
Exercises
Jan Dereziński

1 Exercises to Methods of Hilbert spaces

1.1 Banach spaces

Hölder inequality:

‖fg‖p ≤ ‖f‖q‖g‖r,
1

p
=

1

q
+

1

r
, 1 ≤ p, q, r ≤ ∞. (1.1)

Minkowski inequality
‖f + g‖p ≤ ‖f‖p + ‖g‖p, 1 ≤ p ≤ ∞. (1.2)

Zadanie 1 Jeśli p ≤ r, x ∈ Cn, to
‖x‖p ≤ n

1
p
− 1
r ‖x‖r.

Zadanie 2 Jeśli 1 ≤ q ≤ r ≤ ∞, x ∈ lq, to ‖x‖q ≥ ‖x‖r. Zatem lq ⊂ lr.
Solution. Najpierw pokażemy, że 1 ≤ p, to

‖x‖p ≤ ‖x‖1. (1.3)

Niech yi = [0, . . . , xi, . . . 0]. Wtedy x = y1 + · · ·+ yn. Stosujemy nierówność Minkowskiego

‖x‖p ≤ ‖y1‖p + · · ·+ ‖yn‖p = |x1|+ · · · |xn| = ‖x‖1.

Następnie stosujemy (1.3) do y = [xq1, · · · , x
q
n]:(∑

|xi|r
) q
r

= ‖y‖ r
q
≤ ‖y‖1 =

∑
|xi|q.

Zadanie 3 Jeśli 1 ≤ p ≤ r ≤ ∞, f ∈ Lr[0, 1], to

‖f‖p ≤ ‖f‖r.

Zatem Lp[0, 1] ⊃ Lr[0, 1].

Zadanie 4 A linear operator from Cm to Cn can be defined by a matrix [aij ].

(1) Jeśli Cm jest wyposażone w normę ‖·‖1 a Cn w normę ‖·‖∞, wtedy ‖A‖ = max{|aij |}.
(2) Jeśli Cm jest wyposażone w normę ‖ · ‖∞ a Cn w normę ‖ · ‖1, wtedy ‖A‖ ≤

∑
i,j |aij |.

(3) Jeśli Cm jest wyposażone w normę ‖·‖1 a Cn w normę ‖·‖1, wtedy ‖A‖ = maxj{
∑

i |aij |}.
(4) Jeśli Cm jest wyposażone w normę ‖·‖∞ aCn w normę ‖·‖∞, wtedy ‖A‖ = maxi{

∑
j |aij |}.
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1.2 Fourier series

Zadanie 5 Consider Cn with the canonical basis (δj : j = 0, 1, . . . , n−1). Define the operators

U :=

n−2∑
j=0

|δj−1)(δj |+ |δn−1)(δ0|, R = |δ0)(δ0|+
n−1∑
j=1

|δn−j)(δj |.

(i) Show that U and R are unitary.
(ii) Show that UR = RU∗ and (U + U∗)R = R(U + U∗).
(iii) Find an orthonormal basis that diagonalizes U .
(iv) Find an orthonormal basis that diagonalizes U + U∗ and R.

Solution. (i) is obvious, because both U and R permute an orthonormal basis. The basis

ej =
1√
n

n−1∑
j=0

e
ijk2π
n δk

diagonalizes U :

Uej = e
ij2π
n ej , U =

n−1∑
j=0

e
ij2π
n |ej)(ej |,

We have Rej = e−j . The basis

e+
0 = e0, e+

n
2

= e+
n
2
if n is even (1.4)

e+
j =

1√
2

(ej + e−j), 0 < j <
[n

2

]
, (1.5)

e−j =
1

i
√

2
(ej − e−j), 0 < j <

[n
2

]
. (1.6)

diagonalizes simultaneously U + U∗ and R:

(U + U∗)e+
j = 2 cos

j2π

n
e+
j , Re+

j = e+
j (1.7)

(U + U∗)e−j = 2 cos
j2π

n
e−j , Re−j = −e−j . (1.8)

*************************

Set Fej = δj , or

F =
∑
|δj)(ej | =

n−1∑
j,k=0

1√
n

e−
ijk2π
n |δj)(δk|.

Then

FUF∗ =
n−1∑
j=0

e
ij2π
n |δj)(δj |.
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Zadanie 6 Consider L2[−π, π], where [−π, π] is treated as the circle. Define the operators

U(t)f(φ) := f(φ− t), Rf(φ) := f(−φ).

(i) Show that U(t) and R are unitary.
(ii) Show that U(t)U(s) = U(t+ s) and U(t)R = RU(−t).
(iii) Find an orthonormal basis that diagonalizes U(t).
(iv) Find an orthonormal basis that diagonalizes U(t) + U(−t) and R.

Solution. The on. basis
ej(φ) =

1√
2π

eijφ

diagonalizes U(t):

U(t)ej = eijtej , U(t) =

∞∑
j=−∞

eijt|ej)(ej |,

We have Rej = e−j . The basis

e+
0 = e+

0 , e+
0 (φ) =

1√
2π

; (1.9)

e+
j =

1√
2

(ej + e−j), e+
j (φ) =

1√
π

cos(jφ), j = 1, . . . , (1.10)

e−j =
1

i
√

2
(ej − e−j), e−j (φ) =

1√
π

sin(jφ), j = 0, 1, 2, . . . . (1.11)

diagonalizes simultaneously U(t) + U(−t) and R:

(U(t) + U(−t))e+
j = 2 cos(jt)e+

j , Re+
j = e+

j (1.12)

(U(t) + U(−t))e−j = 2 cos(jt)e−j , Rej = −e−j . (1.13)

*************************

Let {δj : j ∈ Z} denote the canonical basis in l2(Z). Define the unitary Fourier transfor-
mation F : L2[−π, π]→ l2(Z) as

F =
∞∑

j=−∞
|δj)(ej |,

or
(Ff)j =

1√
2π

∫
e−ijφf(φ)dφ.

The Fourier transformation diagonalizes translations:

FU(t)F∗ =

∞∑
j=−∞

eijt|δj)(δj |.

*************************
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Zadanie 7 Define L2
±[−π, π] := {f ∈ L2[−π, π] | f(φ) = ±f(−φ). Then L2[−π, π] = L2

+[−π, π]⊕
L2
−[−π, π]. Besides, e+

n , n = 0, 1, 2, . . . is an orthonormal basis of L2
+[−π, π] and e−n ,

n = 1, 2, . . . of L2
−[−π, π].

Zadanie 8 Prove that
√

2
π cosnφ n = 1, 2, . . . , 1√

π
, is an orthogonal basis of L2([0, π]).

Prove that
√

2
π sinnφ, n = 1, 2, . . . , is an orthogonal basis of L2([0, π]).

Solution Note that

L2
±[−π, π] 3 f 7→ U±f :=

√
2f
∣∣∣
[0,π]
∈ L2[0, π]

is a unitary operator and

U+e
+
0 =

1√
π
,

U+e
+
n =

√
2

π
cos(nφ),

U−e
−
n =

√
2

π
sin(nφ).

Niech I będzie zbiorem. Definiujemy

l2(I) := {(fi)i∈I :
∑
|fi|2 =: ‖f‖2 <∞}.

Jeśli H jest przestrzenią Hilberta z bazą ortonormalną {ei : i ∈ I}, to

(Ff)i := (ei|f), f ∈ H

definiuje operator unitarny F : H → l2(I). Na przykład, transformata Fouriera

L2[−π, π] 3 f 7→ 1√
2π
f̂ ∈ l2(Z)

jest takim operatorem, gdzie

f̂n :=

∫ π

−π
e−inφf(φ)dφ.

We will write cn = cos(nφ), sn = sin(nφ).

Zadanie 9 Jedne funkcje lepiej jest rozwijać w szereg kosinusów a inne w szereg sinusów:

1 = c0

=
1

π

∞∑
m=0

2

2m+ 1
s2m+1,

sinφ = s1

=
1

π

∞∑
m=1

(
1

2m− 1
− 1

2m+ 1
)c2m.
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Można wykorzystać

sinφ cos(nφ) =
1

2

(
sin(n+ 1)φ− sin(n− 1)φ

)
.

Zadanie 10 h(φ) := (a− eiφ)−1, a > 1. Wtedy

ĥn =

{
2πa−n−1, n = 0, 1, . . . ;
0, n = −1,−2, . . . .

Zadanie 11 h(φ) := (eiφ − a)−1, a < 1. Wtedy

ĥn =

{
0, n = 0, 1, 2, . . . ;
2πa−n−1, n = −1,−2, . . . .

Zadanie 12 h(φ) := φ. Wtedy

ĥn =

{
i2π(−1)n

n , n 6= 0
0. n = 0.

Aby to otrzymać można zauważyć, że możemy napisać

log(1 + e±iφ) = log
(

e±
i
2
φ cos

φ

2

)
= ±iφ+ log

(
cos

φ

2

)
. (1.14)

(Używamy gałęzi główniej logarytmu). Dlatego,

h(φ) = −i log(1 + aeiφ) + i log(1 + ae−iφ).

log(1 + e±iφ) = lim
a↘0

log
(
1 + ae±iφ

)
=
∞∑
n=1

(−1)n+1e±iφn

n
.

Z tego wynika (1.14).

Częściową suma Fouriera

h(n)(φ) :=
∑
|j|≤n

ĥje
inφ

2π
,

jest zbieżna punktowo do φ na ] − π, π[. Ale w otoczeniu φ = ±π obserwujemy tzw.
zjawisko Gibbsa: funkcja h(n) “przestrzeliwuje” wartość funkcji h. Mamy bowiem

h(n)(−π + ε) = −2

n∑
j=1

sin εj

j
.

W otoczeniu nieciągłości funkcji h obserwujemy “zafalowanie” funkcji h(n), które w miarę
wzrostu n zwęża się, ale nie zmniejsza swej wysokości zachowując swoją wysokość. To
zafalowanie ma w granicy ściśle określony kształt (z dokładnością do zwężania), mamy
bowiem

lim
n→∞

h(n)

(
−π +

y

n

)
= −2

∫ y

0

sinx

x
dx =: −2F (y).
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Funkcja F jest nieparzysta, lim
x→∞

F (x) = π
2 i ma maksimum dla y = π równe

G :=

∫ π

0

sinx

x
dx ≈ 1, 81,

zwane stałą Wilbrahama-Gibbsa.

Ta własność sumy częściowej szeregu Fouriera występuje zawsze, kiedy mamy do czynienia
z nieciągłą funkcją. Prowadzi ono do tego, że dla funkcji nieciągłej o skoku a2π w sumie
częściowej szeregu Fouriera będzie skok 4aG > a2π. Mamy (4G− 2π) ≈ 0.18.

Zadanie 13 Rozważmy l2(Z) z bazą kanoniczną (δj : j ∈ Z). Zdefiniujmy operatory

U :=

∞∑
j=−∞

|δj+1)(δj |, R =

∞∑
j=−∞

|δ−j)(δj |.

(i) Pokazać, że U i R są unitarne.
(ii) Czy istnieje baza ortonormalna w której U jest diagonalny?
(iii) Odwrotna transformata Fouriera F∗ : l2(Z)→ L2(S1) diagonalizuje U :

1

2π
F∗UF = B, (Bf)(φ) = eiφf(φ), f ∈ L2(S1).

(iv) Podać operator unitarny V : l2(Z)→ L2(0, π)⊕ L2(0, π) taki, że

V RV ∗ =

[
1l 0
0 −1l

]
, V (U + U∗)V ∗ =

[
C 0
0 C

]
,

gdzie
(Cg)(φ) = 2 cosφg(φ), g ∈ L2(0, π).

Wskazówka. Najpierw rozwiązać zadanie 6.

Zadanie 14 Pokazać, że jeśli f (n) istnieje, to

|f̂k| ≤ |k|−n
∫ π

−π

∣∣f (n)(x)dx
∣∣.

Solution.

knf̂k =

∫ π

−π
f(x)in∂nx eikxdx (1.15)

=

∫ π

−π
(−i)n

(
∂nxf(x)

)
eikx.dx (1.16)
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Zadanie 15 Pokazać, że jeśli dla ε > 0,

|f̂k| ≤
C

(|k|+ 1)n+1+ε
,

to f jest n-krotnie różniczkowalne.

Solution.
∂nxf(x) =

1

2π

∑
knf̂ke

ikx.

Zatem
|∂nxf(x)| ≤ 1

2π

∑
|knf̂k|.

1.3 Falki Haara.

Zdefiniujmy

ψk,n(x) :=


2k/2, 2−kn ≤ x < 2−kn+ 2−k−1,

−2k/2, 2−kn+ 2−k−1 ≤ x < 2−k(n+ 1),
0, x 6∈ [2−kn, 2−k(n+ 1)[;

φk,n(x) :=

{
2k/2, 2−kn ≤ x < 2−k(n+ 1),
0, x 6∈ [2−kn, 2−k(n+ 1)[.

Czasami nazywa się ψ00 “falką matką” a φ00 “falką ojcem”.

Zadanie 16 Wprowadźmy operatory unitarne translacji i skalowania

(Utf)(x) := f(x− t),
(Wsf)(x) := s−

1
2 f(s−1x).

Zauważmy, że możemy napisać

ψk,n = W2−kUnψ00, ψk,n(x) = 2k/2ψ00(2kx− n).

Pokazać, że {ψk,n | k = 0, 1, 2, . . . , n = 0, 1, . . . , 2k − 1} oraz funkcja φ00 stanowią bazę
ortonormalną L2[0, 1].

Solution. Sprawdzamy najpierw ortonormalność. Oczywiste jest, że Span{φkn | k ≥ 0}
jest gęste i zawiera {ψk,n | k = 0, 1, 2, . . . , n = 0, 1, . . . , 2k − 1} oraz φ00. Przeciwna
inkluzja też jest łatwa.

Zadanie 17 (1) Niech m ∈ Z. Wtedy

Vm := (Span{ψk,n : k ≤ m, n =})cl = (Span{φk,n : k ≥ m+ 1, n ∈ Z})cl. (1.17)
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(2) {ψk,n | k, n ∈ Z} stanowią bazę ortonormalną L2(R).
(3) ψm,n, n ∈ Z stanowią bazę ortonormalną w Vm	Vm+1 (w dopełnieniu ortogonalnym

do Vm+1 wewnątrz Vm).
Solution. (1): ⊂ jest oczywiste. Mamy

∞∑
j=0

2−
j
2ψ−j0 =

√
2φ10.

To pokazuje⊃. (2) Najpierw sprawdzamy ortonormalność ψkn. Oczywiste jest, że Span{φkn |
k, n ∈ Z} jest gęste w L2(R).

1.4 Dystrybucje

Odwzorowania z D(Rd) → C, zwane dystrybucjami, bywają zapisywne w różny sposób,
np.:

D(Rd) 3 φ 7→ T (φ) = 〈T |φ〉 =

∫
T (x)φ(x)dx.

Spełniają one następujący warunek: dla każdego zwartego K ⊂ Rd istnieje N i C takie, że
dla φ ∈ D(Rd) spełniających suppφ ⊂ K,

|〈T |φ〉| ≤ C max
n≤N

sup
x
|∂nxφ(x)|.

Przykład: jeśli T ∈ L1
loc(Rd), to dystrybucją regularną związaną z F , nazywamy

〈TF |φ〉 =

∫
T (x)f(x)dx.

A oto delta Diraca w a ∈ Rd:

〈δa|φ〉 =

∫
δ(x− a)φ(x)dx = φ(a).

Zadanie 18 Pokazać, że

P
∫

1

x
φ(x)dx := lim

ε↘0

(∫ −ε
−∞

+

∫ ∞
ε

)φ(x)

x
dx

jest dystrybucją.

Solution. Niech suppφ ⊂ K.

P
∫

1

x
φ(x)dx

=
(∫ −1

−∞
+

∫ ∞
1

)φ(x)

x
dx+ lim

ε↘0

(∫ −ε
−1

+

∫ 1

ε

)φ(x)

x
dx = I + II

|II| ≤ 2 sup |φ′|, |I| ≤ |K| sup |φ|.
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Zadanie 19 Pokazać, że

P
∫ ∞

0

1

x
φ(x)dx := lim

ε↘0

(∫ ∞
ε

φ(x)

x
dx+ φ(0) log ε

)
jest dystrybucją.

Solution.

P
∫ ∞

0

1

x
φ(x)dx

=

∫ ∞
1

φ(x)

x
dx+

∫ 1

0

φ(x)− φ(0)

x
dx.

Następnie korzystamy z tego, że funkcja

x 7→

{
φ(x)−φ(0)

x , x ∈]0, 1],

φ′(0), x = 0

jest ciągła.

Zadanie 20 Zróżniczkować n-krotnie 1
2θ(x)x2

Zadanie 21 Niech δa będzie deltą Diraca w punkcie a ∈ R. Pokazać, że operator S(R) 3 f 7→
Taf := δa ∗ f ∈ S(R) rozszerza się do operatora unitarnego na L2(R). Czy Ta dla a→∞
jest zbieżny normowo, silnie lub słabo? Ewentualnie policzyć granicę.

1.5 Zbieżność dystrybucji

Mówimy, że ciąg dystrybucji Tn jest zbieżny (w sensie dystrybucyjnym) do dystrybucji T ,
gdy

〈Tn|φ〉 → 〈T |φ〉, φ ∈ D(Rd).

Zadanie 22 Niech f ∈ L1(R),
∫
f = 1, fε(x) = ε−1f(xε−1). Wtedy

lim
ε↘0

= δ.

Solution. Niech δ > 0.∫
fε(x)φ(x)dx− φ(0) =

∫
fε(x)

(
φ(x)− φ(0)

)
dx

=

∫
|x|<δ

fε(x)
(
φ(x)− φ(0)

)
dx+

∫
|x|>δ

fε(x)
(
φ(x)− φ(0)

)
dx = I + II;

|I| ≤ sup
|x|<δ

|φ(x)− φ(0)|
∫
|f(x)|dx ≤ δ sup

x
|φ′(x)|

∫
|f(x)|dx;

|II| ≤ 2 sup |φ(x)|
∫
|x|>δ/ε

|f(x)|dx.
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Ale lim
ε↘0

∫
|x|>δ/ε |f(x)|dx = 0. Więc

∣∣∣ ∫ fε(x)φ(x)dx− φ(0)
∣∣∣ ≤ Aδ.

Ale δ > 0 było dowolne.

Zadanie 23 Pokazać wzór Sochockiego.

lim
ε↘0

1

x+ iε
= P 1

x
− iπδ(x).

Solution. Mamy
1

x+ iε
=

x

x2 + ε2
− iε

x2 + ε2
.

Mamy ∫
1

π

∫
ε

x2 + ε2
dx = 1.

Więc, z poprzedniego zadania mamy

lim
ε↘0

iε

x2 + ε2
= iπδ(x).

Podobnie pokazujemy

lim
ε↘0

x

x2 + ε2
= P 1

x
.

1.6 Równania dystrybucyjne

Zadanie 24 Znaleźć wszystkie dystrybucje spełniające

kmT = 0. (1.18)

Solution. T musi mieć nośnik {0}. Zatem musi mieć postać

n∑
j=0

cjδ
(j)(k).

Wtedy

〈kmT |φ〉 =

n∑
j=m

cj(−1)j
(
kmφ(k)

)(j)∣∣∣
k=0

=
n∑

j=m

cj(−1)jj(j − 1) · · · (j −m+ 1)φ(j−m)(0).

Czyli rozwiązaniem są

T =

m−1∑
j=0

cjδ
(j)(k).
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Zadanie 25 Znaleźć wszystkie dystrybucje spełniające

kT = 1. (1.19)

Solution.
T = P 1

k
+ cδ(k).

Zadanie 26 Znaleźć wszystkie dystrybucje spełniające

(k2 − 1)T = 1. (1.20)

Solution.
T = P 1

k2 − 1
+ c+δ(k − 1) + c−δ(k + 1).

Zadanie 27 Znaleźć wszystkie dystrybucje spełniające

k2T = 1. (1.21)

Solution. Zdefiniujmy dystrybucję P 1
k2

wzorem

P
∫
φ(k)

k2
dk :=

∫
|k|<1

φ(k)− φ(0)− kφ′(0)

k2
dk +

∫
|k|>1

φ(k)

k2
dk.

Solutionm jest

T = P 1

k2
+ c0δ(k) + c1δ

(1)(k).

1.7 Transformata Fouriera

Zadanie 28 Niiech m > 0. Pokazać, że∫
e−iξs

(s+ im)
d s = −2πiθ(ξ)e−mξ, (1.22)∫

e−iξs

(s− im)
d s = 2πiθ(−ξ)e−m|ξ|, (1.23)∫

e−iξss

(s2 +m2)
d s = πisgn(ξ)e−m|ξ|, (1.24)∫

e−iξsm

(s2 +m2)
d s = πe−m|ξ|. (1.25)
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Zadanie 29 Przechodząc do granicy z m do zera w poprzednim zadaniu, pokazać, że∫
θ(±x)e−ixkdx =

∓i

k ∓ i0
, (1.26)∫

e−ikx

x± i0
dx = ∓2πiθ(±x), (1.27)∫

sgn(x)e−ixkdx = −2iP
(1

k

)
, (1.28)∫

P e−ikx

x
dx = πisgn(k), (1.29)

Zadanie 30 Pokazać, że dla ε ≥ 0, λ > −1, transformata Fouriera funkcji θ(x)xλe−εx jest równa
e−i(1+λ)π

2 Γ(λ+ 1)(ξ − iε)−1−λ.

Zadanie 31 Pokazać, że dla f ∈ D(R)

Tf(x) := P
∫

f(y)

x− y
dy

należy do L2(R) i że T rozszerza się do operatora ograniczonego na L2(R). Policzyć T 2.
Wskazówka. Warto zastosować transformatę Fouriera.

Zadanie 32 Pokazać, że
1l[−1,1] ∗ 1l[−1,1] = (2− |x|)1l[−1,1]. (1.30)

Wiedząc, że transformata Fouriera 1l[−1,1] jest równa
2 sin(ξ)

ξ , policzyć transformatę Fouriera
(1.30).

Solution. 4 sin2(ξ)
ξ2

.

1.8 Funkcje Greena

Zadanie 33 Znaleźć dystrybucje G spełniające

(∂x + 1)G(x) = δ(x). (1.31)

Pokazać, że
f := G ∗ h

spełnia
(∂x + 1)f(x) = h(x). (1.32)

Solution. Metoda 1. Solutionm równania jednorodnego

(∂x + 1)G0(x) = 0. (1.33)

jest G0(x) := ce−x. Uzmienniając stałą c dostajemy równanie

∂xc(x) = δ(x).

12



Stąd
G(x) = ce−x + θ(x)e−x.

W szczególności, mamy funkcję Greena retardowaną G+(x) := θ(x)e−x i adwansowaną
G− := −θ(−x)e−x. Retardowana jest jedyną dystrybucją temperowaną spośród funkcji
Greena.

Metoda 2.
Ĝ(k) =

1

ik + 1
.

Więc

G(x) =

∫
e−ikx

ik + 1
dk = θe−x.

Zadanie 34 Znaleźć dystrybucje G spełniające

(∂x + x)G(x, y) = δ(x− y). (1.34)

Pokazać, że

f(x) :=

∫
G(x, y)h(y)dx

spełnia
(∂x + x)f(x) = h(x). (1.35)

Solution. Solutionm równania jednorodnego

(∂x + x)G0(x, y) = 0. (1.36)

jest G0(x) := c(y)e−
x2

2 . Uzmienniając stałą c(y) dostajemy równanie

∂xc(x, y) = e
x2

2 δ(x− y) = e
y2

2 δ(x− y).

Stąd

G(x, y) = e−
x2

2
+ y2

2 θ(x− y) + g(y)e−
x2

2 e−x.

W szczególności, mamy funkcję Greena retardowaną G+ i adwansowaną G−:

G+(x) := e−
x2

2
+ y2

2 θ(x− y),

G−(x) := −e−
x2

2
+ y2

2 θ(y − x).

Zadanie 35 Rozważmy R3. Pokazać, że G(x) := e−m|x|

4π|x| jest rozwiązaniem równania

(−∆ +m2)G(x) = δ(x).

Solution. Metoda 1. Niech

G(x) =
1

(2π)3

∫
Ĝ(k)eikxdk.

13



Wtedy

Ĝ(k) =
1

(k2 +m2)
,

G(x) =
1

(2π)3

∫
eikx

(k2 +m2)
dk

=
1

(2π)2

∫ ∞
0
|k|2d|k|

∫ π

0
sin θdθ

ei|k||x| cos θ

(k2 +m2)

=
1

(2π)2

∫ ∞
0

d|k| e
i|k||x| − e−i|k||x|

|k||x|i(k2 +m2)

=
1

(2π)2

∫ ∞
−∞

ds
seis|x|

|x|i(s2 +m2)
=

e−m|x|

4π|x|
.

Metoda 2. Zastosujemy wzór Greena:∫
Ω

(∆fg − f∆g) =

∫
∂Ω

(∇fg − f∇g)ds.

Kładziemy f = φ, g = e−m|x|

4π|x| , Ω = R3\K(r). Mamy na ∂K(r) = r2S2 z miarą r2dω, gdzie
ω ∈ S2.

Sprawdzamy, że poza zerem

(−∆ +m2)
e−m|x|

4π|x|
= 0.

∫
R3\K(r)

(−∆ +m2)φ(x)
e−m|x|

4π|x|
dx =

∫
S2

(
∂rφ(r, ω)

e−mr

4πr
− φ(r, ω)∂r

e−mr

4πr

)
r2dω

Wreszcie, korzystamy z

∂r
e−mr

r
= −e−mr

r2
− me−mr

r
,

∫
S2

dω = 4π.

Zadanie 36 Niech P będzie wielomianem takim, że P (ξ) 6= 0, ξ ∈ R. Niech g ∈ S(R). Pokazać,
że istnieje f ∈ S(R) taka, że

P (i∂x)f = g.

Pokazać, że istnieje G zależne tylko od P takie, że to rozwiązanie może być zapisane jako

f = G ∗ g.

Znaleźć G dla P (ξ) = ξ2 +m2
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Problem 1.1 Rozważmy l2(Z) z bazą kanoniczną (δn : n ∈ Z). Niech θ ∈ R. Zdefiniujmy
wektory

bn := cos(θn)δn + sin(θn)δ−n.

Pokazać, że (bn : n ∈ Z) jest bazą ortnormalną.

Problem 1.2 Policzyć tranformatę Fouriera funkcji

f(x) = e−
3
4
x2 cosx2.

Problem 1.3 Niech 1 < p < ∞ i f ∈ Lp(R3). Niech |x| oznacza normę euklidesową wektora
x ∈ R3. Dla jakiego m funkcja (1 + |x|2)−mf należy do L1(Rd)?

Problem 1.4 Niech d będzie liczbą naturalną. Dla jakiego m następująca funkcja należy do
L2(Rd):
(i) |x|−m,
(ii) (1 + |x|)−m,
(iii)

∏d
i=1(1 + |xi|)−m.

Problem 1.5 Dla t > 0 kładziemy gt(x) := (2πt)−1/2e−x
2/2t. Znaleźć gt ∗ gs.

Wskazówka. ĝt(ξ) = e−tξ
2/2.

Problem 1.6 Dla t 6= 0 kładziemy gt(x) = (ix+ t)−1. Znaleźć gt ∗ gs.

Wskazówka. ĝt(ξ) = 2π(sgnt)θ(ξsgnt)e−tξ.

Problem 1.7 Pokazać, że Span{(x+α)−1 : Imα > 0} nie jest podprzestrzenią gęstą w L2(R).

Problem 1.8 Niech g ∈ L1(R). Pokazać, że operator Tf := f ∗ g jest dobrze zdefiniowany dla
f ∈ L2(R), jest ograniczony i ‖T‖ ≤ ‖g‖1. Czy zawsze ‖T‖ = ‖g‖1?

Wskazówka. Zastosować transformację Fouriera.

Problem 1.9 Niech 1 ≤ p ≤ r ≤ q ≤ ∞. Pokazać, że

Lp(R) ∩ Lq(R) ⊂ Lr(R) ⊂ Lp(R) + Lq(R).

Problem 1.10 Dla m ∈ R, 1 ≤ p ≤ ∞ definiujemy

Lpm(R) := {f : ‖(1 + |x|)mf‖p <∞}.

Pokazać, że jeśli r ≤ q, m > 1
r −

1
q + k, to Lrk(R) ⊃ Lqm(R).

Wskazówka. Wykorzystać uogólnioną nierówność Höldera

‖fg‖r ≤ ‖f‖p‖g‖q, 1 ≤ p ≤ r ≤ q ≤ ∞, 1

r
=

1

p
+

1

q
.
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2 Exercises to Theory of Operators

2.1 Inverses

Problem 2.1 Let A,B be invertible. Then

A−1 −B−1 = A−1(B −A)B−1. (2.37)

Problem 2.2 Let H be invertible and V has a small enough norm. Then H+V and (1l+V H−1)
are also invertible and

(H + V )−1 = H−1(1l + V H−1)−1. (2.38)

Besides,
‖H−1 − (H + V )−1‖ ≤ c0‖V ‖. (2.39)

Solution. If ‖V H−1‖ =: c < 1, then the series

∞∑
n=0

(−V H−1)n (2.40)

can be dominated bby a convergent geometric series, and hence is convergent. We check that it
is the inverse of 1l + V H−1. But

(H + V )−1 =
(
(1l + V H−1)H

)−1
= H−1(1l + V H−1)−1. (2.41)

Now

(H + V )−1 −H−1 = H−1
∞∑
n=1

(−V H−1)n. (2.42)

Hence,
‖(H + V )−1 −H−1‖ ≤ ‖H−1‖2‖V ‖ c

1− c
. (2.43)

Problem 2.3 Let H + z01l be invertible. Then H + z1l is invertible in a neighborhood of z0.
Besides z 7→ (H + z1l)−1 is a differentiable function and

d

dz
(H − z1l)−1 = (H − z1l)−2. (2.44)

Solution. By Problem 2.2, with V = z − z0 the function z 7→ (H − z)−1 is well defined and
continuous neoar z0. By Problem 2.1, we have the resolvent formula:

(H − z0 − h)−1 − (H − z0)−1 = h(H − z0 + h)−1(H − z0)−1. (2.45)

Now

d

dz
(H − z01l)−1 = lim

h→0
(H − z0 − h)−1 − (H − z0)−1 = lim

h→0
(H − z0 + h)−1(H − z0)−1. (2.46)
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2.2 Finite dimensional matrices

Let A be a linear operator on a finite dimensional space V. Let λ ∈ C. TFAE:
(1) det(A− λ) = 0,

(2) There exists v 6= 0 s.t. Av = λv

(3) (λ−A) is not invertible.
The set of such λ is called the spectrum of A and denoted spA.

Problem 2.4 Let {λ1, . . . , λn} = spA Show that if vi ∈ Ker(λi−A), and v1 + · · ·+vn = 0, then
v1 = · · · = vn = 0.

Solution. Suppose that this is not true. We can assume that p is the smallest possible
number of nonzero vi ∈ Ker(λi −A) such that v1 + · · ·+ vp = 0. Then

0 = λp(v1 + · · · vp)−A(v1 + · · · vp) = (λp − λ1)v1 + · · · (λp − λp−1)vp−1 = 0,

which is a contradiction. 2

We say that A is diagonalizable if
n∑
i=1

Ker(λi−A) = V. In other words, V =
n
⊕
i=1

(Ker(λi−A).

We can then define the projection Pi onto Vi along V1 ⊕ · · · ⊕ Vi−1 ⊕ Vi+1 ⊕ · · · ⊕ Vn. We have
then

A =

n∑
i=1

λiPi.

Problem 2.5 Let A be an arbitrary matrix. Let λi ∈ sp(A). Show that

Ker(λi −A) ⊂ · · · ⊂ Ker(λi −A)m.

Show that this sequence stablizes. Suppose this happens for mi,mi + 1, . . . . Set

Vi := Ker(λi −A)mi .

Show that Vi is an invariant subspace of A.

***************************************************
We have

V =
n
⊕
i=1
Vi, A =

n
⊕
i=1

(λi +Ni),

where Ni is nilpotent on Vi. Set

D :=
n
⊕
i=1

λi, N :=
n
⊕
i=1

Ni.

We have
A = D +N, (2.47)

where D is diagonalisable, N is nilpotent and DN = ND. (2.47) is called Jordan-Chevalley
decomposition.
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Problem 2.6 Let f(z) =
n∑
k=0

fkz
k be a polynomial Show that

f(A) :=
n∑
k=0

fkA
k =

∑ N j

j!
f (j)(D). (2.48)

Solution. It is enough to assume that A = λ+N where N is nilpotent.

f(A) =
∑

fk
∑

N jλk−j
k!

(k − j)!j!
=
∑
j=0

N !

j!

m∑
j=0

k(k − 1) · · · (k − j + 1)fkλ
k−j . (2.49)

Note that in order to compute f(A) it is enough to know

f(λi), · · · f (mi−1)(λi),

Spectral Theorem. Let AA∗ = A∗A (A is normal). Then A is diagonalizable and the
spaces Ker(λi −A) are orthogonal. Therefore, Pi are orthogonal projections.

If A is Hermitian, then spA ⊂ R.
If A is unitary, then spA ⊂ {|z| = 1}.

Problem 2.7 Let A be normal. Then

‖A‖ = sup{|λ| : λ ∈ spA}.

In particular

‖(z −A)−1‖ =
(

min{|z − λ| : λ ∈ spA}
)−1

.

Solution.

‖Au‖2 =
∑
|λi|2‖Piu‖|2

≤ sup |λi|2
∑
‖Piu‖2 = (sup |λi|)2‖u‖2.

Problem 2.8 Let A be any operator with spectrum {λ1, . . . , λn}, and degrees of nilpotency
m1, . . . ,mn. Then

‖(z −A)−1‖ ≤ c
n∑
i=1

|z − λi|−mi .

Solution.

‖(z −A)−1u‖ ≤
n∑
i=1

‖(z − λi −Ni)
−1Piu‖.

(z − λi −Ni)
−1 =

mj−1∑
j=0

(z − λi)−1−jNj .
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2.3 Operators

Problem 2.9 Show that ‖A‖ = ‖A∗‖.

Solution.

‖A‖ = sup
‖v‖≤1

‖Av‖ = sup
‖v‖,‖w||≤1

|(w|Av)| = sup
‖v‖,‖w‖≤1

|(A∗w|v)| = sup
‖w‖≤1

‖A∗w‖ = ‖A∗‖.

Problem 2.10 Let A,B ∈ B(H). Prove that spAB ∪ {0} = spBA ∪ {0}.

Solution. Let z ∈ rsAB\{0}.Then

z−1(1 +B(z −AB)−1A)(z −BA) = z−1(z −BA) + z−1B(z −AB)−1(1−AB)A = 1.

Hence z−1(1 +B(z −AB)−1A) = (z −BA)−1 and z ∈ rs(BA).

Problem 2.11 Rozważmy L2(S1) z bazą ortonormalną en(φ) = 1√
2π

einφ, n ∈ Z. Niech (cn :

n ∈ Z) będzie ciągiem ograniczonym. Zdefinujmy operator

C =
∞∑

n=−∞
cn|en)(en|.

(i) Pokazać, że C jest ograniczony i ma normę sup{|cn| : n ∈ Z}.

(ii) Pokazać, że jeśli
∞∑

n=−∞
|cn| <∞, to C posiada jądro całkowe równe

C(φ, ψ) =
ĉ(−φ+ ψ)

2π
,

gdzie ĉ(ψ) =
∞∑

n=−∞
e−iψncn..

Problem 2.12 Na L2(S1) rozważyć operator Pε z jądrem całkowym

Pε(φ, ψ) =
sinh ε

cosh ε− cos(φ− ψ)
.

Pokazać, że s− lim
ε↘0

Pε = 1l i ‖Pε‖ = 1.

Wskazówka. Pokazać, używając bazy ortonormalnej z poprzedniego zadanie, że

Pε =
∞∑

n=−∞
e−ε|n||en)(en|.
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Problem 2.13 Niech f : [0,∞[→ [0, 1] będzie funkcją ciągłą i malejącą, taką, że f(0) = 1 i
lim
t→∞

f(t) = 0. Rozważmy przestrzeń Hilberta l2 z bazą kanoniczną (δj : j ∈ N}. Zdefiniujmy
roddzinę operatorów

Cε :=

∞∑
j=1

f(εj)|δj)(δj |.

(i) Pokazać, że funkcja [0,∞[3 ε 7→ Cε jest normowo ciągła na ]0,∞[ lecz normowo nieciągła
w ε = 0.

(ii) Pokazać, że funkcja [0,∞[3 ε 7→ Cε jest silnie ciągła.

Problem 2.14 Mówimy, że P jest rzutem, gdy P 2 = P .
(i) Pokazać, że jeśli P jest rzutem niezerowym, to ‖P‖ ≥ 1.

(ii) Pokazać, że dla każdego c ≥ 1 istnieje rzut na przestrzeni Hilberta taki, że ‖P‖ = c.
Wskazówka. Wystarczy rozważać 2-wymiarowe przestrzenie Hilberta.

(iii) Pokazać, że jeśli P jest rzutem na przestrzeni Hilberta takim, że ‖P‖ = 1, to jest to rzut
ortogonalny.

Problem 2.15 Niech (Un : n = 1, 2, . . . ) będzie ciągiem operatorów unitarnych.
(i) Pokazać, że jeśli lim

n→∞
Un = U , to U jest unitarny.

(ii) Pokazać, że jeśli s− lim
n→∞

Un = U i s− lim
n→∞

U∗n = U∗, to U jest unitarny.

(iii) Pokazać, że jeśli s− lim
n→∞

Un = U , to U jest izometrią. Podać przykład ciągu operatorów
unitarnych, którego silna granica nie jest unitarna.

(iv) Pokazać, że jeśli w− lim
n→∞

Un = U , to ‖U‖ ≤ 1. Podać przykład ciągu operatorów unitar-
nych, którego słaba granica jest zerem.

Problem 2.16 Niech (Pn : n = 1, 2, . . . ) będzie ciągiem rzutów. Niech s− lim
n→∞

Pn = P .
Pokazać, że P jest rzutem.

Wskazówka. Można założyć, że sup ‖Pn‖ <∞. (Wynika to z Tw. Banacha-Steinhausa i silnej
zbieżności ciągu (Pn)).

Problem 2.17 Niech An będzie ciągiem samosprzężonych operatorów ograniczonych na prze-
strzeni Hilberta takich, że w− lim

n→∞
An = A. Pokazać, że A jest samosprzężony.

Problem 2.18 Niech (Pn : n = 1, 2, . . . ) będzie ciągiem rzutów ortogonalnych.
(i) Niech s− lim

n→∞
Pn = P . Pokazać, że P jest rzutem ortogonalnym.

(ii) Podać przykład ciągu (Pn : n = 1, 2, )̇ rzutów ortogonalnych takich, że w− lim
n→∞

Pn = 1
21l.
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Problem 2.19 Dla f ∈ L2([0,∞[) definiujemy

(Tf)(x) := x−1f(x−1).

Czy T jest operatorem
(i) ograniczonym,

(ii) unitarnym,

(iii) samosprzężonym.

Problem 2.20 Niech α ∈ C, Reα ≤ 0. Niech (δn : n ∈ N) oznacza bazę kanoniczną w l2(N).
Zdefiniujmy następujący operator na l2(N):

T :=
∞∑
n=1

enα|δn+1)(δn|.

(i) Pokazać, że T jest operatorem ograniczonym i znaleźć jego normę.

(ii) Dla jakich α operator T jest izometrią?

(iii) Policzyć T ∗T .

(iv) Policzyć T 2.

(v) Dla jakich α istnieje s− limn→∞ T
n?

(vi) Dla jakich α istnieje limn→∞ T
n?

2.4 Przestrzenie Hilberta

Niech H będzie przestrzenią Hilberta. Będziemy stosować notację dla iloczynu skalarnego po-
dobną do notacji Diraca:

(v|w), v, w ∈ H.

Jedną z jej zalet jest możliwość “oderwania” (v|, |w), traktując je jako operatory

C 3 z 7→ |w)z := wz ∈ H, (2.50)
H 3 h 7→ (v|h := (v|h) ∈ C. (2.51)

Na przykład
|w)(v|h = w(v|h).

Jeśli (v|w) = 1, jest to rzut na w wzdłuż Ker(v|. Jeśli ‖v‖ = 1, to |v)(v| jest rzutem ortogonalnym
na v. Jeśli e1, . . . , en jest bazą ortonormalną, to

A =

n∑
i,j=1

Aij |ei)(ej |.
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Problem 2.21 In l2 we define the spaces

W := {(xn) ∈ l2 : x2k = 0, k ∈ N}, (2.52)

Z := {(xn) ∈ l2 : x2k−1 +
√
kx2k = 0, k ∈ N}. (2.53)

Obviously, W and Z are closed. Show that W + Z is dense in l2 but not closed.

Solution. Let x ⊥W + Z. Because x ⊥ V , x2k−1 = 0. Because x ⊥ Z, x2k−1 − 1√
k
x2k = 0.

Hence x = 0. Therefore, W + Z is dense in l2.
Consider x ∈ l2, xi = 1

n . Let x = v + z, v ∈ V , z ∈ Z. Then

z2k =
1

2k
, z2k−1 = −

√
kz2k = − 1

2
√
k
.

But z 6∈ l2.

Problem 2.22 Let A be a self-adjoint operator on Cn. Show

‖A‖ = max{|λ| : λ ∈ sp(A)} = sup{(v|Av) | ‖v‖ = 1}.

Solution.
A =

∑
λ∈sp(A)

λPλ.

‖Av‖2 =
∑

λ2‖Pλv‖ ≤ max{|λ| : λ ∈ sp(A)}
∑
‖Pλv‖2 (2.54)

= max{|λ| : λ ∈ sp(A)}‖v‖2. (2.55)

Problem 2.23 ‖B‖2 = ‖B∗B‖.

Solution. Clearly, B∗B is self-adjoint.

‖B‖ = sup{‖Bv‖ | ‖v‖ = 1} = sup{(v|B∗Bv) | ‖v‖ = 1} = ‖B∗B‖.

Problem 2.24 Find the norm of B =

[
B11 B12

B21 B22

]
.

Solution.

B∗B =

[
B11B11 +B21B21 B11B12 +B21B22

B12B11 +B22B21 B12B12 +B22B21

]
=

[
C11 C12

C21 C22

]
det(C − λ1l) = (C11 − λ)(C22 − λ)− C12C21 = 0.

‖B‖2 =
C11 + C22 +

√
(C11 − C22)2 + 4C12C21

2
.
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2.5 Spectrum

We say that A is involution if A2 = 1l.

Problem 2.25 Show that the following are equivalent:
(1) A is self-adjoint and A is an involution.

(2) A is an involution and A is unitary

(3) A is unitary and A is self-adjoint.

Problem 2.26 Let A be an involution. Find its spectrum and its spectral projections.

Solution. We guess: set P± := 1
2(1l ∓ A). Then AP± = ±P± and A = P+ − P−. Therefore,

sp(A) = {−1, 1} and 1l{±1}(A) = P±.

Problem 2.27 Let Un = 1. Find spectral projections of U .

Solution. Similarly, as in the previous problem, we guess:

Pk =
1

n

n−1∑
j=0

U je
−ijk2π
n = 1l

{e
i2πk
n }

(U), (2.56)

U =
n=1∑
k=0

e
ik2π
n Pk. sp(U) = {e

i2πk
n : k = 0, . . . , n− 1}. (2.57)

Problem 2.28 Find the spectrum of the Fourier transformation F .

Solution. F4 = 1l. Hence spF ⊂ {1, i,−1,−i}. Let Ω(x) = e−
x2

2 , a∗ = x − ∂x. Then FΩ = Ω
and Fa∗ = ia∗F . Hence Fna∗nΩ = ina∗nΩ. But a∗nΩ is a complete set of eigenvectors of the
harmonic oscillator.
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2.6 Operator inequalities

We say that A ∈ B(H) satisfies A ≥ 0 if

(v|Av) ≥ 0, v ∈ H.

Equivalent condition: A is self-adjoint and spA ⊂ [0,∞[.
Let A be self-adjoint. Set inf spA = a−, sup spA = a+. Then

a− ≤ A ≤ a+.

For any A, A∗A ≥ 0.

Problem 2.29 Show that

AA∗ ≤ 1l ⇔ A∗A ≤ 1l ⇔ ‖A‖ ≤ 1. (2.58)

Solution. We have

‖Av‖2 = (v|A∗Av) ≤ (v|v) = ‖v‖2 ⇔ ‖A‖ ≤ 1,

‖A∗v‖2 = (v|AA∗v) ≤ (v|v) = ‖v‖2 ⇔ ‖A∗‖ ≤ 1.

But ‖A‖ = ‖A∗‖.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Let A,B ∈ B(H). We write A ≤ B if

(v|Av) ≤ (v|Bv), v ∈ H.

A1 ≤ B1, A2 ≤ B2 implies A1 +A2 ≤ B1 +B2. (2.59)

A ≤ B implies CAC∗ ≤ CBC∗. (2.60)

Problem 2.30 Let 0 ≤ A ≤ B. Show that for t ≥ 0,

(t+B)−1 ≤ (t+A)−1. (2.61)

Solution. Using (2.58), we obtain the following implications:

t+A ≤ t+B, (2.62)

(t+B)−
1
2 (t+A)(t+B)−

1
2 ≤ 1l, (2.63)

(t+A)
1
2 (t+B)−1(t+A)

1
2 ≤ 1l, (2.64)

(t+B)−1 ≤ (t+A)−1. (2.65)
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Problem 2.31 Let A ≥ 0 and KerA = {0}. Let 0 < α, β < 1. Then

A−α =
sinπα

π

∫ ∞
0

t−αdt

(A+ t)
, (2.66)

Aβ =
sinπβ

π

∫ ∞
0

(1

t
− 1

(A+ t)

)
tβdt. (2.67)

Solution. We start from identity

π

sinπα
=

∫ ∞
0

s−αds

(1 + s)
. (2.68)

We substitute s = t
A to get (2.66). Next we multiply (2.66) by A, use

A

(t+A)
=
(1

t
− 1

(A+ t)

)
t

and set β = 1− α, to obtain (2.67).

Problem 2.32 Let 0 ≤ A ≤ B and KerA = {0}. Let 0 < α < 1. Then

B−α ≤ A−α, (2.69)
Aα ≤ Bα. (2.70)

Solution. We have (t+B)−1 ≤ (t+A)−1. Therefore (2.69) follows from (2.66).
We have 1

t −
1

(A+t) ≤
1
t −

1
(B+t) . Therefore, (2.70) follows from (2.67).

Problem 2.33 Find an example of A ≤ B such that A2 ≤ B2 is not true.

Solution. We use the following criterion for positivity:[
a b

b d

]
≥ 0 ⇔ a ≥ 0 and ad− |b|2 ≥ 0.

Set

A :=

[
1 0
0 0

]
, Bε :=

[
1 + ε2 ε
ε 1

]
.

Clearly, A ≤ B. Now

A2 =

[
1 0
0 0

]
, B2

ε =

[
1 + 3ε2 + ε4 2ε+ ε3

2ε+ ε3 1 + ε2

]
.

Then

B2 −A2 =

[
3ε2 + ε4 2ε+ ε3

2ε+ ε3 1 + ε2

]
, det(B2 −A2) = 3ε2 − 4ε2 +O(ε4).

Hence det(B2 −A2) < 0 for small ε.
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2.7 Polar decomposition

Let A be an operator such that KerA = {0} and KerA∗ = {0}. Then there exists a unique
positive operator, denoted |A| and a unitary operator U such that

A = |A|U. (2.71)

Besides,
|A| =

√
AA∗, U = |A|−1A.

(2.71) is called the polar decomposition of A.
The above definition has a generalization to an arbitrary operator. More precisely, if A is

arbitrary, then there exists a unique positive operator |A| and a unique partial isometry U such
that KerU = Ker|A| and

A = U |A|. (2.72)

Then (2.72) is called polar decomposition of A and |A| =
√
A∗A.

Let B be the inverse of |A| restricted to RanQ, extended by 0 on KerA. Then

A+ = BU∗, (2.73)
|A|+ = B, (2.74)
U+ = U∗. (2.75)

Uwaga 2.34 Let us denote the orthogonal projection onto the closure of RanA by P and onto
(KerA)⊥ by Q. The Moore-Penrose pseudoinverse is defined as the unique operator A+ such that

AA+ = P, A+A = Q. (2.76)

Problem 2.35 Let
[
a b
c d

]
be a matrix with determinant 1. Prove that the transformation on

L2(R) given by

Uf(x) :=
1

|cx+ d|
f

(
ax+ b

cx+ d

)
, x ∈ R

is unitary.

Problem 2.36 Let A be an invertible operator. Then there exists a unique positive operator B
and unitary U such that

A = UB.

Solution. We have A∗ = BU∗, A∗A = B2. Hence B =
√
A∗A. B2 is invertible. Hence so is

B. Therefore, U = AB−1. Then we check that U is unitary.

Problem 2.37 Let S1 be the unit circle parametrized with angle φ ∈ [0, 2π[. Let S1 3 φ 7→
ψ(φ) ∈ S1 be the bijection of class C1 such that dφ

dψ is bounded. Define the operator W on
functions on S1 by

Wf(φ) = f(ψ(φ))).
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(i) Find W ∗.

(ii) Find the unitary operator U and the positive operator A such that W = BU .

(iii) Show that że W is bounded on L2(S1) and find ‖W‖.

Solution.
W ∗g(ψ) =

∣∣∣dφ
dψ

∣∣∣g(φ(ψ)
)
.

Hence,

W ∗Wf(ψ) =
∣∣∣dφ
dψ

∣∣∣f(ψ), (2.77)

√
W ∗Wf(ψ) =

∣∣∣dφ
dψ

∣∣∣ 12 f(ψ), (2.78)

Uf(φ) =
∣∣∣dψ
dφ

∣∣∣ 12 f(ψ(φ)). (2.79)

Problem 2.38 Find the polar decomposition of A on l2(Z) given by

Aen = an+1en+1,

where an 6= 0, n ∈ Z.

Solution.
|A|en = |an|en, Uen =

an+1

|an+1|
en+1.

Problem 2.39 Find the polar decomposition of Az on L2(R) given by the integral kernel

Az(x, y) = e−z
(x−y)2

2 , Rez > 0.

Solution. First we compute

AzAw =

√
zw2π

z + w
Az+w.

Therefore,

|Az|(x, y) =
√

2πImze−Rez
(x−y)2

2 , Uz(x, y) =
1√

2πImz
e−Imz

(x−y)2
2 .

Problem 2.40 Let R 3 x 7→ y(x) ∈ R be an increasing bijection. Find the polar decomposition
of A on L2(R)

Af(x) := f(y(x)).
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Solution. First we compute

A∗g(y) = g(x(y))
∣∣∣dx
dy

(y)
∣∣∣.

Therefore,

|A|f(y) =
∣∣∣dx
dy

(y)
∣∣∣ 12 f(y),

Uf(x) =
∣∣∣dy
dx

(x)
∣∣∣ 12 f(y(x)).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Problem 2.41 (1) Let U be a unitary operator and P an orthogonal projection. Then W :=
UP is a partial isometry.

(2) Let W be a partial isometry on a finite dimensional Hilbert space. Then there exists a
unitary operator U and an orthogonal projection P such that W = UP .

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Problem 2.42 Find the polar decomposition of |v)(w|, where v, w are arbitrary vectors.

Solution.
|v)(w| = |v)(w|

‖v‖‖w‖
· |w)(w|‖v‖
‖w‖

.
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2.8 Rank one perturbations

Let us start with a physical example. Consider l2(Z) with the canonical basis en, n ∈ Z. Consider
the Hamiltonian

H0en = en−1 + en+1, or (H0f)n = fn+1 + fn−1,

perturbed by λV , where
V en = δ0,ne0, or (V f)n = δ0,nf0.

We would like to find the spectrum of H = H0 + λV .
Introduce the Fourier transformation F : l2(Z)→ L2[−π, π]

(Fen)(k) =
1√
2π

eink.

Then
FH0F−1f(k) = 2 cos kf(k), FV F−1 = |v)(v|

v(k) = 1√
2π
. Thus σ(H0) = [−2, 2].

In the sequel we will consider an abstract version of this problem. We assume that H0 is an
operator of multiplication

Hf(x) = xf(x),

on L2[a, b] and v ∈ L2[a, b]. Let
Hf = βf.

Then
xf(x) + v(x)λ

∫
v(y)f(y)dy = βf(x).

Hence
f(x) =

λv(x)

β − x

∫
v(y)f(y)dy.

1 = λ

∫
|v(x)|2

β − x
dx.

Assume that v is continuous and nonzero on ]a, b[. Then
∫ |v(x)|2

β−x dx =∞ for β ∈]a, b[. We have

d

dβ

∫
|v(x)|2

β − x
dx = −

∫
|v(x)|2

(β − x)2
dx < 0, (2.80)

lim
β→±∞

∫
|v(x)|2

β − x
dx = 0. (2.81)

Set

A :=

∫
|v(x)|2

a− x
dx, B :=

∫
|v(x)|2

b− x
dx.

Hence on ]−∞, a[ we have exactly one eigenvalue for λ ∈]−∞, A−1[ and on ]b,∞[ for λ ∈]B−1,∞[.
We have

lim
λ→±∞

β(λ)

λ
= 1.
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The eigenvector is

Ψλ(x) =
(∫ |v(x)|2

(β − x)2
dx
)−1 v(x)

(β − x)
.

Let us compute the resolvent:

(z −H)−1 = (z −H0)−1 +
(
λ−1 − (v|(z −H0)−1v)

)−1
(z −H0)−1|v)(v|(z −H0)−1

Hence, by computing the residue of the resolvent at β, we get

1l{β}(H) = (β −H0)−1|v)(v|(β −H0)−1 1

(v|(β −H0)−2v)
.

2.9 Resonances

For a ∈ R, using z as a real variable, let us first define the distribution on R

1

(z − a+ i0)
:= lim

ε↘0

1

(z − a+ iε)
. (2.82)

Note that it is a tempered distribution and we can compute its Fourier transform:

1

2πi

∫
e−itz

z − a+ i0
dz = −e−itaθ(t). (2.83)

Indeed, ∫
θ(t)e−itaeitzdt = lim

ε↘0

∫ ∞
0

eit(z−a+iε)dt (2.84)

= lim
ε↘0

i

z − a+ iε
=

i

z − a+ i0
. (2.85)

Let H be a self-adjoint operator. Clearly,

C\sp(H) 3 z 7→ (z −H)−1

is an analytic function that has poles at points of the discrete spectrum and the residues are the
corresponding spectral projections. We cannot extend this function to a larger domain. However,
sometimes we can extend

z 7→ (Φ|(z −H)−1Ψ) (2.86)

for some vectors Ψ. The additional domain arising from this extension is sometimes called the
“non-physical sheet of the complex plane”.

Suppose that and D a distinguished subspace of H. Suppose that for all Ψ ∈ D (2.86) can be
extended to some common region Ξ We say that E ∈ Ξ is a resonance if (2.86) has a singularity
at E.

Note that for ε > 0 ∫ ∞
0

eit(z−H+iε)dt =
i

(z −H + iε)
. (2.87)
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The limit of (2.87) for ε↘ 0 does not exist in terms of operators, but for appropriate Φ,Ψ there
may exist the limit of matrix elements:

(
Φ|
∫ ∞

0
eit(z−H)dtΨ

)
= lim

ε↘0

(
Φ|
∫ ∞

0
eit(z−H+iε)dtΨ

)
(2.88)

= lim
ε↘0

(
Φ| i

(z −H + iε)
Ψ
)

=:
(

Φ| i

(z −H + i0)
Ψ
)
. (2.89)

Therefore, (omitting Φ,Ψ) for t > 0, applying the inverse Fourier transformation

e−itH =
1

2πi

∫ ∞
−∞

(z −H + i0)−1e−itzdz.

By deforming the contour, pushing it down and picking up the residue at E, we obtain for
Φ,Ψ ∈ D

(Φ|e−itHΨ) =
1

2πi

∫
γ
(Φ|(z −H)−1Ψ)e−itz + (Φ|RΨ)e−itE .

2.10 Feshbach-Schur formula

Suppose that the space is V = VS ⊕ VR. (S stands for a „small system” and R for a „reservoir”).
An operator on V can be written as

H =

[
HSS HSR

HRS HRR

]
=

[
a b
c d

]
.

We also introduce the imbeddings JR and JS of VR, resp. VS into V.
Problem. Write H as

H =

[
1 y
0 1

] [
α 0
0 β

] [
1 0
x 1

]
.

Solution

H =

[
1 bd−1

0 1

] [
a− bd−1c 0

0 d

] [
1 0

d−1c 1

]
. (2.90)

Problem. Compute J∗SH
−1JS.

Solution Note that
[
1 y
0 1

]−1

=

[
1 −y
0 1

]
,
[
α 0
0 β

]−1

=

[
α−1 0

0 β−1

]
and

[
1 0
x 1

]−1

=

[
1 0
−x 1

]
.

Therefore, application of (2.90) yields the inverse of H:

H−1 =

[
1 0

−d−1c 1

] [
(a− bd−1c)−1 0

0 d−1

] [
1 −bd−1

0 1

]
Now J∗S =

[
1 0

]
and JS =

[
1
0

]
. Hence

J∗SH
−1JS = (a− bd−1c)−1.

Applied to z −H instead of H it is sometimes called the Feshbach-Schur formula

J∗S(z −H)−1JS =
(
z −HSS −HSR(z −HRR)−1HRS

)−1
. (2.91)

31



2.11 The Friedrichs Hamiltonian

On the Hilbert space L2]a, b[⊕C consider

G =

[
H0 |v)
(v| ε

]
H0f(k) = kf(k).

Let us look for an eigenvector of the form (f, g).

kf(k) + v(k)g =zf(k) (2.92)∫
v(k)f(k) + εg =zg. (2.93)

If g 6= 0, this yields

z = ε+

∫ b

a

|v(k)|2

z − k
dk, f =

v(k)g

z − k
. (2.94)

Now on ]−∞, a] and on [b,+∞[ the function F (z) := ε+
∫ b
a
|v(k)|2
z−k dk is decreasing. Therefore,

if ε+

∫ b

a

|v(k)|2

a− k
dk < a there exists a unique eigenvalue in ]−∞, a[, (2.95)

if ε+

∫ b

a

|v(k)|2

b− k
dk < b there exists a unique eigenvalue in ]b,+∞[. (2.96)

Let us call this eigen value E. Then we have an eigenvector with the eigenprojection(
1 +

∫ b

a

|v(k)|2

(E − k)2
dk

)−1 [
v(k)
E−k

1

] [
v(k)
E−k 1

]
. (2.97)

For small λ this eigenvalue can be found from

Eλ ' ε+ λ2

∫ b

a

|v(k)|2

(E − k)
dk (2.98)

(2.97) can be also obtained from the resolvent:

(z −G)−1

=

[
1l v(k)

(z−k)

0 1

][
1

z−k 0

0
(
z − ε−

∫ |v(k)|2dk
(z−k)

)−1

][
1l 0
v(k)

(z−k) 1

]

=

[
1

z−k 0

0 0

]
+

[
v(k)

(z−k)

1

](
z − ε−

∫
|v(k)|2dk

(z − k)

)−1 [
v(k)

(z−k) 1
]
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Suppose now that v(k) 6= 0 for k ∈]a, b[ and v is continuous. Then for λ small (2.94) has no
solutions and hence there are no eigenvalues. However, there may be a resonance. If we replace
v with λv, where v is small, then

Eλ ' ε+ λ2P
∫ b

a

|v(k)|2

(E − k)
dk − iπλ2|v(E)|2. (2.99)

This is the Fermi Golden Rule I.
This (at least on the heuristic level) implies

(Φ0|e−itHΦ0) ≈ e−iEt,

Hence
d

dt

∣∣∣(Φ0|e−itHΦ0

)∣∣∣2 = 2π|v(E)|
∣∣∣(Φ0|e−itHΦ0

)∣∣∣2,
which is called the Fermi Golden Rule II.

Here is an alternative, differential derivation of this rule. Set[
Ψt

Φt

]
:= e−itG

[
0

Φ0

]
Then

d

dt
Ψt(k) = −ikΨt(k)− iλv(k)Φt, (2.100)

d

dt
Φt = −iλ

∫ b

a
v(k)Ψt(k)dk − iεΦt. (2.101)

Set
Ψ̃t = eitkΨt, Φ̃t := eitεΦt.

Then
d

dt
Ψ̃t(k) = −iλv(k)eit(k−ε)Φ̃t, (2.102)

d

dt
Φ̃t = −iλ

∫ b

a
v(k)ei(ε−k)tΨ̃t(k)dk. (2.103)

Using the first approximation Ψ̃t(k) = Ψ̃0(k) = 0, Φt = Φ0 = 1 we obtain after one iteration

Ψ̃t(k) = −λv(k)
eit(k−ε) − 1

k − ε
Φ̃0.

Thus at t = 0

d

dt
Φ̃t = iλ2

∫ b

a
|v(k)|2 (1− eit(ε−k))

(k − ε)
dkΦ̃t (2.104)

= iλ2

∫ b

a
|v(ε− t−1y)|2 (eiy − 1)

y
dyΦ̃t (2.105)

≈ −πλ2|v(ε)|2Φ̃t. (2.106)
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where we used ∫
eiy − 1

y
dy = iπ.

Can we have exact exponential decay? Assume a = −∞, b = ∞ and v(k) = λ. Note that
formally

P
∫

1

E − k
dk = −iπ|λ|2. (2.107)

We have

(z −G)−1

=

[
1

z−k 0

0 0

]
+

[
λ

(z−k)

1

](
z − ε+ iπ|λ|2

)−1 [
λ

(z−k) 1
]

Thus ([0
1

]
|e−itG

[
0
1

])
= e−itε−π|λ|2t. (2.108)

2.12 Perturbation theory

Assume now that H0 and V are self-adjoint operators on V and Hλ := H0 + λV . Set Rλ(z) =
(z −Hλ)−1.

Let VS be the spectral subspace of H0 onto the eigenvalue E0 and VR its orthogonal comple-
ment. We can write the Feshbach-Schur formula as

J∗SRλ(E)JS =
(
E − E0 − λVSS − λ2VSR(z −H0RR − λVRR)−1VRS

)−1
. (2.109)

Therefore,

{E ∈ R : E − E0 − λVSS − λ2VSR(z −H0RR − λVRR)−1VRS is non-invertible} (2.110)

is contained in the spectrum of H.
Problem. Assume that dimVS is finite and E0 is a discrete eigenvalue of H0. Find an equation
for eigenvalues of Hλ, which for small λ is close to E0

Solution We can expect that these eigenvalues coincide with (2.110). A finite matrix is non-
invertible iff its determinant is zero. Therefore, the condition for these eigenvalues is

det
(
E − E0 − λVSS − λ2VSR(E −H0RR − λVRR)−1VRS

)
= 0. (2.111)

Let us remark that we obtain a polynomial in E of degree dimVS. In general it has dimVS

solutions λ→ Ej(λ)
%%%%%%%%%%%%%%%%%%%%%%%
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Let dimVS = 1, so that JS = |Φ0). Then we expect that close to E0 there is only one
eigenvalue of Hλ. We introduce

Fλ(E) := E0 + (Φ0|V Φ0) + λ2(Φ0|V (E −H0RR − λVRR)−1V Φ0).

The eigenvalue Eλ is the solution of
Eλ = Fλ(Eλ). (2.112)

We can try to solve it by iterations:

E
(j)
λ = F jλ(E0). (2.113)

The first iteration is

E
(1)
λ = Fλ(E0) = E0 + (Φ0|V Φ0) + λ2(Φ0|V (E0 −H0RR − λVRR)−1V Φ0) (2.114)

' E0 + (Φ0|V Φ0) + λ2(Φ0|V (E0 −H0)−1
RRV Φ0) +O(λ3). (2.115)

This method of finding eigenvalues is called the Brillouin-Wigner perturbation theory.
There is an alternative method, called the Rayleigh-Schrödinger perturbation theory. Recall

that we have H = H0 + λV , H0Ψ0 = E0Ψ0 and E0 is a nondegenerate eigenvalue.
We make an ansatz

Ψλ =
∞∑
n=0

λnΨn, Eλ =
∞∑
n=0

λnEn. (2.116)

We assume in addition that
(Ψ0|Ψn) = 0, n = 1, 2, . . . . (2.117)

We insert (2.116) into
(H0 + λV )Ψλ = EλΨλ. (2.118)

We obtain a formal series in the powers of λ. At λn we have

H0Ψn + VΨn−1 =

n∑
j=0

EjΨn−j . (2.119)

We take the scalar product with Ψ0:

(Ψ0|H0Ψn) + (Ψ0|VΨn−1) =
n∑
j=0

Ej(Ψ0|Ψn−j). (2.120)

With help of (2.117) we simplify (2.120) obtaining

(Ψ0|VΨn−1) = En. (2.121)

(2.118) can be rewritten

(E0 −H0)Ψn = VΨn−1 −
n−1∑
j=0

EjΨn−j . (2.122)
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We multiply (2.122) by PR := 1l− |Ψ0)(Ψ0|, which does not affect the lhs. Setting

R′0 := (E0 −H0)−1PR,

we obtain

Ψn = R′0

(
VΨn−1 −

n−1∑
j=0

EjΨn−j

)
. (2.123)

Here are the first iterations:

E1 = (Ψ0|VΨ0), (2.124)
Ψ1 = R′0VΨ0, (2.125)
E2 = (Ψ0|V R′0VΨ0), (2.126)
Ψ2 = R′0V R

′
0VΨ0 − (Ψ0|VΨ0)R′0VΨ0. (2.127)

3 Singular perturbations

Let H0 be a self-adjoint operator of multiplication by k2 on L2(Rd) and λ ∈ R. Let h be a
function on Rd. Recall that if h ∈ L2(Rd), then the operators (h| and |h) are defined by

H 3 v 7→ (h|v := (h|v) ∈ C,

C 3 α 7→ |h)α := αh ∈ H.
(3.128)

In particular, |h)(h| equals the orthogonal projection onto h times ‖h‖2.

Hλ := H0 + λ|h)(h|, (3.129)

is a rank one perturbation of H0.
We would like to describe how to define (3.129)if h is not necessarily a bounded functional

on H. It will turn out that it is natural to consider 3 types of h:

I.

∫
|h(k)|2dk <∞, (3.130)

II.

∫
|h(k)|2(1 + k2)−1dk <∞,

∫
|h(k)|2dk =∞, (3.131)

III.

∫
|h(k)|2(1 + k2)−2dk <∞,

∫
|h(k)|2(1 + k2)−1dk =∞. (3.132)

Clearly, in the case I Hλ is self-adjoint on DomH0. We will see that in the case II one can
easily define Hλ as a self-adjoint operator, but its domain is no longer equal to DomH0. In the
case III, strictly speaking, the formula (3.129) does not make sense. Nevertheless, it is possible to
define a renormalize the interaction This procedure resembles the renormalization of the charge
in quantum field theory. In this case usually the parameter λ looses its meaning, so we will
abandon the notation Hλ. Instead, one can label the Hamiltonian by various parameters, which
we will put in brackets.

This we have already computed:
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Lemat 3.1 In Case I with λ 6= 0, the resolvent of Hλ equals

Rλ(z) := (z −Hλ)−1

= (z −H0)−1 − g(z)−1(z −H0)−1|h)(h|(z −H0)−1, (3.133)

where
g(z) := −λ−1 + (h|(z −H0)−1h). (3.134)

defined for z 6∈ spH0.

Lemat 3.2 Assume I or II. Then Rλ(z) is well defined for z ∈ R\[0,∞[, gλ(z) 6= 0 and satisfies

Rλ(z1)−Rλ(z2) = (z2 − z1)Rλ(z1)Rλ(z2), (3.135)

or equivalently ∂zRλ(z) = −Rλ(z)2. (3.136)

Dowód. In Case I (3.135) is obvious. In Case II we see that (z−H0)−1h ∈ L2 and (h|(z−H0)−1h)
are well defined. So Rλ(z) is well defined and (3.135) extends from Case I to Case II by continuity.
2

Assume Case III. Then Rλ(z) is ill defined because (h|(z − H0)−1h) is ill defined. Let us
select c < 0 and set

∂zgc,γ(z) = −
(
h|(z −H0)−2h

)
, (3.137)

gc,γ(c) = γ. (3.138)

This can be solved:

gc,γ(z) = γ + (c− z)
(
h|(z −H)−1(c−H0)−1h

)
. (3.139)

Lemat 3.3 gc,γ defined above satisfies (3.135) and (3.136).

Twierdzenie 3.4 Assume Case I, II or III except for Case I λ = ∞. Then for z ∈ R\[0,∞[,
gλ(z) 6= 0 we have KerR(z) = {0} and RanR(z) is dense. Therefore, R(z)−1 is a densely defined
operator. Moreover,

H := −R(z)−1 + z (3.140)

does not depend on z and defines a self-adjoint operator.

4 Cut-off method

Another way to define H for in Case III is the cut-off method. For Λ > 0 we define

hΛ := 1l[−Λ,Λ](H0)h, (4.141)

where 1l[−Λ,Λ](H0) is the spectral projection for H0 onto [−Λ,Λ] ⊂ R. Note that hΛ is square
integrable
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We fix the running coupling constant by

gΛ(c) = γ. (4.142)

Let the cut-off Hamiltonian be
HΛ := H0 + λΛ|hΛ)(hΛ|. (4.143)

Then the resolvent for HΛ is given by

RΛ(z) = (z −H0)−1 − gΛ(z)−1(z −H0)−1|hΛ)(hΛ|(z −H0)−1, (4.144)

where
gΛ(z) := −λ−1

Λ +
(
hΛ|(z −H0)−1hΛ

)
. (4.145)

The cut-off Hamiltonian converges to the renormalized Hamiltonian:

Twierdzenie 4.1 Assume (1 + k2)−1h ∈ L2 (Case I, II or III). Then lim
k→∞

RΛ(z) = R(z).

5 Laplacian on L2(Rd) with the delta potential

On L2(Rd) we consider the unitary operator U = (2π)d/2F , where F is the Fourier transforma-
tion. Note that U is unitary.

Let ∆ be the usual Laplacian. Clearly,

−U∆U∗ = k2.

Let |δ)(δ| be the quadratic form given by

(f1|δ)(δ|f2) = f1(0)f2(0).

Note that again it can be also written as∫
f(x)δ(x)g(x)dx,

and thus is interpreted as a “potential”. Let (1| denote the functional on L2(Rd) given by

(1|g) =

∫
g(k)dk.

Using δ(x) = (2π)−d
∫

eikxdx we deduce that

U |δ)(δ|U∗ = (2π)−d|1)(1|.

Consider
U (−∆ + λ|δ)(δ|)U∗ = k2 + λ(2π)−d|1)(1|
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as an example of a Hamiltonian with a singular rank one perturbation. We compute:∫
ddk

1 + k2
<∞ ⇔ d = 1,∫

ddk

(1 + k2)2
<∞ ⇔ d = 1, 2, 3,∫

ddk

k2(1 + k2)
<∞ ⇔ d = 3.

Thus
(1) for d = 1 it is of type IIb, so it can be defined in the form sense using the parameter λ (as

we have already seen),

(2) for d = 2 it is of type IIIb. It can be renormalized.

(3) for d=3 it is of type IIIa. It can be renormalized.

(4) for d ≥ 4 there is no nontrivial renormalization procedure.
Consider dimension d = 2. Let us compute the resolvent for z = −p2. We have

g−1,γ(−p2) = γ + (p2 − 1)
(1|(H0 + p2)−1(H0 + 1)−1|1)

(2π)2

= γ + (p2 − 1)

∫
d2k

(2π)2(k2 + p2)(k2 + 1)
= γ +

ln p2

4π
.

Using that the Fourier transform of k 7→ 1
k2+p2

equals x 7→ 2πK0(p|x|), where K0 is the 0th
MacDonald function, we obtain the following expression for the integral kernel of (p2 +H)−1:

1

2π
K0(p|x− y|) +

K0(p|x|)K0(p|y|)
(2π)2(γ−1 + ln p2

4π )
. (5.146)

In the physics literature one usually introduces the parameter a = eγ/2π called the scattering
length. There is a bound state K0(|x|/a) with eigenvalue −a−2.

Note that
{f ∈ (1−∆)−1L2(R2) : f(0) = 0} (5.147)

is a closed subspace of (1−∆)−1L2(R2). The domain of H is spanned by (5.147) and

(−a−2 −∆)−1|1), (5.148)

which is in L2(R2)\(1−∆)−1L2(R2). In the position representation (5.148) is x 7→ 2πK0(|x|/a)
Around r ∼ 0 we have the asymptotics K0(r) ' − log(r/2) − γ. Therefore, the domain of H
contains functions that behave at zero as C

(
log(|x|/2a) + γ

)
.

Consider dimension d = 3. Let us compute the resolvent for z = −p2. We have

g0,γ(−p2) = γ + p2 (1|(H0 + p2)−1H−1
0 |1)

(2π)3

= γ + p2

∫
d3k

(2π)3(k2 + p2)k2
= γ +

p

4π
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Using that the Fourier transform of k 7→ 1
k2+p2

equals x 7→ 2π2 ep|x|

|x| , we obtain the following
expression for the integral kernel of (p2 +H)−1:

e−p|x−y|

4π|x− y|
+

e−p|x|e−p|y|

(4π)2(γ0 + p
4π )|x||y|

. (5.149)

In the physics literature one usually introduces the parameter a = −(4πγ)−1 called the scattering
length.

{f ∈ (1−∆)−1L2(R3) : f(0) = 0} (5.150)

is a closed subspace of (1−∆)−1L2(R3). The domain of H is spanned by (5.150)

(aeiπ/4 − i)(i−∆)−1|1) + (ae−iπ/4 + i)(−i−∆)−1|1) (5.151)

In the position representation (±i − ∆)−1|1) equals x 7→ 2π2 exp(e±iπ/4|x|)
|x| . Therefore, the Ha-

miltonian with the scattering length a has the domain whose elements around zero behave as
C(1− a/|x|).

For a > 0 there is a bound state e−|x|/a

|x| with eigenvalue −a−2. To get the domain, instead of
(5.151), we can adjoin this bound state to (5.150).

Note that the Hamiltonian is increasing wrt γ0 ∈] − ∞,∞]. It is also increasing wrt a
separately on [−∞, 0] and ]0,∞]. At 0 the monotonicity is lost. a = 0 corresponds to the usual
Laplacian.

The following theorem summarizes a part of the above results.

Twierdzenie 5.1 Consider −∆ on C∞c (Rd\{0})
(1) It has the defficiency index (2, 2) for d = 1.

(2) It has the defficiency index (1, 1) for d = 2, 3.

(3) It is essentially self-adjoint for d ≥ 4.

(4) For d = 1 its Friedrichs extension is −∆D and its Krein extension is −∆.

(5) For d = 2 its Friedrichs and Krein extension is −∆.

(6) For d = 3 its Friedrichs extension is −∆ an its Krein extension corresponds to a =∞.
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