
4 Symmetries in quantum mechanics

Symmetry transformations - operations that can be done on the system without altering
its properties - are important already in classical mechanics and classical field theory as
they lead (via the celebrated Noether theorem, to be discussed in Section 11.1) to con-
servation laws which, in turn, often simplify solving physical problems. They are equally
important in quantum mechanics where they allow for example to establish selection rules
for quantum transitions (like the ones occurring in atoms interacting with radiation - see
Chapter 3), to understand spectra of Hamiltonians and sometimes even to find the exact
spectra using group theoretic methods only. Symmetries become even more important
in quantum field theories where they usually form the very basis of their formulation
by allowing to account for the observed or postulated conservation laws; one also builds
quantum field theory models by postulating symmetries (of the action functionals I - see
Chapter 11 - defining them) and specifying the number and character of fields (i.e. speci-
fying the field degrees of freedom). Some of the postulated symmetries, whether ordinary
or gauge, can be directly read off from the spectrum of the theory Hamiltonan but the
consequences of some other may not be directly observable in their spectra due to the
phenomenon of spontaneous symmetry breaking.

In this chapter we give a brief introduction to symmetries in quantum theories. The
general considerations will be illustrated mainly on examples taken from the familiar
nonrelativistic quantum mechanics of a single particle, but they apply equally well to
nonrelativistic quantum mechanics of systems of many particles developed in Chapter 5
and to quantum field theory. In particular, the general results discussed here will be used
to construct quantum mechanics of interacting relativistic particles, which is one of the
possible approaches to the formulation of quantum field theory (presented in Chapters
6-9).

4.1 General considerations

In quantum mechanics physical states of a considered system are represented in the Hilbert
space appropriate for this system by rays rather than by vectors. Rays are classes of
equivalence of vectors which differ one from another by a phase factor:

Ψ ∼ Ψ′ if Ψ = eiδ Ψ′,

or, in the Dirac notation, |Ψ〉 ∼ |Ψ′〉 if |Ψ〉 = eiδ |Ψ′〉. This as will be seen has important
consequences for possible realizations of symmetries in the quantum theory.

Observables are represented by linear Hermitian operators O, i.e. operators such that
O = O†. The operator O† conjugate (with respect to the scalar product (·|·) of vectors
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belonging to the Hilbert space) to a linear operator O is defined by the relation1

(

Φ|O†Ψ
)

≡ (OΦ|Ψ) = (Ψ|OΦ)∗ , (4.1)

which should hold for all2 vectors Ψ and Φ. From this definition it follows that eigenvalues
of Hermitian operators are real. (To see this, take the scalar product of OΨ = λΨ with
Ψ, use O = O† and then apply the definition (4.1) to get λ = λ∗). Another theorem says
that different state-vectors, say Ψ1 and Ψ2, on which a given Hermitian operator O has
different eigenvalues λ1 and λ2 6= λ1, respectively, are orthogonal to each other. (To show
this write: λ1(Ψ2|Ψ1) = (Ψ2|OΨ1) = (O†Ψ2|Ψ1) = (OΨ2|Ψ1) = λ2(Ψ2|Ψ1); therefore,
either (Ψ2|Ψ1) = 0 or λ1 = λ2.)

In classical mechanics one speaks of a symmetry of a given physical system if, after it is
subjected to an operation S (active view), its transformed counterpart satisfies the same
equations of motion as did the original system. For instance, if r(t) is any trajectory
of a pointlike mass m in the gravitational field −GMmr/|r|3 of a (pointlike) mass M
fixed at the origin of the space, i.e. mr̈(t) = −GMmr(t)/|r(t)|3, then the trajectory
r′(t) which is obtained by rigidly rotating in space the original trajectory r(t) by any
angle around any axis passing through the origin will also satisfy the same equation:
mr̈′(t) = −GMmr′(t)/|r′(t)|3. Rotations are therefore symmetries of this system.

All transformations S of a system having this property form a group of the system’s
symmetry transformations: the composition S2 ·S1 of any two such transformations S1 and
S2 is also a symmetry transformation; each symmetry transformation S has its inverse S−1;
there is a trivial transformation - the identity transformation, denoted id, etc. Rotations,
which are symmetries of the discussed mechanical system, form the SO(3) group.

Analogously to the classical case, in Quantum Mechanics, in which the evolution with
time of the system’s quantum state is represented in the appropriate Hilbert space H
by the changing in time state-vector Ψ(t) (or |Ψ(t)〉) satisfying the Schrödinger equation
(1.1), an operation S which can be applied to the physical system (transforming it into
another system) is its symmetry, if the state vector Ψ′(t) (or |Ψ′(t)〉) representing the
quantum state of the transformed system satisfies the same equation (1.1) (with the same
Hamiltonian H) as does Ψ(t) (or |Ψ(t)〉) and this should hold for any possible (evolving
in time) state of the physical system.

Thus, a symmetry operation S, which can act on a given physical system, transforms
all its possible quantum states into other possible quantum states. It defines, therefore,
a mapping of the system’s Hilbert space H into itself. Such a mappig must, in addition
to being compatible with the time evolution, satisfy also another important requirement.
If the physical system is in a state represented by a vector Ψ belonging to the ray R
and Φn are some vectors belonging to a set of rays Rn, which forms a complete set of

1One has to resort here to the mathematical notation Ψ, Φ, etc. instead of |Ψ〉, |Φ〉, etc. for state
vectors because the Dirac bra-ket notation is not general enough.

2We ignore here potential subtleties related to domains on which these operators are defined.
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orthogonal rays (usually represented by eigenvectors of a Hermitian operator of some
particular observable) in the system’s Hilbert space, then, according to the rules of Quan-
tum Mechanics, the probability that the system will be found (as a result of a specific
measurement) in the state represented by the ray Rn is given by

P (R→ Rn) = |(Φn|Ψ)|2 , (4.2)

and, due to the completeness of the set of rays Rn,
∑

n

P (R→ Rn) = 1 . (4.3)

Symmetry transformations must preserve such probabilities of all possible outcomes of all
possible measurements that can be made on the system and on its transformed counter-
part. Thus, if R → R′ and Rn → R′

n, under the action of a symmetry operation S, where
R, Rn etc. are the rays representing states of the original system and R′ and R′

n, etc. are
the rays representing states of the transformed system, then the mapping of the Hilbert
space generated by S must be such that

P (R′ → R′
n) = P (R→ Rn) . (4.4)

A fundamental theorem by E. Wigner says that mappings of Hilbert spaces satisfying this
requirement can be represented by only two types of operators, which obviously act not
on rays but on vectors: either by linear and unitary operators U(S), satisfying the rule

U(αΨ+ βΦ) = αUΨ+ β UΦ , (4.5)

and such that

(UΦ|UΨ) = (Φ|Ψ) , (4.6)

or by antilinear and antiunitary operators A(S), such that

A(αΨ+ βΦ) = α∗AΨ+ β∗AΦ , (4.7)

and

(AΦ|AΨ) = (Ψ|Φ) = (Φ|Ψ)∗ . (4.8)

If the Hermitian conjugation A† of an antilinear operator A is defined by (compare with
(4.1) - the modification of the definition is necessary to make it compatible with the
antilinearity of A)

(

Φ|A†Ψ
)

≡ (AΦ|Ψ)∗ = (Ψ|AΦ) , (4.9)

the (anti)unitarity conditions of both types of symmetry operators, linear ones and anti-
linear ones, read

U † = U−1 , A† = A−1 , (4.10)
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so that

(UΦ|UΨ) =
(

Φ|U †U Ψ
)

=
(

Φ|U−1U Ψ
)

= (Φ|Ψ) ,

(AΦ|AΨ) =
(

Φ|A†AΨ
)∗

=
(

Φ|A−1AΨ
)∗

= (Φ|Ψ)∗ . (4.11)

The trivial symmetry transformation - the identity id - is obviously represented by the unit
operator 1̂, which is unitary. It follows, that continuous transformations, which can be
continuously deformed to the identity transformation, must also be represented by unitary
linear operators. The only known symmetry represented by the antilinear operator is the
time reversal transformation (and its composition with other symmetry transformations).

Thus, symmetry operations are represented by unitary (or antiunitary) operators3

U(t) (even if the operation on the physical system is itself the same at every moment, the
Schrödinger picture operator representing it may depend on time - the prominent example
being the operators representing boost transformations) such that the equation

i~
d

dt
U(t)|Ψ(t)〉 = H(t)U(t)|Ψ(t)〉 , (4.12)

is satisfied if

i~
d

dt
|Ψ(t)〉 = H(t) |Ψ(t)〉 , (4.13)

holds. In other words, by unitary (or antiunitary) operators U(t) such that4

U(t)U(t, t0) = U(t, t0)U(t0) ,

where U(t, t0) is the Schrödinger picture evolution operator (defined in Section 1.1) of the
system. In most cases when the Hamiltonian of the system does not depend on time this
condition is satisfied because [U(t), H ] = 0 (in which case the symmetry represented by
U(t) has direct consequences in the Hamiltonian’s spectrum - see Section 4.3), but this
need not be always so - again the prominent example are the boost transformations.

We have considered here symmetries which are transformations of the actual physical
system. This is the so-called active view on symmetry transformations. It is somewhat
easier conceptually than the alternative one, called the passive view, within which one
considers the same system but viewed by another “observer” (who uses another reference
frame). In this case the evolution in time of the system’s state as seen by the two different
“observers” is represented by the respective vectors |Ψ(t)〉 and |Ψ′(t)〉 and it is obvious
that if |Ψ(t)〉 satisfies (4.13), |Ψ′(t)〉 must satisfy a similar equation but with in general a

3Do not confuse symmetry operators with the evolution operator U(t2, t1) which has, however, two
time arguments.

4This readily follows from the general solution (see Section 1.1) U(t)|Ψ(t)〉 = U(t, t0)U(t0)|Ψ(t0)〉 of
the equation (4.12) after substituting |Ψ(t)〉 = U(t, t0)|Ψ(t0)〉 into the left hand side.
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different Hamiltonian H ′. It is also clear that probabilities cannot change, that is (4.4),
in which R′

n and R′ are rays used by the other observer, must hold when the “observer”
(the reference frame) changes and therefore such transformations of the states |Ψ〉 into
|Ψ′〉 must also be effected by unitary or antiunitary operators. However, operations of
changing the “observer” (the reference frame) are symmetry operations only if the new
Hamiltonian H ′ is identical with old one, i.e. with H .

4.2 Continuous symmetry transformations

Suppose a (more or less) abstract group of continuous transformations of a given physical
system has been identified and we try to realize it on vectors belonging to the system’s
Hilbert space. The group structure of the symmetry transformations must be reflected in
the properties of the operators representing them: if

S1 : Rn → R′
n , and S2 : R′

n → R′′
n ,

so that

S2 · S1 : Rn → R′′
n ,

then the operator U(S1) should transform vectors forming Rn into vectors forming R′
n

and U(S2) vectors from R′
n into vectors from R′′

n. Correspondingly, the operator U(S2 ·
S1) should transform vectors of the ray Rn directly into vectors of R′′

n. However, since
operators act on vectors rather than on rays, one cannot exclude that

U(S2)U(S1)Ψn = e−iφn(S2,S1) U(S2 ·S1)Ψn , (4.14)

that is, there can be a phase factor in the composition law of the operators representing
the symmetry transformations. It is easy to see that the phase factor φn(S2, S1) must be
the same for all Hilbert space vectors that can be superposed:

e−iφnm(S2,S1)U(S2 ·S1) (Ψn +Ψm) = U(S2)U(S1) (Ψn +Ψm)

= U(S2)U(S1)Ψn + U(S2)U(S1)Ψm (4.15)

= e−iφn(S2,S1) U(S2 ·S1)Ψn + e−iφm(S2,S1)U(S2 ·S1)Ψm .

Acting on both sides of this equality with U−1(S2 ·S1) and rearranging the terms, we get

(

e−iφnm(S2,S1) − e−iφn(S2,S1)
)

Ψn +
(

e−iφnm(S2,S1) − e−iφm(S2,S1)
)

Ψm = 0 .

If the vectors Ψn and Ψm are linearly independent, this can hold only if the coefficients
of Ψn and Ψm vanish, that is, if the three phase factors are equal. Therefore, in general,
the composition law of symmetry operators takes the form

U(S2)U(S1) = e−iφ(S2,S1) U(S2 ·S1) , (4.16)

121



with the phase depending only on the transformations being composed and their concrete
representation by operators in the subspace spanned by all vectors of the Hilbert space
that can be superposed (i.e. the superposition of which can represent physically realizable
states of the quantum system - see the discussion following the formulae (4.32) and (4.33)).

Associativity of the symmetry transformations reflected in the corresponding property
U(S3)[U(S2)U(S1)] = [U(S3)U(S2)]U(S1) of the symmetry operators U(S), implies that
the phase factors φ(S2, S1) satisfy the relation

φ(S3, S2 ·S1) + φ(S2, S1) = φ(S3, S2) + φ(S3 ·S2, S1) . (4.17)

If the phases φ(S2, S1) cannot be absorbed by a redefinition of the operators U(S) - this
would be possible if they could be represented in the form

φ(S2, S1) = ϕ(S2 ·S1)− ϕ(S2)− ϕ(S1) ,

- that is when they form a nontrivial two-cocycle, one has to do with a projective repre-
sentation of the symmetry group by operators acting in the system’s Hilbert space.

Projective representations can always be avoided by appropriately enlarging the sym-
metry group (i.e. by replacing the original symmetry group by its - usually more abstract
- universal covering group) without changing physical implications of the symmetries as
such. (This will be demonstrated below on the important example of the Gaileo group
and its rotation subgroup.) At this point we assume that the symmetry group we are
discussing is just the enlarged one.

Continuous symmetry transformations form Lie groups that can be identified with
differentiable manifolds. The real parameters θa, a = 1, . . . , n varying continuously in
some domain - for notational convenience they can be viewed as forming together a
vector θ - and parametrizing symmetry transformations S(θ) provide then the coordinate
system on the group manifold. As it is customary, we assume they are such that θ = 0

corresponds to the identity transformation (id). In a given parametrization (a map on
the group manifold) the composition rule S2 · S1 = S, when written as S(θ2) · S(θ1) =
S(θ) = S(h(θ2, θ1)) defines the composition function ha(θ2, θ1) = θa, which must have
the following obvious property:

ha(0, θ) = ha(θ, 0) = θa . (4.18)

Operators5 U(θ) representing in the Hilbert space infinitesimal (close to the identity)
continuous symmetry transformations S(θ) with |θa| ≪ 1, can always be written as

U(S(θ)) = 1̂− i θaQ
a − 1

2
θaθbQ

ab +O(θ3) . (4.19)

5We omit in the notation their possible dependence on time.
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The operators Qa are called symmetry generators. As follows from the symmetry θaθb =
θbθa, the operators Qab must be symmetric in their indices, Qab = Qba. Unitarity of
U(S) (up to O(θ2) terms) requires the generators Qa to be Hermitian operators. For this
reason, symmetry generators are always candidates for quantum mechanical observables.
(One can even risk the statement that the only legitimate observables of a given quantum
theory are indicated in this way by its symmetries.)

Applying the expansion (4.19) to the compositions rule (recall, we have assumed for
the moment the absence of possible phase factors)

U(S(θ′))U(S(θ)) = U(S(h(θ′, θ))) , (4.20)

and using the property (4.18) of the composition function ha(θ
′, θ), which implies that

its Taylor expansion has the form

ha(θ
′, θ) = θ′a + θa + C bc

a θ′bθc + . . . , (4.21)

one finds
(

1− i θ′aQ
a − 1

2
θ′aθ

′
bQ

ab + . . .

)(

1− i θaQ
a − 1

2
θaθbQ

ab + . . .

)

= 1− i (θ′a + θa + C bc
a θ′bθc)Q

a − 1

2
(θ′a + θa)(θ

′
b + θb)Q

ab + . . . (4.22)

Comparison of the operators multiplied by the same combinations of the θ’s on both sides
determines the operators Qab

Qbc = QbQc − iC bc
a Qa = QcQb − iC cb

a Qa , (4.23)

where the second equality follows from the requirement of the symmetry of Qab in its
indices. Thus, the law of the composition of symmetry operations determines (but not
completely, as will be seen shortly) the algebraic properties of the Hilbert space operators
Qa (generating transformations of state-vectors corresponding to infinitesimal symmetry
transformations) of these symmetries:

[

Qa, Qb
]

= i
(

C ab
c − C ba

c

)

Qc ≡ if ab
c Qc . (4.24)

The factors f ab
a = −f ba

a are called the structure constants of the symmetry group Lie

algebra.6 The Jacobi identity
[

Qa,
[

Qb, Qc
]]

+
[

Qc,
[

Qa, Qb
]]

+
[

Qb, [Qc, Qa]
]

= 0 , (4.25)

(satisfied identically by any three operators Qa, Qb and Qc) imposes then the following
relation on the structure constants

r
∑

d=1

(

f ad
e f bc

d + f cd
e f ab

d + f bd
e f ca

d

)

= 0 . (4.26)

6If the symmetry group is compact, like the rotation groups SO(N) or special unitary groups SU(N),
the generators Qa can be chosen in such a way that the structure constants are totally antisymmetric in
all their three indices. In these cases they can simply be written as fabc.
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The generators Qa form a representation (by the operators acting in the Hilbert space) of
the Lie algebra of the group of symmetry transformations which geometrically is identified
with the vector space tangent to the Lie group manifold at its point representing the
identity transformaion.

Finally, we note that if the group structure is such that the composition function
ha(θ

′, θ) is additive: ha(θ
′, θ) = θ′a + θa (i.e. f bc

a ≡ 0) - the whole symmetry group is
Abelian, or we consider only an Abelian subgroup of it - we can write

U(S(θ2))U(S(θ1)) = U(S(h(θ2, θ1))) = U(S(θ2 + θ1)) .

This allows to immediately find the explicit form of the operator U(S(θ)) representing
finite transformations:

U(S(θ)) = lim
N→∞

[U(S(θ/N))]N = lim
N→∞

(

1− i
θaQ

a

N

)N

= e−iθaQ
a

. (4.27)

We now return to the problem of projective representations. They can appear for two
different reasons: the algebraic one and the topological one. The logic is as follows. We
take from “the reality” a group of symmetry transformations which we think should be the
symmetry group also in the quantum version of the problem (e.g. when considering the
motion of a particle in a rotationally symmetric potential we take for it the SO(3) group
because this is the symmetry group considered in this context in classical mechanics).
To find algebraic properties, in their possibly most general form, of the operators Qa

generating the unitary operators U , which should represent the symmetry transformations
in the quantum theory, we expand both sides of the equality

U(S(θ′))U(S(θ)) = e−iφ(S
′,S)U(S(h(θ′, θ))) , (4.28)

similarly as in (4.21) and (4.22) but this time allowing for a possible phase factor, because
its presence cannot a priori be excluded by physical requirements. Taking into account
that the expansion of the phase factors must take the form

φ(S(θ′), S(θ)) = habθ′aθb + . . . (4.29)

(because if any of the two operators on the left-hand side of the formula (4.28) is the unit
operator, the phase φ should be zero) and repeating the steps used in (4.22) which led to
(4.24) we now find

[

Qa, Qb
]

= i
(

C ab
c − C ba

c

)

Qc + i (hab − hba)1̂ ≡ i f ab
c Qc + i fab1̂ , (4.30)

with fab = hab− hba. The terms proportional to the unit operator 1̂ are called the central
charges (of the algebra of generators).

The Jacobi identity (4.25) imposes on central charges certain constraints which usu-
ally eliminate a number of them. Furthermore, some central charges not excluded by the
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Jacobi identity can be removed from the commutation relations by redefining the gener-
ators Qa (without changing the if ab

c parts of their commutation rules which is uniquely
determined by the composition law of the symmetry transformations). For example, all
central charges can be removed in the case of the SO(3) and the Poincaré groups, but
not in the case of the Galileo group (as we will show shortly). If they cannot be removed,
one has to do with the projective representation and the group is represented projectively
already in the neighbourhood of the identity transformation.

Even if all central charges are excluded or can be removed, the symmetry group rep-
resentation can still be projective for topological reasons. This can happen if the group
manifold is not simply connected, that is, when its first homotopy group (called also the
path group) π1(G) is nontrivial. To ascribe a Hilbert space operator U(S) to a point S
(to a symmetry transformation) on the group manifold in a given coordinate system θ, in
which S is characterized by θS, one chooses some standard path θ = θ(ξ) with θ(0) = 0

and θ(1) = θS connecting S with the identity transformation and solves along it the
differential equation

d

dξ
U(θ(ξ)) = −iQa U(θ(ξ)) f b

a (θ(ξ))
dθb(ξ)

dξ
, (4.31)

defining U for every point on the path (the input for ξ close to zero being the formula
(4.19)). The equation (4.31) arises as follows. The operator U(θ(ξ + dξ)) ≈ U(θ(ξ)) +
(dU/dξ)dξ should be obtained as the composition

U(δθ)U(θ(ξ)) ≈ (1− iδθaQ
a)U(θ(ξ)) ,

with δθa determined by the condition

θa(ξ + dξ) ≈ θa(ξ) +
dθa(ξ)

dξ
dξ = ha(δθ, θ(ξ))

≈ ha(0, θ(ξ)) +
∂ha(θ̃, θ(ξ))

∂θ̃b

∣

∣

∣

∣

∣

θ̃b=0

δθb ,

where ha(θ1, θ2) is the group composition function. Due to its property (4.18) one gets

δθa = f b
a (θ(ξ))

dθb(ξ)

dξ
dξ ,

where f b
a (θ(ξ)) is the matrix inverse to (∂ha(θ̃, θ(ξ))/∂θ̃b)

∣

∣

∣

θ̃b=0
. This leads to (4.31).7 It

can be shown, that if another path going from the identity to S is chosen and used to
define U(S), the same operator is obtained provided this new path and the standard one
can be continuously deformed to each other.

7It is straightforward to check that if the group is Abelian, or one considers an Abelian subgroup,
U(θ) given by (4.27) is a solution of (4.31) along the path θ(ξ) = ξθ. Indeed, because in this case
f b
a (θ(ξ)) = δ b

a , and dθb(ξ)/dξ = θb, the right hand side of (4.31) trivially matches its left hand side.
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id

γ1

id
γ2

A′

γ2

A

Figure 4.1: Two closed paths in the SO(3) group manifold starting from the point
P ≡ identity (id). The path γ1 is contractible to the trivial path. The path γ2 is
noncontractible due to the jump it makes from A to A′; the points A and A′ in the figure
represent the same point (transformation) in the group manifold.

To a composition S2 ·S1 of two transformations S1 and S2 there correspond, therefore,
in principle two different operators: U(S2 · S1) obtained by integrating the differential
equation (4.31) along the standard path going from the identity directly to S = S2 · S1

and the operator U(S2)U(S1), which can be thought of as being obtained by integrating
the defining differential equation along the path8 id → S1 → S2 · S1. If the group
manifold is not simply connected, the latter path may not be continuously deformable
to the standard one. If this is the case, the operator U(S(θ2)) U(S(θ1)) obtained along
the non-standard path id → S1 → S2 · S1 may differ by a phase factor φ(S(θ2), S(θ1))
from the operator U(S2 · S1) obtained using the standard path. Furthermore, if a path
id → S1 → S2 ·S1 = S is continuously deformable to another path id → S ′

1 → S ′
2 ·S ′

1 = S,
then, on the basis of what has already been said, they give rise to the same operator
U(S2)U(S1) = U(S ′

2)U(S
′
1) that is, their relative phase factors with respect to U(S2 ·S1)

(obtained using the standard path from the identity to S) must be equal. Thus, the phase
factors that may appear in the formula (4.28) share the properties of the homotopy group
of the group manifold of the considered symmetry transformations. It is therefore easy
to understand that the phase factors form a one dimensional representation of the first
homotopy group π1(G) of the manifold of the symmetry transformations (that is, of G).

For example, the group manifold of the three-dimensional rotations is doubly con-
nected: π1(SO(3)) = Z2, where Z2 is the group consisting of two elements: the identity
id and another element, call it a, and the group composition law reads: id·a = a·id,

8This path can be realized as follows. Let the path θ
stand(S1)
a (ξ), such that θ

stand(S1)
a (0) = 0 and

θ
stand(S1)
a (1) = θS1

a , be the standard path from id to S1, and analogously, let θ
stand(S2)
a (ξ), such that

θ
stand(S2)
a (0) = 0 and θ

stand(S2)
a (1) = θS2

a , be the standard path from id to S2. Then the path θa(ξ)
corresponding to id → S1 → S2 · S1 is

θa(ξ) =

{

θ
stand(S1)
a (2ξ) , ξ ∈ [0, 1

2 ]

ha(θ
stand(S2)(2ξ − 1), θS1) , ξ ∈ [ 12 , 1]

,

where ha(θ
′, θ) is the group composion function.
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id
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Figure 4.2: Successive stages of contracting to the point a path in the SO(3) group
manifold which makes two jumps.

id·id = id, a · a = id. This group has two one-dimensional representations: the faithful
one in which id is represented by 1 and a by −1 and another one which is trivial because
both elements, id and a, are represented by 1. That π1(SO(3)) = Z2 can be seen by
representing each rotation by the vector the length of which is equal to the rotation angle
α and pointing in the direction of the rotation axis n. All such vectors fill a ball of radius
R = π. The topology of this manifold is however complicated by the fact that a rotation
by α = π around n is equivalent to the rotation by α = π around the direction −n.
Therefore, the antipodal points of the surface of the ball have to be identified. This leads
to the double connectedness of the group manifold: imagine a path starting from a point
P somewhere inside the ball and returning to P which reaches the surface of the ball
at some point. Because this point on the surface is equivalent to its antipodal counter-
part, the path can make a “jump” from one side of the surface to the other side where
it can “reimmerse” again into the ball to reach P . Such a path cannot be continuously
deformed to another path going also from P back to P , but which remains entirely inside
the ball (cf. Figure 4.1). However, a path which makes two “jumps” can be continuously
deformed to it (see Figure 4.2). Thus, π1(SO(3)) = Z2 and the phase factors e−iφ in the
composition law (4.16) of the operators representing rotations in the Hilbert space can
only form one of the two possible one-dimensional representations of the Z2 group, that
is, either be simply unity or take the values 1 and −1.

This is indeed confirmed when the commutation relations (4.24) of the rotation group
are explicitly solved:9 one finds that the representations labeled by half-integer j (j =
1
2
, 3
2
, . . .) are projective. Take e.g. as S1 and S2 the rotations around the z axis by the

angles α1 and α2, respectively. From (4.27) it then follows that

U(S(α)) = exp

(

− i

~
αJz

)

.

9Solving the commutation relations of a symmetry group means (in the context of quantum mechanics)
finding the explicit form of matrix elements of the symmetry group generators Qa in the basis (formed
by normalizable or non-normalizable vectors) of a subspace of the Hilbert space in which the group
generators belonging to the Cartan subalgebra are diagonal - see the discussion following the formula
(4.60). Cf. also Section 4.4 and the formulae (4.83).
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Denoting |j, jz〉 the common eigenvectors (for simplicity we assume they are normalizable
and suppress other labels needed to fully specify them) of the J2 and Jz operators, one
gets that if j = 1

2
, 〈1

2
, jz|Jz|12 , j′z〉 = ~

2
(σ3)jzj′z . If the angles α1 and α2 are such that

α1 + α2 = 2π, one obtains that

〈 1
2
, jz|U(S(α2))U(S(α1))| 1

2
, j′z〉 =

(

exp−2π
i

2
σ3

)

jzj′z

= − (I2×2)jzj′z , (4.32)

whereas S(α2) · S(α1) = id and therefore the operator ascribed to S(α2) · S(α1) along
the standard path is simply the unit operator the matrix elements of which between the
J2 and Jz eigenvectors with j = 1

2
form simply the 2 × 2 unit matrix I2×2. The same is

also true for all half integer values of j. Thus, in the case of half-integer j representations
(realized in an appropriate Hilbert space which will be constructed in Section 5.1 on
vectors representing states of an odd number of fermions, which have half-integer spins)
of the rotation group SO(3) the phase factor e−iφ is indeed equal +1 or −1.

If one considers instead representations characterized by j = 0, 1, . . . composing two
rotations by α1 and by α2 around the z-axis with α1 + α2 = 2π one gets

〈j, jz|U(S(α2))U(S(α1))|j, j′z〉 = (I(2j+1)×(2j+1))jz,j′z , (4.33)

so in this case the phase factors e−iφ are always equal +1. The proof (4.15) that the phase
factors cannot depend on the vector in the Hilbert space on which operators are acting
(but are only intrinsic properties of the operators and the transformations) relied on the
possibility of forming a superposition of the two vectors. Because in composing the same
two operators U(S2) and U(S1) representing the rotations S2 and S1 one can apparently
meet with two different representations of π1(SO(3)) by the phase factors - the trivial
one, in which e−iφ = +1 and the faithful one in which e−iφ = ±1, (depending on whether
the operators act on vectors corresponding to integer or half integer j), one is tempted to
think that it is the structure of the rotation group that imposes a superselection rule which
forbids forming superpositions of state-vectors corresponding to integer and half integer
values of j.10 However, as a matter of facts, the impossibility of forming superpositions
of state vectors corresponding to integer and half integer spins does not follow from
the topological properties of the rotation group. The point is (as already said) that
the symmetry group SO(3) can be replaced by its universal covering group, the spin(3)
group isomorphic withe the SU(2) group, which has the same physical implications, but
is simply-connected (i.e. its first homotopy group is trivial) and, for this reason, has
only non-projective representations. We have the full right to declare that the group of

10This problem does not arise, of course, in ordinary quantum mechanics of a single particle in which
all vectors of the Hilbert space are superpositions of Ĵ2 eigenvectors characterized all by integer or all
by half-integer j. It appears however already in nonrelativistic quantum mechanics of many-particle
systems within which one can consider interactions of bosons and fermions (e.g. phonons and electrons)
which have integer and half-integer spins, respectively. In this case the superselection rule says that a
superposition of the state of, say, two bosons and one fermion with the state of one bosons and two
fermions is not allowed (it cannot be realized experimentally).
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symmetry transformations of the quantum system is not SO(3) = SU(2)/Z2, but the
group SU(2) ≃ spin(3) which does not impose any selection rule. Nevertheless, we still
do believe that preparing physical systems in states which are superpositions of states
corresponding to integer and half-integer spin values is physically impossible although
it would now not cause any contradiction11 (transitions between such states and other
“normal” states are then, obviously, forbidden by the rotational invariance which ensures
conservation the total angular momentum).

It is easy to demonstrate that the SU(2) group is indeed simply-connected and con-
stitutes the twofold covering of the rotation group SO(3). By definition the SU(2) group
is the group formed by all unitary 2 × 2 matrices with unit determinant (unimodular).
Any such matrix M can be represented in the form

M = exp(−iH) , where H = H† and tr(H) = 0 . (4.34)

The last requirement follows immediately from the well known relation

det(M) = exp(tr lnM) . (4.35)

Matrices H satisfying these requirements can in turn always be written as linear combi-
nations with real coefficients of the three Pauli matrices σi. Hence, the SU(2) group has
3 generators and its Lie algebra is isomorphic with the one of SO(3) (determined by the
composition law of three-dimensional rotations of a macroscopic body). However, SU(2)
has “twice as many” elements as does SO(3): given a three-dimensional (real) vector r

we can form a 2 × 2 matrix12 V = −r · σ = σi r
i, where σ is the vector formed by three

Pauli matrices. Of course, V is Hermitian, tr(V ) = 0 and det(V ) = −r2. Take now a
2× 2 matrix M belonging to SU(2). The matrix V ′

V ′ =M ·V ·M † , (4.36)

is also Hermitian and traceless, so it defines a new vector r′ through the formula V ′ =
−r′ · σ. Since det(V ′) = det(V ), it follows that r2 = r′2. Hence, M defines a rotation
R(M) such that R(M) · r = r′. In fact every rotation can be represented by a matrix M
belonging to SU(2). From (4.36) it is clear, however, that the SU(2) matricesM and −M
(both belonging to the SU(2) matrix group) define the same rotation: R(M) = R(−M).

11If SU(2) is taken for the system’s symmetry group, nontrivial transformation properties of states
formed as superpositions of interger and half-integer spin states under rotations by 2π: e.g. (schemati-
cally)

|j = 1〉+ |j = 1

2
〉 −→ |j = 1〉 − |j = 1

2
〉 ,

which would be strange if such rotations were identity transformations, are acceptable because the rota-
tions by 2π are then not the identity symmetry transformation.

12In view of the SL(2, C) construction of spinor representations of the Lorentz group - see Section 8.6
- it is convenient to introduce already here the matrices σi = −σi and also the matrices σ̄i = −σi so that
δij =

1
2 tr(σ̄

iσj).
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Therefore, one says that the SU(2) group is the (universal) twofold covering of the rotation
group SO(3).

The group SU(2) is simply-connected, its topology being that of the three-dimensional
sphere13 (π1(Sn) for n > 2 is trivial, i.e. consists of a single element only), so it has only
non-projective representations. The elements of SU(2) corresponding to the rotation
around the z axis by the angle α are the matrices exp(− i

2
σ3α) and exp(− i

2
σ3(α+2π)) =

− exp(− i
2
σ3α). The ranges of the parameters θa, a = 1, 2, 3 parametrizing elements of

the SU(2) group are [0, 4π) because all θa in this range give different unitary, unimodular
matrices. The SO(3) group is obtained from SU(2) as SU(2)/Z2 where Z2 is the (trivially)
invariant subgroup14 of SU(2) consisting of the matrices I and −I. Thus, if we declare
that the true symmetry of the quantum system is SU(2) instead of SO(3), there are only
non-projective representations but the superselection rule still remains (as we believe)
valid.

4.3 The Galileo group

In this Section we apply the general formalism outlined above to a nonrelativistic quantum
theory. As the illustrating examples we will consider mainly one-particle systems, but the
general considerations apply to many-particle systems as well.

We consider first the transformations which form the Galileo group and which are
assumed to be the symmetry transformations of some physical system. These transfor-
mations are rotations of the system in the three-dimensional space, translations in the
three space directions, translations in time and transformations corresponding to boosting
the considered physical system. The elements composing a transformation S belonging
to the Galileo group can be, therefore, represented as

S = (O, V, a, τ) , (4.37)

where O is an orthogonal rotation preserving the Euclidean scalar product of three-
dimensional vectors while V and a are two three-vectors. On the space coordinates
xi, i = 1, 2, 3, and the time t of an event occuring in the considered physical system the

13The most general form of a unitary unimodular 2× 2 matrix M † = M−1 is

M =

(

d+ ie f + ig
−f + ig d− ie

)

,

with the parameters d, e, f and g satisfying the constraint d2+ e2+ f2+ g2 = 1 (ensuring that det(M) =
1), which is just the definition of the three-dimensional sphere S3 (immersed in the four-dimensional
Euclidean space).

14A group H ⊂ G is an invariant subgroup of the group G if ghg−1 ∈ H for every h ∈ H and every
g ∈ G. The quotient group G/H consists of the equivalence classes of elements of G defined by the
equivalence relation g ∼ g′ if g′ = gh for some h ∈ H .
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element S of the Galileo group (a transformation) acts in the following way

{

x′i = Oi
j x

j + V i t + ai

t′ = t+ τ
. (4.38)

We take here the active view on the transformations. x′i, t′ are thus the space-time
coordinates of the same event occuring in the system translated forward in time by τ (i.e.
the same events occurs in it later by τ than in the original system) and first rotated by O,
then boosted to acquire the (additional) velocity V (with respect to the original system)
and then shifted in space by the vector a.15 In the passive view on transformations x′i

and t′ would be the space-time coordinates of the event occuring in the system as seen by
another observer which in the reference frame, the axes e′i of which are given by O−1 · ei,
moves with respect to the original frame with the velocity −e′iV

i, uses the coordinate
system shifted by −e′ia

i and whose clock is late by τ (i.e. according to this clock the
event occurs earlier) with respect to the clock of the original observer.

As the rotations O preserve the (Euclidean) scalar products of vectors, (O·u)·(O·v) =
u·v = δiju

ivj, their 3× 3 matrices satisfy the relation

δij = δklO
k
iO

l
j ,

which is equivalent to the relation OT · O = O · OT = I and from which it follows that

(O−1)i j = δjkO
k
l δ
li . (4.39)

The composition law of the group elements S2 and S1 can be easily deduced by
considering the action of two successive transformations S1 = (O1, V1, a1, τ1) and
S2 = (O2, V2, a2, τ2) on the space-time coordinates: the transformations

{

x′i = (O1)
i
j x

j + V i
1 t + ai1

t′ = t + τ1
,

{

x′′k = (O2)
k
i x

′i + V k
2 t

′ + ak2
t′′ = t′ + τ2

(4.40)

when combined give

{

x′′k = (O2 ·O1)
k
j x

j + (O2)
k
jV

j
1 t+ (O2)

k
ja
j
1 + V k

2 t + V k
2 τ1 + ak2

t′′ = t+ τ2 + τ1
.

Hence, as follow from comparing this with (4.38),

S2 · S1 = (O2 ·O1, V2 +O2 ·V1, a2 +V2 τ1 +O2 ·a1, τ2 + τ1) , (4.41)

15In this Chapter we denote O (from “orthogonal transformations” or polish “obrót”) active three-
dimensional rotations which are linear mappings O of vector spaces into themselves. A rotation O of
a “live” vector V is written as O · V. Matrices Oi

j of such rotations, also denoted O, are then to be

understood (using the notation of my “iconic” algebra notes) as matrices [O(e)(e)]
i
j of linear mappings

given (on “both sides”) in a fixed basis e1, e2, e3 of the vector space in which the rotations O act. V i

and ai, i = 1, 2, 3, are the components of the vectors V and a in the same basis.
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and the transformation inverse to S = (O,V, a, τ) is (check that S−1 ·S = id ≡ (I, 0, 0, 0)
as well as S · S−1 = id)

S−1 = (O−1, −O−1 ·V, −O−1 ·a+O−1·V τ, − τ) . (4.42)

We now parametrize the infinitesimal transformation S or, in other words, introduce
a local coordinate system on the Galileo group manifold in the vicinity of the identity
transformation. An infinitesimal rotation is most conveniently parametrized by the three
components (angles) θ1, θ2 and θ3 given in the (orthonormal) basis e1, e2 and e3 of the
vector θ specifying it (recall that rotating a vector u by an infinitesimal angle θ around
the axis θ/θ one obtains u′ ≈ u+ θ × u):





x′1

x′2

x′3



 ≈





1 −θ3 θ2

θ3 1 −θ1
−θ2 θ1 1









x1

x2

x3



 , (4.43)

so that the matrix o of an infinitesimal rotation can be written in the form

oij = δij + ω̄ij ≡ δij + δikω̄kj (4.44)

with16 ω̄2
1 = −ω̄1

2 = θz = ω̄21 = −ω̄12, ω̄
1
3 = −ω̄3

1 = θy = ω̄13 = −ω̄31 and ω̄3
2 = −ω̄2

3 =
θx = ω̄32 = −ω̄23 (the antisymmetry of ω̄ij in the i and j indices ensures orthogonality
of oij up to the terms of second order in ω̄). The remaining elements of the infinitesimal
symmetry transformation can be most naturally parametrized by three components of the
velocity vi vector (boosts), three components εi of the vector of the translation in space
and the infinitesimal time shift δ. If all these operations are symmetries of th physical
system, in the Hilbert space of its quantum theory there should exist Hermitian operators
Jkl = −J lk (or J12 ≡ Jz, J31 ≡ Jy, J23 ≡ Jx), K l, P l and H playing the same role
as do the generators Qa in (4.19) and allowing to write the operator U(S(o,v, ε, δ)) ≡
U(o,v, ε, δ) of an infinitesimal transformation in the chosen parametrization (the matrix
o is parametrized as indicated in (4.44)), in the form

U(o,v, ε, δ) = 1̂ +
i

2~
ω̄klJ

kl − i

~
δkl v

kK l − i

~
δkl ε

kP l +
i

~
δ H . (4.45)

Compared to our general notation introduced in (4.19) we have factorized here 1/~ and
chosen the signs in front of the generators so that Jkl, P l, and H will, in most cases, turn
out to coincide with the operators of the total angular momentum, the linear momentum
and the Hamiltonian, respectively (the true symmetry generators are Jkl/~, K l/~, P l/~
and H/~).

16The Euclidean space parameters (tensors) ω̄i
j introduced here are just the space components of the

Minkowskian tensors ωµ
ν introduced in Section 6.1 (see also Appendix Appendix D); the doubly covariant

antisymmetric tensor ω̄ij = δik ω̄k
j differs, however, by the sign (ω̄ij = −ωij) from its Minkowskian

counterpart ωij because our metric of the Minkowski space-time is gµν = diag(+ −−−).
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Deriving the explicit form of the composition function ha (defined above the formula
(4.18)) from the Galileo group composition rule (4.41) one could now find the commutation
relations (the Galileo group structure constants f ab

c ) between the generators Jkl, K l, P l,
and H using the formulae (4.21) and (4.24). There is however a simpler method of finding
them. Since we know how the phase factors can affect the commutation rules (by giving
rise to the appearance of central charges) we will temporarily ignore them and consider
the following product of the symmetry operators

U(S)U(o,v, ε, δ)U−1(S) ,

in which S = (O,V, a, τ). This can be represented in two different ways. Firstly, one can
use (4.45) to write the above composition in the form

1̂− i

2~
ω̄kl U(S)J

klU−1(S)− i

~
δkl v

k U(S)K lU−1(S)

− i

~
δkl ε

k U(S)P lU−1(S) +
i

~
δ U(S)HU−1(S) . (4.46)

Secondly, one can apply the composition rule (4.41) and (4.42) to write

U(S)U(o, v, ε, δ)U−1(S) = U(Õ, Ṽ, ã, τ̃) , (4.47)

where

Õi
j ≡ δij + (O · ω̄ ·O−1)ij ≡ δij + ˜̄ω

i
j,

Ṽ i ≡ Oi
jv
j − (O · ω̄ · O−1)ijV

j ,

ãi ≡ Oi
j(ε− vτ)j + V iδ − (O · ω̄ · O−1)ij(a− V τ)j ,

τ̃ ≡ δ .

As the parameters of this new transformation all vanish for vanishing ω̄ij, v, ε and δ, they
are all infinitesimal. Owing to this one can write

U(Õ, Ṽ, ã, τ̃) = 1̂ +
i

2~
˜̄ωijJ

ij − i

~
δijṼ

iKj − i

~
δij ã

iP j +
i

~
τ̃H . (4.48)

Equating the coefficients of ω̄kl (taking into account the antisymmetry of ω̄kl), v
k, εk and

δ in (4.46) and in (4.48) one finds (using (4.39) to properly write the rotation matrices)

U(S)Jkl U−1(S) = (O−1)ki(O
−1)l j

(

J ij − V iKj + V jKi

−(a− V τ)iP j + (a− V τ)jP i
)

,

U(S)K l U−1(S) = (O−1)l j
(

Kj − τP j
)

, (4.49)

U(S)P l U−1(S) = (O−1)l jP
j ,

U(S)H U−1(S) = H − δijV
iP j .

Taking now the parameters of S itself to be infinitesimal, that is, writing: (O−1)ki =
δki − ω̄ki, V

i = vi, ai = εi and τ = δ, expanding both sides of the equalities (4.49) to the
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first order in the infinitesimal parameters and comparing the corresponding coefficients
on both sides, we arrive at the following commutation relations

[

J ij , Jkl
]

= i~ (δikJ jl − δilJ jk + δjlJ ik − δjkJ il) ,
[

P i, P j
]

= 0 ,
[

J ij , P l
]

= i~ (δilP j − δjlP i) ,
[

Ki, Kj
]

= 0 ,
[

J ij , K l
]

= i~ (δilKj − δjlKi) ,
[

Ki, P j
]

= 0 , (4.50)
[

J ij , H
]

= 0 ,
[

P i, H
]

= 0 ,
[

Ki, H
]

= −i~P i .

The first three can be also written in the more familiar form which makes more explicit
the vector character of the generators J i ≡ 1

2
ǫijkJ jk, Ki and P i:

[J i, J j] = i~ǫijkJk , [J i, Kj] = i~ǫijkKk , [J i, P j] = i~ǫijkP k .

To account for possible phases in the formula (4.16) we have to supplement the right hand
side of each of the above commutation relations with a c-number term times the unit
operator 1̂ - a possible central charge. We have, however, to check whether such central
charges are allowed by the Jacobi identity (4.25). Let us consider the first commutator of
(4.50) in the modified form

[

J i, J j
]

= i~ ǫijkJk + i~ f ijJJ 1̂ , (4.51)

where f imJJ = −fmiJJ . Inserting this form of the commutators into the Jacobi identity (4.25)
with three generators J we find that the combination

ǫijmfkmJJ + ǫkimf jmJJ + ǫjkmf imJJ , (4.52)

should vanish. Contracting it with δki gives

ǫijmf imJJ + ǫjimf imJJ .

Because this is automatically zero (owing to the antisymmetry of ǫijm), we conclude17

that the Jacobi identity does allow for a nonzero f imJJ . In contrast, the Jacobi identity
with J , P and H shows that f iPH = 0 and the one with two J ’s and H eliminates f iJH .
We consider next the modified commutation relation

[

P i, P j
]

= i~ f ijPP 1̂ . (4.53)

The Jacobi identity with P i, Kj and H shows then that f ijPP = 0 - the central charge in
the commutation rule of two P operators is forbidden by the Jacobi identity. The same
follows by taking the Jacobi identity with Jx, P x and P y which implies that that fxzPP = 0,
etc. Similar argument eliminates also f ijKK . However the equality ǫ

kijf ijKP = 0 (which can
be obtained in the same way) does not imply vanishing of the central charge f ijKP , because

17One can check that the combination (4.52) does indeed vanish in all possible cases.
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f ijKP 6= −f jiKP ; the central charge f ijKP can have a nonzero symmetric part, which, taking
the physical dimensions of the operators into account can be written as

[

Ki, P j
]

= −i~M δij 1̂ , (4.54)

with M being some real mass parameter (the sign is chosen for the latter convenience).
Similarly, the Jacobi identities do not exclude the central charges f ijJP , f

ij
JK nor f iKH .

In the next step we try to redefine the generators to eliminate central charges. It is
easy to see that defining

J̃ i = J i +
1

2
ǫijkf jkJJ 1̂ , P̃ i = P i +

1

2
ǫijkf jkJP 1̂ , K̃i = Ki +

1

2
ǫijkf jkJK 1̂ ,

we obtain the commutation rules [J̃ i, J̃ j ] = i~ǫijkJ̃k, [J̃ i, P̃ j] = i~ǫijkP̃ k, [J̃ i, K̃j ] =
i~ǫijkK̃k, and also [K̃i, H ] = −i~P̃ k, because the Jacobi identity with J , K and H
relates appropriately f ijJP with f iKH (check it!). Thus, the only commutation rule from
which the central charge cannot be eliminated is (4.54), because there is no operator on its
right hand side that could be redefined. From now on, we will assume that the generators
have been redefined and will omit the tildas.18

The consequence of the modified commutation rule (4.54) is the following. Take S2 =
(I, V, 0, 0) and S1 = (I, 0, a, 0). Geometrically, that is according to the rule (4.41),
S2 · S1 = (I, V, a, 0). Since Ki commute with Kj and P i commute with P j, (4.27)
can be used to write U(S2) and U(S1) separately in the exponentiated forms. (4.54) then
implies that19

U(S2)U(S1) = e−
i
~
V·K e−

i
~
a·P = e−

i
2~

a·VM e−
i
~
(V·K+a·P) . (4.55)

The right hand side differs by the phase factor from the operator ascribed to S2 · S1 with
the help of (4.27) parametrizing the standard path from id to the transformation S2 · S1

as (R(ξ),V(ξ), a(ξ), τ(ξ)) = (I, ξV, ξa, 0), with 0 ≤ ξ ≤ 1. This shows that because of
the presence of the central charge f ijKP we have to do with a projective representation.

The extension of the Galileo group which allows to avoid projective representations
is obtained by, besides the replacement of the SO(3) group factor by the SU(2) one, as
discussed at the end of Section 4.2, the formal inclusion into the algebra of generators of
the mass operatorM 1̂, which commutes with all other generators of the Galileo group and

18The above analysis was completely general. It did not relay on any concrete realization of the Galileo
group by operators in a particular Hilbert space. When a quantum theory of a system is constructed
by quantizing the classical theory of that system the symmetries of which are known (or postulated),
the Noether theorem combined with the canonical quantization rules gives a concrete prescription for
constructing the system’s symmetry group generators and obtaining their algebra i.e. their commutation
relations; the form of the central charges follows then automatically from the construction. This will be
illustrated in Chapter 11 in disucssing the procedure of field quantization.

19In the second step we have used the standard formula eA+B = e−
1

2
[A, B]eAeB valid provided the

operator C = [A, B] commutes with A and B.
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which acting on a state of a particle (of many particles - in the case of quantum mechanics
of a many-particle system) gives its mass (the sum of masses of particles represented by
this state). This extends the Galileo group by an additional U(1) factor. In a quantum
theory of a many-particle system such a mass operator which commutes with H forbids
transitions between states of different masses implying the mass conservation law (and,
therefore, the conservation of the numbers of particles of each kind separately). In addi-
tion, one imposes the superselection rule (which does not follow from the symmetry group
itself but rather reflects the experimental reality) which forbids forming superpositions of
states corresponding to different masses.

If the Galileo group is indeed the symmetry group of a concrete physical system (which
may also posses other symmetries, called internal symmetries to distinguish them from
the ones related to the space-time transformatios forming the Galileo group or, in the rel-
ativistic case, the Poincaré group) it should be possible to construct (usually by appealing
to the Noether theorem and the procedure of the canonical quantization) Hermitian sym-
metry generators H , J i, P i, Ki acting in the system’s Hilbert space and satisfying, up to
the allowed central charges, the commutation rules (4.50) which have been determined on
the basis of the “geometric” properties of these symmetry transformations. Whether this
is indeed possible and what is the interpretation of these generators, depends, of course,
on the physical situation specified primarily by the Hamiltonian H of the considered sys-
tem. Some Hamiltonians (e.g. singling out a point or a direction in the space) can make
it impossible to find operators satisfying all the requirements simultaneously. Usually it
is then possible to satisfy the requirements for a subgroup (consisting e.g. of rotations
and time translations only) of the full Galileo group.20

We now illustrate these general considerations using simple examples. Instead of ap-
pealing to the Noether theorem, to find how the operators realizing in the Hilbert space
assumed symmetry transformations should act on states of the system we shall simply
require that matrix elements of operators (corresponding to measurable quantities) be-
tween states of the transformed system agree in the expected way with the corresponding
matrix elements of these operators between states of the original system. We will con-
tinue to employ the active point of view on symmetry transformations, as conceptually it
is somewhat easier: to check whether the action on states of the found putative symmetry
operators satisfying these requirements is compatible, as discussed in Section 4.1, with
the dynamics we will simply ask whether the transformed system is also physically realiz-
able and whether the time evolution of its states is a solution of the original Schrödinger
equation.

We begin with time translations. Physically the state vector |Ψ′〉 of the system trans-

20Because there are then less symmetry generators, and therefore less commutators determined by the
symmetry group properties (composition rule), some restrictions imposed by the Jacobi identity may
be absent (the operators like e.g. the momentum operator or the total angular momentum operator
which still can be constructed but do not generate symmetries, may have commutators with the symetry
generators which have different form they would have to have, if they too were symmetry generators)
and additional central charges may become allowed.
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lated in time by τ and the state vector |Ψ〉 of the original system should be related in
such a way that for t′ = t + τ the matrix elements of (time independent) operators O
corresponding to observables satisfy21

Oψ′(t′) ≡ 〈Ψ′(t′)|O|Ψ′(t′)〉 = 〈Ψ(t)|O|Ψ(t)〉 ≡ Oψ(t) , (4.56)

i.e. the result of a measurement made on the time-translated system at time t′ should
coincide with the result of the same measurement made on the original system at t.
Validity of (4.56) for all superpositions of states is ensured by the relation |Ψ′(t′)〉 = |Ψ(t)〉,
where t′ = t + τ . In agreement with our general discussion, if time translations are
symmetries of the physical system, there should exists a unitary operator U(τ), such that

|Ψ′(t)〉 = |Ψ(t− τ)〉 = U(τ)|Ψ(t)〉 . (4.57)

Writing the Taylor expansion of |Ψ(t− τ)〉 we find

|Ψ′(t)〉 = |Ψ(t)〉+ i

~
τ

(

i~
d

dt

)

|Ψ(t)〉+ 1

2

(

i

~
τ

)2(

i~
d

dt

)2

|Ψ(t)〉+ . . .

= |Ψ(t)〉+ i

~
τH|Ψ(t)〉+ 1

2

(

i

~
τ

)2(

i~
d

dt

)

H|Ψ(t)〉+ . . . , (4.58)

where H is the Hamiltonian. Comparing with the infinitesimal form of U(τ) we see that it
is the Hamiltonian that is the candidate for the generator of time translations. However, H
is the time translation generator only if it is time independent: the composition law (4.41)
tells us that time translations form an Abelian subgroup of the Galileo group. Therefore,
as follows from the formula (4.27), we should have U(τ) = exp((i/~)τH). From the
last term in (4.58) it is however clear that this is possible only if dH/dt = 0. It is also
obvious that in such a case if |Ψ(t)〉 satisfies the Schrödinger equation, so will do also
|Ψ′(t)〉 = U(τ)|Ψ(t)〉. Thus, if the Hamiltonian is time independent translations in time
are symmetries of the quantum theory and are obviously generated by the Hamiltonian
itself. This result is completely general and applies to any quantum theory.

In principle one can envisage situations in which H does depend on time (time trans-
lation symmetry is explicitly broken), whereas the other operations (e.g. rotations and/or
space translations) remain good symmetries (that is, the operators having the properties
required for the generators of these symmetries can be constructed). However, in such
a case instantaneous energy eigenstates are not of direct physical interest and, therefore,
consequences of the remaining symmetries are not immediately clear.22 In the following
we will assume that time translations are good symmetries of the considered physical
system. As required by the commutation rules (4.50), the generators of space translations

21If the (Schrödinger picture) operator O depends on time, one should equate matrix elements of O(t′)
and O(t), respectively.

22But symmetries the generators Qa of which commute with H(t) at a particular instant t have, of
course, standard implications for the spectrum of the instantaneous eigenvalues of H(t) at that instant.
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and/or rotations (if these operations are good symmetries) as well as other generators
Qa of possible internal symmetries (see the examples of the harmonic oscillators and the
nonrelativistic Hydrogen atom) should then commute with the Hamiltonian.

This is a good place to discuss the implications for the spectrum of the Hamiltonian H
of a set of generators Qa, a = 1, . . . , o which all commute with it and form by themselves
a closed algebra in the sense of satisfying the commutation relations (4.24):

[

Qa, Qb
]

= if ab
c Qc , (4.59)

with some structure constants f ab
c . The considerations presented below are again fairly

general and will apply also to the relativistic quantum field theory of interactions of el-
ementary particles. The role of the generators Qa can be played by the rotation group
generators J i of the Galileo group (or of the Poincaré group in the relativistic case), or
by generators of some additional internal symmetries, like e.g. the isospin symmetry or
the “Eightfold-Way” symmetries of strong interactions, the physical system uder consid-
erations may possess.23

Suppose a set of such generators Qa acting in the Hilbert space and commuting with
the system’s Hamiltonian is given. Of course, if H|n〉 = En|n〉 (n labeling the energy
levels can also be a multi-index), then also HU(θ)|n〉 = EnU(θ)|n〉, where U(θ) is the
unitary symmetry operator built out of the generatorsQa and depending on the continuous
parameters θ = (θ1, . . . , θo) realizing a symmetry transformation. This does not mean
that the degeneracy of the energy levels of the system is infinite (parametrized by the
continuous parameters θ) but only that each energy level (treated as a subspace of the
Hilbert space) is spanned by state-vectors (forming its basis) |n, i〉 (all satisfying H|n, i〉 =
En|n, i〉) labeled by a discrete index i (which in general is a multi-index i = (i1, . . . , ir),
see below), such that for any θ the state U(θ)|n, i〉 is a linear combination of the vectors
|n, j〉. In fact, all basis vectors |n, j〉 can be obtained from a given one by successively
acting on it with the generators Qa.

Consider now matrices formed out of the matrix elements of the generators Qa between
the basis vectors |n, i〉 of an energy level En:

T aij ≡ 〈n, i|Qa|n, j〉 . (4.60)

23The question whether internal symmetries can combine with the space-time ones to form a larger
group of symmetries (with nonzero commutators of the space-time symmetry generators with the internal
symmetry generators) finds in the relativistic case the answer in the negative in the important Coleman -
Mandula “no-go” theorem which says that any algebra of generators of internal and Poincaré space-time
symmetries can only have the form of a direct sum of the separate algebras (that is, generators of these
two kinds of symmetries must necessarily commute); correspondingly, the full symmetry group must
have the form of the direct product of the groups formed by space-time and internal symmetries. In
the nonrelativistic case, when space-time symmetries form the Galileo group the Coleman - Mandula is
not valid and in the past there were attempts (not especially successful) within the nonrelativistic quark
model to combine the Gell-Mann SU(3) internal symmetry with the space-time ones. In the relativistic
case the only possibility to circumvent the Coleman - Mandula “no-go” theorem is to allow for graded
symmetry Lie algebras which consist of generators of bosonic and fermionic types (fermionic generators
satisfy then the anticommutation relations). This is the basis of supersymmetric theories.
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The matrices T aij obviously share the algebraic properties of the generators Qa. In partic-
ular, they satisfy the commutation relations24

T aikT
b
kj − T bikT

a
kj = if ab

c T cij , (4.61)

with the same structure constants f ab
c as in (4.59). Hence, they form a matrix repre-

sentation of the Lie algebra of the symmetry group generated by Qa’s. Mathematically
speaking, at each energy level En of the system the state-vectors |n, i〉 span the space (i.e.
form its basis) of a matrix representation of the Lie algebra of the symmetry group (physi-
cists say: they span a representation or, shortly, they form a representation). Possible
matrix (i.e. finite-dimensional) representations of various Lie algebras are well known from
group theory. For example, if [H, J] = 0, rotations are good symmetry transformations
and the matrix representations of the Lie algebra of the rotation group we are familiar
with are 2j + 1 dimensional with j = 0, 1

2
, 1, . . . , and the state-vectors |n, i〉 ≡ |j, jz〉 are

labeled by the eigenvalues of the operator Jz.

In more complicated cases one defines the rank r of the Lie algebra (assigned also to
the group generated by this algebra) as the maximal number of its generators (or of their
linear combinations) which commute with one another. The maximal set of mutually
commuting generators form what in group theory is called the Cartan subalgebra; the
rank r of the group is simply the dimension of its Cartan subalgebra. It follows from the
general rules of quantum mechanics that the state-vectors |n, i〉 can be chosen in such a
way that all generators belonging the the Cartan subalgebra have only diagonal elements
between these vectors. Therefore, the eigenvalues of these generators are used to label
the state-vectors |n, i〉 (i.e. define the index i) within a given representation of the Lie
algebra. In other words, i is in fact a multi-index i = (i1, . . . , ir) specifying the eigenvalues
on the state |n, i1, . . . , ir〉 of each of these r Cartan subalgebra generators. In the case
of the rotation group any two generators do not commute and the group rank equals 1.
Jz is then chosen as the single generator of the Cartan subalgebra. In the SU(3) group,
the rank of which is 2, there are two commuting generators and the states within a given
representation are labeled by two indices - the eigenvalues of the two Cartan subalgebra
generators.

Finally, the fundamental theorem of Racah states that out of the generators Qa of ev-
ery simple group of rank r exactly r independent operators25 can be built (not necessarily
as their linear or bilinear combinations), which commute with all the generators Qa and,
because they are built out of Qa’s (assumed to commute with H), also with the Hamilto-
nian H . These operators called the Racah operators, being constructed from Qa’s, cannot
map vectors belonging to a given representation into vectors belonging to another repre-
sentation. Moreover, since they commute with all Qa’s, they cannot map a vector from
a given representation into another vector of the same representation either (commuting

24Recall, that we have assumed that the symmetry group is already the enlarged one, so that the
central charges are absent (i.e. they are included into the set of generators Qa).

25Independent means that they are not powers of each other nor products of (powers) of others.
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in particular with all Cartan subalgebra generators, they cannot change their eigenvalues
and, therefore, cannot map one basis vectors of a given representation into another one
because these are distinguished by the eigenvalues of the Cartan subalgebra generators
and all vectors can be written as superpositions of these basis vectors); the same follows
also from the mentioned fact that all basis vectors of a given representation can be ob-
tained by successively acting with all Qa’s on one vector of this representation). Hence,
all the vectors of a given representation must be eigenvectors with the same eigenvalues of
the Racah operators. For this reason the eigenvalues of the Racah operators are used to
distinguish different representations (their eigenvalues are different on vectors belonging
to different representations) of the Lie algebra of the symmetry group that are realized on
various energy levels of the system. A simplifying circumstance is the fact that, as found
by Casimir, one of the Racah operators is always given in the form of a biliner combination
of the generators Qa. It is called the Casimir operator. In the case of the rotation group
generated by J this Casimir operator is just J2 = (Jx)2 + (Jy)2 + (Jz)2. Since the SU(2)
group is of rank r = 1, this is the only Racah operator and representations of SU(2) are
completely specified by the J2 eigenvalues.

After these general remarks we return to considering the Galileo group transforma-
tions, using now nonrelativistic quantum mechanics of a single particle as an example.

The first one is the symmetry with respect to space translations in quantum mechanics
of a single particle. Physically the wave function ψ′ (the state vector |ψ′〉) of the translated
system and the wave function ψ (|ψ〉) of the original system should be related by |ψ′(r′)| ≡
|〈r′|ψ′〉| = |〈r|ψ〉| ≡ |ψ(r)|, where r′ = r+a. If translation are to be symmetry operations,
this must hold for all possible superpositions of states. This implies that ψ′(r′) = ψ(r)
up to a common phase factor. Here we will assume that this phase factor is absent.26

Therefore, the unitary operator U(a) realizing translations in the Hilbert space: |ψ′〉 =
U(a)|ψ〉, must be such that

ψ′(r) = 〈r|ψ′〉 = 〈r|U(a)|ψ〉 = U(a)ψ(r) = ψ(r− a) , (4.62)

where the last U(a) here is understood to be the operator in the position representation.
Proceeding as in the case of time translations we find

U(a) ≈ 1− i

~
a·(−i~∇) = 1̂− i

~
a·p̂ ≈ exp

(

− i

~
a·p̂

)

, (4.63)

where the fact that [p̂i, p̂j ] = 0 enabled us to use (4.27) to get U(a) for finite transfor-
mations. This shows that it is the ordinary momentum operator which plays the role
of space translations generator. However, if time translations are also symmetries of the
system then, as we have found, the structure of the Galileo group requires that H and P

commute, which in quantum mechanics of a single spinless particle can be the case only if

26The phase factor is present for example if one conseders a particle moving under the influence of a
constant in space but possibly time dependent force F(t). In this case the generator of translations is
modified.
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H is the Hamiltonian of a free particle.27 (This needs not be the case for systems of many
particles interacting one with another by forces depending only on ri − rj .) Generalizing
to arbitrary systems, we conclude that for time-independent Hamiltonians, space transla-
tions are symmetries of the quantum theory only if the momentum operator P commutes
with the Hamiltonian. If it does, then the state vector of the transformed system is

|Ψ′(t)〉 = U(a)|Ψ(t)〉 , (4.64)

with the translation operator given (in the general case) by

U(a) = exp

(

− i

~
a·P̂

)

, (4.65)

with P̂ the operator of the total momentum of the system.

One can next try to represent (Galilean) boosts. Physically (cf. 4.38) the wave func-
tions of the boosted system and of the original one should be related by |〈r+Vt|ψ′(t)〉| =
|〈r|ψ(t)〉| that is, by

|〈r|ψ′(t)〉| ≡ |ψ′(t, r)| = |ψ(t, r−Vt)| = |〈r−Vt|ψ(t)〉| , (4.66)

so that if the boost are symmetries of the system a unitary operator U(V) should exist,
such that |ψ′〉 = U(V)|ψ〉 with the property (in the position representation)

U(V)ψ(t, r) = ψ(t, r−Vt) , (4.67)

up to a common phase factor which we again assume to be absent.28 The operator
realizing infinitesimal active transformations should take the form U(V) ≈ 1̂−(i/~)V ·K̂.
By analogy with (4.62) it is clear that the generators K̂ acting in the Hilbert space of a
single particle should have a part of the form K̂ ∼ t p̂, which will ensure the proper shift
of the space argument of ψ. However, this is not enough, as one has to satisfy also the
commutation relations of K̂ with H and P̂ given in (4.50) and (4.54). It turns out that in
the case of quantum mechanics of a single spinless particle (but not in general, of course!)
this is possible only if H is the Hamiltonian of a free particle, in which case

K̂ = −M r̂ + t p̂ , (4.68)

and its commutation rule with H = P̂2/2M requires that the mass parameter in (4.54)
coincides with the mass of the particle. It is then easy to check that

ψ′(t, r) = exp

(

− i

~
V · (−M r̂ + t p̂)

)

ψ(t, r)

= exp

(

−iMV2

2~
t

)

exp

(

i

~
MV·r

)

ψ(t, r−Vt) , (4.69)

27In the case of quantum mechanics of a single neutral particle with spin and a nonzero magnetic
moment µ (as e.g. neutron), P commutes with H also if the particle interacts with a uniform, constant
external magnetic field through the interaction Vint = −µ·B.

28And again a phase factor is present in the case of a single particle moving under the influence of a
constant in space, possibly time dependent, force F(t). In this case the boost generator is modified.
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satisfies the free Schrödinger equation if ψ(t, r) does (check it!).

Finally we consider rotations which most frequently are symmetry transformations
of the system (in particular if it is a single particle moving in an external spherically
symmetric potential), even if translations and boosts are not. Consider first a spinless
nonrelativistic particle. Its wave functions has only one component (with the usual prob-
abilistic interpretation). The wave function of the original and rotated systems should,
on physical grounds, be related by |ψ′(r′)| ≡ |〈r′|ψ′〉| = |〈O·r|ψ′〉| = |〈r|ψ〉| ≡ |ψ(r)|. This
equality holds for arbitrary superpositions of the state vectors provided

ψ′(r) ≡ 〈r|ψ′〉 = 〈O−1·r|ψ〉 ≡ ψ(O−1·r) , (4.70)

(possibly up to a common phase factor) which in turn must be ensured by the rotation
operator U(O) such that |ψ′〉 = U(O)|ψ〉 or, in the position representation, that ψ′(r) =
U(O)ψ(r). The matrix O of an infinitesimal rotation is of the form (4.43). Defining the
vector θ ≡ (θx, θy, θz) we can write

O−1 ·r ≈ r− θ × r , (4.71)

and the right hand side of (4.70) becomes

ψ(r)− (θ × r)·∇ψ(r) + . . . = ψ(r)− i

~
(θ × r)·P̂ψ(r) + . . . (4.72)

or, in the Dirac notation, 〈r|
(

1̂− (i/~)(θ × r̂)·P̂
)

|ψ〉. With a straightforward vector

algebra we get therefore

ψ′(r) ≈
(

1̂− i

~
θ·L̂

)

ψ(r) , (4.73)

(where L = r×P is the familiar orbital angular momentum operator), that is,

|ψ′〉 = U(O)|ψ〉 ≈
(

1̂− i

~
θ ·L̂

)

|ψ〉 . (4.74)

Obviously, if rotations are symmetries of the physical system, the operators L̂ and, hence,
also U(O), commute with the system’s Hamiltonian H . The proper form of the commu-
tators of the operators Li, which play in this case the roles of J i, with the operators P i

and Ki (which must take the form specified in (4.50), if translations and boosts are also
symmetries) are ensured by the vector character of these operators (see Section 4.6).

If the particle has a nonzero spin, its wave function has more components labeled
by an index σ. In the appropriate basis in the internal space |ψσ(r)|2 ≡ |〈r, σ|ψ〉|2 is the
probability density of finding the particle at r with spin projection in the z-direction equal
σ~, i.e. of finding it in the state |r, σ〉 (strictly speaking this interpretation is valid only
in nonrelativistic quantum mechanics). On physical grounds, and generalizing (4.70), if
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rotations are symmetries of the system, the wave function components ψσ transform under
rotations one into another forming a linear, finite-dimensional (and unitary - because the
rotation group is compact) matrix representation of the rotation group. In other words,
one must then have

〈r, σ|ψ′〉 =
j

∑

σ′=−j

Dσσ′(O) 〈O−1·r, σ′|ψ〉 or

ψ′
σ(r) =

j
∑

σ′=−j

Dσσ′(O)ψσ′(O
−1·r) . (4.75)

Expanding (4.75) to the first order in θi and using the formula (4.71) together with the
form

D
(s)
σσ′(θ) ≈ δσσ′ −

i

~
θiS

(s)i
σσ′ + . . . (4.76)

of the D
(s)
σσ matrices (for spin s) valid for infinitesimal rotations O parametrized by three

angles θi, one finds in this case that the Hilbert space generators J of the rotation
(sub)group

U(θ) ≈ 1̂− i

~
θiJ i , (4.77)

such that U(θ)|ψ〉 = |ψ′〉 must have the form

J i = Li + S(s)i , (4.78)

with Li acting on the space variable r and S(s)i acting on the discrete variables σ. Thus,
[Li, S(s)j ] = 0 and in order to satisfy the commutation relation [J i, J j] = i~ ǫijkJk the
operators Si must, because the operators Li satisfy such relations separately, satisfy the
rules

[S(s)i, S(s)j ] = i~ ǫijkS(s)k . (4.79)

J i’s are simply the operators of the total angular momentum split (in nonrelativistic quan-
tum mechanics) into the orbital angular momentum operators Li and the spin operators
S(s)i. The latter, being matrices in the spin indices σ must form a finite dimensional,
unitary representation of the commutation relations (4.79) which are the commutation
relations of the SU(2) group. All such representations are well known. They are labeled
by s = 0, 1

2
, 1, 3

2
, 2 . . . and have dimension 2s + 1. In standard textbooks one finds the

matrices Siσσ′ of the group generators in these representations by solving explicitly the
commutation relations (4.79). One then finds that the matrices Si corresponding to s = 1

2

are the familiar Pauli matrices Siσσ′ =
1
2
σiσσ′ ; if s = 1, the Si matrices read

Sx =
~√
2





0 1 0
1 0 1
0 1 0



 , Sy =
~√
2





0 −i 0
i 0 −i
0 i 0



 , Sz = ~





1 0 0
0 0 0
0 0 −1



 ,
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and so on.

In the next section we will discuss the realization of the rotation group in Hilbert
spaces in more details.

4.4 The rotation group

In many applications of ordinary nonrelativistic quantum mechanics or of its many-boody
version it is the rotation group which is a good symmetry of the considered systems.
Moreover, rotations form also an important subgroup of the Lorentz and Poincaré groups
relevant for relativistic systems. It is therefore worthwhile to complete with some details
its discussion begun in Section 4.2 and to derive some useful formulae.

We first chose the parametrization of the rotation group proposed in connection with
the discussion of its double-connectedness in Section 4.2. In this parametrization the
rotation is specified by giving the direction n of the rotation axis and the rotation angle
0 ≤ ψ ≤ π. In turn, the direction n is specified by giving two polar angles 0 ≤ ϑ ≤ π
and 0 ≤ ϕ ≤ 2π. This parametrization (the map on the group manifold) is not globally
defined: at ψ = 0 the angles ϑ and ϕ are ill defined. Alternatively, one can specify the
three Cartesian coordinates (ψx, ψy, ψz) of the rotation vector ψ ≡ ψn. These coordinates
are restricted to the domain |ψ| ≤ π. This map is well defined everywhere, except for the
points such that |ψ| = π because, as already explained, ψ and −ψ define then the same
rotation.

In this parametrization the most natural “standard” path along which one defines
the Hilbert space operator U(ψ) corresponding to a given rotation R(ψ) is the path
ψ(ξ) = ξψ with 0 ≤ ξ ≤ 1. It defines a one-parameter Abelian subgroup of rotations, so
that integration of the differential equation (4.31) reduces to the formula (4.27) and one
gets

U(ψ) = exp

(

− i

~
ψ ·J

)

, (4.80)

where J i are the Hilbert space rotation group generators. In agreement with our discussion
(around eq. (4.59)), if rotations are symmetries of the considered quantum system, one
can find in the Hilbert space the state-vectors |n, j,m〉 (the label n distinguishes e.g.
different Hamiltonian eigenvalues; it will be omitted in the following), which under (active)
rotations transform into one another

U(ψ)|j,m〉 ≡ e−
i
~
ψiJi|j,m〉 =

+j
∑

m′=−j

|j,m′〉D(j)
m′m(ψ) . (4.81)

Closing this relation from the left with 〈j,m′| (assuming that these states are normalized
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to unity) we get the rotation matrices29

D
(j)
m′m(ψ) = 〈j,m′|e− i

~
ψiJi|j,m〉 , (4.82)

in the ψ-parametrization. Using matrix elements of the generators J i (they are obtained
in standard textbook by solving the algebra of J i’s in the basis in which Jz is diagonal)
given by

(

Jz(j)
)

m′m
≡ 〈j,m′|Jz|j,m〉 = m~ δm′,m ,

(

Jx(j) ± iJy(j)

)

m′m
≡ 〈j,m′|Jx ± iJy|j,m〉 (4.83)

= ~

√

(j ∓m)(j ±m+ 1) δm′m±1

= ~

√

j(j + 1)−m(m± 1) δm′m±1 ,

the matrices D
(j)
m′m(ψ) can be obtained by exponentiating (with the help of the standard

methods) the matrices
(

ψiJ i(j)

)

m′m
(built out of matrix elements of the generators J i)

contracted with the components of the rotation vector ψ. In the j = 1
2
case one finds in

this way (ψ ≡ |ψ|, n ≡ ψ/|ψ|)

D(1/2)(ψ) = cos
ψ

2
− in·σ sin

ψ

2
. (4.84)

Another parametrization of the rotation group is provided by the Euler angles α, β
and γ. In this parametrization a given active rotation O(α, β, γ) is composed of three
successive rotations: first by the angle α around the axis n1 ≡ ez, then by the angle
β around the axis n2 ≡ −ex sinα + ey cosα and finally by γ around the axis n3 ≡
ex cosα sin β + ey sinα sin β + ez cos β:

O(α, β, γ) = O(γ,n3)·O(β,n2)·O(α,n1) . (4.85)

Using the general property of rotations

O(θ,n)·O(ψ,k)·O−1(θ,n) = O(ψ, Ovec(θ,n)·k) , (4.86)

where Ovec(θ,n) is the active rotation realized on three-vectors, it can be shown that30

O(α, β, γ) = O(α, ez) ·O(β, ey) ·O(γ, ez) . (4.87)

29Of course, the matrices D
(j)
m′m(ψ) do not depend on the (hidden) label n. Once they are found using

one set of vectors |(n), j,m〉, e.g. ones corresponding to a discrete energy level of the Hamiltonian, they
can be used in the relations (4.81) in which the vectors |(ñ), j,m〉 may e.g. be non-normalizable belonging
to the continuous part of the Hamiltonian spectrum.

30Evidently the order of angles in notation O(α, β, γ) stems from this way of realizing the rotation
(4.85).
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By convention the ranges of the angles in the Euler parametrization are: 0 ≤ γ, α < 2π
and 0 ≤ β ≤ π. Also this parametrization is not globally defined: as is clear from (4.87),
if β = 0, the rotation depends only on α+ γ (modulo 2π), while if β = π, it depends only
on α− γ. The rotation inverse to O(α, β, γ) is given by31

[O(α, β, γ)]−1 = O(ε(γ)− γ, β, ε(α)− α) , (4.88)

with ε(θ) = π if 0 ≤ θ < π and ε(θ) = 3π if π ≤ θ < 2π (to keep the angles in the
prescibed ranges).

In this parametrization, as the “standard path”, along which one ascribes to a given
rotation O(α, β, γ) the corresponding Hilbert space operator U(α, β, γ), it is natural to
chose the path id → O(γ, ez) → O(β, ey) · O(γ, ez) → O(α, ez) · O(β, ey) · O(γ, ez). The
operator U(α, β, γ) is then the product

U(α, β, γ) = exp

(

− i

~
αJz

)

exp

(

− i

~
βJy

)

exp

(

− i

~
γJz

)

. (4.89)

It then follows, that (as can be easily verified)

U(ε(γ)− γ, β, ε(α)− α)U(α, β, γ) = e−i(ε(γ)+ε(α))J
z

. (4.90)

This is the unit operator only when acting on the states with integer j; in action on the
half-integer j states it is the unit operator only if ε(γ) + ε(α) = 4π; if ε(γ) + ε(α) = 2π
or 6π it is the minus unit operator.

The rotation matrices D
(j)
m′m(α, β, γ) take in this parametrization the form

D
(j)
m′m(α, β, γ) ≡ 〈j,m′|e− i

~
αJz

e−
i
~
βJy

e−
i
~
γJz |j,m〉

= e−im
′α d

(j)
m′m(β) e

−imγ , (4.91)

where the matrices d
(j)
m′m(β) are defined by the formula

d
(j)
m′m(β) ≡ 〈j,m′|e− i

~
βJy |j,m〉 . (4.92)

As in the ψ-parametrization, since the matrix elements of Jy between the |j,m〉 states
are known, the matrices d

(j)
m′m(β) can be obtained just by exponentiating the matrices

(

βJy(j)

)

m′m
. In the j = 1

2
case with Jy

( 1
2
)
= (~/2)σy the matrix d

(1/2)
m′m (β) is easy to find

and reads

d(1/2)(β) =

(

cos β
2

sin β
2

− sin β
2

cos β
2

)

. (4.93)

31As usually with rotations there are different “schools”; we stick here to the one represented by a
booklet of K. Zalewski.
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The matrices d
(j)
m′m(β) corresponding to higher values of j can be found straightfor-

wardly using the trick presented in Appendix B, where the properties of the d
(j)
m′m(β)

and D
(j)
m′m(α, β, γ) matrices are also collected.

An important concept (allowing to formulate e.g. the orthogonality relations satisfied

by the D
(j)
m′m(α, β, γ) matrices) is the integration over the group of a function f(g) of

the group element g. This requires defining on the group manifold a measure which is
compatible with the group composition rules. If the group G is compact, like the rotation
group, the integral which is both left- and right- invariant can be defined on it (on every
group left- and right- invariant measured can be defined but are in the general case they
are different). This means the following property

∫

dµ(g) f(g) =

∫

dµ(g) f(g′g) =

∫

dµ(g) f(gg′) , (4.94)

where dµ(g) is the appropriate measure and g′ is an arbitrary element of G. In a given
parametrization of the group elements by continuous parameters θa, a = 1, . . . , o, the
integral is given by

∫

dµ(g) f(g) =

∫

doθ ρ(θ) f(θ) , (4.95)

where ρ(θ) is some density determined by the requirement that the integral is left- and
right- invariant. For example, left-invariance means that the following equality must hold

∫

doθ ρ(θ) f(θ̃(θ′, θ)) =

∫

doθ̃ ρ(θ̃) f(θ̃) , (4.96)

with θ̃a = ha(θ
′, θ), where ha is the composition function introduced in Section 4.2. After

changing in the right integral the integration variables to θ, (4.96) is equivalent to

ρ(θ) = ρ(h(θ′, θ))

∣

∣

∣

∣

∂ha(θ
′, θ)

∂θb

∣

∣

∣

∣

. (4.97)

The right-hand side must be of course independent of θ′. Assuming that a density ρ
fulfilling this condition exists, one can determine it by considering only infinitesimal values
of the parameters θ (i.e. θ → 0). Evaluating both sides of (4.97) at θ = 0 gives then

ρ(θ′) = ρ(0)

∣

∣

∣

∣

∂ha(θ′, θ)

∂θb

∣

∣

∣

∣

−1

θ=0

. (4.98)

This fixes ρ up to an arbitrary (inessential) multiplicative constant ρ(0).

In the parametrization of the rotations by the vector ψ = (ψx, ψy, ψz) one finds in
this way (normalizing the measure so that in this particular parametrization ρ(0) = 1)

dψxdψydψz ρ(ψ) = dψxdψydψz
2(1− cos |ψ|)

|ψ|2
≡ d|ψ| dΩψ 2(1− cos |ψ|) . (4.99)
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The volume of the rotation group SO(3) is then

Vol(SO(3)) =

∫ 2π

0

dϕ

∫ π

0

dϑ sinϑ

∫ π

0

d|ψ| 2(1− cos |ψ|) = 8π2 . (4.100)

In the parametrization by the Euler angles one finds

dα dβ dγ ρ(α, β, γ) = dα dβ dγ sin β , (4.101)

and the rotation group volume is given by

∫ 2π

0

dα

∫ π

0

dβ

∫ 2π

0

dγ sin β = 8π2 . (4.102)

If a function is defined on the SU(2) group instead of SO(3), which means that it takes
different values on those SU(2) elements which correspond to the same element of SO(3),32

the range of integration over ψ in the first parametrization33 is (0, 2π); the SU(2) group
volume is 16π2.

The matrices D
(j)
m′m(α, β, γ) can be viewed as a collection of (2j+1)2 functions defined

on the group and can therefore be integrated over it. Moreover, the product of two such
matrices D

(j1)
m′

1
m1

and D
(j2)
m′

2
m2

with j1 and j2 both integer or both half integer (in view of

the superselection rule the only cases of interest) is a single-valued function and can be,
therefore, integrated over SO(3). Their product satisfies then the following orthogonality
relation

∫ 2π

0

dα

∫ π

0

dβ

∫ 2π

0

dγ sin β D
(j2)∗
m′

2
m2

(α, β, γ)D
(j1)
m′

1
m1

(α, β, γ)

=
8π2

2j1 + 1
δj1j2δm1m2

δm′

1
m′

2
, (4.103)

which exemplifies the general orthogonality relation satisfied by matrices of finite dimen-
sional unitary representations of a compact group: the coefficient of the delta functions is
always given by the volume of the group divided by the dimension of the representation.
The completeness relation reads

1

8π2

∑

j

+j
∑

m=−j

+j
∑

m′=−j

(2j + 1)D
(j)∗
m′m(ᾱ, β̄, γ̄)D

(j)
m′m(α, β, γ)

= δ(ᾱ− α)δ(cos β̄ − cos β)δ(γ̄ − γ) . (4.104)

32In some textbooks such functions are termed double-valued because from the point of view of SO(3)
they assume two different values on every its element.

33In the parametrization by the Euler angles the extension to SU(2) is realized depending on the
“school” either by extending the range of the angle α to 4π or by letting β to cover two ranges: [0, π]
and [2π, 3π].
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Since the dependence of the D(j) functions on the angles α and γ is trivial, the integrals
over these angles can be taken explicitly giving the relation

∫ π

0

dβ sin β d
(j′)∗
m′m(β) d

(j)
m′m(β) =

2

2j + 1
δj

′j . (4.105)

The appropriate inverse relation is

∑

j

(j +
1

2
) d

(j)∗
m′m(β) d

(j)
m′m(β̄) = δ(cos β̄ − cos β) . (4.106)

4.5 Composing angular momenta

We recall first some general features of group representations. Consider two three-
dimensional vectors V = eiV

i and W = eiW
i. Under an arbitrary (active) rotation

O ∈ SO(3) the vectors are transformed into V′ = eiV
′i and W′ = eiW

′i the compo-
nents of which are given by by V ′i =

∑

j O
ij
vecV

j and W ′i =
∑

j O
ij
vecW

j with Oij
vec the

orthogonal 3×3 matrix representing rotations on three-vectors (in the chosen orthonormal
basis ei). This obviously determines also the transformation law of the nine components
T ij = V iW j in the basis tij ≡ ei ⊗ ej of the tensor T = V ⊗W formed out of these two
vectors:

T ′ij =
∑

(kl)

O
(ij),(kl)
tens T kl .

Indeed, the elements of the 9 × 9 matrix O
(ij),(kl)
tens are given by O

(ij),(kl)
tens = Oik

vecO
jl
vec. It is

however possible to change the basis tij of the 9 dimensional tensor product of the vector
spaces to t̃ij = tkl[R

−1](kl)(ij) which induces the corresponding changes of the components
of tensors:

T kl =
∑

(mn)

R(kl),(mn) T̃mn , T ′ij =
∑

(mn)

R(ij),(mn) T̃ ′mn ,

so that

T̃ ′ij =
∑

(kl)

[Õtens]
(ij),(kl)T̃ kl ,

with

Õ
(ij),(kl)
tens =

∑

(mn)

∑

(rs)

R(ij),(mn)O
(mn),(rs)
tens [R−1](rs),(kl) . (4.107)

This change of the basis can be chosen in such a way that all 9× 9 matrices Õtens corre-
sponding to all rotations (which have all the properties necessary for a representation of
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the rotation group) assume the block-diagonal structure with one 1 × 1 block, one 3× 3
block and one 5 × 5 block. Therefore the 9-dimensional representation of the rotation
group spanned by the 9 components V iW j is reducible and decomposes into three ir-
reducible representations: one 1-dimensional, one 3-dimensional and one 5-dimensional.
The elements of the orthogonal matrix R of the change of basis are what in the context
of the SU(2) group covering the rotation group is called the Clebsch-Gordan coefficients.
The block-diagonal structure of the matrices Õtens means that after the linear change of
the basis the nine components of the tensor are grouped into a one component which
does not change under rotations, 3 components which transform among themselves and
5 other components which also transform among themselves. (In the case of the tensor
V iW j these 1, 3 and 5 component objects correspond, of course, to the scalar V·W, the
antisymmetric tensor Aij = V iW j − V jW i which has 3 independent components and the
symmetric traceless tensor Sij = V iW j + V jW i − 2

3
(V ·W)δij which has 5 independent

components). This illustrates a general rule: a representation (of any group) formed by
taking the tensor product of two (irreducible) representations is in general reducible and
can be decomposed into irreducible ones by an appropriate change of the basis.

Basically the same can be repeated in the Dirac notation for the eigenstates of the
angular momentum operators. In this case we have state vectors of the general form
|n, j1, m1, j2, m2〉 depending on two34 different sets of labels, j1, m1 and j2, m2, of which
the first set forms a complete representation of the su(2) Lie algebra generated by the
operators J1 and the second set has the same property with respect to the algebra gener-
ated by J2. An example is provided by quantum mechanics of a particle with a nonzero
spin (see the formulae (4.75)) whose state can be written as a superposition

|ψ〉 =
∑

n

∑

l=0

+l
∑

ml=−l

+s
∑

σ=−s

cnlmlσ|n, l,ml, s, σ〉 , (4.108)

of the states |n, l,ml, s, σ〉 (with fixed s corresponding to the particle’s spin) such that

e
i
~
ψiLi|n, l,ml, s, σ〉 =

+l
∑

m′

l
=−l

|n, l,m′
l, s, σ〉D(l)

m′

l
ml
(ψ) ,

e
i
~
ψiSi|n, l,ml, s, σ〉 =

+s
∑

σ′=−s

|n, l,ml, s, σ
′〉D(s)

σ′σ(ψ) , (4.109)

with the matrices D
(j)
m′

l
ml

introduced in subsection 4.4. In quantum mechanics of many

particles, nonrelativistic (see section 5) or relativistic, the two sets of states may represent
e.g. angular momentum states of two different spinless particles. More complicated
cases of angular momenta of more then two particles and/or of two or more particles

34n labels the state vectors with respect e.g. to their Hamiltonian eigenvalues; as we will be now
considering state vectors with the same value of n this label will be not explicitly indicated.
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with nonzero spins can be treated by applying successively the rules formulated in this
subsection for two sets of states.

Obviously, in the example of a single particle with spin J1 = L and J2 = S act on
different sets of labels. Mathematically the states |j1, m1; j2, m2〉 have the structure of the
tensor product

|j1, m1; j2, m2〉 ≡ |j1, m1〉 ⊗ |j2, m2〉 , (4.110)

and the operators J1 act on |j1, m1〉 while J2 act on |j2, m2〉. The basis of states (4.110)
called the product basis (of the subspace of the Hilbert space corresponding to fixed label
n) is formed by the states which under the SU(2) transformations behave as an SU(2)
representations constructed as the tensor product of two irreducible SU(2) representa-
tions: one characterized by j1 and the second one characterized by j2. As in the example
with two vectors, it is possible to change the basis in the (sub)space spanned by the
vectors (4.110), so that this representation of SU(2) explicitly decomposes into a direct
sum of irreducible representations, which (as all irreducible SU(2) representations) are
characterized by integers j. This change of basis is written (in the Dirac notation) as

|j1, m1; j2, m2〉 =
∑

j

j
∑

m=−j

|j,m〉〈j,m|j1, m1; j2, m2〉 , (4.111)

where |j,m〉 are the eigenstates of J2 = (J1 + J2)
2 with the eigenvalues j(j + 1)~2 and of

Jz = Jz2 + Jz1 with the eigenvalues m~.

The scalar products on the right hand side are just the (complex conjugate of the)
Clebsch-Gordan coefficients:

Cj2j1(m2, m1|j,m) ≡ 〈j1, m1; j2, m2|j,m〉 . (4.112)

The following reasoning tells us which representations j appear in the sum (4.111) for
a given pair j2 and j1, i.e. determines for which j the Clebsch-Gordan coefficients are
nonzero. As will become clear, in the decomposition of into irreducible representations of
a tensor product of any two SU(2) representations each representation with a given j can
appear at most once. Acting with the operator Jz = Jz2 + Jz1 on both sides of (4.111) we
get

(Jz2 + Jz1 )|j2, m2; j1, m1〉 =
∑

j

+j
∑

m=−j

Jz|j,m〉〈j,m|j2, m2; j1, m1〉 .

Action of Jzz +J
z
2 (of Jz) on the left (right) hand side reduces to multiplication by m2+m1

(m) and expressing next the state |j2, m2; j1, m1〉 on the left hand side using (4.111) we
arrive at the relation

∑

j

+j
∑

m=−j

(m−m2 −m1)|j,m〉〈j,m|j2, m2; j1, m1〉 = 0 , (4.113)
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which, in view of the completeness of the |j,m〉 states, means that in (4.111) only the
terms with m = m2 + m1 can appear. In other words, the Clebsch-Gordan coefficients
(4.112) vanish form 6= m2+m1. This expresses the obvious fact that the z-axis projection
of the total angular momentum of the system is the sum of the z-axis projections of the
angular momenta of its components. This enables us to find the representations |j,m〉 by
comparing the numbers of states with the same value of m = m2 +m1 in the two bases.

As the maximal values of m1 and m2 on the left hand side of (4.111) equal j1 and
j2, respectively, it follows that the maximal value of m on the right hand side of (4.111)
is j2 + j1. Hence, the maximal j in the sum must also be equal j2 + j1. Consider now
m = j2 + j1 − 1. In the original product basis (4.110) there are two states corresponding
to this value of the z-axis projection of the total angular momentum: |j2, j2 − 1; j1, j1〉
and |j2, j2; j1, j1 − 1〉. After changing the basis one their linear combination becomes the
state |j = j2 + j1, m = j2 + j1 − 1〉 and combines with the state |j = j2 + j1, m = j2 + j1〉
to form the j = j2 + j1 representation. The other linear combination must be the state
|j = j2+j1−1, m = j2+j1−1〉 and it is the state of maximal z-axis spin projection of the
representation with j = j2+ j1−1. It is easy to see, that this process continues so long as
lowering m by one unit increases the number of states with the new value of m: at each
step a new representation with j lower by one unit appears. In order to see when this
process stops, or, in other words, what is the minimal value of j, we can simply compare
the total number of states. In the original product basis (4.110) there are (2j2+1)(2j1+1)
states. This number must equal the total number of the |j,m〉 states in the irreducible
representations found in the decomposition of the direct product. Thus

(2j2 + 1)(2j1 + 1) =

j=j2+j1
∑

j=?

(2j + 1) , (4.114)

(we already know the maximal value of j). Since on the right hand side j = j2 + j1,
j2 + j1 − 1, . . ., it is easy to find that the lowest possible j = |j2 − j1|. Hence, when two
angular momenta j2 and j1 are composed, one gets all irreducible representations |j,m〉
with

|j2 − j1| ≤ j ≤ j2 + j1 , (4.115)

and j changing in unit steps. It follows, that the sum over j in (4.111) extends to such
values of j only, or, equivalently, that

Cj2j1(m2, m1|j,m) 6= 0 only for

{

m = m1 +m2

|j1 − j2| ≤ j ≤ j1 + j2
. (4.116)

Using the unitarity of the Clebsch-Gordan coefficients (being the matrix of the change
of basis, they must be unitary)

j1+j2
∑

j=|j1−j2|

+j
∑

m=−j

Cj2j1(m2, m1|j,m)C∗
j2j1(m

′
2, m

′
1|j,m) = δm1m′

1
δm2m′

2
,
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+j2
∑

m2=−j2

+j1
∑

m1=−j1

Cj2j1(m2, m1|j,m)C∗
j2j1

(m2, m1|j′, m′) = δjj′δmm′ , (4.117)

the relation (4.111) can be inverted to give

|j,m〉 =
+j1
∑

m1=−j1

+j2
∑

m2=−j2

|j2, m2; j1, m1〉Cj2j1(m2, m1|j,m) . (4.118)

Acting on both sides of (4.118) with J± = (Jx2 + Jx1 ) ± i(Jy2 + Jy1 ) and using again
the completeness of the states |j1, m1; j2, m2〉 we can obtain useful relations between the
Clebsch-Gordan coefficients:

√

j(j + 1)−m(m± 1)Cj2j1(m2, m1|j,m± 1)

=
√

j2(j2 + 1)−m2(m2 ∓ 1)Cj2j1(m2 ∓ 1, m1|j,m) (4.119)

+
√

j1(j1 + 1)−m1(m1 ∓ 1)Cj2j1(m2, m1 ∓ 1|j,m) .

From the construction it is also obvious that the Clebsch-Gordan coefficients can be chosen
so that

Cj2j1(j2, j1|j = j1 + j2, m = j1 + j2) = 1 . (4.120)

This condition plus the recurrence relations (4.119) allow to determine completely (up
to some arbitrary phase factors) the factors Cj2j1(m2, m1|j,m). By convention arbitrary
phase factors are chosen so that all the Clebsch-Gordan coefficients are real.

Clebsch-Gordan coefficients allow also to write down a decomposition of a product of
two D-functions defined in (4.91) (see also (4.81) and (4.82)). Acting on both sides of the
relation

|j1, m1〉 ⊗ |j2, m2〉 =
j1+j2
∑

j=|j1−j2|

|j,m1 +m2〉C∗
j1j2(m1, m2|j,m1 +m2) , (4.121)

with a rotation operator U(R) and expanding both sides one gets the relation
∑

m′

1

∑

m′

2

|j1, m′
1〉 ⊗ |j2, m′

2〉D(j1)
m′

1
,m1
D

(j2)
m′

2
,m2

=

j1+j2
∑

j=|j1−j2|

∑

m′

|j,m′〉D(j)
m′,m1+m2

C∗
j1j2(m1, m2|j,m1 +m2) .

Closing now this relation from the left with the conjugation of the relation (4.121) one
obtains the equality

D
(j1)
m′

1
,m1

D
(j2)
m′

2
,m2

=

j1+j2
∑

j=|j1−j2|

Cj1j2(m1, m2|j,m1 +m2)

Cj1j2(m
′
1, m

′
2|j,m′

1 +m′
2)D

(j)
m′

1
+m′

2
,m1+m2

. (4.122)
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Using the relation D
(j)
m′m = (−1)m−m′

D
(j)∗
−m′,−m this can be rewritten also in the alternative

form

D
(j1)

m′

1
,m1

D
(j2)∗

m′

2
,m2

= (−1)m2−m′

2

j1+j2
∑

j=|j1−j2|

Cj1j2(m1,−m2|j,m1 −m2)

Cj1j2(m
′
1,−m′

2|j,m′
1 −m′

2)D
(j)
m′

1
−m′

2
,m1−m2

. (4.123)

As an illustrative example of the use of the Clebsch-Gordan coefficients let us consider
the Hydrogen atom taking into account the electron spin. We first treat the problem
in nonrelativistic quantum mechanics. Since both, L and S (where the spin operators
Si = (~/2)σi) commute with the Hamiltonian H = P2/2M − e2/r, the basis of states at
a given energy level n is formed by the states

|n, l,m〉 ⊗ |s, σ〉 , − l ≤ m ≤ l , s =
1

2
, σ = ±1

2
. (4.124)

They are eigenstates of L2, Lz, S2 and Sz with the eigenvalues l (l+1)~2, m~, 3
4
~
2 and σ~,

respectively. In contrast to H , the Dirac Hamiltonian HD, which describes the Hydrogen
atom in relativistic quantum mechanics commutes only with the total angular momentum
operators J = L+ S but not with L and S separately. Hence, in the nonrelativistic limit
the eigenfunctions of HD do not reduce to the states (4.124), but rather to their linear
combinations which are eigenfunctions of H , Jz and J2: rotational invariance requires
exact degeneracy of groups of states with the same J2 only and one should expect that
the first order relativistic corrections will split energies of those groups of eigenstates of the
nonrelativistic Hamiltonian H which correspond to different values of the J2 operator.35

The wave functions of these states could be, of course, constructed just by taking the
Clebsch-Gordan coefficients from tables. Instead, we will find them here by solving directly
the appropriate equations. In so doing we will also obtain explictly some of the Clebsch-
Gordan coefficients.

We begin by noticing that since Jz = Lz + Sz, its eigenstates corresponding to the
eigenvalue jz~ must necessarily have the form

|n, l, s, j, jz〉 = A|n, l, jz − 1
2
〉 ⊗ |s, 1

2
〉+B|n, l, jz + 1

2
〉 ⊗ |s, −1

2
〉 ,

with some constants A and B. In position representation ψσ(r) with the upper (σ = +1
2
)

component representing the projection onto the |s, 1
2
〉 spin state, the wave function takes

35The fact that the spectrum of the nonrelativistic Hydrogen atom exhibits large degeneracy, not
required by the rotational invariance generated by the L operator (extra degeneracy of states with different
values of the orbital angular momentum l) is due to an extra dynamical symmetry discussed in subsection
4.7. Moreover, even the spectrum of the full Dirac Hamiltonian HD exhibits some extra degeneracy not
required by the rotational invariance. Consequently, this degeneracy is preserved also by the lowest order
relativistic corrections to the energy levels. This extra degeneracy is removed only by corrections to the
energy levels predicted by the full Quantum Electrodynamics.
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the form

ψ(jjz)
σ (r) =

(

ARnl(r)Yljz− 1

2

(θ, φ)

BRnl(r)Yljz+ 1

2

(θ, φ)

)

,

where Rnl are the nonrelativistic radial wave functions and Ylm are the spherical harmon-
ics. The coefficients A and B should be such that ψ

(jjz)
σ (r) is the eigenfunction of J2 with

the eigenvalue j(j + 1)~2. Using the decomposition

J2 = (L + S)2 = L2 + S2 + 2LzSz + L+S− + L−S+ ,

where

Sz =
~

2

(

1 0
0 −1

)

, S+ = ~

(

0 1
0 0

)

, S− = ~

(

0 0
1 0

)

,

we get

J2 =

(

L2 + S2 + ~Lz ~L−

~L+ L2 + S2 − ~Lz

)

.

In action on ψ
(jjz)
σ one can replace S2 by 3

4
~
2. Moreover, the action of L2, L± and Lz on

the spherical harmonics Ylm is also known. The eigenequation J2ψ
(jjz)
σ = j(j + 1)ψ

(jjz)
σ

therefore reduces to

~
2

(

[l(l + 1) + 3
4
+ jz − 1

2
− j(j + 1)]AYljz− 1

2

+ pB Yljz− 1

2

pAYljz+ 1

2

+ [l(l + 1) + 3
4
− jz − 1

2
− j(j + 1)]B Yljz+ 1

2

)

= 0 ,

where p ≡
√

l(l + 1)− (jz +
1
2
)(jz − 1

2
) =

√

(l + 1
2
)2 − j2z . Dividing the upper (lower)

equation by Yljz− 1

2

(Yljz+ 1

2

) we obtain

(

[l(l + 1) + 1
4
+ jz − j(j + 1)] p
p [l(l + 1) + 1

4
− jz − j(j + 1)]

)(

A
B

)

= 0 ,

For a nontrivial solution to exist, the determinant of the matrix on the left hand side
should vanish:

[

l(l + 1) +
1

4
− j(j + 1)

]2

−
(

l +
1

2

)2

= 0 ,

(notice that the determinant does not depend on jz!). Thus, either j = l− 1
2
or j = l+ 1

2
.

For example, for j = l − 1
2
the coefficients A and B are related by

A

(

l +
1

2
+ jz

)

+B

√

(

l +
1

2

)2

− j2z = 0 .
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Hence, for j = l − 1
2
one can take

A = N

√

l +
1

2
− jz , B = −N

√

l +
1

2
+ jz ,

with N fixed by the normalization of the wave function

1 =

∫

d3r

(

∣

∣

∣
ψ

(jjz)
1

2

∣

∣

∣

2

+
∣

∣

∣
ψ

(jjz)

− 1

2

∣

∣

∣

2
)

= |A|2 + |B|2 = |N |2(2l + 1) ,

where we have assumed that the wave functions Rnl(r) Yljz± 1

2

are properly normalized.
Thus, we finally find

ψ
(j=l− 1

2
, jz)

σ =





√

l+ 1

2
−jz

2l+1
Rnl(r)Yljz− 1

2

(θ, φ)

−
√

l+ 1

2
+jz

2l+1
Rnl(r)Yljz+ 1

2

(θ, φ)



 ,

and, similarly, or just by noticing that the two functions ψ
(j=l− 1

2
, jz)

σ and ψ
(j=l+ 1

2
, jz)

σ must
be orthogonal to each other,

ψ
(j=l+ 1

2
, jz)

σ =





√

l+ 1

2
+jz

2l+1
Rnl(r)Yljz− 1

2

(θ, φ)
√

l+ 1

2
−jz

2l+1
Rnl(r)Yljz+ 1

2

(θ, φ)



 .

Comparing these explicit solutions with the general formula

|n, l, s, j, jz〉 =
+l
∑

m=−l

∑

σ=± 1

2

|n, l,m〉 ⊗ |s, σ〉Cl 1
2

(m, σ|j, jz) ,

we can read off the explicit expressions of nonzero Clebsch-Gordan coefficients coupling
the angular momenta l and s = 1

2
:

Cl 1
2

(jz − 1
2
, +1

2
|l ∓ 1

2
, jz) =

√

l + 1
2
∓ jz

2l + 1
,

Cl 1
2

(jz +
1
2
, −1

2
|l ∓ 1

2
, jz) = ∓

√

l + 1
2
± jz

2l + 1
.

The C-G coefficients obtained in this way could, of course, differ by a phase factor as
compared to those listed in standard tables. It is however easy to check that for jz = l+ 1

2

we have obtained Cl 1
2

(jz − 1
2
, 1
2
|l + 1

2
, jz) = 1, as in the the standard convention.
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4.6 Tensor operators and the Wigner-Eckart theorem

The physical information in quantum mechanics is contained in matrix elements of various
operators and not in state vectors and operators separately. It is therefore possible to
introduce a sort of the “Heisenberg” picture for symmetry transformations by defining
the transformed operators Ô′ by the equality

〈χ|Ô′|ψ〉 = 〈χ′|Ô|ψ′〉 , (4.125)

that is, so that the matrix elements of the transformed operators Ô′ between the orig-
inal states are the same as the matrix elements of the original operators between the
transformed states. Since |ψ′〉 = U |ψ〉 with the appropriate symmetry operator U , one
gets

Ô′ = U †Ô U ≈ Ô + iθa
[

Qa, Ô
]

, (4.126)

(the approximate equality holds if the transformation is infinitesimal). In agreement with
the intuition, in quantum mechanics of a single nonrelativistic particle, the formula (4.126)
applied to translations gives

r̂′ = U †(a) r̂U(a) = r̂+ a , (4.127)

whereas considering rotations one finds36

r̂′ = U †(O) r̂U(O) = O ·r̂ . (4.128)

Classification of operators with respect to their behaviour under rotations proves very
useful. It is precisely this property property which determines the selection rules forcing
some of their matrix elements to vanish. This leads one naturally to consider the so-called
tensor operators, i.e. sets of operators which under rotations transform one into another,
and to the Wigner - Eckart theorem.

From the formulae (4.126) and (4.77) it follows that under infinitesimal rotations

Ô′ = Ô +
i

~
θi
[

J i, Ô
]

, (4.129)

that is, the behaviour of an operator Ô under rotations is determined by its commutator
with the rotation generators J i, i.e. the operators of the total angular momentum. One
defines therefore the tensor operator T (j,m) or T

(j)
m of the type j as the set of 2j + 1

operators having the following commutation rules with J (as usually, J± ≡ Jx ± iJy):
[

Jz, T (j)
m

]

= m~T (j)
m ,

[

J+, T
(j)
m

]

= ~

√

j(j + 1)−m(m+ 1) T
(j)
m+1 , (4.130)

[

J−, T
(j)
m

]

= ~

√

j(j + 1)−m(m− 1) T
(j)
m−1 .

36Do not confuse the operator Ô with the rotation O!
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The above formulae can succinctly be rewritten (cf. (4.83)) in the form

[

J i, T (j)
m

]

=

+j
∑

m′=−j

T
(j)
m′ 〈j,m′|J i|j,m〉 , (4.131)

Using this form and the formula (4.80) the rule (4.126) of the transformation of the tensor
operator under a rotation can be cast in the form

e
i
~
ψiJi

T (j)
m e−

i
~
ψiJi

= T (j)
m +

i

~

[

ψ ·J, T (j)
m

]

+
1

2

(

i

~

)2
[

ψ ·J,
[

ψ ·J, T (j)
m

]]

+ . . .

= T (j)
m +

i

~

∑

m′

T
(j)
m′

(

ψiJ i(j)
)

m′m

+
1

2

(

i

~

)2
∑

m′′

∑

m′

T
(j)
m′′

(

ψiJ i(j)
)

m′′m′

(

ψiJ i(j)
)

m′m
+ . . .

In this way we get the transformation rule

U †(O)T (j)
m U(O) =

+j
∑

m′=−j

T
(j)
m′ 〈j,m′|U †(O)|j,m〉 =

+j
∑

m′=−j

T
(j)
m′ D

(j)
m′m(O

−1) . (4.132)

valid for arbitrary parametrizations of the rotation group.

The operators T
(j)
m are the analogs of irreducible representations of the SU(2) rotation

group on state vectors: operators of the type T
(j)
m behave as if they had the angular

momentum j. Indeed, it follows from the definition (4.130) that37

∑

i=x,y,z

[

J i,
[

J i, T (j)
m

]]

= j(j + 1)~2 T (j)
m . (4.133)

The simplest example are, of course, scalar operators which commute with J: they are
the T

(0)
0 tensor operators. Another example are vector operators V i which, similarly as

the momentum operator P i or the boost operator Ki in (4.50), satisfy
[

J i, V j
]

= i~ǫijkV k . (4.134)

Vector operators V i are the tensor operators of the type T
(1)
m :

T
(1)
1 = − 1√

2
(V x + iV y) ,

T
(1)
0 = V z , (4.135)

T
(1)
−1 =

1√
2
(V x − iV y) .

37The formula (4.133) is the direct analog of the formula J
2|j,m〉 = j(j + 1)~2|j,m〉 if one takes into

account that the action of the generators J i on tensor operators is through the commutator.
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Let us consider now the following combination of two different tensor operators of the
type T

(j1)
m1

and T
(j2)
m2

:

T (j)
m ≡

+j2
∑

m2=−j2

+j1
∑

m1=−j1

T (j2)
m2

T (j1)
m1

Cj2j1(m2, m1|j,m) . (4.136)

Using the standard identity
[

J, Ô2Ô1

]

= Ô2

[

J, Ô1

]

+
[

J, Ô2

]

Ô1 , (4.137)

and the relations (4.119) it is possible to show that T
(j)
m defined by (4.136) is indeed a

tensor operator of the type T
(j)
m . Similarly, using the unitarity relation (4.117) one can

write

T (j2)
m2

T (j1)
m1

=

j1+j2
∑

j=|j1−j2|

+j
∑

m=−j

Cj2j1(m2, m1|j,m)T (j)
m , (4.138)

which shows that the product of two tensor operators can be decomposed into the sum
of irreducible tensor operators.

The formula most important in applications is

|j2, m2〉b ≡
+j
∑

m=−j

+j1
∑

m1=−j1

T (j)
m |j1, m1〉Cjj1(m,m1|j2, m2) . (4.139)

With the help of manipulations similar the ones which have led to (4.136), but by using
the relation

J Ô|ψ〉 = [J, Ô] |ψ〉+ Ô J|ψ〉 ,

instead of (4.137), the state-vectors |j2, m2〉b can be shown to be eigenvectors of J2 and
Jz with the eigenvalues j2(j2+1)~2 and m2~, respectively. It is important, however, that
in general the state-vectors |j2, m2〉b are not properly normalized (by definition |j2, m2〉
are properly normalized state-vectors):

〈j2, m2|j2, m2〉b = N (j2, j, j1, T ) 6= 1 . (4.140)

On the other hand, because the state-vectors |j2, m2〉b with higher m2 can be obtained
from the ones with lower m2 by acting on them successively with J+, their normalization
does not depend on m2. Therefore, as indicated in (4.140) the normalization factor
N (j2, j, j1, T ) depends only on j2, j1 and on the operator T and its type j (but not on
the operator component labeled by m).38

38The factor N (j2, j, j1, T ) depends, of course, also on quantum numbers other than those directly
related to the angular momentum; this additional dependence is the same for all kets with the same j
(i.e. it is independent of m1).
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Inverting the relation (4.139) using the unitarity relations (4.117) satisfied by the
Clebsch-Gordan coefficient we get

T (j)
m |j1, m1〉 =

j+j1
∑

j2=|j−j1|

+j2
∑

m2=−j2

|j2, m2〉b Cjj1(m,m1|j2, m2) . (4.141)

Closing this relation from the left with a properly normalized state 〈j2, m2| we finally
obtain

〈j2, m2|T (j)
m |j1, m1〉 = Cjj1(m,m1|j2, m2)N (j2, j, j1, T ) . (4.142)

This is the content of the Wigner-Eckart theorem which says that the matrix elements
of a tensor operator T

(j)
m between properly normalized eigenstates of the total angular

momentum operators J2 and Jz are determined, up to a single number N (j2, j, j1, T ), by
the Clebsch-Gordan coefficients. Since there are in principle (2j2 + 1)(2j + 1)(2j1 + 1)
matrix elements this is an enormous simplification.

The number N (j2, j, j1, T ) which is sometimes written as

N (j2, j, j1, T ) ≡ (−1)j+j2−j1
1√

2j2 + 1
〈j2||T ||j1〉 , (4.143)

where 〈j2||T ||j1〉 is called the reduced matrix element of the operator T , can be found by
computing only one (e.g. the easiest one for a given operator T ) of the (2j2 + 1)(2j +
1)(2j1 + 1) matrix elements.

The Clebsch-Gordan coefficients appearing in the Wigner-Eckart formula (4.142) im-
mediately determine the selection rules, that is, tell which of the possible (2j2 + 1)(2j +
1)(2j1 + 1) matrix elements must vanish. In this way the Wigner-Eckart theorem deter-
mines e.g. possible electric quadrupole (and higher) transitions (induced and spontaneous
alike) in atoms. Another its immediate consequence is that the system in a state char-
acterized by the total angular momentum j cannot have electric or magnetic multipole
moments of order 2l with l > 2j because the operators representing such moments are
tensor operators of the type T

(l)
m and

〈j,m|T (l)
m′ |j,m〉 = 0 unless l ≤ 2j .

Therefore, spin 1
2
fermions cannot (by the rotational invariance) have quadrupole (l = 2)

moments, whereas spinless particles are forbidden to possess even dipole moments. (Spin
1
2
particles generically do have magnetic dipole moments but electric dipole moment of a

spin 1
2
particles, allowed by the rotational invariance, violates the CP symmetry).

For vector operators, which are most frequently encountered in elementary applications
the following simplified form of the Wigner-Eckart theorem proves very useful

〈n, j,m|V|n, j,m〉 = 〈n, j,m|J·V|n, j,m〉
j(j + 1)~2

〈n, j,m|J|n, j,m〉 , (4.144)
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where n are some quantum numbers not related to the angular momentum. The proof of
(4.144) goes as follows. From (4.142) and (4.135) we have

〈n, j, jz|V (1)
m |n, j, jz〉 = C1j(m, jz|j, jz)N (j, 1, j, V, n) .

Consider now the matrix element 〈n, j,m|J|n, j,m〉. Applying the Wigner-Eckart theorem

to the vector J operator itself treated as J
(1)
m we can write

jz~ δm0 = 〈n, j, jz|J (1)
m |n, j, jz〉 = C1j(m, jz|j, jz)N (j, 1, j, J, n) . (4.145)

The first equality follows from the well known properties of the Jz and J± operators. In ta-
bles of the Clebsch-Gordan coefficients one can find that C1j(m, jz|j, jz) = jzδm0/

√

j(j + 1).
Hence,

N (j, 1, j, J, n) = ~

√

j(j + 1) .

Inverting now the second equality in (4.145) we can therefore write

C1j(m, jz|j, jz) =
〈n, j, jz|Jm|n, j, jz〉

~
√

j(j + 1)
. (4.146)

In order to find N (j, 1, j, V, n) we consider39

〈n, j, jz|V·J|n, j, jz〉 = 〈n, j, jz|V (1)
0 Jz +

1√
2
V

(1)
−1 J+ − 1√

2
V

(1)
1 J−|n, j, jz〉

= jz~ 〈jz|V (1)
0 |jz〉+

~√
2

√

j(j + 1)− jz(jz + 1) 〈jz|V (1)
−1 |jz + 1〉

− ~√
2

√

j(j + 1)− jz(jz − 1) 〈jz|V (1)
+1 |jz − 1〉

=
~√
2

[

jz
√
2C1j(0, jz|j, jz)

+
√

j(j + 1)− jz(jz + 1)C1j(−1, jz + 1|j, jz)
−
√

j(j + 1)− jz(jz − 1)C1j(1, jz − 1|j, jz)
]

N (j, 1, j, V, n) ,

where at the intermediate stage we have dropped the unnecessary labels and applied the
Wigner-Eckart theorem (4.142) to the matrix elements of V

(j)
m . Using again the properties

of the Clebsch-Gordan coefficients one can show that the expression inside the square
brackets equals

√

2j(j + 1), and we obtain

N (j, 1, j, V, n) =
〈n, j,m|J·V|n, j,m〉

√

2j(j + 1)~
.

39Notice that the standard J+ and J− operators treated as components of the tensor operator are not
properly normalized.
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This, together with (4.146) completes the proof of the relation (4.144).

We illustrate the usefulness of the formula (4.144) by computing the splitting of the
Hydrogen atom energy levels in a constant uniform magnetic field (the Zeeman effect)
taking into account the electron spin (i.e. its magnetic moment). To this end we have to
consider the states with definite quantum numbers l, j and jz. The magnetic field splits
the states with different jz. The Hamiltonian Vint of the electron spin interaction with an
external magnetic field B reads (using the Gauss system of electromagnetic units)

Vint =
e

2mc
(L + 2S)·B , (4.147)

(we use e > 0). The factor 2 multiplying S is the anomalous magnetic moment of
the electron: the ratio of the intrinsic magnetic moment of the electron to its spin (its
intrinsic angular momentum) is (nearly) twice40 as big as the ratio of the electron magnetic
moment due to its orbital to its orbital angular momentum. Because of this factor of 2
the calculation of the energy splitting given by

∆Enljjz =
e

2mc
Bz〈n, l, s, j, jz|Lz + 2Sz|n, l, s, j, jz〉 , (4.148)

is not straightforward and requires using (4.144). Since Lz +2Sz = Jz +Sz it is sufficient
to consider the matrix element

〈l, j, jz|Sz|l, j, jz〉 =
〈l, j, jz|J·S|l, j, jz〉

j(j + 1)~2
〈l, j, jz|Jz|l, j, jz〉 , (4.149)

where we have used (4.144) and omitted those quantum numbers which are inessential.
We can now use the identity

J·S = −1

2
(J− S)2 +

1

2
J2 +

1

2
S2 =

1

2

(

J2 + S2 − L2
)

. (4.150)

Since the states |l, j, jz〉 are eigenstates of all these operators we get

〈l, j, jz|Sz|l, j, jz〉 =
j(j + 1) + 3

4
− l(l + 1)

2j(j + 1)
〈l, j, jz|Jz|l, j, jz〉 . (4.151)

Thus we finally obtain

∆Enljjz =
e

2mc
Bz

[

1 +
j(j + 1) + 3

4
− l(l + 1)

2j(j + 1)

]

〈l, j, jz|Jz|l, j, jz〉

≡ e

2mc
Bz g 〈l, j, jz|Jz|l, j, jz〉 =

e

2mc
Bz g jz~ , (4.152)

40The factor 2 comes out naturally, and has been first obtained in this way, from the Dirac equation.
For this reason it is incorrectly believed to be a relativistic effect. In fact, it is also obtained using
the nonrelativistic Schrödinger equation if before making in it the “minimal substitution” ∇ → ∇ +
(Qe/~c)A, (Q = −1, if electron is considered) the kinetic term −~

2
∇

2/2m of the (nonrelativistic)
Hamiltonian is written as −~

2(σ · ∇)2/2m. There are also calculable tiny corrections to this factor
determination of which requires the use of the full Quantum Electrodynamics - see Section 19.4.
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with

g = 1 +
j(j + 1) + 3

4
− l(l + 1)

2j(j + 1)
, (4.153)

the so-called Landé factor.

4.7 Higher symmetries

In some special cases the spectrum of the Hamiltonian exhibits degeneracies higher than
could be expected from the rotational invariance alone. Consider for example the two-
dimensional isotropic harmonic oscillator the Hamiltonian of which is

H =
1

2M

(

P 2
x + P 2

y

)

+
1

2
Mω2

(

x2 + y2
)

. (4.154)

The eigenvalues of this Hamiltonian are Enxny
= ~ω(nx + ny + 1) and depend only on

nx + ny and not on nx and ny separately. Hence, the N -th energy level has (N + 1)-fold
degeneracy. Of course, L = xPy − yPx commutes with the Hamiltonian, but since the
group of two-dimensional rotations it generates is Abelian, all the representations of its
Lie algebra are one-dimensional. Thus, on the basis of the rotational symmetry one would
not expect any degeneracy.

Similarly, the eigenvalues of the Hamiltonian of the three-dimensional isotropic har-
monic oscillator are given by Enxnynz

= ~ω(nx + ny + nz +
3
2
) and the degeneracy of

the N -th energy level is 1
2
(N + 1)(N + 2)-fold. Again, these multiplicities do not corre-

spond to (2l + 1)-fold degeneracies expected on the basis of the invariance with respect
to three-dimensional rotations.

The degeneracy of the spectra of the two- and three- (and also higher) dimensional
isotropic harmonic oscillators can be understood by noticing that in each of these cases one
can construct a number of Hermitian operators Qa, which commute with the Hamiltonian
and form a closed algebra

[

Qa, Qb
]

= i~f ab
c Qc , [Qa, H ] = 0 , (4.155)

with some structure constants f ab
c . The operators L (single L in the case of the two-

dimensional oscillator and 1
2
d(d− 1) operators Lij = −Lji generating the SO(d) group of

rotations in the d-dimensional case - they satisfy the commutation rules which generalize
the first rule of the ones listed in (4.50)) are parts of the algebras of Qa’s. Since these
algebras are closed, the operators Qa generate some higher dimensional symmetry groups.
In the case of the two-dimensional oscillator the algebra of Qa’s coincides, as will be seen,
with the one generated by the three operators L in three dimensions. Hence, the two-
dimensional isotropic harmonic oscillator has the SU(2) symmetry group which appears
because of the special form of its Hamiltonian (4.154). Similarly, the algebra of Qa’s in

163



the case of the three-dimensional isotropic harmonic oscillator coincides with the algebra
of the generators of the SU(3) group.

These symmetries are easy to uncover if the Hamiltonian of the n-dimensional isotropic
harmonic oscillator is written in terms of the creation and annihilation operators:

H = ~ω
d

∑

i=1

(

a†iai +
1

2

)

. (4.156)

This form of H as well as the commutation relation [ai, a
†
j ] = δij are easily seen to be

invariant under the transformations

ai →
(

e−iθ
aTa)

ij
aj , a†i → a†j

(

eiθ
aTa)

ji
, (4.157)

where the d2 − 1 Hermitian d × d matrices T a form the so-called fundamental (i.e. the
nontrivial one of the lowest dimension) representation of the SU(d) group.41 The matrices
T a of the SU(2) group are the Pauli matrices divided by 2: T a = 1

2
σa; for SU(3) T a = 1

2
λa,

where λa are the eight 3× 3 Gell-Mann matrices, etc.42

Invariance of the Hamiltonian under the transformations (4.157) immediately suggests
that the hidden symmetry group is just SU(d). Indeed, it is easy to see that if there exist
unitary symmetry operators U(θ) ≈ 1− (i/~)θaQa which commute with H and such that

U †(θ) ai U(θ) =
(

e−iθ
aTa)

ij
aj , U †(θ) a†i U(θ) = a†j

(

eiθ
aTa)

ji
, (4.158)

then the Hamiltonian is automatically invariant

U †(θ)H U(θ) = H , (4.159)

or, in other words, [H, U(θ)] = 0. Considering infinitesimal transformations with the
parameters |θa| ≪ 1 we should, therefore, have

i

~
[Qa, ak] = −iT akjaj ,

i

~
[Qa, a†k] = ia†jT

a
jk , (4.160)

and it is easy to see that these commutation rules are satisfied by the operators Qa of the
form

Qa = ~ a†k T
a
kj aj . (4.161)

41In fact the Hamiltonian (4.156) is invariant under the larger, U(d) symmetry group generated by the
d2 − 1 matrices T a and one additional matrix T which is simply proportional to the unit d × d matrix
(it generates transformations changing the phases of all the operators ai in the same way). However, as
can be checked, the Hilbert space operator generating these additional transformations coincides (up to a
multiplicative constant factor) with the Hamiltonian itself. Hence, this additional symmetry is the time
translation symmetry and is not reflected in the degeneracy of the energy levels.

42For the generators in the fundamental representation we adopt the normalization tr(T aT b) = 1
2δ

ab.
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It is also straightforward to check that together with the Hamiltonian (4.156) the operators
Qa (4.161) satisfy the commutation rules (4.155) with the same structure constants of the
SU(d) group as do the finite dimensional c-number matrices T a:

T aikT
b
kj − T bikT

a
kj = if ab

c T cij . (4.162)

The symmetry group of the d-dimensional harmonic oscillator is therefore SU(d) and
the degeneracies of its successive energy levels correspond to the number of the basis states
spanning higher and higher dimensional representations of this group. Representations
realized on successive energy levels of the two-dimensional oscillator (d = 2) are labeled by
the eigenvalues k(k+1) with k = 0, 1

2
, 1, . . . of the Casimir operator Q2 =

∑3
a=1Q

aQa and
the multiplicity of the N -th energy level is easily seen to correspond to the representation
with k = N/2. Representations realized on the energy levels of the three-dimensional
oscillator (d = 3) are in principle labeled by the eigenvalued of two Racah operators
(one of them, the Casimir operator, is of the form Q2 =

∑8
a=1Q

aQa and the second
one is built as some trilinear combination of Qa’s), but usually the representations of
the SU(3) Lie algebra are distinguished just by their dimension or by giving a pair of
integers (u, v), where u, v = 0, 1, 2, . . ., in which case the dimension of the representation
is given by 1

2
(u+1)(v+1)(u+ v+2). Not all representations are realized in the spectrum

of the three-dimensional oscillator: for example, the representations denoted in particle
physics as 1, 3, 6 and 10 are realized at the 0-th, first, second and third energy levels,
respectively, but the adjoint representation 8 does not appear. In fact, realized are only
those representations which in the (u, v) classification are denoted (u, 0). It is left for the
reader to investigate the reason for this.

Another celebrated example of a symmetry higher than the expected one is the SO(4)
symmetry which explains the structure of the spectrum the nonrelativistic Hydrogen-like
atom. Solving the Schrödinger equation with the potential V (r) = −e2/r (for simplicity
we consider the Hydrogen atom with Z = 1) one finds that the n = 1 ground level is
nondegenerate and consists of a single 1S state.43 At the second n = 2 energy level there
are four states: one 2S and three 2P states. For n = 3 there are: one 3S state, three
3P states and five 3D states, and so on. One immediately realizes that the multiplicity
of states at the n-the energy level is n2 instead of being equal (2l + 1) for some integer
l = 0, 1, 2, . . ., as could be expected from the rotational invariance of the potential V (r).
Clearly, some higher symmetry must be responsible for this degeneracy. However, as will
be seen, in contrast with the harmonic oscillator, this symmetry is only a dynamical one,
that is, the Hilbert space symmetry generators forming a closed algebra can be defined
only for subspaces corresponding to individual energy levels. As a result, the symmetry
considerations alone allow to explain not only the degeneracy of the energy levels but also
to find purely algebraically the eigenvalues of the Hamiltonian.

As it is well known, from classical mechanics, the motion of a particle of mass m in
the central potential V (r) = −e2/r is characterized not only by the four usual constants

43In the considerations we ignore the doubling of each energy eigenstate due to the spin of the electron.
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of motion (the energy E and the three components of the orbital angular momentum L),
but also by three other constant quantities - the three components of the so-called Lenz
vector

M = ṙ× L− e2
r

r
, (4.163)

(the dot represents the time derivative). Indeed, differentiating M with respect to time
and using the Newton’s equation

d

dt
mṙ = − e2

r

r3
, (4.164)

one easily finds that M is constant. While the constancy of L expresses geometrically the
fact that the motion occurs in a fixed plane, the constancy of M is related to the fact
that the axes of the ellipses do not precess with time.

The analogy with classical mechanics suggests that in the quantum theory the three
components of M will, together with the three components of L, play the roles of the
generators of some higher symmetry, which should explain the degeneracy of the spectrum.
There is however an ambiguity in defining M as the quantum mechanical operator because
L and P do not commute with each other. It turns out that the correct definition is
provided by the symmetric ordering

M =
1

2m
(P× L− L×P)− e2

r

r

=
1

m
P× L− i~

m
P− e2

r

r
, (4.165)

which also makes M Hermitian. With this definition it is straightforward (but in fact
terribly tedious!) to check that the following commutation rules are satisfied:

[H, L] = 0 ,
[

Li, Lj
]

= i~ ǫijkLk ,

[H, M] = 0 ,
[

Li, M j
]

= i~ ǫijkMk . (4.166)

The last relation expresses simply the fact that M is a vector operator.

To have a closed algebra of generators - a property necessary to identify the results of
the action of QaQb−QbQa on states of the system with another transformation belonging
to the group of symmetries (see Section 4.2) - it should be also possible to express the
commutator of the components of M as a linear combination of Li and M i. However,
computing these commutators explicitly one finds (after a long calculation) instead:

[

M i, M j
]

= − 2

m
i~ ǫijkHLk , (4.167)

(with the Hamiltonian H on the right hand side). In other words, one finds that the
algebra of the operators L and M does not close.
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The solution is provided by the observation, that if we restrict the considerations to a
given discrete (with E < 0) energy level, we can form the new operators

N =
(

− m

2E

)1/2

M , (4.168)

which are also vector operators commuting with H and satisfy the rule

[

N i, N j
]

= i~ ǫijkLk , (4.169)

that is, on the subspace of states corresponding to fixed E < 0 they form, together with
the operators L, a closed algebra of generators. Therefore, the six generators L and N can
be promoted to the generators of the transformations forming the SO(4) symmetry group.
Of course, the operators N are defined only for a given energy level (different operators N
form closed algebras at different energy levels), but apart from this, their implications for
the degeneracies of the energy levels are the same as of “normal” symmetry generators.

Before finding the representations of the Lie algebra generated by L and N it is useful
to note two relations. Firstly, computing (laboriously!) the square of the operator M one
finds that

M2 =
2

m
H

(

L2 + ~
2
)

+ e4 . (4.170)

On the subspace spanned by state-vectors (eigenvectors of H) corresponding to a fixed
value E < 0 of energy this is equivalent to

N2 + L2 = −~
2 − me4

2E
. (4.171)

Secondly, in the specific realization of the SO(4) Lie algebra provided by the operators L
and N one has44 M · L = L ·M = 0, or, equivalently,

N · L = L ·N = 0 . (4.172)

It is important to stress that this relation does not follow from the commutation rules
of the SO(4) Lie algebra; it is specific only for its realization by operators acting in the
Hilbert space of the nonrelativistic Hydrogen atom.

It is now straightforward to find the representations of the Lie algebra generated by
the operators L and N. To this end one defines the new generators45

I ≡ 1

2
(L+N) , K ≡ 1

2
(L−N) , (4.173)

44The equality M · L = 0 is easy to check using the second form (4.165) of the operator M, while
L ·M = 0 using its third form with L standing to the left.

45A warning: the operator K defined here has nothing to do with the boost generator defined in (4.45)!
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which satisfy simpler commutation rules:
[

I i, Ij
]

= i~ǫijkIk ,
[

Ki, Kj
]

= i~ǫijkKk ,
[

I i, Kj
]

= 0 . (4.174)

Thus the Lie algebra of L and N is equivalent to the direct sum su(2)⊕ su(2) of the two
su(2) Lie algebras generated by the I and K operators independently. The symmetry
group is therefore

SU(2)× SU(2) ∼ SO(4) . (4.175)

It is then easy to realize that the Lie algebra of the generators L and N is of rank two
with Iz and Kz forming its Cartan subalgebra and I2 and K2 playing the roles of the two
Racah operators. Irreducible representations of the su(2)⊕ su(2) Lie algebra spanned by
the Hilbert space vectors belonging to a given energy level are therefore labeled by pairs
of I2 and K2 eigenvalues ~

2i(i + 1) and ~
2k(k + 1) - they are concisely denoted (i, k) -

where i, k = 0, 1
2
, 1, 3

2
, . . . , and have dimensions (2i+1)(2k+1). State-vectors spanning a

given representation are then labeled by the eigenvalues ~iz and ~kz of the generators Iz

and Kz and can be written as |n, iz, kz〉 (here n labels the energy level); the matrices of
the first (second) SU(2) group of the direct product SU(2)× SU(2) act only on the first
(second) index iz (kz).

However, because of the operator relations (4.172), in the Hydrogen atom Hilbert
space

I2 =
1

4

(

L2 +N2 +N · L+ L ·N
)

=
1

4

(

L2 +N2
)

,

K2 =
1

4

(

L2 +N2 −N · L− L ·N
)

=
1

4

(

L2 +N2
)

, (4.176)

i.e. I2 = K2. Hence, in this particular case realized can only be those su(2) ⊕ su(2)
algebra representations with k = i, and which, for this reason, are of dimensions (2k+1)2

with k = 0, 1
2
, 1, 3

2
, . . .. This explains why the multiplicity of states at each energy level is

a square of an integer n = 2k + 1.

One can go further and notice that because

1

2

(

L2 +N2
)

= I2 +K2 , (4.177)

the operators appearing on the left-hand side of (4.171) can take only values 2·2·k(k+1)~2.
Hence,

−~
2 − me4

2E
= 4k(k + 1)~2 , (4.178)

which leads to the well known result

E = − me4

2~2(2k + 1)2
, with k = 0,

1

2
, 1,

3

2
, . . . (4.179)

This reproduces the spectrum of the nonrelativistic bound states of the Hydrogen atom
and explains the rule that the multiplicity of the n-th energy level equals n2.
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4.8 Discrete symmetries: space and time reflection

The set of classical Galileo transformations (4.37) can be supplemented with two discrete
symmetry transformations: P and T - the space and time reflection, respectively (often
called simply parity and time reversal) - which act on coordinates in the following way

r′ = −r , t′ = t , (space reflection)

r′ = r , t′ = −t , (time reversal). (4.180)

From this it is easy to see that in the action on coordinates P−1 = P , T−1 = T and that

P · (R, V, a, τ) = (R, −V, − a, τ) · P ,
T · (R, V, a, τ) = (R, −V, a, − τ) · T . (4.181)

In the Hilbert space these transformations are represented by the operators U(P ) = P and
U(T ) = T , which, according to the Wigner theorem, must be either unitary and linear
or antiunitary and antilinear. The commutation rules of P and T with the generators
of the Galileo group can be deduced by using the same procedure that led us to (4.50).
Repeating the steps we find

P iJ i P† = iJ i , T iJ i T † = iJ i ,

P iKi P† = −iKi , T iKi T † = −iKi ,

P iP iP† = −iP i , T iP i T † = iP i ,

P iH P† = iH , T iH T † = −iH .

We have left the factors of i, for we still have to decide whether the operators P and T
are linear or antilinear. This can be decided by looking at the last pair of relations: if
the operations of space and time reflections are to be symmetries of the given physical
system, they should transform it into (taking the active view) another realizable system
with the same energy levels. In particular, the energy spectrum of the transformed system
should not be unbounded from below (typically the spectrum of H is unbounded from
above - there can be arbitrarily high excitations; recall also that P†HP and T †HT give
on the states of the original system the same values as does H on the states of the parity
transformed and time reversed systems, respectively). Hence we should require that

PH P† = H , T H T † = H , (4.182)

from which it follows that P must be unitary and linear whereas T has to be antiuni-
tary and antilinear (multiplying these relations from the right by P and T one gets the
commutation relations in the standard form [H, P] = 0, [H, T ] = 0). Thus,

P J iP† = J i , T J i T † = −J i ,
PKiP† = −Ki , T Ki T † = Ki , (4.183)

P P iP† = −P i , T P i T † = −P i .
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We can now discuss some specific realizations of P and T in Hilbert spaces.

We consider first the space reflection in the conventional nonrelativistic quantum me-
chanics of a single particle. As we will see studying the relativistic case, each particle46

can be characterized by a number η called its intrinsic parity which is the eigenvalue of the
parity operator P on the vector state of this particle. Since classically P 2 is the identity,
in the Hilbert space we can have P2 = eiϕ. Therefore η2, and hence also η, is a complex
number of modulus 1. We will see later, that for bosons (particles having integer spin) the
possible eigenvalues of P are ±1, whereas for fermions (particles having half-integer spin)
η can assume values ±1 and ±i. (In nonrelativistic theory this is sometimes justified with
the argument that since P 2 is like the rotation by 2π, for bosons one must have P2 = +1,
while for fermions P2 can also equal −1; this argument is however not very convincing).

The intrinsic parity η is unique for a given particle and plays, hence, completely no
role in quantum mechanic of a single particle. In principle the state vector |ψ〉 (the wave
function ψ(r) of the space reflected system should satisfy the relation

ψ′(r) ≡ 〈r|ψ′〉 = ηψ(P−1r) = ηψ(−r) = η 〈−r|ψ〉 , (4.184)

and if the space reflection is a symmetry of the physical system then the operator P such
that

|ψ′〉 = P|ψ〉 , (4.185)

commutes with the Hamiltonian.

In quantum mechanics of a single particle the action of P on the position operator r̂
can be deduced by noticing that since PJP† = J, where in general J = r̂ × P + S, cf.
(4.78), and P PP† = −P, one must have

P r̂P† = −r̂ , (4.186)

(and also PSP† = S). This is in line with the physically motivated expectation that if
〈ψ|r̂|ψ〉 = r, then 〈ψ′|r̂|ψ′〉 = 〈ψ|P†r̂P|ψ〉 = −r.

If the Hamiltonian H of a system of many particles (not necessarily all identical) or,
more frequently, its unperturbed part H0, commutes with P, the N -particle eigenstates
of H or of H0 denoted by |ψN〉, forming a basis of the system Hilbert space (see Section
5) can be chosen so that they satisfy

P|ψN 〉 = ηψηψ1
. . . ηψN

|ψN〉 , (4.187)

46That is, each irreducible representation of the Poincaré group identified with some type of particles.
Of course, parity is known to be broken in Nature by the weak interactions, so strictly speaking the
parity operator P acting on full interacting state vectors of the Standard Theory cannot be constructed.
However, considering the action of P on free particle states is still useful because in physics - as opposed to
mathematics - we are not merely interested in the statement that the space reflection is not a symmetry,
but rather in how it is broken by interactions.
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with ηψ = ±1 the parity of the state |ψN〉 and ηψi
the intrinsic parities of the particles in

this state. In such a case parity can be used to establish certain selection rules for matrix
elements of those operators O which have definite reflection properties

P†OP = ηOO . (4.188)

Indeed, in this case we have:

ηO〈χN |O|ψN〉 = 〈χN |P†OP|ψN〉
= ηχηψη

∗
χ1
. . . η∗χN

ηψ1
. . . ηψN

〈χN |O|ψN〉 , (4.189)

and the matrix element must vanish if

η∗Oηχηψη
∗
χ1
. . . η∗χN

ηψ1
. . . ηψN

6= 1 . (4.190)

In particular, in quantum mechanics of a single particle (N = 1) the operator r̂ has
ηr = −1 and the electric dipole transitions can occur only between states having opposite
parities.

Consider now the time reversal. If [H, T ] = 0, i.e. if the time reversal is the symmetry
of the system, for an arbitrary state |ψ(t)〉 one can write

T |ψ(t)〉 = T e−i
H
~
t|ψ(0)〉 = e−i

H
~
(−t) |ψ′(0)〉 = |ψ′(−t)〉 , (4.191)

where we have used the antilinearity of T and defined

|ψ′(0)〉 ≡ T |ψ(0)〉 . (4.192)

Thus, T |ψ(t)〉 = |ψ′(−t)〉. With this definition it is easy to see that if |ψ(t)〉 satisfies the
Schrödinger equation, so does also |ψ′(t)〉:

i~
d

dt
|ψ′(t)〉 ≡ i~

d

dt
T |ψ(−t)〉 = T i~ d

d(−t) |ψ(−t)〉

= T H|ψ(−t)〉 = T HT †T |ψ(−t)〉 = H|ψ′(t)〉 , (4.193)

(we have used again the antilinearity of T ).

In concrete representations of quantum mechanics one represents the operator T as
the product T = UK, in which U is a suitable unitary operator and K is the complex
conjugation. The operator U is chosen so that the commutation rules (4.183) of T are
satisfied.

For complex H (e.g. if the potential energy V is a complex function of the position,
which is the case e.g. when inelastic scattering is modeled within the framework of
quantum mechanics of a single particle) the time reversal symmetry would require

UH∗U † = H , (4.194)
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which usually is impossible - the time reversal is broken because the absorption effects
(described by the imaginary part of V ) single out (like friction or viscosity) one time
direction.

In quantum mechanics of a single particle J = r̂×P+S (c.f. (4.78)) and from (4.183)
one deduces that

T r̂ T † = r̂ , (4.195)

and T ST † = −S. The wave function of a spinless particle has only one component and
it is easy to see that in usual the position representation the rules (4.183) are satisfied by
U = 1. Instead, in the momentum representation, in which P̂ = p and r̂ = i~∂/∂p, one
must have UpU † = −p in order to satisfy the relations (4.183) with P̂ and J = L.

For spinning particles the commutation rule (4.183) with J = r̂ × P + S imposes
additional conditions on U . In the position representation assuming that the matrices Si

are such that Sx and Sz are real while Sy is purely imaginary (this can always be arranged
for), we must have

USx,zU † = −Sx,z , USyU † = Sy . (4.196)

It is easy to check that in this representation

T = exp

(

−π i
~
Sy

)

K , (4.197)

satisfies the requirements. In particular, for spin 1
2
particles, for which Si = (~/2)σi, one

has T = −iσyK.

Consider now a system ofN identical particles. In the ordinary position representation,
in which the state is represented by the wave function ψs1,...,sN (r1, . . . , rN), where sk is
the spin label of the k-th particle, the time reversal operator takes the form

T = e−π
i
~
Sy
1 · . . . · e−π i

~
Sy

NK , (4.198)

where Syk acts on spin variables of the k-th particle only (so that [Sik, S
j
l ] = 0 for k 6= l).

If all the particles have integer spin, T 2 = 1 independently of their number N . However,

T 2 = (−1)N =

{

+1 for N even
−1 for N odd

, (4.199)

if there are N half-integer spin particles. Consider now the energy eigenstates |n〉. If the
time reversal is a symmetry, i.e. if [H, T ] = 0, the state T |n〉 has the same energy as |n〉.
Suppose now that T |n〉 and |n〉 represent the same state, i.e. T |n〉 = λ|n〉 with λ a phase
factor, that is, there is no degeneracy of the n-th energy level. Applying T twice we get

T 2|n〉 = T λ|n〉 = λ∗T |n〉 = |λ|2 |n〉 = |n〉 , (4.200)
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(antilinearity!) which is only possible if T 2 = 1. Hence, for an odd number N of fermions,
the states |n〉 and T |n〉 must be distinct and, therefore, there must be at least a two-fold
degeneracy - called the Kramers degeneracy - of the energy levels of the Hamiltonian. The
states |n〉 and T |n〉 are then orthogonal to each other: for arbitrary two states Ψ and Φ
(we again resort to the mathematical notation) we can write (cf. 4.11)

(Φ|Ψ) = (Φ|T †T Ψ) = (T Ψ|T Φ) . (4.201)

Setting now Ψ = T |n〉 ≡ T Ψn and Φ = |n〉 ≡ Ψn we get

(Ψn|T Ψn) = (T 2Ψn|T Ψn) = ±(Ψn|T Ψn) , (4.202)

so that for the minus sign (T 2 = −1) we must have (Ψn|T Ψn) = 0. Usually the state T |n〉
together with |n〉 belong to a larger multiplet of some continuous symmetry,47 so that the
Kramers degeneracy does not introduce any additional doubling of states with a given
energy. The two-fold degeneracy exclusively due to the time reversal can be observed in
some special situations, though. Consider for example a crystal which has a low symmetry.
Each atom of the crystal lattice can be then viewed as feeling the electrostatic field of the
neighbouring atoms. This field is not rotationally invariant and, superficially, one would
not expect any degeneracy of the atomic energy levels. However, the electrostatic field
felt by the electron at the position r of a given atom represented by the Hamiltonian term
∑

i φ(r − ri) (ri are the positions of the other atoms) does not break the time reversal
symmetry (recall that T r T † = r so that T φ(r − ri)T † = φ(r − ri)). Therefore, if the
number of atom’s electrons is odd, there must still be a two-fold degeneracy of each
atomic energy level. It is lifted only if the crystal is placed in an external magnetic field,
because the term H ′ ∝ B · (L + 2S) does break the time reversal: T B · (L + 2S)T † =
B · T (L+ 2S)T † = −B · (L + 2S) and the full Hamiltonian H0 + Vint does not commute
with T .

Another important conclusion is that fermions cannot have electric dipole moments
without violating the time reversal invariance. Consider a free spin s (half-integer) fermion
at rest,48 so that only its spin degrees of freedom matter. It has (2s+ 1) degenerate spin
states. If the particle possesses an electric dipole moment d, an external electric field E

lifts this degeneracy completely.49 If the time reversal were a good symmetry, a two-fold
degeneracy should remain. Since it is not the case, symmetry with respect to the time-
reversal must be broken. In the context of relativistic quantum field theory this means

47For example, in the Hydrogen atom the Kramers doubling of energy states is related to the dou-
bling introduced by the spin degree of freedom: indeed, since T †

JT = −J one has T |n, l,m, sz〉 =
|n, l,−m,−sz〉, but the fact that En,l,m,sz = En,l,−m,−sz follows also from the rotational invariance. (If
the spin degree of freedom is neglected, electrons are treated as bosons and the fact that the ground state
is nondegenerate is not in conflict with the time reversal invariance.)

48Clearly, this reasoning applies to massive fermions only.
49The Wigner-Eckart theorem (4.144) can be used to calculate shifts of the energy levels due to the

interaction Vint = E·d. In particular, application of this theorem makes it clear that the degeneracy is
lifted completely.
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that also the CP (the combination of parity and the charge conjugation - the operation
of replacing particles by their antiparticles) must be broken, because the CPT operation
is always a good symmetry of relativistically invariant quantum field theory models (with
Hermitian Hamiltonians).
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B Rotation matrices

In this appendix we present a method of finding the matrices d
(j)
m′m(β) defined in (4.92)

and collect various properties of the d
(j)
m′m(β) and D

(j)
m′m(α, β, γ) matrices.

The general form of the d
(j)
m′m(β) matrices

We begin with j = 1
2
and replace (denote) the basis spin states |1

2
, 1
2
〉 and |1

2
,−1

2
〉 by the

variables ξ and η, respectively. Action on these states of the generators J i

Jz ξ =
~

2
ξ , Jz η = −~

2
η ,

J+ ξ = 0 , J+ η = ~ ξ ,

J− ξ = ~ η , J− η = 0 ,

can formally be represented by the action on ξ and η of the differential operators

Jz =
~

2

(

ξ
∂

∂ξ
− η

∂

∂η

)

, J+ = ~ ξ
∂

∂η
, J− = ~ η

∂

∂ξ
. (B.1)

The operator J2 = (Jz)2 + 1
2
(J+J− + J−J+) takes in this representation the form

J2 =M(M + ~) with M ≡ ~

2

(

ξ
∂

∂ξ
+ η

∂

∂η

)

. (B.2)

It is then easy to find that

Jz ξaηb =
~

2
(a− b) ξaηb ,

J2 ξaηb =
~
2

4
(a+ b)(a + b+ 2) ξaηb , (B.3)

so that for a = j +m and b = j −m (with −j ≤ m ≤ j) the monomials of order j

u(j,m) ≡ Nj,m ξ
j+m ηj−m , (B.4)

are the eigenfunctions of Jz and J2 with the right eigenvalues ~m and ~
2j(j + 1), respec-

tively, to represent the states |j,m〉. This identification is possible only if the normaliza-
tion factors Nj,m are such (cf. (4.83)) that J±u(j,m) = ~

√

(j ∓m)(j ±m+ 1)u(j,m±1).
Therefore one must set

Nj,m±1 = Nj,m

√

j ∓m

j ±m+ 1
,

This determines Nj,m (up to a multiplicative constant independent of j and m) to be

Nj,m =
1

√

(j +m)!(j −m)!
. (B.5)
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The formula (B.4) expresses simply the fact that (as can be shown) the states |j,m〉 for
a given j can be constructed as completely symmetrized tensor products of 2j states
|1
2
,±1

2
〉:

|j,m〉 ∝
∑

P

(

| 1
2
, mP (1)〉 ⊗ . . .⊗ | 1

2
, mP (2j)〉

)

, (B.6)

where the sum is over all permutations P (i) of 2j numbers mi = ±1
2
such that m1+ . . .+

m2j = m.

The above results allow to obtain the matrices d
(j)
m′m(β) explicitly by employing the

formula (cf. eqs (4.81) and (4.92))

e−
i
~
βJy |j,m〉 =

+j
∑

m′=−j

|j,m′〉 d(j)m′m(β) . (B.7)

Acting with the exponentiated generator Jy represented by the differential operator

Jy = − i

2
(J+ − J−) =

i

2
~

(

η
∂

∂ξ
− ξ

∂

∂η

)

,

on the state |j,m〉 represented by the function u(j,m) one obtains the sum of monomials

in ξ and η of order j. The function d
(j)
m′m(β) is then given by the coefficient of u(j,m′).

For j = 1
2
we get

e−
i
~
βJy

ξ =

∞
∑

n=0

1

n!

(

β

2

)n(

η
∂

∂ξ
− ξ

∂

∂η

)n

ξ = ξ cos
β

2
+ η sin

β

2
,

and similarly

e−
i
~
βJy

η = −ξ sin β
2
+ η cos

β

2
,

and ideed, the coefficients of ξ and η coincide with the appropriate elements of the matrix
(4.93). Generalizing one obtains

e−
i
~
βJy

u(j,m) = Nj,m

(

ξ cos
β

2
+ η sin

β

2

)j+m(

−ξ sin β
2
+ η cos

β

2

)j−m

= Nj,m

j+m
∑

k=0

j−m
∑

l=0

(−1)j−m−l

(

j +m
k

)(

j −m
l

)

(B.8)

×
(

cos
β

2

)j+m−k+l(

sin
β

2

)j−m+k−l

ξ2j−k−l ηk+l,

with Nj,m given by (B.5). This simply expresses the fact that once we know how the
individual states |1

2
,±1

2
〉 in the formula (B.6) transform under the action of a rotation,
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we also know how does their (symmetrized) product transform. Substituting in (B.8)
2j − k − l = j +m′, k + l = j −m′ and extracting the coeficient of Nj,m′ξj+m

′

ηj−m
′

we
arrive at

d
(j)
m′m(β) =

Nj,m

Nj,m′

∑

k=0

(−1)k−m+m′

(

j +m
j +m− k

)(

j −m
m′ −m+ k

)

×
(

cos
β

2

)2j+m−m′−2k (

sin
β

2

)m′−m+2k

. (B.9)

Useful properties of the rotation matrices

Orthogonality of the D(j) matrices:
∫ 2π

0

dα

∫ π

0

dβ

∫ 2π

0

dγ sin β D
(j2)∗
m′

2
m2

(α, β, γ)D
(j1)
m′

1
m1

(α, β, γ)

=
8π2

2j + 1
δj1j2δm1m2

δm′

1
m′

2
. (B.10)

The completness relation reads

1

8π2

∑

j

+j
∑

m=−j

+j
∑

m′=−j

(2j + 1)D
(j)∗
m′m(ᾱ, β̄, γ̄)D

(j)
m′m(α, β, γ)

= δ(ᾱ− α)δ(cos β̄ − cos β)δ(γ̄ − γ) . (B.11)

The D(j)-matrices satisfy the following decomposition rule

D
(j1)
m′

1
,m1
D

(j2)
m′

2
,m2

=

j1+j2
∑

j=|j1−j2|

C∗
j1j2

(m1, m2|j,m1 +m2)

Cj1j2(m
′
1, m

′
2|j,m′

1 +m′
2)D

(j)
m′

1
+m′

2
,m1+m2

. (B.12)

For integer j = l elements of the D(j) matrices are related to the spherical harmonics

D
(l)∗
m0 (ϕ, θ, 0) =

√

4π

2l + 1
Y l
m(θ, ϕ) . (B.13)

The orthogonality relation satisfied by the d(j) matrices reads
∫ π

0

dβ sin β d
(j′)∗
m′m(β) d

(j)
m′m(β) =

2

2j + 1
δj′j . (B.14)

The corresponding inverse relation is

∑

j

(j +
1

2
) d

(j)∗
m′m(β) d

(j)
m′m(β̄) = δ(cos β̄ − cos β) . (B.15)
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They have the following properties

d
(j)
m′m(0) = δm′m ,

d
(j)
m′m(±π) = (−1)j∓mδ−m′m ,

d
(j)
m′m(−β) = d

(j)
mm′(β) , (B.16)

d
(j)
m′m(β) = (−1)m

′−md
(j)
mm′(β) ,

d
(j)
m′m(β) = (−1)m

′−md
(j)
−m′−m(β) .

For integer j = l the elements of the d(l) matrices are related to the Legendre polynomials:

d
(l)
00(β) = Pl(cos β) ,

d
(l)
10(β) = −d(l)01 (β) = − sin β

√

l (l + 1)
P ′
l (cos β) , (B.17)

d
(l)
11(β) = d

(l)
−1−1(β) = Pl(cos β) +

1− cos β

l (l + 1)
P ′
l (cos β) ,

where prime denotes derivative of Pl(x) with respect to x.
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