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We review properties of Bessel potentials, that is, inverse Fourier transforms of (regularizations
of) (𝑚2+𝑝2 )−

𝜇
2 on a pseudo-Euclidean space with signature (𝑞, 𝑑−𝑞) . We are mostly interested

in the Lorentzian signature (1, 𝑑 − 1) , and the case 𝜇 = 2, related to the Klein–Gordon equation
(−□ +𝑚2 ) 𝑓 = 0. We analyze properties of various “propagators”, which play an important role
in quantum field theory, such as the retarded/advanced propagators or Feynman/anti-Feynman
propagators. We consistently use hypergeometric functions instead of Bessel functions, which
makes most formulae much more transparent. We pay attention to distributional properties of
various Bessel potentials. We include in our analysis the “tachyonic case”, corresponding to the
“wrong” sign in the Klein–Gordon equation.

Keywords: Bessel potential, Riesz potential, Green function, Klein–Gordon equation, pseudo-
Euclidean spaces, Minkowski space.

1. Introduction
Let us start with the Bessel potentials on the Euclidean space R𝑑 . Let Re 𝜇 > 0

and 𝑚 ≥ 0. If 𝑚 = 0 we will usually additionally assume that 𝑑 > Re 𝜇. Consider
the function

𝐺𝜇,𝑚(𝑥) =
∫

𝑒𝑖 𝑝𝑥

(𝑚2 + 𝑝2)
𝜇
2

𝑑𝑝

(2𝜋)𝑑 (1.1)

on the Euclidean space R𝑑 . Note that 𝐺𝜇,𝑚(𝑥 − 𝑦) can be interpreted as the integral
kernel of the operator (𝑚2 − Δ)−

𝜇
2 .

*Supported by National Science Center (Poland) under the Grant UMO-2019/35/B/ST1/01651.

[19]



20 J. DEREZIŃSKI and B. SIKORSKI

We have
𝐺𝜇,𝑚(𝑥) = 𝑚𝑑−𝜇𝐺𝜇,1(𝑚𝑥), (1.2)

so the case 𝑚 > 0 reduces to 𝑚 = 1. 𝐺𝜇,1(𝑥) can be expressed in terms of the
Macdonald function, one of solutions of the modified Bessel equation. Therefore,
𝐺𝜇,1(𝑥) is often called the Bessel potential of order 𝜇. The function 𝐺𝜇,0(𝑥) is
called the Riesz potential of order 𝜇.

It is remarkable that the theory of Bessel potentials is very similar for all
𝜇 > 0. However, the case 𝜇 = 2 is probably the most important. In this case we
will usually omit 𝜇 from the notation, setting 𝐺𝑚(𝑥) := 𝐺2,𝑚(𝑥), and obtaining the
Green function of the inhomogeneous Helmholtz equation

(−Δ + 𝑚2)𝑔(𝑥) = 𝑓 (𝑥). (1.3)
In other words,

(−Δ + 𝑚2)𝐺𝑚(𝑥) = 𝛿(𝑥). (1.4)
Note that in dimension 𝑑 = 3 we have

𝐺𝑚(𝑥) =
𝑒−𝑚 |𝑥 |

4𝜋 |𝑥 | .

Thus for 𝑚 > 0 it coincides with the Yukawa potential and for 𝑚 = 0 with the
Coulomb potential.

Suppose now R𝑞,𝑑−𝑞 is the pseudo-Euclidean space of signature (𝑞, 𝑑 − 𝑞). In
other words, as a set it is R𝑑 with the scalar product for 𝑥, 𝑦 ∈ R𝑞,𝑝 given by

𝑥𝑦 = −𝑥1𝑦1 · · · − 𝑥𝑞𝑦𝑞 + 𝑥𝑞+1𝑦𝑞+1 + · · · + 𝑥𝑑𝑦𝑑 . (1.5)

The definition (1.1) is usually no longer correct for 𝑚2 ∈ R, since 1

(𝑚2+𝑝2 )
𝜇
2

may

fail to be locally integrable, and hence may not define a tempered distribution. It
still works for complex nonreal 𝑚2. A possible pair of generalizations of (1.1) to
𝑚2 real is the pair of functions, which correspond to the limits from above and
below:

𝐺F
𝜇,𝑚(𝑥) =

∫
𝑒𝑖 𝑝𝑥

(𝑚2 + 𝑝2 − 𝑖0)
𝜇
2

𝑑𝑝

(2𝜋)𝑑 , (1.6)

𝐺F
𝜇,𝑚(𝑥) =

∫
𝑒𝑖 𝑝𝑥

(𝑚2 + 𝑝2 + 𝑖0)
𝜇
2

𝑑𝑝

(2𝜋)𝑑 . (1.7)

Formulae (1.6) and (1.7) have an obvious interpretation as boundary values of
integral kernels of appropriate functions of the pseudoLaplacian

□ := −𝜕2
1 · · · − 𝜕2

𝑞 + 𝜕2
𝑞+1 + 𝜕2

𝑑 . (1.8)

Again, the case 𝑚 > 0 reduces to 𝑚 = 1. 𝐺F/F
𝜇,𝑚(𝑥) can be expressed by Macdonald

and Hankel functions. (The Hankel functions are special functions solving the
standard Bessel equation.)
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The symbols F and F are motivated by the special case of Green functions in the
Lorentzian case. 𝐺F/F

2,𝑚(𝑥) coincide then with the Feynman, resp. the anti-Feynman
propagators, which play an important role in quantum field theory, as we explain
below.

In our paper we will discuss all signatures, including the Euclidean (0, 𝑑) and
anti-Euclidean (𝑑, 0). However, we are mostly interested in the Lorentzian signature.
The Lorentzian signature comes in two varieties: “mostly pluses” (1, 𝑑 − 1) and
“mostly minuses” (𝑑 − 1, 1). We will treat the former as the standard one.

The Lorentzian case is especially interesting and rich. This is related to the fact
that the Minkowski space R1,𝑑−1 can be equipped with a causal structure and the
set 𝑝2 + 𝑚2 = 0 has two connected components. Therefore, besides 𝐺

F/F
𝜇,𝑚, we can

introduce the distributions

𝐺∨
𝜇,𝑚(𝑥) =

∫
𝑒𝑖 𝑝𝑥

(𝑚2 + 𝑝2 − 𝑖0sgn 𝑝0)
𝜇
2

𝑑𝑝

(2𝜋)𝑑 , (1.9)

𝐺∧
𝜇,𝑚(𝑥) =

∫
𝑒𝑖 𝑝𝑥

(𝑚2 + 𝑝2 + 𝑖0sgn 𝑝0)
𝜇
2

𝑑𝑝

(2𝜋)𝑑 , (1.10)

which are invariant wrt orthochronous Lorentz transformations. Remarkably, 𝐺∨/∧
𝜇,𝑚

is supported in the forward, resp. backward cone. Therefore, 𝐺∨
𝜇,𝑚 is called the

forward (or retarded), and 𝐺∧
𝜇,𝑚 the backward (or advanced) Bessel potential.

In the Lorentzian case, the pseudo-Laplacian is usually called the d’Alembertian

□ := −𝜕2
0 + 𝜕2

1 + · · · + 𝜕2
𝑑−1, (1.11)

and −□ + 𝑚2 is called the Klein–Gordon operator. By a Green function of the
(inhomogeneous) Klein–Gordon equation

(−□ + 𝑚2) 𝑓 (𝑥) = 𝑔(𝑥). (1.12)

we will mean a distribution 𝐺•(𝑥) satisfying

(−□ + 𝑚2)𝐺•(𝑥) = 𝛿(𝑥). (1.13)

The Klein–Gordon equation possesses many Green functions. Among them, we
have the Feynman and anti-Feynman Green functions given by the formulae (1.6)
and (1.7) with 𝜇 = 2. Another distinguished pair consists of the retarded (or forward)
Green function and the advanced (or backward) Green function, defined by demanding
that their support is contained in the forward, resp. backward cone. For 𝑚2 ≥ 0
the retarded Green function is given by (1.9) and the advanced Green function by
(1.10) with 𝜇 = 2.

The Feynman, anti-Feynman, forward, and backward Green functions of the
Klein–Gordon equation have important applications in physics, especially in classical
and quantum field theory. The forward and backward Green functions can be used
to express the Cauchy problem. The Feynman, resp. anti-Feynman Green functions
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express the time-ordered, resp. anti-time-ordered vacuum expectation values of fields
in quantum field theory. Importantly, they satisfy the identity

𝐺F
𝑚 + 𝐺F

𝑚 = 𝐺∨
𝑚 + 𝐺∧

𝑚. (1.14)

In our paper, we also consider the Lorentzian case with the “wrong sign of 𝑚2”.
This case corresponds to the tachyonic Klein–Gordon equation

(−□ − 𝑚2) 𝑓 (𝑥) = 𝑔(𝑥). (1.15)

Remarkably, all four basic Green functions, Feynman 𝐺F
𝑚, anti-Feynman 𝐺F

𝑚, forward
𝐺∨

𝑚, and backward 𝐺∧
𝑚, can be defined in the tachyonic case. For the Feynman and

anti-Feynman Green functions we can still use the formulae (1.6) and (1.7), where
𝑚2 is replaced with −𝑚2. Their interpretation in terms of the vacuum expectation
values is however lost, since the tachyonic theory has no vacuum state. (In particular,
in the tachyonic case we do not have a counterpart of the positive/negative frequency
Green functions (5.40)). The forward and backward Green functions are defined by
their support properties. For them we cannot use the formulae (1.9) and (1.10). In
fact, the set 𝑝2 −𝑚2 = 0 is now connected, and cutting it with sgn 𝑝0 is no longer
invariant. Nevertheless, one can use the analytic continuation in 𝑚 to uniquely define
Green functions with correct support properties also in the tachyonic case. We point
out that the identity (1.14) is no longer true in the tachyonic case.

The difference of two Green functions is a solution of the homogeneous
Helmholtz/Klein–Gordon equation. Certain distinguished solutions are important for
physics applications. In the Lorentzian case, we have the Pauli–Jordan propagator; for
𝑚2 ≥ 0 also the positive frequency and the negative frequency two-point functions.
We illustrate applications of distinguished solutions to the Helmholtz/Klein–Gordon
equation by computing averages of plane waves over the sphere (in the Euclidean
case), as well as over the hyperbolic and de Sitter space (in the Lorentzian case).

Let us say a few words about the history of Bessel potentials. The name Bessel
potentials was introduced in the 60s by Aronszajn and Smith, who studied them in
the Euclidean case in [1]. Around the same time, they were also investigated by
Calderon [2]. Bessel potentials are frequently viewed in the literature as smoothed
versions of Riesz potentials (see, for example, [3] where they are defined using the
integral formula (2.5)). They are often used to define Bessel potential spaces that
generalize standard Sobolev spaces (see [4]), and the idea to use Bessel kernels is due
to Deny [5]. For a comprehensive treatment of (Euclidean) Bessel potentials, we refer
the reader to [1], where many properties of Bessel potentials are exhaustively studied.

The Lorentzian versions of Bessel potentials, typically in dimension 1+3, often
appear in the literature on quantum field theory. They are ingredients of formulae
for scattering amplitudes based on Feynman diagrams and on the Epstein–Glaser
approach [6, 7]. The famous textbooks by Björken–Drell [8] and by Bogoliubov–
Shirkov [9] contain appendices devoted to distinguished Green functions and solutions
of the Klein–Gordon equation in the physical dimension 1+3. They carry various
names. For instance, often the term Green function is replaced by propagator, etc.
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Formulae for Bessel potentials in various signatures are known and are available
in collections of integrals [10, 11]. In Chapter III.2 of [12] one can find Fourier
transforms of powers of quadratic forms with any signature, including the formula
(4.5) of the general case studied in this paper. Although there exists a large
literature about Bessel potentials, our presentation contains several new points, which
we have not seen in the literature and believe are important.

The first new point involves the special functions that we use. Various kinds of
the Bessel equation can be reduced to equation

(𝑧𝜕2
𝑧 + (𝛼 + 1)𝜕𝑧 − 1)𝑣(𝑧) = 0, (1.16)

which can be called the 0𝐹1 hypergeometric equation. Eq. (1.16) has two singular
points: 0 and ∞. The singularity at 0 is regular (Fuchsian), and the solution obtained
by the well-known Frobenius method is the 0𝐹1 hypergeometric function, which we
denote 𝐹𝛼. We usually prefer its Olver normalized version F𝛼 := 𝐹𝛼

Γ (𝛼+1) , closely
related to the Bessel function, both standard and modified.

Another standard solution of the 0𝐹1 equation, corresponding to the irregular
singularity at ∞, is the function that we denote 𝑈𝛼, This function is perhaps less
known. Up to a coefficient, it coincides with the Meĳer 𝐺-function 𝐺

2,0
0,2(−; 0,−𝛼; 𝑧).

The function 𝑈𝛼 is closely related to the Macdonald and Hankel functions.
In our paper, we treat F𝛼 and 𝑈𝛼 functions as basic elements of our description

of Bessel potentials. In our opinion, they are much more convenient for this purpose,
rather than functions from the Bessel family, as it is done in the conventional treatment
of this topic. The corresponding formulae are simpler and more transparent. This is
especially visible when we consider non-Euclidean signatures, where the formulae
involve analytic continuation across two branches and an irregular distribution at
the junction of these branches. The F𝛼 and 𝑈𝛼 functions are also convenient to
see the transition from the Minkowski space to the de Sitter and the universal
cover of the Anti-de Sitter space, as discussed in [13]. In fact, on the Minkowski
space retarded/advanced and Feynman/anti-Feynman Bessel potentials are expressed
in terms of F𝛼 and 𝑈𝛼, and on the de Sitter and Anti-de Sitter space we need
closely related Gegenbauer functions instead.

We also believe that there are some important novel features in our presentation
of the Lorentzian case, which is tailored to the needs of quantum field theory. In
our opinion, it is quite remarkable how rich the theory of Bessel potentials is in
the Lorentzian signature. We have four distinct Lorentz invariant Green functions
of the Klein–Gordon equation, with important applications in physics. If we also
include a few useful distinguished solutions to the Klein–Gordon equation (such
as the Pauli–Jordan propagator, positive and negative frequency solution), then we
obtain a whole menagerie of functions.

In our discussion, we cover not only the massive and massless case, but also
the tachyonic case. This case is quite curious, even though usually ignored in the
physics literature. We also discuss identity (1.14), true for 𝑚2 ≥ 0, but wrong in
the tachyonic case. Remarkably, this identity sometimes, but not always, generalizes
to curved spacetimes, as analyzed recently in [13].
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In our treatment, we pay special attention to the distributional character of Bessel
potentials. This is unproblematic in the Euclidean signature, where Bessel potentials
are given by (locally) integrable functions. This is not the case in non-Euclidean
signatures. In particular, it is interesting to look at the functions F𝛼 and 𝑈𝛼 as
defining distributions on the real line. With this interpretation in mind, well-known
identities have to be reformulated, see e.g. (2.47).

Finally, let us mention that there exists a large literature about Green functions of
the Klein–Gordon equation on curved spacetimes. In the generic context their explicit
expression is not possible, and often instead of exact Green functions one restricts
oneself to parametrices, that is inverses modulo smoothing terms. The existence of
exactly four parametrices that generalize 𝐺F/F and 𝐺∨/∧ is the result of a famous
paper by Duistermaat and Hörmander [14]. It is also remarkable that expansions
similar to (5.34)–(5.37) describe singular parts of these parametrices also in curved
spacetimes, where they can be derived from the Hadamard recursion relations (see
Chapter 4 of [15] or Chapter 2 of [16].) The universality of these singular parts
is an important idea in quantum field theory on curved spacetimes [7].

2. Special functions related to the 0𝐹1 equation

2.1. The 0𝐹1 equation

Our presentation of Bessel potentials will use extensively 0𝐹1 hypergeometric
functions, closely related to functions from the Bessel family. Surprisingly, they
are seldom used and discussed in the literature. Therefore, we devote this section
to a concise exposition of their properties, mostly following [17] and [18]. In
particular, we will treat these functions as distributions on the real line, as explained
in Section 2.5, which leads to useful distributional identities which we have not
seen in the literature.

Let 𝑐 ∈ C. The 0𝐹1 equation is

(𝑧𝜕2
𝑧 + 𝑐𝜕𝑧 − 1)𝑣(𝑧) = 0. (2.1)

If 𝑐 ≠ 0,−1,−2, . . . , then the only solution of the 0𝐹1 equation equal to 1 at 𝑧 = 0
is called the 0𝐹1 hypergeometric function:

𝐹 (𝑐; 𝑧) :=
∞∑︁
𝑗=0

1
(𝑐) 𝑗

𝑧 𝑗

𝑗!
,

where (𝑐) 𝑗 denotes the Pochhammer symbol:

(𝑎)0 = 1,
(𝑎)𝑛 := 𝑎(𝑎 + 1) . . . (𝑎 + 𝑛 − 1), 𝑛 = 1, 2, . . .

(𝑎)𝑛 :=
1

(𝑎 − 𝑛) . . . (𝑎 − 1) , 𝑛 = . . . ,−2,−1.
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𝐹 (𝑐; 𝑧) is defined for 𝑐 ≠ 0,−1,−2, . . . . Sometimes it is more convenient to consider
the function

F(𝑐; 𝑧) :=
𝐹 (𝑐; 𝑧)
Γ(𝑐) =

∞∑︁
𝑗=0

1
Γ(𝑐 + 𝑗)

𝑧 𝑗

𝑗!

defined for all 𝑐. For all parameters, we have an integral representation called the
Schläfli formula

1
2𝜋𝑖

∫
]−∞,0+ ,−∞[

𝑒𝑡𝑒
𝑧
𝑡 𝑡−𝑐𝑑𝑡 = F(𝑐, 𝑧), Re 𝑧 > 0,

where the contour ]−∞, 0+,−∞[ starts at −∞, goes around 0 counterclockwise and
returns to −∞.

Instead of 𝑐 it is often more natural to use 𝛼 := 𝑐 − 1. Thus, we denote

𝐹𝛼 (𝑧) := 𝐹 (𝛼 + 1; 𝑧), F𝛼 (𝑧) := F(𝛼 + 1; 𝑧). (2.2)

The following function is also a solution of the 0𝐹1 Eq. (1.16),

𝑈𝛼 (𝑧) := 𝑒−2
√
𝑧𝑧−

𝛼
2 − 1

4 2𝐹0

(
1
2
+ 𝛼, 1

2
− 𝛼;−;− 1

4
√
𝑧

)
,

where we used the 2𝐹0 function, see e.g. [17, 18]. 𝑈𝛼 is a multivalued function.
When talking about multivalued functions, we will usually consider their principal
branches on the domain C \ ]−∞, 0].

The function 𝑈𝛼 rarely appears in the literature, except as a special case of
Meĳer’s function, see (2.32) below. Typically, it is represented through Macdonald
or Hankel functions, which we describe further in Eqs. (2.35), (2.37), and (2.36).
In our opinion, however, the function 𝑈𝛼 is often more convenient than Macdonald
or Hankel functions.

𝑈𝛼 (𝑧) has a symmetry

𝑈𝛼 (𝑧) = 𝑧−𝛼𝑈−𝛼 (𝑧). (2.3)

Alternatively, the function 𝑈𝛼 can be defined by the integral representations valid
for all 𝛼,

1
√
𝜋

∫ ∞

0
𝑒−𝑡𝑒−

𝑧
𝑡 𝑡−𝛼−1𝑑𝑡 = 𝑈𝛼 (𝑧), Re 𝑧 > 0. (2.4)

For further reference, it is convenient to rewrite (2.4) as follows: For Re (𝑚) > 0,
we have ∫ ∞

0
𝑒−𝑡𝑚

2− 𝑥2
4𝑡 𝑡−𝛼−1𝑑𝑡 =

√
𝜋𝑚2𝛼𝑈𝛼

(
𝑚2𝑥2

4

)
. (2.5)

For Re (𝑚) ≥ 0 (2.5) is still true in the sense of oscillatory integrals. By substituting
𝑥2 ↦→ 𝑒±𝑖

𝜋
2 𝑥2, 𝑚2 ↦→ 𝑒±𝑖

𝜋
2 𝑚2, into (2.5) we obtain a pair of identities valid in terms
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of oscillatory integrals for 𝑚 > 0,∫ ∞

0
𝑒∓𝑖𝑡𝑚

2∓ 𝑥2
4𝑡 𝑡−𝛼−1𝑑𝑡 = 𝑒𝑖

𝜋𝛼
2
√
𝜋𝑚2𝛼𝑈𝛼

(
𝑒±𝑖 𝜋

𝑚2𝑥2

4

)
. (2.6)

As |𝑧 | → ∞ and | arg 𝑧 | < 2𝜋 − 𝜖 , 𝜖 > 0, we have

𝑈𝛼 (𝑧) ∼ exp(−2𝑧
1
2 )𝑧− 𝛼

2 − 1
4 . (2.7)

𝑈𝛼 is the unique solution of (1.16) with this property. (Note that the validity of
(2.7) extends beyond | arg 𝑧 | < 𝜋, that is, beyond the principal sheet of the Riemann
surface.)

We can express 𝑈𝛼 in terms of the solutions of with a simple behaviour at zero

𝑈𝛼 (𝑧) =
√
𝜋

sin 𝜋(−𝛼)F𝛼 (𝑧) +
√
𝜋

sin 𝜋𝛼
𝑧−𝛼F−𝛼 (𝑧). (2.8)

Alternatively, we can use the 𝑈𝛼 function and its analytic continuation around 0 in
the clockwise or anti-clockwise direction as the basis of solutions

F𝛼 (𝑧) =
∓𝑖

2
√
𝜋
(𝑒∓𝑖 𝜋𝛼𝑈𝛼 (𝑧) − 𝑒±𝑖 𝜋𝛼𝑈𝛼 (𝑒±𝑖2𝜋𝑧)). (2.9)

Here is a version of (2.9) adapted to some applications:

F𝛼 (−𝑧) =
𝑖

2
√
𝜋

(
𝑒𝑖 𝜋𝛼𝑈𝛼 (𝑒𝑖 𝜋𝑧) − 𝑒−𝑖 𝜋𝛼𝑈𝛼 (𝑒−𝑖 𝜋𝑧)

)
, (2.10)

𝑧−𝛼F−𝛼 (−𝑧) =
𝑖

2
√
𝜋

(
𝑈𝛼 (𝑒𝑖 𝜋𝑧) −𝑈𝛼 (𝑒−𝑖 𝜋𝑧)

)
. (2.11)

We have the recurrence relations

𝜕𝑧F𝛼 (𝑧) = F𝛼+1(𝑧), (2.12)
(𝑧𝜕𝑧 + 𝛼) F𝛼 (𝑧) = F𝛼−1(𝑧); (2.13)

𝜕𝑧𝑈𝛼 (𝑧) = −𝑈𝛼+1(𝑧), (2.14)
(𝑧𝜕𝑧 + 𝛼)𝑈𝛼 (𝑧) = −𝑈𝛼−1(𝑧). (2.15)

𝛼 = 𝑚 ∈ Z is the degenerate case of the 0𝐹1 equation at 0. We have then

F𝑚(𝑧) =
∑︁

𝑛=max(0,−𝑚)

1
𝑛!(𝑚 + 𝑛)! 𝑧

𝑛.

This easily implies the identity

F𝑚(𝑧) = 𝑧−𝑚F−𝑚(𝑧). (2.16)
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In the degenerate case 𝑈𝛼 (𝑧) needs to be reexpressed using the de l’Hospital formula

𝑈𝑚(𝑧) =
(−1)𝑚+1
√
𝜋

( 𝑚∑︁
𝑘=1

(−1)𝑘−1(𝑘 − 1)!
(𝑚 − 𝑘)! 𝑧−𝑘 +

∞∑︁
𝑗=0

ln(𝑧) − 𝜓( 𝑗 + 𝑚 + 1) − 𝜓( 𝑗 + 1)
𝑗!(𝑚 + 𝑗)! 𝑧 𝑗

)
.

(2.17)
In the degenerate case, the integral representation simplifies yielding the so-called
Bessel integral representation. Besides, we have a generating function

1
2𝜋𝑖

∫
[0+ ]

𝑒𝑡+
𝑧
𝑡 𝑡−𝑚−1𝑑𝑡 = F𝑚(𝑧) = 𝑧−𝑚F−𝑚(𝑧),

𝑒𝑡𝑒
𝑧
𝑡 =

∑︁
𝑚∈Z

𝑡𝑚F𝑚(𝑧).

Above, [0+] denotes the contour encircling 0 in the counterclockwise direction.
In the half-integer case, we can express the 0𝐹1 function in terms of elementary

functions. Indeed,
𝐹− 1

2
(𝑧) = cosh 2

√
𝑧, 𝑈− 1

2
(𝑧) = exp(−2

√
𝑧), (2.18)

𝐹1
2
(𝑧) =

sinh 2
√
𝑧

2
√
𝑧

, 𝑈 1
2
(𝑧) =

exp(−2
√
𝑧)

√
𝑧

, (2.19)

and by the recurrence relations, we have for 𝑘 ∈ N

𝐹− 1
2 −𝑘

(𝑧) = 𝑧𝑘+ 1
2 𝜕𝑘𝑧

(cosh(2√𝑧
)

√
𝑧

)
, (2.20)

𝐹1
2+𝑘

(𝑧) = 𝜕𝑘𝑧
(
sinh(2√𝑧)

2
√
𝑧

)
, (2.21)

𝑈− 1
2 −𝑘

(𝑧) = (−1)𝑘𝑧𝑘+ 1
2 𝜕𝑘𝑧

(
exp(−2

√
𝑧)

√
𝑧

)
, (2.22)

𝑈 1
2+𝑘

(𝑧) = (−1)𝑘𝜕𝑘𝑧
(
exp(−2

√
𝑧)

√
𝑧

)
. (2.23)

2.2. Relationship to confluent functions
Recall that the confluent equation is

(𝑤𝜕2
𝑤 + (𝑐 − 𝑤)𝜕𝑤 − 𝑐) 𝑓 (𝑤) = 0. (2.24)

Its standard solutions are

Kummer’s confluent function 1𝐹1(𝑎; 𝑐;𝑤) :=
∞∑︁
𝑛=0

(𝑎)𝑛
(𝑐)𝑛𝑛!

𝑤𝑛,

and Tricomi’s confluent function 𝑈 (𝑎; 𝑐;𝑤) := 𝑧−𝑎2𝐹0(𝑎, 1 + 𝑎 − 𝑐;−;−𝑤−1).
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The 0𝐹1 equation can be reduced to a special class of the confluent equation
by the so-called Kummer’s 2nd transformation

𝑧𝜕2
𝑧 + (𝛼 + 1)𝜕𝑧 − 1 (2.25)

=
4
𝑤
𝑒−𝑤/2

(
𝑤𝜕2

𝑤 + (2𝛼 + 1 − 𝑤)𝜕𝑤 − 𝛼 − 1
2

)
𝑒𝑤/2, (2.26)

where 𝑤 = ±4
√
𝑧, 𝑧 = 1

16𝑤
2. 𝐹𝛼 and 𝑈𝛼 can be expressed in terms of Kummer’s

and Tricomi’s confluent function as follows:

𝐹𝛼 (𝑧) = 𝑒∓2
√
𝑧
1𝐹1

(
𝛼 + 1

2
, 2𝛼 + 1,±4

√
𝑧

)
, (2.27)

𝑈𝛼 (𝑧) =
𝑒−2

√
𝑧

22𝛼+1𝑈

(
𝛼 + 1

2
, 2𝛼 + 1, 4

√
𝑧

)
. (2.28)

2.3. Relationship to Meĳer G-functions
Solutions of hypergeometric equations 𝑝𝐹𝑞 can be expressed in terms of Meĳer

𝐺-functions [19]. In particular, the 0𝐹1 equation can be solved by two distinguished
functions

𝐺
1,0
0,2

(
0,−𝛼

���� − 𝑧) :=
1

2𝜋𝑖

∫
𝐿1

Γ(−𝑠)𝑒𝑖 𝜋𝑠
Γ(𝛼 + 1 + 𝑠) 𝑧

𝑠𝑑𝑠, (2.29)

𝐺
2,0
0,2

(
0,−𝛼

����𝑧) :=
1

2𝜋𝑖

∫
𝐿2

Γ(−𝑠)Γ(−𝛼 − 𝑠)𝑧𝑠𝑑𝑠. (2.30)

Here, the contour 𝐿1 goes from +∞ to +∞ and encircles N0, and the contour
𝐿2 also goes from +∞ to +∞ and encircles N0 ∪ (N0 − 𝛼), both counterclockwise.
Computing the residues and using the connection formula (2.8) we obtain

F𝛼 (𝑧) = 𝐺1,0
0,2

(
0,−𝛼

���� − 𝑧) , (2.31)

𝑈𝛼 (𝑧) =
1
√
𝜋
𝐺

2,0
0,2

(
0,−𝛼

����𝑧) . (2.32)

2.4. Relationship to Bessel functions
In the literature, the 0𝐹1 equation is seldom used. Much more frequent is the

modified Bessel equation, which is equivalent to the 0𝐹1 equation. It is given by
the operator

𝑧
𝛼
2
(
𝑧𝜕2

𝑧 + (𝛼 + 1)𝜕𝑧 − 1
)
𝑧−

𝛼
2 = 𝜕2

𝑤 + 1
𝑤
𝜕𝑤 − 1 − 𝛼2

𝑤2 ,

where 𝑧 = 𝑤2
4 , 𝑤 = ±2

√
𝑧.
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Even more frequent is the (standard) Bessel equation given by

−𝑧 𝛼
2
(
𝑧𝜕2

𝑧 + (𝛼 + 1)𝜕𝑧 − 1
)
𝑧−

𝛼
2 = 𝜕2

𝑢 +
1
𝑢
𝜕𝑢 + 1 − 𝛼2

𝑢2 ,

where 𝑧 = −𝑢2
4 , 𝑢 = ±2𝑖

√
𝑧. Clearly, we can pass from the modified Bessel to the

Bessel equation by 𝑤 = ±𝑖𝑢.
The function F𝛼 is also seldom used. Instead, one uses the modified Bessel

function and, even more frequently, the Bessel function:

𝐼𝛼 (𝑤) =
(
𝑤

2

)𝛼
F𝛼

(
𝑤2

4

)
, (2.33)

𝐽𝛼 (𝑤) =
(
𝑤

2

)𝛼
F𝛼

(
−𝑤

2

4

)
. (2.34)

They solve the modified Bessel, resp. the Bessel equation.
Instead of the 𝑈𝛼 function one uses the Macdonald function, solving the modified

Bessel equation

𝐾𝛼 (𝑤) =
√
𝜋

2

(
𝑤

2

)𝛼
𝑈𝛼

(
𝑤2

4

)
, (2.35)

and the Hankel functions of the 1st and 2nd kind, solving the Bessel equation:

𝐻
(1)
𝛼 (𝑤) = 𝐻+

𝛼 (𝑤) =
−𝑖
√
𝜋

(
𝑒−𝑖 𝜋𝑤

2

)𝛼
𝑈𝛼

(
𝑒−𝑖 𝜋

𝑤2

4

)
, (2.36)

𝐻
(2)
𝛼 (𝑤) = 𝐻−

𝛼 (𝑤) =
𝑖
√
𝜋

(
𝑒𝑖 𝜋𝑤

2

)𝛼
𝑈𝛼

(
𝑒𝑖 𝜋

𝑤2

4

)
. (2.37)

Here are the relations between various functions from the Bessel family:

𝐻±
𝛼 (𝑧) =

2
𝜋
𝑒∓𝑖

𝜋
2 (𝛼+1)𝐾𝛼 (∓𝑖𝑧), (2.38)

𝐻±
−𝛼 (𝑧) = 𝑒±𝛼𝜋𝑖𝐻±

𝛼 (𝑧), (2.39)

𝐽𝛼 (𝑧) =
1
2
(
𝐻+

𝛼 (𝑧) + 𝐻−
𝛼 (𝑧)

)
, (2.40)

𝐼𝛼 (𝑧) =
1
𝜋

(
∓𝑖𝐾𝛼 (𝑒∓𝑖 𝜋𝑧) ± 𝑖𝑒𝑖 𝜋𝑚𝐾𝛼 (𝑧)

)
. (2.41)

2.5. F𝛼 and 𝑈𝛼 functions as distributions
The function 𝑈𝛼 (𝑧) (and many others that we consider in this paper) are

multivalued analytic functions defined on the Riemann surface of the logarithm. It
has its principal branch on C \ ]−∞, 0]. For its analytic continuation around 0 we
will often use the self-explanatory notation 𝑈𝛼 (𝑒𝑖𝜙𝑧), where 𝑧 ∈ C \ ]−∞, 0] and
𝜙 ∈ R.
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We will often consider 𝑈𝛼 (𝑤) on the real line. For 𝑤 > 0 this is unambiguous.
For 𝑤 < 0 one needs to add ±𝑖0 indicating whether we are infinitesimally above
or below the real line. At 𝑤 = 0 this function has a singularity, which may require
a more careful treatment in terms of distributions (see Appendix A.2 for notation
about some common distributions).

Thus we introduce the distribution on the real line
𝑈𝛼 (𝑤 ± 𝑖0) := lim

𝜖↘0
𝑈𝛼 (𝑤 ± 𝑖𝜖), (2.42)

where the right-hand side should be understood as the limit in the distributional sense.
Note that for 𝑤 ≠ 0 these distributions are regular (in the sense of Appendix A.2)
and given by analytic functions:

𝑈𝛼 (𝑤 ± 𝑖0) = 𝑈𝛼 (𝑤), 𝑤 > 0; (2.43)
𝑈𝛼 (𝑤 ± 𝑖0) = 𝑈𝛼

(
𝑒±𝑖 𝜋 (−𝑤)

)
, 𝑤 < 0. (2.44)

At 𝑤 = 0 these distributions are irregular if Re𝛼 ≥ 1. We can then write 𝑈𝛼 (𝑤± 𝑖0)
as the sum of an irregular and regular part as follows:

𝑈𝛼 (𝑤 ± 𝑖0) = 𝑈sing
𝛼 (𝑤 ± 𝑖0) +𝑈reg

𝛼 (𝑤), (2.45)

𝑈
sing
𝛼 (𝑤 ± 𝑖0) :=

1
√
𝜋

⌊Re 𝛼⌋−1∑︁
𝑗=0

(−1) 𝑗Γ(𝛼 − 𝑗)
𝑗!

(𝑤 ± 𝑖0) 𝑗−𝛼. (2.46)

This easily follows from (2.8) and (2.17).
Recall that for 𝛼 ∉ N the symbol 𝑤−𝛼

− defined in (A.9) denotes the standard
regularization of |𝑤 |−𝛼𝜃 (−𝑤). The identity (2.11) for 𝑤 ∈ R\ {0} can be rewritten as

𝑤−𝛼
− F−𝛼 (𝑤) :=

𝑖

2
√
𝜋
(𝑈𝛼 (𝑤 + 𝑖0) −𝑈𝛼 (𝑤 − 𝑖0)) . (2.47)

(Note that both sides of (2.47) are zero for 𝑤 > 0.) It is easy to see that for
𝛼 ∉ N (2.47) is a correct distributional identity, where the l.h.s. is the product
of the distribution 𝑤−𝛼

− and of the smooth function F−𝛼 (𝑤), whereas the r.h.s. is
a linear combination of distributions defined in (2.42). (2.47) can be decomposed
into a singular and regular part as follows,

𝑤−𝛼
− F−𝛼 (𝑤) =

⌊Re 𝛼⌋−1∑︁
𝑗=0

𝑤−𝛼+ 𝑗
− (−1) 𝑗

Γ(−𝛼 + 𝑗 + 1) 𝑗! +
∞∑︁

𝑗=⌊Re 𝛼⌋

𝑤−𝛼+ 𝑗
− (−1) 𝑗

Γ(−𝛼 + 𝑗 + 1) 𝑗! (2.48)

The r.h.s. of (2.47) is well defined also for 𝛼 ∈ N. We will define for such 𝛼 the
symbol on the l.h.s. of (2.47) by the r.h.s. Using (A.14) for 𝛼 ∈ N we can thus write

𝑤−𝛼
− F−𝛼 (𝑤) = (−1)𝛼+1

𝛼−1∑︁
𝑗=0

(−1) 𝑗𝛿 (𝛼−1− 𝑗 ) (𝑤)
𝑗!

+ (−1)𝛼F𝛼 (𝑤)𝜃 (−𝑤). (2.49)

(Compare with (2.16), where you do not see the distributions supported at zero).
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Of course, in the context described in this subsection, the distribution 𝑈𝛼 (𝑤± 𝑖0)
defined as in (2.42) can be also expressed in terms of 𝐾𝛼 and 𝐻±

𝛼, where we
would have to treat

√
𝑤, resp.

√
−𝑤 with 𝑤 ∈ R as their arguments. It is then

important to indicate precisely how the analytic continuation of the square root is
performed—whether we bypass the branch point at zero from above or from below,
adding ±𝑖0 to the variable:

𝐾𝛼

(√
𝑤 ∓ 𝑖0

)
:=


𝐾𝛼

(√
𝑤
)
, 𝑤 > 0,

𝐾𝛼 (∓𝑖
√
−𝑤

)
= ±𝑖 𝜋

2
𝑒±𝑖 𝜋𝛼𝐻±

𝛼

(√
−𝑤

)
, 𝑤 < 0;

(2.50a)

𝐻±
𝛼

(√
−𝑤 ± 𝑖0

)
:=


𝐻±

𝛼

(
± 𝑖

√
𝑤
)
= ∓𝑖 2

𝜋
𝑒∓𝑖 𝜋𝛼𝐾𝛼

(√
𝑤
)
, 𝑤 > 0,

𝐻±
𝛼

(√
−𝑤

)
, 𝑤 < 0.

(2.50b)

We believe, however, that it is more convenient in such situations to use the function
𝑈𝛼. Indeed, we have

𝑈𝛼

(
𝑤 ∓ 𝑖0

4

)
=


2𝛼+1
√
𝜋
(𝑤 ∓ 𝑖0)− 𝛼

2 𝐾𝛼

(√
𝑤 ∓ 𝑖0

)
,

±𝑖2𝛼
√
𝜋(𝑤 ∓ 𝑖0)− 𝛼

2 𝐻±
𝛼

(√
−𝑤 ± 𝑖0

)
.

(2.51)

3. Euclidean and anti-Euclidean signature
This section is devoted to Bessel potentials on the Euclidean space R𝑑 . |𝑥 | :=

√
𝑥2

will denote the Euclidean norm of 𝑥 ∈ R𝑑 .
In this section, we will provide various expressions both in terms of the Bessel

family functions 𝐼𝛼, 𝐽𝛼, 𝐾𝛼, 𝐻
±
𝛼, as well as in terms of the hypergeometric functions

𝐹𝛼,𝑈𝛼.

3.1. General exponents—Euclidean case
Consider first the Euclidean signature. For 𝑚 > 0 and Re 𝜇 > 0 the function
1

(𝑝2+𝑚2 )
𝜇
2

defines a tempered distribution, hence one can compute its Fourier transform.

Theorem 1. Let 𝑚 > 0.

𝐺𝜇,𝑚(𝑥) =
∫

𝑒𝑖 𝑝𝑥

(𝑝2 + 𝑚2)
𝜇
2

𝑑𝑝

(2𝜋)𝑑 (3.1)

=
2

Γ( 𝜇2 ) (4𝜋)
𝑑
2

(
|𝑥 |
2𝑚

) 𝜇−𝑑
2
𝐾 𝑑−𝜇

2
(𝑚 |𝑥 |) (3.2)

=

√
𝜋𝑚𝑑−𝜇

Γ( 𝜇2 ) (4𝜋)
𝑑
2
𝑈 𝑑−𝜇

2

(
𝑚2𝑥2

4

)
. (3.3)
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Proof : By (A.1),

1
(2𝜋)𝑑

∫
𝑒𝑖 𝑝𝑥𝑑𝑝

(𝑚2 + 𝑝2)
𝜇
2

(3.4)

=
1

(2𝜋)𝑑Γ( 𝜇2 )

∫ ∞

0
𝑑𝑠

∫
𝑑𝑝𝑠

𝜇
2 −1𝑒−(𝑚2+𝑝2 )𝑠𝑒𝑖 𝑝𝑥 (3.5)

=
1

(4𝜋) 𝑑2 Γ( 𝜇2 )

∫ ∞

0
𝑑𝑠𝑠

𝜇
2 − 𝑑

2 −1𝑒−𝑚
2𝑠− 𝑥2

4𝑠 (3.6)

Then we use (2.5). □

Note that the integrand of (3.1) is integrable for Re 𝜇 > 𝑑. Therefore, 𝐺𝜇,𝑚 is
bounded for such 𝜇. For instance,

𝐺𝜇,𝑚(0) =
1

(2𝜋)𝑑

∫
𝑑𝑝

(𝑝2 + 𝑚2)
𝜇
2
=
𝑚𝑑−𝜇Γ( 𝜇−𝑑2 )

(4𝜋) 𝑑2 Γ( 𝜇2 )
, Re 𝜇 > 𝑑. (3.7)

3.2. General exponents—massless case

For 0 < Re 𝜇 < 𝑑 the following function is in 𝐿1
loc(R

𝑑) and is bounded at infinity,
hence it defines a regular distribution in S′(R𝑑),

𝐺𝜇,0(𝑥) :=
∫

𝑒𝑖 𝑝𝑥

|𝑝 |𝜇
𝑑𝑝

(2𝜋)𝑑 (3.8)

=
Γ( 𝑑−𝜇2 )

Γ( 𝜇2 ) (4𝜋)
𝑑
2

(
|𝑥 |
2

)𝜇−𝑑
. (3.9)

It is called the Riesz potential, and it is the massless limit of Bessel potentials.

Theorem 2. Let 0 < Re 𝜇 < 𝑑. Then

𝐺𝜇,0(𝑥) = lim
𝑚→0

𝐺𝜇,𝑚(𝑥) (3.10)

in the sense of S′(R𝑑).

Proof : One can prove this fact in the position space, see Subsection 4.2, where
we give a proof in the case of a general signature. Instead, in this section we
describe a proof based on the momentum space.

For 0 < 𝜇 < 𝑑, |𝑝 |−𝜇 is a regular distribution. By using the Dominated
Convergence Theorem we see that the pointwise limit

lim
𝑚→0

(𝑝2 + 𝑚2)−
𝜇
2 = |𝑝 |−𝜇 (3.11)



BESSEL POTENTIALS AND GREEN FUNCTIONS ON PSEUDO-EUCLIDEAN SPACES 33

is a limit in the sense of S′(R𝑑). The Fourier transformation is a continuous
operator on S′(R𝑑). Therefore, for considered 𝜇, (3.10) is true. □

3.3. General exponent—anti-Euclidean case

Suppose now the scalar product is negative definite. For 𝑚2 > 0, the function
1

(−𝑝2+𝑚2 )
𝜇
2

does not define uniquely a distribution, therefore one cannot compute

its Fourier transform. However, if 𝑚2 ∈ C \ [0,∞[, then 1

(−𝑝2+𝑚2 )
𝜇
2

is a tempered

distribution, and one can take its limit from above or below in the distributional
sense,

1

(−𝑝2 + 𝑚2 ± 𝑖0)
𝜇
2

:= lim
𝜖↘0

1

(−𝑝2 + 𝑚2 ± 𝑖𝜖)
𝜇
2
. (3.12)

Thus we obtain two kinds of Bessel potentials in the anti-Euclidean case.

Theorem 3.

𝐺
F/F
𝜇,𝑚(𝑥) =

∫
𝑒𝑖 𝑝𝑥

(−𝑝2 + 𝑚2 ∓ 𝑖0)
𝜇
2

𝑑𝑝

(2𝜋)𝑑 (3.13)

=
∓𝑖(±𝑖)𝑑𝜋
Γ( 𝜇2 ) (4𝜋)

𝑑
2

(
|𝑥 |
2𝑚

) 𝜇−𝑑
2
𝐻∓

𝜇−𝑑
2

(𝑚 |𝑥 |) (3.14)

=
∓𝑖𝑒±𝑖

𝜋𝜇
2 𝜋

Γ( 𝜇2 ) (4𝜋)
𝑑
2

(
|𝑥 |
2𝑚

) 𝜇−𝑑
2
𝐻∓

𝑑−𝜇
2

(𝑚 |𝑥 |). (3.15)

=
𝑒±𝑖 𝜋

𝑑
2
√
𝜋𝑚𝑑−𝜇

Γ( 𝜇2 ) (4𝜋)
𝑑
2
𝑈 𝑑−𝜇

2

(
𝑒±𝑖 𝜋𝑚2𝑥2

4

)
. (3.16)

Proof : Using (A.2) and then (2.5) we obtain (3.16). □

Note that the Euclidean Bessel potential 𝐺𝜇,𝑚 is well defined not only for 𝑚 ≥ 0,
but also for Re (𝑚) > 0, which guarantees 𝑚2 ∈ C \ ]−∞, 0]. Taking the limit at the
imaginary line we can express the anti-Euclidean Bessel potential in terms of the
Euclidean one,

𝐺
F/F
𝜇,𝑚(𝑥) = 𝑒∓𝑖 𝜋

𝜇
2 𝐺𝜇,±𝑖𝑚(𝑥). (3.17)

3.4. Green functions of the Helmholtz equation

Bessel potentials with 𝜇 = 2 are Green functions of the Helmholtz equation

(−𝐸 − Δ) 𝑓 (𝑥) = 𝑔(𝑥). (3.18)

More precisely, the Green function for −𝐸 = 𝑚2 is



34 J. DEREZIŃSKI and B. SIKORSKI

𝐺𝑚(𝑥) :=
∫

𝑒𝑖 𝑝𝑥

(𝑝2 + 𝑚2)
𝑑𝑝

(2𝜋)𝑑 (3.19)

=
1

(2𝜋) 𝑑2

(
|𝑥 |
𝑚

)1− 𝑑
2
𝐾 𝑑

2 −1(𝑚 |𝑥 |) (3.20)

=

√
𝜋𝑚𝑑−2

(4𝜋) 𝑑2
𝑈 𝑑

2 −1

(
𝑚2𝑥2

4

)
, (3.21)

and for −𝐸 = −𝑚2 we have two distinguished Green functions:

𝐺∓𝑖𝑚(𝑥) =
∫

𝑒𝑖𝑥 𝑝

(𝑝2 − 𝑚2 ∓ 𝑖0)
𝑑𝑝

(2𝜋)𝑑 (3.22)

= ± 𝑖
4

(
𝑚

2𝜋 |𝑥 |

) 𝑑
2 −1

𝐻±
𝑑
2 −1

(𝑚 |𝑥 |) (3.23)

= −(−𝑖)𝑑
√
𝜋𝑚𝑑−2

(4𝜋) 𝑑2
𝑈 𝑑

2 −1

(
−𝑚

2(𝑥2 ± 𝑖0)
4

)
. (3.24)

𝐺∓𝑖𝑚(𝑥) coincide with the case 𝜇 = 2 of the anti-Euclidean Bessel potential (3.13)
multiplied by −1.

3.5. Averages of plane waves on sphere
Consider the sphere in R𝑑 of radius 𝑚, denoted S𝑑−1

𝑚 = S𝑚. Let 𝑑Ω𝑚 be the
natural measure on S𝑚. As an application of Bessel potentials, we will compute the
Fourier transform of the measure on S𝑚.

Theorem 4. ∫
S𝑚

𝑒𝑖 𝑝𝑥𝑑Ω𝑚(𝑝) = 2𝑚𝑑−1𝜋
𝑑
2 F 𝑑

2 −1

(
−𝑚

2𝑥2

4

)
(3.25)

= 𝑚𝑑−1(2𝜋) 𝑑2 (𝑚 |𝑥 |)1− 𝑑
2 𝐽 𝑑

2 −1(𝑚 |𝑥 |). (3.26)

Proof : By the Sochocki–Plemejl formula we have

𝛿( |𝑝 | − 𝑚) = 2𝑚𝛿(𝑝2 − 𝑚2) = 2𝑚
2𝜋𝑖

(
1

𝑝2 − 𝑚2 − 𝑖0 − 1
𝑝2 − 𝑚2 + 𝑖0

)
. (3.27)

Therefore,∫
S𝑚

𝑒𝑖 𝑝𝑥Ω𝑚(𝑝) =
∫

𝑒𝑖 𝑝𝑥𝛿( |𝑝 | − 𝑚)𝑑𝑝 (3.28)

=
2𝑚
2𝜋𝑖

∫
𝑒𝑖 𝑝𝑥

(
1

𝑝2 − 𝑚2 − 𝑖0 − 1
𝑝2 − 𝑚2 + 𝑖0

)
𝑑𝑝 (3.29)
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=
𝑚(2𝜋)𝑑
𝜋𝑖

(𝐺−𝑖𝑚(𝑥) − 𝐺𝑖𝑚(𝑥)) (3.30)

= 𝑚𝑑−1𝜋
𝑑−1

2

(
(−𝑖)𝑑−1𝑈 𝑑

2 −1

(
𝑒−𝑖 𝜋𝑚2𝑥2

4

)
− 𝑖𝑑−1𝑈 𝑑

2 −1

(
𝑒𝑖 𝜋𝑚2𝑥2

4

))
(3.31)

= 2𝑚𝑑−1𝜋
𝑑
2 F 𝑑

2 −1

(
−𝑚

2𝑥2

4

)
, (3.32)

where at the end we used (2.10). □

Consider a radial function R𝑑 ∋ 𝑝 ↦→ 𝑓 ( |𝑝 |). Its Fourier transform is also radial.
(3.25) yields the identity∫

𝑓 ( |𝑝 |)𝑒−𝑖 𝑝𝑥𝑑𝑝 = 2𝜋
𝑑
2

∫ ∞

0
𝑓 (𝑘)F 𝑑

2 −1

(
− 𝑘

2𝑥2

4

)
𝑘𝑑−1𝑑𝑘 (3.33)

= (2𝜋) 𝑑2
∫ ∞

0
𝑓 (𝑘)𝐽 𝑑

2 −1(𝑘 |𝑥 |) (𝑘 |𝑥 |)
− 𝑑

2 +1𝑘𝑑−1𝑑𝑘, (3.34)

where 𝑘 = |𝑝 | has the meaning of the length of 𝑝.
Using F− 1

2
(−𝑧) =

cos 2
√
𝑧√

𝜋
and F 1

2
(−𝑧) =

sin 2
√
𝑧√

𝜋𝑧
we obtain the low dimensional

cases of (3.33):∫
𝑓 ( |𝑝 |)𝑒−𝑖 𝑝𝑥𝑑𝑝 = 2

∫ ∞

0
𝑓 (𝑘) cos(𝑘 |𝑥 |)𝑑𝑘, 𝑑 = 1; (3.35)

= 2𝜋
∫ ∞

0
𝑓 (𝑘)F0

(
− 𝑘

2𝑥2

4

)
𝑑𝑘 = 2𝜋

∫ ∞

0
𝑓 (𝑘)𝑘𝐽0(𝑘 |𝑥 |)𝑑𝑘, 𝑑 = 2; (3.36)

= 4𝜋
∫ ∞

0
𝑓 (𝑘)𝑘2 sin(𝑘 |𝑥 |)

𝑘 |𝑥 | 𝑑𝑘, 𝑑 = 3. (3.37)

3.6. Integral representations of the 𝑈𝛼 function
As an illustration of the usefulness of (3.33), we will derive a certain integral

representation of 𝑈𝛼.
Applying (3.33) to (3.3) we obtain

2
∫ ∞

0

𝑘𝑑−1𝑑𝑘

(𝑘2 + 1)
𝜇
2

F 𝑑
2 −1

(
−𝑟

2𝑘2

4

)
=

√
𝜋

Γ( 𝜇2 )
𝑈 𝑑−𝜇

2

(
𝑟2

4

)
. (3.38)

Specifying 𝑑 = 1 and 𝑑 = 3 we obtain

2
∫ ∞

0

cos(𝑘𝑟)
(𝑘2 + 1)

𝜇
2
𝑑𝑘 =

√
𝜋

Γ( 𝜇2 )
𝑈 1−𝜇

2

(
𝑟2

4

)
, (3.39)

4
∫ ∞

0

𝑘 sin(𝑘𝑟)
(𝑘2 + 1)

𝜇
2 𝑟
𝑑𝑘 =

√
𝜋

Γ( 𝜇2 )
𝑈 3−𝜇

2

(
𝑟2

4

)
. (3.40)

(3.40) could be also deduced from (3.39) by differentiating wrt 𝑟 and using
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the recurrence relation (2.14). Setting 𝛼 =
𝜇−1

2 in (3.39), we obtain the Poisson
representation of the 𝑈𝛼 function,

𝑈𝛼

(
𝑟2

4

)
=

Γ( 1
2 − 𝛼)
√
𝜋

∫ ∞

−∞
𝑒−𝑖𝑘𝑟 (𝑘2 + 1)𝛼− 1

2 𝑑𝑘, 𝛼 < 0. (3.41)

4. General signature
4.1. Positive mass

Consider now a pseudo-Euclidean space of general signature R𝑞,𝑑−𝑞. 1

(𝑝2+𝑚2 )
𝜇
2

no longer defines a tempered distribution in the general signature. Just as in the
anti-Euclidean case, there are two natural regularizations of this function,

1

(𝑝2 + 𝑚2 ± 𝑖0)
𝜇
2

:= lim
𝜖↘0

1

(𝑝2 + 𝑚2 ± 𝑖𝜖)
𝜇
2
. (4.1)

They lead to two kinds of the Bessel potential.
Theorem 5. Let 𝑚 > 0 (or more generally Re (𝑚) > 0). Then

𝐺
F/F
𝜇,𝑚(𝑥) =

∫
𝑒𝑖 𝑝𝑥

(𝑚2 + 𝑝2 ∓ 𝑖0)
𝜇
2

𝑑𝑝

(2𝜋)𝑑 (4.2)

=
2(±𝑖)𝑞

Γ( 𝜇2 ) (4𝜋)
𝑑
2

(√
𝑥2 ± 𝑖0
2𝑚

) 𝜇−𝑑
2
𝐾 𝑑−𝜇

2

(√︁
𝑚2(𝑥2 ± 𝑖0)

)
(4.3)

= ∓ 𝜋𝑖(±𝑖)𝑞

Γ( 𝜇2 ) (4𝜋)
𝑑
2

(√
𝑥2 ± 𝑖0
2𝑚

) 𝜇−𝑑
2
𝐻∓

𝜇−𝑑
2

(√︁
𝑚2(−𝑥2 ∓ 𝑖0)

)
(4.4)

=
(±𝑖)𝑞

√
𝜋𝑚𝑑−𝜇

Γ( 𝜇2 ) (4𝜋)
𝑑
2
𝑈 𝑑−𝜇

2

(
𝑚2(𝑥2 ± 𝑖0)

4

)
. (4.5)

Remark 1. In (4.3) and (4.4) we use the notation explained in (2.50a) and
(2.50b). Note that (4.3) works best for 𝑥2 > 0, because then we can ignore ±𝑖0.
Likewise, (4.4) is best suited for 𝑥2 < 0, because then we can ignore ∓𝑖0.

Anyway, in our opinion the expression in terms of 𝑈𝛼, (4.5), is preferable.
Proof of Theorem 5. Using (A.2) and (A.4) we obtain

1
(2𝜋)𝑑

∫
𝑒𝑖 𝑝𝑥𝑑𝑝

(𝑚2 + 𝑝2 ∓ 𝑖0)
𝜇
2
=

𝑒±𝑖
𝜋𝜇
4

(2𝜋)𝑑Γ( 𝜇2 )

∫ ∞

0
𝑑𝑡

∫
𝑑𝑝𝑒∓𝑖𝑡 (𝑚

2+𝑝2 ) 𝑡
𝜇
2 −1𝑒𝑖 𝑝𝑥

=
(±𝑖)𝑞𝑒±𝑖 𝜋2 ( 𝜇−𝑑2 )𝜋

𝑑
2

(4𝜋) 𝑑2 Γ( 𝜇2 )

∫ ∞

0
𝑑𝑡𝑒∓𝑖 (𝑡𝑚

2− 𝑥2
4𝑡 ) 𝑡

𝜇−𝑑
2 −1. (4.6)

Then we apply (2.6). □
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4.2. Zero mass
For 0 < Re 𝜇 < 𝑑 let us introduce two distributions in S′

𝐺
F/F
𝜇,0 (𝑥) :=

∫
𝑒𝑖 𝑝𝑥

(𝑝2 ∓ 𝑖0)
𝜇
2

𝑑𝑝

(2𝜋)𝑑 (4.7)

=
(±𝑖)𝑞Γ( 𝑑−𝜇2 )

Γ( 𝜇2 ) (4𝜋)
𝑑
2

(
𝑥2 ± 𝑖0

4

) 𝜇−𝑑
2
. (4.8)

They will be called Feynman/anti-Feynman Riesz potentials. They are massless limits
of the corresponding Bessel potentials.

Theorem 6. For 0 < Re 𝜇 < 𝑑 we have

𝐺
F/F
𝜇,0 (𝑥) = lim

𝑚↘0
𝐺

F/F
𝜇,𝑚(𝑥) (4.9)

in the sense of S′.
Proof : Surprisingly, a momentum space proof, from the Euclidean case, seems

to be difficult to generalize to the non-Euclidean case. Instead, we will present
a proof in the position space.

Using the decomposition (2.45) of the function 𝑈𝛼, we can write

𝐺𝜇,𝑚(𝑥) =
(±𝑖)𝑞

Γ( 𝜇2 ) (4𝜋)
𝑑
2

( ⌊Re 𝑑−𝜇
2 ⌋−1∑︁
𝑗=0

(−1) 𝑗𝑚 𝑗Γ( 𝑑−𝜇2 − 𝑗)
𝑗!

(
(𝑥2 ± 𝑖0)

4

) 𝑗− 𝑑−𝜇
2

(4.10)

+ 𝑚𝑑−𝜇𝑈
reg
𝑑−𝜇

2

(
𝑚2(𝑥2 ± 𝑖0)

4

))
. (4.11)

The line (4.10) obviously converges to (4.8). By (2.7), 𝑈reg
𝑑−𝜇

2
is a continuous function

of a polynomial growth at infinity. Therefore, the second line (4.11) converges to
zero in S′. □

Note that as a consequence of the above theorem and of the continuity of the
Fourier transformation on S′(R𝑑) we can infer that

lim
𝑚↘0

1

(𝑝2 + 𝑚2 ∓ 𝑖0)
𝜇
2
=

1

(𝑝2 ∓ 𝑖0)
𝜇
2

(4.12)

in the sense of S′.

4.3. Scaling degree of distributions
Let us start by defining the action of a dilation by 𝜆 on a distribution 𝑇 (𝑥) as

𝑇𝜆(𝑥) = 𝑇 (𝜆𝑥), by which we mean the dual action to the dilation on test functions

⟨𝑇𝜆 | 𝑓 ⟩ =
∫
𝑇 (𝜆𝑥) 𝑓 (𝑥)𝑑𝑥 = 𝜆−𝑑

∫
𝑇 (𝑥) 𝑓 (𝜆−1𝑥)𝑑𝑥. (4.13)
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Given a distribution 𝑇 ∈ D′(R𝑑), we define its scaling degree sd(𝑇) as

sd(𝑇) = inf
{
𝜔 : lim

𝜆↘0
𝜆𝜔𝑇𝜆 = 0 in D′(R𝑑)

}
. (4.14)

The scaling degree of a distribution is often used in mathematical analysis of
quantum field theory [6, 7].

Let us compute the scaling degree of Bessel potentials.

Theorem 7.
sd𝐺F/F

𝑚,𝜇 =

{
𝑑 − 𝜇, 0 < 𝜇 ≤ 𝑑,

0, 𝑑 ≤ 𝜇.
(4.15)

Proof : For 0 < 𝜇 < 𝑑, the Riesz potentials 𝐺F/F
𝜇,0 defined in (4.8) are homogeneous,

𝐺
F/F
𝜇,0 (𝜆𝑥) = 𝜆

𝜇−𝑑𝐺F/F
𝜇,0 (𝑥). (4.16)

So sd𝐺F/F
𝜇,0 = 𝑑 − 𝜇.

By the definition of the Bessel potential, the mass dependence is (1.2),
𝐺𝜇,𝑚(𝜆𝑥) = 𝜆𝜇−𝑑𝐺𝜇,𝜆𝑚(𝑥), (4.17)

so, according to Theorem 6,
lim
𝜆↘0

𝜆𝑑−𝜇𝐺𝜇,𝑚(𝜆𝑥) = lim
𝜆↘0

𝐺𝜇,𝜆𝑚(𝑥) = 𝐺𝜇,0(𝑥), (4.18)

which shows that sd𝐺F/F
𝜇,𝑚 = 𝑑 − 𝜇 for any mass 𝑚 and 0 < 𝜇 < 𝑑.

For 𝑑 < 𝜇, 𝐺𝐹/F
𝑚 is a continuous bounded function, so its scaling degree is 0.

For 𝑑 = 𝜇, we have

𝐺𝑑,𝑚(𝑥) =
(±𝑖)𝑞

√
𝜋𝑚𝑑−𝜇

Γ( 𝑑2 ) (4𝜋)
𝑑
2
𝑈0

(
𝑚2(𝑥2 ± 𝑖0)

4

)
. (4.19)

Now, we can use the bound (2.7) and the expansion (2.17),

|𝑈0(𝑧 ± 𝑖0) | ≤ 𝐶 |𝑧 |−
1
4 , 𝑧 ∈ R, |𝑧 | > 1, (4.20)

𝑈0(𝑧 ± 𝑖0) = ln(𝑧 ± 𝑖0)F0(𝑧) + 𝐻 (𝑧), (4.21)
where 𝐻 is an entire function, just as F0. Using this we easily show that for 𝜔 > 0,

𝜆𝜔𝐺𝑑,𝑚(𝜆𝑥) → 0 (4.22)
in the sense of S′. □

5. The Minkowski signature
The Lorentzian signature is especially important, both because of its physical

relevance and rich mathematical properties. The spaces R1,𝑑−1 and R𝑑−1,1 are two
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kinds of a Minkowski space, that is, a pseudo-Euclidean space with a Lorentzian
signature. We will treat R1,𝑑−1 as the standard form of a Minkowski space. 𝑥0

will denote the first coordinate of R1,𝑑−1, which we assume to be timelike (having
a negative coefficient in the scalar product). The remaining, spacelike coordinates
will be denoted ®𝑥, so that 𝑥 = (𝑥0, ®𝑥). In other words,

𝑥2 = −(𝑥0)2 + ®𝑥2 = −(𝑥0)2 + (𝑥1)2 + · · · + (𝑥𝑑−1)2. (5.1)

The future and the past light cone will be denoted

𝐽∨ := {𝑥 ∈ R1,𝑑−1 : 𝑥2 ≤ 0, 𝑥0 ≥ 0},
𝐽∧ := {𝑥 ∈ R1,𝑑−1 : 𝑥2 ≤ 0, 𝑥0 ≤ 0}.

In this section, we will only use the hypergeometric functions F𝛼,𝑈𝛼.

5.1. General exponent
Let 𝑚 > 0. The set 𝑚2+ 𝑝2 consists of two connected components: the future and

the past mass hyperboloid. Therefore, the following four regularizations of 1

(𝑚2+𝑝2 )
𝜇
2

are tempered distributions invariant wrt the orthochronous Lorentz group,
1

(𝑚2 + 𝑝2 ± 𝑖0)
𝜇
2
,

1

(𝑚2 + 𝑝2 ± 𝑖0sgn 𝑝0)
𝜇
2
. (5.2)

Their inverse Fourier transforms define four kinds of Bessel potentials:

𝐺
F/F
𝜇,𝑚(𝑥) :=

∫
𝑒𝑖 𝑝𝑥

(𝑚2 + 𝑝2 ∓ 𝑖0)
𝜇
2

𝑑𝑝

(2𝜋)𝑑 (5.3)

𝐺
∨/∧
𝜇,𝑚(𝑥) :=

∫
𝑒𝑖 𝑝𝑥

(𝑚2 + 𝑝2 ∓ 𝑖0sgn 𝑝0)
𝜇
2

𝑑𝑝

(2𝜋)𝑑 . (5.4)

By the following well-known argument, found e.g. in various standard textbooks
on quantum field theory, we can show that 𝐺∨/∧

𝜇,𝑚 have causal supports.

Theorem 8. supp𝐺∨/∧
𝜇,𝑚 ⊂ 𝐽∨/∧.

Proof : For definiteness, consider (5.4) with the minus sign. In order to prove
that its support is contained in 𝐽∨, by the Lorentz invariance it suffices to prove
that it is zero for 𝑥0 < 0. We write∫

𝑒𝑖 𝑝𝑥𝑑𝑝

(𝑝2 + 𝑚2 − 𝑖0sgn 𝑝0)
𝜇
2
=

∫
𝑒−𝑖 𝑝

0𝑥0+𝑖 ®𝑝 ®𝑥𝑑𝑝0𝑑 ®𝑝(
®𝑝2 + 𝑚2 − (𝑝0 + 𝑖0)2

) 𝜇
2
.

Next, we continuously deform the contour of integration, replacing 𝑝0+ 𝑖0 by 𝑝0+ 𝑖𝑅,
where 𝑅 ∈ [0,∞[. We do not cross any singularities of the integrand and note that
𝑒−𝑖𝑥

0 (𝑝0+𝑖𝑅) goes to zero (remember that 𝑥0 < 0). □
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Theorem 9. We have the identity

𝐺F
𝜇,𝑚(𝑥) + 𝐺F

𝜇,𝑚(𝑥) = 𝐺∨
𝜇,𝑚(𝑥) + 𝐺∧

𝜇,𝑚(𝑥). (5.5)
Here are the expressions for the Bessel potentials in the position space:

𝐺
F/F
𝜇,𝑚(𝑥) =

±𝑖
√
𝜋𝑚𝑑−𝜇

Γ( 𝜇2 ) (4𝜋)
𝑑
2
𝑈 𝑑−𝜇

2

(
𝑚2(𝑥2 ± 𝑖0)

4

)
, (5.6)

𝐺
∨/∧
𝜇,𝑚(𝑥) = 𝜃 (±𝑥0) 2𝜋

Γ( 𝜇2 ) (4𝜋)
𝑑
2

(
𝑥2
4
) 𝜇−𝑑

2
− F 𝜇−𝑑

2

(
𝑚2𝑥2

4

)
. (5.7)

where in (5.7) we used the notation introduced in (2.47).
Formula (5.7) involves the multiplication of a distribution by a discontinuous

function, which in general is not well defined. At the end of this subsection we
explain how this formula can be correctly interpreted.

Proof : The identity (5.5) follows immediately from the defining formulae, that
is from (5.3) and (5.4).

(5.6) is a special case of (4.5). Using (5.6) and (5.7) we obtain a simple
expression for the sum of two Bessel potentials,

𝐺∨
𝜇,𝑚(𝑥) + 𝐺∧

𝜇,𝑚(𝑥) =
−𝑖
√
𝜋𝑚𝑑−𝜇

Γ( 𝜇2 ) (4𝜋)
𝑑
2

(
𝑈 𝑑−𝜇

2

(
𝑚2𝑥2 − 𝑖0

4

)
−𝑈 𝑑−𝜇

2

(
𝑚2𝑥2 + 𝑖0

4

))
(5.8)

=
2𝜋

Γ( 𝜇2 ) (4𝜋)
𝑑
2

(
𝑥2
4
) 𝜇−𝑑

2
− F 𝜇−𝑑

2

(
𝑚2𝑥2

4

)
, (5.9)

where again we used the notation introduced in (2.47). (5.9) is clearly supported in
𝐽∧ ∪ 𝐽∨. By Theorem 8, we know that 𝐺∨/∧

𝜇,𝑚 are supported in 𝐽∨/∧. Thus to find
expressions for 𝐺∨/∧

𝜇,𝑚 we need to “split the distribution” (5.9) into two terms, one
supported in 𝐽∨ and the other in 𝐽∧.

Using Proposition 1 to justify the multiplication of a distribution (5.9) by the
(discontinuous) function 𝜃 (±𝑥0), we can define

𝐺̃
∨/∧
𝜇,𝑚(𝑥) = 𝜃 (±𝑥0) 2𝜋

Γ( 𝜇2 ) (4𝜋)
𝑑
2

(
𝑥2
4
) 𝜇−𝑑

2
− F 𝜇−𝑑

2

(
𝑚2𝑥2

4

)
. (5.10)

Clearly, 𝐺̃∨/∧
𝜇,𝑚 are supported in 𝐽∨/∧. Besides,

𝐺∨
𝜇,𝑚(𝑥) + 𝐺∧

𝜇,𝑚(𝑥) = 𝐺̃∨
𝜇,𝑚(𝑥) + 𝐺̃∧

𝜇,𝑚(𝑥). (5.11)

But 𝐽∨ ∩ 𝐽∧ = {0}. Therefore, 𝐺∨/∧
𝜇,𝑚 − 𝐺̃∨/∧

𝜇,𝑚 is a distribution supported in {0}, that
is, a linear combination of 𝛿 (𝛼) (𝑥),

𝐵
∨/∧
𝜇,𝑚 := 𝐺∨/∧

𝜇,𝑚 − 𝐺̃∨/∧
𝜇,𝑚 =

∑︁
|𝛼 |<𝑛

𝑐
∨/∧
𝛼,𝑚𝛿

(𝛼) (𝑥). (5.12)
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Eq. (5.11) implies 𝐵∨
𝜇,𝑚(𝑥) = −𝐵∧

𝜇,𝑚(𝑥). The symmetry in 𝑥 ↦→ −𝑥,∨/∧ ↦→ ∧/∨
of (5.4) and (5.7) allows us to write

𝐺∨
𝜇,𝑚(𝑥) = 𝐺∧

𝜇,𝑚(−𝑥), 𝐺̃∨
𝜇,𝑚(𝑥) = 𝐺̃∧

𝜇,𝑚(−𝑥),

and therefore
𝐵
∨/∧
𝜇,𝑚(𝑥) = 𝐵∧/∨

𝜇,𝑚(−𝑥) = −𝐵∨/∧
𝜇,𝑚(−𝑥).

Its action on a test function 𝜙 ∈ S(R1,𝑑−1) is

⟨𝐵∨/∧
𝜇,𝑚, 𝜙⟩ =

∑︁
|𝛼 |<𝑛

(−1) |𝛼 |𝑐∨/∧𝛼,𝑚(𝜕𝛼
𝑥 𝜙) (0) =

∑︁
|𝛼 |<𝑛

𝑐
∨/∧
𝛼,𝑚(𝜕𝛼

−𝑥𝜙) (0), (5.13)

so 𝑐
∨/∧
𝛼,𝑚 = 0 for even |𝛼 |. 𝐺∨/∧

𝜇,𝑚 and 𝐺̃
∨/∧
𝜇,𝑚 are invariant with respect to the action of

the proper Lorentz group. The same must apply to their difference 𝐵∨/∧
𝜇,𝑚. Derivatives

evaluated at 0 transform as vectors under the action of the Lorentz group. However,
⟨𝐵∨/∧

𝜇,𝑚, 𝜙⟩ is a sum of terms with only odd number of indices, so it cannot be
invariant under the action of the Lorentz group unless 𝐵

∨/∧
𝜇,𝑚 = 0. We conclude that

𝐺
∨/∧
𝜇,𝑚 = 𝐺̃

∨/∧
𝜇,𝑚. □

𝐺F
𝜇,𝑚 will be called the Feynman Bessel potential and 𝐺F

𝜇,𝑚 the anti-Feynman
Bessel potential. These names are somewhat artificial in the context of a general 𝜇.
Their justification comes from the case 𝜇 = 2, where these Bessel potentials coincide
with the Feynman and anti-Feynman propagator known from quantum field theory.

The distribution 𝐺∨
𝜇,𝑚 will be called the forward or retarded Bessel potential,

and 𝐺∧
𝜇,𝑚 the backward or advanced Bessel potential.

For 0 < Re 𝜇 < 𝑑 we also have the massless Riesz potentials:

𝐺
F/F
𝜇,0 (𝑥) =

±𝑖Γ( 𝑑−𝜇2 )

Γ( 𝜇2 ) (4𝜋)
𝑑
2

(
𝑥2 ± 𝑖0

4

) 𝜇−𝑑
2
, (5.14)

𝐺
∨/∧
𝜇,0 (𝑥) = 𝜃 (±𝑥

0) 2𝜋

Γ( 𝜇2 )Γ(
𝜇−𝑑+2

2 ) (4𝜋) 𝑑2
(
𝑥2
4
) 𝜇−𝑑

2
− . (5.15)

As we mentioned above, the formula (5.7) for the advanced and retarded Bessel
potential involves a product of two distributions, and therefore it needs a justfication.
We will explain two approaches how to interpret this formula.

The first approach is quite elementary. It uses the identification R1,𝑑−1 ≃ R×R𝑑−1,
with the first variable denoted 𝑥0 or 𝑡. For the remaining variables ®𝑥 we will later
use spherical coordinates (𝑟,Ω) with 𝑟 = | ®𝑥 |. For 𝑛, 𝑚 ∈ N0 and 𝜒 ∈ S(R1,𝑑−1) let
us introduce the semi-norms, which involve only the variables ®𝑥 ∈ R𝑑−1,

∥𝜒(𝑡, ·)∥𝑛,𝑚 = sup
®𝑥∈R𝑑−1 , |𝛼 |=𝑛, |𝛽 |=𝑚

= | ®𝑥𝛼 (𝜕𝛽®𝑥 𝜒) (𝑡, ®𝑥) |.
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Proposition 1. Let Re 𝜈 < 𝑑. Then there exist 𝑐𝑘 , 𝑘 = 0, . . . , ⌊ Re 𝜈
2 ⌋, such that

for any 𝜙 ∈ S(R1,𝑑−1),����∫ (
𝑥2)− 𝜈

2
− 𝜙(𝑥)𝑑𝑥

���� ≤ ⌊ Re 𝜈
2 ⌋∑︁

𝑘=0

∫
𝑐𝑘 |𝑡 |𝑑−Re 𝜈+𝑘−1∥𝜙(𝑡, ·)∥0,𝑘𝑑𝑡, (5.16)

where the coefficients |𝑡 |𝑑−Re 𝜈+𝑘−1 are locally integrable and polynomially bounded
at infinity. Therefore, if 𝑓 ∈ 𝐿∞(R), then 𝑓 (𝑥0)

(
𝑥2)− 𝜈

2
− defines a tempered distribution

on R𝑑 .

Proof : The action of
(
𝑥2)− 𝜈

2
− on a test function 𝜙 ∈ S(R𝑑) is∫ (

𝑥2)− 𝜈
2

− 𝜙(𝑥)𝑑𝑥 =
∫ ∞

−∞
𝑑𝑡

∫ |𝑡 |

0
𝑑𝑟

∫
S𝑑−2

𝑑Ω(𝑟2 − 𝑡2)−
𝜈
2− 𝜙(𝑡, 𝑟,Ω)𝑟𝑑−2.

For simplicity let us consider only 𝑡 > 0. We can expand 𝜙 around 𝑟 = 𝑡,

𝜙(𝑡, 𝑟,Ω) =
𝑚∑︁
𝑘=0

(𝑟 − 𝑡)𝑘
𝑘!

𝜙 (𝑘 ) (𝑡, 𝑡,Ω) + (𝑟 − 𝑡)𝑚+1𝜓(𝑡, 𝑟,Ω),

with 𝑚 = ⌊ Re 𝜈
2 ⌋ − 1, where 𝜙 (𝑘 ) denote derivatives with respect to the 𝑟 variable.

Note that |𝜓(𝑡, 𝑟,Ω) | ≤ (𝑚 + 1)!∥𝜙(𝑡, ·)∥0,𝑚+1. Let

𝑎𝑚+1 :=
∫ ∞

0
𝑑𝑡

∫ 𝑡

0
𝑑𝑟

∫
S𝑑−2

𝑑Ω(𝑡 − 𝑟)𝛽 (𝑟 + 𝑡)− 𝜈
2 𝜓(𝑡, 𝑟,Ω)𝑟𝑑−2,

with 𝛽 = ⌊ Re 𝜈
2 ⌋ − 𝜈

2 , −1 < Re 𝛽 ≤ 0, be the integral of the locally integrable
function. We see that it is well defined and

|𝑎𝑚+1 | ≤
∫ ∞

0
𝑑𝑡

∫ 𝑡

0
𝑑𝑟

∫
S𝑑−2

𝑑Ω(𝑡 − 𝑟)Re 𝛽 (𝑡 + 𝑟)−Re 𝜈
2 |𝜓(𝑡, 𝑟,Ω) |𝑟𝑑−2

≤ (𝑚+1)!
∫ ∞

0
𝑑𝑡∥𝜙(𝑡, ·)∥0,𝑚+1𝑡

⌊ Re 𝜈
2 ⌋+𝑑−Re 𝜈−1

∫ 1

0
𝑑𝑟 ′(1−𝑟 ′)𝛽 (1+𝑟 ′)− Re 𝜈

2 𝑟 ′𝑑−2
∫
S𝑑−2

𝑑Ω

=: 𝐶 (𝑑, 𝜈, 𝑚 + 1)
∫ ∞

0
𝑑𝑡𝑡 ⌊

𝜈
2 ⌋+𝑑−Re 𝜈−1∥𝜙(𝑡, ·)∥0,𝑚+1.

Next, we look at each term of the expansion of 𝜙(𝑡, 𝑟,Ω) in 𝑘 ,

𝑎𝑘 =

∫ ∞

0
𝑑𝑡

∫ 𝑡

0
𝑑𝑟

∫
S𝑑−2

𝑑Ω(𝑟2 − 𝑡2)−
𝜈
2−
(𝑟 − 𝑡)𝑘
𝑘!

𝜙 (𝑘 ) (𝑡, 𝑡,Ω)𝑟𝑑−2

=
(−1)𝑘
𝑘!

∫ ∞

0
𝑑𝑡

∫ 𝑡

0
𝑑𝑟 (𝑟 − 𝑡)−

𝜈
2 +𝑘− (𝑡 + 𝑟)− 𝜈

2 𝑟𝑑−2
∫
S𝑑−2

𝑑Ω𝜙 (𝑘 ) (𝑡, 𝑡,Ω).

Here, (𝑡 − 𝑟)−
𝜈
2 +𝑘− is the (irregular) distribution, defined by (A.12). It yields a finite
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expression∫ 𝑡

0
𝑑𝑟 (𝑟 − 𝑡)−

𝜈
2 +𝑘− (𝑡 + 𝑟)− 𝜈

2 𝑟𝑑−2 = 𝑡𝑑−𝜈+𝑘−1
∫ 1

0
𝑑𝑟 ′(𝑟 ′ − 1)−

𝜈
2 +𝑘− (1 + 𝑟 ′)− 𝜈

2 𝑟𝑑−2

=: 𝑡𝑑−𝜈+𝑘−1𝐶̃ (𝑑, 𝜈, 𝑘).
Because 𝑑−Re 𝜈 + 𝑘 −1 ≥ 𝑑−Re 𝜈−2 > −1, dependence on 𝑡 is locally integrable

and bounded by a polynomial. For 𝑘 = 0, 1, . . . , 𝑚 + 1 we can write

|𝑎𝑘 | ≤ 𝐶 (𝑑, 𝜈, 𝑘)
∫ ∞

0
𝑑𝑡 𝑡𝑑−Re 𝜈+𝑘−1∥𝜙(𝑡, ·)∥0,𝑘 .

For fixed 𝑑, 𝜈, we have the inequality (5.16) showing that homogeneous distributions
are tempered distribution. □

Now we have 𝑑 − 𝜇 < 𝑑, and therefore Proposition 1 shows that we can multiply
the distribution

(
𝑥2
4
) 𝜇−𝑑

2
− by the discontinuous but bounded function 𝜃 (±𝑥0). The

resulting distribution is then multiplied by the smooth function F 𝜇−𝑑
2

(
𝑚2𝑥2

4
)
, obtaining

the right-hand side of (5.7).
An alternative way to define the product in (5.7) is based on the concept of

the wave front set [20]. Here are the wave front sets of the distributions contained
in (5.7):

WF (𝜃 (𝑡)) =
{
((0, ®𝑥), (𝜏, 0)) : ®𝑥 ∈ R𝑑−1, 𝜏 ≠ 0

}
,

WF
( (
𝑥2)− 𝜈

2
−

)
=
{
((𝑡, ®𝑥), (−𝜆𝑡, 𝜆®𝑥)) : 𝑡2 − ®𝑥2 = 0, (𝑡, ®𝑥) ≠ 0, 𝜆 ≠ 0

}
∪
{
((0, 0), (𝜏, ®𝑘)) : 𝜏2 − ®𝑘2 = 0, (𝜏, ®𝑘) ≠ 0

}
,

where (𝜏, ®𝑘) denotes the dual variable to (𝑡, ®𝑥). The fiberwise sum of wavefront sets
WF (𝜃 (𝑡)) + WF

( (
𝑥2)− 𝜈

2
−

)
does not contain an element of the form ((𝑡, ®𝑥), (0, 0)).

Therefore, by Hörmander’s criterion [20, p. 267], the product of these two distributions
is well defined.

5.2. Green functions of the Klein–Gordon equation
Consider the Klein–Gordon equation

(−𝐸 − □) 𝑓 (𝑥) = 𝑔(𝑥), (5.17)

where 𝐸 is a parameter, usually real. We will consider 3 cases:

massive case: − 𝐸 = 𝑚2, (5.18)
massless case: − 𝐸 = 0, (5.19)

tachyonic case: − 𝐸 = −𝑚2. (5.20)

The massive and massless cases are quite similar and they often appear in physical
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applications. They are often discussed in detail in the literature. The tachyonic case
is more exotic and less known, but also interesting.

The Klein–Gordon equation possesses several useful Green functions, that is,
distributions satisfying

(−𝐸 − □)𝐺•(𝑥) = 𝛿(𝑥). (5.21)
One can try to define Green functions of the Klein–Gordon equation the Fourier
transformation. Unfortunately, for 𝐸 ∈ R, 1

(−𝐸+𝑝2 ) is not a well-defined distribution
because of zeros of its denominator. One way to regularize it is to add ±𝑖0, which
leads to the so-called Feynman and anti-Feynman Green function

𝐺
F/F
𝑚 (𝑥) =

∫
𝑒𝑖 𝑝𝑥

(−𝐸 + 𝑝2 ∓ 𝑖0)
𝑑𝑝

(2𝜋)𝑑 . (5.22)

As follows from a general theory of hyperbolic equations, the Klein–Gordon
equation (5.17) possesses also another important pair of Green functions: the retarded
(or forward) Green function 𝐺∨ and the advanced (backward) Green function 𝐺∧.
They are uniquely defined by the conditions

supp𝐺∨/∧ ⊂ 𝐽±. (5.23)
Note that the above definition provides 𝐺∨/∧ for all 𝐸 ∈ R. In the case −𝐸 ≥ 0,

with −𝐸 = 𝑚2 they coincide with 𝐺
∨/∧
𝑚 defined already with the help of Fourier

transformation. In the tachyonic case they will be denoted 𝐺
∨/∧
𝑖𝑚

= 𝐺
∨/∧
−𝑖𝑚 and they

need a separate discussion, see Subsection 5.5
We will also consider certain distinguished solutions of the (homogeneous)

Klein–Gordon equation, that is functions 𝐺◦ satisfying
(−𝐸 − □)𝐺◦(𝑥) = 0. (5.24)

One can look for them with the ansatz

𝐺◦(𝑥) =
∫

𝑒𝑖 𝑝𝑥𝑔◦(𝑝)𝛿(−𝐸 + 𝑝2) 𝑑𝑝

(2𝜋)𝑑−1 , (5.25)

where 𝑔◦ is a distribution on 𝑝2 − 𝐸 = 0. Above, for 𝐸 ∈ R, we use the notation

𝛿(𝑝2 − 𝐸)𝑑𝑝 =
𝛿
(
𝑝0 −

√︁
®𝑝2 − 𝐸

)
2
√︁
®𝑝2 − 𝐸

𝑑 ®𝑝 +
𝛿
(
𝑝0 +

√︁
®𝑝2 − 𝐸

)
2
√︁
®𝑝2 − 𝐸

𝑑 ®𝑝, (5.26)

where for ®𝑝2 < 𝐸 , (5.26) = 0.
Below we consider separately the massive, massless and tachyonic cases of the

Klein–Gordon equation. In all three cases, we will be able to define 𝐺F/F and 𝐺∨/∧.

5.3. Massive Klein–Gordon equation
Let us consider −𝐸 = 𝑚2, that is the massive Klein–Gordon equation. The

corresponding Green functions satisfy
(𝑚2 − □)𝐺•

𝑚(𝑥) = 𝛿(𝑥). (5.27)
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Specifying Theorem 9 to 𝜇 = 2, we obtain the following expressions for the Feynman
and anti-Feynman Green functions.

Theorem 10.

𝐺
F/F
𝑚 (𝑥) =

∫
𝑒𝑖 𝑝𝑥

(𝑚2 + 𝑝2 ∓ 𝑖0)
𝑑𝑝

(2𝜋)𝑑 (5.28)

=
±𝑖
√
𝜋𝑚𝑑−2

(4𝜋) 𝑑2
𝑈 𝑑

2 −1

(
𝑚2(𝑥2 ± 𝑖0)

4

)
. (5.29)

The retarded and advanced Green functions of the Klein–Gordon equation are
obtained by specifying Theorem 9 to 𝜇 = 2. In the following theorem, we also
identify their regular and singular part.

Theorem 11.

𝐺
∨/∧
𝑚 (𝑥) =

∫
𝑒𝑖 𝑝𝑥

𝑚2 + 𝑝2 ∓ 𝑖0sgn 𝑝0
𝑑𝑝

(2𝜋)𝑑 (5.30)

= 𝜃 (±𝑥0) −𝑖
√
𝜋𝑚𝑑−2

(4𝜋) 𝑑2

(
𝑈 𝑑

2 −1

(
𝑚2𝑥2 − 𝑖0

4

)
−𝑈 𝑑

2 −1

(
𝑚2𝑥2 + 𝑖0

4

))
(5.31)

= 𝜃 (±𝑥0) 2𝜋𝑚𝑑−2

(4𝜋) 𝑑2
(
𝑥2
4
)1− 𝑑

2
− F1− 𝑑

2

(
𝑚2𝑥2

4

)
. (5.32)

We can decompose 𝐺∨/∧ into a singular and regular part,

𝐺
∨/∧
𝑚 (𝑥) = 𝐺∨/∧

𝑚,sing(𝑥) + 𝐺
∨/∧
𝑚,reg(𝑥). (5.33)

For 𝑑 odd this decomposition can be chosen as

𝐺
∨/∧
𝑚,sing(𝑥) =

𝜃 (±𝑥0)
2𝜋

𝑑
2 −1

𝑑−5
2∑︁
𝑗=0

(−1) 𝑗

𝑗!Γ(2 − 𝑑
2 + 𝑗)

(
𝑚2

4

) 𝑗
(𝑥2)1− 𝑑

2 + 𝑗− , (5.34)

𝐺
∨/∧
𝑚,reg(𝑥) =

𝜃 (±𝑥0)
2𝜋

𝑑
2 −1

∞∑︁
𝑗= 𝑑−3

2

(−1) 𝑗

𝑗!Γ(2 − 𝑑
2 + 𝑗)

(
𝑚2

4

) 𝑗
(−𝑥2)1− 𝑑

2 + 𝑗𝜃 (−𝑥2). (5.35)

For 𝑑 even:

𝐺
∨/∧
𝑚,sing(𝑥) = 𝜃 (±𝑥

0) 1

2𝜋
𝑑
2 −1

𝑑
2 −2∑︁
𝑗=0

(−1) 𝑗+1

( 𝑑2 − 2 − 𝑗)!

(
𝑚2

4

) 𝑑
2 −2− 𝑗

𝛿 ( 𝑗 ) (𝑥2), (5.36)

𝐺
∨/∧
𝑚,reg(𝑥) = 𝜃 (±𝑥0) 2𝜋𝑚𝑑−2

(4𝜋) 𝑑2
F 𝑑

2 −1

(
𝑚2𝑥2

4

)
𝜃 (−𝑥2). (5.37)

Proof : The formula for the Green function of the Klein–Gordon equation is given
by Eq. (5.32), which was computed earlier for a general 𝜇 (5.7). The decomposition
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into (5.34) and (5.35) is due to (2.48). For even 𝑑, the decomposition can be
rewritten using (2.49). □

Introduce the following distinguished solutions of the Klein–Gordon equation
−□ + 𝑚2:

𝐺PJ
𝑚 (𝑥) :=

𝑖

(2𝜋)𝑑

∫
𝑒𝑖𝑥 ·𝑝sgn (𝑝0)𝛿(𝑝2 + 𝑚2)𝑑𝑝 (5.38)

=
1

(2𝜋)𝑑−1

∫
𝑑 ®𝑝√︁
®𝑝2 + 𝑚2

𝑒𝑖 ®𝑥 ®𝑝 sin
(
𝑥0
√︁
®𝑝2 + 𝑚2

)
, (5.39)

𝐺
(±)
𝑚 (𝑥) :=

1
(2𝜋)𝑑

∫
𝑒𝑖𝑥 ·𝑝𝜃 (±𝑝0)𝛿(𝑝2 + 𝑚2)𝑑𝑝 (5.40)

=
1

(2𝜋)𝑑−1

∫
𝑑 ®𝑝

2
√︁
®𝑝2 + 𝑚2

𝑒∓𝑖𝑥
0
√

®𝑝2+𝑚2+𝑖 ®𝑥 ®𝑝 . (5.41)

Following [13], we will call distinguished Green functions and solutions jointly
propagators. 𝐺PJ

𝑚 is supported in 𝐽∨ ∪ 𝐽∧. Here are the expressions for these
solutions in terms of positions:

𝐺PJ
𝑚 (𝑥) = sgn (𝑥0) 2𝜋

(4𝜋) 𝑑2

(
𝑥2

4

) 2−𝑑
2

−
F 2−𝑑

2

(
𝑚2𝑥2

4

)
, (5.42)

𝐺
(±)
𝑚 (𝑥) =

√
𝜋𝑚𝑑−𝜇

(4𝜋) 𝑑2
𝑈 𝑑−2

2

(
𝑚2𝑥2 ± 𝑖sgn 𝑥00

4

)
. (5.43)

Note the identities satisfied by the propagators:
𝐺∨

𝑚 − 𝐺∧
𝑚 = 𝐺PJ

𝑚 (5.44a)

= 𝑖𝐺
(+)
𝑚 − 𝑖𝐺 (−)

𝑚 , (5.44b)

𝐺F
𝑚 − 𝐺F

𝑚 = 𝑖𝐺
(+)
𝑚 + 𝑖𝐺 (−)

𝑚 , (5.44c)

𝐺F
𝑚 + 𝐺F

𝑚 = 𝐺∨
𝑚 + 𝐺∧

𝑚, (5.44d)

𝐺F
𝑚 = 𝑖𝐺

(+)
𝑚 + 𝐺∧

𝑚 = 𝑖𝐺
(−)
𝑚 + 𝐺∨

𝑚, (5.44e)

𝐺F
𝑚 = −𝑖𝐺 (+)

𝑚 + 𝐺∨
𝑚 = −𝑖𝐺 (−)

𝑚 + 𝐺∧
𝑚. (5.44f)

To prove these identities we use repeatedly

𝜃 (±𝑝0)2𝜋𝑖𝛿(𝑝2 + 𝑚2) = 𝜃 (±𝑝0)
(

1
𝑝2 + 𝑚2 − 𝑖0 − 1

𝑝2 + 𝑚2 + 𝑖0

)
, (5.45)

5.4. Massless Klein–Gordon equation
The massless case is quite similar to the massive one: we need only to set 𝑚 = 0

in the previous subsection. In particular, all identities (5.44) are satisfied. There are
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a few simplifications. Only the most singular part of the massive propagator remains
in the massless case. This is the special case of Riesz potentials, massless limit of
Bessel potentials, that we studied in Section 3.2.

Theorem 12.

𝐺
F/F
0 (𝑥) = ±

𝑖Γ( 𝑑2 − 1)

4𝜋
𝑑
2

(
𝑥2 ± 𝑖0

)1− 𝑑
2 , (5.46)

𝐺
∨/∧
0 (𝑥) = 𝜃 (±𝑥0) 1

2𝜋
𝑑
2 −1Γ(2 − 𝑑

2 )
(𝑥2)1− 𝑑

2− , (5.47)

𝐺PJ
0 (𝑥) = sgn (𝑥0) 1

2𝜋
𝑑
2 −1Γ(2 − 𝑑

2 )
(𝑥2)1− 𝑑

2− , (5.48)

𝐺
(±)
0 (𝑥) =

Γ( 𝑑2 − 1)

4𝜋
𝑑
2

(
𝑥2 ± 𝑖0sgn (𝑥0)

)1− 𝑑
2 . (5.49)

For 𝑑 odd (5.47) and (5.48) can be rewritten as

𝐺
∨/∧
0 (𝑥) = 𝜃 (±𝑥0) (−1) 𝑑2 −2

2𝜋
𝑑
2 −1

𝛿 (
𝑑
2 −2) (𝑥2), (5.50)

𝐺PJ
0 (𝑥) = sgn (𝑥0) (−1) 𝑑2 −2

2𝜋
𝑑
2 −1

𝛿 (
𝑑
2 −2) (𝑥2). (5.51)

Note that using (A.12) we can write identity (5.44d) as

𝐺F
0 (𝑥) + 𝐺F

0 (𝑥) = 𝐺∨
0 + 𝐺∧

0 =
1

2𝜋
𝑑
2 −1

𝜌
𝑑
2 −1
− (𝑥), (5.52)

which agrees with the fact that massless retarded/advanced Green functions, also
known as Riesz distributions (see [16]), are expressed by homogeneous distributions
supported on 𝐽∨/∧.

5.5. Tachyonic Klein–Gordon equation
Let us now consider the tachyonic Klein–Gordon equation, which means, with

𝐸 = 𝑚2. Its Green functions satisfy

(−𝑚2 − □)𝐺•(𝑥) = 𝛿(𝑥). (5.53)

Usually, tachyonic quantum fields are considered to be unphysical [21]. Nevertheless,
every now and then there are attempts to analyze them in the physics literature,
see [22], and more recently [23].

We have a minor notational problem how to indicate that we replaced 𝑚2

with −𝑚2. Naively, one would think it should be indicated by both +𝑖𝑚 and −𝑖𝑚
instead of 𝑚. However, this would suggest the analytic continuation 𝑒𝑖𝜙, ±𝜙 ∈ [0, 𝜋],
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which is not always appropriate. This problem appears in the case of the Feynman
propagator: we will write 𝐺F

𝑖𝑚, but not 𝐺F
−𝑖𝑚. Similarly, for the anti-Feynman

propagator we will write 𝐺F
−𝑖𝑚, but not 𝐺F

𝑖𝑚. In the case of retarded/advanced
propagators, this problem will be absent, since the analytic continuation can be
performed in 𝑚2: thus 𝐺∧/∨

𝑖𝑚
= 𝐺

∧/∨
−𝑖𝑚.

We define the Feynman and anti-Feynman Green functions by adding ∓𝑖0 to the
denominator −𝑚2 + 𝑝2 in the momentum representation. In the following theorem,
we compute their form in position variables.

Theorem 13.

𝐺F
𝑖𝑚(𝑥)/𝐺F

−𝑖𝑚(𝑥) =
∫

𝑒𝑖 𝑝𝑥

(−𝑚2 + 𝑝2 ∓ 𝑖0)
𝑑𝑝

(2𝜋)𝑑 (5.54)

=

√
𝜋𝑚𝑑−2(∓𝑖)𝑑+1

(4𝜋) 𝑑2
𝑈 𝑑

2 −1

(
𝑚2(−𝑥2 ∓ 𝑖0)

4

)
. (5.55)

In particular, for 𝑥2 > 0 we have

𝐺F
𝑖𝑚(𝑥)/𝐺F

−𝑖𝑚(𝑥) =
±𝑖
√
𝜋𝑚𝑑−2𝑒∓𝑖 𝜋 (

𝑑
2 −1)

(4𝜋) 𝑑2
𝑈 𝑑

2 −1

(
𝑚2(−𝑥2 ∓ 𝑖0)

4

)
and for 𝑥2 < 0

𝐺F
𝑖𝑚(𝑥)/𝐺F

−𝑖𝑚(𝑥) =
±𝑖
√
𝜋𝑚𝑑−2𝑒∓𝑖 𝜋 (

𝑑
2 −1)

(4𝜋) 𝑑2
𝑈 𝑑

2 −1

(
𝑚2 |𝑥2 |

4

)
.

Proof : Let us start from the usual (positive mass) Feynman propagator, defined
in (5.28) and (5.29). Then we continue analytically 𝐺F

𝑚(𝑥) and 𝐺F
𝑚, replacing 𝑚

with 𝑚𝑒𝑖𝜙, where 𝜙 ∈ [0, 𝜋
2 ] in the former and 𝜙 ∈ [− 𝜋

2 , 0] in the latter case. (Note
that during the analytic continuation the denominator has to have a constant sign of
its imaginary part, that is, ±Im(𝑚2𝑒2𝑖𝜙 + 𝑖0) > 0.) The analytic continuation yields

𝐺F
𝑖𝑚(𝑥)/𝐺F

−𝑖𝑚(𝑥) =
±𝑖
√
𝜋𝑚𝑑−2𝑒±𝑖 𝜋 (

𝑑
2 −1)

(4𝜋) 𝑑2
𝑈 𝑑

2 −1

(
𝑒±𝑖 𝜋𝑚2(𝑥2 ± 𝑖0)

4

)
(5.56)

=
±𝑖
√
𝜋𝑚𝑑−2𝑒±𝑖 𝜋 (

𝑑
2 −1)

(4𝜋) 𝑑2
𝑈 𝑑

2 −1

(
𝑚2(−𝑥2 ∓ 𝑖0)

4

)
, (5.57)

which coincides with (5.55). □

Unfortunately, the tachyonic Feynman and anti-Feynman propagator do not have
the usual physical interpretation, as the vacuum expectation value of the time-
ordered, resp. anti-time-ordered product of fields. In fact, for tachyons the vacuum
is ill defined. Nevertheless, some authors, e.g. [22], try to use the above Feynman
propagator to define interacting tachyonic quantum field theory.
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Retarded and advanced tachyonic Green functions 𝐺
∨/∧
𝑖𝑚

are not tempered
distributions on R1,𝑑−1, and therefore they cannot be expressed in terms of the
Fourier transformation in all variables, as in the massive and massless cases (5.30).
However, they are well defined, and in the following theorem we give three equivalent
formulae for these propagators.

Theorem 14. The forward and backward propagators in the tachyonic case are
given by

𝐺
∨/∧
𝑖𝑚

(𝑥) = 𝐺∨/∧
−𝑖𝑚(𝑥)

= 𝜃 (−𝑥2)𝜃 (±𝑥0)
√
𝜋𝑚𝑑−2𝑖𝑑+1

(4𝜋) 𝑑2

(
𝑈 𝑑

2 −1

(
𝑚2(−𝑥2)

4

)
−𝑈 𝑑

2 −1

(
𝑒𝑖2𝜋𝑚2(−𝑥2)

4

))
(5.58)

= 𝜃 (−𝑥2)𝜃 (±𝑥0)
√
𝜋𝑚𝑑−2(−𝑖)𝑑+1

(4𝜋) 𝑑2

(
𝑈 𝑑

2 −1

(
𝑒−𝑖2𝜋𝑚2(−𝑥2)

4

)
−𝑈 𝑑

2 −1

(
𝑚2(−𝑥2)

4

))
(5.59)

= 𝜃 (±𝑥0) 2𝜋

(4𝜋) 𝑑2

(
𝑥2

4

)1− 𝑑
2

−
F1− 𝑑

2

(
𝑚2 |𝑥2 |

4

)
, (5.60)

They are supported in 𝐽∨, resp. 𝐽∧. We can decompose 𝐺
∨/∧
𝑖𝑚

into a singular and
regular part,

𝐺
∨/∧
𝑖𝑚

(𝑥) = 𝐺∨/∧
𝑖𝑚,sing(𝑥) + 𝐺

∨/∧
𝑖𝑚,reg(𝑥). (5.61)

For 𝑑 odd this decomposition is almost the same as (5.34), (5.35) but without the
factor (−1) 𝑗:

𝐺
∨/∧
𝑖𝑚,sing(𝑥) =

𝜃 (±𝑥0)
2𝜋

𝑑
2 −1

𝑑−5
2∑︁
𝑗=0

1
𝑗!Γ(2 − 𝑑

2 + 𝑗)

(
𝑚2

4

) 𝑗
(𝑥2)1− 𝑑

2 + 𝑗− , (5.62)

𝐺
∨/∧
𝑖𝑚,reg(𝑥) =

𝜃 (±𝑥0)
2𝜋

𝑑
2 −1

∞∑︁
𝑗= 𝑑−3

2

1
𝑗!Γ(2 − 𝑑

2 + 𝑗)

(
𝑚2

4

) 𝑗
(−𝑥2)1− 𝑑

2 + 𝑗𝜃 (−𝑥2). (5.63)

For 𝑑 even the decomposition is similar as in (5.36) and (5.37):

𝐺
∨/∧
𝑖𝑚,sing(𝑥) = 𝜃 (±𝑥

0) 1

2𝜋
𝑑
2 −1

𝑑
2 −2∑︁
𝑗=0

1
( 𝑑2 − 2 − 𝑗)!

(
𝑚2

4

) 𝑑
2 −2− 𝑗

𝛿 ( 𝑗 ) (𝑥2), (5.64)

𝐺
∨/∧
𝑖𝑚,reg(𝑥) = 𝜃 (±𝑥

0) 2𝜋𝑚𝑑−2

(4𝜋) 𝑑2
F 𝑑

2 −1

(
𝑚2 |𝑥2 |

4

)
𝜃 (−𝑥2). (5.65)

Proof : Our starting point is the formula (5.31) for the forward and backward
propagator 𝐺∨/∧

𝑚 (𝑥). They are analytic in 𝑚. Therefore, we can apply the analytic
continuation 𝑚 ↦→ 𝑒𝑖

𝜋
2 𝑚,
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𝐺
∨/∧

𝑒
𝑖 𝜋2 𝑚

(𝑥) = 𝜃 (±𝑥0) −𝑖
√
𝜋𝑚𝑑−2𝑒𝑖 𝜋 (

𝑑
2 −1)

(4𝜋) 𝑑2

(
𝑈 𝑑

2 −1

(
𝑒𝑖 𝜋 (𝑚2𝑥2 − 𝑖0)

4

)
−𝑈 𝑑

2 −1

(
𝑒𝑖 𝜋 (𝑚2𝑥2 + 𝑖0)

4

))
. (5.66)

This yields (5.58). Alternatively, we can apply the analytic continuation 𝑚 ↦→ 𝑒−𝑖
𝜋
2 𝑚,

which yields (5.59). □

Let us compute the sum of the tachyonic Feynman and anti-Feynman propagators:

𝐺F
𝑖𝑚(𝑥) + 𝐺F

−𝑖𝑚(𝑥) =


2𝜋𝑚𝑑−2

(4𝜋) 𝑑2
F 𝑑

2 −1

(
−𝑚

2𝑥2

4

)
, 𝑥2 > 0;

4𝜋

(4𝜋) 𝑑2

(
−𝑥2

4

)1− 𝑑
2
F1− 𝑑

2

(
−𝑚

2𝑥2

4

)
, 𝑥2 < 0.

(5.67)

Thus 𝐺F
𝑖𝑚(𝑥) + 𝐺F

−𝑖𝑚(𝑥) does not have a causal support, and consequently,

𝐺F
𝑖𝑚(𝑥) + 𝐺F

−𝑖𝑚(𝑥) ≠ 𝐺∨
𝑖𝑚(𝑥) + 𝐺∧

𝑖𝑚(𝑥). (5.68)
The equality in (5.68) holds only for 𝑥2 < 0.

Note that because of (5.68) we could not deduce the formulae of the forward
and backward propagators from the Feynman and anti-Feynman propagators, and we
had to apply a separate argument based on analytic continuation.

In the tachyonic case, we do not have the solutions 𝐺
(±)
𝑖𝑚

. However, we can
define the Pauli–Jordan propagator

𝐺PJ
𝑖𝑚(𝑥) = 𝐺PJ

−𝑖𝑚 =
1

(2𝜋)𝑑−1

∫
𝑑 ®𝑝 𝑒𝑖 ®𝑥 ®𝑝 sin

(
𝑥0
√︁
®𝑝2 − 𝑚2

)√︁
®𝑝2 − 𝑚2

(5.69)

= sgn (𝑥0) 2𝜋

(4𝜋) 𝑑2

(
𝑥2

4

)1− 𝑑
2

−
F1− 𝑑

2

(
𝑚2 |𝑥2 |

4

)
. (5.70)

Note that 𝐺PJ
𝑖𝑚

cannot be written in the form (5.25).
Among the identities (5.44) only (5.44a) is still true.

5.6. Averages of plane waves on the hyperbolic plane
The Minkowski space possesses two kinds of hyperboloids. The two-sheeted

hyperboloid consists of two connected components isomorphic to the hyperbolic
space. In this subsection, we compute the Fourier transform of the natural measure
on one of the sheets of the two-sheeted hyperboloids, similarly as in Theorem 4.

Consider the future/past hyperboloid in the 𝑑-dimensional Minkowski space,
denoted H±,𝑚 = H𝑑−1

±,𝑚 , consisting of points 𝑝 such that 𝑝2 +𝑚2 = 0 and ±𝑝0 > 0. Let
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𝑑Ω𝑚 denote the standard measure on H±,𝑚. We will see that up to a coefficient its
Fourier transform is essentially the “positive frequency solution of the Klein–Gordon
equation.”

Theorem 15.∫
H±,𝑚

𝑒𝑖 𝑝𝑥𝑑Ω𝑚(𝑝) = 𝑚𝑑−1𝜋
𝑑−1

2 𝑈 𝑑
2 −1

(
𝑚2(𝑥2 ± 𝑖sgn 𝑥00)

4

)
. (5.71)

Proof : This average, up to a coefficient, coincides with 𝐺
(±)
𝑚 defined in (5.40),

which we have already computed,∫
H±,𝑚

𝑒𝑖 𝑝𝑥𝑑Ω𝑚(𝑝) = 2𝑚
∫

𝑒𝑖 𝑝𝑥𝜃 (±𝑝0)𝛿(𝑝2 + 𝑚2)𝑑𝑝 (5.72)

= (2𝜋)𝑑𝑚𝐺 (±)
𝑚 (𝑥). (5.73)

Therefore, it is enough to use the formula (5.43). □

5.7. Averages of plane waves on the de Sitter space
The one-sheeted hyperboloid in the physics literature is usually called the de Sitter

space. It will be denoted dS𝑚 = dS𝑑−1
𝑚 . It consists of points 𝑝 such that 𝑝2 = 𝑚2. Let

𝑑Ω𝑚 denote the standard measure on dS𝑚. We will compute the Fourier transform
of the measure on dS𝑚.

Theorem 16.∫
dS𝑚

𝑒𝑖 𝑝𝑥𝑑Ω𝑚(𝑝)

= 𝑚𝑑−1𝜋
𝑑−1

2

(
𝑖𝑑𝑈 𝑑

2 −1

(
𝑚2(−𝑥2 + 𝑖0)

4

)
+ (−𝑖)𝑑𝑈 𝑑

2 −1

(
𝑚2(−𝑥2 − 𝑖0)

4

))
(5.74)

=


(−1) 𝑑2 2𝑚𝑑−1𝜋

𝑑−1
2

(
𝑈 𝑑

2 −1

(
−𝑚2𝑥2 ± 𝑖0

4

)
±
√
𝜋𝑖
( −𝑥2

4
)1− 𝑑

2
− F1− 𝑑

2

(
−𝑚

2𝑥2

4

))
,

𝑑

2
∈ N,

2𝑖𝑑−1𝑚𝑑−1𝜋
𝑑
2
( −𝑥2

4
)1− 𝑑

2
− F1− 𝑑

2

(
−𝑚

2𝑥2

4

)
,

𝑑

2
∉ N.

(5.75)
Proof :∫

dS𝑚
𝑒𝑖 𝑝𝑥𝑑Ω𝑚(𝑝) = 2𝑚

∫
𝑒𝑖 𝑝𝑥𝛿(𝑝2 − 𝑚2)𝑑𝑝 (5.76)

=
𝑚

𝜋𝑖

∫
𝑒𝑖 𝑝𝑥

(
1

𝑝2 − 𝑚2 − 𝑖0 − 1
𝑝2 − 𝑚2 + 𝑖0

)
𝑑𝑝 (5.77)

=
𝑚(2𝜋)𝑑
𝜋𝑖

(
𝐺F

𝑖𝑚(𝑥) − 𝐺F
−𝑖𝑚(𝑥)

)
. (5.78)
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Then we can use the result for the tachyonic Feynman and anti-Feynman propagator
(5.55). □

One can see that the singular part is different in even- and odd-dimensional
cases.

A. Appendix
A.1. Some identities

The following identities for 𝐴 > 0 follow from the 2nd Euler integral:
1

𝐴
𝜇
2
=

1
Γ( 𝜇2 )

∫ ∞

0
𝑒−𝑠𝐴𝑠

𝜇
2 −1𝑑𝑠, (A.1)

1

(𝐴 ± 𝑖0)
𝜇
2
=
𝑒∓𝑖

𝜋𝜇
4

Γ( 𝜇2 )

∫ ∞

0
𝑒±𝑖𝑡 𝐴𝑡

𝜇
2 −1𝑑𝑡. (A.2)

We will also need the Fourier transform of the Gaussian function on the Euclidean
space R𝑑 , and of the Fresnel function on the pseudo-Euclidean space R𝑞,𝑑−𝑞 (with
𝑞 minuses): ∫

𝑑𝑝𝑒−𝑠𝑝
2
𝑒𝑖 𝑝𝑥 =

(
𝜋

𝑠

) 𝑑
2
𝑒−

𝑥2
4𝑠 , (A.3)∫

𝑑𝑝𝑒±𝑖𝑡 𝑝
2
𝑒𝑖 𝑝𝑥 = (∓𝑖)𝑞

(
𝜋

𝑡

) 𝑑
2
𝑒±𝑖

𝜋
4 𝑑𝑒∓𝑖

𝑥2
4𝑡 . (A.4)

A.2. Distributions
In this paper, we often use the language of distributions on R𝑑 . We say that

a distribution 𝑇 is regular if there exists a locally integrable function 𝑓 such that
for a test function Φ,

𝑇 (Φ) =
∫

𝑓 (𝑥)Φ(𝑥)𝑑𝑥. (A.5)

We will use the integral notation also for irregular distributions, e.g.∫
𝛿 (𝑛) (𝑥)Φ(𝑥)𝑑𝑥 = (−1)𝑛Φ(𝑛) (0). (A.6)

Let us now consider some special distributions on R. For any 𝜆 ∈ C,

(±𝑖𝑥 + 0)𝜆 = 𝑒±𝑖𝜆
𝜋
2 (𝑥 ∓ 𝑖0)𝜆 := lim

𝜖↘0
(±𝑖𝑥 + 𝜖)𝜆

is a tempered distribution. If Re𝜆 > −1, then it is regular and given by the locally
integrable function

𝑒±𝑖sgn (𝑥 ) 𝜋2 𝜆 |𝑥 |𝜆. (A.7)
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The functions
𝑥𝜆± := |𝑥 |𝜆𝜃 (±𝑥) (A.8)

define regular distributions only for Re𝜆 > −1. We can extend them to 𝜆 ∈ C except
for 𝜆 = −1,−2, . . . by putting

𝑥𝜆± :=
1

2𝑖 sin 𝜋𝜆
(
−𝑒−𝑖 𝜋2 𝜆(∓𝑖𝑥 + 0)𝜆 + 𝑒𝑖 𝜋2 𝜆(±𝑖𝑥 + 0)𝜆

)
. (A.9)

For 𝜆 > −1, (A.9) are regular and coincide with 𝜃 (±𝑥) |𝑥 |𝜆. We have

𝑥𝜆+1
± = |𝑥 | · 𝑥𝜆±. (A.10)

Instead of 𝑥𝜆±, it is often more convenient to consider

𝜌𝜆±(𝑥) :=
𝑥𝜆±

Γ(𝜆 + 1) (A.11)

=
Γ(−𝜆)

2𝜋𝑖
(
𝑒−𝑖

𝜋
2 𝜆(∓𝑖𝑥 + 0)𝜆 − 𝑒𝑖 𝜋2 𝜆(±𝑖𝑥 + 0)𝜆

)
. (A.12)

Note that using (A.11) and (A.12) we have defined 𝜌𝜆± for all 𝜆 ∈ C. We have

𝜕𝑥𝜌
𝜆
±(𝑥) = ±𝜌𝜆−1

± (𝑥).
At integers we have

𝜌𝑛±(𝑥) =
𝑥𝑛±
𝑛!
, 𝑛 = 0, 1, . . . , (A.13)

𝜌−𝑛−1
± (𝑥) = (±1)𝑛𝛿𝑛 (𝑥), 𝑛 = 0, 1, . . . . (A.14)

Clearly, for Re (𝜆) ≤ −1 the distributions 𝜌𝜆± are irregular.
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