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1 Hilbert spaces

1.1 Hilbert spaces

Let V be a vector space equipped with a scalar product v, w 7→ (v|w). It has then the norm
‖v‖ := (v|v)

1
2 .We say that V is a Hilbert space if V with metric d(v, w) := ‖v − w‖ is complete

Example 1.1 Consider a measurable function ]a, b[3 x 7→ ρ(x) > 0. (a can be −∞ and b can
be +∞). We define L2([a, b], ρ) as the space of measurable functions

f : [a, b]→ C

such that ∫ b

a
|f(x)|2ρ(x)dx <∞.

It is a Hilbert space if equipped with the scalar product

(f |g) :=

∫ b

a
f(x)g(x)ρ(x)dx, f, g ∈ L2([a, b], ρ).

Example 1.2 Let fn(x) = nαxe−nx and 1 < α < 3
2 . Then sup fn →∞ and ‖f‖2 → 0.

1.2 Orthogonal bases

Let V be a Hilbert space For W ⊂ V, the orthogonal complement of W is

W⊥ := {v ∈ V : (w|v) = 0, w ∈W}.

Note that W⊥ is always a closed subspace of V.
Let {f1, f2, · · · } ⊂ L2([a, b], ρ). We say that it is an orthogonal system if

(fn|fm) = 0, n 6= m.
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If in addition (fn|fn) = 1, then we say that it is an orthonormal system.
We say that {f1, f2, . . . } is an orthogonal basis in V, if it is an orthogonal system, all its

elements are nonzero, and {f1, f2, . . . }⊥ = {0}.
We say that {f1, f2, . . . } is an orthonormal basis in V if it is an orthonormal system and

{f1, f2, . . . }⊥ = {0}.
Obviously, if {f1, f2, · · · } is an orthogonal basis, then we can transform it into an orthonormal

basis by replacing fn with fn
‖fn‖ .

Theorem 1.3 Let (f1, f2, . . . ) be an orthonormal basis.
(1) Let (c1, c2, . . . ) be a complex sequence such that

∞∑
j=1

|cj |2 <∞. (1.1)

Set

hn :=

n∑
j=1

cjfj . (1.2)

Then there exists h ∈ V such that ‖h− hn‖ → 0.

(2) Let h ∈ V. Set cj := (fj |h). Then (1.1) is true and if we define hn as in (1.2), then
‖h− hn‖ → 0.

Proof. (1) For n ≥ m we have

‖hn − hm‖2 =
n∑

j=m+1

|cj |2. (1.3)

From (1.1) we see that (1.3) converges to 0 when n,m → ∞. Hence the sequence (hn) is a
Cauchy sequence. We know that the space V is complete. Therefore, (hn) has a limit.

(2) First we check that
n∑
j=1

|cj |2 ≤ ‖h‖2.

Hence
∞∑
j=1

|cj |2 ≤ ‖h‖2.

Therefore, (1.1) is satisfied. By (1) the limit h̃ := limn→∞ hn exists. We check that (h−h̃|fj) = 0,
j = 1, 2, . . . . Hence h− h̃ = 0. 2

We will write
∞∑
j=1

cjfj := h,

where h is defined as in the above theorem.
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Example 1.4 In L2([−π, π]), en = einφ, n ∈ Z, is an orthogonal basis and (en|en) = 2π. If
f ∈ L2([−π, π]), we obtain ∥∥∥∥∥∥f − lim

n→∞

1

2π

∑
|j|≤n

f̂je
inφ

∥∥∥∥∥∥→ 0,

where
f̂n :=

∫ π

−π
f(φ)e−inφdφ

are Fourier coefficients of f .

Example 1.5 Another related bases in L2([−π, π]) are f+
n := cosnφ, f−n := sinnφ, n = 1, 2, . . . ,

(f±n |f±n ) = π, f0 := 1, (f0|f0) = 2π.

Example 1.6 In L2([0, π]) we have an orthogonal basis cn := cosnφ, n = 1, 2, . . . , (cn|cn) = π
2 ,

c0 = 1, (c0|c0) = π. Another orthogonal basis in L2([0, π]): sn := sinnφ, n = 1, 2, . . . , (sn|sn) =
π
2 .

There are functions, which have a more convenient expansions in cosines, other in sines:

1 = c0 =
1

π

∞∑
m=0

2

2m+ 1
s2m+1,

sinφ = s1 =
1

π

∞∑
m=1

( 1

2m− 1
− 1

2m+ 1

)
c2m.

1.3 Fourier series

Example 1.7 h(φ) := (a− eiφ)−1, a > 1. Then

ĥn =

{
2πa−n−1, n = 0, 1, . . . ;
0, n = −1,−2, . . . .

Example 1.8 h(φ) := (eiφ − a)−1, a < 1. Then

ĥn =

{
0, n = 0, 1, 2, . . . ;
2πa−n−1, n = −1,−2, . . . .

Example 1.9 h(φ) := φ. Then

ĥn =

{
i2π(−1)n

n , n 6= 0
0. n = 0.

This follows from h(φ) = −i log(1 + eiφ) + i log(1 + e−iφ).

If we sum up

h(n)(φ) :=
∑
|j|≤n

ĥje
inφ

2π
,
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then we will notice in the neighborhood of φ = ±π the so-called Gibbs phenomenon: the function
h(n) “overshoots"’ the functioni h. In fact,

h(n)(−π + ε) = −2

n∑
j=1

sin εj

j
.

In a neighborhood of discontinuities of h we notice "‘wiggles"’ of h(n), which get narrower as n
increases, but which does not reduce its height. This wiggle has a universal limiting shape. In
fact

lim
n→∞

h(n)

(
−π +

c

n

)
= −2

∫ c

0

sinx

x
dx.

Thus if a function has a discontinuity of the form of a jump aπ, in the partial sum of the
Fourier series there will be a jump 2ac, where c =

∫ π
0

sinx
x dx > π

2 is the so-calledWilbraham-Gibbs
constant.

1.4 Orthogonal projections

We say that an operator P is a projection if P 2 = P . A projection P is called orthogonal if
KerP = RanP⊥. Equivalently: P = P ∗. We then say that P is the orthogonal projection onto
RanP .

If v is a nonzero vector, then the orthogonal projection onto Cv is

Pvw =
v(v|w)

(v|v)
.

In the physical literature this is often denoted as |v)(v|
(v|v) .

Ifi v1, . . . , vn is an orthogonal basis of a subspace V0, then the orthogonal projection onto V0

is

PV0 =

n∑
j=1

|vj)(vj |
(vj |vj)

.

Example 1.10 Consider L2([−π, π]). The orthogonal projection Pn onto the space spanned by
eijφ z |j| < n has the integral kernel

Pn(φ, ψ) =
sin (2n+1)(φ−ψ)

2

2π sin (φ−ψ)
2

.

Example 1.11 Consider L2([0, π]). The orthogonal projection Pn onto the space spanned by
sin jφ, j = 1, . . . , n has the integral kernel

Pn(φ, ψ) =
sin (2n+1)(φ+ψ)

2

2π sin φ+ψ
2

−
sin (2n+1)(φ−ψ)

2

2π sin φ−ψ
2

.
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1.5 Gram-Schmidt orthogonalization

Let (g1, g2, . . . ) be a sequence of linearly independent vectors in the Hilbert space V. Let Vn be
the subspace spanned by g1, . . . , gn. Then Vn has dimansion n and V1 ⊂ V2 ⊂ · · · .

We define inductively

fn := gn −
n−1∑
j=1

fj(fj |gn)

‖fj‖2
= (1− Pn−1)gn,

where Pn is the orthogonal projection onto Vn. Then (f1, f2, . . . ) is an orthogonal system.

2 Orthogonal polynomials

2.1 Density of polynomials in a weighted space

Consider the space L2([a, b], ρ) defined in Example (1.1) Recall that

L2([a, b], ρ) :=

{
f : [a, b]→ C |

∫ b

a
|f(x)|2ρ(x)dx <∞

}
with the scalar product

(f |g)ρ :=

∫ b

a
f(x)g(x)ρ(x)dx.

Suppose in addition that ∫ b

a
|x|nρ(x)dx <∞, n = 0, 1, . . . .

Then the monomials 1, x, x2, . . . are a linearly independent system in L2([a, b], ρ). Applying
the Gram-Schmidt construction we obtain orthogonal polynomials P0, P1, P2, . . . . Note that
degPn = n.

There exists a simple criterion which allows us to check whether it is an orthogonal basis.

Theorem 2.1 Suppose that for a certain ε > 0∫ b

a
eε|x|ρ(x)dx <∞.

Then polynomials are dense in L2([a, b], ρ). Hence, P0, P1, . . . are an orthogonal basis of L2([a, b], ρ).

Proof. Let h ∈ L2([a, b], ρ). Then for |Imz| ≤ ε
2∫ b

a
|ρ(x)h(x)e−ixz|dx ≤

(∫ b

a
ρ(x)eε|x|dx

) 1
2
(∫ b

a
ρ(x)|h(x)|2dx

) 1
2

<∞.
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Hence for |Imz| ≤ ε
2 we can define

F (z) :=

∫ b

a
ρ(x)e−izxh(x)dx.

Therefore, the function F is analytic in the strip {z ∈ C : |Imz| < ε
2}. Let (xn|h) = 0,

n = 0, 1, . . . . Then

dn

dzn
F (z)

∣∣∣
z=0

= (−i)n
∫ b

a
xnρ(x)h(x)dx = (−i)n(xn|h) = 0.

But an analytic function which vanishes together with all its derivatives at one point is zero in
the whole domain (if the domain is connected). Hence F = 0 in the whole strip, in particular on
the real line. Thus ĥ = 0. Using the inverse Fourier transform we obtain h = 0.

Therefore, the orthogonal complement of the set of polynomials is zero. Hence polynomials
are dense in L2([a, b], ρ). 2

2.2 Christoffel-Darboux formula

Let P0, P1, P2, . . . be a basis of orthogonal polynomials Let pn(x) = Pn(x)
‖Pn‖ be the corresponding

orthonormal basis.
The matrix elements of the operator of multiplication by x are denoted

βjm := (pj |xpm) =

∫ b

a
ρ(x)xpj(x)pm(x)dx.

Let kj be the coefficient of pj at the power xj .

Theorem 2.2

βjm = βmj , (2.1)
βjm = 0, |j −m| ≥ 2, (2.2)

βj,j+1 =
kj
kj+1

, (2.3)

We have the recurrent formula

xpn = βn,n−1pn−1 + βn,npn + βn,n+1pn+1. (2.4)

Proof. (2.1) is obvious
Let us show (2.2). We can assume that m + 2 ≤ j. Then xpm is a polynomial of degree

m+ 1 < j. Hence it is orthogonal to pj . Therefore, (pj |xpm) = 0.
We have

xpj = kjx
j+1 + q =

kj
kj+1

pj+1 + r,
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where degq ≤ j and degr ≤ j. Hence

(xpj |pj+1) =
kj
kj+1

(pj+1|pj+1) + (r|pj+1) =
kj
kj+1

.

(2.4) follows from

xpn =

∞∑
j=0

pj(pj |xpn).

2

Theorem 2.3 (The Christoffel-Darboux formula) The integral kernel of the orthogonal pro-
jection onto the space of polynomials of degree ≤ n is

Pn(x, y) =
n∑
k=0

pk(x)pk(y)

= kn
kn+1

pn(y)pn+1(x)−pn+1(y)pn(x)
x−y ,

and on the diagonal

Pn(x, x) =
kn
kn+1

(pn(x)p′n+1(x)− pn+1(x)p′n(x)).

Proof. Let Qk be the orthogonal projection onto pk. Its integral kernel is

Qk(x, y) = pk(x)pk(y).

The integral kernel of [x,Qk] is

xQk(x, y)−Qk(x, y)y = xpk(x)pk(y)− pk(x)pk(y)y

= βk,k−1(pk−1(x)pk(y)− pk(x)pk−1(y))

+βk+1,k(pk+1(x)pk(y)− pk(x)pk+1(y)).

Hence, [x, Pn] =
∑n

k=0[x,Qk] has the integral kernel

xPn(x, y)− Pn(x, y)y = βn,n+1(pn+1(x)pn(y)− pn(x)pn+1(y)).

2

2.3 Chebyshev polynomials of the 1st kind

Consider the space
L2([−1, 1], (1− x2)−

1
2 ).

Define
Tn(cosφ) = cosnφ, φ ∈ [0, π],

Tn(x) = 1
2((x+ i

√
1− x2)n + (x− i

√
1− x2)n), x ∈ [−1, 1].
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Theorem 2.4 The polynomials Tm form an orthogonal basis such that

‖T0‖2 = π, ‖Tn‖2 =
π

2
, n = 1, 2, . . . .

They satisfy the equation
((1− x2)∂2

x − x∂x + n2)Tn(x) = 0. (2.5)

Proof. Define
W : L2([−1, 1], (1− x2)−

1
2 )→ L2([0, π]),

Wf(φ) := f(cosφ).

Then

‖Wf‖2 =

∫ π

0
|f(cosφ)|2dφ = −

∫ π

0
|f(cosφ)|2 sin−1 φd cosφ =

∫ 1

−1
|f(x)|2(1− x2)−

1
2 dx.

Hence W is a unitary operator. Besides,

WTn(φ) = Tn(cosφ) = cosnφ.

We have
(∂2
φ + n2) cosnφ = 0. (2.6)

To see (2.5), we compute:

∂φWf(φ) = − sinφf ′(cosφ),

W ∗∂φWf(x) = − sin(arccosx)f ′(x) = −(1− x2)
1
2∂xf(x).

Hence

W ∗∂φW = −(1− x2)
1
2∂x,

W ∗∂2
φW = (W ∗∂φW )2 = (1− x2)∂2

x − x∂x.

2

Properties:

|Tn(x)| ≤ 1, |x| < 1,

Tn(±1) = (±1)n,
∞∑
n=0

Tn(x)rn =
1− rx

1− 2rx+ r2
,

∞∑
n=1

Tn(x)
rn

n
= − log(1− 2rx+ r2).
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2.4 Chebyshev polynomials of the 2nd kind

Consider the space
L2([−1, 1], (1− x2)

1
2 ).

Define
Un(cosφ) = sin(n+1)φ

sinφ , φ ∈ [0, π],

Un(x) = (x+i
√

1−x2)n+1−(x−i
√

1−x2)n+1

2i
√

1−x2 , x ∈ [−1, 1].

Theorem 2.5 The polynomials Um are an orthogonal basis and

‖Un‖2 =
π

2
, n = 0, 1, 2, . . . .

The satisfy the equation

((1− x2)∂2
x − 3x∂x + n(n+ 2))Un(x) = 0. (2.7)

Proof. Define
V : L2([−1, 1], (1− x2)

1
2 )→ L2([0, π]),

V f(φ) := f(cosφ) sinφ.

Then

‖V f‖2 =

∫ π

0
|f(cosφ)|2 sin2 φdφ = −

∫ π

0
|f2(cosφ)| sinφd cosφ =

∫ 1

−1
|f(x)|2(1− x2)

1
2 dx.

Hence the operator V is unitary. Besides,

V Un(φ) = Un(cosφ) sinφ = sin(n+ 1)φ.

We have
(∂2
φ + (n+ 1)2)) sin(n+ 1)φ = 0. (2.8)

To see (2.7), we compute:

∂φV f(φ) = − sin2 φf ′(cosφ) + cosφf(cosφ),

Hence,

V ∗∂φV = −(1− x2)
1
2∂x + x(1− x2)−

1
2 ,

[V ∗∂2
φV = (V ∗∂φV )2 = (1− x2)∂2

x − 3x∂x − 1.

2

Properties:

|Un(x)| ≤ (1− x2)−1/2, |x| < 1,

Un(±1) = (±1)n(n+ 1),
∞∑
n=0

Un(x)rn = (1− 2rx+ r2)−1.
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3 Operators

3.1 Bounded operators

Let A be a linear operator from a Hilbert space V into W. We say that A is bounded if

sup{‖Av‖ : v ∈ V, ‖v‖ ≤ 1} =: ‖A‖

is finite. The set of bounded operators from V into W is denoted B(V,W). Ifi V =W, we write
B(V) = B(V,V).

3.2 Integral kernel

Consider the space L2([a, b], ρ). Often an operator A on L2([a, b], ρ) can be described by a
function [a, b]× [a, b] 3 (x, y) 7→ A(x, y) such that

Af(x) :=

∫ b

a
A(x, y)f(y)ρ(y)dy.

For instance, if v1, . . . , vn is an orthonormalbasis of a subspace V0, then PV0 , hence the orthogonal
projection onto V, has the integral kernel

PV0(x, y) =
n∑
j=1

vj(x)vj(y).

We can show that if
∫ b
a |A(x, y)|2ρ(x)dxρ(y)dy <∞, then A is a bounded operator.

3.3 Adjoint operators

Let A ∈ B(V,W). Then
(w|Av) = (A∗w|v), v ∈ V, w ∈ W

defines the operator A∗ (Hermitian) conjugate to A. We have A∗ ∈ B(W,V). If the integral
kernel of A is A(x, y), then the integral kernel of A∗ is A(y, x).

We say that A is self-adjoint if
A = A∗.

We say that A is unitary if
AA∗ = A∗A = 1.

A is normal if
AA∗ = A∗A.

3.4 Point spectrum

Let A be a linear operator on a vector space V. Recall that λ ∈ C is an eigenvalue of A if there
exists a nonzero vector v ∈ V such that Av = λv. The set of eigenvalues of A is called the point
spectrum of A and is denoted by spp(A).

12



3.5 Spectrum

Assume in addition that V is a Hilbert space and B a bounded operator on V.. We say that B
is invertible if B is a bijection and B−1 is bounded.

We say that λ ∈ C belongs to the spectrum of A if λ−A is not invertible. The spectrum of
A is denoted sp(A).

If z ∈ C does not belong to spA, then there exists the resolvent of the operator A

(z −A)−1.

It is easy to see that the point spectrum of A is a subset of its spectrum, that is, spp(A) ⊂
sp(A). In fact, let v ∈ spp(A), or Av = λv, v 6= 0. Then (λ − A)v = 0, hence λ − A is not
injective, so that λ ∈ sp(A).

3.6 Spectrum in finite dimension

Assume that the space V is finite dimensional. Then there exist convenient criteria for the
invertibility of linear operators.

Theorem 3.1 Let B be an operator on V. Then the following conditions are equivalent:
(1) B is invertible

(2) KerB = {0}.
(3) detB 6= 0

Therefore, in finite dimension the spectrum can be determined by several methoids:

Theorem 3.2 Let A be anoperator on V and λ ∈ C. Then the following conditions are equiva-
lent:
(1) λ is an eigenvalue of A.

(2) λ−A is not invertible

(3) det(λ−A) = 0.

In infinite dimension the first condition implies the second, but the third condition usually
is meaningless.

3.7 Spectral Theorem in finite dimension

Spectral Theorem in finite dimension belongs to the basic linear algebra course:

Theorem 3.3 Let A be a normal operator on a finite dimensional Hilbert space. Then there
exists an orthonormal basis of eigenvectors of A.

A is self-adjoint iff all its eigenvalues are real.
A is unitary iff its all eigenvectors have absolute value 1.

13



Example 3.4 Let ej, j = 1, . . . , n, be the canonical basis of Cn. Define the operator U by

Uej := ej+1, j = 1, . . . , n− 1, Uen = e1.

Then U is unitary, its eigenvalues are e
ik2π
n , k = 0, . . . , n− 1 with corresponding normed eigen-

vectors

wk =
1√
n

n∑
j=1

e
ijk2π
n ej .

Example 3.5 Let vσ =
∑3

i=1 viσi, where v1, v2, v3 ∈ R and σi are the Pauli matrices on C2.
Then vσ is self-adjoint. It is unitary if v2

1 + v2
2 + v2

3 = 1. Eigenvalues are ±
√
v2

1 + v2
2 + v2

3 and
eigenvectors

w+ =
√

1 + v1e1 +
v2 + v3√

1 + v1
e2, w− =

√
1− v1e1 +

−v2 + v3√
1− v1

e2.

3.8 Continuous spectrum

In an infinite dimensional Hilbert space one can formulate a generalization of Spectral Theorem.
It is however more difficult. Below we discuss the first additional difficulty, which appears in
infinite dimension.

Eigenvectors corresponding to distinct eigenvalues are orthogonal to one another. There may
be a continuous spectrum.

Example 3.6 On L2([0, 1]) we define (Af)(x) = xf(x). This operator is self-adjoint, but has
no eigenvectors.

Example 3.7 On L2(Z), let ej denote the canonical basis. Define the operator U by Uen :=
en+1. It is unitary, but has no eigenvectors.

3.9 Unbounded operators

One of the most inconvenient aspects of the operator theory on infinitely dimensional spaces,
is the unboundedness of many physicaly important operators. This is related to an additional
trouble: in practice such operators are not defined on the whole Hilbert space, only on its dense
subspace. This subspace is called the domain of a given operator. The domain of the operator
A will be denoted DomA.

This problem is absent in finite dimensions, where all operators are bounded.

Example 3.8 On L2(R), let us try to define the operator (Af)(x) = xf(x). The vector (x+i)−1

belongs to L2(R), but x(x+ i)−1 does not belong to L2(R). Thus (x+ i)−1 does not belong to the
domain of A.

Example 3.9 On L2(R) let us try to define the operator pf(x) = 1
i ∂xf(x). The vector θ(x)e−x

belongs to L2(R), but 1
i ∂xθ(x)e−x does not belong to L2(R). (θ(x) denotes the Heaviside func-

tion). Therefore, θ(x)e−x does not belong to the domain of p.
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3.10 Spectrum of unbounded operators

Let A be a linear operator, perhaps unbounded, with domain Dom(A) ⊂ V.
λ ∈ C is an eigenvalue of A if there exists v ∈ Dom(A) such that Av = λv. The set of

eigenvalues is called the point spectrum of A. It is denoted by spp(A).
We say that A is invertible if it is a bijection Dom(A)→ V and A−1 (which is defined on the

whole V) is bounded.
We say that λ ∈ C belongs to the spectrum of A, if λ−A is not invertible. The spectrum of

A is denoted by sp(A).
In the same way as for bounded operators we show that spp(A) ⊂ sp(A).

3.11 Hermiticity

For unbounded operators there exist more than one generalization of the concept of self-adjointness
(Hermiticity).

Consider a Hilbert space V. Let A be an operator with domain DomA, which is a dense
subspace of V. Let the image of A be in V. We say that A is Hermitian (or symmetric) if

(w|Av) = (Aw|v), v, w ∈ DomA.

This is a condition which is easy to check in practice. Unfortunately, from the theoretical point of
view the more interesting concepts are the self-adjointness and essential self-adjointness, which
are more difficult to formulate. Every self-adjoint operator is essentially self-adjoint. Every
essentially self-adjoint operator is Hermitian. However, the converse statements are in general
not true.

The Hermiticity itself is enough to show the following properties:

Theorem 3.10 Let A be a Hermitian operator with domain DomA.
(1) If v ∈ DomA is an eigenvector with eigenvalue λ, that is Av = λv, then λ ∈ R.
(2) If λ1 6= λ2 eigenvalues with eigenvectors v1 and v2, then v1 is orthogonal to v2.

Proof. The proof is identical as in the finite dimensional case. To prove (1) we compute:

λ(v|v) = (v|Av) = (Av|v) = λ(v|v).

Then we divide by (v|v) 6= 0.
Proof of (2):

(λ1 − λ2)(v1|v2) = (Av1|v2)− (v1|Av2) = (v1|Av2)− (v1|Av2) = 0.

2
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3.12 Self-adjointness and essential self-adjointness

The material of this subsection will not be used in what follows.
Let A be an operator with domain Dom(A) dense in V. The operator A∗ is defined as follows:

We say that w ∈ Dom(A∗) iff there exists u ∈ V such that

(w|Av) = (u|v), v ∈ Dom(A).

Using the density of Dom(A) we see that such a u ∈ V is defined uniquely. We then set A∗w := u.
We say that

A is self-adjoint, if A = A∗; (3.1)
A is essentially self-adjoint, if A∗∗ = A∗. (3.2)

We have implications

A is self-adjoint ⇒ A is essentially self-adjoint ⇒ A is Hermitian.

The best property is the self-adjointness. The Spectral Theorem can be generalized to infinite
dimension for self-adjoint operators.

Essntially self-adjoint operators extend uniquely to self-adjoint ones, hence this is also a good
property.

Hermitian operators can be somewhat bizarre. In practice, it may be non-trivial to check the
self-adjointness of a Hermitian operator.

4 Differential operators

Differential operators is an especially important class of operators. Unfortunately, they are
unbounded, and it can be quite nontrivial to check whether they are self-adjoint. This is related
to the so-called boundary conditions. Let us first discuss this in simple examples.

4.1 The momentum operator on an interval

Consider the operator pf(x) = 1
i ∂xf(x) defined on the domain f ∈ C∞([−π, π]) treated as a

subspace of the Hilbert space L2([−π, π]. Suppose we want to find its eigenvalues, that is, we
solve the equation

1

i
∂xf = λf, f ∈ C∞([−π, π]). (4.1)

Clearly, this equation is solved by f(x) = ceiλx for any λ ∈ C. This means we have many solu-
tions, which indicates that this equation (and the operator p) is not very useful in applications.

Let us modify the problem by reducing the domain. Let us restrict ourselves to f ∈
C∞([−π, π]) that satisfy the boundary conditions

f(π) = ei2πκf(−π).
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The operator 1
i ∂x with this domain will be denoted pκ. (4.1) then has solutions λ = n + κ,

wher n ∈ Z, and eigenfunctions en(x) = ei(κ+n)x. The eigenfunctions form an orthogonal basis
in L2([−π, π]). The operator p has spectrum sppκ = sppp = {n+ κ : n ∈ Z}.

The operator pκ is Hermitian (and even essentially self-adjoint). It is a useful operator, useful
in applications. The Hermiticity condition is easy to check by integration by parts:

(f |pκg) =

∫ π

−π
f(x)

1

i
∂xg(x)dx

=

∫ π

−π

(
1

i
∂xf(x)

)
g(x)dx+

1

i

(
f(π)g(π)− f(−π)g(−π)

)
= (pκf |g),

where the boundary terms vanish by boundary conditions.
Let us compute the resolvent of pκ, that is Rκ(z) = (z − pκ)−1. Let (z − pκ)g = f , or

(z − 1

i
∂x)g(x) = f(x). (4.2)

The homogenous equation

(z − 1

i
∂x)g(x) = 0. (4.3)

is solved by g(x) = eizx. We use the variation of the constant method: g(x) = c(x)eizx. We
obtain

ic′(x)eizx = f(x)

Hence,

c(x) = c(−π)− i

∫ x

−π
eizyf(y)dy

= c(π) + i

∫ π

x
eizyf(y)dy.

g belongs to the domain of pκ when g(π) = ei2πκg(−π), which yields

c(π) = ei2π(κ−z)c(−π).

Therefore,

i

∫ π

−π
e−izyf(y)dy = c(−π)− c(π)

= c(−π)(1− ei2π(κ−z)).

Hence,

c(−π) =
i

1− ei2π(κ−z)

∫ π

−π
e−izyf(y),

g(x) =
i

1− e−i2π(κ−z)

∫ x

−π
eiz(x−y)f(y)dy

+
i

1− ei2π(κ−z)

∫ π

x
eiz(x−y)f(y)dy.
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Therefore, the integral kernel of Rκ(z) = (z − pκ)−1 (called sometimes Green’s function) is

Rκ(z)(x, y) =
i

1− e−i2π(κ−z) eiz(x−y)θ(x− y)

+
i

1− ei2π(κ−z) eiz(x−y)θ(y − x).

For z ∈ Z + κ, the resolvent Rκ(z) is not defined, for remaining z it is a bounded operator.

4.2 Laplacian on an interval

Consider the space L2([0, π]). Let Dmin be the set of functions f ∈ C∞([0, π]) equal zero on a
neighborhood of 0 and π. It is a dense subspace of L2([0, π]).

Define the operator on Dmin by the formula

Hminf := −∂2
xf(x), f ∈ Dmin.

Note that it does not possess eigenvectors. It satisfies the Hermiticity condition, which follows
by integration by parts:

(g|Hminf) = −
∫ π

0
g(x)∂2

xf(x)dx

= −
∫ π

0
(∂2
xg(x))f(x)dx = (Hming|f). (4.4)

The operator Hmin is not very interesting, because its domain is too small.
Replace now Dmin with Dmax consisting of all smooth functions on [0, π]. The operator Hmax

is defined with the same formula as Hmin, the only difference is that it has the domain Dmax:

Hmaxf := −∂2
xf(x), f ∈ Dmax.

All complex numbers are eigenvalues of Hmax, because fω(x) = eiωx satisfies

Hmaxfω = ω2fω. (4.5)

Eigenvectors belonging to distinct eigenvalues are usually not mutually orthogonal. The operator
Hmax is not Hermitian, because when we integrate by parts boundary terms appear:

(g|Hmaxf) = −
∫ π

0
g(x)∂2

xf(x)dx (4.6)

= g(0)∂xf(0)− g(π)∂xf(π) +

∫ π

0
(∂xg(x))∂xf(x)dx

= g(0)∂xf(0)− g(π)∂xf(π)− (∂xg(0))f(0) + (∂xg(π))f(π)−
∫ π

0
(∂2
xg(x))f(x)dx

= g(0)∂xf(0)− g(π)∂xf(π)− (∂xg(0))f(0) + (∂xg(π))f(π) + (Hmaxg|f).

This means that Hmax is not very interesting, because its domain is too large.
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4.3 Laplacian on an interval with Dirichlet boundary conditions

Let HD be equal −∂2
x on smooth functions satisfying f(0) = f(π) = 0. Then the operator HD

defines a self-adjoint operator called the Laplacian with the Dirichlet boundary conditions. Its
eigenvectors can be organized in an orthonormal basis:

sn(x) =

√
2

π
sinxn, HDsn = n2sn, n = 1, 2, . . . . (4.7)

Hence
spHD = sppHD = {n2 : n = 1, 2, . . . }.

We can compute its resolvent RD(ω2) = (ω2 −HD)−1. Let

(∂2
x + ω2)g(x) = f(x), g(0) = g(π) = 0.

We use the variation of the constant method: c+(π) = c−(0) = 0,

g(x) = c+(x) sinωx+ c−(x) sinω(x− π),

g′(x) = c+(x)ω cosωx+ c−(x)ω cosω(x− π).

Hence , assuming that sinω 6= 0, we obtain

c′+(x) sinωx+ c′−(x) sinω(x− π) = 0,

c′+(x)ω cosωx+ c′−(x)ω cosω(x− π) = f(x);

−c′+(x) = f(x)
sinω(x− π)

ω sinωπ
,

c′−(x) = f(x)
sinωx

ω sinωπ
;

c+(x) =

∫ π

x

sinω(y − π)

ω sinωπ
f(y)dy,

c−(x) =

∫ x

0

sinωy

ω sinωπ
f(y)dy;

g(x) = sinωx

∫ π

x

sinω(y − π)

ω sinωπ
f(y)dy

+ sinω(x− π)

∫ x

0

sinωy

ω sinωπ
f(y)dy.

Therefore, the integral kernel of the resolvent RD(ω) (also called Green’s function for the DIrichlet
problem) is

RD(ω2)(x, y) =
sinωx sinω(y − π)θ(y − x)

ω sinωπ

+
sinω(x− π) sinωyθ(x− y)

ω sinωπ

It can be also computed by a different method:

RD(ω2)(x, y) =

∞∑
n=1

2 sin(xn) sin(yn)

π(ω2 − n2)
. (4.8)
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4.4 Laplacian on an interval with Neumann boundary conditions

Let HN equal −∂2
x on smooth functions satisfying f ′(0) = f ′(π) = 0. HN defines the Laplacian

with Neumann boundary conditions. Its eigenvectors form an orthonormal basis

c0 :=
1√
π
, cn(x) =

√
2

π
cosxn, HNcn = n2cn, n = 1, 2, . . . . (4.9)

Hence
spHN = sppHN = {n2 : n = 0, 1, 2, . . . }.

Here is its resolvent: RN(ω2) = (ω2 −HN)−1. Let

(∂2
x + ω2)g(x) = f(x), g′(0) = g′(π) = 0.

By variation of the constant:: c+(π) = c−(0) = 0,

g(x) = c+(x) cosωx+ c−(x) cosω(x− π),

g′(x) = −c+(x)ω sinωx− c−(x)ω sinω(x− π).

Hence

c′+(x) cosωx+ c′−(x) cosω(x− π) = 0,

−c′+(x)ω sinωx− c′−(x)ω sinω(x− π) = f(x);

−c′+(x) = f(x)
cosω(x− π)

ω sinωπ
,

c′−(x) = f(x)
cosωx

ω sinωπ
;

c+(x) =

∫ π

x

cosω(y − π)

ω sinωπ
f(y)dy,

c−(x) =

∫ x

0

cosωy

ω sinωπ
f(y)dy;

g(x) = cosωx

∫ π

x

cosω(y − π)

ω sinωπ
f(y)dy

+ sinω(x− π)

∫ x

0

cosωy

ω sinωπ
f(y)dy.

Thus the integral kernel of the resolvent RN(ω) (Green’s function for the Neumann boundary
conditions) is

RN(ω2)(x, y) =
cosωx cosω(y − π)θ(y − x)

ω sinωπ

+
cosω(x− π) cosωyθ(x− y)

ω sinωπ
.

The resolvent can be computed by another method:

RN(ω2)(x, y) =
1

πω2
+

∞∑
n=1

2 cos(xn) cos(yn)

π(ω2 − n2)
. (4.10)
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4.5 Laplacian with periodic boundary conditions

Let Hper be −∂2
x on smooth functions satisfying f(0) = f(π), f ′(0) = f ′(π). Hper defines

the Laplacian with periodic boundary conditions. Here is an orthonormal basis made of its
eigenvectors:

en(x) =
1√
π

ei2nx, Hperen = 4n2en, n = 0,±1,±2, . . . . (4.11)

Hence
spHper = sppHper = {4n2 : n = 0, 1, 2, . . . }.

Note that its eignevalues corresponding to n = 1, 2, . . . are doubly degenerate.

4.6 Laplacian with antiperiodic boundary conditions

Let Hper be −∂2
x on smooth functions satisfying f(0) = −f(π), f ′(0) = −f ′(π). Hant defines

the Laplacian with antiperiodic boundary conditions. Here is an orthonormal basis made of its
eigenvectors:

fn(x) =
1√
π

ei(2n+1)x, Hperen = (2n+ 1)2en, n ∈ Z. (4.12)

Hence
spHper = sppHper = {(2n+ 1)2 : n = 0, 1, 2, . . . }.

and all its eignevalues are doubly degenerate.

4.7 Some series

Proposition 4.1
∞∑

n=−∞

1

(n− α)2 − ω2
=

π sin(2ωπ)

2ω sin(α− ω)π sin(α+ ω)π
, (4.13)

∞∑
n=−∞

1

n2 − ω2
= −π cos(ωπ)

ω sinαπ
. (4.14)

Proof. f(z) := 1
(z−α)2−ω2 is meromorphic on C, has a finite number of poles and limz→∞ zf(z) =

0. Hence one can use the method of Prob. 4.6.1. J. Krzyż, “Zbiór zadań z funkcji analitycznych”
involving integrating cot(πz)f(z) on a big square:

0 =
∞∑

n=−∞

2i

(n− α)2 − ω2
(4.15)

+ 2πiRes
cot(πz)

(z − α)2 − ω2

∣∣∣
z=α+ω

+ +2πiRes
cot(πz)

(z − α)2 − ω2

∣∣∣
z=α−ω

(4.16)

=
∞∑

n=−∞

2i

(n− α)2 − ω2
+ 2πi

cotπ(ω + α)

2ω
− 2πi

cotπ(ω − α)

2ω
(4.17)

2
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Proposition 4.2 For x ∈ [0, 2π],

∞∑
n=−∞

ei(n−α)x

(n− α)2 − ω2
=
π
(

sin(2ωπ − ωx) + e−2iαπ sin(ωx)
)

2ω sin((α− ω)π) sin((α+ ω)π)
. (4.18)

Proof. Set

f(x) = fω,α(x) :=

∞∑
n=−∞

ei(n−α)x

(n− α)2 − ω2
.

We have

(∂2
x + ω2)f(x) =

∞∑
n=−∞

ei(n−α)x = 2πe−iαx
∞∑

m=−∞
δ(x− 2πm)), (4.19)

In particular, (4.19) is zero in ]0, 2π[. Hence f(x) = a+eiωx + a+e−iωx there. Now

f(0) = a+ + a− ,

f(2π) = a+eiω2π + a−e−iω2π = e−iα2πf(0).

Hence

a− =
e2iωπ − e−2iαπ

e2iωπ − e−2iωπ
f(0), (4.20)

a+ =
−e−2iωπ + e−2iαπ

e2iωπ − e−2iωπ
f(0), (4.21)

f(x) =

(
sin(2ωπ − ωx) + e−2iαπ sin(ωx)

)
sin(2ωπ)

f(0) (4.22)

=
π
(

sin(2ωπ − ωx) + e−2iαπ sin(ωx)
)

2ω sin((α− ω)π) sin((α+ ω)π)
. (4.23)

2

4.8 Laplacian on an interval with twisted boundary conditions

Let Hκ be −∂2
x on smooth functions on [0, π] satisfying

eiπκf(0) = f(π), eiπκf ′(0) = f ′(π). (4.24)

Then Hκ defines a self-adjoint operator. From its eigenvectors one can form an o.n. basis

en(x) =
1√
π

ei(2n+κ)x, Hκen = (2n+ κ)2en, n ∈ Z. (4.25)

Hence
spHκ = sppHκ = {(2n+ κ)2 : n = 0, 1, 2, . . . }.

The collowing cases are especially important:
(1) periodic κ = 0;
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(2) antiperiodic, for κ = 1.
Set

Rκ(ω2, x, y) = (ω2 −Hκ)−1(x, y)

Equation
(∂2
x + ω2)Rκ(ω2, x, y) = δ(x− y)

is solved by

Rκ(ω2, x, y) =

{
a−eixω + b−e−ixω, x < y;

a+eixω + b+e−ixω, x > y.
(4.26)

Let y± = y, where we use the left- resp. right-sided limit. We get

Rκ(ω2, y+, y)−Rκ(ω2, y−, y) = 0, (4.27)

∂xRκ(ω2, y+, y)− ∂xRκ(ω2, y−, y) = 1, (4.28)

eiκπRκ(ω2, 0, y) = Rκ(ω2, π, y), (4.29)

eiκπ∂xRκ(ω2, 0, y) = ∂xRκ(ω2, π, y). (4.30)

We have 4 equations with 4 unknowns. According to W. Ciszewski this is solved by

Rκ(ω2, x, y) =
i

2ω

{
eiω(y−x)

eiπ(ω+κ)−1
− e−iω(y−x)

eiπ(−ω+κ)−1
, x < y;

eiω(x−y)

eiπ(ω−κ)−1
− e−iω(y−x)

eiπ(−ω−κ)−1
, x > y.

(4.31)

Problem. Check (4.31) using (4.18) and

Rκ(ω2, x, y) =
∑
n∈Z

ei(2n+κ)(x−y)

π(ω2 − (2n+ κ)2)
. (4.32)

4.9 Laplacian on an interval with Dirichlet and Neumann boundary condi-
tions

Problem. Using (4.18) and (4.33),

RD(ω2)(x, y) =

∞∑
n=1

2 sin(xn) sin(yn)

π(ω2 − n2)
, (4.33)

check the following formula for the integral kernel of the resolvent of the Dirichlet Laplacian:

RD(ω2)(x, y) =
sinωx sinω(y − π)θ(y − x)

ω sinωπ

+
sinω(x− π) sinωyθ(x− y)

ω sinωπ

Problem. Using (4.18) and (4.34)

RN(ω2)(x, y) =
1

πω2
+

∞∑
n=1

2 cos(xn) cos(yn)

π(ω2 − n2)
, (4.34)
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check the following formula for the integral kernel of the resolvent of the Neumann Laplacian:

RN(ω2)(x, y) =
cosωx cosω(y − π)θ(y − x)

ω sinωπ

+
cosω(x− π) cosωyθ(x− y)

ω sinωπ
.

4.10 Second order differential operators in one variable

Second order differential operators in one variable

C := σ(x)∂2
x + τ(x)∂x (4.35)

are especially important in applications. Often it is convenient to write them in a different form.
Let ρ(x) satisfy

σ(x)ρ′(x) = (τ(x)− σ′(x))ρ(x). (4.36)

Then
C = ρ(x)−1∂xρ(x)σ(x)∂x. (4.37)

Starting from now we assume that −∞ ≤ a < b ≤ +∞, σ, ρ are real differentiable functions
on ]a, b[ and ρ > 0.

Theorem 4.3 Let

D = {f ∈ C∞(]a, b[) : f = 0 in a neighborhood of a, b}.

We define C as the operator on D given by (4.35). Then C is Hermitian in the sense of the
Hilbert space L2(]a, b[, ρ).

Unfortunately, the above domain is usually too small to obtain an operator with eigenvalues.

4.11 Boundary conditions for the Sturm-Liouville problem

Let us consiser an operator given by the same differential formula, but on a greater domain.
Under appropriate conditions it is still Hermitian:

Theorem 4.4 Let −∞ < a < b < +∞ and

σ(a)ρ(a) = σ(b)ρ(b) = 0.

Then C is Hermitian on the domain C2([a, b]) in the sense of the space L2(]a, b[, ρ)

24



Proof.

(g|Cf) =

∫ b

a
ρ(x)g(x)ρ(x)−1∂xσ(x)ρ(x)∂xf(x)dx

=

∫ b

a
g(x)∂xσ(x)ρ(x)∂xf(x)dx

= g(x)ρ(x)σ(x)f ′(x)
∣∣∣b
a
−
∫ b

a
(∂xg(x))σ(x)ρ(x)∂xf(x)dx

= −g′(x)ρ(x)σ(x)f(x)
∣∣∣b
a

+

∫ b

a
(∂xρ(x)σ(x)∂xg(x))f(x)dx

=

∫ b

a
ρ(x)(ρ(x)−1∂xσ(x)ρ(x)∂xg(x))f(x)dx = (Cg|f).

2

Analogously we prove the following fact:

Theorem 4.5 Let

lim
x→−∞

σ(x)ρ(x)|x|n = lim
x→+∞

σ(x)ρ(x)|x|n = 0, n ∈ N.

Then C is Hermitian on the domain consisting of polynomial functions in the sense of the space
Hilbert L2(]−∞,∞[, ρ).

Obviously, similar statements hold for ]−∞, b[ and ]a,∞[.
Looking for eigenvalues of the operator C is often called the Sturm-Liouville problem.

5 Classical orthogonal polynomials

The following polynomials appear most often in applications:

Space Polynomial Equation

Hermite polynomials
L2(]−∞,∞[, e−x

2
) Hn(x) = (−1)n

n! ex
2
∂nx e−x

2
∂2
x − 2x∂x + 2n

Laguerre polynomials
L2(]0,∞[, xαe−x) Lαn(x) = 1

n!e
xx−α∂nx e−xxn+α x∂2

x + (α+ 1− x)∂x + n
α > −1

Jacobi polynomials
L2(]− 1, 1[, (1− x)α(1 + x)β) Pα,βn (x) = (−1)n

2nn! (1− x)−α(1 + x)−β (1− x2)∂2
x + (β − α− (α+ β + 2)x)∂x

α, β > −1 ×∂nx (1− x)α+n(1 + x)β+n +n(n+ α+ β + 1)

We will try to explain why these polynomials are distinguished and are often called classical
orthogonal polynomials (or even very classical orthogonal polynomials).
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5.1 Hypergeometric class polynomials

We are looking for second order differential operators whose eigenfunctions are polynomials of
all degrees.

Theorem 5.1 Let
C := σ(z)∂2

z + τ(z)∂z + η(z) (5.1)

be a differential operator such that there exist polynomials P0, P1, P2 of degree resp. 0, 1, 2 satis-
fying

CPn = λnPn.

Then
(1) σ(z) is a polynomial of degree ≤ 2,

(2) τ(z) is a polynomial of degree ≤ 1,

(3) η(z) is a polynomial of degree ≤ 0 (is a number).

Proof. CP0 = η(z)P0, hence degη = 0.
CP1 = τ(z)P ′1 + ηP1, so degτ ≤ 1.
CP2 = σ(z)P ′′2 + τ(z)P ′2(z) + ηP2, therefore, degσ ≤ 2. 2

It is thus enough to restrict our attention to operators of the form

C := σ(z)∂2
z + τ(z)∂z, (5.2)

where
degσ ≤ 2, degτ ≤ 1. (5.3)

We will show later that for a large class of (5.2) for all natural n there exists a polynomial of
degree n which is an eigenfunction of (5.2).

Proposition 5.2 Suppose that σ and τ are as above. Let polynomial Pk of degree k satisfies(
σ(z)∂2

z + τ(z)∂z + λk
)
Pk = 0. (5.4)

Then
k(k − 1)

2
σ′′ + kτ ′ + λk = 0. (5.5)

Proof. The kth derivative of (5.4) is (5.5) times ∂kzPk 6= 0. 2
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5.2 Generalized Rodrigues formula

Many properties of polynomials eigenfunctions of operators described in Thm 5.1 can be derived
in a unified way without separating the arguments into distinct cases. (This subsection can be
skipped, all the material will be presented below for special cases).

Consider σ, τ satisfying (5.3). We fix σ, however we manifestly indicate the dependence on
τ . Let ρ satisfy the equation

σ(z)∂zρ(z) =
(
τ(z)− σ′(z)

)
ρ(z). (5.6)

Note that ρ can be expressed in terms of elementary functions. The operator C can be written
as

C(τ) = ρ−1(z)∂zσ(z)ρ(z)∂z

= ∂zρ
−1(z)σ(z)∂zρ(z)− τ ′ + σ′′. (5.7)

Define

Pn(τ ; z) :=
1

n!
ρ−1(z)∂nz σ

n(z)ρ(z) (5.8)

=
1

2πi
ρ−1(z)

∫
[0+]

σn(z + t)ρ(z + t)t−n−1dt. (5.9)

Theorem 5.3 We have degPn(τ) ≤ n,

(
σ(z)∂2

z + τ(z)∂z
)
Pn(τ ; z) = (nτ ′ + n(n− 1)

σ′′

2
)Pn(τ ; z), (5.10)(

σ(z)∂z + τ(z)− σ′(z)
)
Pn(τ ; z) = (n+ 1)Pn+1(τ − σ′; z), (5.11)

∂zPn(τ ; z) =

(
τ ′ + (n− 1)

σ′′

2

)
Pn−1(τ + σ′; z), (5.12)

ρ(z + tσ(z))

ρ(z)
=

∞∑
n=0

tnPn(τ − nσ′; z). (5.13)

Proof. Introduce the following “creation and annihilation operators”:

A+(τ) : = σ(z)∂z + τ(z) = ρ−1(z)∂zρ(z)σ(z),

A− := ∂z.

Note that
A−A+(τ − σ′)−A+(τ)A− = τ ′ − σ′′, (5.14)

or more generally

A−A+
(
τ + (k − 1)σ′

)
−A+

(
τ + kσ′

)
A− = τ ′ − (k − 1)σ′′. (5.15)
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Using

A+(τ) = ρ−1(z)∂zρ(z)σ(z),

A+(τ + σ′) = ρ−1(z)σ−1(z)∂zρ(z)σ2(z),

· · · = · · ·
A+(τ + (n− 1)σ′) = ρ−1(z)σ−(n−1)∂zρ(z)σn(z),

we obtain

A+(τ) · · · A+(τ + (n− 1)σ′)F0 = ρ(z)−1∂nz ρ(z)σn(z)F0(z).

Consider now F0 = 1. We obtain

Pn(τ, z) =
1

n!
A+(τ) · · · A+(τ + (n− 1)σ′)1.

Now
A+(τ − σ′)Pn(τ, z) = (n+ 1)Pn+1(τ − σ′, z)

is obvious, which yields (5.11). Using the commutation relations (5.15) we obtain

A−Pn(τ, z) =

(
τ ′ + τ ′ + σ′′ + · · ·+ τ ′ + (n− 1)σ′′

)
n!

A+
(
τ + σ′

)
· · · A+

(
τ + (n− 1)σ′

)
1

=

(
nτ ′ + n(n−1)

2 σ′′
)

n!
A+
(
τ + σ′

)
· · · A+

(
τ + (n− 1)σ′

)
1

=
(
τ ′ + (n− 1)

σ′′

2

)
Pn−1(τ + σ′),

which yields (5.12). (5.11) i (5.12) imply (5.10). By the Taylor formula,

ρ(z + tσ(z)) =
∞∑
n=0

tnσ(z)n

n!
∂nz ρ(z) = ρ(z)

∞∑
n=0

tnPn(τ − nσ′; z),

or (5.13). 2

5.3 Classical orthogonal polynomials as eigenfunctions of Sturm-Liouville op-
erators

We look for intervals ]a, b[⊂ R andd weights ]a, b[3 x 7→ ρ(x), for which there exist polynomials
P0, P1, . . . w satisfying degPn = n,∫

Pn(x)Pm(x)ρ(x)dx = cnδn,m (5.16)

and being eigenfunctions of a differential operator of second order C := σ(x)∂2
x + τ(x)∂x, that is,

for some λn ∈ R (
σ(x)∂2

x + τ(x)∂x + λn
)
Pn(x) = 0. (5.17)

(We allow a = −∞ or b = ∞). To this end we want that the operator C is Hermitian in the
sense of L2(]a, b[, ρ) on a domain containing polynomials. More precisely, we need to stisfy the
following conditions:
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(1) σ has to be a polynomial of degree at most 2 and τ a polynomial of degree at most 1. (See
Thm 5.1).

(2) The weight ρ is a solution of the equation

σ(x)ρ′(x) = (τ(x)− σ′(x))ρ(x), (5.18)

is positive and σ real. This guarantees that C, which can be written as

C = ρ(x)−1∂xρ(x)σ(x)∂x,

is Hermitian in the sense of L2(]a, b[, ρ), at least on functions vanishing in neighborhoods of
the endpoints of ]a, b[. (See Thm 4.3).

(3) We want that C is Hermitian on a domain containing polynomials.

(i) If an endpoint, say, a, is a finite number, then it is equivalent to the condition
ρ(a)σ(a) = 0. (See Thm 4.4).

(ii) If an endpoint is infinite, e.g. a = −∞, then

lim
x→−∞

|x|nσ(x)ρ(x) = 0

should hold for any n.

In addition, Pn should belong to the Hilbert space L2(]a, b[, ρ) for any n, hence we demand
that ∫ b

a
ρ(x)|x|ndx <∞. (5.19)

The slightly stronger condition ∫ b

a
eε|x|ρ(x)dx <∞ (5.20)

for some ε > 0 is sufficient to obtain an orthonormal basis. (See Thm 2.1).
We will find all such weighted Hilbert spaces L2([a, b], ρ) for which such orthogonal polyno-

mials exist. We will simplify our answer to standard forms
(1) by using the change of variables x 7→ ax+ b for a 6= 0;

(2) by dividing (both the weight and the differential equation) by a constant
In this way we will obtain all classical orthogonal polynomials.

5.4 Classical orthogonal polynomials for degσ = 0

We can assume σ(x) = 1.
If degτ = 0, then

C = ∂2
y + c∂y.

It is easy to discard this case.
Hence degτ = 1 and

C = ∂2
y + (ay + b)∂y.
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Let us substitute x =

√
|a|
2

(
y + b

a

)
. We obtain

C = ∂2
x + 2x∂x, a > 0; (5.21)

C = ∂2
x − 2x∂x, a < 0. (5.22)

This yields ρ(x) = e±x
2 .

σ(x)ρ(x) = e±x
2 is never zero, hence the only possible interval is ]−∞,∞[.

If a > 0, then ρ(x) = ex
2 , which is impossible by (3ii).

If a < 0, then ρ(x) = e−x
2 and we obtain the Hermite operator. The interval ] −∞,∞[ is

admissible, and even satisfies (5.20). We obtain the equation and weight for Hermite polynomials,
which will be discussed in the next subsection.

5.5 Hermite polynomials

Theorem 5.4 Define

Hn(x) =
(−1)n

n!
ex

2
∂nx e−x

2
.

Then Hn is a polynomial of degree n and is (up to a multiplicative constant) the only eigenfunction
of the operator ∂2

x − 2x∂x which is a polynomial of degree n. It satisfies the Hermite equation

(∂2
x − 2x∂x + 2n)Hn(x) = 0.

and relations

(−∂x + 2x)Hn(x) = (n+ 1)Hn+1(x) (5.23)
∂xHn(x) = 2Hn−1(x), (5.24)

∞∑
n=0

tnHn(x) = e2tx−t2 . (5.25)

Proof. It is a consequence of Thm 5.3 for

σ(x) = −1, ρ = e−x
2
.

Below we present an independent proof. Let us introduce the “creation and annihilation opera-
tors”

A− = ∂x,

A+ = −∂x + 2x = −ex
2
∂xe−x

2
.

They satisfy the relations

[A−, A+] = 2. (5.26)

We have Hn = (A+)n1
n! . (Here, 1 denotes the vector in L2(R, e−x2) given by the function equal to

1. On the other hand, in (5.26) 2 denotes the operator of multiplication by the number 2.) This
implies

A+Hn = (n+ 1)Hn+1, (5.27)
A−Hn = 2Hn−1. (5.28)
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To prove (5.28), we use (5.26).
(5.27) and (5.28) show that

A+A−Hn = 2nHn, (5.29)

−∂2
x + 2x∂x = A+A−. (5.30)

Multiplying the definition of the Hermite polynomials by tne−x
2 we obtain

tne−x
2
Hn(x) =

(−t)n

n!
∂nx e−x

2
.

The Taylor formula yields

e−x
2
∞∑
n=0

tnHn(x) = e−(x−t)2 ,

which implies (5.25). 2

Theorem 5.5 {Hn | n ∈ N0} is an orthogonal basis in L2(R, e−x2) with the normalization∫ ∞
−∞

Hn(x)2e−x
2
dx =

√
π2n

n!
.

Proof. Suppose that n ≥ m. Then∫ ∞
−∞

Hn(x)Hm(x)e−x
2
dx =

(−1)n

n!

∫ ∞
−∞

(
∂nx e−x

2
)
Hm(x)dx

=
1

n!

∫ ∞
−∞

e−x
2
∂nxHm(x)dx. (5.31)

(5.31) is 0 for n > m.
Let n = m. (5.24) and H0 = 1 imply ∂nxHn(x) = 2n. Hence (5.31) is

2n

n!

∫ ∞
−∞

e−x
2
dx =

2n

n!

√
π.

2

Remark 5.6 The definition of Hermite polynomials that we gave is consistent with the general-
ized Rodrigues formula (5.8). In the literature one can also find other conventions for Hermite
polynomials, e.g. Hn(x) := (−1)nex

2
∂nx e−x

2
.
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5.6 Classical orthogonal polynomials for degσ = 1

It is enough to consider the case σ(y) = y.
If degτ = 0, then

C = y∂2
y + c∂y

But such a C always lowers the degree of a polynomial. Hence if CP = λP for a certain poly-
nomial, then λ = 0 and P (x) = x−c+1. Thus we do not obtain polynomials of all degrees as
eigenfunctions.

Hence degτ = 1. Therefore, for b 6= 0,

y∂2
y + (a+ by)∂y. (5.32)

After rescaling we obtian an operator that appears in the Laguerre equation

C = −x∂2
x + (−α− 1 + x)∂x.

We check that ρ = xαe−x. ρ(x)σ(x) = −xα+1e−x is zero only for x = 0 and α > −1. The
interval [−∞, 0] is ruled out by the condition (3ii). This condition allows for the interval ]0,∞[
for α > −1, which then satisfies the condition 5.20.

We obtain the equation and weight for Laguerre polynomials, which will be discussed in the
next subsection.

5.7 Laguerre polynomials

Theorem 5.7 For n ∈ N and α ∈ C, set

Lαn(x) =
1

n!
exx−α∂nx e−xxn+α

=
(1 + α)n

n!
F (−n; 1 + α;x).

Then Lαn is a polynomial of degree n. It is a unique (up to a coefficient) eigenfunction of the
operator x∂2

x+(α+1−x)∂x which is a polynomial of degree n. Lαn satisfy the Laguerre equation,
which is the confluent equation with modified parameters:(

x∂2
x + (α+ 1− x)∂x + n

)
Lαn(x) = 0.

The following relations are true:

(x∂x + α− x)Lαn(x) = (n+ 1)Lα−1
n+1(x), (5.33)

∂xL
α
n(x) = −Lα+1

n−1(x). (5.34)

Proof. We can use Thm 5.3 for

σ(x) = x, ρ(x) = e−xxα.

Below we present an independent proof.
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Introduce “creation and annihilation operators”

A− = −∂x,
A+
α = x∂x + α− x = x−α+1ex∂xx

αe−x.

They satisfy the relations

A−A+
α −A+

α+1A
− = 1. (5.35)

We have

Lαn =
A+
α+1 · · ·A

+
α+n1

n!
. (5.36)

(1 in (5.36) denotes the vector equal 1.) This implies

A+
αL

α
n = (n+ 1)Lα−1

n+1, (5.37)

A−Lαn = Lα+1
n−1. (5.38)

(5.38) follows by (5.35).
Finally, (5.37), (5.38) show

A+
α+1A

−Lαn = nLαn. (5.39)

Ale
−x∂2

x − (α+ 1− x)∂x = A+
α+1A

−. (5.40)

2

Theorem 5.8 If α > −1, then Laguerre polynomials form an orthonormal basis in L2([0,∞[, e−xxα)
with the normalization ∫ ∞

0
Lαn(x)2xαe−xdx =

Γ(1 + α+ n)

n!
.

Proof. Let n ≥ m. Then∫ ∞
0

Lαn(x)Lαm(x)xαe−xdx =
1

n!

∫ ∞
0

(
∂nxx

n+αe−x
)
Lαm(x)dx

=
(−1)n

n!

∫ ∞
0

xn+αe−x∂nxL
α
m(x)dx. (5.41)

(5.41) is 0 for n > m.
Let n = m. By (5.34) and Lα0 = 1 we obtain ∂nxLαn(x) = (−1)n. Hence (5.41) is

1

n!

∫ ∞
0

xn+αe−xdx =
Γ(n+ α+ 1)

n!
.

2
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5.8 Classical orthogonal polynomials for degσ = 2,
σ has a double root

We can assume that σ(x) = x2.
If τ(0) = 0, then

C = x2∂2
x + cx∂x.

Its eigenfunctions are polynomials xn, but the weight ρ(x) = xc−2 is not appropriate.
Let us assume that τ(0) 6= 0. After rescaling we can assume that

τ(x) = 1 + (γ + 2)x.

This yields ρ(x) = e−
1
xxγ . The only poin where ρ(x)σ(x) = e−

1
xxγ+2 can be zero is x = 0.

Hence the only possible intervals are ]−∞, 0[ and [0,∞]. Both are ruled out by (3ii).

5.9 Classical orthogonal polynomials for degσ = 2,
σ has two roots

In this subsection we assume that the roots are distinct. If one of them is not real, then the
other has to be its complex conjugate. Then it is enough to assume that σ(x) = 1 + x2. We can
suppose that τ(x) = a + (b + 2)x. Then ρ(x) = ea arctanx(1 + x2)b. σ(x)ρ(x) is nowhere zero,
and therefore the only possible interval is ] − ∞,∞[. This case has to be discarded, because
lim|x|→∞ ρ(x)|x|n(1 + x2) =∞ for sufficiently large n.

Hence we can assume that the roots are distinct and real. It is enough to consider σ(x) =
1− x2. Let

τ(x) = β − α− (α+ β + 2)x.

We obtain ρ(x) = |1− x|β|1 + x|α. Similarly as above, the condition (3ii) rules out the intervals
]−∞,−1[ and ]1,∞[. What remains is the interval [−1, 1], which satisfies (3i) for α, β > −1. It
leads to Jacobi polyn omials discussed in the next subsection.

5.10 Jacobi polynomials

Theorem 5.9 Let n ∈ {0, 1, . . . } and α, β ∈ C. Set

Pα,βn (x) =
(−1)n

2nn!
(1− x)−α(1 + x)−β∂nx (1− x)α+n(1 + x)β+n (5.42)

=
(1 + α)n

n!
F (−n, n+ α+ β + 1;α+ 1;

1− x
2

). (5.43)

Then Pα,βn satisfy the Jacobi equation, which is a slightly modified hypergeometric equation:(
(1− x2)∂2

x + (β − α− (α+ β + 2)x)∂x + n(n+ α+ β + 1)
)
Pα,βn (x) = 0,

and the relations

∂xP
α,β
n (x) =

α+ β + n+ 1

2
Pα+1,β+1
n−1 , (5.44)

−(1− x2)∂x + β − α− (α+ β)x

2
Pα,βn (x) = (n+ 1)Pα−1,β−1

n+1 (x). (5.45)
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∞∑
n=0

Pα−n,β−nn (x)2ntn =
(
1 + t(1 + x)

)α(
1− t(1− x)

)β
. (5.46)

Pα,βn is a polynomial of degree at most n. More precisely:
(1) If α + β 6∈ {−2n, . . . ,−n − 1}, then degPα,βn = n. It is then up to a coefficient the unique

eigensolution of the operator C := (1−x2)∂2
x+(β−α−(α+β+2)x)∂x, which is a polynomial

of degree n.

(2) If α+ β ∈ {−2n, . . . ,−n− 1}, but α 6∈ {−n, . . . ,−1} (or, equivalently, β 6∈ {−n, . . . ,−1}),
then degPα,βn = −α− β − n− 1.

(3) If α+ β ∈ {−2n, . . . ,−n− 1}, but α ∈ {−n, . . . ,−1} (or, equivalently, β ∈ {−n, . . . ,−1}),
then Pα,βn = 0.

Proof. We can use Thm 5.3 for

σ(x) =
x2 − 1

2
, ρ(x) = (1− x)α(1 + x)β.

Below we present an independent proof. Introduc the “creation and annihilation operators”

A− = ∂x,

A+
α,β = −1

2

(
(1− x2)∂x + β − α− (α+ β)x

)
= −1

2
(1− x)−α+1(1 + x)−β+1∂x(1− x)α(1 + x)β.

They satisfy the relations

A−A+
α,β −A

+
α+1,β+1A

− =
α+ β

2
. (5.47)

We have

Pα,βn =
A+
α+1,β+1 · · ·A

+
α+n,β+n1

n!
. (5.48)

Hence,

A+
α,βP

α,β
n = (n+ 1)Pα−1,β−1

n+1 , (5.49)

A−Pα,βn =
α+ β + n+ 1

2
Pα+1,β+1
n−1 . (5.50)

To prove (5.50) we use (5.47) and sum up the arithmetic series.
Finally, (5.49), (5.50) shows

A+
α+1,β+1A

−Pα,βn =
n(α+ β + n+ 1)

2
Pα,βn . (5.51)

Ale
−1

2
(1− x2)∂2

x +
1

2
(−β + α+ (α+ β)x)∂x = A+

α+1,β+1A
−. (5.52)
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Let us replace in the definition of Jacobi polynomials α, β with α − n, β − n and multiply
them by 2ntn(1− x)α(1 + x)β . We obtain

2ntnPα−n,β−nn (x)(1− x)α(1 + x)β =
(−t)n

n!
(1− x)n(1 + x)n∂nx (1− x)α(1 + x)β.

After summing up, the Taylor formula yields

(1− x)α(1 + x)β
∞∑
n=0

2ntnPα−n,β−nn (x) =
(
1− x+ t(1− x)(1 + x)

)α(
1 + x− t(1− x)(1 + x)

)β
,

which implies the formula for the generating function (5.46).
(5.44) and Pα,β0 = 1 yield

∂nxP
α,β
n (x) = 2−n(α+ β + n+ 1) · · · (α+ β + 2n). (5.53)

Clearly, degPα,βn = n when the right hand side of (5.53) is different from zero.
Suppose that two polynomials P1, P2 of degree n satisfy

(C + η1)P1 = (C + η2)P2 = 0.

By Prop. 5.2,
η1 = η2 = n(n+ α+ β + 1).

Hence P1−P2, a polynomial of degree k ∈ {0, 1, . . . , n−1}, solves the Jacobi equation. Applying
again Prop. 5.2 we obtain

−k(k + α+ β + 1) + n(n+ α+ β + 1) = 0.

This equation has two solutions: k = n and k = −n− α− β − 1 6∈ {0, 1, . . . , n− 1}. The second
soltion has to be discarded. 2

Theorem 5.10 If α, β > −1, then Jacobi polynomials form an orthogonal basis in L2([−1, 1], (1−
x)α(1 + x)β) with the normalization∫ 1

−1
(Pα,βn (x))2(1− x)α(1 + x)βdx =

Γ(1 + α+ n)Γ(1 + β + n)2α+β+1

(1 + 2n+ α+ β)n!Γ(1 + α+ β + n)
. (5.54)

Proof. Let n ≥ m. Then ∫ 1

−1
Pα,βn (x)Pα,βm (x)(1− x)α(1 + x)βdx

=
(−1)n

2nn!

∫ 1

−1

(
∂nx (1− x)α+n(1 + x)β+n

)
Pα,βm (x)dx

=
1

2nn!

∫ 1

−1
(1− x)α+n(1 + x)β+n∂nxP

α,β
m (x)dx. (5.55)
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(5.55) is 0 for n > m.
Let n = m. Then (5.41) is

1

22nn!

∫ 1

−1
(1− x)α+n(1 + x)β+n(α+ β + n+ 1) · · · (α+ β + 2n)dx

=
2α+β+1

n!

∫ 1

0
tα+n(1− t)β+n(α+ β + n+ 1) · · · (α+ β + 2n)dt

=
Γ(1 + α+ n)Γ(1 + β + n)2α+β+1

(1 + 2n+ α+ β)n!Γ(1 + α+ β + n)
.

2

For each α, β we have a representation of sl(2,C) on

Pα,β0 , . . . , Pα−n,β−nn , . . .

(1) If α+ β 6∈ {0, 1, 2 . . . }, this representation is irreducible and degPα−n,β−nn = n.

(2) Let α+ β ∈ {0, 1, 2 . . . }. Besides we suppose that α 6∈ Z (equivalently, β 6∈ Z),

or α ∈ {. . . ,−2,−1}, or β ∈ {. . . ,−2,−1}.

Then this representation is reducible but indecomposable and we have

degPα−n,β−nn = n, n = 0, 1, . . . , α+ β; (5.56)

degPα−n,β−nn = n− (α+ β + 1), n ≥ α+ β + 1. (5.57)

The space spanned by (5.57) is invariant. Besides, by (5.43),

P−β−1,−α−1
α+β+1 =

(−β)α+β+1

(α+ β + 1)!
=

(−β)(−β + 1) · · · (α− 1)α

(α+ β + 1)!
. (5.58)

(3) If α ∈ {0, 1, 2 . . . } and β ∈ {0, 1, . . . }, then

degPα−n,β−nn = n, n = 0, 1, . . . , α+ β; (5.59)

Pα−n,β−nn = 0, n ≥ α+ β + 1. (5.60)

and the space spanned by (5.59) is invariant. Besides,

Pα−n,β−nn (x) =
(x− 1

2

)−α+n(1 + x

2

)−β+n
P−β+n,α+n
α+β−n (x). (5.61)

Proof of (5.61). By (5.42),

Pα−n,β−nn (x) =
2n

n!

(x− 1

2

)−α+n(x+ 1

2

)−β+n
∂nx

(x− 1

2

)α(x+ 1

2

)β
. (5.62)
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Setting n = α+ β in (6.11) we obtain

P−β,−αα+β (x) =
1

2α+β(α+ β)!
(x− 1)β(1 + x)α∂α+β

x (x− 1)α(1 + x)β (5.63)

=
(x− 1

2

)β(1 + x

2

)α
(5.64)

By the recurrence relation (5.44) we obtain

P−β+n,α+n
α+β−n (x) =

2n

n!
∂nxP

−β,−α
α+β (x) =

2n

n!
∂nx

(x− 1

2

)β(x+ 1

2

)α
. (5.65)

Comparing (5.65) and (6.11) we obtain (5.61). 2

Let us rewrite some of the identities, e.g. (5.54), in terms of the parameters α + β = 2m,
α− β = 2k, n = l −m:

P k+m,−k+m
l−m (w) =

1

(l −m)!

(w − 1

2

)−k−m(w + 1

2

)k−m
∂l−mw

(w − 1

2

)l+k(w + 1

2

)l−k
.

(
(1− w2)∂2

w − 2
(
(m+ 1)w + k)∂w + (l −m)(l +m+ 1)

)
P k+m,−k+m
l−m (w) = 0. (5.66)

∂wP
k+m,−k+m
l−m (w) =

1

2
(l +m+ 1)P k+m+1,−k+m+1

l−m−1 (w), (5.67)(
(w2 − 1)∂w + 2mw + 2k

)
P k+m,−k+m
l−m (w) = 2(l −m+ 1)P k+m−1,−k+m−1

l−m+1 (w). (5.68)∫ 1

−1
(Pm+k,m−k

l−m (x))2
(1− x

2

)m+k(1 + x

2

)m−k
dx =

2Γ(1 + l + k)Γ(1 + l − k)

(1 + 2l)(l −m)!Γ(1 + l +m)
. (5.69)

If l = 0, 1
2 , 1, . . . and k,m = −l, . . . , l,

P k+m,−k+m
l−m (w) =

(w − 1

2

)−m−k(w + 1

2

)−m+k
P−k−m,k−ml+m (w) (5.70)

=
1

(l +m)!
∂l+mw

(w − 1

2

)l−k(w + 1

2

)l+k
(5.71)

5.11 Ultraspherical polynomials (or Jacobi polynomials with α = β)

Consider the special case of Jacobi polynomials for α = β = m. To be consistent with later
applications, we change the name of the variable from x to w. Thus,

σ(w) =
w2 − 1

2
, ρ(w) = (1− w2)m.

Theorem 5.11 Set

Pm,mn (w) =
(−1)n

2nn!
(1− w2)−m∂nw(1− w2)m+n

=
(n+m)n

n!
F (−n, n+ 2m+ 1;m+ 1;

1− w
2

).
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If
−2m 6∈ {n+ 1, . . . , 2n}, (5.72)

then Pm,mn are polynomials of degree n. They are then (up to a coefficient) the only eigensolution
of the operator C := (1− w2)∂2

w − 2(m+ 1)w∂w, which is a polynomial of degree n.
They satisfy the equation(

(1− w2)∂2
w − 2(m+ 1)w)∂w + n(n+ 2m+ 1)

)
Pmn (w) = 0.

and the relations

2∂wP
m,m
n (w) = (2m+ n+ 1)Pm+1,m+1

n−1 , (5.73)

−(1− w2)∂w − 2mw

2
Pm,mn (w) = (n+ 1)Pm−1,m−1

n+1 (w). (5.74)

∞∑
n=0

Pm−n,m−nn (w)2ntn =
(
1 + 2tw + t2(w2 − 1)

)m
. (5.75)

Pm,mn (1) =
(m+ 1)n

n!
. (5.76)

5.12 Legendre polynomials

Jacobi polynomials with α = β = 0 are especially important. We then have

σ(w) =
w2 − 1

2
, ρ(w) = 1.

They are called the Legendre polynomials:

Pl(w) := P 0,0
l (w) =

(−1)l

2ll!
∂lw(1− w2)l.

They satisfy the Legendre equation(
(1− w2)∂2

w − 2w∂w + l(l + 1)
)
Pl(w) = 0. (5.77)

They form an orthogonal basis of L2([−1, 1]) with the normalization∫ 1

−1
Pl(w)2dw =

2

(1 + 2l)
.

We have P0 = 1, P1(w) = w, P2(w) = 1
2(3w2 − 1).

Theorem 5.12 Legendre polynomials are the only polynomial solutions of the Legendre equation
satisfying Pl(1) = 1.

Proof. By induction we check that for k = 1, . . . , l,

∂kw(1− w2)l = (−1)k(2w)kl · · · (l − k + 1)(1− w2)l−k + C(w)(1− w2)l−k+1,

where C(w) is a polynomial. Setting k = l and using the Rodrigues formula we obtain Pl(1) = 1.
Using the more general fact about the Jacobi equation we conclude that all polynomial

solutions are proportional to Pl. 2
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6 Spherical harmonics on S2

6.1 Spherical coordinates in R3

Spherical coordinates in R3 are defined by

x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ.

r =
√
x2 + y2 + z2, θ = arctan

√
x2 + y2

z
, φ = arctan

y

x
.

The Jacobi matrix is
∂r
∂x

∂r
∂y

∂r
∂z

∂θ
∂x

∂θ
∂y

∂θ
∂z

∂φ
∂x

∂φ
∂y

∂φ
∂z

 =

 sin θ cosφ sin θ sinφ cos θ
cos θ cosφ

r
cos θ sinφ

r − sin θ
r

− sinφ
r sin θ

cosφ
r sin θ 0

 .
Instead of θ it is often convenient to use w = cos θ = z√

x2+y2+z2
. Note that

∂θ = (1− w2)
1
2∂w.

Spherical coordinates can be treated as a map

]0,∞[×S2 → R3\{0}

where (w, φ) ∈]− 1, 1[×[0, 2π[ parametrizes S2 without both poles. Its Jacobian is r2drdwdφ =
r2 sin θdrdθdφ. The standard measure on the sphere is sin θdθdφ = dwdφ.

The Laplacian in spherical coordinates is

∆ =∂2
r +

2

r
∂r +

1

r2

( 1

sin θ
∂θ sin θ∂θ +

∂2
φ

sin2 θ

)
=∂2

r +
2

r
∂r +

1

r2
∆S2 . (6.1)

∆S2 is the operator acting on S2 called the Laplace–Beltrami operator on the sphere. It is

∆S2 =
1

sin θ
∂θ sin θ∂θ +

∂2
φ

sin2 θ

= ∂w(1− w2)∂w +
∂2
φ

1− w2
(6.2)

= (1− w2)∂2
w − 2w∂w +

∂2
φ

1− w2
, (6.3)

Proposition 6.1 ∆S2 with domain C∞(S2) is Hermitian in the sense of the Hilbert space L2(S2).
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Proof. We can identify L2(S2) with L2([−1, 1]× [0, 2π[) with help of the coordinates w, φ. Using
(6.2), integrating by parts and taking into account that we have periodic boundary conditions
in φ we obtain

−(f |∆S2g) =

∫ 1

−1
dw

∫ 2π

0
dφ
(
∂wf(w, φ)(1− w2)∂wg(w, φ) +

1

1− w2
∂φf(w, φ)∂φg(w, φ)

)
= −(∆S2f |g).

2

6.2 Reminder about ultraspherical polynomials

We will need Jacobi polynomials for α = β = m. In view of their applications to spherical
harmonics it is convenient to write their degree as n = l −m:

Pm,ml−m (w) =
(−1)l−m

2l−m(l −m)!
(1− w2)−m∂l−mw (1− w2)l.

They satisfy the equation(
(1− w2)∂2

w − 2(m+ 1)w∂w + (l −m)(l +m+ 1)
)
Pm,ml−m (w) = 0. (6.4)

Adapted to the present notation, the recurrence relations for Pm,mn read

2∂wP
m,m
l−m (w) = (l +m+ 1)Pm+1,m+1

l−m−1 (w), (6.5)

−1

2

(
(1− w2)∂w − 2m

)
Pm,ml−m (w) = (l −m+ 1)Pm−1,m−1

l−m+1 (w). (6.6)

For m > −1 and l = m,m + 1,m + 2, . . . they form an o.n. basis of L2([−1, 1], (1 − w2)m)
with the normalization∫ 1

−1
Pm,ml−m (w)2(1− w2)mdw =

Γ(1 + l)222m+1

(1 + 2l)(l −m)!Γ(1 + l +m)
(6.7)

=
(l!)222m+1

(1 + 2l)(l −m)!(l +m)!
, (6.8)

where in (6.8) we assume that l,m are integers.

Theorem 6.2 Let l = 0, 1, . . . , m ∈ Z. Then Jacobi polynomials satisfy

(−1)m
(1− w2

4

)m
2
Pm,ml−m (w) =

(−1)l

2l(l −m)!
(1− w2)−

m
2 ∂l−mw (1− w2)l

=
(1− w2

4

)−m
2
P−m,−ml+m (w) =

(−1)l+m

2l(l +m)!
(1− w2)

m
2 ∂l+mw (1− w2)l (6.9)

If in addition m < −l or l < m, then (6.9) is 0.
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This is a special case of (5.61). Below we present an independent proof.

Lemma 6.3 The term at the highest power of Pm,ml−m (w) is wl−m Γ(2l+1)
2l−m(l−m)!Γ(l+m+1)

.

Proof. For large w

Pm,ml−m (w) =
(−1)l−m

2l−m(l −m)!
(−w2)−m∂l−mw (−w2)l

= wl−m
2l · · · (l +m+ 1)

2l−m(l −m)!
.

Proof of Thm 6.2. Note first that

(1− w2)m
(
(1− w2)∂2

w − 2(m+ 1)w∂w + (l −m)(l +m+ 1)
)

(1− w2)−m

=
(
(1− w2)∂2

w − 2(−m+ 1)w∂w + (l +m)(l −m+ 1)
)
. (6.10)

Hence the operator (6.10) anihilates both (1− w2)mPm,ml−m (w) and P−m,−ml+m (w).
Assume first that m ≥ 0. Both functions are polynomials, the first has the highest term

wl−m+2m(−1)m (2l)!
2l−m(l−m)!(l+m)!

, the secon has the highest term wl+m (2l)!
2l+m(l−m)!(l+m)!

. The con-
dition (5.72) is satisfied, hence by the uniqueness of polynomial solutions of the Jacobi equation
both functions are proportional to one another.

Next we note that the identities (6.9) do not change if we replace m with −m. Hence the
theorem is true also for m ≤ 0.

If m < −l, then Pm,ml+m = 0, and if l < m, then Pm,ml−m = 0. 2

In applications, equation (6.4) is often transformed as follows

(1− w2)
m
2
(
(1− w2)∂2

w − (2 + 2m)w∂w + (l −m)(l +m+ 1)
)

(1− w2)−
m
2

= (1− w2)∂2
w − 2w∂w −

m2

1− w2
+ l(l + 1). (6.11)

The equation given by (6.11) is called the associated Legendre equation.

6.3 Standard basis of spherical harmonics in L2(S2)

Spherical harmonics are defined as eigenfuctions of the Laplace-Beltrami operator. That is,

(∆S2 + λ)Y = 0. (6.12)

We make the ansatz Y (θ, φ) = f(cos θ)eimφ. We obtain the equation(
∂w(1− w2)∂w −

m2

1− w2
+ λ

)
f(w) = 0, (6.13)

which is recognized to be the associated Legendre equation with λ = l(l + 1). Setting f(w) =
(1− w2)

m
2 p(w) we obtain the Jacobi equation(

(1− w2)
m
2
(
(1− w2)∂2

w − (2 + 2m)w∂w + (l −m)(l +m+ 1)
)

(1− w2)−
m
2

)
p(w) = 0. (6.14)
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Hence
(−1)meimφ(1− w2)

m
2 Pm,ml−m (w) = eimφ(1− w2)−

m
2 P−m,−ml+m (w). (6.15)

are eigenfunctions of ∆S2 with eigenvalues l(l + 1), where

m = −l,−l + 1, . . . , l. (6.16)

They are called spherical harmonics of degree l.
One of standard normalizations of harmonics (6.15) is

Yl,m(w, φ) = (−1)m
√

(l +m)!(l −m)!

l!

(1− w2

4

)m
2
Pm,ml−m (w)eimφ (6.17)

=

√
(l +m)!(l −m)!

l!

(1− w2

4

)−m
2
P−m,−ml+m (w)eimφ.

Theorem 6.4 The functions Yl,m for (6.16) form an o.n. basis of L2(S2) satisfying∫ π

0
sin θdθ

∫ π

−π
dφ |Yl,m(cos(θ), φ)|2 =

4π

1 + 2l
.

Proof. Let

em := eimφ, (6.18)

fm,l := εm

√
(l + 1) · · · (l + |m|)
(l − |m|+ 1) · · · l

2−|m|(1− w2)
|m|
2 P

|m|,|m|
l−|m| (w), (6.19)

where εm = 1 for m ≤ 0 and εm = (−1)m for m ≥ 0. We have then

Yl,m(w, φ) = fm,l ⊗ em. (6.20)

Clearly, em, m ∈ Z, form an o.n. basis of L2([−π, π], dφ).
Let us fix for a moment m = 0, 1, . . . . Then for l, l′ ≥ m,∫ 1

−1
Pm,ml−m (w)Pm,ml′−m(w)(1− w2)mdw = δl,l′

22m+1l · · · (l −m+ 1)

(1 + 2l)(l + 1) · · · (l +m)
.

(See (6.8)). Therefore, fm,l, l = m,m+ 1, . . . , is an orthogonal basis of L2([0, π], dw).
Hence

fm,l ⊗ em, m ∈ Z, l = m,m+ 1, . . .

is an orthogonal basis of

L2([0, π], dw)⊗ L2([−π, π], dφ) ' L2([0, π]× [−π, π],dwdφ) ' L2(S2).

2

The following special cases are important:

Yl,0(cos θ, φ) = Pl(cos θ), (6.21)

Yl,±l(cos θ, φ) = (−1)l
√

(2l)!

l!

sinl θ

2l
e±ilφ. (6.22)
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6.4 Lie group SO(3)

The group SO(3) acts on R3 and on S2. It also acts on functions on R3 and on S2:

R∗f(x) = f(R−1x). (6.23)

In particular, we have the rotations
Introduce the generators of rotation Lx, Ly, Ly. We first describe them in the Cartesian

coordinates, and then in the spherical coordinates:

Lx = y∂z − z∂y = − sinφ∂θ −
cos θ cosφ

sin θ
∂φ

= − sinφ
√

1− w2∂w +
w√

1− w2
cosφ∂φ,

Ly = z∂x − x∂z = − cosφ∂θ −
cos θ sinφ

sin θ
∂φ

= cosφ
√

1− w2∂w +
w√

1− w2
sinφ∂φ,

Lz = x∂y − y∂x = ∂φ.

Their exponentials are rotations in the x, y and z axis:(
eθLxf

)
(x, y, z) = f(x, cos θy + sin θz, sin θy − cos θz), (6.24)(

eθLyf
)
(x, y, z) = f(sin θz − cos θx, y, cos θz + sin θx), (6.25)(

eθLzf
)
(x, y, z) = f(cos θx+ sin θy, sin θx− cos θy, z). (6.26)

The operators Lx, Ly, Lz span the Lie algebra so(3):

[Lx, Ly] = −Lz, [Ly, Lz] = −Lx, [Lz, Lx] = −Ly. (6.27)

We also have the generator of dilations:

A = x∂x + y∂y + z∂z = r∂r. (6.28)

A commutes with Lx, Ly, Lz.
Direct calculations show that

∆S2 = L2
x + L2

y + L2
z.

This can be also seen quite simply, almost without using spherical coordinates. First we easily
check that A = r∂r. Then we compute

r2∆ = A(A+ 1) + L2
x + L2

y + L2
z (6.29)

and compare this with (6.1).
The operator ∆S2 is invariant wrt the group SO(3). Therefore, it commutes with Lx, Ly, , Lz.

This can be also easily checked directly. Therefore, Lx, Ly and Lz preserve eigenspaces of ∆S2 .
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Spherical harmonics are chosen so that they diagonalize simultaneously −∆S2 and Lz:

−∆S2Ylm = l(l + 1)Ylm, −iLzYlm = mYlm. (6.30)

Clearly, the following operators preserve the eigenspaces of ∆S2 :

L+ := i(Lx + iLy) = −(1− w2)
1
2∂weiφ + i

w

(1− w2)
1
2

eiφ∂φ, (6.31)

L− := i(Lx − iLy) = (1− w2)
1
2∂we−iφ + i

w

(1− w2)
1
2

e−iφ∂φ. (6.32)

(6.27) imply

[−iLz, L±] = ±L±, (6.33)
[L+, L−] = −2iLz. (6.34)

Hence if |m) is an eigenvector of −iLz with eigenvalue m, then L±|m) is an eigenvector of −iLz
with eigenvalue m± 1.

Using
(1− w2)±

m+1
2 ∂w(1− w2)∓

m
2 = (1− w2)

1
2∂w ±m

w

(1− w2)
1
2

, (6.35)

we can rewrite (6.5) and (6.6) in the form(
(1− w2)

1
2∂w +m

w

(1− w2)
1
2

)
(1− w2)

m
2

2m
Pm,ml−m (w) = (l +m+ 1)

(1− w2)
m+1

2

2m+1
Pm+1,m+1
l−m−1 (w),(

− (1− w2)
1
2∂w +m

w

(1− w2)
1
2

)
(1− w2)

m
2

2m
Pm,ml−m (w) = (l −m+ 1)

(1− w2)
m−1

2

2m−1
Pm−1,m−1
l−m+1 (w).

Therefore

−iLzYl,m = mYl,m,

L+Yl,m =
√

(l −m)(l +m+ 1)Yl,m+1,

L−Yl,m =
√

(l +m)(l −m+ 1)Yl,m−1. (6.36)

6.5 Spherical harmonics as a basis of a representation of so(3)

It is well known that irreducible representations of so(3) can be labelled by the spin l, which
can take values 0, 1

2 , 1,
3
2 , . . . . Only for integer spins these representations can be integrated

to representations of the group SO(3). These representations can be realized in the space of
polynomials of degree 2l with basis

ul,m :=
(2l)!

(l −m)!(l +m)!
zl−m− zl+m+ , m = −l,−l + 1, . . . , l;

−iLz :=
1

2
(z+∂z+ − z−∂z−),

L− := z−∂z+ ,

L+ := z+∂z− .
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(Note that this definition gives automatically ul,m = 0 for m = −l − 1,−l − 2, . . . and m =
l + 1, l + 2, . . . , because 1

n! = 0 for n = −1,−2, . . . ). We have

−iLzul,m = mul,m,

L+ul,m = (l +m+ 1)ul,m+1,

L−ul,m = (l −m+ 1)ul,m−1. (6.37)

We will show that properly normalized spherical harmonics realize this representation. Let us
change the normalization of spherical harmonics:

Yl,m(w, φ) := (−1)m
(1− w2)

m
2

2m
Pm,ml−m (w)eimφ (6.38)

=
(1− w2)−

m
2

2−m
P−m,−ml+m (w)eimφ. (6.39)

The standard spherical harmonics differ from Yl,m by appropriate coefficients:

Yl,m(w, φ) =

√
(l +m)!(l −m)!

l!
Yl,m(w, φ). (6.40)

We obtain relations identical with (6.37):

−iLzYl,m = mYl,m,
L+Yl,m = (l +m+ 1)Yl,m+1,

L−Yl,m = (l −m+ 1)Yl,m−1. (6.41)

6.6 Legendre functions

We introduced the standard basis of spherical harmonics with help of Jacobi polynomials. In
literature usually one can usually find a different, less convenient definition based on the so-called
associated Legendre functions, which are solutions of the associated Legendre equation (6.13).
In the literature one can find two varieties of these functions:

Pml (w) :=
2m(l +m)!

l!
(1− w2)−

m
2 P−m,−ml+m (w)

=
(−1)m+l

2ll!
(1− w2)

m
2 ∂l+mw (1− w2)l,

or Pml (w) := (−1)m
2m(l +m)!

l!
(1− w2)−

m
2 P−m,−ml+m (w)

=
(−1)l

2ll!
(1− w2)

m
2 ∂l+mw (1− w2)l,

The first variety uses the so-called Condon-Shockley convention, which we will adhere.
For m ≥ 0 associated Legendre functions can be expressed in terms of Legendre polynomials:

Pml (w) := (−1)m(1− w2)
m
2 ∂mw Pl(w),
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We have the identity:

P−ml (w) = (−1)m
(l −m)!

(l +m)!
Pml (w).

Here are spherical harmonics expressed in terms of associated Legendre functions:

Yl,m(w, φ) = eimφ

√
(l −m)!

(l +m)!
Pml (w).

6.7 Projection onto lth degree spherical harmonics

Consider the Hilbert space L2(S2). Let Pl denote the orthogonal projection onto spherical har-
monics of degree l. In other words,

−∆S2 =
∞∑
l=0

l(l + 1)Pl.

We can assume that they are given by an integral kernel

Plf(ξ) =

∫
Pl(ξ, η)f(η)dη,

wheree ξ, η ∈ S2 and dη denotes the standard measure on the sphere.

Proposition 6.5

Pl(ξ, η) =
2l + 1

4π
Pl(ξ · η). (6.42)

Proof. Pl(ξ, η) is invariant wrt rotations. Hence it depends only on the angle between ξ and η.
Note that

−∆S2Pl = l(l + 1)Pl.

On the level of the integral kernel it means

−∆S2Pl(ξ, η) = l(l + 1)Pl(ξ, η),

where the operator ∆S2 acts on the variable ξ. Hence,for a fixed η, the function ξ 7→ Pl(ξ, η) is
a spherical harmonics of degree l invariant wrt rotations around η.

If we set η = (0, 0, 1), then Pl
(
ξ, (0, 0, 1)

)
is invariant wrt rotations in the z axis. In other

words, it depends only on the z-component ofj ξ, that is on w = ξ · (1, 0, 0). Spherical harmonics
of degree l invariant wrt rotations in the z axis are proportional to Yl,0, which is proportional to
the Legendre polynomial Pl(w). Hence,

Pl
(
ξ, (0, 0, 1)

)
= clPl(w), (6.43)

or Pl(ξ, η) = clPl(ξ · η). (6.44)

Pl is a projection, therefore
P2
l = Pl,
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which yields ∫
Pl(ξ, η)Pl(η, ζ)dη = Pl(ξ, ζ).

Setting ξ = ζ = (0, 0, 1) we obtain

c2
l 2π

∫ 1

−1
P 2
l (w)dw = clPl(1).

Finally, we use ∫ 1

−1
P 2
l (w)dw =

2

2l + 1
, Pl(1) = 1.

2

6.8 Harmonic functions and solid harmonics

We say that a function F is harmonic if ∆F = 0. For instance, a function depending only on
x+ iy or only on x− iy (that is, iterpreting R2 as C, analytic or antianalytic) is harmonic.

We say that a function F is homogeneous of degree l if

F (λx, λy, λz) = λlF (x, y, z), λ > 0. (6.45)

Differentiating in λ we obtain the equivalent condition

(x∂x + y∂y + z∂z)F = lF. (6.46)

In spherical coordinates the operator on the left hand side is r∂r. Every function homogeneous
of degree l in spherical coordinates can be written as

F (r, θ, φ) = rlG(θ, φ), (6.47)

where G is the restriction of F to S2.

Theorem 6.6 If F is harmonic and homogeneous of degree l, then

−∆S2F = l(l + 1)F. (6.48)

Proof.

0 = ∆F =
(
∂2
r +

2

r
∂r +

1

r2
∆S2

)
F (6.49)

=
1

r2

(
r∂r(r∂r + 1) + ∆S2

)
F. (6.50)

2

We say that H is a solid harmonic of degree l if it is a harmonic polynomial of degree l.
By Thm 6.6, if H is a solid harmonic, then its restriction Y to the sphere is a smooth function
satisfying

∆S2Y = −l(l + 1)Y, (6.51)

or it is a spherical harmonic. One can also show the converse statement:
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Theorem 6.7 Every spherical harmonic is a restriction of a certain solid harmonic to the sphere.

Here are examples of solid and the corrsponding spherical harmonics:

1 = r0 ∼ Y0,0,

x+ iy = r(1− w2)
1
2 eiφ ∼ rY1,1,

z = rw ∼ rY1,0,

x− iy = r(1− w2)
1
2 e−iφ ∼ rY1,−1,

(x+ iy)2 = r2(1− w2)ei2φ ∼ r2Y2,2,

z(x+ iy) = r2(1− w2)
1
2weiφ ∼ r2Y2,1,

2z2 − x2 − y2 = r2(3w2 − 1) ∼ r2Y2,0,

z(x− iy) = r2(1− w2)
1
2we−iφ ∼ r2Y2,−1,

(x− iy)2 = r2(1− w2)e−i2φ ∼ r2Y2,−2.

6.9 Electrostatic potential

We have
∆(x2 + y2 + z2)−

1
2 = −4πδ(x)δ(y)δ(z).

Hence (x2 + y2 + z2)−
1
2 is harmonic on R3\{(0, 0, 0)}. After a translation it is still harmonic.

Hence
(x2 + y2 + (z − 1)2)−

1
2 (6.52)

is harmonic on R3\{(0, 0, 1)}

Theorem 6.8 For |r| < 1 and −1 ≤ w = − cos θ ≤ 1 we have

(r2 − 2r cos θ + 1)−
1
2 =

∞∑
l=0

rlPl(w). (6.53)

Hence,

Pl(w) =
1

l!
∂lr(r

2 − 2rw + 1)−
1
2

∣∣∣
r=0

. (6.54)

Proof. The function r 7→ (r2 − 2r cos θ + 1)−
1
2 has branch points at zeros of r2 − 2r cos θ + 1,

that is, at r = w ± i
√

1− w2. Therefore, it is analytic in the disc |r| < 1 and can be expanded
in a series in r.

The function (6.52) is spherical coordinates is (r2 − 2r cos θ + 1)−
1
2 .

0 = ∆(r2 − 2rw + 1)−
1
2

=

(
∂2
r +

2

r
∂r +

1

r2

(
(1− w2)∂2

w − 2w∂w +
1

1− w2
∂2
φ

)) ∞∑
l=0

rlPl(w)

=
∞∑
l=0

rl−2
(
l(l − 1) + 2l + (1− w2)∂2

w − 2w∂w
)
Pl(w).
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Hence Pl(w) satisfy the lth Legendre equation.(
(1− w2)∂2

w − 2w∂w + l(l + 1)
)
Pl(w) = 0. (6.55)

The formula (6.54) easily implies that Pl(w) are lth degree polynomials. Therefore, Pl(w) are
proportional to Legendre polynomials.

We set w = 1:

(r2 − 2r + 1)−
1
2 = (1− r)−1 =

∞∑
l=0

rl =
∞∑
l=0

rlPl(1).

Hence Pl(w) are Legendre polynomials. 2

Corollary 6.9 The electrostatic charge 4π situated at (0, 0, r) generates the following potential
at the distance R from the center and at the angle cos θ = w:

(R2 − 2Rrw + r2)−
1
2 =


∞∑
l=0

rlR−l−1Pl(w), R > r;

∞∑
l=0

Rlr−l−1Pl(w), R < r.

Proof. We apply (6.53) to

(R2 − 2Rrw + r2)−
1
2 =

R
−1
(

1− 2w r
R + r2

R2

)− 1
2
, r < R;

r−1
(

1− 2wR
r + R2

r2

)− 1
2
, R < r.

(6.56)

6.10 Solving second order equations

Consider the equation
g(t) = (∂2

t −A2)f(t), (6.57)

where A is a positive operator.

Theorem 6.10 Depending on the problem, we have the following solutions of (6.57):
(1) Given f(0), f ′(0):

f(t) =
etA

2A

(
Af(0) + f ′(0) +

∫ t

0
e−uAg(u)du

)
+

e−tA

2A

(
Af(0)− f ′(0)−

∫ t

0
euAg(u)du

)
. (6.58)

(2) lim
t→∞

f(t) = 0, given f(0):

f(t) =e−tAf(0)− e−tA

2A

∫ t

0
(e−uA − euA)g(u)du+

etA − e−tA

2A

∫ ∞
t

e−uAg(u)du; (6.59)
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(3) lim
t→∞

f(t) = 0, given f ′(0):

f(t) =− e−tA

A
f ′(0)− e−tA

2A

∫ t

0
(euA + e−uA)g(u)du− e−tA + etA

2A

∫ ∞
t

e−uAg(u)du. (6.60)

Proof. We rewrite (6.57) as

h = (∂t +A)f, (6.61)
g = (∂t −A)h. (6.62)

We obtain

f(t) = e−tAf(0) +

∫ t

0
e−(t−s)Ah(s)ds, (6.63)

h(s) = esAh(0) +

∫ s

0
e(s−u)Ag(u)du. (6.64)

Then we substitute (6.64) into (6.63), which yields (6.58).
Suppose now that there exists lim

t→∞
f(t). Then the first term of (6.58) has to converge to 0.

Therefore,

Af(0) + f ′(0) +

∫ ∞
0

e−uAg(u)du = 0.

To daje (6.59) i (6.60). 2

For example, consider the Dirichlet/Neumann problem on the halfspace (t, x1, x2), t > 0.
Consider the equation

0 = ∆3f =
(
∂2
t −

(√
−∆2

)2)
f, ∆2 = ∂2

1 + ∂2
2 .

The operator
exp
(
−t
√
−∆2

)
√
−∆2

has the integral kernel

exp
(
− t
√
−∆2

)
√
−∆2

(x, y) =
1

2π
√
t2 + (x− y)2

. (6.65)

This can be obtained as follows:

1

(2π)2

∫
eik(x−y)−|k|t

|k|
dk

=

∫ ∞
0

d|k|
∫ 2π

0
dφe|k|(i|x−y| cosφ−t)

=
1

(2π)2

∫ 2π

0

dφ

t− i|x− y| cosφ
.

Then we insert ∫ 2π

0

dφ

t− ia cosφ
=

2π√
t2 + a2

.
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6.11 Laplace equation on the ball

Consider the Laplace equation on the 3-dimensional unit ball. Write the Laplacian in the coor-
dinates r, w, φ. Substitute r = e−t. We obtain ∂r = −et∂t. Therefore,

∆ = e2t(∂2
t − ∂t + ∆S2) = e2t

(
(∂t − 1

2)2 + ∆S2 − 1
4

)
. (6.66)

Hence

e−
5t
2 ∆e

t
2 = ∂2

t + ∆S2 − 1
4 = ∂2

t −
(√
−∆S2 + 1

4

)2
(6.67)

Let us compute the integral kernel of the operator
exp
(
−t

√
−∆S2+

1
4

)√
−∆S2+

1
4

.

We have

−∆S2 =
∞∑
l=0

(
(l + 1

2)2 − 1
4

)
Pl.

Hence,
∞∑
l=0

(
l +

1

2

)
Pl =

√
−∆S2 + 1

4 .

After substitution r = e−t, the multipole decomposition leads to

1

2π
e−

t
2 (e−2t − 2e−tξ · η + 1)−

1
2 =

1

2π

(
2 cosh t− 2ξ · η

)− 1
2

=
1

2π

∞∑
l=0

e−(l+ 1
2

)tPl(ξ · η) (6.68)

=
∞∑
l=0

2e−(l+ 1
2

)t

2l + 1
Pl(ξ, η)

=
exp

(
− t
√
−∆S2 + 1

4

)√
−∆S2 + 1

4

(ξ, η). (6.69)

7 Spherical harmonics in any dimension

7.1 Space L2(Rd)

Consider the space L2(Rd). Here are various unitary operators that act on this space: translations
e−t∂xi , rotations e−ψLij and scaling es(D+ d

2
), where

Lij = xi∂xj − xj∂xi ,
D : = x1∂x1 + · · ·+ xd∂xd .
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7.2 Laplacian

We define the Laplacian:

∆ =

d∑
i=1

∂2
xi .

It is easy to see that ∆ is invariant wrt translations and rotations:

e−t∂xi∆ = ∆e−t∂xi ,

e−ψLij∆ = ∆e−ψLij .

7.3 Laplace-Beltrami operator on Sd−1

Define
L2 :=

∑
i<j

L2
ij

Note that for any ij,

e−ψLijL2 = L2e−ψLij .

Hence the operator L2 is invariant wrt rotations. It is also invariant wrt scaling and multiplication
by r:

e−s(D+ d
2

)L2 = L2e−s(D+ d
2

),

rL2 = L2r.

The operator L2 is made out of differentiations tangent to the d − 1-dimensional sphere. It
can be viewed as an operator on functions on the unit sphere Sd−1. With this interpretation it
will be called the Laplace’-Beltrami operator on Sd−1, and will be denoted ∆S2 .

7.4 Spherical coordinates

Suppose that Ω = (ω1, . . . , ωd−1) are coordinates on the sphere.
Adjoining r :=

√
x2

1 + · · ·+ x2
d to Ω = (ω1, . . . , ωd−1) we obtain coordinates on Rd. (These

coordinates can be called “generalized spherical coordinates”).‘

Theorem 7.1 We have

D = r∂r, (7.1)

∆ = r−d+1∂rr
d−1∂r +

1

r2
∆S2

= ∂2
r +

d− 1

r
∂r +

1

r2
∆S2 . (7.2)

Besides, Lij and ∆S2 depend only on the coordinates Ω on the sphere.
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Proof. We can write

D = c0(r,Ω)∂r +
d−1∑
j=1

cj(r,Ω)∂ωj .

We have

D
√
x2

1 + · · ·+ x2
d =

√
x2

1 + · · ·+ x2
d,

D
xj√

x2
1 + · · ·+ x2

d

= 0, j = 1, . . . , d.

The second formula implies Dωj = 0, j = 1, . . . , d− 1. The first yields c0(r,Ω) = r. This proves
(7.1).

We have
L2
ij = x2

i ∂
2
xj + x2

j∂
2
xi − xixj∂xi∂xj − xi∂xi − xj∂xj .

Therefore, ∑
i<j

L2
ij =

∑
i 6=j

x2
i ∂

2
xj −

∑
i 6=j

xixj∂xi∂xj − (d− 1)
∑
i

xi∂xi

=
∑
i,j

x2
i ∂

2
xj −

∑
i,j

xixj∂xi∂xj − (d− 1)
∑
i

xi∂xi

=
∑
i,j

x2
i ∂

2
xj −

(∑
i

xi∂xi
)2 − (d− 2)

∑
i

xi∂xi

= r2∆−D2 − (d− 2)D.

This proves (7.2).
We have Lijr = rLij . Therefore, Lij does not contain a derivative wrt r.
We also have LijD = DLij . Using D = r∂r we see that Lij does not involve r.
The definiton ∆Sd−1 involves only Lij . Hence ∆Sd−1 does not contain ∂r nor r. 2

7.5 Space L2(Sd−1)

The unit sphere in Rd is denoted

Sd−1 := {(x1, . . . , xd) ∈ Rd : x2
1 + · · ·+ x2

d = 1}.

dΩ stands for the natural measure on Sd−1. This measure is invariant wrt rotations and the
sphere has the d−1-dimensional volume 2π

d
2

Γ( d
2

)
. The Hilbert space L2(Sd−1) consisits of measurable

functions on Sd−1 such that ∫
|f(Ω)|2dΩ <∞.

Its scalar product is

(f |g) =

∫
f(Ω)g(Ω)dΩ.
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The change from the Cartesian to sherical variables ccan be interpreted as the unitary map
U : L2(Rd)→ L2([0,∞[×Sd−1, rd−1drdΩ) defined by

(Uf)(r,Ω) := f(x1, . . . , xd).

The operator UeψLijU−1 and U∆Sd−1U−1 act only on the variables Ω. Therefore, they can
be interpreted as operators on L2(Sd−1). Abusing slightly the notation, these operators will
be denoted simply by eψLij and ∆Sd−1 . The operators eψL̃ij are unitary on L2(Sd−1dΩ). The
operator ∆Sd−1 is self-adjoint on L2(Sd−1dΩ) and is called the Laplace-Beltrami operator on the
unit sphere. We would like to diagonalize ∆Sd−1 .

7.6 Multivariable polynomials

A polynomial depending on the variables x1, . . . , xd is a finite linear compbination of expressions
of the form

xk11 · · ·x
kd
d .

Thus, every polynomial has the form

P (x1, · · ·xd) =
∑

k1,...,kd

Pk1,...kdx
k1
1 · · ·x

kd
d .

The degree of a polynomial P is defined as

degP := max{k1 + · · ·+ kd : Pk1,...,kd 6= 0}.

7.7 Homogeneous polynomials

We say that a polynomial P is homogeneous of degree l if

P (λx1, · · ·λxd) = λlP (x1, · · ·xd).

In other words,
P (x1, · · ·xd) =

∑
k1+···+kd=l

Pk1,...,kdx
k1
1 · · ·x

kd
d .

Here is an equivalent condition:
r∂rP = lP. (7.3)

Let Poll denote the space of polynomials homogeneous of degree l.

Theorem 7.2 The dimension of the space of polynomials of degree l of d variables is

dim Poll =

(
d+ l − 1
d− 1

)
=

(d+ l − 1)!

(d− 1)!l!
. (7.4)

Proof. Consider a row of d+ l− 1 white balls. We paint black d− 1 balls. We obtain d smaller
rows of white balls. In the jth row there are kj balls, altogether k1+· · ·+kd = d+l−1−(d−1) = l.
The number of such configurations is the same as the number of d− 1 element combinations in
an l + d− 1-element set, that is, (7.4). 2
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7.8 Harmonic polynomials

We say that a polynomial H is harmonic if

∆H = 0.

Let Harl denote the space of harmonic polynomials homogeneous of degree l. (The second
implicit parameter is the dimension of the space d).

Harmonic polynomials homogeneous of degree l are sometimes called solid harmonics of degree
l.

Theorem 7.3 (1) dim Harl = dim Poll − dim Poll−2 = (2l+d−2)(d+l−3)!
(d−2)!l! .

(2) Poll = Harl ⊕ r2Poll−2.

(3) The operator ∆ is injective on r2Poll−2.

Proof. Let P ∈ r2Poll−2 and ∆P = 0. We can write

P = r2kPl−2k,

where Pl−2k ∈ Poll−2k is not divisible by r2 and k ≥ 1.

∆r2kPl−2k = (∆r2k)Pl−2k + 2(∇r2k)∇Pl−2k + r2k∆Pl−2k

= 2k(2k − 2 + d)r2k−2Pl−2k + 4kr2k−2r∂rPl−2k + r2k∆Pl−2k

= 2k(−2k − 2 + d+ 2l
)
r2k−2Pl−2k + r2k∆Pl−2k.

We have 2k(−2k − 2 + d+ 2l) > 0. Hence Pl−2k is divisible by r2, which is a contradiction and
proves (3).

Consider the linear operator ∆l : Poll → Poll−2. Using (3) we obtain

dim Poll−2 ≥ dim Ran∆l ≥ dim r2Poll−2 = Poll−2. (7.5)

Hence dim Poll−2 = dim Ran∆l. But

dim Poll = dim Ran∆l + dim Ker∆l (7.6)

and Ker∆l = Harl. This proves (1). Finally, (1) and (3) implies (2). 2

Here are examples of solid harmonics:
d = 2. For m ≥ 1 in the Cartesian and polar coordinates:

(x± iy)m = rme±imφ.

dim Har0 = 1, dim Harl = 2, l ≥ 1.
d = 3. Solid harmonics for l ≥ 1 in Cartesian and spherical coordinates:

(x sinψ − y cosψ ± iz)l = rl(sin θ sin(φ− ψ)± i cos θ)l

dim Harl = 2l + 1.

56



7.9 Spherical harmonics

We say that a funtion Y : Sd−1 → C is a spherical harmonic of degree l, if there exists a solid
harmonic H of degree l such that Y is a restriction of H to Sd−1. An equivalent condition:

(x2
1 + · · ·x2

d)
l
2Y

 x1, . . . xd√
x2

1 + · · ·x2
d


is a harmonic polynomial.

Here are examples of spherical harmonics:
d = 2

e±imφ.

d = 3
(sin θ sin(φ+ ψ)± i cos θ)l.

Lemma 7.4 Let P ∈ Poll. Then there exist Hl−2k ∈ Harl−2k, k = 0, . . . [l/2], such that

P
∣∣∣
Sd−1

=

[l/2]∑
k=0

Hl−2k

∣∣∣
Sd−1

. (7.7)

Proof. We use induction wrt l.
We have

Pol0 = Har0, Pol1 = Har1.

Hence the lemma is obvious for l = 0, 1.
Suppose that the lemma is true for l replaced with l − 2. By Thm 7.3, we have

P = r2Pl−2 +Ql, Pl−2 ∈ Poll−2, Ql ∈ Harl. (7.8)

By the induction assumption,

Pl−2

∣∣∣
Sd−1

=

[l/2]∑
k=1

Ql−2k

∣∣∣
Sd−1

, Ql−2k ∈ Harl−2k. (7.9)

But on Sd−1 we have r2 = 1. Therefore, (7.8) and (7.9) imply (7.7). 2

Theorem 7.5 Let Yl be a spherical harmonic of degree l. Then

∆Sd−1Yl = −l(l + d− 2)Yl.
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Proof.

0 = ∆rlYl =

(
r−d+1∂rr

d−1∂r +
1

r2
∆Sd−1

)
rlYl

= l(l + d− 2)rl−2Yl + rl−2∆Sd−1Yl.

2

Spherical harmonics of degree l form a subspace of L2(Sd−1) denoted Hl.

Theorem 7.6 (1) Hl is the subspace of eigenfunctions of the operator −∆Sd−1 on L2(Sd−1)
with eigenvalue l(l + d− 2).

(2) Hl are orthogonal to one another for disctinct l.

(3) Linear combinations of elements of Hl are dense in L2(Sd−1).

(4) Rotation operators eψLij preserve Hl.

Proof. (2) follows from (1) and from the self-adjointness of ∆Sd−1 on L2(Sd−1).
Lemma 7.4 shows that harmonic polynomials restricted to Sd−1 coincide with all polynomials

restricted to Sd− 1.pokazuje, że wielomiany harmoniczne obcięte do sfery. Then we use the
Stone-Weierstrass Theorem, which implies that polynomials are dense in continuous functions
on Sd−1 in the supremum norm. Continuous functions are dense in L2(Sd−1). This shows (3).

(4) follows from eψLij∆Sd−1 = ∆Sd−1eψLij . 2

(2) and (3) cn be together expressed by the identity L2(Sd−1) =
∞
⊕
l=0
Hl.

7.10 Gegenbauer polynomials

Gegenbauer polynomials are defined with the help of the following generating function:

(1− 2wr + r2)−λ =
∞∑
n=0

rnCλn(w), |r| < 1. (7.10)

Hence,

Cλn(w) =
1

n!
∂nr (r2 − 2wr + 1)−λ

∣∣∣
r=0

.

We have

(r2 − 2r + 1)−λ = (r − 1)−2λ =

∞∑
n=0

(2λ)n
n!

rn.

Hence,
Cλn(1) = (2λ)n.

Substituting R = 1
r , (7.10) can be rewritten as

(1− 2wR+R2)−λ =

∞∑
n=0

R−2λ−nCλn(w), |R| > 1.
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Proposition 7.7 (
(1− w2)∂2

w − (1 + 2λ)w∂w + n(n+ 2λ)
)
Cλn(w) = 0.

Proof. Clearly, (
∂2
x + ∂2

y

)
(x2 + y2)−λ = (2λ)2(x2 + y2)−λ−1,

1

y
∂y(x

2 + y2)−λ = −2λ(x2 + y2)−λ−1.

Hence„ (
∂2
x + ∂2

y +
2λ

y
∂y

)
(x2 + y2)−λ = 0.

Therefore„ (
∂2
x + ∂2

y +
2λ

y
∂y

)(
(x− 1)2 + y2

)−λ
= 0. (7.11)

Introduce polar coordinates:

x = rw, y = r
√

1− w2,

r =
√
x2 + y2, w =

x√
x2 + y2

.

We have then

∂x = w∂r +
1− w2

r
∂w,

∂y =
√

1− w2∂r −
w
√

1− w2

r
∂w.

∂2
x + ∂2

y = ∂2
r +

1

r
∂r +

1

r2

(
(1− w2)∂2

w − w∂w
)
,

1

y
∂y =

1

r
∂r −

w

r2
∂w.

(7.11) can be rewritten as(
∂2
r +

(1 + 2λ)

r
∂r +

1

r2

(
(1− w2)∂2

w − (1 + 2λ)w∂w
))

(r2 − 2wr + 1)−λ = 0. (7.12)

2

Thus Gegenbauer polynomials satisfy the same equation as ultraspherical (Jacobi) polyno-

mials with α = λ − 1
2 . Hence Cλn is proportional to P λ−

1
2
,λ− 1

2
n . Comparing the value at 1 we

obtain
Cλn(w) =

(2λ)n

(λ+ 1
2)n

P
λ− 1

2
,λ− 1

2
n (w).
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Comparing the generating functions we obtain the relations between Gegenbauer and Cheby-
shev polynomials:

Tn(w) =
1

2
∂λC

λ
n(w)

∣∣∣
λ=0

,

Un(w) = C1
n(w).

7.11 Electrostatic potential in higher dimensions

The Laplacian in dimension d on radial functions is

∂2
r +

d− 1

r
∂r. (7.13)

Therefore,
r−2λ = (x2

1 + · · ·+ x2
d)
−λ

for λ = d
2 − 1 is harmonic on Rd outside zero.

Similarly, the function (
x2

1 + · · ·+ x2
d−1 + (xd − 1)2

)−λ (7.14)

is harmonic outside of (0, . . . , 0, 1). Introducing w := xd
r we can rewrite (7.14) as

(1 + r2 − 2wr)−λ. (7.15)

For functions depending only on r, w, the Laplacian is

∂2
r +

d− 1

r
∂r +

1

r2

(
(1− w2)∂2

w − (d− 1)w∂w
)
.

This operator annihilates (7.15), which yieds an alternative proof of (7.12) (which unfortunately
works only for λ = 1

2 , 1, . . . ).

60


