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‘We review properties of Bessel potentials, that is, inverse Fourier transforms of (regularizations

of) (m2+p2)_% on a pseudo-Euclidean space with signature (g, d —¢q). We are mostly interested
in the Lorentzian signature (1,d — 1), and the case u = 2, related to the Klein—Gordon equation
(—o+m?2) f =0. We analyze properties of various “propagators”, which play an important role
in quantum field theory, such as the retarded/advanced propagators or Feynman/anti-Feynman
propagators. We consistently use hypergeometric functions instead of Bessel functions, which
makes most formulae much more transparent. We pay attention to distributional properties of
various Bessel potentials. We include in our analysis the “tachyonic case”, corresponding to the
“wrong” sign in the Klein—Gordon equation.
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1. Introduction

Let us start with the Bessel potentials on the Euclidean space R?. Let Reu > 0
and m > 0. If m =0 we will usually additionally assume that d > Re u. Consider

the function ,
elpx dp
Gumx)= 1.1
o () /(m2+p2)g (2m)4 (b

on the Euclidean space R?. Note that G, (x —y) can be interpreted as the integral
2 _K
kernel of the operator (m*— A)~2.
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We have
Gum(x) = m* G, (mx), (1.2)

so the case m > 0 reduces to m = 1. G, 1(x) can be expressed in terms of the
Macdonald function, one of solutions of the modified Bessel equation. Therefore,
G,,1(x) is often called the Bessel potential of order u. The function G, o(x) is
called the Riesz potential of order u.

It is remarkable that the theory of Bessel potentials is very similar for all
u > 0. However, the case y =2 is probably the most important. In this case we
will usually omit ¢ from the notation, setting G,,(x) := G,,,,(x), and obtaining the
Green function of the inhomogeneous Helmholtz equation

(A +m?)g(x) = £(x). (1.3)
In other words,
(=A +m*)Gp(x) = 6(x). (1.4)
Note that in dimension d =3 we have
e_ml-xl
G = .
m(X) 47|x|

Thus for m > 0 it coincides with the Yukawa potential and for m = 0 with the
Coulomb potential.

Suppose now R%9~9 is the pseudo-Euclidean space of signature (q,d — q). In
other words, as a set it is RY with the scalar product for x,y € R%? given by

XY =—X1Y1" = XgYq +Xq+1Ygl + 0+ XaYa- (1.5)

The definition (1.1) is usually no longer correct for m? € R, since ﬁ may
(m*+p?)2

fail to be locally integrable, and hence may not define a tempered distribution. It

still works for complex nonreal m?. A possible pair of generalizations of (1.1) to

m? real is the pair of functions, which correspond to the limits from above and

below:
eirx d
Gh ,(x) = / o (1.6)
(m2+ p2-i0)2 (27)
_ eipx dp
e u):/' . (1.7)
. (m?+ p? + iO)% (2m)4

Formulae (1.6) and (1.7) have an obvious interpretation as boundary values of
integral kernels of appropriate functions of the pseudoLaplacian

O:=—-07--—08,+0,, +0]. (1.8)
Again, the case m > 0 reduces to m = 1. Gf/ fn(x) can be expressed by Macdonald

and Hankel functions. (The Hankel functions are special functions solving the
standard Bessel equation.)
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The symbols F and F are motivated by the special case of Green functions in the

Lorentzian case. Gg/;(x) coincide then with the Feynman, resp. the anti-Feynman
propagators, which i)lay an important role in quantum field theory, as we explain
below.

In our paper we will discuss all signatures, including the Euclidean (0,d) and
anti-Euclidean (d,0). However, we are mostly interested in the Lorentzian signature.
The Lorentzian signature comes in two varieties: “mostly pluses” (1,d — 1) and
“mostly minuses” (d —1,1). We will treat the former as the standard one.

The Lorentzian case is especially interesting and rich. This is related to the fact
that the Minkowski space R'““~! can be equipped with a causal structure and the

set p>+m? =0 has two connected components. Therefore, besides G,lj/ fn, we can
introduce the distributions

oir d
G,V,,m(x)=/ erart (1.9)
(m2 + p2? —i0sgn p%)2 (27)
elrx d
Gf,,m(x)=/ m zpd, (1.10)
(m2 + p2 +i0sgn p©)z (27)

which are invariant wrt orthochronous Lorentz transformations. Remarkably, le,/ ”

is supported in the forward, resp. backward cone. Therefore, G;’l’m is called the
forward (or retarded), and Gﬁ,m the backward (or advanced) Bessel potential.

In the Lorentzian case, the pseudo-Laplacian is usually called the d’Alembertian
O=-03+0} +---+35_,, (1.11)

and —0O+ m? is called the Klein—-Gordon operator. By a Green function of the
(inhomogeneous) Klein—Gordon equation

(—O+m?) f(x) = g(x). (1.12)
we will mean a distribution G*(x) satisfying
(-O0+m?)G*(x) = 6(x). (1.13)

The Klein—Gordon equation possesses many Green functions. Among them, we
have the Feynman and anti-Feynman Green functions given by the formulae (1.6)
and (1.7) with u = 2. Another distinguished pair consists of the retarded (or forward)
Green function and the advanced (or backward) Green function, defined by demanding
that their support is contained in the forward, resp. backward cone. For m? > 0
the retarded Green function is given by (1.9) and the advanced Green function by
(1.10) with g =2.

The Feynman, anti-Feynman, forward, and backward Green functions of the
Klein—Gordon equation have important applications in physics, especially in classical
and quantum field theory. The forward and backward Green functions can be used
to express the Cauchy problem. The Feynman, resp. anti-Feynman Green functions
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express the time-ordered, resp. anti-time-ordered vacuum expectation values of fields
in quantum field theory. Importantly, they satisfy the identity

GE +GE =G +Gh. (1.14)

In our paper, we also consider the Lorentzian case with the “wrong sign of m?”.
This case corresponds to the tachyonic Klein—-Gordon equation

(—0-m?) f(x) = g(x). (1.15)

Remarkably, all four basic Green functions, Feynman an, anti-Feynman an, forward
G,,, and backward G/, can be defined in the tachyonic case. For the Feynman and
anti-Feynman Green functions we can still use the formulae (1.6) and (1.7), where
m? is replaced with —m?. Their interpretation in terms of the vacuum expectation
values is however lost, since the tachyonic theory has no vacuum state. (In particular,
in the tachyonic case we do not have a counterpart of the positive/negative frequency
Green functions (5.40)). The forward and backward Green functions are defined by
their support properties. For them we cannot use the formulae (1.9) and (1.10). In
fact, the set p>—m? =0 is now connected, and cutting it with sgn p® is no longer
invariant. Nevertheless, one can use the analytic continuation in m to uniquely define
Green functions with correct support properties also in the tachyonic case. We point
out that the identity (1.14) is no longer true in the tachyonic case.

The difference of two Green functions is a solution of the homogeneous
Helmholtz/Klein—-Gordon equation. Certain distinguished solutions are important for
physics applications. In the Lorentzian case, we have the Pauli—Jordan propagator; for
m? > 0 also the positive frequency and the negative frequency two-point functions.
We illustrate applications of distinguished solutions to the Helmholtz/Klein—Gordon
equation by computing averages of plane waves over the sphere (in the Euclidean
case), as well as over the hyperbolic and de Sitter space (in the Lorentzian case).

Let us say a few words about the history of Bessel potentials. The name Bessel
potentials was introduced in the 60s by Aronszajn and Smith, who studied them in
the Euclidean case in [1]. Around the same time, they were also investigated by
Calderon [2]. Bessel potentials are frequently viewed in the literature as smoothed
versions of Riesz potentials (see, for example, [3] where they are defined using the
integral formula (2.5)). They are often used to define Bessel potential spaces that
generalize standard Sobolev spaces (see [4]), and the idea to use Bessel kernels is due
to Deny [5]. For a comprehensive treatment of (Euclidean) Bessel potentials, we refer
the reader to [1], where many properties of Bessel potentials are exhaustively studied.

The Lorentzian versions of Bessel potentials, typically in dimension 143, often
appear in the literature on quantum field theory. They are ingredients of formulae
for scattering amplitudes based on Feynman diagrams and on the Epstein—Glaser
approach [6, 7]. The famous textbooks by Bjorken—Drell [8] and by Bogoliubov—
Shirkov [9] contain appendices devoted to distinguished Green functions and solutions
of the Klein—-Gordon equation in the physical dimension 1+3. They carry various
names. For instance, often the term Green function is replaced by propagator, etc.
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Formulae for Bessel potentials in various signatures are known and are available
in collections of integrals [10, 11]. In Chapter III.2 of [12] one can find Fourier
transforms of powers of quadratic forms with any signature, including the formula
(4.5) of the general case studied in this paper. Although there exists a large
literature about Bessel potentials, our presentation contains several new points, which
we have not seen in the literature and believe are important.

The first new point involves the special functions that we use. Various kinds of
the Bessel equation can be reduced to equation

(202 + (@ +1)0, — 1)o(z) = 0, (1.16)

which can be called the oF| hypergeometric equation. Eq. (1.16) has two singular
points: 0 and oco. The singularity at O is regular (Fuchsian), and the solution obtained
by the well-known Frobenius method is the oF; hypergeometric function, which we
denote F,. We usually prefer its Olver normalized version F, := closely
related to the Bessel function, both standard and modified.

Another standard solution of the ¢F; equation, corresponding to the irregular
singularity at oo, is the function that we denote U,, This function is perhaps less
known. Up to a coefficient, it coincides with the Meijer G-function Gé:g(—;O, -a; 7).
The function U, is closely related to the Macdonald and Hankel functions.

In our paper, we treat F, and U, functions as basic elements of our description
of Bessel potentials. In our opinion, they are much more convenient for this purpose,
rather than functions from the Bessel family, as it is done in the conventional treatment
of this topic. The corresponding formulae are simpler and more transparent. This is
especially visible when we consider non-Euclidean signatures, where the formulae
involve analytic continuation across two branches and an irregular distribution at
the junction of these branches. The F, and U, functions are also convenient to
see the transition from the Minkowski space to the de Sitter and the universal
cover of the Anti-de Sitter space, as discussed in [13]. In fact, on the Minkowski
space retarded/advanced and Feynman/anti-Feynman Bessel potentials are expressed
in terms of F, and U,, and on the de Sitter and Anti-de Sitter space we need
closely related Gegenbauer functions instead.

We also believe that there are some important novel features in our presentation
of the Lorentzian case, which is tailored to the needs of quantum field theory. In
our opinion, it is quite remarkable how rich the theory of Bessel potentials is in
the Lorentzian signature. We have four distinct Lorentz invariant Green functions
of the Klein—Gordon equation, with important applications in physics. If we also
include a few useful distinguished solutions to the Klein—Gordon equation (such
as the Pauli-Jordan propagator, positive and negative frequency solution), then we
obtain a whole menagerie of functions.

In our discussion, we cover not only the massive and massless case, but also
the tachyonic case. This case is quite curious, even though usually ignored in the
physics literature. We also discuss identity (1.14), true for m* > 0, but wrong in
the tachyonic case. Remarkably, this identity sometimes, but not always, generalizes
to curved spacetimes, as analyzed recently in [13].

_Fa
T'(a+l)’
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In our treatment, we pay special attention to the distributional character of Bessel
potentials. This is unproblematic in the Euclidean signature, where Bessel potentials
are given by (locally) integrable functions. This is not the case in non-Euclidean
signatures. In particular, it is interesting to look at the functions F, and U, as
defining distributions on the real line. With this interpretation in mind, well-known
identities have to be reformulated, see e.g. (2.47).

Finally, let us mention that there exists a large literature about Green functions of
the Klein—Gordon equation on curved spacetimes. In the generic context their explicit
expression is not possible, and often instead of exact Green functions one restricts
oneself to parametrices, that is inverses modulo smoothing terms. The existence of

exactly four parametrices that generalize GF/F and GY/ is the result of a famous
paper by Duistermaat and Hormander [14]. It is also remarkable that expansions
similar to (5.34)—(5.37) describe singular parts of these parametrices also in curved
spacetimes, where they can be derived from the Hadamard recursion relations (see
Chapter 4 of [15] or Chapter 2 of [16].) The universality of these singular parts
is an important idea in quantum field theory on curved spacetimes [7].

2. Special functions related to the (F| equation
2.1. The (F; equation

Our presentation of Bessel potentials will use extensively oF; hypergeometric
functions, closely related to functions from the Bessel family. Surprisingly, they
are seldom used and discussed in the literature. Therefore, we devote this section
to a concise exposition of their properties, mostly following [17] and [18]. In
particular, we will treat these functions as distributions on the real line, as explained
in Section 2.5, which leads to useful distributional identities which we have not
seen in the literature.

Let ¢ € C. The oF| equation is

(202 + cd, — Dv(z) = 0. 2.1)

If ¢c#0,-1,-2,..., then the only solution of the (F; equation equal to 1 at z =0
is called the oF|, hypergeometric ﬁmction:

where (c); denotes the Pochhammer symbol:

(a)o =1,
(a)y:=a(a+1)...(a+n-1), n=1,2,...
(a), = ! n=...,-2,-1.

(a-n)...(a-1)
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F(c;z) is defined for ¢ # 0,—1,—-2,.... Sometimes it is more convenient to consider
the function
F(c;z) < 1 7
F(c;z2) = Z <
[le)  HT(e+)) ]!

defined for all c¢. For all parameters, we have an integral representation called the
Schldfli formula

— / eleit dt= F(c,z), Rez > 0,
2mi

]=00,0%, —0o[
where the contour ]—oo, 0%, —oco[ starts at —oco, goes around O counterclockwise and
returns to —oo.

Instead of ¢ it is often more natural to use a :=c¢ — 1. Thus, we denote

Fo(z) :=F(a+1;z), Fu(z) =F(a+1;2). (2.2)
The following function is also a solution of the oF; Eq. (1.16),

N o 19 2 IOV I
Ua(z):= e7Veg 2Fy 2+a/,2 a;—; )
where we used the ,F; function, see e.g. [17, 18]. U, is a multivalued function.
When talking about multivalued functions, we will usually consider their principal
branches on the domain C\ ]|—o0,0].

The function U, rarely appears in the literature, except as a special case of
Meijer’s function, see (2.32) below. Typically, it is represented through Macdonald
or Hankel functions, which we describe further in Egs. (2.35), (2.37), and (2.36).
In our opinion, however, the function U, is often more convenient than Macdonald
or Hankel functions.

U,(z) has a symmetry

UU{(Z) = Z_QU—(X(Z)- (2.3)

Alternatively, the function U, can be defined by the integral representations valid
for all «,

1 /oo -t -1 —a-1
— e et N dt = Uy(z), Rez > 0. 2.4)
Vr Jo

For further reference, it is convenient to rewrite (2.4) as follows: For Re (m) > 0,
we have

o0 2 2,2
/ e S gy = «/Em“ua(m: ) 2.5)
0

For Re (m) = 0 (2.5) is still true in the sense of oscillatory integrals. By substituting

] | T . . . . .. . .
X2 e*2x?, m? = e*2m?, into (2.5) we obtain a pair of identities valid in terms
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of oscillatory integrals for m > 0,

b . _x2 T . 252
/ e$11m2+ﬁt—af—ldt — elz\/EmQ(YUa(eilﬂ%)‘ (26)
0
As |z] —» o0 and |argz| <27 —€, € > 0, we have
1 a_ 1
Uy(z) ~exp(—2z2)z7 274, 2.7

U, is the unique solution of (1.16) with this property. (Note that the validity of
(2.7) extends beyond |argz| < m, that is, beyond the principal sheet of the Riemann
surface.)

We can express U, in terms of the solutions of with a simple behaviour at zero

VT VT

Us(2) = — -
(@) sin 7 (—a) sin ra

Fo(z) +

2 F_a(2). (2.8)

Alternatively, we can use the U, function and its analytic continuation around O in
the clockwise or anti-clockwise direction as the basis of solutions

o, o , :
Fa 7) = e+l7raUa z _eilﬂ(an eilZﬂZ . 2.9
(2) 5 \/71( (2) ( ) (2.9)
Here is a version of (2.9) adapted to some applications:
i . ) . )
Fa —7)= — elﬂ'(an elﬂ'z _ e—lﬂ'(an e—lﬂ'z , 210
(-2) 3 \/77( (e'"2) ( ) (2.10)

TUF_ o (—2) = ﬁ (Ua(e™2) = Un(e™72)) @.11)

We have the recurrence relations

0:F4(2) = For1(2), (2.12)
(20; + @) Fo(2) = Fo1(2); (2.13)
0.Uq(2) = =Uqqt1(2), (2.14)
(20; + @) Ua(2) = ~Uq-1(2). (2.15)

a =m € Z is the degenerate case of the ¢F; equation at 0. We have then
1
Fn(z) = Z —7".
rema O —m) n!(m+n)!
This easily implies the identity
Fn(2)= 7"F_u(2). (2.16)
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In the degenerate case U,(z) needs to be reexpressed using the de 1’Hospital formula

—1)m (G (=D k- 1)! o In(z) —y(G+m+1) -y +1)
U o) = D (Z( D!, § @ UG e Dy D) )
\r e (m—=k)! = Jlim+ )
2.17)
In the degenerate case, the integral representation simplifies yielding the so-called
Bessel integral representation. Besides, we have a generating function

1 z
— [ et dt= Fu(2) = 27"F_p(2),
2mi

[0+]

elet = Z t"F,.(2).
mez

Above, [0*] denotes the contour encircling O in the counterclockwise direction.
In the half-integer case, we can express the oF| function in terms of elementary
functions. Indeed,

F_%(z) = cosh2+/z, U_%(z) = exp(-2vz), (2.18)
_ sinh24/z _exp(=2+2)
F%(Z)_—Z\/Z , U%(Z)_—\/E : (2.19)

and by the recurrence relations, we have for k € N

el [ cosh(2v7)
F,@)=z 20, (T , (2.20)
k[ sinh(2v7)
Fi,,(2) =0, (—2\/2 . (2.21)
_ k ks d o (€XP(=2+/2)
U_%_k(z) =(-1)"z *282(7 , (2.22)
exp(=2+v2)
Upale) = (1ol (D), 223
2.2. Relationship to confluent functions
Recall that the confluent equation is
(wdy + (c = w)dy — ¢) f(w) = 0. (2.24)
Its standard solutions are
Kummer’s confluent function Fj(a;c;w) := Z (@) ",
- (c)pn!

and Tricomi’s confluent function U(a;c;w) =z “Fo(a,1+a—c;—;—-w™ ).



28 J. DEREZINSKI and B. SIKORSKI

The oF; equation can be reduced to a special class of the confluent equation
by the so-called Kummer’s 2nd transformation

202+ (a+1)d, - 1 (2.25)
4 1

= —e—w/z(wa,f, +Qa+1-w)dy—a- E)ew/z, (2.26)
w

where w = +44/z, z = %wz. F, and U, can be expressed in terms of Kummer’s
and Tricomi’s confluent function as follows:

- 1
Fo(z) = €™V Fy (a *5 2+ 1, i4«/2), (2.27)
e 2V 1
Ua(2) = Srari U(a+ 5,2a/+ 1,4«/2). (2.28)

2.3. Relationship to Meijer G-functions

Solutions of hypergeometric equations ,F, can be expressed in terms of Meijer
G-functions [19]. In particular, the ¢F; equation can be solved by two distinguished

functions
1 [(—s)e'™s
G0 —z|:= —/ —7%ds, 2.29
0,2(0 o Z) 2ri )y, Tla+1+s)° @ (2.29)
G20 _ 1 r s
0.2 7| = =— (=)' (—a — 5)Z*ds. (2.30)
0, —a 27 Ji,

Here, the contour L; goes from +oco to +co and encircles Ny, and the contour
L, also goes from +oco to +oo and encircles Ny U (Ny — @), both counterclockwise.
Computing the residues and using the connection formula (2.8) we obtain

Fo(2) = Gg;g( -~ z), (2.31)

0,—-a

1
Yale) = ﬁGézg (O -

2.4. Relationship to Bessel functions

Z). (2.32)

In the literature, the (F); equation is seldom used. Much more frequent is the
modified Bessel equation, which is equivalent to the oF; equation. It is given by

the operator
1 a?

z%(z(922+(a+1)6z— l)z‘%: O+ —8,—1- =,
, ” ”
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Even more frequent is the (standard) Bessel equation given by
2

a a 1
~22 (202 + (@ +1)0, = 1)272 = 9 + =0, + 1 - a—z,
u u
where z = —”2—2, u = £2i4/z. Clearly, we can pass from the modified Bessel to the

Bessel equation by w = *iu.
The function F, is also seldom used. Instead, one uses the modified Bessel
function and, even more frequently, the Bessel function:

w\ w?
Lo(w) = (5) FQ(T), (2.33)
Jo(w) = (%)QFQ(_UJZQ)- (2.34)

They solve the modified Bessel, resp. the Bessel equation.
Instead of the U, function one uses the Macdonald function, solving the modified
Bessel equation

v (w\*  (w?
Ko(w)y= —|=| U|—|, 2.35
(w) > |2 ) (2.35)
and the Hankel functions of the 1st and 2nd kind, solving the Bessel equation:
. i [ 2
() " —i(e”Tw —inW
H =H = — U, —1, 2.36
) =50 = Z(F) vafer) (236)
. in @ 2
2 _ i (7w e W
HY (w) = H;(w) = ﬁ( > ) U(,(e T)' (2.37)
Here are the relations between various functions from the Bessel family:
2 _x
H(z) = Ze™2 VK, (Fiz), (2.38)
Vg
HZ,(2) = "™ H}(2), (2.39)
1
Ja(2) = 5 (Hy(2) + H,(2)) (2.40)
1 . .
I,(z) = ;(TLiKa(e“”z) +ie'™K,(z)). (2.41)

2.5. F, and U, functions as distributions

The function U,(z) (and many others that we consider in this paper) are
multivalued analytic functions defined on the Riemann surface of the logarithm. It
has its principal branch on C\ ]—o0,0]. For its analytic continuation around 0 we
will often use the self-explanatory notation U, (e'?z), where z € C\ ]—o0,0] and
¢ eR.
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We will often consider U,(w) on the real line. For w > 0 this is unambiguous.
For w < 0 one needs to add +i0 indicating whether we are infinitesimally above
or below the real line. At w =0 this function has a singularity, which may require
a more careful treatment in terms of distributions (see Appendix A.2 for notation
about some common distributions).

Thus we introduce the distribution on the real line

Uy(w xi0) := lim U, (w % ie), (2.42)
e\,0
where the right-hand side should be understood as the limit in the distributional sense.

Note that for w # 0 these distributions are regular (in the sense of Appendix A.2)
and given by analytic functions:

Uy(w=i0) =Uy(w), w>0; (2.43)
Uy (w £i0) = Uy (e (-w)), w<O. (2.44)

At w =0 these distributions are irregular if Rea@ > 1. We can then write U, (w +i0)
as the sum of an irregular and regular part as follows:

Un(w +i0) = USi“g(w +40) + U (w), (2.45)
|Re a]-1
U (0 = 0) = Z - I)JF(“ V@ =) ), gyi-a, (2.46)

This easily follows from (2.8) and (2.17).
Recall that for @ ¢ N the symbol w-“ defined in (A.9) denotes the standard
regularization of |w|~*6(-w). The identity (2.11) for w € R\ {0} can be rewritten as

—a 1 . .
w_F_,(w) : N (Ug(w +1i0) — Uy (w — i0)) . (2.47)
(Note that both sides of (2.47) are zero for w > 0.) It is easy to see that for
a ¢ N (2.47) is a correct distributional identity, where the lLh.s. is the product
of the distribution w-® and of the smooth function F_,(w), whereas the rh.s. is
a linear combination of distributions defined in (2.42). (2.47) can be decomposed
into a singular and regular part as follows,

WoF . () = LR% 1 —a+]( 1)] . i w:a+j(_1)j
A F(-a+j+ D)l &d T(=a+j+Dj!

The rh.s. of (2.47) is well defined also for @ € N. We will define for such a the
symbol on the Lh.s. of (2.47) by the r.h.s. Using (A.14) for « € N we can thus write

(2.48)

W) = (- 1)““2( ”““j W) ) @), (249)

(Compare with (2.16), where you do not see the distributions supported at zero).
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Of course, in the context described in this subsection, the distribution U, (w +i0)
defined as in (2.42) can be also expressed in terms of K, and H, where we
would have to treat vw, resp. vV—w with w € R as their arguments. It is then
important to indicate precisely how the analytic continuation of the square root is
performed—whether we bypass the branch point at zero from above or from below,
adding +i0 to the variable:

Ko (Vw), w >0,

K, (VYw F1i0) := ) 2.50
(Vw=1i0) Ko (iN) = S5 B (), w0
2
Hi i . - i ?t?r(lKa/ , O’
HE m— 0) = (xivw) Fi—e (Vw), w> 2.505)

H:i(ﬁ), w < 0.

We believe, however, that it is more convenient in such situations to use the function
U,. Indeed, we have

a+l

Ua(iio) - (wTLiO)_%Ka(VwTLiO), 2s1)

4 a
+2%Vr(w Fi0)” 2 H; (V-w £ i0).

3. Euclidean and anti-Euclidean signature

This section is devoted to Bessel potentials on the Euclidean space R<. |x| := Vx2
will denote the Euclidean norm of x € R¢.

In this section, we will provide various expressions both in terms of the Bessel
family functions I,,J,, Ko, H;, as well as in terms of the hypergeometric functions
F,,U,.

3.1. General exponents—Euclidean case

Consider first the Euclidean signature. For m > 0 and Reu > 0 the function

—1L_ defines a tempered distribution, hence one can compute its Fourier transform.
(p+m?) 2

THEOREM 1. Let m > 0.

B e'rx dp
Gl‘,m(x) _/ (p2 +m2)% (27T)d (31)
p—-d
2 2
2

(3.3)

\/Emd—,u (m2x2)
= —Udy :
r5)@m2 2

B 4
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Proof: By (A.1),

: / o (3.4)
(2m)d (m? +p2)% '
1 . u 2, 2\
= — ds [ dpszle (M +P7)soipx (3.5)
(27)T (%) /o /
1 o w_d 2 xt
=— dssZ 27 e™" T4 (3.6)
(4n)2T(5) Jo
Then we use (2.5). |

Note that the integrand of (3.1) is integrable for Re u > d. Therefore, G, ,, is
bounded for such u. For instance,

1 / dp md=HT(459)
(

G,m(0)= =
w0 =@t | e (4m*r(4)

, Rep>d. (3.7)

3.2. General exponents—massless case

For 0 < Re u < d the following function is in L' (R?) and is bounded at infinity,

loc

hence it defines a regular distribution in S’(R9),

e'P* dp
Guox) = 7 (20 (3.8)
TS (x|
S d(7) . (3.9)
I(5)(4n)z

It is called the Riesz potential, and it is the massless limit of Bessel potentials.

THEOREM 2. Let 0 < Reyu < d. Then
Guo(x) = lim0 Gum(x) (3.10)

in the sense of S’(R%).

Proof: One can prove this fact in the position space, see Subsection 4.2, where
we give a proof in the case of a general signature. Instead, in this section we
describe a proof based on the momentum space.

For 0 < u < d, |p|™ 1is a regular distribution. By using the Dominated
Convergence Theorem we see that the pointwise limit

lirrb(p2+m2)’% = |p|™ (3.11)
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is a limit in the sense of S’(R?). The Fourier transformation is a continuous
operator on S’(R9). Therefore, for considered u, (3.10) is true. m]

3.3. General exponent—anti-Euclidean case

Suppose now the scalar product is negative definite. For m? > 0, the function
———— does not define uniquely a distribution, therefore one cannot compute
(-p%+m?) 2

its Fourier transform. However, if m? € C\ [0, oo, then 1

o 1s a tempered
(-pr+m?) 2
distribution, and one can take its limit from above or below in the distributional

sense,

1 1
7 = lim T (3.12)
(-p2+m?2£i0)2 N0 (—p2+m?+ie)?

Thus we obtain two kinds of Bessel potentials in the anti-Euclidean case.

THEOREM 3.

_ ipx d
Gf,{i@):/ ¢ S (3.13)
(-p%2+m?Fi0)2 (27)
()'n ()T
Fi(£D)m [|x]\ 2
= —d(Z_) H;_d (m]x]) 3.14)
[(5)(4m)2 \ <" z
e ()T
Fie' 2 (|x -
- —d(z—) HY_, (mlx]). (3.15)
L(5)(4m)2 \ 2" 2
- d .
iy d—pu +im .22
_ %Ud(%) (3.16)
['(5)(4n)2 :
Proof: Using (A.2) and then (2.5) we obtain (3.16). O

Note that the Euclidean Bessel potential G, ,, is well defined not only for m > 0,
but also for Re (m) > 0, which guarantees m? € C\ ]—co,0]. Taking the limit at the
imaginary line we can express the anti-Euclidean Bessel potential in terms of the
Euclidean one,

GEF () = €75 Gy sim (). GA7)

3.4. Green functions of the Helmholtz equation
Bessel potentials with y =2 are Green functions of the Helmholtz equation

(—E-A)f(x) =g(x). (3.18)

More precisely, the Green function for —E = m? is
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e'rx dp
Gn(x) = — 3.19
W= | e 319
1)t
=— (—) Kq_,(mlx]) (320)
(277)7 m 2
d-2 2.2
_ ﬁ#ul(ﬂ) (321)
(4m)2 2 4
and for —E = —m?> we have two distinguished Green functions:
eixr dp
G¢[m = 3.22
W= | T 0) 2o (3:22)
i m \2!
=+—|— HY 3.23
ci(5m) ke (6.23)
d-2 2042 4 ;
= —(=i)? Vrm _ Ud_l(_w). (3.24)
(471_)5 2 4

G+im(x) coincide with the case u =2 of the anti-Euclidean Bessel potential (3.13)
multiplied by —1.

3.5. Averages of plane waves on sphere

Consider the sphere in R? of radius m, denoted S,‘fl‘l = S,,. Let dQ,, be the
natural measure on S,,. As an application of Bessel potentials, we will compute the
Fourier transform of the measure on S,,.

THEOREM 4.

2.2
/ ePxdQ, (p) = 2md—1n3’Fd_l(—m i ) (3.25)
Sm 2 4
:md_l(271)%(m|x|)]_%J%71(m|x|). (3.26)
Proof: By the Sochocki-Plemejl formula we have
2m 1 1
5(lpl = m) = 2mé(p* - m*) = — - : 3.27
(Ipf=m) =2md(p” =m) 27ri(p2—m2—i0 p2—m2+i0) 3-27)
Therefore,
[ e = [ ératipl-map (3.28)
Sm

2m ; 1 1
=— X - d 3.29
i ) ¢ (pz—mz—iO pz—m2+i0) P (329)
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= C0% (G 3) = ) (3.30)
:md—ln"i((—i)d—lUd_l(—e_mmzxz) —id—lUd_l(—e mzxz)) (3.31)
2 4 2 4
_ 2md_17r%F%71 (—m:xz), (3.32)
where at the end we used (2.10). O

Consider a radial function R¢ 3 p — f(|p|). Its Fourier transform is also radial.
(3.25) yields the identity

) 2 2
/f(|p|)e-fPXdp=2n3’/0 f(k)Fg_l(—k—)kd Ldk (3.33)

- (21)% /oof(k)Jg_l(k|x|)(k|x|)‘g“kd‘ldk, (3.34)
0

where k = |p| has the meaning of the length of p.
Using F_ 1( 7) = C82VZ and F1( 7) = 2V we obtain the low dimensional

N iz

cases of (3. 33)
[ rappermap=2 [ " f(k) cos(kledk,  d=1; (3.35)

0
e 2.2 e
:27r/ f(k)Fo(—k—x)dkzzn/ F(OkJo(klxdk,  d=2: (3.36)
0

—47r/ f(k)kZSIHk((dlxl) . d=3. (3.37)

3.6. Integral representations of the U, function
As an illustration of the usefulness of (3.33), we will derive a certain integral

representation of U,.
Applying (3.33) to (3.3) we obtain

00 kd—ldk 2k2 2
2/ —HFd_l(—”—)= \/f Ud_ﬂ(r—). (3.38)
o ant UTTE ) TTE e
Specifying d =1 and d =3 we obtain
2/ coskr) gy - Ul_,,(r—), (3.39)
0 (k2+1)2 r(z) = \4
00 k k 2
4/ Sinkn) e 2 VT g (”—) (3.40)
0 (k%2+ 1)2r F( )

(3.40) could be also deduced from (3.39) by differentiating wrt r and using
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the recurrence relation (2.14). Setting o = ”T_l in (3.39), we obtain the Poisson
representation of the U, function,
r? F(% -a) [ _. 1
Ug|—|=—2=> [ e >+ 2dk, a<0O. 3.41
5)-=222 [ e (341)

4. General signature

4.1. Positive mass

1
(172+m2)%
no longer defines a tempered distribution in the general signature. Just as in the
anti-Euclidean case, there are two natural regularizations of this function,

1 1
=lim ———. 4.1)

(p2+m2ii0)2 N0 (p24m? +i€)?

Consider now a pseudo-Euclidean space of general signature R%:49.

They lead to two kinds of the Bessel potential.

THEOREM 5. Let m > 0 (or more generally Re (m) > 0). Then

F/F _ e'Px dp 42
() = / (m2+p2¢i0)% (2m)d *2)

p—d
2(+i)4 (\/x2 ilo) Kaos ( EGTZ10) = 10)) 43)
)

T r()@mi\ 2m
pu—d
. m(iz)"d(vxzilo) " (N (27 10)) (4.4)
r(4)@4ms\  2m kS

4.5)

rEms 7

Remark 1. In (4.3) and (4.4) we use the notation explained in (2.50a) and
(2.50b). Note that (4.3) works best for x> > 0, because then we can ignore =+i0.
Likewise, (4.4) is best suited for x> < 0, because then we can ignore Fi0.

Anyway, in our opinion the expression in terms of U,, (4.5), is preferable.

Proof of Theorem 5. Using (A. 2) and (A.4) we obtain

1 e'Pxdp / / :
dt d +lt(m +p )Z -1 ipx
<2n>d/ (4 2 % 0) 5 (27r>dr( ) pe ‘

d
(+z)qe+’ (57

(4m)ST(4)
Then we apply (2.6). O

_ (£0)9mmd+ U (m2(x2 + iO))

(Y

/dt ““'"WHT—I (4.6)
0
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4.2, Zero mass
For 0 < Reu < d let us introduce two distributions in S’

G (x) = / err  _dp 47
w0 = o E @D

p—-d
2

_ ()T (- (x2 iiO) “s)

r4@ams \ 4

They will be called Feynman/anti-Feynman Riesz potentials. They are massless limits
of the corresponding Bessel potentials.

THEOREM 6. For 0 < Reu < d we have

Gyly) = lim G () “9)

in the sense of S’.

Proof: Surprisingly, a momentum space proof, from the Euclidean case, seems
to be difficult to generalize to the non-Euclidean case. Instead, we will present
a proof in the position space.

Using the decomposition (2.45) of the function U,, we can write

Y

. ReS5f11 o a o iden
(i) ( (-1)/m/T' (== —J)((x2 +i0) )J 2
G (x) = : 4.10
) 4 ; J! 4 o
20,2 .
U (M)) @.11)
2

The line (4.10) obviously converges to (4.8). By (2.7), U;%, is a continuous function

2
of a polynomial growth at infinity. Therefore, the second line (4.11) converges to
zero in §’. O

Note that as a consequence of the above theorem and of the continuity of the
Fourier transformation on S’(R?) we can infer that
. 1 1
lim T = m
mNO (P2 +m?2Fi0)2 (p?2Fi0)2

4.12)

in the sense of S’.

4.3. Scaling degree of distributions

Let us start by defining the action of a dilation by A on a distribution 7(x) as
T)(x) =T(Ax), by which we mean the dual action to the dilation on test functions

<T,1|f):/T(/lx)f(x)dx:/l_d/T(x)f(/l_]x)dx. (4.13)
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Given a distribution 7 € D’(RY), we define its scaling degree sd(T) as
sd(T) = inf {a) lim 197, =0 in Z)’(Rd)}. (4.14)

The scaling degree of a distribution is often used in mathematical analysis of
quantum field theory [6, 7].
Let us compute the scaling degree of Bessel potentials.

THEOREM 7.

= — <
sdGHT = {d o O<p=d, (4.15)

0, d<pu.

Proof: For 0 < u < d, the Riesz potentials GlF/ E defined in (4.8) are homogeneous,
G (Ax) = 4G (x). (4.16)

So sdGi/’E =d - pu.
By the definition of the Bessel potential, the mass dependence is (1.2),
G (A0) = 4Gy (), 4.17)
so, according to Theorem 6,

lm A4 G ym (42) = im G (%) = G (). (4.18)

which shows that sdGlF,/’ 51 =d -y for any mass m and 0 < u <d.

For d < u, Gf/ ¥ is a continuous bounded function, so its scaling degree is 0.
For d = u, we have

+0)4\[rmd—# m?(x* +i0

Gam(x) = ( )d\/_ 7 Uo( ( 1 )). (4.19)
r(4)(4nm)
Now, we can use the bound (2.7) and the expansion (2.17),
1

Up(z +i0)] < Clz|™5, z€R, |2 > 1, (420)
Up(z £i0) = In(z = i0)Fy(z) + H(z2), 4.21)
where H is an entire function, just as Fy. Using this we easily show that for w > 0,
A°Ggm(Ax) =0 4.22)
in the sense of &§’. O

5. The Minkowski signature

The Lorentzian signature is especially important, both because of its physical
relevance and rich mathematical properties. The spaces R"““~! and R4~"! are two
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kinds of a Minkowski space, that is, a pseudo-Euclidean space with a Lorentzian
signature. We will treat R"¥~! as the standard form of a Minkowski space. x°
will denote the first coordinate of R!*¢~!  which we assume to be timelike (having
a negative coefficient in the scalar product). The remaining, spacelike coordinates
will be denoted ¥, so that x = (x°,¥). In other words,

¥ =2+ 2 = ("2 + )2+ (x0TH2 (5.1
The future and the past light cone will be denoted
JVi={xeRM 1 . x2<0, x>0},
JVi={xeRM . x?2<0, x"<o0}.

In this section, we will only use the hypergeometric functions F,, U,.

5.1. General exponent

Let m > 0. The set m?+ p? consists of two connected components: the future and
the past mass hyperboloid. Therefore, the following four regularizations of !

1z
(m2+p2)2
are tempered distributions invariant wrt the orthochronous Lorentz group,
1 1
e - (5.2)
(m?+p?+i0)2  (m?+ p? +i0sgn p°)2
Their inverse Fourier transforms define four kinds of Bessel potentials:
_ eipx dp
Glm(x) = / T (5.3)
(m2+p2Fi0)2 (27)
eirx dp
Gln(x) = / s (5.4)
(m? + p? ¥ i0sgn p%)2 (27)

By the following well-known argument, found e.g. in various standard textbooks
on quantum field theory, we can show that le/ 7+ have causal supports.

THEOREM 8. supp Gl\i/,f1 c JY/A.

Proof: For definiteness, consider (5.4) with the minus sign. In order to prove
that its support is contained in JY, by the Lorentz invariance it suffices to prove
that it is zero for x° < 0. We write

/ elpxdp _ /‘ e—ip0x0+iﬁ)_édp0dﬁ
. [ o
(p* +m? —i0sgn p°)2 (52 +m? — (p° +i0)2)2

Next, we continuously deform the contour of integration, replacing p°+i0 by p’+iR,
where R € [0,00[. We do not cross any singularities of the integrand and note that

. 0,0,
e~ (PHIR) 90es to zero (remember that x° < 0). o
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THEOREM 9. We have the identity

Gl () + Gy () = Gy (6) + Gy (). (5.5)
Here are the expressions for the Bessel potentials in the position space:
F +i\/rmd=# 2(x? +i0
61l = Dy, () 5:6)
rs)@ms 2 4
2 u—d 2x?
Gl (x) = 0(+x%) ———(£) 2 Fw(m al ) (5.7)
r(5)(4m? 2\ 4

where in (5.7) we used the notation introduced in (2.47).

Formula (5.7) involves the multiplication of a distribution by a discontinuous
function, which in general is not well defined. At the end of this subsection we
explain how this formula can be correctly interpreted.

Proof: The identity (5.5) follows immediately from the defining formulae, that
is from (5.3) and (5.4).

(5.6) is a special case of (4.5). Using (5.6) and (5.7) we obtain a simple
expression for the sum of two Bessel potentials,

s d—pu 22_-0 22+-0
G (x) + G () = M(UW (u) Ud, (u)) 5.8)

F(%)(47T)% 7 4 2 4
_ 2.2
S %)fzd[?#_d(m a ) (5.9)
I(4)(4m)* =\ 4

where again we used the notation introduced in (2.47). (5.9) is clearly supported in

J*UJY. By Theorem 8, we know that GY/ are supported in JY/*. Thus to find

n,m
expressions for GZ/,?, we need to “split the distribution” (5.9) into two terms, one

supported in J¥ and the other in J”.
Using Proposition 1 to justify the multiplication of a distribution (5.9) by the
(discontinuous) function 6(+x°), we can define

- 2 pu-d 2,2
Glln(x) = () — ()3 FM("A) (5.10)
r(4)4m)? A
Clearly, Gx/,fl are supported in JV/*. Besides,
G () + Gy () = Gy () + Gy (). (5.11)

But JY N J" = {0}. Therefore, G;/,/,CL - G’,\i/nﬁ is a distribution supported in {0}, that
is, a linear combination of §(%)(x),

Bl =Gl =Giln = 37 cdlho @ (x). (5.12)

|al<n
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Eq. (5.11) implies By ,,(x) = =By, ,,(x). The symmetry in x > —x,V/A = A/V
of (5.4) and (5.7) allows us to write

Gm () =Gpm(=x), G () =Gy (=),

and therefore

v//\( )_ /\/v( x) - v//\ _x)

Its action on a test function ¢ € S(RH4-1) is

Bylm 9y = D (=Den(089)(0) = > cdn(0%0)(0),  (5.13)

|a|l<n |a|<n

SO c\(/,/ » =0 for even |a|. Gx/ 2 and GZ/,CI are invariant with respect to the action of
the proper Lorentz group. The same must apply to their difference B,v,/ . Derivatives
evaluated at O transform as vectors under the action of the Lorentz group. However,

(BZ(,Q,,@ is a sum of terms with only odd number of indices, so it cannot be

invariant under the action of the Lorentz group unless B;ﬁ/,/,\l = 0. We conclude that
V/A VA
Giln=G/h 0

GZ . Will be called the Feynman Bessel potential and G];m the anti-Feynman
Bessel potential. These names are somewhat artificial in the context of a general u.
Their justification comes from the case u =2, where these Bessel potentials coincide
with the Feynman and anti-Feynman propagator known from quantum field theory.

The distribution lel’m will be called the forward or retarded Bessel potential,
and G, ,, the backward or advanced Bessel potential.

For 0 < Reu < d we also have the massless Riesz potentials:

—d

G (x) = =l (5 )(x +’0) , (5.14)
r4)@Ens\ 4

GVl @) = 0(x°) 2n ﬁ)’%d. (5.15)

D(4)T(E82) (4m) (5)-

As we mentioned above, the formula (5.7) for the advanced and retarded Bessel
potential involves a product of two distributions, and therefore it needs a justfication.
We will explain two approaches how to interpret this formula.

The first approach is quite elementary. It uses the identification R»¥~! ~ RxR4~1,
with the first variable denoted x° or ¢. For the remaining variables X we will later
use spherical coordinates (r,Q) with r = |¥|. For n,m € Ny and y € S(RH4!) let
us introduce the semi-norms, which involve only the variables X € R4-1

I (2 M lm = sup = 705 ) (1. %))
xeRd=L |al=n,|Bl=m
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ProposiTioN 1. Let Rev < d. Then there exist cy, kK =0,..., L%J, such that
for any ¢ € S(R-471),

’/ (x?) 2qb(x)dx

where the coefficients |t|?RV*k=1 qgre locally integrable and polynomially bounded
at infinity. Therefore, if f € L™ (R), then f(x°)(x*)_2 defines a tempered distribution
on RY.

R

T

> /c 117 F (1, )l et (5.16)
k=0

4

Proof: The action of (x*)_2 on a test function ¢ € S(R?) is

v © Izl Y
/ (x*) "2 p(x)dx = [w dt/o dr /d_2 dQ(r* —)-2¢(t,r, Q)r?2.

For simplicity let us consider only # > 0. We can expand ¢ around r =t,
$(t,r,Q) = Z - ¢(k>(z LQ) + (r— 0"y (t,r,Q),

with m = L%J — 1, where ¢®) denote derivatives with respect to the r variable.
Note that |y (t,r, Q)| < (m+ Doz, )llo.m+1- Let

00 t
el = / dt/ dr /d ) dQ(t — r)'B(r + t)_%tﬁ(t, r, Q)rd_z,
0 0 -

with B = L%J - %, -1 <Rep <0, be the integral of the locally integrable
function. We see that it is well defined and

S t
|amsl S/ dt/ dr/ dQ(t—r)Re'B(t+r)_Re%|tﬁ(t,r,§2)|rd_2
0 0 sd-2
< et [ agts Mot 5t [P e [ ag
0 0 gd-2

= C(d,v,m+ 1)/ dtt 2R g (1 g,
0

Next, we look at each term of the expansion of ¢(¢,r,Q) in k,

ak—/ dt/ dr/dde(z 2)2( )¢<k>(m9)rd2

_ & l)k/ dt/ dr(r —1)- I “(t4r) 3 2/ Qo™ (1,1,Q).

Here, (1 —r)- T s the (irregular) distribution, defined by (A.12). It yields a finite
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expression

t v v 1 v .
/dr(r—t):2+k(t+r)_2rd_2:td_"+k_1/ dr' (' = )22 (14 )52
0 0

= t4*=1E(d, v, k).

Because d —Rev+k—1>d—-Rev—-2 > -1, dependence on ¢ is locally integrable
and bounded by a polynomial. For £k =0,1,...,m+1 we can write

gl < C(d, v, k) /0 di 1R 6 (1 ) ok

For fixed d, v, we have the inequality (5.16) showing that homogeneous distributions
are tempered distribution. O

Now we have d —u < d, and therefore Proposition 1 shows that we can multiply
u-d
the distribution (%2)_2 by the discontinuous but bounded function 6(+x"). The
resulting distribution is then multiplied by the smooth function F ,_a ( i ), obtaining
)

the right-hand side of (5.7).

An alternative way to define the product in (5.7) is based on the concept of
the wave front set [20]. Here are the wave front sets of the distributions contained
in (5.7):

WF(H(t)) ={((0,%),(7,0)) : ¥eR" " T£0},
WF((x? = {((t,X), (=At,A%)) : *-F —O(Ix);tO/l;tO}
U {((0,0), (1,k)) : T2 —k>=0,(r,k) %0},
where (7, 12) denotes the dual variable to (z,X). The fiberwise sum of wavefront sets

WF (6(1)) +WF((x2):%) does not contain an element of the form ((z,X), (0,0)).

Therefore, by Hormander’s criterion [20, p. 267], the product of these two distributions
is well defined.

5.2. Green functions of the Klein—-Gordon equation

Consider the Klein—Gordon equation

(—E-D)f(x) =g (), (5.17)

where E is a parameter, usually real. We will consider 3 cases:

massive case: — E =m?, (5.18)
massless case: — E =0, (5.19)
tachyonic case: — FE = —m?. (5.20)

The massive and massless cases are quite similar and they often appear in physical
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applications. They are often discussed in detail in the literature. The tachyonic case
is more exotic and less known, but also interesting.
The Klein—Gordon equation possesses several useful Green functions, that is,
distributions satisfying
(-E-0)G*(x) =6(x). (5.21)
One can try to define Green functions of the Klein—Gordon equation the Fourier
transformation. Unfortunately, for E € R, m is not a well-defined distribution

because of zeros of its denominator. One way to regularize it is to add +i0, which
leads to the so-called Feynman and anti-Feynman Green function
e'rx dp
(—E + p2Fi0) 2m)4’
As follows from a general theory of hyperbolic equations, the Klein—Gordon
equation (5.17) possesses also another important pair of Green functions: the retarded

(or forward) Green function GV and the advanced (backward) Green function G*.
They are uniquely defined by the conditions

Gul" (x) =

(5.22)

supp GY/" c J*. (5.23)
Note that the above definition provides GY/* for all E € R. In the case —E > 0,
with —E = m? they coincide with G,\i,/ " defined already with the help of Fourier

transformation. In the tachyonic case they will be denoted G:/,fl N = GY{::I and they

need a separate discussion, see Subsection 5.5
We will also consider certain distinguished solutions of the (homogeneous)
Klein—Gordon equation, that is functions G° satisfying

(-E - 0)G°(x) = 0. (5.24)

One can look for them with the ansatz

G°(x) = / ¢P¥ g (p)5(~E + p) (5.25)

dp
(Zﬂ)d—l ’
where g° is a distribution on p2 — E =0. Above, for E € R, we use the notation
5(p° - ﬁZ—E)d% §(p°+ P2 -E)
p+
2\p*-E 2\p*-E
where for p? < E, (5.26) = 0.
Below we consider separately the massive, massless and tachyonic cases of the
Klein—-Gordon equation. In all three cases, we will be able to define G¥/F and GV/*.

§(p* - E)dp = dp, (5.26)

5.3. Massive Klein—-Gordon equation

Let us consider —E = m?, that is the massive Klein—-Gordon equation. The

corresponding Green functions satisfy
(m* —0)G?,(x) = 6(x). (5.27)
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Specifying Theorem 9 to u = 2, we obtain the following expressions for the Feynman
and anti-Feynman Green functions.

Tueorem 10.

F/F, \ _ elbx dp
G (x) = / T T 0) (2n)? (5.28)

+iTmd2 m?(x? + i0)

= U d_, ) .
(4m)2 °

The retarded and advanced Green functions of the Klein—-Gordon equation are

obtained by specifying Theorem 9 to u = 2. In the following theorem, we also
identify their regular and singular part.

(5.29)

THeEOREM 11.

ipx dp
GYMNx) = / c 5.30
m (%) m? + p2 Fi0sgn p° (2m)4 (5.30)

_ d-2 _ 2.2 :
:g(ixo)ﬂ(%_l(u) Ud_l(%ﬂo)) (5.31)

(4m)? 4 2
2rmd=2 _d m?x?
= 0(2x) ()" 2F1_d( ; ) (5.32)
(4m)2 2
We can decompose G'/" into a singular and regular part,
Gl (x) = G () + Golg (0). (5.33)

For d odd this decomposition can be chosen as

V/A 0(+x0) (- l)j (mZ) 2
G/ ( ! (5.34)
Glng(x) = 0(+xo) - 1)4 ( ) (—x2)1= 2+ g(~x?). (5.35)
4+))

2712 L= JIr2 -
J=T

For d even:

1 2 —1)/+! m2\2727
Gl ing ) = 0) (d( 2) j),(j) 5 (), (5.36)
n2~! 50 (72— ))!
2 d-2 2.2
Gl (x) = 0(2x°) (’;’")d Fgl(’" 4x )e(—x2). (5.37)
)2

Proof: The formula for the Green function of the Klein—Gordon equation is given
by Eq. (5.32), which was computed earlier for a general u (5.7). The decomposition
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into (5.34) and (5.35) is due to (2.48). For even d, the decomposition can be
rewritten using (2.49). O

Introduce the following distinguished solutions of the Klein—Gordon equation
2.
—-O+m":

l ix-
G (x) = 20 / e~ Psgn (p°)6(p? + m*)dp (5.38)
1 dﬁ iXP o 0./ 2
= , 5.39
e / ﬁ2+mze sin (x Vpr+m ) (5.39)
+ 1 ix.
Gﬁn‘) (x) := W / e*Po(xp®)s(p* + m?)dp (5.40)
1 dp N = e
— — / p e+1x0 p2+m2+lxp‘ (541)
(2m)4= 2+/p? + m?

Following [13], we will call distinguished Green functions and solutions jointly
propagators. GY is supported in JY U J". Here are the expressions for these
solutions in terms of positions:

2-d

2 2\ 5% 2.2
GP(x) = sgn (x°)—— (x_) Fz_d(m al ) (5.42)
(471.)5 4 2 4

. d—p 2,2 +7 00

G (x) = YIm T _ Ud-z(—m T et ) (5.43)
(471_)7 2 4
Note the identities satisfied by the propagators:
G -G)=G" (5.442)
=iGY —iGL), (5.44b)
Gt - GF =iG\Y +iGl,, (5.44c)
G +GE =GY +G), (5.44d)
Gt =iG\ +G) =iG},) + G, (5.44¢)
GE = -G\ +G) = -G}, +G)\. (5.44f)
To prove these identities we use repeatedly
1

0(xp°)27is(p? + m?) = 0(xp°) (5.45)

p2+m?—i0  pZ+m2+i0)

5.4. Massless Klein—-Gordon equation

The massless case is quite similar to the massive one: we need only to set m =0
in the previous subsection. In particular, all identities (5.44) are satisfied. There are
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a few simplifications. Only the most singular part of the massive propagator remains
in the massless case. This is the special case of Riesz potentials, massless limit of
Bessel potentials, that we studied in Section 3.2.

THEOREM 12.

= ir(¢ -1 _d
GyF(x) = + %(x2 +i0)' "2, (5.46)
T2
V/A 0 1 214
GO (x) = 0(xx )Td(x )- =, 5.47)
271'2 F(Z -3
PJ 0 1 21-4
G (x) =sgn (x°) y (x7)- =, (5.48)
272712 - 4)
2
r¢-1 _d
G (x) = :—d)(x2 +i0sgn (x°))' 2. (5.49)
T2
For d odd (5.47) and (5.48) can be rewritten as
(=D g
Gy (x) = 8(x") o 5272 (x%), (5.50)
T2
-2 4
Gg) (x) = sgn (xo)ﬁéﬁ‘z) (x2). (5.51)
T2

Note that using (A.12) we can write identity (5.44d) as
- 1 4
GE(X) +GE(x) =Gy +G) = ——p2 ' (), (5.52)
227!
which agrees with the fact that massless retarded/advanced Green functions, also
known as Riesz distributions (see [16]), are expressed by homogeneous distributions
supported on JV/".

5.5. Tachyonic Klein—-Gordon equation

Let us now consider the tachyonic Klein—-Gordon equation, which means, with
E = m?. Its Green functions satisfy

(-m* —0)G*(x) = 6(x). (5.53)

Usually, tachyonic quantum fields are considered to be unphysical [21]. Nevertheless,
every now and then there are attempts to analyze them in the physics literature,
see [22], and more recently [23].

We have a minor notational problem how to indicate that we replaced m
with —m?. Naively, one would think it should be indicated by both +im and —im
instead of m. However, this would suggest the analytic continuation e'?, +¢ € [0, ],

2
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which is not always appropriate. This problem appears in the case of the Feynman
propagator: we will write GY . but not Gliim. Similarly, for the anti-Feynman

—im’
propagator we will write G_l , but not Gfm. In the case of retarded/advanced
propagators, this problem will be absent, since the analytic continuation can be
performed in m?: thus G:\n/iv =GMY.

We define the Feynman and anti-Feynman Green functions by adding Fi0 to the
denominator —m? + p? in the momentum representation. In the following theorem,

we compute their form in position variables.

THEOREM 13.

lpx dp
Fa(0)/G, (x) = /( T T 0) ) (5.54)
- MUI(M) (5.55)

(4m)* 2 4

In particular, for x2 >0 we have

iiﬁmd‘zeﬁ”(%_l) U (mz(—x2 F iO))
-1

Gl (1) /G (x) = 7 g -
(4m)2 2

and for x> <0

P ()/GF,(x) = Ua_
(47)% 2 4
Proof: Let us start from the usual (positive mass) Feynman propagator, defined
in (5.28) and (5.29). Then we continue analytically GF F(x) and GF, replacing m
with me'?, where ¢ € [0, 71 in the former and ¢ € [-F O] in the latter case. (Note
that during the analytic continuation the denominator has to have a constant sign of
its imaginary part, that is, +Im(m?e*? +i0) > 0.) The analytic continuation yields

iiﬁmd_zeii”(%_l)[] (e+i”m2(x2'|_'i0))
d_i\——

- d
il'\/?z.md—26+l7r(7—l) (m2|x2|)
1 .

F(0)/GT (x) = y 1 (5.56)
(4m)2
: d-2 +in(4-1) 2021
_ +i\am ed 2 Ud_l(m (—x +10))’ (5.57)
(47_[)7 2 4
which coincides with (5.55). |

Unfortunately, the tachyonic Feynman and anti-Feynman propagator do not have
the usual physical interpretation, as the vacuum expectation value of the time-
ordered, resp. anti-time-ordered product of fields. In fact, for tachyons the vacuum
is ill defined. Nevertheless, some authors, e.g. [22], try to use the above Feynman
propagator to define interacting tachyonic quantum field theory.
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Retarded and advanced tachyonic Green functions G:/n/1 " are not tempered

distributions on R"“¢~!  and therefore they cannot be expressed in terms of the
Fourier transformation in all variables, as in the massive and massless cases (5.30).
However, they are well defined, and in the following theorem we give three equivalent
formulae for these propagators.

TueorREM 14. The forward and backward propagators in the tachyonic case are
given by

G!IMx) =GV (x)

_ ()oY (Ug_] (—mz(_xz)) -Ug (—eiznmz(_xz))) (5.58)

(471)2 4 4
:9(_x2)9(ixo)\/7_f dz(;i)‘”l (Ud_l(e"z”nf(—xz)) Ud_l( 2(:62))) (5.59)
(4m)2 2
3 o 21 (x? -9 m?|x?|
_e(ix)(4ﬂ)g(z)_ Fl_g( ; ) (5.60)

They are supported in JV, resp. J". We can decompose G:/n/,l " into a singular and
regular part,
GIMx) =GN (x)+Gl" (). (5.61)

lm smg m,reg

For d odd this decomposition is almost the same as (5.34), (5.35) but without the
factor (—1)/:

d=5
G\.//A. 0(+x0) Zzl (m ) x )l—*+j (5.62)
1m,Smg 271'2 =0 |r‘(2 -4 + ) 4
9(+x = d,
G ( ( ) x2) -5+ g(—x?). (5.63)
zm,reg 27T2 Zd: 'r(2 _d +])

J="7

For d even the decomposition is similar as in (5.36) and (5.37):

4 .
13 1 m2\27%7
Gl i) = H(ixo)zﬂg_1 > (4_2_1_)'(7) 5D (x2), (5.64)
j=0 \2 :
27de 2 m2 X2
Gilhee () = 0(x°) = Fg_l( J‘ |)49(—x2)- (5.65)
T 2

Proof: Our starting point is the formula (5.31) for the forward and backward
propagator G,Vn/ "(x). They are analytic in m. Therefore, we can apply the analytic
continuation m — e'2 m,
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_iﬁmd—2ein(%—l) ( (em(mzxz _ iO))

G'R (x) = 6(xx") d
(317 m (471.)% 2 -1 4
i (22 + 00
_Udl(w))_ (5.66)
2 4
This yields (5.58). Alternatively, we can apply the analytic continuation m — e Tm,
which yields (5.59). |

Let us compute the sum of the tachyonic Feynman and anti-Feynman propagators:

2rmd-2 2,2
m _ Fd_l(_m X )’ 25 0;
. (4ms T4
Gip(x) + G, (x) = S 1-d - (5.67)
47 (—x 2 m-x 2
7 T Fl—d — 2 s x° < 0.
(4m)2 ’
Thus GF (x) +Gi.m(x) does not have a causal support, and consequently,

Gh, () + GF,,, (x) # G,y (6) + Gy, (1), (5.68)

The equality in (5.68) holds only for x? < 0.

Note that because of (5.68) we could not deduce the formulae of the forward
and backward propagators from the Feynman and anti-Feynman propagators, and we
had to apply a separate argument based on analytic continuation.

In the tachyonic case, we do not have the solutions G;;). However, we can
define the Pauli—Jordan propagator

1 o ==sin(x0/p? — m?
Gf,i,(x)=G‘iJim=W / dpe™? ( ﬁp - ) (5.69)
Vg 2 —m

d
2 2\ 1-% 21..2
= sgn (x%) —— (x—) Fl_d(m x |). (5.70)
(47.‘.)7 4 _ 2 4

Note that Gfrjn cannot be written in the form (5.25).
Among the identities (5.44) only (5.44a) is still true.

5.6. Averages of plane waves on the hyperbolic plane

The Minkowski space possesses two kinds of hyperboloids. The two-sheeted
hyperboloid consists of two connected components isomorphic to the hyperbolic
space. In this subsection, we compute the Fourier transform of the natural measure
on one of the sheets of the two-sheeted hyperboloids, similarly as in Theorem 4.

Consider the future/past hyperboloid in the d-dimensional Minkowski space,
denoted H., ,, = H?-!, consisting of points p such that p>+m? =0 and +p° > 0. Let

+,m>
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dQ,, denote the standard measure on H, ,. We will see that up to a coefficient its
Fourier transform is essentially the “positive frequency solution of the Klein—Gordon
equation.”

THEOREM 15.

. _ 2(42 +7 00
/ ¢P*dQ,, (p) :md_lndleg_](m (x fg” ), (5.71)
Hi m

Proof: This average, up to a coefficient, coincides with Gf,f ) defined in (5.40),
which we have already computed,

/ e'P*dQ,,(p) = 2m / e'P*9(xp”)s(p* + m*)dp (5.72)
Hi om

= 27)'mG® (x). (5.73)
Therefore, it is enough to use the formula (5.43). O

5.7. Averages of plane waves on the de Sitter space

The one-sheeted hyperboloid in the physics literature is usually called the de Sitter
space. It will be denoted dS,, = dS?~!. It consists of points p such that p> = m?. Let
dQ,, denote the standard measure on dS,,. We will compute the Fourier transform
of the measure on dS,,.

THEOREM 16.

/ e'P*dQ(p)
dSm
m2(— . 2
— dZ(dUd 1( ( J;+10)) ( l)dUg_](m( x? 10)) 574
2 2+ 0 4 d
(Df 2t g (TR xR ( )) den,
) d, _2\1-4 m?x? d
2dl d 171-2(7) 2Fl—g(_ 2 )’ E¢N
(5.75)
Proof
/ ¢P*dQ(p) = 2m / ¢P¥5(p? — m?)dp (5.76)
dSm
:ﬁ ipx 1 _ 1
o e (pz—mz—iO 110 dp (5.77)
m(2m)4
- mi2n) (Gh, () = G, (). (5.78)

i
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Then we can use the result for the tachyonic Feynman and anti-Feynman propagator

(5.55). |

One can see that the singular part is different in even- and odd-dimensional
cases.

A. Appendix
A.1. Some identities
The following identities for A > 0 follow from the 2nd Euler integral:

1 1 /w —sA K1
—_— = e "s2 dS, (Al)
5 T Jo

_. T
1 e’ oo +itA B -1
= A7 de. A2
(A +i0)% F(%)/o ’ 4

We will also need the Fourier transform of the Gaussian function on the Euclidean
space R?, and of the Fresnel function on the pseudo-Euclidean space R%:9~¢ (with

g minuses):
d
/ dpe*szeipx — (g)ze_ii’ (A3)
d
/ dpeiitpzeipx — (¢i)q(§) zeii%de‘_’i%, (A4

A.2. Distributions

In this paper, we often use the language of distributions on RY. We say that
a distribution T is regular if there exists a locally integrable function f such that
for a test function @,

T(d))=/f(x)(D(x)dx. (A.5)

We will use the integral notation also for irregular distributions, e.g.

/ s (x)®(x)dx = (=1)"®™(0). (A.6)

Let us now consider some special distributions on R. For any A € C,
(xix + 0)' = ¢*13 (x Fi0)! := li{?)(iix +e)t
€

is a tempered distribution. If Red > —1, then it is regular and given by the locally
integrable function
eiisgl’l (x)%/”xl/l' (A7)
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The functions

x? = |x]10(%x) (A.8)
define regular distributions only for Red > —1. We can extend them to 1 € C except

for 1 =-1,-2,... by putting

1 - T - T
xt = ——(—e T2 (Fix + 0)' + €' 2 (xix + 0)1). (A.9)
* 2isinzd

For A > -1, (A.9) are regular and coincide with 6(+x)|x|*. We have

= |x) - xd (A.10)
Instead of x7, it is often more convenient to consider
N 2
= A1l
re-a I I
= ;—_)(e_lf/l($ix+0)’l —e’f’l(-!_-ix+0)/l). (A.12)
i

Note that using (A.11) and (A.12) we have defined p’i1 for all A € C. We have

Oxpi(x) = £pL 7' (x).
At integers we have

xl
pi(x):n—“, n=0,1,..., (A.13)
p" N x) = (x1)"6"(x), n=0,1,.... (A.14)

Clearly, for Re (1) < —1 the distributions p? are irregular.
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