Opm + S + 82 (2.11)
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of the S-matrix (S Ukm(oo —0o0)). The probability that the system at ¢ = oo will be
found in the |k)-th eigenstate of Hy (probability of the transition to the state |k)) is then
given by

+oo
P(m = k) = |Spm|? & |em + _i/ dt €5 (k| Vine () |m) +...| . (2.12)

th J_

The obvious criterion of applicability of the perturbative expansion (in powers of the
interaction) of the coefficients L{,E?L( t) is the condition |Uk | < 1, for s > 1. This imposes
some restriction not only on the values of the relevant matrix elements of Vi (t) between

the Hy eigenstates, but also on the effective time duration At of the perturbation® (it is
At [{k|Ving|m)|/h which is dimensionless).

As an illustrative example we will reconsider the one-dimensional harmonic oscillator
of mass M and frequency w, subject to the perturbation of the concrete form Vi (t) =
—xFy/(1+4t?/7%) and will compute the probabilities P(m — k) of the transitions induced
by

Fy
1+e2/72

using the time-dependent perturbative approach formulated in section 2.1. Computing
the matrix elements of Vj, is then straightforward:

h
Vint () = — Mo (a+a)

(k|Vine (t)|m) = “\ M (\/_6km 1+ vVm+ 16 m+1> }1:’(2)/7‘2 (2.13)

It follows that to the first order in the perturbation possible are only the transitions
m — m and m — m £ 1. (This means that other transitions, though possible, are
suppressed, that is, their probabilities are proportional to higher powers of A = Fp). In
this order the probability of the transitions m — m equals 1 because S,(,g,)n = 1 and
Sk = 0 (we will return to the problem of the total transition probability shortly).
Finding the probabilities of the other two transitions reduces to computing the integral

[ +00d eiwkmt +00d e“-’kmﬂf
- t———— = —
/ Y / EraE—y

Using the method of residues and taking into account that for k = m £ 1 wy,, = *w, we
find in both cases I = 7 exp(—wT). Thus,

s m:#FWTe_M\/ﬁ, 2.14
L M e (2.14)
S(lll m ! Forre " vVm+1,

mLm = V2 M hw

6As will be seen on the example, the oscillatory factors present in (2.12) under the integral, can in
some cases relax this criterion.
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and, to the first order P(m — m) =1 and

F027T2T2

Pm—m-—1)= s ™ e 2T
Pm—m+1)= i (m+1)e : (2.15)

Note that P(m — m+ 1) = P(m + 1 — m) as it should be (cf. (1.67)).

The probabilities (2.15) vanish in both limits: 7 — oo and 7 — 0. The first limit
corresponds to the so-called “adiabatic” perturbation which affects the oscillator in a
very gentle way.” The transition probabilities vanish then exponentially. This illustrates
the adiabatic principle. The other case corresponds to the force which displaces the
equilibrium point of the oscillator for only a very short period At ~ 7. The transition
probabilities vanish in this case too, the heuristic explanation of this being that the
quantum state-vector exhibits some “inertia” and cannot follow the abrupt change of the
Hamiltonian immediately; since the Hamiltonian returns to its original form after a time
~ 7 — 0, nothing happens (cf. the impulse approximation below).

In this simple example it is possible to easily go one step further in the perturbative
expansion and consider the second order contributions to the transition probabilities. This
will allow us to discuss unitarity of the S-matrix within the perturbative approach. Using
the general formulae (2.9) and (2.3) with ¢, = —oo we get

al?(t) = (%)2 ; et (k| Vi (1)) /_

t
dt’ e“rmt (n| Vi (t')|m) .
Inserting here the matrix elements (2.13) we obtain

@ F02 400 t , 6iwknt eiwnmt’
S == dt dt
e 2Mhw /_oo /_oo Z [1+22/72][1 4 t72/7?]
X (ﬂdk,n—l +vn+ 1 5k,n+l) (mdn,m—l +vm+ 1 5n,m+l> .

From the structure of the matrix elements we see that in the second order of the pertur-
bative expansion the following transitions are possible:

i) to |k) = |m—2), with S,gi)1 proportional to y/m(m — 1); in this case the double integral
involves the factor e~ et

ii) to |k) = |[m+ 2), with S,gi)b proportional to /(m + 2)(m + 1); here the double integral
involves the factor et@tett’

iii) to |k) = |m); here two terms contribute to S,gi)%: one proportional to m with the factor
et@te=t ynder the integral, and the second term proportional to m + 1 with ettt

under the integral.

" Although the effective time duration At ~ 7 tends in this case to infinity and 7|(k| Vi (t)|m)|/h — oo,
and the simple criterion of applicability of the perturbative expansion formulated above seems to be
violated, the oscillatory factors make the expansion, nevertheless, reliable.
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The integrals appearing in the elements S,gii with kK = m—2 and k = m+2 are easy to
compute: it suffices to notice that because the integrand h(t,t') = f(¢)f(t') is symmetric,
h(t,t") = h(t',t), one can write

[ f woner= [t oo [ af s

from which it follows that

/_ :odt /_ ;dt’f(t)f(t’) - { /_ :"’dt f(t)r _ip

Hence,
F 2
Asﬁlzm::-—£1§§%gre—2“7 m(m — 1), (2.16)
F 2
5(2) _ _( 07T7—) 6—2wr \/(m + 2)(m + 1) )

mEZm T A M hw

and, therefore,

1 4
P(m — m — 2) m m(m — 1)(F07T7—> eXp(—4WT) s

1 4
Pim—m+2)= e (m+2)(m + 1)(ForrT)" exp(—4wT) ,

that is, P(m - m+2) = P(m+2 — m).

It is instructive to confront these results with the unitarity of the S-matrix. In terms
of the expansion (2.11) the unitarity relation (1.58) takes the form

0= (S + S0 ) + (S(2 5% Z s g ) . (2.17)

As the expressions in the successive brackets are proportional to different powers of the
formal expansion parameter A, they must vanish separately. In the considered example
the first order equality S,(,}b?;, + S,(,}b)m = 0 is clearly satisfied® by the elements (2.14). The
second order relation applied to m’ = m + 2 and taking into account only the nonzero
first order elements reads

2)* 1)
ST(71M+2 + Sm+2m + Sm+1 m+2S( +1,m =0.

Using in it the results (2.14) confirms the correctness of the calculated second order S-
matrix elements given by (2.16). The same second order unitarity relation applied to
m’ = m gives
1)%
S 45?4 s S0 st

m—1,m

=0. (2.18)

8The same follows also from the relation (1.67); being exact this formula also implies the general
relation Sr(n)m, = (-1)m '8 (1)

mm’

in the case considered here |m — m/| = 1.
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Using the results (2.14) one finds

(Fymrr)?

2Re(Sin) = =53

(2m + 1) e 27, (2.19)

This can be also computed directly. While the integral which is necessary for Sy(,f)m itself
is not easy to compute because the integrand is not a symmetric function of ¢ and ¢, the
integral which gives 2Re(Sm)m) is simpler because the combined integrand of the sum of

S,(n)m and Sﬁm is effectively symmetric. Therefore

F2 2m + 1 +00 6—zwt6+iwt’ + eiwte—iwt’
2\ — /
2Re(S) = =i / at / S TNy Ry

F2 o2m + 1 /-i-oodt/—i-oodt —zwte—l—zwt +eiwt6—iwt’
C 2Mhw 1+ 2/72)[1 + t2/72]

F2 2 1 400 400 —zwt +iwt!
- m / dt / dt’ ¢
 OMhw 1+t2/7'2][ + 2 /72

_FF2em+1) / 0t et
oMhw | ). C1te/e]
which is the result obtained from (2.18). In fact it is precisely 2Re(57(73,)m), and not S,

itself, which is needed to find the first nontrivial correction to the zero-th order result
P(m — m) ~ 1. Indeed,

Pm—m)=[1+52 +58 +. . |"=142Re(S2)) +O(F),
(from the structure of Vi, it readily follows that Sy(,}b)m = r(r?j)m = ... = 0). The term

15$2,|2 contributes to the order F term but the contribution 2Re(S%,) is also of the

same (Fy') order. Thus, without computing 2Re(Sm m) the probability P(m — m) can be
found consistently only up to the FZ order. Thus

(FyrrT)?

—2wT 4
M o (2m+1)e + O(Fy) .

Pm—m)=1-

Using this result as well as the probabilities P(m — m £ 1) computed earlier (the prob-
abilities P(m — m =+ 2) are of order Fy) it is straightforward to directly check (what
anyway is secured by the relations (2.17)) that

> P(m—k)=1+O(F).
k

This example shows that the unitarity is successively restored by including higher order
contributions to Sy ,,,. Such a perturbative unitarization of transition amplitudes is a usual
feature of calculations performed in the framework of quantum field theory (see F igure 2.2
for an illustration). The relation (2.17) which allows to obtain the p-th order S TS (p
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Figure 2.2: Example of the perturbative unitarization of quantum field theory transition
amplitudes: because the Z° boson is an unstable particle, the amplitude of elastic electron-
positron scattering should have a pole at a complex value of the Mandelstam variable
s = (ki + ko)* & MZ — iMzT'; and not at the real value s = M%. To get the position
of the pole shifted off the real axis one has however to compute the amplitude of the
eet — e~et scattering up to the second order terms in the perturbative expansion.

from the S-matrix elements S (<) ., with s < p is an example of the optical theorem which
will be derived in Section 7.6.

The transition probabilities computed here can be compared with the ones following
from the exact solution of the problem which was obtained in section 1.3. To this end,
one has to set in the exact S-matrix given by (1.66)

—WT

dte™ F(t) = Forrre

i
\/ M hw / V2M hw
The expansion in powers of Fy is then equivalent to the expansion in powers of |c|. Ex-
panding for example the element S,, ,,, of (1.66) we get

1 1
Spnm = <1—§|c|2+...) (1—m|c|2+...):1—5(2m+1)|c|2+...,

(the lowest powers of |c| arise from the terms with the largest values of k in the sum
n (1.66)) and 2Re(S,,m) obtained in this way coincides with (2.19). (Incidentally, the

comparison with the exact element S, shows that Im(S,(r%)m) = 0). Other matrix elements
can be checked similarly: S,,—1;m = —c¢*v/m+ ... and Spp1m =cvVm+ 1+ ..., etc

2.3 Change of the Hamiltonian

Another interesting case to which the time dependent perturbative expansion can be
applied is the situation in which the Hamiltonian of the system undergoes a finite change:
H(t) — Hyast — —oo and H(t) — Ho—i-ViflJ{) in the limit t — +oo0, that is Viy(—o00) =0
but Vi (+00) = me In this case one is naturally interested in probabilities of transitions
from an eigenstate |m) of Hy (Ho|m) = E,,|m)) prepared in the far past to a normalizable

eigenstate |k) of Hy + Vm:r at t = +o00:

(Ho + VSV E) = (B, + AE)|E) = Eyk) .
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Obviously, if Vir(lf)}s a small perturbation in the usual sense, AEj and the coefficients of
the expansion of |k) in terms of the H eigenvectors |m) can be computed perturbatively
with the help of the ordinary Rayleigh-Schrodinger expansion. Furthermore, if the change
of the Hamiltonian occurs (almost) instantaneously compared to a characteristic time of
the system (determined by the inverse of the difference of its energy levels), the intuitive
picture is that the system’s state-vector does not change during the short period in which
the Hamiltonian undergoes the change. However, even if before the perturbation has
started to act the system was in an eigenstate of Hy, the corresponding initial state-
vector is not an eigenvector of the ultimate Hamiltonian H0+V;£:r) and will have, therefore,
nonzero projections onto (in general all) its eigenvectors. In agreements with the general
principles the transition probabilities (evaluated at any moment after the Hamiltonian

has already assumed its final form H, + Vn(;r)) should be, therefore, given by the squares
of the absolute values of the scalar products of the initial system’s state-vector with the

eigenvectors of Hy + 17ANS

int

This intuitively clear prescription for computing the probabilities of transitions in-
duced by the sudden, occurring in a short time interval 7' = t5 — 1, between the instants
t1 and ty, change AH = Vlg) of the Hamiltonian, can be justified in a more formal way
by replacing the time variable by a dimensionless parameter £ = (t — t;)/T (0 < ¢ < 1),
and writing the system’s (Schrédinger picture) evolution operator U(t, ;) corresponding
to the time interval (¢,¢;), where ¢ < ¢y, as Up(§). The integral equation (1.6) can be
then rewritten in the form

. €
U =1~ 37 [ de HEUEE), (2.20)
0
in which H () is the Hamiltonian expressed through the parameter £&. Under the adopted
assumptions H(0) = Hy, H(1) = Hy + V;g:r) and it is clear that as T'— 0
Ulty, t) =U(T,1) — 1. (2.21)

That is, if the system’s state was at ¢; represented by a (normalized to unity) vector |W¥;),
immediately after the instantaneous change of the Hamiltonian, at the moment t,, it is
represented approximately by Ul(ts, t1)| V1) ~ |¥;). (Of course, the evolution operator
corresponding to time intervals before ¢; has the form (1.5) with the Hamiltonian H, and

after t5, the same form but with the Hamiltonian Hj, + VH(;:))

It is possible to obtain a simple estimate of the probability P of the system not being
at ty in the state | ;). It is given by®

P = (0|U(ta, t1) PLU (2, 1) | ¥1) (2.22)

9Suppose [¢)) = > |n)c,, where |n) is a basis of the Hilbert space. The probability P, = |c,|?
of finding the system in the state |n) can be obtained as (1)|P,|¢)) where P, = |n)(n|. This readily
generalizes to the joint probability of finding the system in any linear combination of a subset of basis
states |n), i.e. in any state belonging to a subspace of the Hilbert space spanned by this subset of the
basis state-vectors |n).

47



where P| = 1—|¥,)(T,| is the projection operator onto the subspace (of the entire Hilbert
space) orthogonal to [Wy). Inserting in this formula the iterated solution to (2.20) and
noticing that P,|W¥;) = 0, one finds that

2 2

P = o (WP + O(T) ~ 15 [([H ) — (W[H]0,))?

where

F:%fEH@:/%H@.

t1 0

The probability P is (approximately) given by the squared dispersion squared (AH)? of
the “mean” Hamiltonian H in the state |¥;) and is small if T < h/AH.

Let us now see how this intuitive picture can be recovered from the first order of
the perturbative expansion of the evolution operator Uj(t,ty) despite the fact that it
is formulated in the basis of the H, eigenvectors. For the sake of definiteness we will
assume that |U(—o0)); = |m) - in the far past the system was in the H, eigenstate |m).
By integrating by parts its right hand side, the formula (2.9) for U,gz(t, —00) can be
rewritten as

Vi) |y [ gt D

T e dt k[ Vin , 2.9

"wim ¢ oo + oo heos, at/< ‘ t( )|m> ( 3)
for k # m, and as
t/

+ 37 (Vi ()m ——/dwamwmmm, (2.24)

for k = m. It should be now noticed that the first terms of these two expressions

BV ) e

E L, for  k#m
-t (m[ Vs (8)|m) for  k=m,

(in which the condition Vi, (—o0) = 0 has been used), give the changes of the eigenvectors

and eigenvalues of the Hamiltonian: for ¢ — oo (when Vi (t) = V;fl:r ) the expression for
W (t))

[T (t)) = [m) e Ert/h 4 |y e B YL (1, —00) + .

which is obtained from the perturbative expansion can be rearranged to give

—i1Emt/h Z —1FEm
W@Fﬂ@eEW—ﬁwmeEWWMMMW
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4 Z k) e —iEgt/h (k[ Vi (¢) |m) i (Br—Em)t/h 4

= E,, — B}
ry o~ 1 (Bm+AEn)t/h (k|Vie ' Im)
e <|m+2|k7E ol R
k#m
~e Bty 4 (2.25)

that is, up to higher order corrections these terms reproduce the energy E,, and the
eigenvector |m) of Hy +y (compare the formulae of the ordinary Rayleigh - Schrodinger

int
perturbative expansion). Since the probabilities of transitions to the eigenstates of Hy +

/A% should be calculated by taking the scalar products of |¥(t)) with the eigenvectors |k)

int

of Hy+ V;nt , the terms displayed in (2.25) should be treated as producing (together with

the higher order terms) ¢;.. Calculating the transition probabilities in the first order in
the perturbation Vlgf one can treat in the remaining terms |k) as |k) and Ej, as Ej, (the

differences between |k) and |k) and between Ej, and Ej affects P(m — k) only in higher
orders). Thus

~ 1

“+oo
Plm - ) = / et kOl 4| kA m,

o

2, 2
2wz,

P(m — 1) = 1—l/+mdtt2< [Ving (£)[m) +
m m) = ih . ot m| Vint m

(2.26)

Similar rearrangement of the perturbative series giving |¥(¢)) should be also possible in
higher orders, but would be, of course, considerably more complicated technically. The
need for such a rearrangement is clearly due to the fact that obviously the expansion
in terms of the eigenvectors of the free Hamiltonian H is not appropriate when one is
interested in transitions to eigenstates of Hy + Vlflt) As it will be seen in due course, it is
analogous to the procedure (which is referred to as “correcting for wave functions renor-
malization”) which must in general be applied (on their both “ends”) to perturbatively
calculated amplitudes (Green’s functions) in relativistic field theories to extract proper
transition amplitudes (S-matrix elements) because in general what one is interested in
are the probabilities of transition between appropriately defined in and out eigenstates of
the full (time independent) Hamiltonian H = Hy + Vi, which differ from and correspond
to different energies than eigenstates of the free Hamiltonian Hy in terms of which the
standard expansion is formulated.

If the change of the Hamiltonian occurs almost instantaneously at the instant ¢;,; which
can taken to be 0, that is, if the derivative of Viy(¢) in the matrix elements in (2.26) can

be approximated by the derivative of (k|V;{™ 8(¢ — tin.)|m), one obtains!® P(m — m) ~ 1

int

V(+)

10Since (m|V,,;’|m) is real, the first order correction to P(m — ) vanishes. Recall that in the

V(JF)

7)) in P(m — m) cannot be computed consistently.

approximation adopted here terms of order O((
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and

2
(kI )|

Pim — k) ~ o
km

. k#m. (2.27)
How this is related to the intuitive picture of the state-vector which “does not succeed”

to change quickly enough? In this picture the same transition probability is simply given
by

Plm — F) = )<12;|m>)2, (2.28)

) the eigenvectors of Hy + v

where |m) is the eigenvector of Hy and mt . Using in (2.28)

|k
the standard first order expression for |k)

(n|VS |k >
= |k) +Z| mt ..,

given by Rayleigh - Schriodinger perturbative expansion reduces it to (2.27), if k # m, and
gives P(m — m) = 1. From the general result (2.21) it should be, however, clear that if
the time interval T', during which the change of the Hamiltonian effectively occurs, tends
to zero, the prescription (2.28) goes beyond the perturbative method (the formula (2.28)
becomes exact in the strict limit 7" = 0).

As a first example of the application of the formula (2.28) we consider the one-
dimensional harmonic oscillator of mass M and frequency w the center of equilibrium
of which suddenly shifts (the change occurs during At < 1/w). The Hamiltonian per-
turbation is therefore Vi (t) = —xF(t) with F(t) close in shape to Fyf(t — tiy), that is
v = —xFy. We will compute the probability of the transition from the ground state

int

to the state |n) of the shifted oscillator.

Recall that the ground state wave function of the unshifted oscillator (Vi = 0) has
the form

do(x) = (af Vm) 2 e,

in which o® = Mw/h. The Hamiltonian of the shifted oscillator is

~D

1
Hy+ Vi = 2p—M + 2Mw (z — 20)* + const,

where o = Fy/Mw?. Therefore, the eigenfunctions 1, (x) of the shifted oscillator read

an(l’) = Nn Hn(a(x — SL’Q)) 6_%0‘2(90_m0)27
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where |N,|> = /2"n!\/7 and H,(z) are the Hermite polynomials (Hy(z) = 1, Hy(z) = 2z,
Hy(z) = —2 + 422, etc.). The transition probabilities are therefore given by

2

P(0 i) = [{a[0) = ' [ i@

a2 Foo 1.2 2 1.2..2 2
— g | [ o afs ) e
"I S s
1 2| [T 2 ?
= S e%o / dée e 0, (6)]
"nlmw oo

where ¢ = a(z — xy) and & = axg. Recalling now that H,(£) = (—1)" e’ d" (e ¢") /dem

we can write
+oo dn
de (—1)" —£& & ¢
/ e e

Integrating n times by parts (the boundary terms give always zero) we arrive at

1 2

PO =) = 5 =6

2

1 +eo
PO —n)= ST o6 / de &y o880 o€
_ ! 2n ,—€5/2 +Ood —(6+€0/2)? ; 1 o —£3/2
N 2”n!7r£0 c o Se —2np) So"e '

One recognizes easily in this expression the Poisson distribution with the mean excitement
n = nP(0— n) of the oscillator given by

o) 2\ M 9 00 2\ n—1 2
S _ et (S _ e L (&) _&
e Zn!(?) ¢ 2;(71—1)! 2 2’

n=0

that is, n = /2 = F2/2Mhw?. Therefore

P(0—7) = " - (2.29)

As the problem of the harmonic oscillator perturbed by an arbitrary external force
F(t) has been explicitly solved in Section 1.3, it is interesting to see, how the exact solution
reduces to (2.28) and (2.29) when F'(t) — 0(t)F,. Since at t > 0 the time evolution of the

oscillator is governed by Hy+ Vlf:tr) rather than by Hy, the transition amplitude U, (, o)
which will have well defined limits ¢ — oco and ¢ty — —oo should be defined (compare the
expression (2.8)) as

U, (t, —00) = (k| Mt W (1)) = (| otV e —Hot/h g 1)y, (2.30)
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Taking into account that in the considered case |¥(—o00)); = |m), we are interested in

U, (t,—00) = (k|e!HotViu Whe=tHt/ATr (1 _o0)|m) .

,m

From the results of Section 1.3 it follows that!!

Ho+ V) = A, + hwa'a+ foa' + ffa=ST(Ho— AL)S, (2.31)

int

where fo = —hFy/vV2Mhw, A, = |fy]?/hw, S = exp(ba’ —b*a) and b = fy/hw. This also
means that

ez'(HoJrvigj))t/h _ GtpilHo—A)/hg _ =ibit/h gt yiHot/h g

Therefore, using the fact that |i) = ST|n), which implies that (7i|ST = (n|, one can write
U, (t, —00) = e IATt/ (|| gtHot/h G HOt/RTT (1 —o0)|m)
= e ARl b AT e (4 —o0)m) (2.32)

The operator Uy(t, to) is given by (1.72). In the case of the force F(t) considered here,
the function c(t, ) entering this operator, and defined in (1.54), does not have the limit
t — oo (the limit ¢y — —oo still exists, owing to vanishing of F'(¢) in the far past) but
after integration by parts can be represented in the form

1 : ¢ o d .
c(t, —o0) = oI {Fg et —/_oodT er e F(T)] = —be™ + (), (2.33)
where the function ¢&(t) already has the t — oo limit é.,. With the help of the Baker-
Hausdorff formula (1.50) the evolution operator U;(t, —oo) can be brought into the form

Ur(t, —o0) = e~ e al+bme ™ a 2lt) ol =& (th o —iu (2.34)

with some irrelevant, time dependent phase factor ;. The left exponential operator factor
precisely cancels the similar factor in (2.32) and the exact transition amplitude takes the
final form'?

Uy, (00, —00) = lim (e~ T A/M) (| efoen! =ty (2.35)

m t—o0

with ¢, = ¢(c0). Since for F(t) = 0(t)Fy the factor ¢, goes over into the factor b, the
operator between (k| and |m) reduces to S, and, on account of the relation (k]S = (K|,
one recovers the formula (2.28). It is also easy to see that if F'(t) changes from 0 to Fy
smoothly, the transition probability

2

Y

P(0 — ) = e lo=F ‘<n|eé°°“T\O>

"1 The operator S introduced here should not be confused with the S operator discussed in Section 1.3.
12 Although we have not computed the phase factor 7, the definition (2.30) of the amplitude should
secure the existence of the t — oo limit of the overall phase factor in the first bracket.
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has still the Poisson form (2.29) with i = |¢s|? (Which reduces to F?/2Mhw? in the limit
of the instantaneous change).

As the second example (which in Section 2.5 will also serve us to illustrate another
important point) we consider the tritium g3 decay *H —3He + e~ + 7, and will calculate
(neglecting complications related to spin and the antisimmetrization of all electron states)
the probability that as a result of the decay the electron (not the one displayed here!)
which is initially in the Hydrogen atom ground state |(Z = 1)n = 0, = 0,m = 0) will
make a transition to the Helium atom excited state |(Z = 2)n/, ', m/).

The energy spectrum of the electrons emitted in a 3 decay is continuous.’® In this
particular reaction the maximal (kinetic) energy of the electron emitted from the nucleus
is about 18 keV. Our first task is to check whether the approximation of the instant
change of the Hamiltonian (Z =1 — Z = 2 in Hy = p*/2M, — Ze*/r) can be justified.
The characteristic atomic time is h/E where E is the typical difference of energies of the
atomic levels. Taking 13.6 eV as a representative number we get!?

Eo he 197 x 107 MeV -m
= = ~ 0. 10716 .
FE - Be 136eV-3x 108 mjsec -0 X 1077 sec

The time period At during which the change of the electrostatic field of the nucleus
occurs (Z = 1 — Z = 2), can be estimated as the time in which the electron emitted
from the nucleus leaves the atom the spatial size of which is given by the Bohr radius
ag ~ 0.5 x 1071 m. The time At ~ ag/v where v is the velocity of the electron produced
in the § decay, that is, the velocity corresponding to electron kinetic energy Ei;, ~ 18 keV.
Since By, = Mv?%/2, we get v?/c? = 2Eyiu/M.c* ~ 0.07. Thus,

h 1 6.582x 10722 MeV - sec 137
M.2apm VO.OT 0.511 MeV 0.26

and we see that the change of the Hamiltonian is indeed fast compared to the characteristic
atomic time,'® and the use of the impulse approximation is justified. Therefore one can
approximate

At ~ 6.7 x 1071 sec,

P(1S — nlmy(Z = 2)) = |(nlmy(Z = 2)|1S(Z = 1))]* .

For example, for m = 15 or 25, using the explicit form of the wave functions:

=2 (2) (22 [ 25 (22
ap an may ap

1 A 3/2 r r
__— (2} (2-zL 7z )y
Vs 2v/2 <GB> < aB)eXp< QaB) o

13The existence of the neutrino was postulated by W. Pauli in 1931 to explain this fact without resorting
to nonconservation of the energy (which was desperately hypothesized by N. Bohr).

4 Recall that hc = 197 MeV x 10~ 1%m, M.c? ~ 0.511 MeV and in the Gauss system of units used here
the fine structure constant agy = e€2/hc ~ 1/137 and ag = h?/M.e? = hc/M.c?apwm.

15 At least in the prevailing fraction of such decays, when the emitted electron energy is not too close
to the lower end of the energy spectrum.
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we find

2

P(1S - 18) = ' [ drvisz =2visz =)

97/2 oo 2 27/2 92 0o
—3/ drr2e=®/m| — |2 / dre "
0 0

2

ap a’sB da? a=3/ap
G P UC R B (8)3 = 0.702
apy, 002 af, g, ad (3/ap)? 9 o

Similarly, one finds that P(1S — 2S5) ~ 0.25. Transitions to the states other than the
S-states have in this approximation vanishing probabilities (due to the orthogonality of
the spherical harmonics).

2.4 Slow change of the Hamiltonian

Here we would like to give a proof of the adiabatic theorem which says that if the time-
dependent Hamiltonian H(t) of a system undergoes a fixed finite change in a very long
time period T' = t; — t;, the system which at the instant ¢; was in an instantaneous
eigenstate of the Hamiltonian H(¢;) will, after the change is completed, with probability
approaching unity in the limit 7" — oo, be found in the instantaneous eigenstate of the
Hamiltonian H (t3) connected by continuity with the initial state. We will use the already
introduced notation ¢t = T¢ + t; (with 0 < ¢ < 1) and will assume that the spectrum
of the Hamiltonian H(t) = H(&) consists of discrete energy levels E,(§) which do not
intersect, so the changes of the spectrum can be unambiguously followed. To each of these
levels corresponds the projection operator P,(€) (Po(€)Pu(&) = Pu(€), Pu(€)Pu(€) = 0
ifn#n', Y, P& = 1) onto the subspace spanned by the instantaneous eigenvectors
of H() corresponding to the eigenvalue E,(¢). The instantaneous Hamiltonian can be
therefore written in the form (spectral decomposition)

H(&) =) Pu(&) En($). (2.36)

The (Schrodinger picture) evolution operator U(t,t;) of the system corresponding to the
time interval (¢, t2) will be written as U(T', ). The operator form of the adiabatic theorem
is

lim U(T,§) P,(0) = P,(§) lim U(T,¢). (2.37)
T—o0 T—o0

It says that if the system starts at ¢ = ¢; (i.e. & = 0) in a state belonging to the n-th

energy level, it will remain, in the adiabatic limit in a state belonging to the same (evolved)

energy level. The relation (2.37) remains obviously true in the special (somewhat artificial

at first sight) case in which despite the changes of the Hamiltonian eigenvalues E,, (), the
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projectors P,(£) do not depend on time: P,(§) = P,(0). The Hamiltonian splits then into
a sum of £ dependent operators H, () = P,(0) E,(§) and the evolution operator takes
the form (T¢ denotes the {-time ordering operation)

U(T,€) = Teexp (—% T /0 gdg' H(g'))
= ;Pn(o) exp(—%T/:dﬁ’En(ﬁ’)), (2.38)

because [H (&), H(¢')] = 0. The proof of the adiabatic theorem relies on reducing the
general situation to this particular case.

As the first step one introduces the unitary operator A(£) which maps the H(0) eigen-
vectors |n(0)) into the corresponding eigenvectors |[n(§)) of H(&):

A(§)[n(0)) = [n(€)) - (2.39)

Since P,(£) is the sum of the operators |n(£))(n(£)| with |n(§)) corresponding to E, (),
it follows that

P,(€) = A(€) Pa(0) A(€) . (2.40)
The operator A(§) can be constructed by integrating the differential equation
L d
ih ¢ A(E) = K(€) A(©). (2.41)

with the initial condition A(0) = 1. Provided K (¢) is Hermitian, this way of constructing
A(€) yields a unitary operator. As can be checked by differentiating the projectors P, (&)
with respect to &, the operator A(§) constructed in this way will have the property (2.39)
if

d

K P, =1h—

K(©). PL(€)] = i 5

This does not fix the operator K (§) uniquely - asum ) P,,(£) O, () Py (§) with arbitrary

operators O,,(£) can always be added to it. (Such a sum always commutes with P, (&)

because P, (§)P,,(§) equals either P,(§) or zero.) The ambiguity is fixed by imposing on
K (&) a set of subsidiary conditions

Pa(§) . (2.42)

P.(&§) K(§) Pu(§) =0, all n, (2.43)

which will play an important role in the proof. The operator K (&) satisfying the relations
(2.42) and (2.43) has the form

K(§) =ih) ah; ;"%(5) P(§) = —ih Y Pu(§)

Al (§)
e (2.44)
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The equivalence of the two forms (which is crucial in checking the property (2.42) and
the Hermiticity of K(§)) follows readily by differentiating with respect to £ the second
equality in the identities

S P =D Pue) Pue) = 1.

Differentiating instead the relation PP, = P, gives the identity which can be written
as P, P, :APn(l — P,) and upon multiplication from the right by P, yields the identity
P, P, P, = 0 which is necessary to check that (2.44) satisfies also the subsidiary conditions
(2.43).

With the help of the unitary operator A({) one can define the “A-picture” - the
analog of the interaction picture introduced in Section 1.1 - in which the system’s states
are represented by vectors obtained from the corresponding Schrodinger picture vectors
with help of the transformation

[T(€))a = ANE)T(E))s - (2.45)

The A-picture evolution operator Us(T,€) is related to the Schrodinger picture one by
(cf. the formula (1.24))

Ua(T,€) = A U(T,€) A(0) = A(§) U(T,€),

and satisfies, therefore, together with the condition U4 (T,0) = 1, the equation

md% UA(T.€) = (T HA(€) — KA€)) Ua(T€). (2.46)

in which K4(¢) = AT(¢) K(€) A(€) and

HA(€) = AN H(§) A(€) =) P(0) B, (€). (2.47)

If the term with the operator K“(£) on the right hand side of this equation is neglected in
comparison with the one explicitly proportional to T, the resulting approximate evolution
operator Uy (T, €) (satisfying the initial condition Ua(T,0) = 1) is precisely, owing to
the above form of H4(£), given by the right hand side of (2.38) and the corresponding
approximate Schrodinger picture evolution operator A(€) Ux(T, €) satisfies (owing to the
relation (2.39)) the relation (2.37).

To show that in the limit 7" — oo the evolution operator Ua(T),¢) can indeed be
approximated by Ua(T, §) one can write Uy (T, &) = Ua(T, &) W () and study the operator
W (&) which satisfies the equation

md% W(E) = ~UK(T,€) Ka(6) Us(T.O) W () = ~K(€) W(¢). (2.48)
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with the initial condition W (0) = 1, which can be converted into the integral equation

U -
WO =i+ [a@REWE). (2.49)

0

The point now is that the kernel K (£) is a sum of terms oscillating with frequencies which
become infinite in the 7" — oo limit. To see this one writes it in the form

=D Pu0)K(§) Pu(0) =Y Knwl(é), (2.50)

in which, owing to the special form (2.38) of U4(T,€) and the relation (2.39),

_ 3
R (€)= ANE) Po(€) K(€) Py () A(E) exp (zT [ o <5’>) , (251)

where wy,, (&) = (En(§) — E(§))/h. All off-diagonal terms (i.e. ones with n # n’)
K, (€) involve phase factors oscillating with increasing, as T — oo, effective frequencies
while owing to the subsidiary condition (2.43) K, ,(§) = 0. To see that these rapid
oscillations kill the integral term in (2.49) one can, upon integrating by parts, cast it in
the form (because F'(0) = 0 - see below)

A~

We) =1+ FOWE -4 [ i FE) 2

e wi('. (2.52)

Of interest is the large T" behaviour of the operators

S
an’ (6) = / dg, Kn,n’(gl) )
0

with n # n’ (as F,,(§) = 0). As the operators AT(&) P,(€) K(€) Py(€) A(€) in (2.51) do
not depend on 7" and are continuous functions of ¢, the operators F (£) vanish in the
limit 7' — oo, essentially like 1/7". Since this means that W (&) = 1+ O(1/T),

U(T,€) = A() Ua(T,€) [L + O(1/T)]

which is what was to be shown.

An important aspect of the adiabatic theorem applied to slow cyclic changes of the
Hamiltonian is the appearance of the “geometric” phase, called also Berry’s phase, which
complements the usual “dynamical” phase of the evolving state-vector |¥(¢)) of the sys-
tem. Suppose the Hamiltonian of the system depends on time through a set of parameters
Xi(t), 1 =1,...,r, collectively denoted X(t)



and that |I(X\)) are the eigenvectors of H(X) with the eigenvalues Ej(A) (when A depends
on time they are the instantaneous eigenvectors and eigenvalues of H(A(t))). Seeking the
solution of the Schrédinger equation (1.1) with H(A(t)) in the form

= Z [L(A(t)) ar(t) exp{—%/o dt’El()\(t'))} , (2.53)

with the initial condition |¥(0)) = |n(A(0)), i.e. a;(0) = d;,, one finds that the coefficients
a;(t) satisfy the system of differential equations (wy = (E; — Ey)/h)

a(t) ==Y (A )l Il( ()))azf(t)eXp{i/O dt’ww(k(t’))}- (2.54)

l/

The scalar product ([(A(¢)|d[l'(A(t))/dt can be worked out by differentiating with respect
to time the relation H (¢)|I'(t)) = Ey(t)|l'(t)) and closing the resulting equality from the
left with (I(¢)| with [ # . This gives

A1 5 PO = == O G Doy, 1r

For [ = I’ one differentiates instead the equality (I(A)[l(A)) = 1 which leads to the relation
(written in the more appropriate notation)

(10) + (1) = Q)" + (1) =

from which it follows that

(1[7)

LA — \l( (t)) = im(t) (2.55)

where the factor 7,(¢) is real. The (exact) set of differential equations for the coefficients
a;(t) takes therefore the form

\dH/dﬂl'( ) e :
a(t) = —ivy(t) a(t) + E ap(t)exps i [ dt wy (X)) ¢ -
a2 Ez - B { [ }

According to the adiabatic theorem, when a fixed change of the Hamiltonian occurs very
slowly, i.e. it takes a very long time, and the system at the instant ¢ = 0 starts in the
(instantaneous) eigenvector |n(X(0))) of H(A(0)), the coefficients a;(¢) with [ # n should
remain very small and can be in the first approximation set equal zero. The evolution of
the only significantly different from zero coefficient a,(¢) is in this limit determined by
the simple equation a,(t) = —iv,(t) a,(t) the solution of which is

an(t) = exp (-i /0 v %(t’)) = exp(—iT, (1),
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that is, a, remains a pure phase factor, |a,(t)| = 1, and the evolution of the system’s
state vector is
1

(1)) ~ [n(A®))) exp{—z’f‘n(t) : / dt’En()\(t’))} . (2.56)

0

Thus the system remains in the instantaneous eigenstate of H (A) but the state-vector
representing it acquires a phase which consists of two parts: the dynamical one, depending
on the integral of the instantaneous eigenvalues £, () of the changing Hamiltonian - this
generalizes the well-known phase factor exp(—iE,t/h) acquired by a vector representing

the system which at t = 0 was in the eigenstate |n) of the Hamiltonian H(X(0)) - and the
phase I',,().

At first sight it may seem that the phase I',,(¢) is unphysical and can be eliminated.
Indeed, in choosing the eigenvectors of the Hamiltonian H (A) it is always possible to
change their phases and take instead of the eigenvectors |n(A)) (to which correspond the
factors v, defined by the relation (2.55)), the eigenvectors |[n(X))’ which differ from |[n())
by phases:

n(A)" = [n(A)) exp(ixn(N)) -
The corresponding phases 7/, are then

A0 = D] G I = i30(6) + 1 5 (257)

so taking

mwz—Aw%w»

indeed seems to lead to 1", (t) = 0.

To show that elimination of the phase I',, is in fact not possible globally, when after
a long (for adiabaticity) time T the parameters A’ return to their initial values, \/(T') =
A(0), it is convenient to write the factor 7, (¢) in the form

0
ON!

W)= PN, A = i (n(N)] 51 (V) (2.58)

introducing thereby the “gauge fields” QY;("), which can be treated as the analogs of the
vector potential known from classical electrodynamics. The phase I',, in (2.56) acquired
by the state vector representing the system (remaining in the instantaneous eigenstate of
the changing Hamiltonian) after the parameters A* have returned to their initial values

after (a long) time T can be then written in the form

T T
T, (T) = /0 dt v, (t) = /0 dt 4™ N(t) = ]{C PARKO\E
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It is therefore given by the integral of the one-form w, = QY;(") d\' over the closed path
C traced in the abstract parameter space by the vector A. One can now use the Stokes
theorem to write I',,(T") as

I, (T) = C_azggﬁ") AN = /E dw,y = /z

that is as the integral of the two-form dw, over a two-dimensional surface ¥ (in the
abstract parameter space) the boundary of which is the closed curve C. (If the parameter
space is three-dimensional, one can directly use the analogy with the A-Ampsio rule
of electrodynamics which states that the line integral of the vector potential A over a
closed contour is equal to the flux of the magnetic induction B through a surface spanned
on this contour.) Since the transformation v, — =), (2.57) is equivalent to a “gauge
transformation”

0

AR . .
i j i
B3Y AN NdN',

Q{i(") . JZ{i(")’ _ Q{i(") + aXn/a)\i’

it does not affect the two-form dw,, and, hence, cannot eliminate (nor change its value) the
phase factor I',,(T") similarly as in electrodynamics a gauge transformation of the vector
potential cannot change the induction B of the magnetic field (and therefore its flux).

To understand the origin of the name “geometric phase” one can consider the matrix
Hamiltonian

H= —const. Ao,

(o0 = (0!, 0%, 03) are the three Pauli matrices) which may be treated as the Hamiltonian

of the magnetic moment of a spin % particle in an external magnetic field directed along
the vector A (which changes with time). Introducing another parametrization by writing
M = rsinfcosg, \2 = rsinfsing, A3 = rcosf the eigenvector of H corresponding e.g.
to the lower energy level can be written in the form

(<),

Treating (7,6, ¢) as a new set of parameters one readily obtains from (2.58) o7, = <% = 0,
A, = —% cosf. Assuming that the Hamiltonian returned to its initial form after a long
time 7', one can compute the resulting phase I". This can be done by integrating dw, =
% sin 0 df A dy over the region in the (0, ¢) space which is the image of the surface surface
spanned on the closed contour traced out in the real space of the parameters A by the
vector A(t) and parametrized by the coordinates (6, ). This gives I' = £ where Q2 is the
solid angle cut out from the parameter space by the contour traced by A. The same result
can be also obtained by writing ¢ = arctg(y/z) so that (to make the notation easier we
use z for A\?, etc.)

1 z
2 (a2 4+ ) /ot 4 Tt 2
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Le. to o, = yz/2r(2*+y?), o, = —xz/2r(x*+y?) and o, = 0. The corresponding A field
has then the form Z = V x & =r/2r3 i.e. it is of the same form as the magnetic field
created by a pointlike magnetic monopole of the magnetic charge ¢,, = 1/2. By analogy
with the Gauss law it is then clear that the flux of % through any surface spanned on
the closed contour traced in space is the same as computed above. The result can be
generalized to spin s in which case I' = s (2.

2.5 Transitions to non-normalizable states

Up to this point only transitions (induced by a perturbation) from a prepared state to
states normalized to unity have been considered. This covers naturally transitions to
states corresponding to the discrete part of the Hy spectrum or, as in section 2.3, of the
Hy+ Vlf:tr) spectrum, or to any other physically interesting and realizable states. Here we
will consider transitions to non-normalizable states. Of course, strictly speaking, states
represented by non-normalizable (generalized) vectors'® cannot be realized physically and
it should be possible to formulate all questions concerning any physically realizable mea-
surement in terms of probabilities of transitions to normalized states only. Nevertheless,
in the scattering theory and other akin problems in which the measuring devices are able
to detect particles with well defined momenta (physical states detected in such measure-
ments are represented by normalizable but well collimated in the momentum space su-
perpositions of momentum operator generalized eigenvectors) the use of non-normalizable
vectors in place of normalizable ones is very convenient, enormously simplifying practical
calculations.

Sets of non-normalizable vectors, e.g. generalized eigenvectors of Hy, corresponding
to the continuous part of its spectrum, are always labeled by one or more continuous
parameter(s) and, perhaps, some additional discrete labels, which all together will be
here collectively denoted a. Vectors |a) will be assumed to be normalized to a generalized
delta function §(5 — «):

(Bla) = 0(8 — @) = dga (2.59)

which is a product of several Dirac and Kronecker deltas and some factors depending on
the adopted convention. For example in quantum mechanics of a single particle mov-
ing in the continuum (i.e. not confined to a finite domain of the three-dimensional
space) the generalized vectors |k) will be (in the nonrelativistic case) normalized so
that (k'|k) = (27)3®) (K’ — k). If the particle has a nonzero spin s, the vectors |k, o),
where 0 = —s, —s+ 1, ..., +s is the particle’s spin projection, will be normalized so that

16Generalized or non-normalizable vectors, like e.g. plane waves in quantum mechanics of a single
particle, do not belong to the proper Hilbert space; they are, roughly speaking, elements of the space of
linear forms over the proper Hilbert space and as such are only convenient mathematical devices which
should be used with some care.
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K, o'lk,0) = (2m)30®) (k' — k)d,,. The vectors |k) or |k,o) are in this case general-
ized eigenvectors of Hy = P?/2M and correspond to its eigenvalues hi*k?/2M forming
the continuous spectrum; Hj in this case has no normalizable eigenvectors at all. If the
spectrum of Hy (or H) consists of the discrete and continuous parts with the eigenvectors
In) (normalized to unity) and |a) (generalized), the decomposition of the unit operator 1
will be (symbolically) written as

=3 )] +/da\a><a\. (2.60)

The measure da in (2.60) corresponds to the generalized delta in (2.59). Because of the
arbitrariness inherent in the normalization (2.59) of generalized vectors,'” the amplitude

(af¥(t)r = (a|Ur(t, to)|¥(to))r,

(in which |¥(tp)); can be a normalizable or a non-normalizable vector) usually is not
dimensionless and for this reason alone its modulus squared cannot be the probability of
finding the system (at the instant ¢ after its evolution from the state |U(ty)) at to) in the
state |a). Instead, in this case one is interested in the (differential) probability

dP = |r{a|¥ ()" do, (2.61)

of finding the system in any state of the continuous set of (generalized) states |«) with
the label « in the range (o, o + dar). If [¥(ty)) is normalized to unity,'® the expression
(2.61) is dimensionless (as follows from (2.60)) and does not depend on the arbitrariness
of the normalization (2.59). If |«) are generalized eigenvectors of Hy which has a simple
form, the justification of the probabilistic interpretation of (2.61) can be also obtained
by enclosing the system in a large box of volume V = L3 so that all states become
normalizable.

To illustrate this and another important and somewhat subtle point we consider once
again the problem of Tritium S decay of Section 2.3 and ask about the probability that as
a result of the decay of the nucleus the atom gets ionized and the electron (initially bound
in the Tritium atom in the |1S) state) is detected! (far away from the atom) with the
momentum in the range between k and k + dk. Using the same approach as in Section
2.3 one can, simplifying the calculation, compute this probability approximately by using

the plane waves in place of the true generalized eigenvectors of Hg, = Hy + Vn(qf) =

"For instance, generalized eigenvectors |k) of the operator P?/2M in quantum mechanics of a single
particle can be normalized as here to (27)%6®)(k’ — k) (in which case da stands for d°k/(27)%) or
to 03 (k' — k) (with da = d°k) or, as in relativistic theories, to (27)*2E6®) (K’ — k), with Fy, =
Ve2R2k2 + M2c* and da = d°k/(27)32E.

181f it is not normalizable, measurable quantities involve additional factors related to the experimental
meaning of the initial state. This will be discussed in Chapter 10.

9Tn this qualitative discussion we neglect the electron spin and, more importantly effects due to the
identity of the two electrons - the one which was initial bound on the atom’s orbit and the one which is
created in the nuclear 8 decay.
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P?/2M — 2¢?/r (the final nucleus has Z = 2). Since the plane waves are simple, one
can easily enclose the system in the box of volume V = L? imposing on the plane waves
periodic boundary conditions. One then deals with the discrete set of the normalized
state-vectors |k) such that
1 . 2T

rlk) = —e*T,  with k= =-n, 2.62

k) = : (2:62)
where the components of the vectors n are integers. In the momentum space the allowed
vectors k form, therefore, a three-dimensional lattice of points. The number of such points
contained in the volume Ak,Ak,Ak, equals

v
number of points = WAkxAkyAk‘z.

Consequently, the factor V/(27)3 plays the role of the density of allowed points in the

momentum space. The differential element of the phase space d*k = dk,dk,dk, contains

therefore Vd®k/(27)3 states. In the adopted approximation, the (differential) probability

of finding the final electron in the specified group of states therefore is

dP(158 = k) = |(k[1S(Z = 1)) (QZ)B d’k
1 3. —ikr ? L 3, _ |7 2’k
— ‘W/d re T g(r) ok &’k = wls(k)‘ )y

It is clear that the arbitrary volume factors cancel out. This demonstrates that the
probability dP is independent of the arbitrariness present in the normalization of non-
normalizable state-vectors. Notice also, that the implicit limit V' — oo allows one to work
from the beginning with the wave function of the |15) state normalized in the continuum.

Yet the approximation which uses the plane waves (even if it may prove quite satisfac-
tory numerically) is wrong from the fundamental point of view. To see this it is sufficient
to sum up the probabilities of finding the electron in any possible final state (we have
passed to the normalization in the continuum):

" P(LS = nlmy) + /(g;;g (K[1S(Z = 1)) > 1.

nlmy

because the Parseval’s identity implies that

d3k " 2 3[' r 2
/Wms(kn —/d rs@)P =1,

Obviously this violation of the unitarity results from the fact that the vectors |k) used
to represent the electron final states form by themselves a complete set of (generalized)
vectors. (Using |k) as |a) in (2.60) leaves no room for the first term in this formula
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- the vectors |k) span the entire Hilbert space of the single particle). To avoid the
problem with the unitarity one has to use the exact generalized eigenvectors of Hg,.
From the elementary potential scattering theory of a single particle it is known, however,
that there are many possible choices of the set of generalized eigenvectors spanning the
subspace of the Hilbert space corresponding to the continuous part of the spectrum of
this Hamiltonian. One such set form the states, labeled by k, the wave functions of which
have the asymptotic (i.e. when r = |r| — 0o) form®°
] R eikr
(rfky) ™+ f(E k) —,

r

(see Appendix E) and correspond to the eigenvalue Ej = h*k?/2M, of Hg,. Another set
form the vectors, also labeled by k and corresponding to the same Hg, eigenvalue, which
in the same limit have the form

R —ikr
(rlk_) ~ &T 4+ f(—t k) —

r

(One could also form superpositions of |k, ) and |k_)). The question then arises, which
set of generalized eigenvectors should be used to compute the probabilities of finding the
electron with the momentum k. We touch here upon the problem which will be discussed
more thoroughly in Chapter 7. The answer is that, because one detects the electron which
behaves as free for ¢ — oo, the time evolution generated by Hy, of the true normalized to
unity electron state which is an appropriately formed (usually well collimated) superposi-
tion of the generalized Hg, eigenvectors, should match, as t — oo, the evolution generated
by P2/2M., of a similar superposition of the generalized eigenvectors [k) of P2/2M.,. It
is the set of |k_) generalized eigenvectors of Hg, which satisfies this requirement (see
Section 7.3):

» dgk _iF dgk
e Hﬁnt/h/W |k_> g(k) —e Pzt/2Meh/W |k> g(k)>

(the convergence is to be understood in the usual sense of convergence of sequences
of vectors in Hilbert spaces). Thus, provided the the vectors |k_) are normalized to
(27)26®) (k' — k), the correct (within the approximation of the sudden change of the
Hamiltonian) formula for the probability of interest is

&k
(2m)*

dP(1S — k) = |(k_|15(Z = 1))|? (2.63)

As will be elucidated in Chapter 7, the generalized states |k, ) and |k_) are, as far as their
physical meaning is concerned, analogous to the (normalizable) in and out vectors intro-
duced in the perturbed harmonic oscillator problem discussed in Section 1.3. It is also

20We disregard here the, unimportant for our argument, fact that the Coulombic wave functions have
in fact a more complicated form.
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clear that finding the (normalizable) eigenvectors of Hg, in the finite volume V' (which in
the limit V' — oo would correspond to the continuous part of the spectrum) and counting
the number of states, as it was possible with the plane waves, is prohibitively difficult.
Fortunately the arguments based on the dimension and independence of the adopted con-
crete normalization prescription (to the Dirac delta functions) of the generalized vectors
suffice to write down the formula (2.63).

2.6 Harmonic perturbations

We now consider the very important case of a perturbation which has harmonic time
dependence of frequency w of the general (Hermitian) form

Vine(t) = O e ™" + Of et (2.64)

in which O is a time independent operator. Without loss of generality we can assume
that w > 0.

Assuming that H, has some normalized eigenvectors corresponding to its discrete
energy levels, we will first consider transitions between such Hj eigenstates. In this case
we can assume that at some instant ¢, for which, without loss of generality?! we can take
to = 0, the system was in the discrete Hy eigenstate |n) with energy E,, and ask about the
probability of finding it at the instant ¢ in another discrete Hy eigenstate |k) with energy
Ey. Inserting the form (2.64) of Vi (¢) into the formula (2.9) we get

1 ei(wkn—w)t -1 ei(wkn—l—w)t -1
UVt 0)= -~ |— (k|0 - (klof . 2.65
£00.0) = 5 | #l0ln) + =2 (0]n) (2.65)

This result means that the transition probability between two discrete states |n) and
|k) (given in this approximation by |L{]$L) (t)|?) is, in general, a complicated function of time
t. Moreover, from (2.65) it is seen that for a given state |n) the probability of the transition
to the state |k) such that either wy, ~ w, if Ey, > E,, or wy, =~ —w, if B}, < FE, (that is, if
the frequency w of the perturbation is tuned to be very close to the energy difference of
the initial state |n) and another state |k)), is particularly big. If w is tuned to be precisely
equal wy, or —wy, the coefficient L[,SL) (t) grows linearly with time and necessarily after

some (short) time the condition |Z/I]$L)| < 1 of applicability of the perturbative expansion
becomes violated. This means that if w is tuned to the energy difference between the
initial state |n) and another discrete state |k), the time evolution of the system cannot be

21T ¢y # 0 in all the formulae of this section ¢ should be replaced by ¢ — ¢y and the matrix elements of
the operator O (of the operator Of) multiplied by the phase factor e(“s»=®)to (the factor e!(«wrntw)to),
This would only slightly change the precise form of the result of the two-state approximation discussed
in the first part of this Section (but not the qualitative picture of the time evolution of the system) but
would not affect the results discussed in the further part.
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analyzed perturbatively.??> One has then to go back to the original set of equations (2.2)
and either solve them exactly or invent another approximation scheme.

One such a possible scheme is the two-state approximation which can be applied if the
perturbation frequency w is (almost exactly) tuned to the energy difference of only one
pair of the discrete Hj eigenstates: the initial state |n) and another state |k). This enables
one to neglect all remaining discrete energy eigenstates and the states corresponding to
the continuous part of the Hy spectrum. Setting in (2.2) to zero all coefficients a,,(t)
except for a,(t) and a(t) one obtains the system of two coupled equations (wnx = —wgn)

Zh&k _ (6i(wkn—w)t0kn + €i(wkn+w)t02k) a, + (6—iwt0kk + eiwtozk) ar
ih CLn = (e_i(wkn—l—w)tOnk -+ e_i(wkn_w)tOZn) ay + (e_iwtOnn + ethO:Ln) Ay ,

in which O, stands for (k|O|n) and the relation (O7);, = (k|OT|n) = (n|O|k))* = O},
has been used. If Fy > E, (wg, > 0) it is the two terms with wy, — w in the exponents

which produce the linear growth with ¢ of the coefficient L[,SL) observed for w =~ wy,.
Setting w = wy, — €, one can then discard all the remaining terms in the right hand sides
of these equations obtaining the simple system of two equations

ihay = O e ay,, iha, = O, e ay.
This system can be easily transformed into the linear second order equation

d2ak . dak ‘O]m|2
a2 —15%“— 72 ak:(),

the most general solution of which is

ak(t) - Al €i91t + A2 eiQQt y Ql 2 — = Zl: - "‘

The corresponding solution for a,(t) is then

h . ) .
a,(t) = — on (AlQl et 1 4,0, emﬁ) et

The initial conditions a,(0) = 1, ax(0) = 0 determine A; and Ay and therefore also the
state-vector |¢(t)) of the system for any instant ¢:

iOkn,

e et? in Ot e_iE’“t/h|k:> )

22 Also, as will be seen on the example, the notion of the transition probability, which is appropriate
for situations in which the probability of the system’s return to the initial state is practically negligible,
should be in this case replaced by just the probability of finding the system in this or another state at a
given instant.
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Therefore, the probabilities of finding the system in the state |k) and in the state |n)
change with the time as

Pn — k)= O sin® Qt = O (1 — cos 2Qt)
h2Q)? 2h20)2 7
2
P(n —n) = cos®> Qt + £ sn?Qr.

402

When e # 0 unitarity is not preserved by the two-states approximation because P(n —
n)+P(n — k) # 1. Tt is restored only for e = 0 (exact tuning of w), when |Oy,|?/h2Q% = 1.
e = 0, i.e. w = wyy,, corresponds to the exact resonance, at which the system jumps
periodically between the two states and the probability of finding it in the state |k)
changes between 0 and 1 with the period 27/h/|Ogy|.

The calculation done above does not apply to the harmonic oscillator which is special
in that if w = wy, + € for some n and k, there are infinitely many other pairs of states
for which the same holds. For this reason the set of equation (2.2) cannot be restricted
to two states only. Indeed, to see this, and to understand what can happen in this case,
one can use as an illustrative example (corresponding to O = a') the exact solution of the
harmonic oscillator problem formulated in (1.39) setting there f(t) = X exp(—iwyt) (w, is
the frequency of the perturbation). If the oscillator was prepared at t = 0 in the state
|n), its interaction picture state-vector at time ¢ is given by [1(t)); = U(t,0)|n) with the
operator U;(t,0) which, up to an irrelevant phase factor is the same as (1.48) with

o , '
S i)t _ by w2 SIDAwt /2
h(t) h)\/OdTe h“’ o

where Aw = w — w,. The probability of finding the oscillator at the instant ¢ in the
H, eigenstate |k) can be then easily computed using the methods of Section 1.3 as
|(k|Ur(t,0)|n)[? in particular, it is easy to see, that if w, = w, the probability P(0 — k)
of finding in the state |k) the oscillator which at ¢ = 0 started in the ground state, is given
by the Poisson distribution (2.29) with the mean excitement k growing quadratically with
the time ¢.

The above considerations show that time evolution of systems, the unperturbed energy
spectrum of which has, in addition to the continuous part, several discrete levels (or, as
the harmonic oscillator, has solely the discrete spectrum), caused by an external harmonic
perturbation of the form (2.64) with the frequency w smaller than (ES% — E;)/h, where
Ec™ is the lowest limit of the continuous spectrum and E; is the energy of the state in
which the system was prepared initially, is either very complicated and irregular or, if
w is tuned to the energy difference of two discrete levels, cannot be analyzed using the
perturbative expansion described in this section. Also, the notion of transition probability
looses to some extent its usual meaning in this case, because the system will jump forth
and back between its discrete levels. However, as we shall now see, the situation changes
qualitatively when the frequency w of the perturbation is greater than (E™ — E;)/h.

min
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Suppose a system, the unperturbed spectrum of which determined by H, consists of
a continuous part and a discrete part, is prepared at ¢ = 0 in the normalized discrete
eigenstate |i) of Hy, the frequency w of the perturbation (2.64) is greater than (ESoR —

E;)/h, and we consider the coefficient Uy;(t) = Z/I(S)(t) + ... which gives the projection
of the system’s state-vector |W(¢)); (in the interacting picture) at the instant ¢ onto the

generalized H, eigenvector |a). From the formula (2.9) one gets

. _ 2 . + 2

L )

+ (OaiOia e_th + O;;Z-O;ka 6“”) |:

where w], = (wo — w;) Fw. Because w > 0 by definition, and wy; = wy — w; > 0 (we
assume the energy spectrum of the system is “normal”), |Z/{(§i)(t)|2 treated as a function
the energy of E, exhibits a strong peak at E, = E; + hw of height Apne o< |Onl?t2/h2.
Formally this principal peak is accompanied by secondary peaks which from the physical
point of view, however, are completely negligible compared to the principal one. Indeed,
the height hag of a secondary peak separated by AFE from the principal one is suppressed

by the factor

har (2N [V et
hoine  \AE) 27 |AE| Lt ‘

Thus, already after e.g. t ~ 1076 sec. from the moment at which the system was prepared
in the state |i), the height of the secondary peak at AE ~ 107¢ eV is suppressed by the
factor 10° relative to the height of the principal one. The contribution of the second term
of (2.66) to the principal peak is clearly also negligible, while the contribution of the last
term of (2.66) to it can be estimated as

2 t * [eV] [meter 2hc _ [ eV ] [meter 4 x 10~
"R T | hw,, ct eV -meter | | hwy ct ’

that is, it is also negligible already for ¢ ~ 107% sec, provided the energy difference
hwys = E, — E; is not too small. All this means that for times ¢ relevant for real
measurements the behaviour of \Z/{O(;)(t)|2 can be safely approximated by

sin(w_,t/2

1 2 ) ’ -\ 12
o = |2 ajoli (267

Furthermore, the width of the principal peak (determined by the first zero of the sine
function) decreases as 2wh/t. Thus, as the time ¢ increases, the principal peak becomes
higher and sharper. Still, the narrow range of energies around E, = E; + hw, within
which |Z/{£)(t)\2 is appreciably different from zero, covers, if ¢ is not taken to infinity (as it
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will be discussed shortly, this cannot be done), a huge number of states belonging to the
continuous part of the Hy spectrum?® and probabilities of transitions to all these states
are therefore nonnegligible. This simply reflects the uncertainty principle AEAt 2 2nwh
which generally restricts the accuracy AE with which the conservation of energy can
be assessed in any measurement taking a time shorter than At: at the time ¢ after the
preparation of the initial state |i) one cannot determine the energy of the final system’s
state with an accuracy better than 27h/t.

The final factor which has to be taken into account is the experimental resolution A F
which is always finite, so that after a time t ~ 27h/AF ~ [107%V /A E] x 1079 sec. it
becomes much larger than the width of the principal peak (thus making the uncertainty
principle invoked above somewhat irrelevant in this case from the practical point of view).
The quantity of interest, therefore, is the probability of finding the system at the instant
t in any of the states |a) having energies F, which are within the experimental resolution
around the center of the principal peak located at E, = E; + hw. Since, as illustrated
above, the factor |Z/{(S)|2 (which, let us recall, is not dimensionless and, therefore, is not
yet the probability) is practically negligible outside the window of the width 274/t around
E; + hw, the quantity of physical interest is

/ da Ul (B))
Eo~E;+hw+ 270

t

where it is understood that the integration is only over the energy variable dFE, which is
a part of da. This is already dimensionless (see section 2.5) and is usually written in the
form

[ BB U OF, (268)
o~ Ei+hwt ="

with the density of states p(E,) which itself may still have a differential character (it gives
the number of states per unit energy interval and contained within da,.. of the remaining
continuous parameters involved in the label «). The integral (2.68) gives the probability
that after the time ¢ from preparing it in the state |i), the system will be found in any
of the states |a) of energy FE, within the range 27h/t around E; + hw, so also within the
range AqF, and doeg:.

Since the height of the peak at E, = E; + hw grows as t? and its width decreases
as 1/t, the area under the plot of the function f(E,) = |Z/{(§1)|2, within the range 27h/t

)

ZThese can be counted by enclosing the system in a cubic box of volume V = L3, so that the entire
Hj energy spectrum becomes discrete; the energy levels which in the limit L. — co merge to form the
continuous spectrum are separated by gaps 0E o< 1/L? (low lying states) and §E oc 1/L (higher states).
For instance, in the box of V = 1 m? states of free electron are separated by (cf. section 2.5) 6FE ~
472(h2c? /M c?L*)n ~ n [1 meter/L]? x 10718 eV; even the levels corresponding to the electron velocity
[v| = hk|/M ~ ¢ (i.e. n ~ (Mc/h)(L/27)) are separated by gaps 6 E ~ 2rmhc/L ~ [1 meter/L] x 1076
eV. Of course the gaps J E can be made arbitrarily small by increasing L. Therefore the number of states
in a given finite energy interval, however small, can be made arbitrarily large.
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(or, as has been explained, within A F, from E; + hw), that is the value of the integral
(2.68), grows only linearly with time ¢. This can be also made clear with the help of the
following representation®*

sin? Kt

6(k) = lim : (2.69)

t—oo K2t

of the Dirac delta-function which allows us to rewrite (2.68) with |Z/{£) (t)]? given by (2.67)
in the formal limit ¢ — oo as

e e ~ hQ/dE ) fal0l)Fea (<)

= 2 Ol p(Ea)t (2.70)

where in the last line E, = E; + fw (the integral in (2.70) has been explicitly performed
exploiting the property of the delta function: §(ax) = d(x)/|a]). Of course in this formal
limit?® the transition can only occur to the states having energies E, equal exactly E;+hw,
but the aim of the discussion preceding the formula (2.70) was to make clear that from
the practical point of view (2.70) stays valid for times ¢ which are not asymptotic and

correspond to measurements which can be made on real systems.

Of course, the linear with time ¢ growth of the probability seen in (2.70) cannot
continue indefinitely because otherwise after some finite time the probability of finding
the system in the group of states specified above would exceed unity (no matter how small
the matrix element squared |(a|O|i)|? were), that is would violate the unitarity constraint:
as the evolution (generated by the operator U;(t,0) defined in section 1.1) of the system’s
state vector is unitary,

/da Ui + 3 s =1,

at any instant ¢. This means that higher order corrections to the coefficient U,;(t) =
U, (l)(t) + ... must necessarily cut the linear growth of the probability observed in (2.70).

The question then arises whether one can make any sense at all out of this result. Recall
that in the case of the frequency w of the perturbation tuned exactly to the energy
difference of two discrete levels, discussed at the beginning of this Section, the transition
probability obtained in the first order of the perturbative expansion grew quadratically

with time leading to a very quick unitarity violation and it was necessary to employ

sin? kt _
dr TRt

2For k # 0 the limit of (2.69) is obviously 0, whereas for x = 0 it is infinite; moreover, f
1f+ood€bln 3 _1

25 Alternatively, one can keep ¢ finite and, relying on the presented arguments that |Z/{O(i)(E)|2 is prac-
tically zero outside the window E; + hiw =+ 27h/t, extend the integral over dE, in the left hand side of
(2.70) to the entire FE, axis (from —oo to +00) and take the density p(F,) ~ p(F + hw) outside the
integral. This procedure leads to the same result.
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a different approach to investigate the true evolution of the system. The answer to
the posed question is, however, in the affirmative owing to the following two important
circumstances which make the case of transitions from a discrete state to states belonging
to the continuous part of the spectrum different. Firstly, the transition probability (2.70)
depends not only on ¢, but also on the magnitude of the matrix element. Owing to the only
linear (and not quadratic) growth with ¢, for small but still realistic values of |[{a|O|i)|?,
the probability (2.70) can remain much smaller than unity for times ¢ sufficiently long that
the principal peak of (2.67) covers practically only states of energies E,, indistinguishable
from E; 4+ hw within the experimental resolution. Secondly, the crucial role plays the
fact that we consider transitions to the states belonging to the continuous part of the H
spectrum. Owing to this circumstance the constant transition probability per unit time,
obtained from the formula?®

(alOf)* p(Ea) , (2.71)

2
Wai = — |
(in which E, = E; + hw), called the Fermi’s Golden Rule, can be applied to an ensemble
of N systems prepared at t = 0 in the same state |7) to compute the number dN; (propor-
tional to dt and to the actual number N;(t) of systems in the state |i)) of systems in the
ensemble which in the infinitesimal time interval dt (with dt so long from the microscopic
point of view that transitions occur only to the states covered by the principal peak) will
make the transition to the specified group of states belonging to the continuous part of
the Hy spectrum. The resulting differential equation

dNZ = —dt Nl(t) Wi (272)

for N;(t) can be then solved giving the number N;(0) — N;(¢) of systems in the ensemble
which in the time interval [0,¢] have passed from the state |i) to the specified group
of states. In the reasoning leading to the differential equation one neglects altogether
the possibility that the systems which have already made the transition could at later
times return to the initial state |i). The probability (per unit time) of such “returns” is
negligibly small compared to the overwhelming probability that systems in the ensemble
which once passed to the continuous part of the spectrum will further migrate in it almost
forever.?”

26Tf the label « consists of more continuous parameters (in addition to energy E, ), the formula (2.71)
for probability per unit time can be also written in the form (changing the symbol wg; to the more
appropriate dwg;)

diwes = da |(a|Oi)|? 2% §(Ea — Fs — hw).

Notice the difference with the formula (2.61) for the probability.

2TTheir behaviour is in this respect similar to the behaviour of the harmonic oscillator of frequency w
subject to a perturbation with w, tuned to w. The mean excitement of such a system grows, as we have
found, as t? (at the cost of energy absorbed from the external source and transmitted to it through the
perturbation). This similarity owes to the simple fact that for a given state |«) in the continuous part of
the spectrum there are always other states |3) with (Eg — E,)/k matching the frequency of the applied
perturbation.
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A variant of the above reasoning arises when one considers transitions between discrete
states of Hy induced by a perturbation which consists of an incoherent superposition
of perturbations characterized by some frequency profiles in the frequency space. The
prominent example are here atomic transitions induced by the presence of the radiation,
considered in section 3.2. In this case one finds that probabilities of transitions i —
f computed in the first order also grow linearly with time. The constant transition
probabilities wy; per unit time can then again be used to write down a system of differential
equations for the numbers of systems in the ensemble making transitions ¢ — f in any
finite interval [0, ¢]. In this case, however, the probability of “returns” from other discrete
states is not negligible (the “returns” from the states belonging to the continuous part of
the spectrum can still be neglected) and have to be taken into account in the system

sz( = —dtN waz — dtN )/dacont part Wai + dtZwaNf(t> )
f

of coupled differential equations for the instantaneous numbers N;(t) of the ensemble
systems in the state |7).

72



