Exercises
Jan Derezinski

1 Exercises to Methods of Hilbert spaces

1.1 Banach spaces

Holder inequality:

1 1 1
1f9llp < Ifllgllgllrs —=-+-, 1<pqr<oo. (1.1)
p q T
Minkowski inequality
1f+9llp < Ifllp +llgllp, 1 <p<oc (1.2)

Zadanie 1 Jeslip <r, x € C", to
1_1
]l < ne w2,

Zadanie 2 Jesli 1 < ¢ <r <oo,z €l to|z|,> ||, Zatem 7 CI".

Solution. Najpierw pokazemy, ze 1 < p, to
[zllp < [l (1.3)
Niech y; = [0, ..., x;,...0]. Wtedy x = y1 + - - - + y,,. Stosujemy nieré6wnos¢ Minkowskiego

[2llp < Nlyillp + -+ lynllp = |22l + - - [zn] = ll2]l1-

Nastepnie stosujemy (1.3) do y = [24, -+, 2d]:

q
il ") " =yl <yl = ) fal.
q

Zadanie 3 Jesli 1 <p <r < oo, f € L"[0,1], to

1fllp < 11£[lr-
Zatem LP[0,1] > L7[0,1].
Zadanie 4 A linear operator from C™ to C" can be defined by a matrix [a;;].

(1) Jesli C™ jest wyposazone w norme ||| a C* w norme ||+ ||oo, wtedy || A|| = max{|a;;|}.
(2) Jesli C™ jest wyposazone w norme || - [[oc a C" w norme || - [|1, wtedy [[A[| <3, ; [ai;]-
(3) Jesli C™ jest wyposazone w norme ||-||; a C™ w norme ||-||1, wtedy || A|| = max;{}_, |a;|}.
(4) Jesli C™ jest wyposazone w norme ||-[|oc aC" w norme ||-||oo, wtedy [|Al| = max;{>_; |ai;|}-



1.2 Fourier series

Zadanie 5 Consider C" with the canonical basis (6; : j=0,1,...

n—2

U= 16;-1)(8] + [6n-1)(dol, R = 130)(d0| + > [62—5)(3

=0

(i) Show that U and R are unitary.
(ii) Show that UR = RU* and (U +U*)R = R(U + U").
(iii) Find an orthonormal basis that diagonalizes U.

,n—1). Define the operators

j=1

(iv) Find an orthonormal basis that diagonalizes U + U* and R.

Solution. (i) is obvious, because both U and R permute an orthonormal basis. The basis

-1
1 n 1]k27r5
e, = —— n
i==) e
Vn =
diagonalizes U:
j2 n-l1 j2
ij2m ij2mw
Uej=enej, U= e n lej)(ejl,
=0

We have Re; = e_;. The basis

ear =ep, eh =e} if niseven
2 2
1 ) n
e;r = E(ej +e_;), 0<j< [5],
_ 0 . n
e; = 1\[( —e_j), <j< [5}
diagonalizes simultaneously U + U* and R:
2
(U+U*)ej:2(:os%ej, Rej:e}F
e Jj2m -
(U+U")e; =2cos 76] Re; = —¢;
Sk KRk Rk kKRR SRR K kK
Set Fej; = ¢;, or
1]1@271'
F = Z|5 )(e5] = Z \f w65)(0k |-

7,k=0
Then

FUF* = Z e 16;)(



Zadanie 6 Consider L?[—m, 7], where [—m, ] is treated as the circle. Define the operators

Ut)f(9) = flo—1), Rf(¢):=f(=¢)

(i) Show that U(t) and R are unitary.
(ii) Show that U(t)U(s) = U(t+ s) and U(t)R = RU(—t).
(iii) Find an orthonormal basis that diagonalizes U(t).
(iv) Find an orthonormal basis that diagonalizes U(t) + U(—t) and R.

Solution. The on. basis )
€(6) = =

diagonalizes U (t):

Ult)e; = e, U(t) = i e!lej) (el
We have Re; = e_;. The basis o
i =i e(6)= o= (19)
e;r = \2(6]‘ +e_j), ej(qﬁ) = \/1% cos(jop), j=1,..., (1.10)
e; = 112(6]‘ —e—j), € (¢)= \/17?sin(j¢), j=0,1,2,.... (1.11)

Kook sk ok Kook sk okok ok sk ok okosk sk kokok skokokoskoskokok

Let {0; : j € Z} denote the canonical basis in [?(Z). Define the unitary Fourier transfor-
mation F : L?[—, 7| — [*(Z) as

F= > 16)(el

j=—o00
or

(Ff); = jﬂ [es@)as.

The Fourier transformation diagonalizes translations:

FUBF = > 95;)(5].

j=—o0

KKK KKK KK koK kR sk skosk sk skoskoskoskoskoskoskosk sk



Zadanie 7 Define L3 [—, 7] := {f € L*[—n,7| | f(¢) = £f(—¢). Then L*|—7, x| = L2 [—m, 7|®
L? [~7,7]. Besides, e, n = 0,1,2,... is an orthonormal basis of Li[—w,ﬂ] and e,
n=1,2,... of L [-7, 7]

Zadanie 8 Prove that \/7 cosnpn=12,. is an orthogonal basis of L?([0,7]).

c \/77
Prove that \/;sin n¢, n =1,2,..., is an orthogonal basis of L?([0, 7).
Solution Note that

LQ[FW]BfHUif—\ff’ € L*0, 7]
is a unitary operator and

+ _
U+€0 =

= 5=

Usel = ;cos(n ),

U_e, = \/Zsin(n@.

Niech I bedzie zbiorem. Definiujemy

BI) = {(fi)ier = Y 1filP = IfI? < oo}

Jesli H jest przestrzenia Hilberta z baza ortonormalna {e; : ¢ € I}, to

(Ffli=(eilf), feH

definiuje operator unitarny F : % — [?(I). Na przyklad, transformata Fouriera

L*-m,7] 2> f \/127_]3 € 1*(z)

fo i / "9 () dg

—T

jest takim operatorem, gdzie

We will write ¢, = cos(ng), s, = sin(ng).

Zadanie 9 Jedne funkcje lepiej jest rozwija¢ w szereg kosinuséw a inne w szereg sinusoéw:

1 = Co
1 — 2
- Ezzmﬂsmﬂ’
m=0
sing = s

B 12( 1 1 )
T o Zom o1 2m



Mozna wykorzystaé
1
sin ¢ cos(ng) = §<sin(n +1)¢ —sin(n — 1)¢).

Zadanie 10 h(¢) := (a — %)~ a > 1. Wtedy

- 2ra~ "t n=0,1,...;
"0, n=-1,-2,....

Zadanie 11 h(¢) := (¢* —a)™!, a < 1. Wtedy

Bn:{o, n=0,1,2,...;

2ra 7l n=—-1,-2,....
Zadanie 12 h(¢) := ¢. Wtedy

R i2r(—1)"
hTL = n ’ n # 0
0. n=0.

Aby to otrzymaé¢ mozna zauwazy¢, ze mozemy napisac
Figy tig O\ _ . o
log(1 4 e™'?) =log (™27 cos 5) = +i¢ + log ( cos 5) (1.14)

(Uzywamy galezi glowniej logarytmu). Dlatego,

h(¢) = —i log(l + aei¢) + llog(l + ae_i¢),

. o n+1 :t1¢n
log(1 + e%?) = li{‘% log (1 + ae™?) Z
a
n=1

Z tego wynika (1.14).

Czesciows suma Fouriera

h;ein®
hiny () == j27r :

l71<n

jest zbiezna punktowo do ¢ na | — m,7[. Ale w otoczeniu ¢ = +m obserwujemy tzw.
zjawisko Gibbsa: funkcja h,) “przestrzeliwuje” wartos¢ funkcji h. Mamy bowiem

sin ey

h( )( 7T+6 _—22

W otoczeniu nieciaglodci funkcji h obserwujemy “zafalowanie” funkcji h(y,), ktére w miarg
wzrostu n zweza sie, ale nie zmniejsza swej wysokosci zachowujac swoja wysokoéé. To
zafalowanie ma w granicy Scisle okreslony ksztalt (z dokladnoscia do zwezania), mamy

bowiem Y
lim hiy (—m+2) = —2/ T 4z = —2F(y).
0

n— 00 xT




Funkcja F' jest nieparzysta, li_>m F(r) = § i ma maksimum dla y = 7 réwne
X o

G::/ ST ~ 1,81,
0 X

zwane statag Wilbrahama-Gibbsa.

Ta wtasnos$é sumy czesciowej szeregu Fouriera wystepuje zawsze, kiedy mamy do czynienia
z nieciagla funkcja. Prowadzi ono do tego, ze dla funkcji nieciaglej o skoku a27m w sumie
czesciowej szeregu Fouriera bedzie skok 4aG > a2w. Mamy (4G — 27) =~ 0.18.

Zadanie 13 Rozwazmy [?(Z) z baza kanoniczna (0; : j €Z). Zdefiniujmy operatory

o)

U= Y 16208 R= Y [6-;)(-

j=—o0 j=—oc0

(i) Pokazaé¢, ze U i R sa unitarne.
(ii) Cuzy istnieje baza ortonormalna w ktorej U jest diagonalny?
(iii) Odwrotna transformata Fouriera F* : [2(Z) — L?(S') diagonalizuje U:

S FUF =B, (Bf)(6) =<*f(), feIXs")

(iv) Podaé operator unitarny V : I12(Z) — L?(0,7) @ L?(0, ) taki, ze

1 0

VRV:{O 1

]7 V(U+U*)v*:[0 0 ]

0 C

gdzie
(Cg)(¢) = 2cospg(¢), g€ L*(0,7).

Wskazoéwka. Najpierw rozwiazaé zadanie 6.

Zadanie 14 Pokazaé, ze jesli f(™ istnieje, to

il < [k / £ (2)da].

—T

Solution.
'f = | f(z)i"ore*dx (1.15)

= /ﬂ (=)™ (02 f (x))e*.dx (1.16)

—T



Zadanie 15 Pokazaé, ze jesli dla € > 0,

. C
|[fxl < (|k| + 1)nti+e’

to f jest m-krotnie rézniczkowalne.
Solution.

() = 5 S K el

Zatem

1 .
0 F (@) < 5 ST IRl

1.3 Falki Haara.

Zdefiniujmy
k12 97hp < < 27Fp 427k
Yrn(z) = —ok/2  9—kp 4 okl < g < 27k (n 4+ 1),
0, g 27Fn, 27 F(n + 1)
bonlz) = 2k/2 927kn <2 <27k (n+ 1),
Rl 70, a2 27k (n+ 1))

Czasami nazywa sie Yoo “falka matka” a ¢gg “falka ojcem”.
Zadanie 16 WprowadzZmy operatory unitarne translacji i skalowania
Uef)(x) = flz—1),
(Wef)(@) = s 2f(s").
Zauwazmy, ze mozemy napisaé
Vrn = WasUnoo,  Yia(x) = 25 900(2z — n).

Pokazac, ze {¢r, | Kk =0,1,2,..., n=0,1,... ,2F — 11 oraz funkcja ¢ stanowia baze
ortonormalna L?[0, 1].

Solution. Sprawdzamy najpierw ortonormalnosé. Oczywiste jest, ze Span{¢y, | k > 0}
jest geste i zawiera {¢, | Kk = 0,1,2,..., n =0,1,.. .,2F — 1) oraz ¢g9. Przeciwna
inkluzja tez jest tatwa.

Zadanie 17 (1) Niech m € Z. Wtedy

Vi := (Span{¢,, = k <m, n=})" = (Span{¢p, : k>m+1, ne€Z})? (1.17)



(2) {Yrn | k,n € Z} stanowia baze ortonormalna L*(R).
(3) Ymn, n € Z stanowia baze ortonormalng w V,, © V41 (w dopelnieniu ortogonalnym
do V1 wewnatrz V).

Solution. (1): C jest oczywiste. Mamy
00 .
2
ZQ 29_jo = V2¢10.
§=0

To pokazuje D. (2) Najpierw sprawdzamy ortonormalnosé ¢y,. Oczywiste jest, ze Span{ ¢, |
k,n € Z} jest geste w L%(R).

1.4 Dystrybucje

Odwzorowania z D(R?) — C, zwane dystrybucjami, bywaja zapisywne w rézny sposob,
np.:
DY) 3 61+ T(6) = (T16) = [ T(@)o(a)d.

Spelniaja one nastepujacy warunek: dla kazdego zwartego K C R? istnieje N i C takie, ze
dla ¢ € D(RY) spetiajacych suppg C K,

(T|¢)| < C%aﬁsgp |0z ¢(z)].

Przyklad: jesli T € Llloc(Rd), to dystrybucja regularng zwigzana z F', nazywamy
(Telo) = [ T@) (@),
A oto delta Diraca w a € R%:

(5al)) = / 5z — a)p(x)dz = é(a).

Zadanie 18 Pokazaé, ze
1 L —€ o) <Z5(37)
P/$¢(x)dx'_ll\%(/_oo+/€ ) . dx

Solution. Niech supp¢ C K.

P/lqﬁ(m)dx
/ / dx—l—hm /_E / dr = I+11

11| < 2sup |¢'|, |I| < |K]|sup|g].

jest dystrybucja.



Zadanie 19 Pokazaé, ze

N

P/Ooo %qb(m)dx = lin% </€OO st:)dx + ¢(0) log 6)

jest dystrybucja.
Solution.
<1
73/ —¢(x)dz
0 i
00 1 o
[Ty, [0,
1 L 0 95
Nastepnie korzystamy z tego, ze funkcja
#(z)—9(0) T 6]0 1]
Y T ) B
¢'(0), x=0
jest ciagla.
Zadanie 20 Zrozniczkowaé n-krotnie $6(z)z?

Zadanie 21 Niech ¢, bedzie delta Diraca w punkcie a € R. Pokaza¢, ze operator S(R) 3 f —
T.f := 60 * f € S(R) rozszerza sie do operatora unitarnego na L?(R). Czy T, dla a — oo
jest zbiezny normowo, silnie lub stabo? Ewentualnie policzy¢ granice.

1.5 Zbieznos¢é dystrybucji

Moéwimy, ze ciag dystrybucji T, jest zbiezny (w sensie dystrybucyjnym) do dystrybucji T,
gdy .
(Tnlg) = (Tl¢), ¢ € D(RY).

Zadanie 22 Niech f € L'(R), [ f =1, fo(z) = e 1 f(ze ). Wtedy

lim = 6.
e\ 0

Solution. Niech ¢ > 0.
/ fo(@)(z)dz — $(0) = / fo(@) (6(z) — 6(0))dx
— /| @ (6@ o) + / f(@)($(x) — 5(0))dz =

|z|>d

112 sup [6(2) — 60)] [ |f(@)lde < sup|o/(a)] [ |F(a)jd

|z|<é

11| < 2sup |¢(z)] |f ()|dz.
|x|>d/€

I+11;



Ale l{% Jiapss/e |f (@)|dz = 0. Wiec

\ / fe(x)p(z)dz — $(0)] < AS.
Ale 4 > 0 bylo dowolne.

Zadanie 23 Pokazaé¢ wzér Sochockiego.

1 1

lim — =P— —ind(z).
e\O0 T + 1€ x
Solution. Mamy
1 T ie

r4ie x?24+€ a4 e’

1 €
— | ——dx =1.
/W/$2+62x

Wiec, z poprzedniego zadania mamy

Mamy

ie

i e = mo(@).
Podobnie pokazujemy
1
lim L P—.
eNO0 22 + €2 T

1.6 Rownania dystrybucyjne
Zadanie 24 Znalez¢ wszystkie dystrybucje spelniajace
EmT = 0.

Solution. T musi mieé¢ nosnik {0}. Zatem musi mie¢ postac¢

> 6V (k).
j=0

Wtedy

n

(1.18)

(K" T16) = 7 ¢(=1) (ko) | = D7 (=17 = 1)+ (G = m+ sV "(0).

J=m Jj=m

Czyli rozwigzaniem sa

m—1
T =Y c;6V (k).
j7=0

10



Zadanie 25 Znalez¢ wszystkie dystrybucje speliajace

kT = 1. (1.19)

Solution. )
Zadanie 26 Znalezé wszystkie dystrybucje speliajace
(K> = 1)T = 1. (1.20)
Solution. )

Zadanie 27 Znalez¢ wszystkie dystrybucje spelniajace

KT = 1. (1.21)

Solution. Zdefiniujmy dystrybucje 7?,712 wzorem

Ak) 4o (k) — 6(0) — k¢/(0) o(k)
73/ i /m dk+/|k|>1 dk.

k2 k2
Solutionm jest
1
T =P +cd(k) + c16W (k).

1.7 Transformata Fouriera

Zadanie 28 Niiech m > 0. Pokazaé, ze

/(Se:f;)d s = —2mif(€)e ", (1.22)
/ (:jfsm)d s = 2mif(—&)e ™Il (1.23)
/md s = misgn(€)e—Iél (1.24)
E/ngZ%ds p— (1.25)

11



Zadanie 29 Przechodzac do granicy z m do zera w poprzednim zadaniu, pokazaé, ze

—izk _ +i
/H(ix)e de = FEi (1.26)
e—ikx )
/xiiodx = F27if(xx), (1.27)
/ sgn(z)e whdr = —217?(%), (1.28)
efikx
/73 dz = misgn(k), (1.29)
x

Zadanie 30 Pokazaé, ze dla e > 0, A > —1, transformata Fouriera funkcji 0(:6)1‘)‘&3_“ jest réwna
e IFVIT(N + 1) (€ —ie) 1A,

Zadanie 31 Pokaza¢, ze dla f € D(R)
f

Tf(x) ::77/

(y) dy
y

nalezy do L?(R) i ze T rozszerza si¢ do operatora ograniczonego na L?(R). Policzy¢ T2.
Wskazowka. Warto zastosowaé transformate Fouriera.

Zadanie 32 Pokazaé, ze

Ty x Ny = (2 — 2Ty - (1.30)
Wiedzac, ze transformata Fouriera 1j_; ;) jest rowna %11(5)7 policzy¢ transformate Fouriera
(1.30).
Solution. %22(5).
1.8 Funkcje Greena
Zadanie 33 Znalez¢ dystrybucje G spelniajace

(0x + 1)G(z) = §(z). (1.31)

Pokazaé, ze
f==Gxh

spelnia

(0x + 1) f(z) = h(x). (1.32)

Solution. Metoda 1. Solutionm réwnania jednorodnego
(0x + 1)Go(x) = 0. (1.33)
jest Go(z) := ce™™. Uzmienniajac stala ¢ dostajemy rownanie

Ogc(z) = ().

12



Stad
G(z) =ce * +0(x)e " .

W szczegblnosci, mamy funkcje Greena retardowana Gy (x) := 0(x)e™® i adwansowana
G_ = —0(—z)e™". Retardowana jest jedyna dystrybucja temperowana sposrod funkcji
Greena.
Metoda 2. L

G(k) = :

(k) ik+1
Wiec
e*lkx
G(x) = dk = 0e™™
(@) / ik+1 ¢

Zadanie 34 Znalez¢ dystrybucje G spelniajace
(0z + 2)G(z,y) = 6(x — y). (1.34)
Pokazaé, ze
f@)i= [ Glayh(y)is

spelnia

(0z + ) f(z) = h(x). (1.35)
Solution. Solutionm réwnania jednorodnego

(0x + 2)Go(z,y) = 0. (1.36)

N

T

jest Go(z) := c¢(y)e™ z. Uzmienniajac stata c(y) dostajemy réwnanie

2 2

Opc(z,y) =eZ8(x —y) = ey?é(af —y).
Stad

[N

2 y 2

Gx,y)=e 2 20w —y) +g(y)e e ™.
W szczegoblnosdci, mamy funkcje Greena retardowang G i adwansowang G_:

z2 2
Gy(2)=e 27 70(x —y),
2

2
G_(z) = —e"TT70(y — 2).

—m|z|

Zadanie 35 Rozwazmy R3. Pokazaé, ze G(z) := ¢

£—r— jest rozwiazaniem réwnania
47|z

(A +m?)G(x) = 6(x).

Solution. Metoda 1. Niech

1

Gl@) = s / G(k)e™ dk,

13



Wtedy

A 1
(k‘) = m7

1 elk:l‘
= dk
G(2) (27)3 / (k2 + m2)
1 00 ™ ellkl|z| cos 6
= k12d|k in0df ————
e, Pk [ o0 Gy

! /oo d|k|ei|k||x\ _ e-ilklle]
(22 ) |k|[z]i(k? + m?)

1 00 Seis|z| e—m\r|
o | i - |
(2m)2 J_o  |z|i(s% +m2) 47|z
Metoda 2. Zastosujemy wzor Greena:

/ (Afg— fAg) = / (Vfg— [Vg)ds.
Q o0

Ktadziemy f = ¢, g = Lmlzl, Q= R3\ K (r). Mamy na 0K (r) = r25? z miara r’dw, gdzie
4r|z|
we S2
Sprawdzamy, ze poza zerem
A ) e—mlzl
(A +m) 4r|z|

e—mlzl e—mr —mr

2 — B e
Lo A 20 e = [ (oot o — 00009,

Wreszcie, korzystamy z

e e me” ™"
Oy =— — , / dw = 4.
52

Zadanie 36 Niech P bedzie wielomianem takim, ze P(§) # 0, £ € R. Niech g € S(R). Pokazac,
ze istnieje f € S(R) taka, ze
P(la;r)f =g

Pokazad, ze istnieje G zalezne tylko od P takie, ze to rozwigzanie moze by¢ zapisane jako

f=Gxg.

Znalez¢ G dla P(€) = &2+ m?

14



Problem 1.1 Rozwazmy I*>(Z) z bazq kanoniczng (6, : mn € Z). Niech 0 € R. Zdefiniujmy
wektory
by, := cos(6n)dy, + sin(0n)d_,.

Pokazaé, ze (b, : n € 7Z) jest bazq ortnormalng.
Problem 1.2 Policzyé tranformate Fouriera funkcji
f(z) = e 17" cos 2.

Problem 1.3 Niech 1 < p < oo i f € LP(R3). Niech |z| oznacza norme euklidesowq wektora
x € R3. Dla jakiego m funkcja (1+ |x|?)™™f nalezy do L'(R%)?

Problem 1.4 Niech d bedzie liczbg naturalng. Dla jakiego m nastepujgca funkcja nalezy do
L2(RY):
(i) |2,
(i) (14 [z,
(it)) TTiy (1 + faif) ™
Problem 1.5 Diat > 0 ktadziemy g.(z) := (27rt)_1/2e_‘”2/2t. Znalezé gt * gs.
Wskazéwka. §(£) = e %7/2.
Problem 1.6 Dlat # 0 kladziemy g;(x) = (iz +t)~!. Znalezé g; * gs.
Wskazéwka. §;(¢) = 2m(sgnt)0(Esgnt)e .
Problem 1.7 Pokazaé, ze Span{(z +a)~! : Ima > 0} nie jest podprzestrzeniq gesta w L*(R).

Problem 1.8 Niech g € L'(R). Pokazaé, ze operator Tf := f * g jest dobrze zdefiniowany dla
f € L3(R), jest ograniczony i |T|| < ||gll1. Czy zawsze |T|| = ||g||1?

Wskazoéwka. Zastosowaé transformacje Fouriera.

Problem 1.9 Niech 1 < p <r < q < o0. Pokazaé, ze
LP(R)N LY(R) c L"(R) C LP(R) 4+ LI(R).
Problem 1.10 Diam € R, 1 < p < oo definiujemy

Lp(R) :=={f : [[(A+|z)™fll, < oo}
Pokazaé, ze jeslir < q, m > % — % + k, to L (R) D L,(R).

Wskazéwka. Wykorzystaé uogdlniona nieréwnosé Holdera

Ifall- <1 fllpllglly 1<p<r<q<oo,

15



2 Exercises to Theory of Operators

2.1 Inverses

Problem 2.1 Let A, B be invertible. Then

Al —Bl=4a"YB-A)B. (2.37)

Problem 2.2 Let H be invertible and V has a small enough norm. Then H+V and (1+V H™1)
are also invertible and
(H+V) '=H'14+VvH 1™t (2.38)

Besides,
1H™ = (H+ V)7 < ooV (2.39)

Solution. If |[VH 1| =: ¢ < 1, then the series

[e o]

S (-vE) (240

n=0

can be dominated bby a convergent geometric series, and hence is convergent. We check that it
is the inverse of 1+ VH~!. But

(H+V) ' = (M+VHEYH) '=H '+ VH "), (2.41)
Now -
(H+V) '—H'=H'> (-VH )" (2.42)
n=1
Hence,
_ _ _ C
I(H+V)"' =H Y < ||H 1||2HVIIE- (2.43)

Problem 2.3 Let H + zyll be invertible. Then H + z1 is invertible in a neighborhood of zy.
Besides z + (H + z1)7! is a differentiable function and

L) = (7 ), (2.44)

Solution. By Problem 2.2, with V = 2 — z, the function z — (H — z)~! is well defined and
continuous neoar zy. By Problem 2.1, we have the resolvent formula:

(H—2—h)™' —(H —2)"' =h(H -2 +h)"(H—2)"" (2.45)
Now

d
L~ 2ol) P =lim(H — 2 —h)™' — (H — 20) ' = lim(H — 20 + h) "1 (H — z)~!. (2.46)
z h—0 h—0
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2.2 Finite dimensional matrices

Let A be a linear operator on a finite dimensional space V. Let A € C. TFAE:
(1) det(A—A) =0,
(2) There exists v # 0 s.t. Av = \v
(3) (A —A) is not invertible.

The set of such A is called the spectrum of A and denoted spA.

Problem 2.4 Let {\1,..., A} = spA Show that if v; € Ker(A\; — A), and vi+---+v, = 0, then
v=---=v,=0.

Solution. Suppose that this is not true. We can assume that p is the smallest possible
number of nonzero v; € Ker(\; — A) such that vy +--- 4+ v, = 0. Then

0=Ap(v1+-vp) = Avr + - vp) = (Ap = A)or + - (Ap = Ap—1)vp—1 = 0,
which is a contradiction. O

We say that A is diagonalizable if Z Ker(\; —A) = V. In other words, V = GB (Ker()\ —A).
We can then define the projection P; onto V;along V1@ - D Vi1 ®Vip1 D - 69 V.. We have

then .
A= Z NP,
=1

Problem 2.5 Let A be an arbitrary matriz. Let \; € sp(A). Show that
Ker(A\; —A) C --- C Ker(\; — A)™
Show that this sequence stablizes. Suppose this happens for m;,m; +1,.... Set
Vi = Ker(\; — A)™.
Show that V; is an invariant subspace of A.

>k >k >k ok ok ok sk sk sk sk kK kK Kk kR kR ok ok R ok Sk ok ok Skook sk skook skoskoskosk sk skosk sk skoskoskoskoskoskoskokokokok

We have

where NN; is nilpotent on V;. Set

We have
A=D-+ N, (2.47)

where D is diagonalisable, N is nilpotent and DN = ND. (2.47) is called Jordan-Chevalley
decomposition.
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Problem 2.6 Let f(2) = Y. fxz" be a polynomial Show that
k=0

=Y Ak =3 ?f(”(D)- (2.48)
k=0
Solution. It is enough to assume that A = XA+ N where N is nilpotent.

=N Z Zk 1) (k= DA (249)

Note that in order to compute f(A) it is enough to know

Spectral Theorem. Let AA* = A*A (A is normal). Then A is diagonalizable and the
spaces Ker(\; — A) are orthogonal. Therefore, P; are orthogonal projections.

If A is Hermitian, then spA C R.

If A is unitary, then spA C {|z| = 1}.

Problem 2.7 Let A be normal. Then
|A|| = sup{|\| : X €spA}.
In particular
-1
1(z— A)Y = (mm{yz “Al:he spA})

Solution.

1Aul® = Il Pl ?
<sup 2 Y [1Pulf? = (sup [Aa])?u®.

Problem 2.8 Let A be any operator with spectrum {\1,...,An}, and degrees of nilpotency
mi,...,My. Then

Iz = A7 <edlz = xlm™
i=1

Solution.
[(z— A uH<ZH (z = Ai = Ni) ™ Pyul.
m;—1
(z=X—N)' =) (- )N
=0

18



2.3 Operators
Problem 2.9 Show that ||Al| = ||A*||.
Solution.

|Al = sup [[Av|[ = sup [(w|dv)]= sup [(A"wlv)| = sup [[A"w] = [A7].
Joll<1 ol flwl <1 ol Jwll<1 o<1

Problem 2.10 Let A,B € B(H). Prove that spAB U {0} =spBAU {0}.
Solution. Let z € rsAB\{0}.Then
Y1+ B(z—AB)'A) (2 — BA) = 27 Y(2 = BA) + 27 'B(» — AB)"'(1 - AB)A = 1.
Hence z71(1+ B(z — AB)"'A) = (z — BA)~! and 2 € rs(BA).

Problem 2.11 Rozwazmy L*(S') z bazq ortonormalng e, (¢) = ﬁeiw, n € Z. Niech (¢,

n € Z) bedzie ciggiem ograniczonym. Zdefinujmy operator

o0

C = Z cnlen)(en].

n=—oo

(i) Pokazaé, ze C jest ograniczony i ma norme sup{|c,| : n € Z}.

(ii) Pokazaé, ze jesli Y. |cn| < 00, to C posiada jadro catkowe réwne
(=9 +¢)
C = —
(6.0)= 424D,
gdzie e(p) = > e Wre,..

Problem 2.12 Na L?(S') rozwazyé operator P. z jgdrem catkowym

sinh e
cosh e — cos(¢p — 1)’

P€(¢7 w) =

Pokazaé, ze s— 1i\rf(1)Pe =1i||P] =1
€
Wskazéwka. Pokazaé, uzywajgc bazy ortonormalnej z poprzedniego zadanie, Ze

e}

P. = Z e~ e, ) (enl.

n=—oo
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Problem 2.13 Niech f : [0,00[— [0,1] bedzie funkcjq ciagta i malejacq, takq, ze f(0) = 1 ¢
tlim f(t) = 0. Rozwaimy przestrzen Hilberta I z bazq kanoniczng (§; : j € N}. Zdefiniujmy
— 00

roddzine operatorow

Ce:=Y_ f(ed)6;)(551.

J=1

(i) Pokazaé, ze funkcja [0,00[> € — C¢ jest normowo ciggta na 10, 00[ lecz normowo nieciggta
we=0.

(ii) Pokazaé, ze funkcja [0,00[> € — C. jest silnie ciggla.

Problem 2.14 Mdwimy, ze P jest rzutem, gdy P> = P.
(i) Pokazac, ze jesli P jest rzutem niezerowym, to || P| > 1.
(ii) Pokazaé, ze dla kazdego ¢ > 1 istnieje rzut na przestrzeni Hilberta taki, ze || P|| = c.

Wskazéwka. Wystarczy rozwazaé 2-wymiarowe przestrzenie Hilberta.

(iii) Pokazaé, ze jesli P jest rzutem na przestrzeni Hilberta takim, ze |P|| = 1, to jest to rzut
ortogonalny.

Problem 2.15 Niech (U, : n=1,2,...) bedzie ciggiem operatoréw unitarnych.

(i) Pokazac, ze jesli lim U, = U, to U jest unitarny.
n—oo

(ii) Pokazaé, ze jesli s— lim U, = U is— lim U} =U*, to U jest unitarny.
n—oo n—o0

(iii) Pokazaé, ze jesli s— li_>m U, = U, to U jest izometrig. Podaé¢ przyktad ciggu operatoréw
n oo

unitarnych, ktorego silna granica nie jest unitarna.
(iv) Pokazaé, ze jesli w— lim U, = U, to |U|| < 1. Podaé¢ przyktad ciggu operatorow unitar-
n—oo

nych, ktorego staba granica jest zerem.

Problem 2.16 Niech (P, : n = 1,2,...) bedzie ciggiem rzutéw. Niech s— li_)rn P, = P.
n—oo

Pokazaé, ze P jest rzutem.

Wskazowka. Mozna zalozy¢, ze sup || P,|| < co. (Wynika to z Tw. Banacha-Steinhausa i silnej

zbieznosci ciagu (Fy,)).

Problem 2.17 Niech A,, bedzie ciggiem samosprzezonych operatoréw ograniczonych ma prze-

strzeni Hilberta takich, ze w— lim A, = A. Pokazaé, ze A jest samosprzezony.
n— o0

Problem 2.18 Niech (P, : n=1,2,...) bedzie ciggiem rzutéw ortogonalnych.

(i) Niech s— lim P, = P. Pokazaé, ze P jest rzutem ortogonalnym.
n—oo

(ii) Podaé przyktad ciggu (P, : n =1, 2,j rzutow ortogonalnych takich, ze w— 7};1{.10 P, = %]1.
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Problem 2.19 Dia f € L([0,0[) definiujemy
(Tf)(x) =2~ f(z™).
Czy T jest operatorem
(i) ograniczonym,
(ii) unitarnym,
(i) samosprzezonym.

Problem 2.20 Niech o € C, Rea < 0. Niech (6, : n € N) oznacza baze kanoniczng w I?(N).
Zdefiniujmy nastepujgcy operator na 1>(N):

T =) e"[0n11)(0nl-
n=1

(i)
(i)
(iii) Policzyé T*T.
(iv) Policzyé T?.

)
)

(v) Dla jakich « istnieje s — limy, oo T™ ¢
)

Pokazaé, ze T jest operatorem ograniczonym i znaleé jego norme.

Dla jakich o operator T jest izometrig?

(vi) Dla jakich « istnieje limy, oo T™?

2.4 Przestrzenie Hilberta

Niech H bedzie przestrzenia Hilberta. Bedziemy stosowaé notacje dla iloczynu skalarnego po-
dobna do notacji Diraca:
(vlw), v,w e H.

Jedna z jej zalet jest mozliwosé “oderwania” (v|, |w), traktujac je jako operatory

Coz |w)z:=wzeH, (2.50)
H > hw— (v|h:= (v|h) € C. (2.51)

Na przyktad
[0)(vlh = w(vlh),

Jesli (v|w) = 1, jest to rzut na w wzdtuz Ker(v|. Jesli ||| = 1, to |v)(v] jest rzutem ortogonalnym
na v. Jedli ey, ..., e, jest baza ortonormalna, to

A=) Ajjle)(el.

4,j=1
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Problem 2.21 In [? we define the spaces
W= {(x,) €1® 29, =0, k € N}, (2.52)
Z = {(zn) € : zop_1+ Vkao, =0, k € N}. (2.53)
Obviously, W and Z are closed. Show that W + Z is dense in [* but not closed.

Solution. Let x L W 4+ Z. Because x L V', xop_1 = 0. Because x L Z, x9p_1 — ﬁx% =0.

Hence z = 0. Therefore, W + Z is dense in .
Consider z € 12, z; = % Let z=v+2z,veV,z€ Z. Then

1

22k—1 = —\/EZQk = —ﬁ-

22k = ﬁa
But z ¢ [2.
Problem 2.22 Let A be a self-adjoint operator on C™. Show

[A]l = max{[A] : A €sp(A)} = sup{(v]Av) | [lv]| = 1}.

Solution.
A= Z AP
A€sp(A)
JAv[* = > N[ Pyof| < max{|A| : A €sp(4)} > [Pl (2.54)
= max{|\| : X € sp(A)}||v]* (2.55)

Problem 2.23 ||B||> = || B*B]|.

Solution. Clearly, B*B is self-adjoint.

1Bl = sup{||Bv]| | [[v]| = 1} = sup{(v|B*Bv) | [[v| = 1} = | B*B]|.

Problem 2.24 Find the norm of B = [BH Bl?],

Bo1  Bas
Solution.

prp - |BuBu+ B21Bo1 BuiBia + BaiBaa| _ [Cii O
B12B11 + B2 B21 B12B12 + B2 Boy Co1 C2
det(C — )\]1) = (011 — /\)(CQQ — )\) — 012021 = 0.

Ci11 + Coz + 1/(C11 — Ca2)? + 4C12Coy
5 .

I1B* =
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2.5 Spectrum
We say that A is involution if A% = 1.

Problem 2.25 Show that the following are equivalent:
(1) A is self-adjoint and A is an involution.
(2) A is an involution and A is unitary

(3) A is unitary and A is self-adjoint.
Problem 2.26 Let A be an involution. Find its spectrum and its spectral projections.

Solution. We guess: set Py := %(]1 F A). Then APy = £Py and A = Py — P_. Therefore,
sp(A) ={-1,1} and ]l{il}(A) = P,.

Problem 2.27 Let U™ = 1. Find spectral projections of U.

Solution. Similarly, as in the previous problem, we guess:

n—1
1 . —ijk2m
P, =— Ulemn =1 iom (U 2.56
h= 23 U ozt (U, (2.50)
7=0
n=1
ik2m 2wk
U=)>» en P,. splU)={en :k=0,...,n—1}. (2.57)
k=0

Problem 2.28 Find the spectrum of the Fourier transformation F.

M

T

Solution. F* = 1. Hence spF C {1,i,—1,—i}. Let Q(z) =e 2, a* = 2 — 0,. Then FQ = Q
and Fa* = ia*F. Hence F"a*Q) = i"a*(). But a*"€) is a complete set of eigenvectors of the
harmonic oscillator.
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2.6 Operator inequalities

We say that A € B(H) satisfies A > 0 if
(v|Av) >0, veH.

Equivalent condition: A is self-adjoint and spA C [0, ool.
Let A be self-adjoint. Set infspA = a_, supspA = a,. Then

a_ <A<ag.
For any A, A*A > 0.
Problem 2.29 Show that
AA* <1 & A"A<1 & J4|<1.
Solution. We have

14v]]* = (v]A*Av) < (v]v) = [lv]* < [|Al < 1,
1A%0]|* = (v]AA™) < (v
But [|A]| = [|A*].

%%0%%%% % %0 %0 %0 %0 0 o o %0 %0 %0 %0 %0 %0 Yo Yo Yo %o o o Yo 0 %0 %0 %0 %6 %o %o Yo
Let A, B € B(H). We write A < B if

(v|Av) < (v|Bv), v e H.

Ay < By, Az < Bsimplies A1 + Ay < By + Bs.

A < B implies CAC* < CBC".
Problem 2.30 Let 0 < A < B. Show that fort >0,
t+B) < (t+ AN
Solution. Using (2.58), we obtain the following implications:

t+A<t+B,
(t+B) 2(t+ A)(t+ B)~
(t+A)2(t+ B) ' (t+ A)
(t+ B)~

1

<1,
<1,
<(t+ AL

= N

_ N
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Problem 2.31 Let A >0 and KerA = {0}. Let 0 < o, 3 < 1. Then

sinra [ t~dt
AT = , 2.66
T /0 (A+1t) ( )
B _ Sin’]T/B o0 1 _ 1 8
A7 == /0 (t (A+t))t dt. (2.67)

Solution. We start from identity

™ :/ 5~ %ds (2.68)
0

sin oy (1+4s)

We substitute s = % to get (2.66). Next we multiply (2.66) by A, use

4 _ (1 _ ;)t
(t+4) \t (A+1)
and set 8 = 1 — «, to obtain (2.67).
Problem 2.32 Let 0 < A< B and KerA ={0}. Let 0 < a < 1. Then

B <A, (2.69)
A* < B~ (2.70)

Solution. We have (t + B)~! < (t + A)~L. Therefore (2.69) follows from (2.66).

We have 1 — (A}&—t) <1i- (BIH). Therefore, (2.70) follows from (2.67).

Problem 2.33 Find an example of A < B such that A> < B? is not true.

Solution. We use the following criterion for positivity:

[Z 2]20 & aZOandad—]b|220.

Set

Clearly, A < B. Now

_[1 0] [1+362+64 2€+63:|

2 _
0 0|’ Be = 2¢ + €3 1+ €2

Then

B2 _ 42 [362 +et 2463

— 2 A2y _ 2.2 _ 4.2 4
9% 4 3 1+62], det(B* — A%) = 3¢e” — 4e” + O(€%).

Hence det(B? — A2) < 0 for small e.
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2.7 Polar decomposition

Let A be an operator such that KerA = {0} and KerA* = {0}. Then there exists a unique
positive operator, denoted |A| and a unitary operator U such that

A= |AU. (2.71)

Besides,
|A| = VAA*, U =|A|'A

(2.71) is called the polar decomposition of A.

The above definition has a generalization to an arbitrary operator. More precisely, if A is
arbitrary, then there exists a unique positive operator |A| and a unique partial isometry U such
that KerU = Ker|A| and

A=UlA|. (2.72)

Then (2.72) is called polar decomposition of A and |A| = vV A*A.
Let B be the inverse of |A] restricted to Ran@, extended by 0 on KerA. Then

At = BU*, (2.73)
|A|T = B, (2.74)
Ut =0 (2.75)

Uwaga 2.34 Let us denote the orthogonal projection onto the closure of RanA by P and onto
(KerA)* by Q. The Moore-Penrose pseudoinverse is defined as the unique operator A+ such that

AAT =P, ATA=Q. (2.76)

Problem 2.35 Let [ ZL Z ] be a matriz with determinant 1. Prove that the transformation on

L3(R) given by ,
1 ax +
= R
Uf) \ca:+d|f<cx—|—d> e

18 unitary.

Problem 2.36 Let A be an invertible operator. Then there exists a unique positive operator B
and unitary U such that
A=UB.

Solution. We have A* = BU*, A*A = B?. Hence B = vV A*A. B? is invertible. Hence so is
B. Therefore, U = AB~!. Then we check that U is unitary.

Problem 2.37 Let S' be the unit circle parametrized with angle ¢ € [0,2x[. Let S* > ¢ +
P(g) € St be the bijection of class C* such that % is bounded. Define the operator W on
functions on S* by
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(i) Find W*.
(ii) Find the unitary operator U and the positive operator A such that W = BU .
(ii) Show that ze W is bounded on L*(S1) and find |W]|.

Solution. do
Weg(w) = 3 a(o0).
Hence,

do

W) = [0 (2.77)
WA f () = jfj 2 f(), (2.78)
Uf(9) = ‘j;ﬁ ? F(6)). (2.79)

Problem 2.38 Find the polar decomposition of A on 12(Z) given by

Aey, = An+1€n+1,
where a, # 0, n € Z.

Solution.
an+1

|Ale,, = |anlen, Ue, =
|an41]

€n+1-

Problem 2.39 Find the polar decomposition of A, on L*(R) given by the integral kernel

(z—y)2

A (x,y)=e* 2 , Rez>0.

[ zw2m
AzAw - mAz+w.

(z—y)?
AL (z,y) = V2rimze RT3 Ul (z,y) =

Solution. First we compute

Therefore,

1
vV 2rImz

Problem 2.40 Let R 5 z +— y(z) € R be an increasing bijection. Find the polar decomposition
of A on L?(R)

(z=y)?
e_mngfi.
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Solution. First we compute

A"9(y) = o(e(w))[ 3 )]
Therefore,
dz 3
Alf(y) = @(y) f),
Us@) = | 2| ),

%%0%0%0%0%0%0 %0 %0 %0 %0 0 o 0 0 %0 %0700 %0 %o Yo Yo %o o o o 0 %0 %070 %6 %o %o Yo

Problem 2.41 (1) Let U be a unitary operator and P an orthogonal projection. Then W :=
UP is a partial isometry.

(2) Let W be a partial isometry on a finite dimensional Hilbert space. Then there exists a
unitary operator U and an orthogonal projection P such that W = UP.

%% %%%% %% % %0 %o %o %o 0 o %6 % %% %0 %0 %o %o %o %o Yo Yo Yo Y0 % % % % %0 Yo
Problem 2.42 Find the polar decomposition of |v)(w|, where v,w are arbitrary vectors.
Solution.

[0)(w] - Jw)(wl[v]
[ollflwll el

[v)(w] =
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2.8 Rank one perturbations

Let us start with a physical example. Consider [?(Z) with the canonical basis e,,, n € Z. Consider
the Hamiltonian

HOen =én—1+€ent1, OF (HOf)n = fn+1 + fnfly
perturbed by AV, where
Ve, = (50,71607 or (Vf)n = (50,nf0-

We would like to find the spectrum of H = Hy + AV
Introduce the Fourier transformation F : I2(Z) — L?|—m, ]
1

_ ink
(fen)(k)—me .

Then
FHoF 'f(k) =2coskf(k), FVF'=]v)(v
v(k) = \/% Thus o(Hy) = [-2,2].
In the sequel we will consider an abstract version of this problem. We assume that Hy is an
operator of multiplication

on L%[a,b] and v € L?[a,b]. Let

Hf = 8.
Then
(@) + 0@ [ ) f(0)dy = 51 (o)
Hence :
@) = 32 [wisay
1= ;(f)f dz.

Assume that v is continuous and nonzero on Ja,b[. Then [ h’é%)fdw = oo for [ €]a, b[. We have

d (@, [ |Jo@)? .
dﬁ/ dz — /( _dz <0, (2.80)

B—ua B—x)
2
ngfoo/ |;(f)g‘3 dz = 0. (2.81)
Set ) )
A= /de, B .= / |z(x)xdx.

Hence on ] —oo0, a| we have exactly one eigenvalue for A €]—oc, A~![ and on b, oo[ for A €]B~1, oc.

We have \
lim —ﬁ( )

= 1.
Aotoo A
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The eigenvector is

Let us compute the resolvent:
1 1 1 1 -1 1 1
(= H)™ = (2 = Ho) ™'+ (A7 = (vl(z = Ho)™v)) (= = Ho) " |o)(0l(= — Ho)~

Hence, by computing the residue of the resolvent at 5, we get

1
(0](B — Ho) %v)’

gy (H) = (8 — Ho) ™" |v)(v|(8 — Ho)™

2.9 Resonances
For a € R, using z as a real variable, let us first define the distribution on R

1 1
— = lim ——. 2.82
(z —a+10) e{l(l)(z—a—l—ie) (2:82)

Note that it is a tempered distribution and we can compute its Fourier transform:
1 efitz

- — _ —ita . 2.
50 z—a—i—iOdZ e "4(t) (2.83)
Indeed,
/ O(t)e MeitZdt = lim [ e*EmetiOqy (2.84)
e\O0 Jo
i i
= lim (2.85)

N0z —atie z—ati0
Let H be a self-adjoint operator. Clearly,
C\sp(H) >z (2 — H)™!

is an analytic function that has poles at points of the discrete spectrum and the residues are the
corresponding spectral projections. We cannot extend this function to a larger domain. However,
sometimes we can extend

2z (®)(z— H)™ o) (2.86)

for some vectors W. The additional domain arising from this extension is sometimes called the
“non-physical sheet of the complex plane”.

Suppose that and D a distinguished subspace of H. Suppose that for all ¥ € D (2.86) can be
extended to some common region = We say that E € = is a resonance if (2.86) has a singularity
at E.

Note that for e > 0

o it(Z—H+i€) — 1 2
/O e &= (2.87)
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The limit of (2.87) for € N\, 0 does not exist in terms of operators, but for appropriate ®, ¥ there
may exist the limit of matrix elements:

(<I>| /O b eit(f_H)dt\If) = lim (<I>| /0 oo eit(z-H+i€)dt\I/> (2.88)
= l{% (@]m\ﬂ) =: <¢|m\1/> (2.89)

Therefore, (omitting ®, ) for ¢t > 0, applying the inverse Fourier transformation
. 1 [ .
e It — / (z — H +1i0)"te 2d2.
2 J_

By deforming the contour, pushing it down and picking up the residue at FE, we obtain for

d, v eD

—i 1 - —itz —i
(®le tpr):%/(cpy(z—H) L)e ™ 4 (B|RT)eF.
v

2.10 Feshbach-Schur formula

Suppose that the space is V = Vg @ Vr. (S stands for a ,small system” and R for a ,reservoir”).
An operator on V can be written as

o-[iz 21 )

Hgs Hgrr c d
We also introduce the imbeddings Jg and Jg of Vg, resp. Vg into V.

Problem. Write H as
_ 1 y||a 0]]1 O
|0 1|0 B |z 1|

1 bd Y] [a=bd7tc O] 1 0O
0 1 0 d|

Solution

H= [ (2.90)

Problem. Compute J§H*1Jg.

-1 - -1 r r -1
. 1 vy 1~y a 0 - at 0 1 0 110
Solution Note that [0 1] = [0 1| [0 5} —| 1} and B J = [—m 1].

Therefore, application of (2.90) yields the inverse of H:

gi_[ 1 0 [(a—bd~te)™t 0 ][1 —bd!]
T l=d7le 1 0 d-!

Now Jg = [1 0] and Jg = [1

0} . Hence

JEH Vs = (a—bd ')t
Applied to z — H instead of H it is sometimes called the Feshbach-Schur formula
* — - -1
Ji(z— H)'Js = (2 — Hss — Hsr(2 — Hrr) 'Hrs) . (2.91)
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2.11 The Friedrichs Hamiltonian
On the Hilbert space L?]a,b[®C consider

o[t )

(v e

Hof (k) = kf (k).

Let us look for an eigenvector of the form (f,g).

KF(K) + o()g ==f () (2.92)
/v(k)f(k:) + eg =z2g. (2.93)
If g # 0, this yields ,
2
s=e +/ ‘ZU_‘“)]L dk, f= Z(f)g. (2.94)

Now on | — 00, a] and on [b, +o0[ the function F(z) := ¢ + f: %dk is decreasing. Therefore,
. b Ju(k)[? . : : :
if e 4+ 7kdk < a there exists a unique eigenvalue in | — oo, af, (2.95)
a J—
a
: b Ju(k)[? : : : .
if e + ﬁdk < b there exists a unique eigenvalue in ]b, +00]. (2.96)
, b—
Let us call this eigen value E. Then we have an eigenvector with the eigenprojection

b (k) ? ek
(“/a Mdk> [1] ) (2.7

For small A this eigenvalue can be found from

E)\:E—I—)\Q/ (E_k)dk: (2.98)

1 = O|<k)|2dk -1 (]}ﬂ ’
0 1 0 (2-c—["2%) Gk 1

—~

) (e ) [
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Suppose now that v(k) # 0 for k €]a, b and v is continuous. Then for A small (2.94) has no
solutions and hence there are no eigenvalues. However, there may be a resonance. If we replace
v with Av, where v is small, then

2

—k)

b,v

E\~e+ AZP/ dk —in\%u(E)|?. (2.99)

This is the Fermi Golden Rule 1.
This (at least on the heuristic level) implies
((I)O|e—itH(I)o) ~ e—iEt7
Hence

)

d . 2 . 2
5‘ ((I)()‘efltH(I)()) ) = 27T|U(E)" ((130|671th>0)

which is called the Fermi Golden Rule II.
Here is an alternative, differential derivation of this rule. Set

Then
d
a\l/t(k:) = —ikU (k) — i\v(k) Dy, (2.100)
7q)t —1)\/ i€q)t. (2101)
Set . . 3 .
\Ijt = eltk\Ijt, (I>t = elt5<1>t.
Then
d - ) -
g elk) = —idv(k)et )P, (2.102)
d - b -
& =1 v(k)e!ERN, (k)dk. (2.103)

a

Using the first approximation ¥;(k) = W (k) = 0, ®; = ®y = 1 we obtain after one iteration

(k) = oo g
(k) = =) =%
Thus at t =0
d - (1 — ete=h))
—d 2 )P dkd 2.104
S, = m‘/yv Pk, (2.104)
Y ~
1/\2/ lu(e — 71 ]2(y)dy¢>t (2.105)
~ —mA2u(e)|? ;. (2.106)
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where we used

iy_l
/e dy = im.
Y

Can we have exact exponential decay? Assume a = —oo, b = 0o and v(k) = A. Note that
formally
]. . 2
—dk = — . 2.1
P/E_kdk im| Al (2.107)
We have
(z-G)"
1
— | z—k 0
0 O

(z)\k)] (z — e+ i7r|)\|2)71 [(zik) 1}

( m o itG m ) _ gitemlA2e (2.108)

2.12 Perturbation theory

_I_

[u—y

Thus

Assume now that Hyp and V are self-adjoint operators on V and Hy := Hp + AV. Set Ry(z) =
(2 — Hy) "

Let Vg be the spectral subspace of Hy onto the eigenvalue Fy and Vg its orthogonal comple-
ment. We can write the Feshbach-Schur formula as

—1
JERA(E)Js = (E — By — A\Vis — \2Vir(z — Horg — AVRR)*lvRS) : (2.109)
Therefore,
{EeR : E—FEy— \Vss — AN Vsr(z — Horr — AVRr) 'VRs is non-invertible}  (2.110)

is contained in the spectrum of H.
Problem. Assume that dim Vg is finite and FEj is a discrete eigenvalue of Hg. Find an equation
for eigenvalues of H)y, which for small X is close to Ey

Solution We can expect that these eigenvalues coincide with (2.110). A finite matrix is non-
invertible iff its determinant is zero. Therefore, the condition for these eigenvalues is

det (E — By — A\Vas — \2Ver(E — Horp — AVRR)—lvRS) ~0. (2.111)
Let us remark that we obtain a polynomial in F of degree dim Vg. In general it has dim Vg

solutions A — Ej(\)
%% %% %% %0%%%0 % % %% %0 Yo %o %o %0 %0 %0 %0 %0 %o
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Let dimVs = 1, so that Jg = |®y). Then we expect that close to Ey there is only one
eigenvalue of Hy. We introduce

F\(E) := Eg + (®0|V®q) + N2(Po|V(E — Horr — AVer) 1V ®y).

The eigenvalue E) is the solution of

Ey = F\(E)). (2.112)
We can try to solve it by iterations:
EY) = Fi(Ey). (2.113)
The first iteration is
ESY = FA(Eo) = Eo + (®0|V®o) + A(@o|V (Eo — Horr — AViw) ™' Vo) (2.114)
~ Eg + (o|V®o) + N (Po|V (Eo — Ho)zrV o) + O(N?). (2.115)

This method of finding eigenvalues is called the Brillouin- Wigner perturbation theory.

There is an alternative method, called the Rayleigh-Schridinger perturbation theory. Recall
that we have H = Hy + AV, HyVy = Ey¥¢ and Ej is a nondegenerate eigenvalue.

We make an ansatz

oo o
U, = Z A, E) = Z)\"En. (2.116)
n=0 n=0
We assume in addition that
(Wo|¥,) =0, n=1,2,.... (2.117)
We insert (2.116) into
(Ho+ A\V)W) = E\V,. (2.118)
We obtain a formal series in the powers of . At A" we have
n
HoUp, + VU, g =Y EjU, ;. (2.119)
§=0

We take the scalar product with Wy:

(TolHoWn) + (To|VEy1) = > E;(To|T,j). (2.120)
j=0

With help of (2.117) we simplify (2.120) obtaining

(Wo|VT,_1) = E,. (2.121)
(2.118) can be rewritten
n—1
(Eo— Ho)Up =VUy 1 — > Ej¥, ;. (2.122)
j=0
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We multiply (2.122) by Pr := 1 — |¥)(Ppl|, which does not affect the lhs. Setting

R6 = (E() — H())flPR,

we obtain .
U, = R()(V\I:n_l -y quzn_j). (2.123)

=0

Here are the first iterations:

Ey = (V|V ), (2.124)
Uy = RV, (2.125)
Ey = (Wo|VRyV¥y), (2.126)
Uy = RGVRYV Wy — (V| V)RV . (2.127)

3 Singular perturbations

Let Hp be a self-adjoint operator of multiplication by k? on L?(R%) and A € R. Let h be a
function on R%. Recall that if h € L2(R?), then the operators (k| and |h) are defined by

H > v (hlv:= (hlv) € C,

(3.128)
Cs>awr |h)a:=ah eH.
In particular, |h)(h| equals the orthogonal projection onto h times ||h[|%.
Hy = H0+/\|h)<h‘, (3.129)

is a rank one perturbation of Hy.
We would like to describe how to define (3.129)if & is not necessarily a bounded functional
on H. It will turn out that it is natural to consider 3 types of h:

I /|h(k)|2dk: < 0, (3.130)
I1. /|h(k:)\2(1 + k%) 7ldk < oo, /|h(k)\2dk = o0, (3.131)
I, /\h(k)\Q(l + 1) 2dk < oo, /\h(k)\z(l +82)~1dk = oo. (3.132)

Clearly, in the case I H) is self-adjoint on DomHy. We will see that in the case II one can
easily define Hy as a self-adjoint operator, but its domain is no longer equal to DomHy. In the
case 111, strictly speaking, the formula (3.129) does not make sense. Nevertheless, it is possible to
define a renormalize the interaction This procedure resembles the renormalization of the charge
in quantum field theory. In this case usually the parameter A looses its meaning, so we will
abandon the notation H). Instead, one can label the Hamiltonian by various parameters, which
we will put in brackets.

This we have already computed:
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Lemat 3.1 In Case I with X\ # 0, the resolvent of Hy equals

Ry(z) = (z—H\™
= (2= Ho) " —g(2)~"(z = Ho) '|h)(h|(z — Ho)", (3.133)
where
g(2) := =271+ (h|(z — Ho)"'h). (3.134)

defined for z & spHy.
Lemat 3.2 Assume I or II. Then Rx(z) is well defined for z € R\[0,00[, gA(2) # 0 and satisfies

Rx(z1) — Rx(22) = (22 — z1)Rx(21) Ra(22), (3.135)
or equivalently 0. Rx(z) = —Ry(2)2. (3.136)

Dowéd. In Case I (3.135) is obvious. In Case IT we see that (z—Ho)~'h € L? and (h|(z—Ho)~h)
are well defined. So R)(z) is well defined and (3.135) extends from Case I to Case II by continuity.
O

Assume Case III. Then R)(z) is ill defined because (h|(z — Ho)~'h) is ill defined. Let us
select ¢ < 0 and set

029cr(2) = — (h|(z — Ho)?h) , (3.137)
Ger(C) = 1. (3.138)

This can be solved:
ger(2) =7 + (c — 2) (h\(z ~H)Me— HO)*lh). (3.139)

Lemat 3.3 g., defined above satisfies (3.135) and (3.136).

Twierdzenie 3.4 Assume Case I, II or III except for Case I A = co. Then for z € R\|0, oo],
gr(2) # 0 we have KerR(z) = {0} and RanR(z) is dense. Therefore, R(z)~" is a densely defined

operator. Moreover,
H:=—R(z)™' +2 (3.140)

does not depend on z and defines a self-adjoint operator.

4 Cut-off method
Another way to define H for in Case III is the cut-off method. For A > 0 we define
hA = ﬂ[—A,A](HO) h, (4141)

where ]1[_A7A](H0) is the spectral projection for Hy onto [—A,A] C R. Note that hy is square
integrable
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We fix the running coupling constant by

ga(c) = 7. (4.142)
Let the cut-off Hamiltonian be
Hp := Hy + Aplhp)(hal. (4.143)
Then the resolvent for Hy is given by
Ra(2) = (2 — Ho)™" — ga(2)™"( — Ho) ™ ) (hal (= — Ho) ™, (4.144)
where
ga(z) == =\t + (hal(z — Hg)_lhA) . (4.145)

The cut-off Hamiltonian converges to the renormalized Hamiltonian:

Twierdzenie 4.1 Assume (1 + k?)"'h € L? (Case I, II or III). Then klim RA(z) = R(z).
—00

5 Laplacian on L?(R?) with the delta potential

On L*(R%) we consider the unitary operator U = (2)%2F, where F is the Fourier transforma-
tion. Note that U is unitary.
Let A be the usual Laplacian. Clearly,

~UAU* = k*.
Let |5)(d] be the quadratic form given by
(f110)(3]f2) = f1(0)f2(0).
Note that again it can be also written as

/ F@)8(x)g(x)dz,

and thus is interpreted as a “potential”. Let (1| denote the functional on L?(R?) given by

(tlg) = [ gty
Using §(z) = (2m) % [ e**dx we deduce that
U16)(61U* = (2m) = 1)(1].

Consider
U(=A+ X&) U* = k2 + x2m)~41)(1]
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as an example of a Hamiltonian with a singular rank one perturbation. We compute:

dk
/ <oo & d=1,

1+ k2
d9k

/(:l_’_k:2)2<00 = d:1,2,3,
d%k

Thus

(1) for d =1 it is of type IIb, so it can be defined in the form sense using the parameter \ (as
we have already seen),

(2) for d =2 it is of type IIIb. It can be renormalized.
(3) for d=3 it is of type IIIa. It can be renormalized.

(4) for d > 4 there is no nontrivial renormalization procedure.

Consider dimension d = 2. Let us compute the resolvent for z = —p?. We have
1|(Ho + p?)~Y(Ho + 1) Y1
9—1,7(—102) = 7+ (p2 - 1)( I >(27r()2 S 1)

d’k In p?
L) S I R

Using that the Fourier transform of k +— ﬁ equals = — 27 Ko(p|z|), where Ky is the Oth

MacDonald function, we obtain the following expression for the integral kernel of (p? + H)™!:

Ko(pl)) Ko(ply])
(2m)2(y-1 + 55)

In the physics literature one usually introduces the parameter a = ¢7/27 called the scattering

length. There is a bound state Ko(|z|/a) with eigenvalue —a 2.

1
K — + ) 5.146
o o(plz —yl) ( )

Note that
{fe(1—-A)"LAR?) : f(0) =0} (5.147)
is a closed subspace of (1 — A)"'L?(R?). The domain of H is spanned by (5.147) and
(—a™2 = A)7H1), (5.148)

which is in L2(R?)\(1 — A)~1L%(R?). In the position representation (5.148) is x — 27Ky (|x|/a)
Around r ~ 0 we have the asymptotics Ko(r) ~ —log(r/2) — . Therefore, the domain of H
contains functions that behave at zero as C'(log(|z|/2a) + 7).

Consider dimension d = 3. Let us compute the resolvent for z = —p?. We have
oy 2 (1(Ho +p*)""Hy Y1)
3k P
_ 2 _ b
- o+t Crp+ iz~ 7
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9 eplzl
I

Using that the Fourier transform of k — i equals z — 27 we obtain the following

k.2+p2
expression for the integral kernel of (p? + H)~!:

e~ Plz—yl e~ Plzlg—plyl (5.149)
+ . :
drle —y| - (4m)*(y0 + 7))yl
In the physics literature one usually introduces the parameter a = —(47y) ! called the scattering
length.
{fe@—-A)"L2R3) : f(0)=0} (5.150)
is a closed subspace of (1 — A)~!L?(R?). The domain of H is spanned by (5.150)
(ae™* —i)(i— A) Y1) + (ae 7 i) (=i — A)TH1) (5.151)

+im/
In the position representation (+i — A)71|1) equals = 2ﬂ2%‘4|m'). Therefore, the Ha-

miltonian with the scattering length a has the domain whose elements around zero behave as
C(1—a/|z|).

For a > 0 there is a bound state e_“;‘/a with eigenvalue —a~2. To get the domain, instead of
(5.151), we can adjoin this bound state to (5.150).

Note that the Hamiltonian is increasing wrt 9 €] — 0o, 00]. It is also increasing wrt a
separately on [—o0,0] and ]0,00]. At 0 the monotonicity is lost. a = 0 corresponds to the usual
Laplacian.

The following theorem summarizes a part of the above results.

Twierdzenie 5.1 Consider —A on C°(R%\{0})
(1) It has the defficiency index (2,2) for d = 1.
(2) It has the defficiency index (1,1) for d =2,3.
(3) It is essentially self-adjoint for d > 4.
(4) For d =1 its Friedrichs extension is —Ap and its Krein extension is —A.
(5)
(6)

For d = 2 its Friedrichs and Krein extension is —/A\.

For d = 3 its Friedrichs extension is —A an its Krein extension corresponds to a = 00.
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