Propagators in curved spacetimes
from operator theory

Jan Dereziriski! and Christian GaB'-

1Departrnent of Mathematical Methods in Physics, Faculty of Physics,
University of Warsaw, Pasteura 5, 02-093 Warszawa, Poland,
email: jan.derezinski@fuw.edu.pl, christian.gass @fuw.edu.pl
“Department of Physics, University of Vienna,
Boltzmanngasse 5, A-1090 Vienna, Austria

September 4, 2025

Abstract

We discuss two distinct operator-theoretic settings useful for describing (or defining)
propagators associated with a scalar Klein-Gordon field on a Lorentzian manifold M.
Typically, we assume that M is globally hyperbolic. The term propagator here refers
to any Green function or bisolution of the Klein-Gordon equation pertinent to Quantum
Field Theory.

The off-shell setting is based on the Hilbert space L?(M). It leads to the definition
of the operator-theoretic Feynman and anti-Feynman propagators, which often coincide
with the so-called in-out Feynman and out-in anti-Feynman propagator. On some special
spacetimes, the sum of the operator-theoretic Feynman and anti-Feynman propagator
equals the sum of the forward and backward propagator. This is always true on static
stable spacetimes and, curiously, in some other cases as well.

The on-shell setting is based on the Krein space Wk of solutions of the Klein-Gordon
equation. It allows us to define 2-point functions associated to two, possibly distinct,
Fock states as the Klein-Gordon kernels of projectors onto maximal uniformly positive
subspaces of Wkg.

After a general discussion, we review a number of examples. We start with static and
asymptotically static spacetimes, which are especially well-suited for Quantum Field
Theory. Then we discuss FLRW spacetimes, reducible by a mode decomposition to
1-dimensional Schrédinger operators. We compare various approaches to de Sitter space
where, curiously, the off-shell approach gives non-physical propagators. Finally, we
discuss the universal cover of anti-de Sitter spaces, where the on-shell approach may
require boundary conditions, unlike the off-shell approach.
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1 Introduction

1.1 Propagators and states

Let M be a Lorentzian manifold of dimension d with a pseudometric tensor g,,. Let Y (z)
be a real-valued scalar potential, e.g. Y (z) = m?* Consider a field on M satisfying the
Klein-Gordon equation

(-O0+Y(x)¢(x) =0, (L.1)

where [ := | g]*%(?u\ g|2¢"d, is the d’Alembertian. If one wants to compute various pertinent
quantities related to ¢, and especially to its quantization ¢, one needs to know several
distributions on M x M, often called “propagators” or “two-point functions”.

These distributions fall into two categories: Green functions (also called fundamental solu-
tions), and bisolutions of the Klein-Gordon equation. A Green function of the Klein-Gordon
equation is a distribution G* on M x M satisfying

(=0 + Y(2))G*(2,y) = d(z,y) = (=0, + Y (y))G* (2, ), (1.2)

where §(x,y) denotes the distributional kernel of the identity. A bisolution of the Klein-
Gordon equation is a distribution G* on M x M satisfying

(=0 + Y(2))G*(2,y) = 0 = (=0, + Y())G*(z,y). (1.3)

In our paper we will colloquially use the term “propagator’! for various distinguished Green
functions and bisolutions of (1.1) motivated by QFT: the advanced and retarded propagators,
the Pauli-Jordan propagator, Feynman and anti-Feynman propagators, and Wightman and
anti-Wightman two-point functions (in some situations also called positive/negative frequency
bisolutions). Wightman functions serve as two-point functions of a quantum state. Hence,
abusing somewhat terminology, they are often simply called states.

IThis nomenclature is in accordance with the previous papers [39—41]. Note, however, that the term
“propagator” is often reserved only for some of these distributions. Following the usage common in physics we
will often also use the term “two-point function” for (anti-)Wightman bisolutions.



In most of our paper we assume that M is globally hyperbolic. Then one can show the
existence of the retarded (or forward) and advanced (or backward) propagator G (x, z') and
G"(z, "), which are the unique Green functions supported for x in the causal future resp.
causal past of z’. The bisolution defined by

G (z,2") = GY(z,2") — G"(x,2) (1.4)

is usually called the Pauli-Jordan propagator or the commutator function. It also possesses
a causal support. All three propagators GV, G and G* are useful in the Cauchy problem
of the Klein-Gordon equation. The classical field ¢(x) satisfying (1.1) is equipped with the
Poisson bracket

{¢(I), (b(y)} = _GPJ(x7 y)

Therefore, following [39—41], GV, G and G¥ will be called classical propagators. In
Quantum Field Theory one uses a few other propagators, whose operator-theoretic meaning
— especially on curved spacetimes — is the main subject of this article.

Quantization of the classical field ¢(3§) is performed in two steps. In the first step we replace
it by an operator valued distribution ¢(x), which beside the Klein-Gordon equation

(—O+Y(x))o(x) =0 (1.5)

satisfies the so called Peierls relation

~

[0(2), 9(y)] = —iG” (w, y)1.
The fields ¢(z) generate a *-algebra.

In the second step one selects a representation of the fields in a Hilbert space. In practice,
this is done by choosing a state w,, on this x-algebra, that is, a positive and normalized linear
functional. Then w, defines the GNS Hilbert space with a distinguished vector €2,. One
usually considers a Fock state (a pure quasifree state), where the GNS representation has the
form of a bosonic Fock space and €2, is its vacuum. The expectation values in this state define
four important two-point functions:

G (2, y) == (Quld(@)d(y)), (1.6)
G (,) = (ld(y)o(2)), (1.7)
Gh(z,y) = 1(QWl T (3(2)0(y))Qa), (1.8)
G (z,y) = —i(QW|T(¢(2)d(y)) Qa)- (1.9)

Here, T and T denote the chronological, resp. anti-chronological time ordering. Note that
GL and G are automatically bisolutions; G* and G¥, are Green functions.

It is perhaps less known that it is useful to define mixed propagators corresponding to two
different states. Suppose that they are given by vectors (2, and €23, belonging to the same



representation space, with nonzero (£2,|€23). Then we set

G )(e,y) = malfé?é(:mﬁ ) (1.10)
G )(w,y) = (Qal(éi)’é(;;mﬁ), (1.11)
Gl (@) (el T ((5275)25()@)95) (1.12)
GF j(z,y) = —i (QQ|T%1‘U’)£;;))%) (1.13)

Again, Gﬁjﬁ) and GS; are bisolutions; the Feynman propagator G’g 5 and the anti-Feynman

propagator GE, 5 are Green functions.

We have a minor terminological problem: should Ggﬁ be called the “a — [ Feynman
propagator” or the “ — o Feynman propagator”? The latter choice is consistent with the
“time arrow”: in typical applications the vacuum €23 is first, and €2, is later. This order is
used e.g. in [48] (see e.g. equation (74)). In symbols we will use the former order, in names
we will use the latter order. So G’g’ 5 Will be called the 5 — a Feynman propagator.

The functions G4 (x,y) are used to define the GNS representation for the state w,, and Wick-
ordered product of fields. Wick ordering is a first step to renormalization, which is needed
to define higher order monomials of fields. The renormalization procedure will not work for
an arbitrary state. In practice one assumes that it has the so-called Hadamard property, and
then renormalization works well. Note that this analysis can be performed on a local level,
without considering the whole spacetime.

Let us now describe the application of Feynman propagators. Suppose we perturb the dy-
namics and we want to compute the scattering operator S, in the representation given by
2,. By a standard argument going back to Dyson, often called the Wick Theorem, S, can
be expressed as a perturbation series with terms labelled by Feynman diagrams. In order to
evaluate Feynman diagrams one needs to replace the lines by GE (z, y).

Often it is natural to compute the renormalized scattering operator S, g, acting from the
representation generated by (2g to the representation generated by €2,. Actually, it is then
useful to divide the scattering operator by the overlap between the vacua, and compute

- o Sa,ﬂ
Sep = (GA[IP} (1.14)

The algorithm is similar as above, except that we put GIC; 5 at each line of a Feynman diagram.

We will see that Gf; 5 can usually be defined even if (25/€2,) = 0. Therefore, we can then also
compute gaﬂ. In fact, if the theory is linear, Saﬁ will be usually a well-defined unbounded

5



quadratic form, whose integral kernel 5'% 3(ka, kg) can be called the “renormalized scattering
amplitude”. Obviously, the unitarity of S, is lost, hence renormalized scattering amplitudes
will not have a direct probabilistic interpretation. However their ratios

ﬁ(—/f) (1.15)
Sap (Ko, Ks)

have a meaning: they can be used to compute branching ratios of various processes.

If we want to compute (Qi(f—fi) we proceed similarly, except that Feynman propagators need

to be replaced by anti-Feynman propagators Gﬁja.

One of the important problems of QFT on curved spacetimes is the choice of a state. In
Minkowski space and with Y (x) = m? > 0 there is a natural state, described in all textbooks
on QFT. More generally, every stationary and stable Klein-Gordon equation possesses a
natural state. Stationarity means that one can identify M with R x 3 so that ¢*” and Y are
independent of t € R, 3. is spacelike and 0, is timelike. Stability means that the corresponding
classical Hamiltonian is bounded from below. Again, requiring that the state is invariant under
the time evolution, and in the GNS representation the dynamics is implemented by a positive
quantum Hamiltonian fixes the state uniquely. The one-particle Hilbert space is then taken to
be the positive frequency space, that is, the spectral subspace of the generator of the evolution
corresponding to the positive part of the spectrum.

On generic spacetimes there are no distinguished states. There is however one class of
spacetimes, particularly well adapted to QFT, where there are two distinguished states. These
are spacetimes with asymptotically stationary and stable future and past. Such spacetimes
possess two distinguished states: the in-state and the out-state, given by vectors {2_ and €2,.
Obviously, they define two pairs of two-point functions

G (2, 2) = (Qu|d(x)d(=)2), (1.16)
GO (z,2') = (Qu]d(a")p(x)Q). (1.17)

One can use them to define two GNS representations acting on two Fock spaces.

More interesting are however the following mixed Feynman propagators: the in-out Feynman
propagator Gi_ and the out-in anti-Feynman propagator G* I

. , _1(Q+|T( (x)p(2")) Q)

Gl _(x,2") = (%) , (1.18)
F no_ (Q*’T(¢E(f’5)(lg($,))9+)

G (x,2') = —i @, (1.19)

We will see below that Gi— and G¥ + play an important role in applications, and possess an
alternative definition that works well even if the overlap (Q2_|(2, ) is formally zero.



In a generic situation, (1.18), (1.19) and (1.20) may be ill-defined because the overlap (£2,[€2_)
is zero. Fortunately, as we will see, one can define G', _ and G, independently via operator
theory, without a division by zero.

On an asymptotically stationary and stable spacetime it is natural to use for the initial, resp.
final representation the Hilbert space generated by €)_, resp. €2.. Thus the main objects of
interest are

S, St
@) @0y

(1.20)

They can be evaluated using G _ and G¥  , even if (22, |Q_) = 0.

The main topic of the present article is how to define various propagators using tools of
operator theory. We will see in particular that one does not need to worry about dividing by
the overlap (€2,]€23). It is possible to give a purely operator theoretic definition of (1.10),
(1.11), (1.12) and (1.13), which works also if (€2,[€25) = 0.

1.2 Operator-theoretic interpretations of propagators

There are two distinct operator-theoretic settings related to the Klein-Gordon equation, which
are useful in defining and computing propagators: the space of solutions to (1.1), which we
denote Wi, and the Hilbert space L2(M, |g|2). The space Wi may be called the on-shell
space and L2(M, |g|2) the off-shell space.

To define the on-shell space one usually starts from the space of complex space-compact
solutions to (1.1), denoted W.. This space is endowed with the so-called Klein-Gordon
charge form—an indefinite sesquilinear form obtained by integrating the natural current over
an arbitrary Cauchy surface. In the generic case, this space does not have a distinguished
positive scalar product. Nevertheless, one can fix a family of equivalent positive scalar
products compatible with the Klein-Gordon form. Then, for technical reasons, we extend
Wi to a complete space Wk, which has the structure of Krein space: a space with a
Hilbertian topology equipped with a distinguished indefinite form given by a bounded self-
adjoint involution. Using elements of the theory of Krein spaces one is able to give meaning
to the quantities (1.10), (1.11), (1.12) and (1.13), avoiding expressions of the type 8. This is
a big advantage of the operator-theoretic viewpoint.

In practice, it is convenient to represent the space Wkq in terms of Cauchy data. More
precisely, we first identify M/ = R x X, where X has a spatial signature and J; a temporal
signature. Each element of Wk is uniquely determined by its value at {¢t} x ¥ and its
temporal derivative. This allows us to describe elements of Wk as pairs of functions on ..

The space Wk is not the only operator-theoretic setting for propagators. There is another
one, provided by the Hilbert space is L2(M, |g|2). At first many readers may protest — this
space does not describe physically relevant states. However, as we will see it is very useful
for the computation of propagators.



It can be easily shown that on Minkowski space the usual Feynman and anti-Feynman prop-
agator are the boundary values of the resolvent kernel of the Klein-Gordon operator on
L2 (Rl’d_1>:

1
F BT
Gﬁ(x, y) := lim L (z,y). (1.22)

O (=0 + m? —ie)
It is not difficult to see that an analogous statement is true on stationary stable spacetimes.

More generally, suppose we use the path integral formalism to define perturbative QFT. The
usual prescription says that one should split the action in a quadratic part and the interaction,
and then derive Feynman diagrams from the path integral. Itis easy to see that this prescription
formally yields (1.21) and (1.22) as the expressions corresponding to the lines in Feynman
diagrams. This suggests an alternative definition of Feynman and anti-Feynman propagator,
which we describe below.

Itis clear that for real-valued Y (z), —O0+Y () is a Hermitian operator on C2°(M ) in the sense
of L?(M, |g]| 7). Suppose that it is essentially self-adjoint. Then its spectrum is contained in R
and we may define the operator-theoretic Feynman and anti-Feynman propagator G’Ep (z,y)

and Gfp(a:, y) via

1
F .
Gopl@,y) = limy (—O+Y(z) +ic
F 1
F .
Gop(x7y) T 11{‘% (—D + Y([L’) o 16) (l’, y)7 (124)

)(l’,y), (1.23)

provided that the distributional limits on the right-hand side exist.

Note that there is no guarantee that the limits (1.23) and (1.24) exist. For instance, if the
Klein-Gordon operator has a zero eigenvalue, they fail to exist.

For static stable Klein-Gordon operators the existence of (1.23) and (1.24) is proven in
[39]. There are heuristic arguments [40,41] showing that the above definitions work on
asymptotically stationary stable spacetimes and the in-out Feynman and the out-in anti-
Feynman propagator coincide with the operator-theoretic Feynman propagators:

Goo(z,y) = GL_(x,y), (1.25)
Goo(z,y) = G- (,y). (1.26)

These identities can be viewed as a justification of the path-integral approach to QFT.

From the rigorous point of view, the definitions (1.23) and (1.24) raise difficult mathematical
questions. First, the essential self-adjointness for generic spacetimes is a nontrivial problem.
For asymptotically Minkowskian spacetimes satisfying some non-trapping conditions it has



been proven in [71,72,83]. Under similar conditions one can show that (1.25) and (1.26) are
true.

Propagators satisfy various identities. We already mentioned (1.4), which defines the Pauli-
Jordan propagator. Another identity universally true is

G (x,2') = iGSﬁ)(x, x') — iG:ﬁ)(x, x'), (1.27)
valid for any pair of Fock states w,, wg.

On Minkowski space with Y () = m? > 0, and more generally for a stationary stable
Klein-Gordon equation, we have the identity

Gt +GE =G+ GN (1.28)

F
o

In particular, the support of G, + Gfp is causal.

Definition 1.1. We will say that the Klein-Gordon equation is special if one can define Ggp

and Ggp (which we expect to be true in typical situations) and the support of GEP + Gfp is
causal. We will then also say that the specialty condition is satisfied.

Special Klein-Gordon equations have the following advantage. One may expect that it is

in many situations quite simple to compute the distributions Ggp and Ggp using operator-

theoretic tools. Then, splitting Ggp + Ggp into two distributions, one supported in the causal

future and the other supported in the causal past, we may determine GV and G”.

The specialty condition is generically violated. It is however very useful if it holds. We will
discuss some interesting cases when it is true.

1.3 Outline of the paper

In Section 2, we describe in detail both basic operator-theoretic settings to QFT on curved
spacetimes that we outlined in the introduction: the on-shell space Wy and the off-shell
space L?(M).

The remaining sections are dedicated to the discussion of various examples of spacetimes
with largely different properties:

1. First we discuss stationary spacetimes. Here one can give fairly explicit formulas for
the Pauli-Jordan bisolution, and the four basic Green functions: the avanced/retarded
propagators, and operator-theoretic (anti-)Feynman propagators. If in addition the
Klein-Gordon equation is stable, then there is a distinguished Fock state. The cor-
responding 2-point functions and (anti-)Feynman propagators are easy to describe.
The specialty condition is fulfilled and the (anti-)Feynman propagators defined in the
off-shell and on-shell formalism coincide.

In the tachyonic case, that is, if the Hamiltonian is not positive, the speciality condition
is violated, and we cannot define positive/negative frequency bisolutions. This includes

9



the Minkowski space with imaginary mass, that is, m? < 0. Of course, this case is not
very physical, but it is occasionally discussed in the literature.

. Spacetimes asymptotically stationary and stable in the past and future form a class well
suited for the formalism of QFT. After identifying M with R x 3., where R describes time
and Y is a Cauchy surface with a time dependent Riemannian metric, one can give a fairly
explicit description of all propagators using the time evolution of solutions, as described
in [41]. Remarkably, the in-out Feynman and out-in anti-Feynman propagator are well
defined—this is a non-trivial statement proven in [41]. The existence of the operator-
theoretic (anti-)Feynman propagator is a difficult mathematical problem, solved only
under some strong assumptions. There are heuristic arguments showing that, if they
exist, they coincide with the in-out Feynman and out-in anti-Feynman propagator. As
we mentioned above, the specialty condition is rarely fulfilled.

. The Klein-Gordon operator on 1 + 0-dimensional spacetimes essentially reduces to a
one-dimensional Schrodinger operator. The corresponding propagators are well-known
objects from the theory of such operators. The speciality condition is fulfilled if and only
if the scattering operator is reflectionless. Obviously, it is satisfied if the potential is a
constant. But curiously, as is well known, there exist potentials which are reflectionless
at all energies. The best known such potential is

W=
cosh? x

(1.29)

for half-integer p.

. Spacetimes, whose pseudometric depends on time only through a conformal factor, are
usually called Friedmann-Lemaitre-Robertson-Walker (FLRW) spacetimes. In such
spacetimes, after diagonalization of the spatial Laplacian, or in other words, after
decomposing it into “modes”, the Klein-Gordon equation can be reduced to the 1 4 0-
dimensional setting. Thus in principle one can write all propagators as the direct sum
or integral of propagators for each mode. In particular, the Klein-Gordon equation is
special if each mode is reflectionless.

. The theory of propagators on the d-dimensional de Sitter space dS, is especially rich
and surprising.

The de Sitter space can be interpreted as the “Wick rotated” d-dimensional sphere. An-
alytically continuing the Green function of the sphere in the usual spherical coordinates
we obtain a certain Feynman and anti-Feynman propagator. For m? > (%1)?, they
can be used to write down the Wightman two-point functions of a state, as well as the
classical propagators. This state is usually called the Euclidean (or Bunch-Davies) state
and is believed to be the physical choice on the de Sitter space, because it is Hadamard.

The d’Alembertian on de Sitter space is essentially self-adjoint on smooth compactly
supported functions. This is a special case of a general mathematical theorem saying that
invariant differential operators on maximally symmetric pseudo-Riemannian manifolds

10



are essentially self-adjoint. In our paper we compute the integral kernel of resolvent
of the d’Alembertian on dS,. Taking its boundary values yields the operator-theoretic
Feynman and anti-Feynman propagator. Curiously, they are different from the Euclidean
Feynman and anti-Feynman propagator. The specialty condition is satisfied in odd
dimensions; it is not true in even dimensions.

Our derivation of the formula for the resolvent is based on an argument which, while in
our opinion convincing and elegant, is not fully rigorous. Alternative, more complicated
proofs of our formula are possible, e.g. following the approach of [48] based on mode
decompositions.

It is well-known that all de Sitter invariant states can be described and expressed in
terms of Gegenbauer functions. They are usually called a-vacua, where « is a complex
parameter that can be used to parametrize them. o = 0 corresponds to the Euclidean
vacuum. All other a-vacua are not Hadamard.

The de Sitter space is not asymptotically stationary. However, it possesses two distin-
guished states, which can be called the in-state and the-out state. The former has an
incoming behavior in the past, the latter is outgoing in the future. The operator theoretic
Feynman and anti-Feynman propagators satisfy the identitities (1.25) and (1.26). In
odd dimensions the in-state coincides with the out-state. In even dimensions this is not
the case. In all dimensions, the in-state and out-state are distinct from Euclidean state.

De Sitter space is a FLRW spacetime (with a conformal factor that blows up exponen-
tially). Therefore, it is possible to decompose the Klein-Gordon equation into modes.
In each mode one obtains the 1-dimensional Schrodinger operator with the potential
(1.29), where . depends on the dimension and the degree of spherical harmonics. p is
a half-integer for odd dimensions and an integer for even dimensions. This is another
way to see that the Klein-Gordon equation in odd dimensions is special and in even
dimension is not.

One can define retarded and advanced propagators for all values of m? € R. However,
the case m? < (%41)? seems not physical. In fact, below (41)? the spectrum of the
d’Alembertian is discrete. Operator-theoretic Feynman and anti-Feynman propagators
are well defined (and identical) outside of this spectrum. As can be expected, the

specialty condition is then violated.

. The universal cover of anti-de Sitter space Z‘Egd is another maximally symmetric
spacetime, where one can compute all propagators. It is a stationary spacetime, which
is not globally hyperbolic: it possesses geodesics that escape to the spatial boundary
in a finite proper time. One can apply two approaches to define the propagators on the
universal cover of anti-de Sitter space.

The first approach uses LQ(&l/Sd). The d’Alembertian is essentially self-adjoint—there
is no need to fix boundary conditions. We compute the resolvent of the d’Alembertian
and define the operator-theoretic Feynman and anti-Feynman propagators as its limits.

11



(Again, our computation is based on a conjecture and thus not fully rigorous.) If
m? > —(%)2, then their sum has a causal support, so one can define the retarded
and advanced propagator by splitting this sum. In particular, the specialty condition is
satisfied.

Alternatively, one can use the evolution of the Cauchy data. For m? > —(%)2 + 1 this
evolution is uniquely defined—one does not need to specify boundary conditions. For
m? < —(%1)?+ 1 boundary conditions are needed. For —(%41)? <m? < —(41)*+1
there exists a distinguished boundary condition (corresponding to the Friedrichs exten-
sion), which agrees with the propagators obtained from the operator-theoretic Feynman
propagator. In particular, we have distinguished retarded and advanced propagators.
For m? < —(d;21)2 there are no distinguished boundary conditions at spatial infinity.
Thus retarded and advanced propagators are non-unique and none is distinguished.

Pertinent elements of the theory of Krein spaces are discussed in Appendix A. Propagators
on de Sitter and anti-de Sitter space can be described explicitly in terms of special functions
(Gegenbauer functions). We introduce their relevant properties in Appendix B.

Remark 1.2. We restrict our considerations to a real scalar field dS(:U), but they can be
generalized to a complex scalar field in a fairly straightforward manner. One needs then two
pairs of creation and annihilation operators. Both the real and the complex formalism are
treated in [41].

1.4 Literature about the subject

Quantum Field Theory on curved spacetimes is one of the most discussed and developed areas
of theoretical physics. It has enormous literature, including numerous standard textbooks
[8,12,50,74]. At first glance, our paper may appear to be a review article, as it presents
various facts and concepts from existing literature. Surprisingly, however, many of ideas of
our paper seem to be clearly articulated here for the first time. Let us in particular mention:

* the description of the two operator-theoretic setups in Section 2 and Appendix A, which
is a continuation of the works [39-41] of D. Siemssen and one of the authors (JD);

* the comparison of four different approaches to the Klein-Gordon equation on de Sitter
space from Section 5, where we also present a list of new formulas e.g. for correlation
functions between different states;

* the discussions of the “speciality condition” throughout all sections, which provides a
useful tool for computations.

We start our review of the literature with the ‘“classical propagators”, that is, the retarded
and advanced propagator, and the Pauli-Jordan function. They belong to standard knowledge
and are well-studied in standard references. In the massless case on the flat R' the retarded
and advanced propagators are well known from classical electrodynamics, and are sometimes
called the Lienard-Wiechert potentials. In the massive flat case their expressions in terms
of Hankel functions are contained in many textbooks. The Cauchy problem of the wave
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equation on curved spacetimes was studied already by Hadamard [56], at least locally. A
recent reference to this subject on arbitrary globally hyperbolic manifolds is the book by
Bir, Ginoux and Pfiffle [9]. In the introduction to this book one reads: “Tracing back the
references [on the uniqueness and existence of linear wave equation on lorentzian manifolds]
one typically ends at unpublished lecture notes of Leray [65] or their exposition by Choquet-
Bruhat [30].”

In the literature the Pauli-Jordan function is often called the commutator function or (recently,
in the mathematics oriented literature) the causal propagator, [8,50]. Note, however, that the
latter name can lead to confusion: in [16] the Feynman propagator is called the causal Green
function.

Propagators on the Minkowski space, including “non-classical” ones, are well-known from
various textbooks on Quantum Field Theory (especially the old-fashioned ones). For instance,
Appendix 2 of Bogoliubov—Shirkov [16] and Appendix C of Bjorken—Drell [13] contain
expressions for these functions in the position space in the physical case of R™?, and discuss
conventions used by various authors.

“Non-classical” propagators are expectation values of products of two fields. Those without
time-ordering, sometimes called Wightman functions, are ubiquitous in the mathematical
literature, since they are needed to define the GNS representation and multiplication in
appropriately defined local algebras. One of major questions, which is asked in various
papers is whether they satisfy the Hadamard condition.

Expectation values of time-ordered fields, that is, Feynman propagators, are needed when
we want to find scattering amplitudes. They often appear in the physics literature as mixed
two-point functions, typically with the out-vacuum on the left and in-vacuum on the right. For
instance, in Birrell-Davies [12] in (9.13) one finds the following definition of Green functions:

(out, 0T (p(x1)p(x2)...0(xp,)]0, in)
{out, 0]0, in) '

(1.30)

T(T1, T2 Tpy) =
Then the authors write: “...unlike the case of Minkowski space where |0,out) = |0,in)
(up to a phase factor), the vacuum |0, in) in curved spacetime will not in general be stable:
(out, 0[0,1in) # 1.” In particular the relationship (1.25), which says that the “in-out Feynman
propagator”G", _ coincides with the Feynman propagator formally computed in the path-
integral approach (which can be interpreted as Ggp) is implicitly contained in [12] (and in
general in the physics literature). Elements of this philosophy are also found in [78,79].

In the more recent rigorous literature, mixed (two-state) propagators are almost absent. The
majority of recent works, for example the seminal papers [23,61], emphasize the local point
of view. Their usual goal is to construct a net of local algebras, for which it is enough to fix a
single state, preferably Hadamard, which can be done locally.

A systematic rigorous study of various natural propagators on curved spacetimes was under-
taken in the series of papers by one of the authors (JD) with a coauthor [39—41]. In particular,
the construction of the distinguished Feynman propagator by methods of Krein spaces on
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an asymptotically stationary stable spacetimes is contained in [41]. A construction of the
same Feynman propagator on a (more narrow) class of asymptotically Minkowskian spaces
by methods of pseudodifterential calculus was given by Gérard and Wrochna [50, 54].

There exist many works, especially in the PDE literature, about parametrices of the Klein-
Gordon equations, that is, inverses modulo a smoothing operator. A celebrated paper with
this philosophy is the work by Duistermaat and Hormander [44], which describes four natural
parametrices: retarded, advanced, Feynman and anti-Feynman. Such parametrices are enough
in the study of propagation of singularities, and they do not require a global knowledge of
the spacetime. Anyway, most of the literature using parametrices seems restricted to retarded
and advanced propagators. See e.g. [27,28] where parametrices involving Fourier integral
operators are used as approximations of exact retarded and advanced propagators.

Similarly, it is often argued in mathematical physics papers that it is enough to know a two-
point function only up to a smooth term. This is sufficient if we want to prove the existence of
renormalized powers of fields [23]. In our paper we are interested in exact Green functions
and bisolutions, which are needed to compute scattering amplitudes exactly.

The usefulness of the setting of Krein spaces for the Klein-Gordon equation has been known
for a long time [51,52,69, 70, 84, 85]. Note that in some of these papers the “Klein-Gordon
operator” means the “generator of the Klein-Gordon evolution”, denoted in our paper by
B(t). For us the “Klein-Gordon” operator is the operator on L*( M) whose resolvent appears
in (1.23) and (1.24).

To our knowledge the above papers miss the relevance of the Krein setting for two-state
Wightman functions and in-out Feynman propagators. This seems to have been noted only
in [41].

The rigorous literature about the off-shell approach to the Klein-Gordon equation seems
very scarce. To the papers about self-adjointness of Klein-Gordon operators mentioned
above [41,71,72,83], one could add [63] about pathological examples and [11] about the
Wick rotation on a background of an ADM metric.

We will discuss the literature about the examples that we present in Sections 3, 4, 5 and 6 in
the respective sections.

2 Propagators in curved spacetimes

2.1 Klein-Gordon equation

In this section we will describe how to generalize the well-known propagators from RY4~1 to
generic spacetimes.

Consider a Lorentzian manifold M of dimension d with pseudometric tensor g,,,,. Define the
d’Alembertian

O = |g|"20,]g]29"0,. @.1)
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Note that we have
O=g¢"V,V,, (2.2)

where the left V is the covariant derivative on covectors, and the right V on scalars (which
coincides with the usual derivative 0). We also define the Klein-Gordon operator —O0+Y (x),
where Y () is an z-dependent, real-valued scalar potential. Most of the time we will assume
that Y (x) = m?, so that the Klein-Gordon operator is —J + m?.

Note that the d’Alembertian (2.1) acts on scalar functions. It is sometimes more convenient
to replace it by the d’Alembertian in the half-density formalism, that is

1 _1 _1 1o _1
Ou = [gl=0g|™* = lg["*0ulgl> 9" Du]g] 5. (2.3)

In the half-density formalism the space L%(M, |g|2) is replaced by L*(M ), where we just take
the Lebesgue measure with respect to given coordinates. We will write L for [11 when it is
clear from the context that we use the half-density formalism. See e.g. [41].
2.2 Green functions and bisolutions
Suppose that we have a continuous sesquilinear form

CZ(M) x CZ(M) 2 (fi, f2) = (filAf) € C. (2.4)

By the Schwartz Kernel Theorem there exists a distribution A(-,-) on M x M, so that (2.4)
in local coordinates can be written as

(FlAf) = / / 1@l () Az, 9)lgl% (4) foly)dady. 2.5)

The distribution A(-,-) will be called the integral kernel of A. Note that we use the integral
notation for distributions and that we say “integral kernel” for A(-, -) even if it is a distribution.

Actually, the above definition applies only to the scalar formalism. If we use the half-density
formalism, then the integral kernel is different:

1 1
Ai(z,y) = lg]7 (2) Az, y)|g]* (y). (2.6)
For instance, the integral kernel of the identity is in local coordinates

in the scalar formalism |g|’% (2)d(z —vy), (2.7)
in the half-density formalism  §(x — y). (2.8)

The definition of a Green function (of the Klein-Gordon operator) will have also two versions.
It is a distribution on M x M satisfying

in the scalar formalism  ( — O+ Y (2))G.(z,y) = g2 (2)6(x —y),  (2.9)
in the half-density formalism (- O, + Y(x))G,é (z,y) =d(x —y), (2.10)
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and analogous conditions with x replaced by y. We also have similar definitions of bisolutions
(of the Klein-Gordon operator), where the right hand sides of (2.9) and (2.10) are zero. One
can pass from the scalar formalism to the half-density formalism as in (2.6):

Gos(@,y) = |93 (2)Gal,)lg] 3 (v). 2.11)

2.3 Classical propagators

Suppose that M is globally hyperbolic. Itis well-known [9] that there exist unique fundamental
solutions G (z, y) and G"(x, y) of the Klein-Gordon equation which have future- respectively
past-directed causal support:

(r,y) € suppG¥Y = I future oriented causal curve from y to z, (2.12)
(r,y) € suppG" = I future oriented causal curve from z to y.

GY(x,y) is called the forward (or retarded) propagator, G"(x,y) is called the backward (or
advanced) propagator. Their difference, which obviously is a bisolution of the Klein-Gordon
equation, is called the Pauli-Jordan propagator (or commutator function)

GPJ($7y) = GV([E,y) —G/\([L',y) (213)
These three propagators are sometimes called jointly classical propagators [39,41].

Identify M with R x 3, where for ¢ € R the metric on ¢t x ¥ is Riemannian and 0 is
timelike. Such an identification is always possible for globally hyperbolic manifolds. We
will then say that we fixed a time variable on M. (We will discuss this in more detail in
Subsection 3.2). Suppose that we can multiply the distribution G¥ (, y) by the discontinuous
function 0(z° — y°). Again in Subsection 3.2, we will see a rather general setting where this
is rigorously allowed. Then we can retrieve the advanced and retarded Green functions from
the Pauli-Jordan propagator:

G (z,y) = 0(z" = y")G" (2, y), (2.14)
G (z,y) = —0(y° — 2°)G" (., y). (2.15)

2.4 Quantum fields and non-classical propagators

We still assume that M is globally hyperbolic. Consider a real scalar quantum field ngS(x) =

~

¢(x)* on M satisfying

(—O+Y(x))o(x) =0, (2.16)
[0(x), b(y)] = =iG" (z, y)1.

More precisely, we assume some elements of the Wightman axioms: We suppose that D is a
complex vector space equipped with a scalar product (+|-) such that

Ce(M) > f s ¢lf] (2.17)
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is a distribution with values in linear operators from D to D satisfying

Sl(-O+Y(a ) fl= (2.18)

[G1f1), OLfa]] = i / / G (2, y) f1(2) f2(y)dzdy, (2.19)

(G[f12|¥) = (D|S[£]D), (2.20)

C®(M) 3 f — (®|¢[f]T) is continuous for &, ¥ € D. (2.21)

(We do not require that D is complete).

Consider 2,, Qs € D with ||Q,]] = ||| = 1 and (©2,]€25) # 0. By the Schwartz Kernel
Theorem there exist distributions ijﬁ) (+,-) and GE;B) (+,+) on M x M such that

(QuldlAI1£10)

[ [ 5@6 e pdnay = ST o 2.22)
_ (QuILRILAI)

[ [ 5@6E ) pwasay = SEEEEAT 0.23)

Note that both G((:g) and G((;B) are bisolutions and they satisfy

G -G = —iG™. (2.24)

In the special case 2, = {23 we will write
G =G, (2.25)
G =G (2.26)

ngS[ f] are called smeared fields. In the physics literature one introduce gzg(x), the field at point

x € M and one writes
~ [ @ s(aas, (2.27)

so that (2.25), (2.26), (2.22) and (2.23) are rigorous versions of the heuristic definitions (1.6),
(1.7), (1.10), (1.11) from the introduction.

G and G are often called Wightman, resp. anti-Wightman functions (of the state given
by 2,). G((;rg and GSB) can be called 2-state Wightman, resp. anti-Wightman functions.

Sometimes, it is also useful to consider the symmetric two-point function

G (@, 2") = G (@, ) + G (2, 7). (2.28)
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For (2, 25 as above, we define the Feynman and anti-Feynman propagator assocated with €2,
and () as follows:

G, =iG) + a" (2.29)
=iGL )+ G, (2.30)
GF 5= —iG) + GV 2.31)
= —iG{ )+ G". (2.32)

Note that the equalities (2.29)=(2.30) and (2.31)=(2.32) follow from the properties of the
Pauli-Jordan propagator: (2.13) and (2.24). Obviously, Gg’ 5 and Gg’ 5 are Green functions,
being sums of bisolutions and Green functions.

In the special case 2, = 23 we will write

Go = G (2.33)
GF =Gt (2.34)

Suppose we fix a time variable 2° on M. Then, using (2.13), (2.24), and (2.15) we can rewrite
the definitions of the Feynman and anti-Feynman propagator in a way that is not manifestly
rigorous, is however more symmetric and closer to the usual treatment in textbooks:

(Q(xo - yO)Gf:B)(x, y) +0(y° — xo)G&T@)’(% y)),

=i(0(° = y")G ) + 0" — )G ).

Gop(z,y) = (2.35)

Gaﬁ(x Y) = (2.36)

In the usuall textbook treatment one introduces the chronological and antichronological time
ordering by

T (4(2)(y)) := {Zg;jgi; ;joiig’ (2.37)
T((x)d(y)) = {zgzgi ioiio (2.38)

This definition extends uniquely to M x M \ {x = y} because of the Einstein causality of
the field ¢(z). Then one defines GE, GE, GF L5 and GF asin (1.8), (1.9), (1.12) and (1.13)
from the introduction. Note that this definition does not extend to the diagonal, unlike the
definition that we gave in (2.29)—(2.32).

In order to express the dependence on (2, and {23 one may call G’S{; and G, 4, the §-a-
Wightman function and the 5-a-Feynman propagator, respectively— see the explanation of
the inversion of symbols in the paragraph following (1.13).
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Let us summarize the identities involving the propagators:

Ghg—Ghy= i(%fé + Gifg)), (2.39a)
" =" - a"=i(a) - 6l)). (2.39b)

Gh g =iG) + G =iG )+ GY, (2.39¢)

Gh 5= —iGY) + GY = -G ) + G". (2.39d)

Note that in this subsection Wightman and anti-Wightman 2-point functions, as well as
Feynman and anti-Feynman Green functions involved arbitrary vectors €1,, {13 in a single
represention of quantum fields. In most applications in these definitions one assumes that
2, Qg are Fock vacua, that is, vectors that yield Fock representations. In the following
subsection we will give a different definition of Feynman and anti-Feynman propagators.
These definitions will be restricted to Fock vacua. They will be purely operator-theoretic and
not make use of quantum fields. These new definitions will have one important advantage:
they will work also if (2, and {23 do not belong to the same representation, and hence
(Q4]€23) = 0 (which is actually quite common).

2.5 Klein-Gordon charge form

Let us now develop a mathematical formalism which will yield an alternative, more satisfactory
definition of non-classical propagators. It will be based entirely on operator theory, without
going through quantum fields.

For ¢, € C™(M), set

(V,L(@))&(@) — ((2)V,(). (2.40)

P

=
<t

=

AL

=
Il

Let W, denote the space of smooth, space-compact solutions to the Klein-Gordon equation
(-O+Y(x))¢(x) =0. (2.41)

Using (2.2) we see that if (, £ € Wi, then

ICE(w) = TDV,E(e) = (Vul()€(@) — @)Vt ) 242
is a covariantly conserved current, which means
92 0,lgl79" T, = V" = 0. (2.43)
Therefore,
(Clo)xe =1 / @)V ()ds (), (2.44)
by
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does not depend on the choice of the Cauchy surface ¥, where d¥#(x) is the natural measure
on Y. times the future-directed normal vector. (2.44) is called the Klein-Gordon charge form.

The Klein-Gordon charge form is not positive definite. We can, however, usually extend the
space Wi to a larger space, denoted Wk, which admits a direct sum decomposition

Wie = Z0 @ 20, 20 = 20, (2.45)
where the components are orthogonal with respect to (-|-)ka, 2 s positive and complete
wrt v/ (+]")ka, and 2{7 is negative and complete wrt —(|)ka-

Every ¢ € W, decomposed according to (2.45) as

¢=¢+¢0, ¢ =d, (2.46)
satisfies
(ke 2 0, (1T ke = 0. (2.47)
Thus
(C19ka = (1EE ke + (1€ )ka (2.48)

The index « indicates the decomposition (2.45). We also have a positive definite scalar
product

(€18 = (1€ K — (€167 ke, (2.49)

which is however less canonical than the Klein-Gordon charge form because it depends on the
decomposition (2.45). Note that Wk is complete in the topology given by (2.49), and that
Wi 1s dense in Wy. Clearly, not all elements of Wk are space-compact, but they decay at
an appropriate rate in spatial directions.

Mathematically, Wk has the structure of a Krein space. A decomposition (2.45) is an
example of a fundamental decomposition, see Prop. A.24. We refer to Appendix A for a
discussion of Krein spaces.

Let H&i) be the orthogonal projections onto Z&i). Denoting by A/ the nullspace and by R the
range, we thus have

NIE) = 20, R = 202, 2.50)
(M) =1, e =
(Mo 20, € € Wi

(ME¢18) e = (CTISYE) i €€ € Wika
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It is important to note that there are many decompositions of the form (2.49) with properties as
above leading to the same space Wx. Note that VW, is uniquely defined and the Klein-Gordon
charge (-|-)xg on Wi is also unique. However, there can be more then one Krein structure
extending (Wsc7 (-l )Kg) Clearly, specifying a fundamental decomposition fixes such a
structure. We expect that in typical spacetimes all physically reasonable decompositions lead
to the same Wkxkc.

2.6 Klein-Gordon kernels

If ( € W, and £ is a distributional solution of the Klein-Gordon equation which is not
necessarily space compact, then the current .J,,[(, £] defined by (2.42) is a well-defined space-
compact distribution that satisfies the relation (2.43). However, for such (, ¢ the quantity
(2.44) is problematic, because it is not clear what it means to integrate a distribution on a
surface X.. Let us describe an appropriate replacement of (2.44) in that case.

We first choose a time variable 2°. Let then j € C*°(R) be a real function such that j(t) = 0
fort < —4 and j(t) = 1,¢ > 5. We have

V(S (2)5(2%) = J°(x)5'(2°). (2.51)

Therefore,

(€I =i [ (CIme()) e lg(o)] @52

is well-defined for distributional & and does not depend on the choice of the time variable x°
and the function j. If £ is regular enough, it coincides with (2.44).

Suppose now that B(x,y) is a bisolution of the Klein-Gordon equation, which is sufficiently
regular, say C'*>°. Then it is easy to see that for (;, (s € Wi, the integral

[ @ VanBl )Gl )0, 2:53)

does not depend on the choice of Cauchy surfaces >, Y5 and defines a sesquilinear form on
W. If this form is bounded, then it defines a unique operator B on Wka. We then say that
B(-,-) is the Klein-Gordon kernel of the operator B.

For distributional Klein-Gordon kernels one needs a different definition:

Definition 2.1. Let B(-, ) be a (distributional) bisolution. Choose a time variable 2 on M
(see Subsection 3. 2) Let j;, i = 1,2 be two functions on R such that j;(f) = 0 for t < —%
and j;(t) = 1,t > 3. Then for C17C2 € Wi

i [ [ 560000V e sl Flglia @54

does not depend on the choice of the time variable and the functions ji, jo. It defines a bilinear
form on Wi.. If this form corresponds to a bounded operator B on W, then B(-, -) will be
called the Klein-Gordon kernel of the operator B.
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Note that if B(-, -) is sufficiently regular, then (2.54)=(2.53). An example of a Klein-Gordon
kernel that usually is of distributional nature is the Pauli-Jordan bisolution G*(z, ), which
is the Klein-Gordon kernel of the identity.

Let us describe the physical meaning of a fundamental decomposition (2.45). Let +GLY (z,y)
be the Klein-Gordon kernel of the projection ITS", so that the sum GY™(z,y) = Gy (x,y)+
Gy (x,y) is the Klein-Gordon kernel of the involution S, := 115 — 1157, Then there exists

a Fock representation with the Fock vacuum (2, such that G5 (x,y) are the corresponding
two-point functions

()d(y)), (2.55)
() 6(2) Q). (2.56)

Let Wke = Zgr) D Zé_) be another orthogonal decomposition of the Krein space Wkq
into a maximal uniformly positive and maximal uniformly negative subspace, defining the
vacuum €23. One can show [41] (see also Appendix A) that the spaces Zéﬂ and 2\ are
complementary, so that we have a (non-orthogonal) direct sum decomposition

Wie = 257 @ 2. (2.57)
Therefore, we can define projections HS/;, Hgg corresponding to this decomposition. They
satisfy
NO) =R = 257, (2.58)
R(IL5) = N (I 5) = 207,
+) -) _
I, +1,5=1

We may also decompose Wk the other way around,
Wi = 207 @ 2. (2.59)
The corresponding projections are denoted Hga), H(Bfi Then one finds

(T5)¢16) o = (CIIGE) . (2.60)

Thus, these projections are orthogonal if and only if zP =z [(3+).

Let R be a bounded linear transformation on Wg¢. The Klein-Gordon Hermitian conjugate
R*XG of R is defined by

(R™9¢|Oke = (C|RE)ka (2.61)
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and the complex conjugate R by
R(:=RC. (2.62)

Linear transformations that preserve the structure of Wk are called symplectic, or (especially
in the physics literature) Bogoliubov transformations. Here, R preserving the structure of
Wk means that R is pseudounitary and real, i.e.,

(R¢IRE)ka = (¢|€)xe and R = RC, (2.63)

or in other words R*¥¢ = R~' and R = R.

2.7 Mode expansions

Many papers about QFT on curved spacetimes do not mention the word “Krein space”.
Instead, they introduce a decomposition of solutions to the Klein-Gordon equation into a
“positive frequency part” and a “negative frequency part”. This is usually done through
modes, by assuming that the classical field can be written as

o(z) = / (gpa’k(:c)aa’k + gpmk(x)a;k)dk:, (2.64)
where the mode functions ¢, ;, and P, ;; should satisfy

(Pookl k) e, = = (ParlPar) g = —0(k, k), (2.65)
(@avk‘wa—:k/)KG =0,
(=0 + Y (2))par(z) = 0.
The variable & (and the measure dk) may be continuous or discrete (e.g. if the Cauchy surface

is compact). In Minkowski space it usually coincides with the d — 1-momentum, which is not
available on a generic spacetime.

Let us try to interpret this in a more rigorous sense. Let us assume that K is a measure set.
For the sake of definiteness we will assume that X' = R"™ with the Lebesgue measure dk, but
this is not relevant. Suppose that for any “wave packets” f € L?(K), we can interpret

/

in a rigorous sense as a solution to the Klein-Gordon equation. The functions

Porf(k)dk and / o f(k)dk (2.66)

/ Parhi(k)dk + / panfolR)dk 2.67)

with f, fo € L*(K) with the sesquilinear form defined by (2.65) form a Krein space.

Thus by introducing the modes satisfying (2.65) we automatically fix a Krein space. The
positive/negative frequency modes span maximal uniformly positive/negative subspaces of
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this Krein space in the sense of "wave packets"—so we have a distinguished fundamental
decomposition (and the corresponding Fock representation). Hence the idea of a Krein
spaces is introduced in many papers “through the back door”.

After quantization, we obtain

~

() = / (gpa,k(x)da,k + <pa7k(x)dz7k)dk, (2.68)
[dOch‘y &27]4;/] = 5(k7 k/)v [da,k‘a da,k”] = 0
Then

G (a,y) = / P @) ean(y)dk, (2.69)

G (x,y) = / Gaso() P i ()dk.

Mode decompositions are convenient, because they allow us to represent operators on the
Krein space in terms of integral kernels on K x K. As an illustration, assume that we have
another state (25 with a decomposition analogous to (2.68), whose modes generate the same
Krein space Wk and use the same measure space /K:

() = / (goﬂ’k(a:)aﬁjk + gpgvk(x)azﬁk)dk. (2.70)

Assume further, that the two decompositions are related by a Bogoliubov transformation

paule) = NB)gar(e) + [ Ak K pualalat. @)
The pseudounitarity of (2.71) is equivalent to
N(EYA(k, K = A(K' k)N (k), (2.72)
/WA(k’,p)dp = (NP — 1)5(k — ).
Therefore, the transformation inverse to (2.71) is
puale) = N paala) ~ [ A Wprwlelar @73)
On the level of a, ;, and agy, or their quantized versions, we have

G = N(E)aor — / A, B)a, . (2.74)

Gap = N(K)agy, + / A(k, k') dk. (2.75)
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Thus, the fields can be written as

d(z) = / (gpmk(aj)d;k—i- @;’Eg) / A, k)i, i + Spﬁ’zg)aﬁ,k) dk (2.76)

_ / (FB,,C(@&B,,C_ ‘P]@’zg) / Ak, k;’)dg,k/dk:’qt¢]f;lzli§)dz7k>dk. 2.77)

We insert into (1.10) and (1.11) the expression (2.76) as the left field and (2.77) as the right
field. Then, moving a;, , to the leftand gy, to the right and using [k, G}, /] = N (k)d(k—FK'),
we obtain

1 —
G y) = / W%,k(l‘)wﬁ,k(y)dh (2.78)

Gfﬁa)(xay) = /ﬁ@m(y)%,k@)dk.

2.8 Operator-theoretic (anti-)Feynman propagator

The d’Alembertian —[J on a Lorentzian manifold M with pseudometric g, in the half-density
formalism given by (2.3), is Hermitian (symmetric) on C2°(M) in the sense of L? (M ) The
same is true for the Klein-Gordon operator —[J + Y'(x) with a real potential Y. Assume that
—O+ Y (z) is essentially self-adjoint (if not, we may choose a self-adjoint extension).

Then its resolvent G(z) := (= + Y (z) — 2)~! is well-defined for z € C \ R. It possesses
an integral kernel G(z; x, y). Suppose that there exists

Gsp(x, y) = ll\I_‘Iol G(+ie; z,y), (2.79)
Ggp(x,y) = 11\1}3 G(—ie x,y), (2.80)

where we use the distributional limit. The distributions Gf (z,2’) and Gfp (x,2") will be
called the operator-theoretic Feynman and anti-Feynman propagator.

We expect that the limits (2.79) and (2.80) exist on most physically interesting globally
hyperbolic manifolds without boundaries. They will not exist at the point spectrum of
—O+ Y (z) (which is probably quite rare).

We believe that the following argument justifies this definition. Here is an elementary fact
about Fresnel integrals. Let c be a real symmetric n X n matrix, u a variable in R" and
J € R™. Then

fe:l:i(uT%u+JTu)du

S TC
j‘eim sudu

— exp < + %JT(C + i0)—1j). 2.81)

If we use path integrals to construct a quantum field theory, we usually start from defining
formally the generating function as

B j‘eiS(¢>)+if¢(z)J(z)de¢
- f ¢S@De

Z(J) -
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If the action is quadratic

56) == 5 [ (" @8,6)0,0(z) + mPo(a)?) gl (x)da

1
then the path integral by analogy to (2.81) can be rigorously defined as

i

Z@UzwmpﬁwK—D+nf—ﬂD4J)
—exp (5 [ [ @G w070 VIal(0) Vgl ey

Spacetimes where the d’Alembertian is essentially self-adjoint include stationary spacetimes,
Friedmann-Lemaitre-Robertson-Walker (FLRW) spacetimes, 1 + O-dimensional spacetimes,
de Sitter and the universal cover of the anti-de Sitter space. Essential self-adjointness was
also recently proven on a class of asymptotically Minkowski spacetimes [71,83]. However,
even on well-behaved spacetimes, essential self-adjointness is not always true [63].

Remark 2.2. Essential self-adjointness is typically destroyed if there are boundaries. The
problem with boundaries with spacelike normal vectors can sometimes be cured by imposing
boundary conditions—we will see this in Section 6 about the universal cover of the anti-de
Sitter space. Boundaries with timelike normal vectors are different. In particular, if the
time is confined to an interval ]a, b] instead of R, then self-adjoint realizations of the Klein-
Gordon operators do not lead to physically justified Feynman propagators. Instead, one should
consider other types of non-self-adjoint boundary conditions, as explained in [41].

Remark 2.3. There exists a well-developed theory of limits of the resolvents of the Schrodinger
operators H := —A+V (x) onR%. More precisely, if V is a decaying potential on R? satisfying
appropriate conditions, E # 0 is away from the spectrum of H and s > 1, then the following
strong operator limit exists:
~1
lim(1 (H—-FE+i 1 . 2.82
lim(L + )™ ( i) (1+]zl) (2.82)
The existence of (2.82) goes under the name of Limiting Absorption Principle. The most
powerful method to prove this is the so-called Mourre theory, and is treated e.g. in [5,33].
Obviously, the Limiting Absorption Principle implies the existence of the integral kernel of
1

(H-E+i0) .

One can try to apply similar methods to Klein-Gordon operators, as shown in [71, 83].

2.9 Special Klein-Gordon equations

Definition 2.4. Suppose that the Klein-Gordon operator —[J+ Y (x) on a Lorentzian manifold
M is essentially self-adjoint. We say that —(J + Y'(x) is special if the sum

Goy(z,2") + GY (2, ) (2.83)

26



has causal support.

Definition 2.5. Suppose that the Klein-Gordon operator —[1+ Y () is essentially self-adjoint
and M 1is globally hyperbolic. We say that it is strongly special if

F F WV A
Goplx,2") + Gy (2, 2") = GY (2, 2") + G"(z,2). (2.84)
Clearly, strong specialty implies specialty. We expect that under broad conditions the converse
is also true.

Special Klein-Gordon operators are interesting because the associated propagators can be
determined in an easy way. Indeed, it is often not very difficult to compute Ggp(x, x') and

Gfp(x, x'). After all, there are various techniques to compute the kernel of the resolvent of a
differential operator. From these, one can determine the retarded and advanced propagators
by

GV 2" = 0+ (2° — 2)) (Ggp(x, z') + Gfp(x, x’)) (2.85)

as well as the Pauli-Jordan function G¥ = GV — G".

Strictly speaking, (2.85) is not fully legal, because it involves multiplying a distribution by
a discontinuous function #( + (z° — 2’ 0)). In practice, we expect that this obstacle can be
overcome, see [42]. In particular, there is no problem with the multiplication with the theta
function when we can apply the method of evolution equations, see Subsect. 3.2.

More interestingly, there is a natural candidate for the Wightman and anti-Wightman two-point
function of a distinguished state:

G® = —i(GE — GMY) =i(GE — GV/M). (2.86)

Remark 2.6. Actually, we do not know if G*) defined by (2.86) in the case when —(J+ Y (z)
is special always satisfy the positivity requirement — in all cases that we worked out they do.

3 Stationary and asymptotically stationary spaces

3.1 Propagators on stationary spacetimes

Assume that M = R x X, with the variables typically denoted by (¢, x), and sometimes (s,y).
Suppose that neither g, nor Y depends on time ¢, the time slices {¢} x X are spacelike and
0y is timelike. Such spacetimes are called stationary.

In addition, we will assume that the spacetime is static, i.e. there are no time-position cross-
terms. This is not a necessary condition for the present analysis, however for static spacetimes
many formulas are more explicit. In other words, we assume that the metric is

—a?(x)dt? + hy;(x)dx'dx’. (3.1)
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Here and in the following, Latin indices run over the spatial directions. We write |h/| for det h.
The Klein-Gordon operator in the half-density formalism is

1 g
~0+Y(x) = 0} - a2 || 10 |h|2hP8; a2 [h| 7T 4 Y. (3.2)

2

It is convenient to replace (3.2) by

—0+4Y:=a(-0+Y)a=0+L, (3.3)
where
L:=-A;+ Y, Aj = ’y_%&wizijf)j'y_%, (3.4)
hy = by, B9 = g, yi= 0§ =2y
Note that
if @ solves (—J + Y& = 0, then u := i solves (= + Y)u = 0. (3.5)

Let us first describe the approach based on the evolution of Cauchy data, which is particularly
simple for static spacetimes. The equation (3.5) for @(t) = @(t,x) can be rewritten as a 1st
order equation for the Cauchy data

(8 +iB)w =0, (3.6)
I O I ] o)

Assume that L is positive and self-adjoint in the sense of L?(33). We assume that 0 is not an
eigenvalue of L and endow the space of Cauchy data with the (positive) scalar product

(w|v)o := (wr|VLvy) + (wﬂ%vg). (3.8)

The completion of W;. with respect to this scalar product will be denoted W,. Note that B
can be interpreted as self-adjoint with respect to this scalar product:

(Bwlv)o = (w|Bv)g = (ws|vV/Lvy) + (w1 |V Lvs). (3.9)

The space W is also endowed with the (indefinite) Klein-Gordon charge form

(ololis = (01Qelo = e+ ler). Q= [ o a0

Thus W, is a Krein space with a distinguished Hilbert space structure.
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We can compute the evolution operator and the spectral projection of B onto the positive and
negative part of the spectrum:

B costy/L s‘n
: 3.11
¢ [—1\/_511125 cost ] .11
1
() .— NG
M) =1y (£B) = L:\/_ x } (3.12)

Note that the evolution e~*# preserves the Klein-Gordon charge form (3.10). R(II*)) are
maximal uniformly positive/negative subspaces with respect to the Klein-Gordon charge form.

Then we can define the propagators on the level of the Cauchy data as follows:

EPJ(t, S) _ e_l(t_S)B,
EYINt,s) = +6(+ (t — s))e_i(t_S)B,
E&) (t,s) := e (=) B(#)
EME(t,5) i= e 9B (g(t — )T — 4(s — )[1F).

At least formally, EV, E, E¥, EF are inverses and E”', (), E() are bisolutions of 9, + iB.
They are 2 X 2 matrices:

° El.l(t73) E;2(t,8)
B9 = ps1s) Eyls)

We set

G* :=iaE},o, =PI V,\FF, (3.13)
GH) = :I:ocEg)a,

obtaining propagators for a general static stable case. Thus

GP(t,x;5,y) = a(x)%(x, y)al(y), (3.14)
GV/A(t,x; s,y) = :|:9( +(t— s))a(x)%(x, y)a(y), (3.15)
GO (t,x;5,y) = R 3.16

X5 8,y) = a(x) Vi (x, y)aly), (3.16)
oFilt—s)VL oi(t—s)VL

G/F(t,x;5,y) = Ha(x) (9(25 —3) +0(s—1t) > (x,y)a(y). (3.17)

2L 2L

Note that all the identities (2.39) hold, where we tacitly assume that 2, = €23 corresponds to
the natural state given by the fundamental decomposition (3.12). In this setting, the Wightman
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function is often called the positive frequency bisolution, and the anti-Wightman function the
negative frequency bisolution, since they are obtained from the spectral decomposition of the
generator of the dynamics into positive and negative frequencies.

Note also that the specialty condition is true:

GF+GF = gY + G (3.18)

Let us describe now the approach based on the Hilbert space L?(M). We assume that L is
essentially self-adjoint on C°(X) in the sense of L?(X). Then it is easy to see 07 + L is
essentially self-adjoint on C°(M) in the sense of L?(M). Assume that for some 0 < ¢, C
we have ¢ < a(x) < C. Then a(x) is bounded invertible operator on L?*(M), and using this
we can show that —[J + Y'(x) is essentially self-adjoint on a(x)C°(M). As proven in [39],
under some minor additional technical conditions we can then define Gsp and Ggp, and they
coincide with G¥ and G computed from the evolution equation.

Note that the stability condition L > 0 was an important ingredient of the analysis based on
the evolution equation. Suppose now that L is not positive, but only self-adjoint, which can
be called the tachyonic case. In the tachyonic case, we do not have the distinguished scalar
product (3.8). The formulas (3.14) and (3.15) for the classical propagators G*, G¥, G" are
still true. However, the evolution approach does not allow us to define G, GF or GF. The
operator-theoretic Ggp or Ggp, defined as usual by (2.79) and (2.80), will often exist. However,
they will not be given by the formula (3.17). The specialty condition (3.18) is no longer true
in the tachyonic case.

For instance, in the Minkowski space, with Y (x) = m?* < 0, G}, and G§, are well-behaved
tempered distributions while the forward and backward propagators have exponential growth
as t — too inside the forward, resp. backward cone. A detailed discussion can for example
be found in [42].

3.2 Classical propagators from evolution equations

Let us now consider a generic (not necessarily stationary) globally hyperbolic spacetime M.
In order to compute non-classical (actually, also classical) propagators, it is useful to convert
the Klein—Gordon equation into a 1st order evolution equation on the phase space describing
Cauchy data. To this end, we fix a decomposition M =|t_, ¢, [x %, where —oco <t_ < t, <
+00. We assume that {¢} x X is Riemannian for all ¢ €]¢_, ¢, [ and 0, is always timelike. We
will use Latin letters for spatial indices. We introduce

h=lhi] = lgis), W = [17],
B i=goh”,  a® = goihV gjo — goo,
| = |det | = deth, |g| = |detg].
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We assume that [h;;], and hence also [h¥], are positive definite and o> > 0. In coordinates,
the metric can be written as

gudztdz” = —a?dt?® + hy;(dx' + B'dt)(dz’ + fdt), (3.19)

We have |g| = o?|h|. (3.19) is sometimes called a metric in the ADM form, for Arnowitt,
Deser and Misner [11].

Y is areal valued function on M. To be on the safe side, let us assume assume that Y is smooth
(which actually is not needed for the existence of various propagators). The Klein—-Gordon
operator in the half-density formalism can now be written

0+ Y(@) = lol 40 - 9L (0, — oy gl
~lol™*0ilgl=h"0lg| "+ + Y.

Instead of the operator (J on L?( M), it is more convenient to work with the operator

O = ala.

We have
O+ Y =729, — )Y, — By 2
= 7_%&0427]1“8]»7_% +a?Y
= (0, +iW")(0, +iW) + L,
where we introduced

7i=a*gls =alhp,
W= %’yl’m +iy? B0y,
L= —3?*5”8] +Y,
and we use the shorthands
hi=a?h, Y =%y, 0 := VIO I, = Oy
Clearly, (3.5) is still true, and hence propagators for O induce corresponding propagators for
.

For each t € R, we define

(3.20)



Setting wq (t) = @(t) and wy(t) = (10, — W(t))u(t), we find that

(9, +1iB(1)) mgg] —0 (3.21)

if and only if @ is a solution of the Klein-Gordon equation ()i = 0. Therefore we occasionally
call 0, + iB(t) the first-order Klein—-Gordon operator. The half-densities w; (t) and ws(t)
may be called the Cauchy data for u at time ¢.

It is natural to introduce the classical Hamiltonian
_ - L(t) W*(t) 101
mo - os0 - 1)) "0 =1 ]

The operator L(t) is a Hermitian operator on C2°(Y) in the sense of the Hilbert space L*(X)
and H (t) is Hermitian on C°(X) @ C°(X) in the sense of L?(X) & L*(X).

We would like to apply the theory of non-autonomous evolution equations due mostly to Kato
and described in detail in Appendix C of [40]. The space of Cauchy data C'°(X) & C°(X)
has a natural indefinite Klein-Gordon form

(w|v)ke = (W|QV) = (wy|ve) + (wa|vy). (3.22)

However, we will need also a positive scalar product. To this end we fix an appropriate
positive operator L on L?(X) with N'(L) = 0 and introduce the scalar product on the Cauchy
data

(wlv)r = (wr| VL) + (wa| Fzva). (3.23)

The Krein space given by the completion of C'°(X) & C'°(X) in the scalar product (3.23)
will be denoted Wxk.

The choice of the operator L should be adapted to the family of operators B(t). In typical
situations, the operator L(t) that appears in (3.20) is positive at least for some ¢y €]t_, ¢, ],
and then one could to take L := L(ty). In any case, as we know, there exists a considerable
freedom of choosing L. A detailed discussion of conditions that one should impose on [g;;]
and Y is contained in Section 2 and Appendix B of [40], and also in [41]. Under these
conditions, the evolution equation leads to a dynamics R(t,s), which is a two-parameter
family of bounded operators on Wk satisfying

(3.24)



The dynamics is a 2 X 2 matrix of operators acting on functions on X::

. Rn(t, S) ng(t, 8)

R(t,s) = Ry (t,s) Raal(t,s)

(3.25)

with distributional kernels R;;(¢,x;s,y). The classical propagators in the Cauchy data
formalism are:

E”(t,x;5,y) = iR(t,x; 5,y), (3.26)
EY(t,x;s,y) =i0(t — s)R(t,x; 8,y), (3.27)
EMNt,x;s,y) = —i0(s — t)R(t,x; 8,y). (3.28)

The usual classical propagators well-known from the literature, e.g. constructed in [9], can
be obtained by setting

G*(t,x;s,y) =ia(t,x)E5,(t,x;8,y)a(s,y), e =PJ V. A (3.29)

Note that they are usually constructed by other mehods (e.g. by a local construction involving
an expansion in terms of Riesz potentials [9]). The construction presented above has a
considerable advantage over other methods: it allows for low regularity of the metric and
scalar potential. Its apparent disadvantage is the need to impose assumptions global in the
slice >. However, using the finite speed of propagation, this problem can be easily bypassed.

Note that the multiplication with step functions in the evolution equation approach in (3.27)
and (3.28), and also later in (3.40) and (3.41), is unproblematic. In fact, R(¢, s) is an operator-
valued function which is strongly continuous in t, s. Therefore, R(t,X;s,y) is a continuous
function with values in distributions. Multiplication of R(t,x;s,y) by 6(t — s) or 0(s — t)
yields then a distribution.

3.3 Non-classical propagators on asymptotically stationary spacetimes

Assume now that |t_, ¢, [= R, so that the spacetime is R x X and the Klein-Gordon equation
is (a) asymptotically stationary and (b) asymptotically stable, i.e.,

(a) the strong resolvent limits tljl[m B(t) =: By exist; (3.30)
(b) Hy := QB+ >0 inthe sense of L*(X) @ L*(%). (3.31)

Assume that 0 is not an eigenvalue of B, and B_. Define the “out/in particle/antiparticle
projections’:

H(f) =g 00[(B+), (3.32)
) =Ty pof(— Bz). (3.33)

As in Subsection 3.2, we consider the Klein-Gordon form (3.22). We choose the Krein
structure so that both S, := HS:L) — HS:) and S_ := I — 17 are admissible involutions.
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We can transport (3.32) and (3.33) by the evolution to any time ¢:

M7 (1) = lim R(t, )15 R(s, t), (3:34)
MO (0) = lim R(t, ) R(s, ¢). (335)

We can now define the “out/in positive/negative frequency bisolutions in the Cauchy data
formalism”:

EX(t5) =Y ()R(t, ), (3.36)
EC)(t,s) = IY(OR(E, s). (3.37)

Note that R(IT*)) and R(I1*)(¢)) are maximal uniformly positive/negative subspaces of the
Krein space Wkg.

We will need also projections Hsri_) (t) and H(_jiz(t) defined by specifying their range and

nullspace:?

RO () = M) = R (1), (3.38)
RO () = NP (1) = R (1)),
R (1)) = N (7)) = R (1)),
R(IZ(1) = N (1) = R(IT (1))
Note that
n® + 0 =1 (3.39)

Now we can define the in-out Feynman and the out-in anti-Feynman Green functions in the
Cauchy data formalism:

EE (t,s) = 0(t — )Y (D) R(t, s) — (s — )T (¢)R(t, s), (3.40)
EF (t,s) = 0(t — s)IT) () R(t, s) — 6(s — IV (1) R(L, ). (3.41)
Next we set
G(g) (t,x;8,y) = alt, X)Egl)Q(t, X; 8, y)a(s,y), (3.42)
GO (t,x;5,y) = —a(t. ) EC (1, x5 5, y)a(s, y), (3.43)
Gi_(t, x;s,y) = ia(t, X)E_IT__JQ(t, X;8,y)a(s,y), (3.44)
G" . (t,x;5,y) = ia(t,X)EF | ,(t,x;5,y)a(s,y). (3.45)

G are two-point functions of the “in-vacuum” €2_ and G(f) are two-point functions of the
“out-vacuum” €2, . Both are Hadamard states [53].

2Note that our notation is different from the convention in [40,41].
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The in-out Feynman propagator G, _(x, ") and the out-in anti-Feynman propagator GE Lz, 2)
are the “mixed Feynman propagators” corresponding to those states. In fact it is easy to see
that if (©2,|Q2_) # 0 then

N (TR TR (3.46)
o= i T(0@)0()2)
el (Q_]Qy) (3.47)

Assume in addition that «(z) and o~ *(z) are bounded on M. One can then heuristically
derive [39,40], and under some technical assumptions rigorously prove [71, 83], that (3.46)
and (3.47) coincide with the operator-theoretic propagators:

Gho(2,y) = G _(2,y), (3.48)
Gop(z,y) = GE  (z,y). (3.49)

4 FLRW spacetimes

4.1 1+0-dimensional spacetimes

1 + O-dimensional spacetimes form an important class of spacetimes for which we can
understand various propagators rather completely.

The Klein-Gordon operator on R’ can be written as a one-dimensional Schrédinger operator
(with the wrong sign in front of the second derivative):

K:=-0+Y(#) =0} +Y(t). (4.1)

We will assume that
Y (t) = =V (t) + m? Jim V(1) =0, (4.2)

so that we can write
H:=-0?+V(t), K=-H+m’ (4.3)

Thus to discuss propagators on 1 + 0-dimensional spacetimes one needs to understand the
theory of Green functions of the one-dimensional Schrodinger operator /. A standard
reference for the subject is [87]. In the following subsection, we present this well-known
theory following [38] in a style adjusted to the QFT applications that we have in mind.
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4.2 Green functions of one-dimensional Schrodinger operators
Suppose that £ € C and we are given two solutions 1)1, 1, of the equation
(H +k*)y(t) = 0. (4.4)
Their Wronskian
W (W1, 1b2) = 1(t)ihs(t) — 91 (8)¢a(t) (4.5)
does not depend on ¢. (4.4) possesses a dinstinguished bisolution defined by

_ Di)¥a(s) — Y2(t)dhi(s)

G (—k*t,s) W(in )

(4.6)

Note that
G7(—k*t,t) =0 and 0,G7(—k*t,5)| =—-0,G7(—k*t,s) =1 4.7)

s=t t=s

It is easy to see that G*(—k?;t,s) is independent of the choice of ¢; and v». We call
G (—k?;t, s) the canonical bisolution. It is the analog of the Pauli-Jordan propagator.

We then can define the forward and backward Green functions via
G (—k*t,5) == 0(t — )G (—k*;t,5), (4.8)
G (—k*t,5) := —0(s — )G (—k*;t,5). (4.9)

Using (4.7), one readily verifies that G~ and G are indeed Green functions. Needless to
say, they are the analogs of the retarded and advanced propagators.

Now let Re(k) > 0. The Jost solutions 1+ (k,t) are the unique solutions of (4.4) with the
asymptotic behavior

Vi(k,t) ~ e as t — Foo. (4.10)
The Jost function is
w(k) == W( s (k,-), ¥ (k,")). (4.11)

Then, it is well-known that the unique fundamental solution with appropriate decay behavior
as |t| — oo, that is, the integral kernel of the resolvent G(—k?) := (H + k*)~1, is

G(—k%t,s) = ﬁ(@(t — ) (b ) (K, 8) + 0(s — t)b_(k, )b (K, s)). 4.12)

Now let m > 0. Setting k¥ = +im in (4.12) we see that the distributional boundary values of
the resolvent on the spectrum are then given by

O(t — s)y(Fim, t)_(£im, s) + 0(s — t)_(L£im, t)(£im, s)

w(+im) '
(4.13)

G(m* Fi0;t,s) =

36



Thus we computed all four basic Green functions of the Klein-Gordon equation given by
4.3):

retarded propagator: G~ (m?*t, s), (4.14)
advanced propagator: G (m?;t, s), (4.15)
Feynman propagator: G(m?* —i0;t, s), (4.16)

anti-Feynman propagator: G(m? +10;t, s). (4.17)

The Klein-Gordon scalar product essentially coincides with the Wronskian:

(11 [th2) ke = W(Wy, ). (4.18)

One can now ask when the Klein-Gordon equation given by the operator (4.3) on a 1 + 0O-
dimensional spacetime is special, i.e., when the following identity holds:

G(m?* —i0) + G(m? +i0) = G (m?) + G (m?)? (4.19)
To answer this question, it is useful to introduce the concept of reflectionlessness.

Definition 4.1. Let A(+im) and B(4im) denote the coefficients of the scattering matrix, i.e.,
Yy (Eim, t) = A(xim)y_(Fim, t) + B(£im)y, (Fim, t). (4.20)

The potential Y (¢) is called reflectionless at energy m? if B(+im) = 0.

We have the following theorem.

Theorem 4.2. The potential Y (t) is reflectionless if and only if the Klein-Gordon equation

given by (4.3) is special, i.e., if and only if (4.19) is true.

Proof. We have
G(m? —i0) + G(m?* +10)
_ 6(t o S) <¢+(im7 t)lb—(im’ S) + w+<_im7 t)dj—(_im? S)) (4.21)

w(im) w(—im)

+ 9(8 . f}) (@Z)— (im7 t)1/}+(im7 S) + ¢—(_im7 t)w-&-(_imv 8)) ) (4.22)

w(im) w(—im)
Moreover,
w(Eim) = £A(EIm)W(Y_(—im),Y_(im)) + B(Eim)W (Y4 (Fim), ¢_(E£im)). (4.23)
Then the part (4.21) becomes
ot — s) A(im)y_(—im, t)_(im, s) + B(im)y, (—im, t)_(im, s)
A(im)W(—(=im), ¥ (im)) + Bim)W (¢ (=im), ¢ (im))
A(=im)e_(im, g (—im, s) + B(—im)y. (im, t)y_(~=im, s) )

(4.24)

A(=im)W (o (—im), b (im)) — B(—im)W (e, (im), v_(—im))
Since A(£im) # 0, this is G~ if and only if B(£im) = 0. Similar for (4.22). O

37



4.3 Mode decomposition of FLRW spacetimes

Consider a Friedmann-Lemaitre-Robertson-Walker (FLRW) spacetime, that is, a spacetime
M = R x Y with the line element

ds® = —dt* + a(t)*d¥?, (4.25)

where dX2? is the line element of a fixed d — 1-dimensional complete Riemannian manifold
.. The Klein-Gordon operator is

Ay, 9

—O,+m? =02+ (d— 1)@8 +m”, (4.26)

a(t) " a(t)?

where the dot indicates a derivative with respect to ¢. Then

i1 wodl o d—1gi d-3/a\ Ay
T (=0, +m?)a2 _at—T<a+T(a>)—W+m. (4.27)

It is well-known that —Ay; is self-adjoint, and by the spectral theorem we can diagonalize
—Ay, and then to restrict (4.27) to a (generalized) eigenfunction (a “mode”) of —Ay, with
eigenvalue \. Thus, for each such mode, (4.27) becomes —H), + m?, where

Hy = =0} + Vi(t) (4.28)

is the one-dimensional Schrodinger operator with potential

WSR2 e

Using Subsection 4.2, we can then write all propagators as the integral over all modes.

As a consequence, the Klein-Gordon equation given by (4.26) is special if and only if (4.28)
is reflectionless at energy m? for all ) in the spectrum of —Ay..

5 De Sitter space

Our next example is the d-dimensional de Sitter space dS,. De Sitter space is an important
example of a non-stationary spacetime and one of the simplest examples to model a universe
with an accelerated expansion. It exhibits a particularly rich structure and, being a symmetric
space, all its invariant propagators can be given explicitly in terms of special functions.

We will describe four different approaches to investigate propagators on dS,;. The first is
based on Wick rotation (analytic continuation) from the sphere S?. One obtains the so-
called Euclidean state, considered to be the most physical invariant state on dS,;. The second
approach is the off-shell approach based on the resolvent of the d’Alembertian on L?(dS,).
Somewhat surprisingly, it leads to non-physical two-point functions. The third approach is
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the on-shell approach based on Wk. It leads to the well-known family of de Sitter invariant
two-point functions corresponding to the so-called a-vacua. One can then compute invariant
correlation functions between two different a-vacua. Finally, we may interpret dS, as a special
case of a FLRW spacetime and apply the methods of Section 4.

Note that the first three approaches directly lead to simple expressions for invariant prop-
agators. The last approach breaks manifest de Sitter invariance, and to obtain invariant
expressions, one needs to sum over all modes using rather complicated addition formulas for
special functions.

There is a very large literature about propagators on de Sitter space. Particularly useful for
our considerations were [2,4,6,14,17,19,21,22,29,32,47,48,58-60,66,67,78,80,81]. In
these references, one finds different approaches to investigate propagators on de Sitter space.

Many of them use mode sums to construct propagators — sometimes explicitly like in [2,17,48,
68], sometimes abstractly like in [4]. The papers [19,21,22] have an axiomatic approach much
in the spirit of Gérding and Wightman. Only the reference [78] uses the operator-theoretic
approach to define the Feynman propagator in d = 4 dimensions.

5.1 Geometry of de Sitter space

The d-dimensional de Sitter space dS, is defined by an embedding into d + 1-dimensional
Minkowski space R, Let [-|-] denote the pseudo-scalar product on R defined by

d
[z|2] = —a%2"° + Z z'z”. (5.1)
i=1

Then the d-dimensional de Sitter space is the one-sheeted hyperboloid

dS,; := {zr € R" | [z]z] = 1}. (5.2)

Let us introduce some notation that will frequently appear throughout this section. For
z, 2 € dSy — R, we define

the invariant quantity Z = Z(x,x') = [z]2], (5.3)
the antipodal point to x: = —z,
the time variable t=t(x,2) =" — 2,
the “antipodal time” variable 4=t ') = — (2 + 2°).
While ¢ and ¢4 are two independent variables, we have Z (24, 2') = —Z(z,2') = —Z.

De Sitter space has various regions:

Z >1: x and 2’ are timelike separated, 5.4)
Z=1: x and 2’ are separated by a null-geodesic,
Z<1: x and 2’ are not connected by a causal curve.
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The last region includes the subregions

Z =—1: 2 and ' are separated by a null-geodesic, (5.5)

Z < —1: 2% and ' are timelike separated.

One may further divide the regions Z > 1 and Z < —1 into future and past dependent on
whether ¢, resp. t* are positive or negative. Thus, if we fix a point 2’ € dS,, then we can
partition dS; into 5 regions:

dS,=VtuV-uUAdtuAd uUS (5.6)
as depicted in Figure 1.
B t— o0 th — —oc0
v+ At
s . s R
X
V7 \\\\ //// A,
) t— —o0 N t4 > 00

Figure 1: Conformal diagram of de Sitter space with the reference point = and the regions
VE = {Z(x,2) > 1| t(z,2") = 0}, AT = {Z(z,2') < -1 | t(z*,2') < 0} and
S = {|Z(z,2")] < 1}. The left and right side of the diagram are glued together and each
point represents a d — 2-sphere.

The de Sitter space possesses a global system of coordinates

2 =sinh7, 2'=coshT Q) i=1,....,d, where 7€R, QeSS 1R (57

In these coordinates we have ds? = —dr? + cosh?(7)d2? and
7 = —sinh 7sinh 7’ + cosh 7 cosh 7/ cos 6, (5.8)

where 0 is the angle between 2 and €. If x = (0,1,0...), then Z = cosh 7’ cos 6.

Both the (full) de Sitter group O(1,d) and the restricted de Sitter group SOy(1, d), that is,
the connected component of the identity in O(1, d), act on dS,. The Klein-Gordon equation
restricted to invariant solutions and written in terms of Z reduces to the Gegenbauer equation,
a form of the hypergeometric equation [4, 12,29, 49, 68, 80] whose properties we discuss in
Appendix B.
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In the literature one often restricts analysis to subsets of dS,, such as the Poincaré patch or
the static patch, which allow for coordinate systems with special properties. In our paper we
consider only the “global patch”, that is the full de Sitter space. Otherwise, we would have
to consider boundary conditions for the d’Alembertian at the boundary of our patch (which
would break the de Sitter invariance and presumably be non-physical).

For more information about de Sitter space, consult the overviews [67,81] .

5.2 The sphere

The de Sitter space can be viewed as a Wick-rotated sphere. Therefore, in this subsection we
recall some facts about the sphere and the Green function of the spherical Laplacian.

Consider the d + 1 dimensional Euclidean space equipped with the scalar product

d+1

(z|2) Zx & (5.9)

The d-dimensional (unit) sphere is defined as
St = {zr € R | (z|z) = 1}. (5.10)

For Re(v) > 0 or v € iR>q \ 1( + NO), let us consider the resolvent of the spherical
Laplacian G*(—1%) := (—A® + (42)? + v?)71. Its integral kernel G*(—v?;z,2’) can be
expressed in terms of the 1nvar1ant quantity (x|z’) (see e.g. [36,37], and [31, 82], where
Legendre functions are used) as:

GS(—v?x, 7)) = C’d,ys%w(—(yﬁ\x’)), (5.11)
where
F E . F ﬂ o .
Cap = (F+iv) SQ w), (5.12)
(478

and S, »(z) is the Gegenbauer function described in Appendix B.

5.3 Propagators related to the Euclidean state

We now turn to the d-dimensional de Sitter space for d > 2. We will analyze bi- and
fundamental solutions of the Klein-Gordon equation

(=0 +m?)p(z) =0 (5.13)

in de Sitter space, which are invariant under the full or restricted de Sitter group. Note that m
might contain a coupling to the scalar curvature. Hence it is sometimes called effective mass.
Anyway, we prefer to use the parameter v defined by

vi=ym?— (51’ ecC (5.14)
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Thus (5.13) is replaced with
(-O+ (5" +1?) o) = 0. (5.15)

We will allow for complex ©2, choosing the principal sheet of the square root, that is v €
{Re(v) > 0}. The case of positive v* has analogous properties to that of positive m? in
Minkowski space. In the case v < (0 we assume that v € iR>¢. It is more intricate than the
case Re(r) > 0 and contains various subcases with different exotic properties. It is somewhat
analogous to the tachyonic case in Minkowski space.

On a generic spacetime the concept of the Wick rotation is not uniquely defined. However,
on the de Sitter space embedded in R'¢ there is a natural kind of a Wick rotation, which we
will use: the replacement of 29! with +iz°. We note first that

(x —2'|z — )
2

(z]2') =1 — for x,2’ € S% (5.16)

The replacement of 29! — 2/ with (20 — 2/%)e*?, ¢ € [0, 71, yields

. ¢—>E
(:L,d-i-l _ x/d—}—l)Q - <x0 _ :L,/O)Qeﬂ:Ql(ﬁ J _($0 _ I,IO)Q :f:lO (5‘17)
= (x]z') — [z]2'] F10.
Moreover, we need to insert a prefactor i coming from the change of the integral measure.

Let Re(v) > 0 or v € iRxg \ i(%* + No). The Feynman and anti-Feynman propagators in
the d-dimensional de Sitter space obtained by Wick rotation of the Green function (5.11) on
the sphere are given by

Gy (@, 2) = #iCay Sy, (— Z £ 10), (5.18)

where Cy,, is given by (5.12) and Z := [z|z’]. We easily check that (5.18) are Green functions
of the Klein-Gordon equation on dS,.

The sum of the Euclidean Feynman and anti-Feynman propagator has a causal support, for
Sa.x(2) is holomorphic on C\| — oo, —1], and therefore

GF + GF =0y, (ngl,i,,( ~Z+i0) =S4y, (~ 2~ io)) (5.19)

vanishes for 7 < 1.

As we will see later, G, and GE are not the operator-theoretic Feynman and anti-Feynman
propagators. However, we can still apply to them the procedure described in Subsection 2.9.
This leads to the classical propagators

GV, a') = i0( £ (2° — 2°)) Cl, (Sg,mu( ~Z+i0) =S4y, (~ 2~ io)), (5.20)

GP(x,2') = isgn (a° - x’O)Cd,u(Sg—l,w( ~Z+i0) — S84y, (- Z - iO)), (5.21)
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as well as to the positive/negative frequency solutions
(£) AN . 0 /0
Gy ' (z,2") = Cy, ngl’iy( — Z £1i0sgn (:U - )> (5.22)

G(()i) have the Hadamard property and are two-point functions of a state called the Euclidean
state €y (sometimes also called the Bunch-Davies state) [4,25,29,49,68,80].

Note that the propagators associated to the Euclidean vacuum satisfy all relations (2.39) with
a = [ = 0. The classical propagators (5.20) and (5.21) are universal: they do not depend on
the Euclidean vacuum, therefore we do not decorate them with the subscript 0.

5.4 Bisolutions and Green functions

The family of invariant propagators on the de Sitter space is quite rich and is not limited to
those related to the Euclidean state, discussed in the previous subsection. In order to prepare
for their analysis, in this subsection we will descibe invariant solutions of the Klein-Gordon
equation on de Sitter space.

From the analysis of previous subsection we easily see that the following functions are
bisolutions invariant with respect to the full de Sitter group:

GI™(z,2') = G\ (x, o) + G(()_)(x, x') (5.23)
= Ca (S (= Z+10) +84_y, (- Z ~i0)),
Gz, 2) =G (x4, ) = GP™ (z, ') (5.24)

= Cdv’/ <S%fl,iu (Z + 10) + S%fl,iu (Z - 10))7

The following functions are bisolutions invariant with respect to the restricted de Sitter group:

G (z, ") ::i(G(()H(:E, x') — G[(f)(:v,a:')) (5.25)
—isgn (1) Caw (Sg_1s, (— Z+10) = Sg_y, (— Z—10)),
GPA(x,2) =GP (2, 2) = —GP (, ') (5.26)

—isgn (#)Cay (Sy_1,, (2 +10) = Sy_y, (2 ~ i0)).

Indeed, we already know that G(()i) are bisolutions, hence so are (5.23) and (5.25). It is also
clear that replacing  with 24, used in (5.24) and (5.26) leads to invariant bisolutions. We
expect that the following is true:

Conjecture 5.1. For any v € C such that 5* +iv ¢ {0,-1,-2,...}, {G3"™, GI™ ) s a
basis of the space of fully de Sitter invariant bisolutions, and {G2™, GY™*, G¥,GP4} is a
basis of the space of bisolutions invariant under the restricted de Sitter group.
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Note that the Gegenbauer function S %717iy(w) is an entire function of v. If we were only
interested in bisolutions, we could drop the restriction <} +iv ¢ {0,—1,—2,...} in Thm.
5.1, which is only necessary due to the poles of the prefactor C,, at such v. However, we
eventually want to relate bisolutions to Green functions by time-ordering, and therefore we

normalize them properly.

Functions invariant with respect to the full de Sitter group can always be written in terms of
the invariant quantity Z alone. The Klein-Gordon equation restricted to invariant solutions
and written in terms of Z reduces to the Gegenbauer equation (cf. e.g. [4,17,49])

((1 — 720 — dZ0y — v* — (%)2)f(2) ~0. (5.27)

Therefore, all bisolutions and Green functions invariant wrt the full de Sitter group can be
expressed in terms of Gegenbauer functions.

If we only demand invariance under the restricted de Sitter group, the regions V* and V'~
as well as AT and A~ need to be treated as independent. Hence for |Z| > 1, propagators
invariant under the restricted de Sitter group may depend on sgn(t) resp. sgn(t4).

Assuming the validity of Conjecture 5.1, the general bisolution is
GU ==ia,GP™ + aG” +iasGy™ " + a,GPA (5.28)
=iCq, <(CL1 + as Sgﬂ(t))su (=Z +1i0)
5 v

+ (a1 — azsgn(t))Sa—2 iV(—Z —10)

Q, N

+ (a3 — assgn(t"))Sa—s iV(Z +10)

(7~ i0))

M|

+ (az + assgn(t!))Sa-
2

and the general fundamental solution is

G, :=GE + GP = iC,,Sa-s  (—7Z +10) + GP=, (5.29)
a =25, a

5.5 Resolvent of the d’Alembertian and operator-theoretic propagators

The d’Alembertian —[ is essentially self-adjoint on C>°(dSy) in the sense of L?(dS,). This
follows from a general theory of invariant differential operators on symmetric spaces [10,77]
and the fact that de Sitter space can be seen as the quotient of Lie groups O(1,d)/O(1,d —1).
In this subsection we will compute its resolvent and operator-theoretic Feynman and anti-
Feynman propagators. In the four-dimensional case, this has been studied [78].

Outside of the spectrum of —[] + (%)2, its resolvent (Green operator) will be denoted by

G(—1?) = ( ~O+ (54 + 1/2) o (5.30)

44



We will write G(—v?; z, 2') for its integral kernel.

In the following statement we will compute G/(—v?; z, 2’). This computation, short and, we
believe, quite elegant, is based on Conjecture 5.1, which does not have a complete proof in
our paper. Therefore, strictly speaking, all statements in this subsection are not fully proven
in our paper, even if we call them “theorems”.

One can justify Thm. 5.2 independently, following the (rather complicated) arguments of [48]
involving global coordinates and summation formulas for Gegenbauer functions. We will not
discuss these arguments in this paper.

Theorem 5.2. Let Rev > 0.

Odd d. The resolvent is given by
G(=v*x,2)) (5.31)
ir(dfl + iv) (

22i”’(27r) 3 sinh 7w

Zas (—Z—i0)—Za

| | (—Z+i0)), Imv < 0.
3 ,iv iv

d
7 o+

Therefore, for v > 0, the Feynman and anti-Feynman propagators are

- d—1 4 :
CTfF (o, ) = +7 (4L le) (ZH (—Z —i0) = Zy iy(—Z+iO)). (5.32)

22111/(2%) T sinhy N 3 oEw dTi
Even d. The resolvent is given by
Gz o) (5.33)
d—1

Therefore, for v > 0, the operator-theoretic Feynman and anti-Feynman propagators are

GF/F(x, ) (5.34)

— (zd_z’iw(—z Fi0)+ Zas (7 - 10)).

Proof (assuming the validity of Conj. 5.1). Let us first compute the Green operator G (—v?)
for v> € C\ R. Clearly, its integral kernel is a Green function invariant under the full de
Sitter group. Its integral kernel (as the integral kernel of a bounded operator) must not grow
too fast as Z — £oo. By Conjecture 5.1, the formula (5.29) describes the family of all fully
de Sitter invariant Green functions.

To start, we thus use the connection formula (B.11) to write the general fundamental solution
(5.29) in terms of the Gegenbauer functions Z, 4,(—Z =+ i0), which have a determined
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behavior as |Z| — oo. Since we require invariance under the full de Sitter group, we must
have a; = a4 = 0. This yields

inh 2i1/ (d=1 .
2 a, - oy B _iV(—Z+i0)<1+a1—l—a3em( 2 “”)) (5.35)
2 2 \/7_T0d71, ( 2 +1V) 2
2iu . . ( —L )
+—Z_‘—Z—0(+ ”’2”’)— & V),
(LI 1 i) ez i0){ a1 + aze (e —v)

d—1

We have Zg— , (Z) ~ cZ~"2 T as |Z| — oo, while the measure on L*(dS4, +/|g])
5 iy

behaves as ¢Z972 as | Z| — 00.3 Thus, the resolvent should, for |Z| > 1, only contain

(Iz) if Im(v) >0, (5.36)

)

Z,o (|Z]) if Im(v)<O0 and Zgzo
2 W 2

for otherwise it could not be the integral kernel of a bounded operator on L?*(dS,, v/|g|). The
parameters that correspond to such a decay behavior are different in even and odd dimensions:

Odd dimensions. In odd dimensions, % is an integer, and we obtain

d+1
Solution ~ Z (Z) for |Z] > 1 T LD s
olution ~ Z,4_ or =t ——, a3=t-—"F"F——. .
T2 by ! 2sinh v’ ° 2 sinh v
Even dimensions. In even dimensions, % is a half-integer but not an integer. We obtain
d
Solution ~ Z (Z) for |2] > 1 e  (ED2 53
olution ~ Z,_ or L= —————, a3 = —i————. .
dT27iiV ! 2 cosh v s 2 cosh v

These values of a; and a3 yield the formulas for the resolvents. The operator-theoretic
Feynman and anti-Feynman propagators are the limits of the resolvents on the spectrum from
below resp. above. [

We will give an interpretation of the operator-theoretic (anti-)Feynman propagators in terms
of time-ordered two-point functions between two states in Section 5.7. However, from their
formulas, we can already see the surprising fact that they are different from the propagators
in the Euclidean state {2y, which is the only de Sitter-invariant Hadamard state.

One can ask when the Klein-Gordon operator on de Sitter space is special. The situation is
quite remarkable:

Theorem 5.3. Let v > 0. Then

GY +GE =GY+G", foroddd (5.39)

bur Gi,+Gi, # GV +G", forevend. (5.40)
3This can be verified using the global coordinates (5.7), in which Z is given by (5.8).
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Proof. We use the connection formula (B.10) to rewrite Gy, and Gf in terms of Sa_z ()
and compare to the formulas (5.20). Actually, in odd dimensions, the result follows immedi-
ately if one uses (B.11) instead of (B.10). ]

Let us finally consider the “tachyonic” region of parameters in the de Sitter space. Instead of
the parameter v, it will be convenient to use p := —iv.

Theorem 54. 1. Odd d. The spectrum of — + (d%l)2 equals

] =00, 00U {® | p € No}, (5.41)
and for p € [0, 00[\Ny, the resolvent is given by
G(p* z,2) (5.42)
r(% +
_ NG - ) (zH (—Z+10) — Zgs (—Z —io)).
22+1e(2m) 2 sinp N T2 M T o

2. Even d. The spectrum of — + (d%l) ? equals

J =00, 00U {* | € No + 3}, (5.43)
and for ju € [0, 00\ (NO + %), the resolvent is given by
G, a') (5.44)
(&t 4 . .
_ T 7+ ) (Zacz (~7+10) + Zaa (~7 ~i0)).
2 9

22+ (27) 2 cosmp

Proof. Let v > 0. If the limits of (5.31) as v approaches the imaginary line exist, they
coincide:

lir% G((—(ip+ €)% x,2) = hH(l) G((—(—ip + €)%z, 7). (5.45)

The results of these limits are the integral kernels of the resolvents in the “tachyonic™ case
(5.42). Similar for (5.33) and (5.44).

For even d, the limit diverges for i € Ny + % due to the presence of cos 7 in the denominator
of (5.44). This is not a removable singularity. For Z < —1, we have

Zas (—Z+i0)=Z4 5 (—Z—i0)=Z4, (2]), (5.46)
5ol 5ol 5ol

and this does not vanish identically.
For odd d, the limit diverges for i € Ny due to the presence of sin mx in the denominator of

(5.42). Although less obvious than in the even-dimensional case, this is also not a removable
singularity. Due to (B.12), we have

Ziy (~Z+i0)~Zus (~Z—i0)=0, |Z|>1, peN. (5.47)
2 9.

d—2
2 7/"[/
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But using the connection formula (B.10), we find for | Z| < 1 and p € N,

d+1

—isgn(Z)2#t 2

Z d—1 a—2 )
NS +p)(1—22)"= 2

(—Z +10) — Z (—Z —i0) =

d—2 d—2
9 M 9 M

This does not vanish identically. 0

5.6 Alpha vacua

For the rest of the section on de Sitter space, we restrict ourselves to the case of real and
positive v > 0.

The Euclidean vacuum is not the only de Sitter invariant state on de Sitter space. There exists
a whole family of such states, called alpha vacua [4,17,68]. We describe these states using
the Krein space language introduced in Section 2 and then explain the relation to the approach
based on mode expansions, which is commonly used in the physics literature [4, 17].

5.6.1 Alpha vacua in the Krein space picture

Let Wk be the Krein space of solutions of the Klein-Gordon equation, which has a funda-
mental decomposition corresponding to positive and negative frequencies with respect to the
Euclidean vacuum. That is,

Wike = 250 @ 2070, 27 = 2", (5.49)
where Zéi) = R(Héi)) are the ranges of the orthogonal projections Héi), whose Klein-

Gordon kernels are the bisolutions iGéi). The fundamental decomposition (5.49) will serve
as a reference decomposition of Wkg.

Using the explicit representations (5.22), it is easy to see that
G((]+)(xA, ) = Ggr) (x,a') = Gé_)(x, z'). (5.50)
Introducing the map (J4p)(z) := p(x?), (5.50) implies

JAGY A =1, gz = 257, (5.51)

Now let o € C with || < 1. We define a Bogoliubov transformation R,, on Wk (i.e., a real
pseudounitary map) via

1 o A

R (1) = ————— () + ——— (), z, 5.52

(Raw)(2) — |a|2g0(x) : |a|2g0(x ), pEZ ( )
1 - a - _

R, = — L — A Z( ). 5.53

(Ra®)(2) = la,ﬁ(ﬂf) T |a|2<ﬂ(1’ ), PEZ (5.53)
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In other words, as a 2 X 2 matrix on Zéﬂ D Zé_),

L =
Ra = a JA ? (554)
V1-laf? V1-]ef?

The projections RaHéi)Rgl define another fundamental decomposition of Wk, hence an-
other Fock vacuum, called the a-vacuum. Their two-point functions are given by the Klein-

Gordon kernels of +R, 117 R-1. Using (5.54) and G{™ (24, 2') = G\7(x, 2/4) we obtain
GH(z,a") (5.55)

o
<1+\2Ol|2G8ym(JL_7 x') - i17|204|2 GPJ<:E7 m/) 4 #G(s)ym,A(w? x’) _ i%GgJ’A(x, x’))

1 af?

From (5.55), we obtain the well-known expressions for the Feynman and anti-Feynman
propagator [4,17]:4

GY/F(z,2') (5.56)

= Giff(,0) + afPGy™ (w,2) + 182Gy @, ') — 155G @, o) ).

o
1—af?
It is known that only the a-vacuum satisfying the Hadamard condition is the Euclidean
vacuum, that is, corresponding to o = 0 (see [4] and references therein). This can also be
read off the expansion of the Gegenbauer function around the singularity.

From the point of view of perturbative QFT, the usefulness of alpha vacua for a # 0 is
therefore questionable. It is not clear how one can renormalize quantities that are local
and non-linear in the fields [24]. However, they are reasonable objects in linear QFT and
possibly also in an effective field-theory. We shall see that the operator-theoretic propagators
correspond to field expectation values in specific alpha vacua.

5.6.2 Alpha vacua and mode expansions

In the literature a-vacua are often introduced as follows [4, 17]. First one expands the real
scalar Klein-Gordon field ¢(z) into modes with respect to the Euclidean vacuum,

S(x) = pn(x)as, + n(r)in. (5.57)

Here, a,, and & are annihilation and creation operators and ¢,,(x) are mode functions that
satisfy the orthogonality relations (2.65) with the Dirac delta replaced by the Kronecker delta.

4Note that the two references have different conventions for the parameter «, and in addition, both conventions
are different from ours. In particular, [4] uses two real labels «, § that are both described by a single & € C in
our notation.
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This is essentially a choice of an orthonormal basis of the space Zé+). The positive frequency
solution can then be written as a mode sum,

Gy (@) = pu(@)en(@). (5.58)

Next, using the explicit form of the modes, one shows [4, 17] that the modes associated to the
Euclidean vacuum can be chosen to satisfy

on(x) = Pn(a?). (5.59)

Then one defines the Bogoliubov transformation (5.52) by its action on the modes,

1 a

anlT) = —F——n(T) + —F—— n\T),

and the positive frequency solution associated to the alpha vacuum with parameter « is given
by

(5.60)

G (,2) =Y Can(@)pan(t). (5.61)

Needless to say, the construction using the mode expansion and the construction based on
(5.54) are equivalent. In particular, ¢, , = Rqp,.

5.6.3 Correlation functions between two different alpha vacua

Suppose now that «, 5 be two complex parameter with |a|, || < 1 and consider a pair of
Bogoliubov transformations R, Rs and a pair of Fock vacua €2, {25. Using modes, we can
write

P.n(x) := Nogpan() + MasPan(T), (5.62)
1 — Ba
Nop = ,
T VA —TaP - 8P)

Mo = ’ 2_ - 2)
V(L= la?)(1—1[57)
Note that this definition is a special case of the more general form (2.71). It relates to the
latter equation via

Nog = Nog(n), Magbnm = Aap(n,m). (5.63)
Therefore, we may use (2.78) to obtain the mixed two-point functions

G)(x, ) (5.64)
1 7 s 3 3 s 3
-5 (#G;ym(x, o) FiLGP (z,27) + LGP (1, 2") — 152G (, f)).
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The corresponding Feynman and anti-Feynman propagator are

G/, a) (5.65)

= G/ (,0') £ === (aBOF™(,0') +i50 G (2,0") — i452GP (2.1,
«

5.7 “In” and ‘““out’” vacua

The de Sitter space is not asymptotically stationary. Therefore, the usual definition of *“in”
and “out” vacua is not applicable. Nevertheless, one can define a pair of de Sitter invariant
states that deserve to be called the “in” and “out” vacuum. In this subsection we will compute
the corresponding propagators.

Every bisolution of the Klein-Gordon equation is a linear combination of appropriately
regularized functions Z %,w(Z ) and Z %ﬁiy(Z ). They behave for large Z proportionally
to 2~ v, resp. 4 —5H Y We are looking for two-point functions, which in the “causal
asymptotic region”, that is for Z — oo and t — +o00, have a definite behavior, that is, they
behave either as cZ~ ‘", or as cZ~ ‘7 .

Note that the propagators have also the “antipodal asymptotic region™: Z — —oo, t* — 4o0.

It will be interesting to determine their behavior in that region as well.

The following theorem describes all de Sitter invariant two-point functions with a definite
behavior in the causal asymptotic region.

Theorem 5.5. /. Odd dimensions. There exists a unique c-vacuum with the propagators
behaving as

G meZ7TH 7 5 o0, t— —o00; (5.66)
and  G®) ~ cZ"TF 7 5 400, t— +oo. (5.67)
These functions vanish for Z < —1 and their parameter o is
d+1 i 4
O =0 == (—1)2e ™= "2, (5.68)

This vacuum could be called the “in” vacuum or the “out” vacuum. We will call it the
asymptotic vacuum. We will write as instead of av,s in the subscripts of propagators
and two-point functions. The two point functions of these states are

o
TG (@) (5.69)
QT\/ECd’V
27 (+1) . .

= = Y (Zy (-Z—00)—Zys (—Z 410
r(& —iu)< 2, (77 10 = Baa (7 4 )

2VO(Ft) . :
LY (7 (—Z—i0)—Zus  (—Z+10)),
P+ i) (g2 7 10~ Bz (-2 +10)



and their Feynman and anti-Feynman propagators coincide with the operator-theoretic
ones from (5.31):

GE (z,2") = Ggp(x,zr’), GES(:B,x’) = Ggp(x,z’). (5.70)

. Even dimensions. There exist two a-vacua that satisfy (5.66) and (5.67). One of the
two values is

d d+1
2

a_ =ie ™(-1)z =e ™ (5.71)

and its positive/negative frequency solutions vanish for 7 < —1, t4 < 0. It will be
called the “in” vacuum.

The other value is

d+1

—e ™I — (5.72)

ap = —ie ™ (—1)%

and its positive/negative frequency solutions vanish for Z < —1, t* > 0. It will be
called the “out” vacuum.

We will write —, resp. + instead of oo and oy in subscripts. The two-point functions
of these states are

isinh v
d=3
22 ﬁCd,V

o 27vh(+t) (
SEE )
2V0(Ft)

F(%—I—iy)

d
—1)20(+A
N %(Suw(mm) —Sa2 (7~ i0>>,
22w 27 2

G (z,2') (5.73)

Zoy (-Z—i0)—Zgy (—Z+ iO))
5 1V

Bl

<zc%2’_iy(—z —10) = Zus  (~Z+10))

2o

and

isinh mv

“d4=3 _

2% \/7Cly,

B 2_i”0(j:t) (

T W)

2vO(Ft) (

F(%%—iu)

G\ (z, 1) (5.74)

Zgo (—Z2—-i0)—Z4o (2 —i—iO))
5 v

El



The in-out Feynman and the out-in anti-Feynman propagator coincide with the operator-
theoretic Feynman and anti-Feynman propagator (5.34), resp.:

G5 =G

F F
opi G =G (5.75)
Remark 5.6. The concrete values for o corresponding to “in” and “out” states are well-
known [17,68] but typically derived by asymptotic properties of the modes. We derive them
in the following using a “global picture”.

Proof of Thm 5.5. We use (5.55) to express a generic G5 in terms of Z%JV and Z%;z7_il,:
. o, sinh7r ()
2i(1 — |af®) =—Gg (5.76)
2Tﬁcd,u
2—iy
— Bz (<7 +10) (1 + af £ (1~ |af?) sen(t
rEr iy Zas2 (-2 HO((15 laf £ (1= laP)sgn(t)

+ (2Re() + 2iIm(wv) sgn(tA))ei”<%+i”))
Zas, (-7 - i0)<(1 + a2 F (1 — |af?) sgn(t))

+ (2Re(a) — 2iIm(w) sgn(tA))ei”(%“”))
— (v —v).

The analysis of the asymptotic behavior of the latter function differs in odd and even dimen-
sions. We only display the derivation of the more complicated even-dimensional case. The
odd-dimensional case can be worked out analogously:

Even dimensions The conditions on the asymptotic behavior read:

Solution G'*) ~ Z 4o (Z)for Z > 1: (5.77a)
5
d—2
F (1) 2 2isgn(t) Re(a) = eToenMm _ \a!%isgn(t)””,
Solution G ~ Zy 5 (Z)for Z > 1 (5.77b)
=2
d—2
¥ (_1)721 Sgn(t) Re(a) — eisgn(t)m/ . ‘a’26$sgn(t)m/’
Solution G ~ Z 45 (=Z)for Z < —1: (5.77¢)
5
d—2
(=1) 2 (1+|af*) = —2iRe(a) sinh v + 2Im(a) sgn(t*) cosh 7o,
Solution G ~ Zy o (=Z)for Z < —1: (5.77d)
5 IV
d—2

(=1) 2 (14 |a|*) = 2iRe(a) sinh v + 2Im(a) sgn(t*) cosh mv.
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We immediately read off Re(«r) = 0. Then, by (5.77a) and (5.77b), the existence of a definite

!
behavior in the region Z > 1 implies || = e ™. Hence a = &'™"*2)™™ with n € Z. Then
(5.77¢) and (5.77d) simplify to

d—2
(—1) 2 " =sgn(t). (5.78)

n = %32 yields a solution that vanishes for Z < —1 and t* > 0 but has indeterminate behavior
as Z < —1 and t* —» —oo, while n = g yields a solution that vanishes for Z < —1 and
t4 < 0 but has indeterminate behavior as Z < —1 and t* — +o00. We obtain the values for
ay and a_.

Inserting the obtained values for « into (5.76) yields the explicit formulas for Gf): this rather
cumbersome computation involves the connection formula (B.11), the identity (B.12) and
repeated use of identities of the type 1 4 sgn(-) = 26(+-). The (anti-)Feynman propagators
are obtained from (5.65) and also using the connection formulas. OJ

5.8 Symmetric Scarf Hamiltonian

We will discuss in the next subsection another approach to the Klein-Gordon equation on the
de Sitter space. In this approach we will use the one-dimensional Schrodinger Hamiltonian
on L*(R) of the form

2

_ 1
R (5.79)

HS = -9 — ——4
“ T cosh(7)?

It is sometimes called symmetric Scarf Hamiltonian [43]. It is well-known that this Hamil-
tonian for some values of parameters is reflectionless. For completeness, let us verify this.

First we check that HS + \? is equivalent to the Gegenbauer equation after the consecutive
change of variables sinh 7 = w, iw = v:

COSh(T)_a_% (HS +\?) cosh(T)aJr% (5.80)
= =02 — (2a + 1) tanh(7)0, — (a + %)2 + A2
— —(1+w?)®? — 2(a+ Dwdy, — (a+ 1) + X
= (1-v%)07 — 2(a+ 1)vd, — (a + %)2 + A%

For Re(A) > 0, the Jost solutions can thus be expressed in terms of the Gegenbauer Z-function:
.1 1
YN, 7) = 2FAT(1 £ \)e' 2@ cosh(7)*12 Z, 1 (Fisinh 7), (5.81)
such that

V(A7) ~ e £ = 0. (5.82)
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The Gegenbauer functions on the righthand-side of (5.81) have purely imaginary arguments.
They are to be interpreted as living on the cut plane C \ (] — co, —1] U [1, 00]) instead of
the usual C\| — oo, 1]. 11 (], -) is expressed in terms of the analytic continuation of Z, »(w)
defined on the standard sheet C\| — 0o, 1] to the upper half-plane, while 1)_ (1, -) is expressed
in terms of the analytic continuation of Z, _,(w) defined on the standard sheet C\| — oo, 1]
to the lower half plane. Using the connection formulas (B.10) and (B.11), and the fact that
Sa.x is holomorphic on | — 1, 1], one can derive a connection formula for the two holomorphic
continuations:

Zo ) (w +10) (5.83)

icosmae ™ONZ | (w — i0) 22 e ™ Z, _\(w —i0) - 11]
= — ., we|l—1,1].
sin wA F(%—ka—kA)F(%—a—l—)\)sinwA

In particular, Z, \(w + i0) is proportional to Z,, _(w — i0) if and only if cosTa = 0, i.e., if
andonly if « € Z + %

Consequently, the symmetric Scarf Hamiltonian is reflectionless for all energies v? iff a €
Z+ 1.
5.9 Partial wave decomposition

Using the global system of coordinates (5.7), the de Sitter space can be viewed as a FLRW
space, and can be identified with R x S¢~!. In these coordinates, the (gauged) Klein-Gordon
operator takes the form

d-1 d-1
cosh(r) 2 ( — Oy + m?) cosh(r)™ 2 (5.84)
d—1 (d — 3) sinh(7)? Aga1
=02 - ——(1 — 2
T 2 ( * 2 cosh(7)? ) cosh(7)? o
u)2 — 7 — Aga
— 9? ( 2 4 S 2
-t cosh ()2 v

The spectrum of —Aga-1 is {{(l +d — 2) | [ € Ny}. Hence, restricted to eigenfunctions with
eigenvalue /(I + d — 2), the above operator becomes —H® + 12, where HY is the symmetric
Scarf Hamiltonian with o« = [ + %. The symmetric Scarf potential is reflectionless for all
energies 2 € Rand o € % + Z. This corresponds to odd dimensions. Thus for each mode
the in-state coincides with the out-state. In even dimensions « € Z, and then for each mode
the in-state is different from the out-state.

6 Anti-de Sitter space and its universal cover

Our final examples of Lorentzian manifolds are the d-dimensional anti-de Sitter space AdS,
and its universal covering AdS,.
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AdS, is pathological from several points of view. First of all, it has time loops, which makes it
unsuitable as a model of a spacetime. It does not make much sense to speak about propagators
on AdS,.

The cyclicity of time can be cured by replacing the proper anti-de Sitter space by its universal
cover z&?l/Sd. It is still not globally hyperbolic, because of a boundary with a spacelike normal
at spacelike infinity. However the latter problem is not very serious, and various propagators
can be defined on Avde.

Therefore, most of this section will be devoted to z&?l/Sd. We will apply two methods to define
propagators: through the resolvent of the d’Alembertian on L?(AdS,), and by considering the

evolution of the Cauchy data. The latter approach is facilitated by the fact that AdS, is static.
The absence of global hyperbolicity is not a problem for the first approach. For the second
approach it manifests itself by the need to set boundary conditions at the spatial infinity for
m? below a certain value.

Various propagators of massive scalar fields on /desd have been intensively studied. Among
the vast literature, we mention the references [1, 3, 6, 18, 20, 26, 34, 35,45, 62, 78], which are
particularly useful for understanding the analytic structure. Similar to the de Sitter example, the
only of these references using the operator-theoretic view on the Feynman propagator is [78]
(here in two dimensions). The references [18,20] have an axiomatic approach. Appendix
A of [3] is particularly helpful to understand the analytic structure of propagators on the
universal cover. Subsection 6.3.4, where we present the approach based on the evolution of
Cauchy data, is based on the seminal work [62].

6.1 Geometry of anti-de Sitter space

The d-dimensional anti-de Sitter space AdS, can be defined as an embedded submanifold of
R27d_12

AdS; = {z € R*! | (z|z) = -1}, (6.1)

where

d-1
(z]z') = a2’ — 22’ + Zmix’i =:Z(x,2") = Z. (6.2)
i=1

A coordinate system covering all of AdS; is given by

1Y = coshpcost, ' =sinhp Q’, %= coshpsinT, (6.3)

where 7€ [—m,7[, p€ERso, RE€ESg o - R™ and i=1,...,d—1.
In these coordinates, the line element reads

ds? = — Cosh(p)2d7'2 + dp2 + sinh(,o)deQ. (6.4)
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Note the famous cyclicity of time, z(7 + 27k, p, Q) = x(7, p, Q) for all & € Z. Therefore,
AdS, has closed timelike curves and is not globally hyperbolic.

AdS, is equipped with an involution x +— —z. This involution maps the coordinates (7, p, 2)
to (7 + m, p, — ).

™

Another system of coordinates is obtained by replacing p with u € [0, §

tan u. In these coordinates, the line element (6.4) becomes

,  —dr? 4 du® 4 sin(u)? dO?

[, where sinh p =

ds? = 6.5
° cos(u)? 65)
In the coordinates (6.3) and (6.5), we find
Z = — cosh pcosh p’ cos(t — 7’) + sinh psinh p’ cos 6 (6.6)
_ _cos(t —1') N sin u sin v/ COSQ' 6.7)
cos u cos u’ cos u cos u’
where 6 is the angle between €2 and 0'.
Let us fix the vector ' = (1,0...,0). Then —(x|z') = €T and we can partition AdS; into
the following regions:
Vo = {|7] < u}, (6.8a)
Voi={mr—7 <u}U{m+7 <u}, (6.8b)
Vi :={min(r,7 — 7) > u}, (6.8¢c)
V_y = {min(—7,7 +7) > u}. (6.8d)
Note that
—Z>1, 7e€[-3, 7% on Vj, (6.9a)
Z>1, 7tel|-m—-3]Ul[5,7] on Vs, (6.9b)
|Z] <1, 1€]|0,7] on Vj, (6.9¢)
|Z| <1, 7¢€]-m0] onV_;. (6.9d)
The Klein-Gordon equation on anti de Sitter space reads
(-0 +m?*)¢(z) = 0. (6.10)
Instead of m we will use the parameter v
vi=y/m2+ (527 (6.11)

where as usual we use the principal branch of the square root. Thus (6.10) is replaced with
( — O (517 + V2)¢(x) —0. 6.12)
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The Klein-Gordon equation on anti de Sitter space restricted to invariant solutions and written
in terms of Z reduces to the Gegenbauer equation, where the sign in front of v/ is opposite
from de Sitter space:

((1 — 7%)0% — dZ0y + v* — (%)2>f(2) ~0. (6.13)

6.2 Universal cover of anti de Sitter space

AdS, has the topology of S; x R¢~!. Therefore it has a universal covering space
AdS; — AdS,. (6.14)

In the literature, this universal cover is sometimes called anti-de Sitter space instead [57]. We
will, however, use the name anti-de Sitter space for the embedded submanifold (6.1), adding
the adjective “proper” whenever we think it is necessary to avoid confusion.

It is easy to describe ;‘Egd in coordinates: we just assume that 7 € R, and keep the line
element (6.4) or (6.5). AdS, is a static Lorentzian manifold. It is still not globally hyperbolic,
since there are geodesics, which in finite time escape to its boundary.

Let us fix the vector 2’ = (1,0...,0). Then we can partition AdS, into the following regions:

Vo = A{|7 — nm| < u}, (6.15)
Vo1 = {min(r —nm,(n+ )7 — 7) > u}. (6.16)
Note that
—(-)"Z>1, Te[(n—3)m (n+ )] on Vs, (6.17)
|Z| <1, 7€ [nm, (n+1)7] on Vopi1. (6.18)

The spaces AdS,; and deSd with their various regions are depicted in Figure 2.

6.3 Wick rotation

Anti-de Sitter space is closely related to the hyperbolic space

H? .= {x € RY | [z]|z] = —1}, (6.19)
where
d .
[z]2] = —a%2"° + Z r'z”, (6.20)
i=1

asin (5.1). Let A" be the Laplace-Beltrami operator on H¢. Set

hy 2yv._ [ Ah__ d—1\2 2\ !
G(y).f( A (2)+1/) . 6.21)
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i
| Figure 2: (a) Anti-de Sitter space in the coor-
) dinates v € [0, 7[ and 7 €] — 7, 7| from (6.5)
and its partition into the regions Vj, V5, V; and
i v i Va V_;. Each point represents a d — 2-sphere of the
? coordinates (2. The lines 7 = wand 7 = —m are
glued together, reflecting the cyclicity of time.
R 21 An observer can reach spatial infinity (u = 7,
indicated by the dashed line) in finite time, which
! makes it necessary to impose boundary condi-
B (- 1 LA tions when solving the Cauchy problem for cer-

0 U 0 U
2 2 tain masses, see Section 6.3.4. (b) The universal
cover of anti-de Sitter space in the same coor-
~z I 2l v, dinates, where however 7 ranges over all of R,
removing the cylicity of time. The boundary at
v u = 7 is still present.
-7 : - V., 3

(a) (b)

For Re(v) > 0, the integral kernel of G"(—1?) can be expressed in terms of the invariant
quantity [z|2'] and the Gegenbauer function Z,, »(w) as (see e.g. [36,37], and for an equivalent
expression in terms of associated Legendre functions [31])

VL (55 +v) ol
Vaen) i Z%—l,u( [z|2']). (6.22)

G"(—v*a,2) =

Let us try to introduce a kind of a Wick rotation from H to anti-de Sitter space by replacing
x? with +iz?. We have

[z —2'|x — 2]
2 )

(x — 2’|z — 2’)
5 ;

[z]2'] = -1 — z, 2’ € HY, (6.23)

Z = (x|z') = -1 — z, ' € AdS,.

Thus, similar to the case of de Sitter space, we have to replace —[x|z’] in the argument of the
Gegenbauer function in (6.22) by — ((z|2’) Fi0) = —(z|2’) £ i0 and insert a prefactor =i
coming from the change of the integral measure. In this way, we obtain

(et +

+i
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as candidates for (anti-)Feynman propagators on AdS,.

On the proper anti-de Sitter space AdS, the latter expression cannot be a Green function. In
fact, due to the identity (B.12), the application of the Klein-Gordon operator to (6.24) yields
a nonzero distribution supported at {Z = —1} U {Z = 1} (the diagonal and the antipode of
the diagonal).

This problem dissapears on the universal cover K&éd of anti-de Sitter space. The expression
(6.24), properly continued to further regions, yields a Green function of the Klein-Gordon
operator, as we shall see in the next subsection.

The following four functions are bisolutions of the Klein-Gordon equation:
~Za_,,(—Z+i0sgn(r)) and ~Zs,_,(—Z=i0sgn(r)). (6.25)

We expect that the following is true:

Conjecture 6.1. On W), the functions (6.25) form a basis of bisolutions of the Klein-Gordon
equation invariant wrt the restricted anti de Sitter group.

6.3.1 Resolvent of the d’Alembertian

The essential self-adjointness of the d’Alembertian —[1 on Cg° (Azl/Sd) is not covered by the
refe/rglces [10,77]. However, we expect that the methods of above references can be extended
to AdSg4, so that one can show that the d’Alembertian is indeed essentially self-adjoint on
C>(AdS,).

The main aim of this subsection is a computation of the integral kernel of the resolvent of the
d’Alembertian on AdS,. As before, it is convenient to set

G(—v?) = ( —0— (%4)* + 1/2>_1, (6.26)

and denote the integral kernel of G(—v?) by G(—v?z,2'). Below we will compute
G(—v?% x,2"). We state this computation as a theorem. However, the arguments that we
present, quite simple and convincing, use Conjecture 6.1, which we have not proved. A nat-
ural strategy for a complete proof would involve global coordinates and summation formulas
for Gegenbauer functions, and is much more complicated. It will not be given in this paper.

To describe G(—v?; z, 2') explicitly, it is convenient for n € Z to introduce open regions
Woi= (Vona UVan UVon)?) ez (627)

with V;, as defined in Subsection 6.1 and with cl denoting the closure and o the interior. We
have W,, " W,,.1 = V5,11 and

AdS, = U W (6.28)

neL
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Theorem 6.2. For v?> € C\ R and Re(v) > 0, the integral kernel of the resolvent (6.26) is
given on W,, by the formula

(6.29)

Here s can be represented by s = sgn(sin(|T — 7'|)), or
(z,2") € Vo1 = s = (—1)"sgn(2n — 1), (6.30)
(z,2") € Vo, = s =0,
(z,7") € Vapy1 = s = (—=1)" sgn(2n + 1).
(Note that in Vs, we may set s = —1 or s = 1 because the function is univalent).
Proof (assuming the validity of Conj. 6.1). We split the proof of (6.29) in two steps. First,
we show that (6.29) is a fundamental solution with appropriate decay behavior as |Z| — oo

and |T| — oo. Second, we argue that adding any bisolution, which is a (non-zero) linear
combination of (6.25) has exponential growth as 7 — +o00 or 7 — —o0.

On W, consider (6.24). On the overlap V; = W, N W5, we have
. (d—1
Ziy,(—Z%i0) = qu”r(TJr”)Z%_LV( — (—Z) £ (-1)i0). (6.31)
On the chart W5, the integral kernel of the resolvent must be a bisolution and it must on V}
agree with (6.31). Therefore, the i0 should switch the sign from V; to V5. On Vj, we have
7 €]0, 7[. Hence
~(%5) -

(6.31) =™\ 2 Z%—Lu( — (=Z) £ (-1)i0sgn(sin(|T — 7'|))) on Vi  (6.32)

and (6.32) is the appropriate continuation of (6.31) to 5.

Now notice that sgn(sin(|7 — 7’|)) = —1 on V3. Therefore, in this region,
:Fiw(u—&—y) . . /
e 2 Z%fl,u( — (=Z) £ (-1)i0sgn(sin(|T — 7']))) (6.33)

= (T )z, (— (—2)+10)

s—Lv

)2, (~ (172 £ (~1P0sgusin(lr - 7).

_ e¥271'i(

Inductively, we obtain (6.29) for n > 0. The continuation to negative n works analogously.
Since only Z 4y, appears, both formulas have an appropriate decay behavior as |Z| — oo

for any sign of Im(v). However, the exponential prefactor

eFlnimi(5H ) (6.34)
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decays only for Im () < 0 as |n| — oo (or equivalently, as |7| — 00).

Assuming Conjecture 6.1 we see that these are the only fundamental solutions with appropriate
decay behavior. Thus a basis of bisolutions that decay as |Z| — oo is on W given by

zgflyy( — Z +10)) + z%iw( — Z —i0) (6.35)
and  sgn(r) (zg_w( ~Z+i0)) ~Za_,,(~ Z - io)).

Both choices contain 410 and —i0, and it is easy to see that their continuation to the higher
W, contains terms that exponentially increase with time at least in one of the directions 7 > 0
resp. 7 < 0. [

6.3.2 Propagators from the resolvent

From the formula for the resolvent we can immediately determine the operator-theoretic
Feynman and anti-Feynman propagators for for n € Z in the regions WW,,. We have

d—1
_ YT V) ity
V2(2m)22v 2

where s is as in Theorem 6.2.

GF/F (2, a) ( (—1)"Z+ (—1)”103>, (6.36)

The sum Ggp + Gfp has a causal support (or in the terminology of Def. 2.4 the specialty
condition holds):

= \/EF(E + l/) . d—1 .
GE (x,2)) + GE (2,2)) =i 2 _ e vz, (= (=1)"Z + (=1)"i0s
p (0 + Chpfo!) = 2 o1 (= (<12 + (=1)"05)

_ eiln\(%JrV)’fzg_Ly( —(=1)"Z - (—1)"i05)> : (6.37)

In fact, (6.37) vanishes for x € V[;. We obtain the retarded and advanced propagator by
multiplying it with 9( +(r—1 )) The Pauli-Jordan propagator is then the difference of the
retarded and advanced propagator. We use (2.39¢) to define G*) obtaining on the chart IV/,,:

d—1
_ ﬁF(T +v) oFin( 2t v)

/
C® (2, 2) NPREDY (6.38)
x z%_w< —(~1)"Z+ (—1)”105).
Here § can be represented by 5§ = sgn(sin(7 — 7)), or
(x,2') € Vo1 = § = (—1)", (6.39)
(z,2') € Vi, = § =0, (6.40)
(z,2") € Vapyr = &= (—=1)" (6.41)

Note that for #? < 0 the specialty condition is no longer true. Therefore, although we can

define Ggp and Ggp, we are not able to obtain other propagators from them.
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6.3.3 Trigonometric Poschl-Teller Hamiltonian

In our further analysis of the anti-de Sitter space we will need properties of the following

1-dimensional Schrodinger operator on L?[0, 5]:

2

a 2

Ve —

_1 1
HY) = —02+ 4 )4 . (6.42)

sin(u)?  cos(u)?
It is called the trigonometric Poschl-Teller Hamiltonian [75] and is one of the 1-dimensional
Schrodinger operators exactly solvable in terms of hypergeometric functions.

By an extension of standard arguments (cf. [76, Chapter X]), one ﬁnds that H 5 3, viewed as
an operator on L?[0, %1, is essentially self-adjoint if both v? > 1and o > 1, it has a positive
Friedrichs extension if 2 > 0 and o > 0, and all self-adjoint extensions are unbounded

from below if 2 < 0 or o < 0.

6.3.4 Propagators from the evolution of Cauchy data

In this subsection we present an approach to propagators on deSd different from that of
Subsection 6.3.2. It is based on the evolution of the Cauchy data. We will use the stationarity
of AdS,.

The Klein-Gordon operator with effective mass m in the coordinates (6.5) is given by

_Dg+m2:_\/|dT ,.g9" /| det g9, +m® (6.43)
Agi—2 m2
2(n2  DBsi2 2-d d—2
= cos(u) ((‘l Sn(a)? tan(u)"0, tan(u)*" 70, + cos(u)2)

with Aga-2 being the Laplace-Beltrami operator on the d — 2-dimensional sphere parametrized
by the coordinates (2. Gauging (6.43) we obtain

2—d

tan(u)%( — 0, + m2) tan(u) 2 640
_ 2 2 9 Asd2+(73) _le VQ_%;
—e (aT SO sin(u)? * cos(u)? (6.45)

with % asin (6.11). For d > 3, the spectrum of —Aga—»is {I(I+d—3) | | € Ny}. Ford = 2,
the term proportional to sin(u)~2 vanishes.

Hence, restricted to eigenfunctions of —Aga-2, (6.44) becomes, up to the prefactor cos( )2

the trigonometric Poschl-Teller Hamiltonian (6.42) with o := [ + 43 ifd>3anda? =1 1f
d=2.

—d
To define dynamics in AdS , one needs to fix a self-adjoint extension of /7, 5 T i.e., boundary

conditions at spacelike infinity. A comprehensive analysis of boundary conditions for Hpr
and their application to anti-de Sitter QFT has been carried out by Ishibashi and Wald [62].
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Notice first that o® < 1if and only if d = 2 ord € {3,4} and [ = 0. Hence, one might expect
that boundary conditions at the origin need to be fixed in these cases. But one can show that
this is merely an artifact of the choice of coordinates and that no boundary conditions at u = 0
are required [62]. The important part is fixing the boundary conditions (i.e., a self-adjoint
extension of H,) at spatial infinity u = 3.

Now for v?> > 1 the operator H 53 is essentially self-adjoint, so the dynamics is uniquely
determined. We can compute all propagators—they agree with those obtained from the

operator-theoretic Feynman propagator. In particular, the specialty condition is true.

For 0 < v? < 1 we have a one-parameter family of self-adjoint extensions, depending on
the boundary condition at spatial infinity. All of them can be used to define the propagators.
Among them there is a distinguished boundary condition given by the Friedrichs extension,
or equivalently, by the analytic continuation in the parameter v. By the uniqueness of analytic
continuation, this leads to propagators that agree with those obtained from the operator-
theoretic Feynman propagator.

2 < 0 there is a one-parameter family of realizations of H'T and all are

Finally, for v aw
unbounded from below. Each of them can be used to define an evolution of Cauchy data, and
hence the retarded and advanced propagator. However, in contrast to the case 0 < v <1,

none of them is distinguished.

A Projections and Krein spaces

The main goal of this appendix is a short presentation of basic facts about Krein spaces,
which provide a natural functional-analytic setting for the Klein-Gordon equation. There
exist comprehensive textbook treatments of spaces with indefinite inner products [7,15]. Our
treatment is perhaps more concise, concentrating on the concepts directly needed in our paper.
To a large extent we follow [41], with some simplifications and improvements.

We start with some useful but not well-known lemmas about projections, involutions and
complementary subspaces, presenting constructions related to pairs of complementary sub-
spaces, which go back to Kato [64]. Then we describe elements of the theory of Krein spaces.
The main result that we prove is the proposition saying that every pair consisting of a maximal
uniformly positive and maximal uniformly negative subspace is complementary, which is
crucial in the construction of the in-out Feynman propagator.

A.1 Involutions

Let WV be a vector space. We do not need topology on WV for the moment. We use the term
“invertible” as a synonym of “bijective”.

Definition A.1. We say that a pair (ZS+), Z.(_)) of subspaces of W is complementary if

ZHnzD ={0}, 2B +z0=w.
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Definition A.2. We say that a pair of operators (H£+), HE_)) on W is a pair of complementary
projections if

M) =1, 0+ 1) =1.
Definition A.3. An operator S, on W is called an involution, if S? = 1.

Note that there is a 1-1 correspondence between involutions, pairs of complementary projec-
tions and pairs of complementary subspaces:

1
IR S(I£5), ZH = RM®). (A.1)
A.2 Pair of involutions I

In this subsection we give a criterion for complementarity of two subspaces, and then we
construct the corresponding projections following Kato [64].

Suppose that S; and S, are two involutions on WW. Let

1
™ = 5 (£ 50, zZH =R, i=1,2,

7

be the corresponding pairs of complementary projections and subspaces. Define
1
T = Z(S1 + Sp)2. (A.2)

Observe that T commutes with Hgﬂ, Hg_), Hgﬂ and Hg_).
Proposition A.4. The following conditions are equivalent:
(i) Y is invertible.
(ii) H§+) + Hg_) and Hé” + Hg_) are invertible.

Moreover, if one of the above holds, then the pairs (Z{Jr), Zé_)) as well as (Z§+), Zf_)) are
complementary.

Proof. The equivalence of (i) and (ii) follows from
T = (57 + 1157y (g + 111) (A3)

by the following easy fact: If R, S, T are maps such that R = ST = T'S, then R is bijective
if and only if both 7" and S are bijective.

The last implication follows from the next proposition. 0

In the setting of the above proposition we can use T to construct two pairs of complementary
projections:
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Proposition A.5. Suppose that Y is invertible. Then
AP =1 r11$Y s the projection onto 27 along 257,
AR =157 M7 s the projection onto 257 along Z(H
Aé? — Hgﬂ’r*ll‘[g*) is the projection onto Zg( ) along Zl( ),
A;) — Hgf)’rfll'[g’) is the projection onto Zl(f) along ZQ(H.

In particular,
AD+AD =1, AP +AL =1

Proof. First we check that Ag) 1s a projection:
(AD)? = BT T
= s + ooyt = A
Moreover,
A =Pt it = v 4oy,

But (H(+) + H )T Land T~ (H )y H( )) are invertible. Hence R(Ag)) = R(Hgﬂ) and
NPy =N (ng)) — R(I1S ). This proves the statement of the proposition about A{}.
The remaining statements are proven analogously. [

Remark A.6. Note that the notation for projections A%) and Agjf) is different than in [41].

A.3 Pair of involutions I1

Let S;, (II; (+) H( )) (ZZ-(H, Z-(_)), i = 1,2, be as in the previous subsection. Set

)

K = SQSl. (A4)

Proposition A.7. K is invertible and

S1KS, = S, KSy = KL, (A.5)

In what follows we will use the decomposition W = Zfr) S3) Zl(_). Under the assumption that

1 + K is invertible, we define

1-K 1-K
H( d =11

1+ K o IH—KH( (A.6)

c:= H(1+)
where c, resp. d are i (=) (+) (+) (=)
, resp. d are interpreted as operators from Z; ’ to Z, "/, resp. from Z; "’ to Z; .
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Proposition A.8. The following conditions are equivalent:
(i) Y is invertible (or Condition (ii) of Proposition A.4 is true).
(ii) 1+ K is invertible.

Suppose that the above conditions are true. As we know from Prop. A.4, the pairs of
subspaces (Zﬁ), Zé_)) and (ZQ(+), Zl(_)) are then complementary. Here are new formulas
for the corresponding projections:

AS) _ (])1 g} projects onto Zﬁ) along ZQ(_)y
AS) _ 8 _Iﬂ projects onto Zé_) along Z1(+)7
Agf) = _]l d 0] projects onto Z§+) along 21(_)7
AG) [0 0 . (=) (+)

0 =g 1 projects onto Z; ’ along Z5"'.

Besides, 1 — dc and 1 — cd are invertible, and we have the following formulas:

T:im+m@+K*ﬁ{m_ﬁrlu_%)J, (A.7a)

o R P A | (A7)

w7 =g o 1= [ e ) 19

e P B [t v e 70

Sh;gﬂJ &:miﬂﬂJ@q_u%%ﬁfgﬂ- (A-7e)
Proof. We have

T:iwrh%f:i@+Kwﬂ+K4) (A.8)

But (1+ K~ ') = K~ '(1+ K). Hence 1+ K is invertible iff 1+ K ! is. Therefore, (i)<(ii).

For the remainder of the proof we assume that 1 + K is invertible. We have

1-K 1-K
- A.
5111+KS1 1+ K (A-9)
Therefore 1_K 1_K
SO (+) =t~ (=)
m~ 1\ =111\ = 0. A.10
D14+ K1 VD 1+K 0 (A-10)
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Hence,

1-K 0 ¢
- ) A1l
1+ K {d 0} (A1D
This implies
1 1|1 ¢ 1 L1 —c
- _ _ = ) A.12
1+ K z[d 11]’ T+ K1 2[—d Il] (A.12)
Multiplying the two expressions of (A.12) yields
1—cd 0
-1
T = { 0 Il—dc} . (A.13)

Hence we proved both identities of (A.7a), as well as invertibility of 1 — c¢d and 1 — dc.

We check that
1 ] [ (M—cd)™ —c(l—de)?
[d Il] o {—al(]l—cal)1 (1 —dc)™? } (A.14)
Now )
1 c| 10
ket 2 a5

yields (A.7b).

The formulas for Hgi) and S are obvious. We obtain S, from Sy = K S;. From S, we get
s,

Now A = P r—111{" yields (A.7¢), ete. O
The operators ¢, d are sometimes called angular operators.

A.4 Pair of self-adjoint involutions in a Hilbert space

Suppose now that WV is a Hilbert space and 5;, ¢ = 1, 2, is a pair of self-adjoint involutions.
Obviously, the corresponding projections 117, 17 are then orthogonal.

2

We will use the orthogonal decomposition VW = Zl(+) &) Zl(f). In this decomposition we can
write

ng) = {él* g] , where 0<A<IT, 0ZC<ZL1L (A.16)

Using (I1$7)2 = 115" we obtain

(A-D*=1-BB, (C-))'=1-BB (A.17)
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For an operator K, o(K') will denote its spectrum. If K is self-adjoint we will write
inf K =info(K), supK =supo(K). (A.18)
It follows from (A.17) that § > sup BB* = sup B*B = || B||?, and hence
0 <inf (3 — BB*) = inf (; — B*B). (A.19)
The following proposition describes the situation where the angle between the projections
HYF) and H;Jr) is not more than 7:
Proposition A.9. The following conditions are equivalent:

1. AZ%andCﬁ%.

2 A=14\/1 BB andC =1~ /1 - B*B.

Proof. 1.<=2. is obvious.
1.= 2. follows from (A.17), where by 1. we need to take the positive square root. 0

The following consequence of Prop. A.9 will be useful in the theory of Krein spaces:

Lemma A.10. Let P be an orthogonal projection and S a self-adjoint involution. Let
1>a>0and

PSP > aP, (A.20)
(1— P)S(1— P) < 0. (A21)
Then

(1- P)S(1— P) < —a(1— P). (A.22)

and T := S(1 — P) + PS is invertible with

1

T < —m . A.23
L e — (A23)

Proof. We set S := 2P — 1, so that P = Hgﬂ, and S := S. Thus we are in the setting of

this subsection. We write Hgﬂ = % as in (A.16), so that

24 —1 2B
S = { 9" 20_]1] (A.24)
Thus,
PSP>0 < A> %, (A.25)
1
(I1-P)S1-P) <0< C< 7 (A.26)
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Hence (A.20) and (A.21) imply the conditions of Proposition A.9, which allows us to rewrite
(A.25) as

o_ [VI-4BB 2B A27)
~| 2B —VI-4B"B| '

By (A.20), V1 — 4BB* > a. So 1 — o? > 4BB*. This implies 1 — a?> > 4B*B, and hence
—+v 1 —4B*B < —a, which proves (A.22).

Now
TT*=1+3P—-SPS—-SPSP — PSPS. (A.28)
Written as a 2 X 2 matrix, it iS

T — [ 1+ 12BB* —4/1— 433*3}

—4B*1—4BB*  1-4B*B
B [(]1 — 2V/BB*)? 0

; (12 W)Q} + W, (A.29)

where

Y

sothat  W* = [2\/]1+2\/B*B(B*B)—iB* 2 ]1—2\/3*3(3*3)%]. (A.30)

Now WW* > 0 and

inf(1— 2V BB*)? = inf(1 — 2V B*B)* > (1 — V1 — a?)*. (A.31)
Thus TT* > (1 — v/1 — a?)?. An analogous argument (where P is replaced with 1 — P)
shows T*T > (1 — +/1 — a?)%. This proves (A.23). O

A.5 Hilbertizable spaces

Definition A.11. Let )V be a complex> topological vector space. We say that itis Hilbertizable
if it has the topology of a Hilbert space for some scalar product (- |-), on W. We will then
say that (-|-)s is compatible with (the Hilbertizable structure of) VY. The Hilbert space
(W, (+]-)s) will be occasionally denoted W,. We denote the corresponding norm by || - ||,
the orthogonal complement of Z C W by Z-* and the Hermitian adjoint of an operator A
by A*°.

5Analogous definitions and results are valid for real Hilbertizable spaces.
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In what follows W is a Hilbertizable space. Let (-] -)1, (- |-)2 be two scalar products compatible
with W. Then there exist constants 0 < ¢ < C such that

c(wlw); < (wlw)s < C(w|w);.

Let R be a linear operator on V. We say that it is bounded if for some (hence for all)
compatible scalar products (-|-), there exists a constant C, such that

[Rwlls < Coffwlle.

Let () be a sesquilinear form on V. We say that it is bounded if for some (hence for all)
compatible scalar products (-|-)e there exists C, such that

((v]Qu)| < Cellvllo[lwlls, v, weW.

A.6 Pseudounitary spaces

Let (W, Q) be a Hilbertizable space equipped with a bounded Hermitian form,

(v|Qw) = (w|Quv), v,weW. (A.32)

Definition A.12. Let Z C V. We define its Q-orthogonal companion as follows:

ZR={weWw|(w|Qv)=0,vec Z}
Clearly, Z+ is a closed subspace of W .

Definition A.13. Let w € WW. We say that w is positive, negative, resp. neutral if
(wQw) >0, (wlQw)<0, resp. (w|Quw)=0. (A.33)

We say that a subspace Z C W is positive, negative, resp. neutral if all its elements are
positive, negative, resp. neutral elements.

Definition A.14. We say that (W, Q) is a pseudounitary space if W9 = {0}.

A.7 Krein spaces

Let (W, Q) be a Hilbertizable space equipped with a bounded Hermitian form.

Definition A.15. A bounded involution S, on VW will be called admissible if it preserves @),
that is,
(Sev | QSew) = (v|Quw), (A.34)

and

(v|w), == (v]|QSew) = (Sev | Qw) (A.35)

is a scalar product compatible with the Hilbertizable structure of V.
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Definition A.16. A space (W, Q) is called a Krein space if it possesses an admissible
involution.

Clearly, a Krein space is a pseudounitary space.

Remark A.17. In the literature sometimes instead of the term “admissible involution” one
finds “fundamental symmetry”.

For any admissible involution S,, we define the corresponding particle projection {7 and
particle space Z.(+), as well as the antiparticle projection 11{”) and antiparticle space Z.(_), as
in (A.1). The decomposition WV ~ 20 @ 27 is often called a Sfundamental decomposition.
Note the following relations:

Definition A.18. Let A be a bounded operator on V. Then there exists a unique operator
A*9 called the Q-adjoint of A such that

(A9 | Qu) = (v|QAw), v, w e W. (A.36)

Let Z C VW and let A be an operator on V. We have the identities:

Ze = g,zt (A.37)
A@ = G, A*S,. (A.38)

With the help of these identities it is easy to show various properties of L () and xe:
Proposition A.19. 1. If Z is a closed subspace, then (Z+%?)1Q = Z.

2. If 21, Z5 are complementary subspaces in WV, then so are le Q, 2’2L @

3. Suppose that (1Y) 117)) is a pair of complementary projections. Then (II1)*Q [1(-)*@)
is also a pair of complementary projections and

R(MIHQ) = N(IIF*Q) = R(IIF)LQ = A(IH)LC, (A.39)

Definition A.20. Let R be a bounded invertible operator on (W, (). We say that R is
pseudo-unitary if
(Rv|QRw) = (v|Quw). (A.40)

72



A.8 Krein spaces with conjugation

Definition A.21. An antilinear involution v — v on a Krein space (W, Q)) will be called a
conjugation if it antipreserves (), that is

(v|Quw) = —(ev|Qew) (A.41)
and there exists an admissible involution S, such that €S, = —S,.

Note that then

(ev|ew)s = (v]w)

Definition A.22. We say that an operator R is real if R := ¢Re = R. We say that R is
anti-real if R = — R, that is, if iR is real.

Krein spaces with conjugations are especially important: Suppose that (W, Q) is a Krein
space with conjugation. Clearly, if S, is an admissible anti-real involution, then

) =), 2z =z

so that WW = Z.(+) D Z.(+).

A.9 Maximal uniformly positive/negative subspaces

Let (W, Q) be a Krein space. We want to characterize definite subspaces with good properties.
Following [15] we make the following definition.

Definition A.23. Let Z be a subspace of W.

1. We say that it is uniformly positive/negative if for some scalar product (-|-), compatible
with the Hilbertizable structure of V there exists oy > 0 such that

vEZ = (V|QU) > ae(v|v)s, resp. vEZ = (v|Qu) < —al(v[v)e. (A42)
2. We say that Z is maximal uniformly positive/negative if it is a maximal subspace with
the property of uniform positivity/negativity.

The following proposition, whose statement partially overlaps with Thm. V.5.2. and Cor.
V. 7.4. in [15], relates maximal uniformly positive/negative spaces to fundamental decompo-
sitions and admissible involutions.

Proposition A.24. Let 2 be a subspace of V. Set 2 = 209 The Jollowing
conditions are equivalent:

1. Z.(+) is maximal uniformly positive.

73



)

2. 25 is maximal uniformly positive and 27 is maximal uniformly negative.

3. The spaces 2 and 287 are complementary, and if (H£+), HS_)) is the corresponding
pair of projections, then S, := 1157 — 1187 is an admissible involution.
Proof of Prop. A.24. Assume 3). Then (-|-), := (:|@S,-) is compatible and
(V|Qv)s = £(v|v)s, veE ZD. (A.43)

Hence Z{* are maximal uniformly positive/negative. This proves 3)=2).
2)=-1) is obvious.

Now assume 1). Let Sy be an arbitrary admissible involution with the corresponding scalar
product (+|-)o. First note that 27 s negative. Indeed, suppose that v; € z{)

positive. Then for some o

is strictly

<U1|QU1) 2 Oél(Ul‘Ul)o. (A44)

Hence Span(Z.(+), v1) is uniformly positive, which contradicts the maximality of zM,

Let P by the orthogonal projection (in the sense of (-|-)g) onto Z{"). Then an arbitrary
element of Z{ has the form Pv and of Z{™ the form So(1 — P)v for some v € W.

By the uniform positivity of ZSH, resp. by negativity of Z.(f), we have

(v|PSpPv)y = (Pv|SoPv)y = (Pv|QPv) > a(Pv|Pv)y (A.45)
and
(v|(1 = P)So(1 — P)v)g = (So(1 — P)v|(1 — P)v)g
= (So(1 — P)v|QSo(1 — P)v) < 0. (A.46)

Lemma A.10 then implies the uniform negativity of z{:

(0](T = P)So(1 = PJv)o < —a(v[(1 = P)v)o

Clearly, 0 # w € 20 1 2{7 has to be simultaneously positive and negative. Hence
zM 0zl = o).

As maximal positive/negative subspaces, 2 and 2{7) are automatically closed.

Set
T :=Sy(1— P)+ PS,. (A.48)
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For any w € W, PSow € z and So(1— P)w € Z{). Hence the range of 7" is contained
in Z.(+) + Z.(_). By Lemma A.10, 7" is invertible, hence the range of 7" is WW. Therefore,
w=z" 4z,

We have proved that Z{ and 287 are complementary. Let S, be the corresponding involu-
tion. It is obviously bounded. Besides,

(v[v)e := (V|QSev) > a(v|v)o. (A.49)
Hence (-|-), is compatible. This ends the proof of 1)=-3). O

Here is another proposition about fundamental decompositions. Note that it does not involve
a reference to the topology of WV, but only to the form Q).

Proposition A.25. Let 2 and 28 be complementary subspaces of a Krein space (W, Q),
Q-orthogonal to one another. Assume that 2 are positive resp. negative, contain no

neutral elements apart from 0 and are complete in the norm ||v||(x) := /£(v|Qv). Then

Z(H1Q

Z*) is maximal uniformly positive/negative and zZ{) = , So that we are precisely in

the setting described by Prop. A.24.

Proof. Let S, be the involution defined by W = Z.(+) &) Z.(_). As usual, we introduce

the corresponding scalar product (v|w)e = (v|QSe,w) and the norm || - ||. Note that
[v]le = 0]l if v € 282
Let || - ||; be any compatible norm. Clearly, by the boundedness of (), we have

[olle < Cllvlls- (A.50)

Consider the identity operator from WV with || - ||¢ to W with || - ||;. In both norms W is
complete. Then the identity is bounded. Hence it is closed. The operator is bijective. Hence
by Banach’s theorem its inverse is bounded. Therefore we have

[ollx < clfvlle. (A.51)

Thus, Z*) are uniformly positive resp. negative. 0

Proposition A.26. Let S, Sy be a pair of admissible involutions. Define K, c,d as in (A.4)
and (A.6). Then K is pseudo-unitary on (W, Q) and K is positive with respect to both (-|-);
and (+|)o. Besides, ||c|| < 1 and ¢* = d with respect to (-|-);.

Proof. K is pseudo-unitary as the product of two pseudo-unitary transformations. The
inequality
(v|Kv); = (S1v|QS251v) = (S1v]S1v)2 > a(S1v|S1v)1 = a(v|v),

with a > 0 shows the positivity of K with respect to (-|-);. Therefore, 1+ K is invertible and

”%” < 1. Hence ||c|| < 1. O
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We finally show that any pair consisting of a maximal uniformly positive and a maximal
uniformly negative subspace is complementary. (See also Lem. V.7.6. in [15]).

Proposition A.27. Suppose that Z{Jr) is a maximal uniformly positive space and ZQ(_) is a
maximal uniformly negative space. Then they are complementary.

Proof. Set Zf_) = Z{HLQ and ZQ(+) = Zé_)LQ. Let S; resp. S2 be the involutions
corresponding to the pairs of complementary subspaces (Zl(+), Zl(f)), resp. (22(+), Zz(f)).
They are admissible. By Prop. A.26, K = 5,5 is positive. Hence 1 + K is invertible. Thus
the result follows from Prop. A.8. 0

B Gegenbauer equation

For the convenience of the reader, we present in this appendix basic statements about Gegen-
bauer functions needed in Sections 5 and 6. More details on Gegenbauer functions can be
found e.g. in [36], on which this section is based.

Here is the Gegenbauer equation:

13\ 2
((1 — w2 = 2(1 + @)wdy, + N> — (a + 5) >f(w) =0. (B.1)
We will express its solutions in terms of the Olver normalized Gauss hypergeometric function:
Fla,bie;2) o~ (@)a(b)n2”
Fla.b:c: 2) — - . B.2

The defining series converges only in the unit disc, but F(a, b; ¢; z) extends to a holomorphic
function on C\[1, oo[ as well as on a universal cover of C\{0, 1}.

In what follows complex power functions should be interpreted as their principal branches
(holomorphic on C\ | — 00, 0]). For example w — (1 —w)® is holomorphic away from [1, co].
In addition, we will frequently use the notation

(w? = 1) = (w — 1)*(w + 1) (B.3)

The function (w? — 1) is holomorphic on C\| — oo, 1], whereas (w? — 1) is holomorphic
on C\([-1,1] UiR). One has (w? — 1)¢ = (w? — 1)* only for Re(w) > 0. However,

(1 —w?)*=(1—-w)*(1+w)*forall w €] — oo, —1] U [1, 00].

Standard solutions of the Gegenbauer equations are characterized by simple behavior at one
of the three singular points 1, —1,00. Due to the w — —w symmetry of the equation
(B.1), solutions of the second type are obtained from solutions of the first type by negating
the argument. Therefore we consider 4 functions, corresponding to 2 behaviors at 1 and 2
behaviors at co. All of them are holomorphic on C\| — oo, 1].
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* The solution characterized by asymptotics ~ 1 at 1:

1 1 1—w
Sacir(w) = F(5+a+ A5 +a—Aa+1;——) (B.4)
2 @ 1 1 1—w
I L U SR
(w+J S A - Aat ] (B.5)

Sq, 18 distinguished among the four solutions introduced here by the fact that it is
holomorphic on C\| — oo, —1] rather than only on C\] — oo, 1].

2204

* The solution mS,a, A(w) is characterized by asymptotics ~ ﬁ at 1.

—a—A\

* The solution characterized by asymptotics ~ w2 at +-o00:

1 1 2
Za)\(’w) = (w + 1)_%_a_>\F<§ + )\, 5 + /\ + Qg 1 + 2)\, —> (B6)

1+w
g (l A3 o A 1
Crep(lat A3 e Ly
W Tty Ty Tt AL

a4

* The solution Z, _,(w) is characterized by asymptotics ~ w2 at +-o0.

All these 4 functions can be expressed in terms of S, , but for typographical reasons it is
convenient to introduce also Z, . We will use Olver’s normalization:

1 1

= - 4 = —"7 . B.
We note the identities
Z_,\(w
SCX’)\(U)) = Sm_,\(w), Za,,\(w) = ﬁ. (BS)
Here are the connection formulas:
cos(T) 22°rS_, a(w)
Soa(—w) = — — S, - : , (B9
A=w) sin(ma) Alw) + sin(ra)l(5 + a+ AN(5 +a — A)(1 —w?)e ®B-9)
2r-a=3 /7S, (w o Ma—3 /x S_ o a(w
Za,)\<w) = — — \/1_ 7>\( ) - - \/_ 21 >\( )’ (B.l())
sin(ra)l'(; —a+ X)) sin(ra)T'(; +a+A) (w? —1)¢
1
9 AaTy Z. 22,
Sa(w) =— VT 1“W> + I’AM : (B.11)
sin A F(§+a—)\) F(§+a+/\)

From its definition, it is clear that Z,,  satisfies
(1
ZQA(—uJ¢10)::ei”(iﬂﬂ“)zaA(uniiox w € R. (B.12)

For further information on Gegenbauer functions (in various conventions), consult for example
[36,46,55,73,86].
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