
Problems in Quantum Field Theory of Fundamental Interactions. III

Problem III.1
Consider a classical pointlike particle of mass m moving under the action of a force
F = F(t) constant in space. Translations in space are obvious symmetries of the problem
(if r(t) is a solution of the Newton’s equations of motion, so is r′(t) = r(t) + a), yet
the momentum p is not conserved. Clarify this apparent violation of the symmetry -
conservation law connection.

Problem III.1′

Consider a pointlike particle of mass m moving under the action of a force F constant in
space but possibly dependent on time. In Problem III.1 it has been argued that space
translations are symmetries of this system. Are (Galilean) boosts its symmetries too?
If yes, use the Noether theorem to obtain the corresponding conserved charge. Going
over to the quantum theory show that the operators of space translations and boosts
obtained from the canonical quantization do generate symmetry transformations of the
system. Exploiting the Heisenberg picture show that the observables represented by the
Hermitian generators of these symmetries are indeed constants of motion even though
their do not commute with the Hamiltonian. Compare the algebra of the symmetry
generators with the one formed by the generators of the Galileo group and explain why
additional central charges are possible in the considered case.

Problem III.2
Consider a set of scalar fields φi(x) which, when the Lorentz frame is changed, transform
according to the rule:

φ′
i(x

′) =
(

e−
i
2
ωµνJ µν

)

ij
φj(x) ,

with (J µν)ij = (−J νµ)ij being the generators of some matrix representation of the Lorentz
group. The dynamics of the fields φi(x) is set by a Lagrangian density L(φ, ∂φ) giving
rise to the conserved canonical energy momentum tensor T µν

can associated with spacetime
tranlations. Show that the Belinfante energy momentum tensor

T µν
symm = T µν

can + ∂ρH
ρµν ,

with

Hρµν =
1

2

[

∂L
∂(∂ρφi)

(−iJ µν)ij φj −
∂L

∂(∂µφi)
(−iJ ρν)ij φj −

∂L
∂(∂νφi)

(−iJ ρµ)ij φj

]

,

is symmetric. Check that the tensor

Mµνκ = xν T µκ
symm − xκ T µν

symm ,

where T µν
symm is the Belinfante energy-momentum tensor differs by a total divergence from

the tensor Mµνκ
can obtained by using the Noether prescription.
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Problem III.3
Consider the Lagrangian density of a free real scalar field

L =
1

2
∂µϕ∂

µϕ− 1

2
M2ϕ2 .

Check that for spacetime translations and Lorentz transformations, xµ′ = Λµ
νx

ν +aµ, one
has L(ϕ′(x′), ∂′ϕ′(x′)) = L(ϕ(x), ∂ϕ(x)) + ∂µXµ(ϕ) with Xµ(ϕ) = 0. Find the conserved
canonical tensors T µν

can and Mµλκ
can = xλ T µκ

can − xκ T µλ
can. Replace in the obtained classical

expressions the time derivatives ϕ̇ by the canonical momentum Π and show by using the
canonical commutation rules

[ϕ(x), Π(y)] = iδ(3)(x− y) ,

etc., that the operators

P µ =

∫

d3xT 0ν
can , Jµν =

∫

d3x
(

xµ T 0ν
can − xν T 0µ

can

)

,

(acting in the Hilbert space of the quantized field ϕ) satisfy the necessary Poincaré group
commutation rules. Go next to the Heisenberg picture and argue that the generators in the
Heisenberg picture also satisfy the same commutation rules as in the Schrödinger picture.
Using these commutation rules and the general equation for the time evolution of the
Heisenberg operators show that the Poincaré group symmetry generators in the Heisenberg
picture are time independent. Argue that these results can be straightforwardly extended
to the Lagrangian density

L =
1

2
∂µϕi∂

µϕi − V (ϕi) ,

of N real fields ϕi with the potential V (ϕ) more general than 1
2
M2

i ϕiϕi.

Problem III.4
Express the Poincaré group generators of the same free field theory as in Problem III.3
in terms of the time dependent Heisenberg (interaction) picture field operators which in
turn are expressed through the creation and annihilation operators and verify that the
generators are explicitly independent of time. Check their action on one-particle states.

Problem III.5
Using the canonical commutation rules compute in the quantum theory of a single real
field ϕ the commutators

[

J ij , ϕ(t,x)
]

,
[

J0i, ϕ(t,x)
]

,
[

J ij , ∂λϕ(t,x)
]

,
[

J0i, ∂λϕ(t,x)
]

,
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where J ij and J0i are the generators of the Lorentz transformations. Using these results
argue, that for any field φi(x) which classically satisfies the transformation rule

φ′
i(x

′) =
(

e−
i
2
ωµνJ µν

)

ij
φj(x) ,

where xµ′ = Λµ
ν(ω)x

ν − aµ and (J µν)ij are the matrix generators of the Lorentz group in
the representation appropriate for the index i of the field φi, in the quantum theory one
has

e+
i
2
ωµνJ

µν+iaµP
µ

φi(x) e
− i

2
ωµνJ

µν−iaµP
µ

= φ′
i(x) .

Check this formula for infinitesimal ωµν and aµ, i.e. check that:

i

2
ωµν [J

µν , φi(x)] = δLorentz0 φi(x) ,

iǫµ [P µ, φi(x)] = δtransl0 φi(x) ,

where δLorentz0 φi(x) and δ
transl
0 φi(x) denote the differences φ′

i(x)− φi(x) for Lorentz trans-
formations and translations, respectively.

Problem III.6
Evaluating the commutator with Jµν show that the charges obtained as integrals of con-
served Noether currents

Q =

∫

d3x j0(t,x) ,

are Lorentz scalars.

Problem III.7
Let jµa , a = 1, . . . , N be the Noether currents associated with some nonabelian group
of symmetry transformations of a Lagrangian density L (not restricted to be at most
quadratic in fields but depending only on fields and their first derivatives):

jµa =
∂L

∂(∂µφn)
(−iT a)nmφm ,

where (T a)nm, a = 1, . . . , N are matrix generators of a symmetry group in the representa-
tion appropriate for the fields φn and satisfying the commutation rule [T a, T b] = ifabcT c.
Use the canonical commutation rules to prove that

[

j0a(t,x), j
0
b (t,y)

]

= ifabcj0c (t,x) δ
(3)(x− y) ,

independently of the dynamics (the precise form of L). Integrate this equality over d3y
and take the commutator of both its sides with the Lorentz boosts generators Ki = J0i.
Using the result argue that

[

j0a(t,x), j
i
b(t,y)

]

= ifabc jic(t,x) δ
(3)(x− y) + Sik

ab(t,y) ∂
x

k δ
(3)(x− y) + . . . ,
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where the dots stand for terms with more derivatives. The additional terms (whose
presence and form does depend on the dynamics) are called Schwinger terms.
Hint: In the second part of the problem use the Jacobi identity.

Problem III.8
Consider quantum theory of fields φn defined by a Lagrangian density L(φ, ∂φ). Show
that the currents

jaµ(x) =
∂L

∂(∂µφn)
(−iT a)nmφm ,

(which would be conserved if the transformations φn → φn − i(T a)nmφm were symmetry
transformations of L) formally1 satisfy the relation

i
[

T 00
can(t,x), j

a
0 (t,y)

]

= ∂µjaµ(x) δ
(3)(x− y) + jai (x) ∂

i
(x)δ

(3)(x− y) .

Do not assume that Πn = ∂0φn = φ̇n, but adopt the general relation φ̇n = φ̇n(Π, φ).

Problem III.9
Computing the commutator with the energy-momentum operator T 00

can(t, z) of both sides
of the relation

[

j0a(t,y), j
0
b (t,x)

]

= ifabc j0c (t,x) δ
(3)(x− y) ,

constrain the form of possible Schwinger terms in the commutator [j0a(t,y), j
i
b(t,x)] of

the temporal and spatial components of two conserved symmetry currents (considered in
Problem III.7) to a single term Sik

ab(t,y)∂
x

k δ
(3)(x−y) with only one derivative of the delta

function and such that Sik
ab(t,y) = Ski

ba(t,y).
Hint: Use the Jacobi identity and integrate both sides of the obtained equality over d3y
after multiplying them by yi.

Problem III.10
Derive the Euler-Lagrange field equations of motion following from a Lagrangian density
L which depends on φi, ∂µφi and ∂ν∂µφi. Assuming that the transformations φ′

i(x) =
φi(x) + θaδaφi(x) are symmetries of the system, such that

L(φ′
i, ∂µφ

′
i, ∂ν∂µφ

′
i) = L(φi, ∂µφi, ∂ν∂µφi) + ∂λX λ(φi, ∂µφi) ,

derive the corresponding conserved Noether currents.
Consider next the Lagrangian density

L =
1

2
∂µφi∂

µφi − V (φ) + ∂µφi∂
µϕi −

1

2
M2ϕ2

i ,

1That is, ignoring possible problems which can arise from multiplying field operators taken at the
same space-time point. Whenever relations obtained with formal manipulations based on equal-time
(anti)commutators of canonical variables cannot be satisfied in actual calculations (which require intro-
ducing some regulators) of Green’s functions, we talk about anomalies.
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in which i = 1, . . . , N , invariant under the simultaneous transformations φ′
i = (e−iθaTa

)ijφj

and ϕ′
i = (exp−iθaT a)ijϕj , where T

a
ij are purely imaginary, antisymmetric N × N ma-

trices. Write down the corresponding Euler-Lagrange equations of motions satisfied by
the fields φi and ϕi and the conserved Noether currents associated with the symmetry
transformations. Eliminate then the fields ϕi (using their equations of motion) from the
Euler-Lagrange equations of the φi fields and from the Noether currents. Find the effec-
tive Lagrangian density Leff(φi, ∂µφi, ∂ν∂µφi) which reproduces the resulting equations of
motion of the fields φi alone and check, that the conserved Noether currents derived form
Leff are the same as the old Noether currents obtained after eliminating of ϕi’s.

Problem III.11
Consider continuous changes φi → φ′

i(φ, θ), in which θa are parameters, of the set of
fields φi on which depends a Lagrangian density L(φ, ∂φ). Irrespectively of whether
these changes are symmetries of the action, define the associated current jaµ(x) as the
coefficient of ∂µθa(x) of the change δL of this Lagrangian density under infinitesimal local
transformations φi → φ′

i(φ, θ(x)) ≈ φi + θa(x)F
a
i [φ] (F

a
i [φ] can be nonlinear functions of

φi). Show that the four-divergences ∂µjaµ(x) of these currents computed assuming that the
fields satisfy the Euler - Lagrange equations of motions can be obtained as the derivative

∂µjaµ =
∂L(φ′(φ, θ), ∂φ′(φ, θ))

∂θa

∣

∣

∣

∣

θ=0

,

(taken with respect to the constant in space-time parameters of the transformations) with-
out invoking the Euler - Lagrange equations of motions satisfied by the fields φi. When,
the currents jaµ constructed in this way are the Noether symmetry currents associated
with global (i.e. with constant parameters θa) symmetries of the system?

Problem III.12
Consider a theory in which the spinor field ψ transforms as

ψ′ = e−iqθψ ,

under the action of a U(1) group (as in electrodynamics of spin 1/2 particles). Using the
canonical (anti)commutation relations check formally, that is ignoring possible problems
with regularization of the composite current operator jλ(x), that the equal time com-
mutators of the time-like and spatial components of the U(1) symmetry Noether current
jµ(x) = qψ̄(x)γµψ(x) commute:

[

j0(t,x), ji(t,y)
]

= 0 ,

i.e. that the canonical reasoning would imply vanishing of the possible Schwinger term.
Then argue that this commutator cannot (nevertheless) vanish in the theory of interacting
particles, which means that the canonical reasoning must be invalidated by any regular-
ization used to properly define jλ(x) as a composite operator.
Hint: To prove that the Schwinger term must be present, take the three-divergence of the
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vacuum expectation value of the commutator, use the current conservation and replace
the time derivative of j0 by its commutator with the Hamiltonian.

Problem III.13
Construct the canonical energy-momentum tensor T µν

can of the system consisting of the
Dirac spinor field ψ interacting with the real scalar field ϕ and defined by the Lagrangian
density

L = iψ̄ 6∂ψ −mψ̄ψ +
1

2
∂µϕ∂

µϕ− 1

2
M2ϕ2 − λ

4!
ϕ4 − igϕψ̄γ5ψ .

The tensor T µν
can is not symmetric nor does it depend on ψ and ψ̄ in a symmetrical way.

Use the freedom to add to it a term ∂λH
λµν where Hµλν = −Hλµν to cure the second

defect, find a new Lagrangian density L̃ equivalent to L (i.e. leading to the same equations
of motion) for which the new energy-momentum tensor is the canonical tensor and then
apply the Belinfante prescription (Problem III.2) to obtain the tensor T µν

symm symmetric
in the indices µν.

Problem III.14
Find the canonical energy-momentum tensor T µν

can of the free electromagnetic field. Show
that it is conserved. Construct the symmetric Belinfante energy-momentum tensor T µν

symm

by adding to T µν
can an appropriate term and show that T µν

symm is also conserved. Construct
the canonical tensor Mµνλ

can and show explicitly that it differs by a total divergence from
the tensor Mµνλ constructed using the Belinfante energy-momentum tensor T µν

symm (see
Problem III.2). Finally, show that the action is invariant also with respect to the scale
transformations

xµ → x′µ = eλxµ , Aµ(x) → A′µ(x′) = e−λAµ(x) ,

and derive the associated Noether symmetry current Jµ
scale. Show that it can be replaced

by the modified current J̃µ
scale = xρT

µρ
symm such that ∂µJ̃

µ
scale = 0 follows from ∂µT

µρ
symm = 0

and gµρT
µρ
symm = 0.

Problem III.15
Construct the canonical energy-momentum tensor T µν

can of charged spin 1
2
fermions inter-

acting with the electromagnetic field described by the Lagrangian density

L = −1

4
fµνf

µν + iψ̄ 6∂ψ −mψ̄ψ − eQ ψ̄ 6Aψ .

Use the same procedure as in Problems III.13 and III.14 to convert T µν
can into a symmetric

gauge invariant tensor T µν
symm.

Problem III.16
Perform the canonical quantization of the free complex scalar field φ with the classical
Lagrangian density.

L = ∂µφ
∗∂µφ−M2φ∗φ−Hint(φ

∗φ) .
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To this end, decompose φ into two real fields ϕ and χ so that φ = 1√
2
(ϕ + iχ) and

quantize them separately. Using the Noether theorem find the symmetry current jµ(x)
and the charge Q =

∫

d3x j0(x, t) corresponding to the symmetry φ → e−iqθφ of the
original Lagrangian. Check that the current is conserved. Construct the corresponding
quantum operator Q̂ acting in the Hilbert space and show that it is time independent
and commutes with the Hamiltonian. Construct the creation and annihilation operators
corresponding to one-particle states which are common eigenstates ofH0 and Q̂. Form the
free field operators φ and φ† such that [Q̂ , φ] = −q φ and [Q̂ , φ†] = +q φ†. Finally, using
the canonical equal time commutators find the regularization independent contribution
to the Schwinger term in the commutator [j0(t,x), ji(t,y)].

Problem III.17
Consider a theory of three real scalar fields ϕa, a = 1, 2, 3 with the Lagrangian density

L =
1

2

3
∑

a=1

(

∂µϕa∂
µϕa −M2ϕaϕa

)

−Hint

(

ϕ
2
)

,

in which ϕ
2 ≡ ϕ2

1 + ϕ2
2 + ϕ2

3. Show that the Lagrangian is invariant under the transfor-
mations2

ϕa → ϕ′
a = ϕa − iθb(iǫabc)ϕc .

and find the corresponding conserved Noether currents jaµ(x). Show that classically
∂µjaµ(x) = 0. Perform the canonical quantization and check that by virtue of the equal

time canonical commutation rules, the Noether charge operators Q̂a ≡
∫

d3x ja0 (x) com-
mute with the Hamiltonians H (and also with its free part H0) and satisfy the commuta-
tion rule [Q̂a, Q̂b] = iǫabcQ̂c appropriate for the algebra of the SU(2) (or SO(3)) group.
Next express the Noether charges Q̂a ≡

∫

d3x ja0 (x) through the creation and annihilation
operators diagonalizing H0 and find the free one-particle states which are eigenstates of
H0, Q̂

2 ≡ (Q̂1)2 + (Q̂2)2 + (Q̂3)2 and Q̂3. These states can be identified with the triplet
of pions (the π±, π0 mesons). Construct also the free two-particle eigenstates of H0, Q̂

2

and Q̂3.
Hint: To construct the two particle states the well known Clebsch-Gordan coefficients
can be used.

Problem III.18
Combine two Dirac fermion fields ψp (proton) and ψn (neutron) into a column (the nucleon
field)

ψN ≡
(

ψp

ψn

)

,

2The field components ϕa are labeled by the same type of letters as are the transformation parameters
θa because ϕa transform as the adjoint representation of the symmetry group.
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and let it transform as a doublet under the internal isospin SU(2)V group3

(ψ′
N )i = U †(θ)(ψN )i U(θ) =

(

e
−iθaTa

(I=1
2 )

)

ij
(ψN )j ,

where U(θ) are the Hilbert space SU(2)V symmetry operators and T a
(I= 1

2
)
= 1

2
τa are

the ordinary three matrix generators of SU(2) in the two-dimensional (isospin I = 1
2
)

representation. Knowing that the three meson fields πa (a = 1, 2, 3) transform as an
isospin triplet (see Problem III.17)

π′
b(x) = U †(θ)πb(x)U(θ) =

(

e−iθaTa
(I=1)

)

bc
πc(x) ,

where
(

T a
(I=1)

)

bc
= iǫbac are the three SU(2)V matrix generators in the three-dimensional

(isospin I = 1) representation, write down the simplest renormalizable (i.e. having as the
operator dimension not higher than 4) isospin and parity conserving interaction, i.e. the
interaction satisfying

U †(θ)Hint(x)U(θ) = Hint(x) ,

P†Hint(t,x)P = Hint(t,−x) ,

coupling the proton-neutron doublet to the triplet of pions. Remember that the intrinsic
parity of pions is negative. Construct the Noether current operators jaµ(x) of the isospin
symmetry and using the canonical (anti)commutation relations show that the isospin
symmetry generators Q̂a satisfy the commutation rules of the SU(2) algebra. Express
these generators as bilinear combinations of the proton, neutron and pion creation and
annihilation operators (diagonalizing H0).

Problem III.19 (Linear σ model)
Extend the SU(2)V isospin symmetry realized on the nucleon spinor field ψN (Problem
III.18) to the chiral SU(2)L × SU(2)R symmetry whose SU(2)L and SU(2)R factors act
respectively only on the left- and right-chiral parts of the nucleon field. Introduce a real
scalar isospin singlet field σ (of positive parity) completing the triplet of the πa (a = 1, 2, 3)
fields to a quadruplet (vector) of the SO(4) ≃ SU(2)L × SU(2)R group and couple this
quadruplet to the nucleon field in an SU(2)L × SU(2)R invariant way. Observe that the
constructed Lagrangian density has an additional internal symmetry. Give its physical
interpretation. Find the Noether symmetry currents of all symmetries and check the
algebra of charges. Add to the constructed Lagrangian density Lsymm a term ∆L = c σ
and find, using the equations of motion, the four-divergences of the symmetry currents.

Problem III.20 (Supersymmetry transformations)

3The subscript V on SU(2) reminds that it is a vector-like symmetry: left- and right-chiral parts of
the nucleon field ψN are transformed in the same way.
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Check that the transformations of the two-component Weyl anticommuting spinor field ψ
and its conjugate ψ̄ and of the scalar field A (and its complex conjugate)

δA =
√
2 ξψ ,

δA⋆ =
√
2 ξ̄ψ̄ ,

δψ = −i
√
2σµξ̄∂µA−

√
2m∗ξA∗ ,

δψ̄ = −i
√
2 σ̄µξ∂µA

⋆ −
√
2mξ̄A ,

in which ξ and ξ̄ are Grassmanian i.e. (anticommuting) spinorial transformation param-
eters, are the symmetry transformations of the Lagrangian density

L =
i

2
ψσµ∂µψ̄ +

i

2
ψ̄σ̄µ∂µψ + ∂µA

⋆∂µA− 1

2
mψψ − 1

2
m∗ψ̄ψ̄ − |m|2A∗A .

Find the corresponding conserved Noether current (taking into account that δL = ∂µX µ).
This current should have spinorial character, i.e. from the Noether theorem one should
get ξαjµα + ξ̄α̇j̄

µα̇, where jµα is just the Noether current (and j̄µα̇ its conjugate). Using the
field equations of motion check that the current jµα is conserved. Finally, check that in the
quantized version of the theory the transformations of the field operators are obtained by
taking their commutators with iξ̄Q̄ + iξQ where Q̄ and Q are spatial integrals of j̄0 and
j0, respectively.

Problem III.21 (Supersymmetry transformations cont’d)
Extend the Problem III.20 to the interacting theory with the Lagrangian density

L =
i

2
ψσµ∂µψ̄ +

i

2
ψ̄σ̄µ∂µψ + ∂µA

⋆∂µA− 1

2
mψψ − 1

2
m∗ψ̄ψ̄

−gAψψ − g∗A∗ψ̄ψ̄ −
∣

∣mA + gA2
∣

∣

2
.

Check that the symmetry transformations are in this case given by

δA =
√
2 ξψ ,

δA⋆ =
√
2 ξ̄ψ̄ ,

δψ = −i
√
2σµξ̄∂µA−

√
2m∗ξA∗ −

√
2 g∗ ξA∗A∗ ,

δψ̄ = −i
√
2 σ̄µξ∂µA

⋆ −
√
2mξ̄A−

√
2 g ξ̄AA ,

and construct the corresponding conserved spinorial Noether current (taking into account
that δL = ∂µX µ). Check its conservation directly.

Problem III.22
Consider the Lagrangian density of the form

L =
f 2

4
tr
(

∂µΣ(x) ∂
µΣ†(x)

)

,
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in which Σ is a unitary 2×2 matrix: Σ−1 = Σ†, detΣ = 1 and f is a constant of dimension
of mass. L describes low energy interactions of π mesons (in the limit Mπ = 0). It is
clearly invariant under the global SU(N)L × SU(N)R transformations

Σ(x) → Σ′(x) = V (θL)Σ(x)V
†(θR) ,

generated by two independent unitary 2×2 matrices V (θL) and V (θR) of the fundamental
representation of the SU(2) group: V (θ) = exp(−iθaT a) (here T a = 1

2
τa and τa, a =

1, 2, 3 are three Pauli matrices). Parametrizing Σ(x) with three pion fields πa(x) and the
constant f ,

Σ(x) = exp

(

− i

f
πa(x)τa

)

,

find explicitly, up to terms quadratic in fields πa, the conserved Noether currents (jR)
a
µ

and (jL)
a
µ associated with the SU(2)L × SU(2)R symmetry of the Lagrangian.

Using the method of Problem III.11 derive also general formulae for the SU(N)L ×
SU(N)R currents in terms of Σ, without resorting to any explicit parametrization of Σ.
Check that for N = 2 and the exponential parametrization of Σ the result is as previously.

Problem III.23
Find the classical equations of motion of the matrix field Σ following from the Lagrangian
density

L =
f 2

4
tr
{

∂µΣ(x)∂
µΣ†(x) + Σ(x)χ†(x) + χ(x)Σ†(x)

}

,

in which Σ and χ are unitary N ×N matrices. χ(x) plays the role of an external field.

Problem III.24
Show that if in a relativistic quantum theory model there exists a Lorentz-covariant (four-
vector) current operator jµ, then in the spectrum there cannot be massless particles of
spin s > 1

2
carrying a nonzero quantum number of the charge operator Q̂ =

∫

d3x j0(t,x).
Similarly, show that if there exists a Lorentz-covariant energy-momentum tensor oper-
ator T µν such that the energy-momentum four-vector P̂ µ =

∫

d3x T 0µ(t,x), then in the
spectrum there cannot be massless particles of spin s > 1.4

4S. Weinberg, E. Witten Phys. Lett. B96 (1980), 59.
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