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The puarpese of thils book 13 to pleck up theo-

reticel points in the book of 3§. Banach;

Théorie des opérations linéaire,

and to arrange them by modern method. I made a
gourse of lectures on Banach spaces at Tokyo Unl-
versity during 1947-48 and had & great mind to
write thia book. T finlaled the manuseript in
19£7 by the valuable help of Msssrs T. Shibata, A.
8elte, F. Shiral, H. Kuroda and 0. Takenouchl to
teke notes of my lectures, but I had to correct
aome polnts after by kind remarks af  Mesara 1.
Amemiye and 0. Takenouchi. To these I express
wy wermest thanks.

The rezasr need only be aguainted with ele-
wentary properties of real nambers, which are to
be fornd in most books on elsmentary analysis.
I went this book willl be =8 good introduction to

modern analysia.
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INTAODUCTION 1l

Hor a set A we defife me A or A» e to mesn thet o is an
slemont of A . and we shall write a€ A or A56 if @ is not con-
tained 3n A. = For two sets A and B we defime A3 B or B« A
to mezn that B 1s & subset of A, that is, A includes B

We shaell maxe usge of the notatlon

{=: cwmri
to denote the set conslsating of all x satisfying the condition =)
e dencte by {a;, Gog, .-0} the set composed of elements &, Ggypune g
and the smpty set will be denoted by &. ]

For a system of sets A, (A &€ A ) we denote by ;\%‘,‘ A, the union of
all 4,, and by I‘-{ﬂ A, their intersection, that is,

TA =z xe Ay ror all a¢A},
2. A =1%" =e A\ for some reA

& b
For a sequence of sets A, {v=1, 2,...) we may write
[ N N oo
%-‘Ap'—':ﬁa'é‘tqi-d'““) :r:_!r/!iy'-:fin/dg"‘

‘4 set R may be called a gpace, 1f we shall be concerned only with
gubsets of R, and then every subset of R may be called a polint set,
while every element of K may be called a point. Let R be a space.
For every point set A in R we denote ths complement of A4 By A, that
is,

A== xE A},
Tien we have cebviously ’
ALY = T A ‘= E A
(A%i Ay = J:EAA" s (;rerﬁﬂa) Fry i
for any system of point aset® A, (x ¢ A ). For two pelnt sets A and
B, if A >R , then we denote AB by A— B , that is,
A-B={x: meA, 2EB}.
As s method for infinite process we are permitted to make use of

the tollowing axiom due to Zermelo:

Choice Axiom. For any space R, we ¢an Tind a correspondsence of

& point a,¢ R to every point Set A & 0 such that Gy € A



By virtue of Cholce axiom we will prove the followlng thecrem dus

te Zorn, which will be spplled often in this book instesd of the trens-

finite inductlon.

Maximel Theoram. Let ® be & condition faor a finlte nuamber of

If o polpt set A, sabisfies the condition ¢,

points in a gpace s
that ig, if the condition (=, Zgsee-s ) L3 satblafied for ewvery

finite number of points &, ,%g,crrs X & A,, then there exists s maximal

that 1is,

polnt set 4 which include A, snd satisfies the condition &,

there is no other Ghan 4 which includes 4 end satisfies the condltlon

.
Proof. _We cen assume by Cholice Axiom thet Lo everjr point set
Y 4 ¢ there is determined a peint Tex corresponding to ¥. Let &,

be the totallsy of polnt sets which .include A, and satiafy the conditlon’
c. For & polnt set Ae A, , if there 15 8 polnt =& A for which
fa,z} ¢ #., then we obtain & point @4 correaponding to the totality of
such pointa z and we have

{A,asted&,, ap & A.
point set 4 & &, for whiech there 1s

We need only prove that thers is &

no such corresponding point g .
e suppose that correspondlng to every polnt set A€ &, there 1a

determined such a point &4 . Ve shall t‘:cnsider subsets £ < &, which

agtisfy the conditions:

-3&) ﬁ‘ 2 Ao,
w3t & » A implies £21A, apt,
sk ) £ 2 Ay (reA ) implles &’BAA?E_-A A 1f A {xe€A) are

mutuelly comparable, thet iz, if for every two elements iy, Az €

we heve A, DA, oF A, < An o

ﬁ'g satisfies obviously these condltions. Let &, be the intersection

of all subssta A < &, satisfying these conditions. Then we see easily

thet &, slso satisfles these conditions, that is, &, is the least subset

of R, satisfying thess conditions.
Iet &+ De the Lotality of point sets in & which are compsarable

with every point set in 4, . Then we have obwvlously -c{i’ 2 and \r-e‘J
see easlly that A, sstisfles the conditlon i), Now ‘:e sj:u rove
that &'R' satisfies the conditlon w3 ) . ‘For eny Ay € £, , Lf we pit
dy ={A: Ay 2Aeh 1 4A: 1A1, 5,1 c‘ﬂ &}
Then we have obvlously ,,5’3 2 4,, &nd we aee easily that 4, s’atisfies the
conditlon ), Furthermore efi’a satiasfles the condlticon ), Be-
cause, if 6533 A but &, 5i4, ayl, then, since A ef, lnpiies {1 4,a,fe¢4
and aince A, 1s comperable with every point set In £,, we must hajej ¥
AC Ay ¢ LA, By},
and consequently 4 = 4, or Aﬁ={ﬁ) g}, contradicting the szsumptlion

A a, e cﬁ; Therefors ﬁg satisfies the conditions #), =)
i ),

#) 5
and h
ence we obtain é'ﬁrd’é',, since f. i= the legast subset of A& setisfy
. e . ]

n i)
ing the conditions ), i), wws), Conssquently { A,, & 4,{ 18 compar
. » 2 -

abl
e witn svery polnt set Ae &,, that is, {Az’ﬂ‘qz}éffg. Thus £, also
gatlaflies the condltionsz =}, :

), s}, snd hence we obtain likewiss

& =4 .
a & Accordingly aﬁ'; is & system of mutually comparable point

‘aets, and hence putting

A=, 2 A

we obtain 4, ¢ 4, by the condition =

For such A, we have X
by the conditlon #%), and consequently we obtain {A a A 1’4“%,”1&"
dicting hhe assumption &, € A,. Thersfors th e

, ere exlats a polnt set
A e £, for which there 1s no point &€ A such that {4, =} €, Such
a point set A 1is obvliously a meximal point set which incluces A, and
satisfiss the condltion €.
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a TOPOLCGY

CHAPTER T

TOPOLOGICAL  BETS

§r  Topology conditions

Let R e a space. 5 colléetion of point sets ¥ 1in R is =sid

ta be a Lopology, if I gatlslfies the zopology conditions:
1) My 0, B
2} 7% A, B lmplies T3 AB;
3) 13 At {ieA) implies 'lag&fﬁk
For instanca, a]ﬂ point sets of R constitutes obviously a topologys

whis topology i8 celled the diserete topology of R . Two polnt sets

g end & alse constitutes s topology on R, This topoleogy 1s called

the trivisl topology of R
A space assoclatsd with a topology 1= called a topological 3pate.

Opn the other hkand, a space without topology may be called an ebstract
space.

Let . be & topologleal space with a topology 1. ) Every point
sst of 71 1s said to be gpen, 1.8-. ] is the col;ection of a&ll open sets.
& poeint seb A 1s sald Lo be clossd, if the complement A" 1a open. Ir
ws denote the totalily of closed seta by “4’, then we have by definition

A= we '

and we see easlly DY the topology condltions that ’1' satisfles the con-

altions:
1) 430, R;
g') 4'2 A, & implies 4T3 A+EB:
31) - "J’a/h(ké/l)impliea_'l"—)ﬂ,‘tﬁa_.

Becawse wWe have

(arey= A8, (LAY = 2 A

AgA
Parthermore, we seé spally that 1f & collection of point ssts " in

a space R sétisfies the conditlons 1'), 2%), and 31), then there exists

§1, §2) TOPOLOGICAL SETS 5

uniquely o topology 7 on R such that ' 18 the totality of closed B
7 od gets
by the topology L.

§2 Open basls, neighbourhood gystem

Let R be & topological space with s topolegy . A collection

of open sebts & 48 called an opemn baais, if we have
A= EZ. 0K

. Azxe s

or emeh open basls & we see immediately by definition that ¥ < ¥ and

Tor every A4¢ 7.

¥ gatiafiss thse Dasis condltions:

1) % 20

2) z =
feg LR
3) . 3 A ,B Implies AB = F_ X
i .
Conversely we have; Aeoxek
Theorem 1. For gn abstract space R, If a collection of point

sets ¢ In R satlsfies the basls conditions 1), 2), and 3), then there
and o), Lhen there

sxlsts uniquely a topolegy 7 on R such that ¥ 18 an open basis of Y

Proof. Putting ¥ ={X 1 X = Y,
I x:‘(eé"
astlafies the topology conditions, thet 1s, 7T is a topology on R

we see easily that ¥

For this topelogy 7, 1t 12 obvious by definiticn .that ¥ 1s an open

b
agla of V. Purthermors such topology T 18 determlned uniquely.

B
eceuse, 1f 71, 13 another topology such thet % 18 pn open basls of 7,
or

Lnen we have obvlously by definition that -4, < 7. On the other hand

from 7, > & we conclude Y, = ‘T by the fopology conditiom 3).

1 .
or & topologlcsal space R with a topology 7, & collection of open

sets 9 1= called a neiphbourhood system, If a e A € 7 implles ae X < 4

fa [
r soms X ¢9C. With this definition, we see Immediately that a col

l &
ection of open sets 2¥ is a neighbourhood system, if snd only if {97, o}

ia an
cpen basis. Consequently we see by the beasis condition 3) that

1f ¢ 1s = neighbourhood system, then for any A, B €T, a ¢ AB im
, -
rlies a¢ X £ AB for some X ¢ ¥ .
Converssly we have:

Th %
eorem 2. For = collection of point sets 9¥ in an sbstract
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Bl
space R 1) Af for each & ¢ R ¥e o2n find ¥ eff such that o € 3, and
i ? e -
2} 1f for any A - Bewt, a€ AbB implles o ¢ X < 4B for some Xe&il
if for any iMpLlss for some

then there exlshs uniquelv 6 topology 7 on_ R such thet ¥¢¥ is a nelgh-

bourhood system of 7.

Proof. putting 4= {%, 03.. we see easily bY assumption that &
satisfles the besis conditions. Thus, thers exlsis vy Theorem 1
uniguely a tlopology 7 such that % 1is an open pasis of 7. Por such
.4t is obvicusly by definition 2 nelnh‘ocurhood aysuem of T. Such
topeleogy f is uniguely determined. . Because, if Y, is another topo-
logy such theb 4z is & neighbourhood system of Y, s then 74 1s py dofi-
nitlon sn open basls of 4, » and hence we obtein Y, = by the uniqueness

of the topology for whilch ¢ is en open besis.

§3 Opener, glosurse
Let R be & topologleal space with s topology T. Correspondling

to every point set A we éefins the opener A% to mean

LI
;i:xa‘! )
The ovenst A° may be also denoted by f’[ . if we need indicate the to

“

pology T. )
We ses immedlately by the topoleogy conditlon 3) that the opener A

1s open, that 1s, ,4"’5 7 for every point set A, Therefore wWe €8I
sgy that the opener A° is the greatest open aet lncluded in A. For
an open basils % we nave obviously by gefinition misao
b= Z.
. AE er A 1=
For an arbitrary polnt set A, every point of the cpen

1led an inner oint of A With this definition we have obviously:
ca p

Theorem L. For a neighbourhood system 7, }goint g is sn.in-

ner point of & point set A if_end only if & ¢ X< A for some X & at.

tdorresponding to every polnt szet 4 we define the closurse A7 to mean

A= T11 X
e - be also deé-
for the totmllty of closed sats a1, The closure 4 may be &

ncted by ,41_ , 1f we need ladlcabe the topology ¥-

‘the intersection AX

§3, §$4) TOPOLOGLCAL BETS T
By virtue of the concéltion 3') in §1, we see that the closure 47 is
cloased; that is, 47 € 1’ for every polnt set A . Thus we can say that

the ciosure A~ 13 the lemst closed set ilnciuding A.

For an arbitrary péint set A, every point of the closure 4

cellied a contact peint of A CWith this definition we have:
Theorem 2. For & neiphbourhood system #¢Y, a2 polnt & is a con-

tect point of & point set A, 1f and only 1f a e & 97 implies AX 0.
- )

Prool. If there is an open set X such that o€ X but 4X = ¢,

then we have naturally a € X' and 4 < X" as X' 13 closed, ws have

then by definition 4™ € X', and hence @ 18 not a contact point of A .

Conversely, if @ 1is pot a contact poimt of A, that is, if o & 47,

then we have naturally a € A77. as A7 18 open, we can find X & 5%

such that &€ X < 477, that 13, o € X ¢9¢, AX S A X = 0.

A point @ of & point set A 18 called an isolsted polnt of A, if

there is sn open set U such that AT = {a}l. A contacht polint of a

point set A 1is called a limjiting point of 4 , iIf it iz not an isoletsd

polnt of A . with this definition we see sasily that a point a4 is a

limiting polnt of a point set A if and only if for every open set ¥ 3 &

conteins a polnt different from the peint &4 .

From the definition of opener and closure, we conclude immediately

that & point set A 1s open Af and only if A" = A: and that a point set

A 1s closed if and only if A™ = A, Thus we see that a point set A

15 cloassed {f ané only 1f 4 contains all limiting points of A4,

§4 Calculus of topologleal notations

From the deflnition of ocpener and closure we conclude immedlstely
(1) At c A AT
and furthermore

0t =0, 0" =0,

I

(2}
K= R, R™=R.

Since we have for the topology 7 of R

X ’= TT J(’ = TT
AT 7 ey ) AKX Al eLf 7

( =
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8
- ’
= = = . Y,
( A_QIE’I' %) Acx g1’ X PN
we obtain by definitlon
- e
-(2) AT = AT, Al = A",
rs A4° 1s open and A7 18 élosed, we have naturally
(4) A% = A%, AT = AT,
and. further we obtaln by the topology condition 3) and 3%) in &1
| : ’ )T =TT AN
(57 (Z A0 = Z A, (AT = A

We see sasily by definition
| PG ] ¢ pm®end A7 D BT
(8) A 2 B dmplies A% 0B

Tar twn poiz‘rﬁ sete A and £ we have by bthe formula (6}

(AB)® < A"B7,

. nd hence we
On the other hand we have 4B 2 A®A% by the formule (1), &n

ohtain by" tne formalas (4) and (6)
(AB)" 2 (A7B7)" = ATB

¢ RTY i ta end B-.
Theyefore we nave EIB)° = A°8"7 for every poink se A

LR -iR" : 1.e.
From this relation we sonelude (A 4 B) = 4~ +B DY duslity,

(/4""5)!0’ = (14151)51
__,{Arca Blojf - A'w-ﬁwﬁ"”: /qﬂd.-'ﬁ—.

i

(A+8)"

Thus ﬁa have for every point sets A anq B
(1) (4B} = 4°8°, (A+B)T = ATHBT.
sinee-we have obvicusly by the formuia (1)
| AB < AT BT,
we obtain by the formmlss {5) and _(6)
(AB) < (A B7)" = ATET.
as A= AB+ 4B < AB -+ B’y we have BY the formulaz {8}, (‘7.), and (3}
A" C (AB+ BT} = (AB)T 4 87 = (AB)T + BT,
Therefors we obtain '
{8) ATB® < (AB;T < ATBT.
From thils rslation we conclgde by duwality
(9). ,4'4:3":;(,445)“7,4“-%3“‘
For an arbitrary point set A we have

{10} AT = AT, AT = A7

§a) TOPOLOGICAL SETS ‘ g
Bscause, we have 4 °7 5 47° by the formula {1), énd hence by the formulas.
{6) and {4)
AT 5 47 = 40
On the other hand we have A °< A°by the formula (1), and hence by the
formulas {6) &nd (4)
A-B—D C:, A--——e _ A"D
Thersfore we cbtain ths first relation. We can conclude the segond
from the first by dualitiy.
For every point sets 4 and B we have
{11) (A°B)Y" = A°T87° ., (4" B) T = ATTRTY
Because, we have by the fermulas (@) and (4)
ATBT S CAB)T > (A°° B7)T o A" B7°
and hence by the fdarmulas (4) and {7}
ASPBTT o (A"B)TT o AT BT,
Therefore the First relation is proved. Simllarly, we have by the
formulas (4) and (8)
ATBT D (A"B)T D A47°RB”
and hence by the f'ormulas {(6), (4), and {7)
A°B™® > (A" B)"° o A "B,
Thus the second relation also is proved.
From the formuls (11) we conclude by duslity
{12 (A +8)°" = A" 4ge- s (A4 B)T = 4° 4 R°T
For two point sets 4 and B, we define A > R to mean A% 2 B~
With this definitich we see easily by the formula (6)
A#»B 2C loplies 4 »=C
'C 2 A% B implies £ » B .
Furthermore we zes essily by the formula (4) that 4 =8 is equivélent
%o each one of the relations
A»B, A® > B, A® = BT
R‘ecalling the Tormulas (7}, (8), end (2}, ws can conclude essily further
that A4, »8,, Ay » B, implies

Ay A, +» BBy end A 4 AL > By +Ba.
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A point set ¥ i3 seld to be regularly open, 1f w-®
is regularly open for every polnt sst A .

10
= 7, By

virtue of the formule (roy, A°°

For every palir of ragulerly open sets U and ¥ , the intersectlon W
elsc 13 regulerly open by the formule (11}). But tne union W4 ¥ is

not necessarily regularly epen. Thus we define the ragular' sum eV

° for regularly open sebs T and V.

to mean T& ¥ = (T Far

45 First category sets, second csbegory aeta

Let R be a topologlcsl space with a tepology T Iin the sequel .

For two polint sets A and B we ghall sgy that A ia densse im B, if we
have {AB) 2 B. Eapecislly, 1T a point set A 1s dense in the spacs
f. , that is, if A~ = R, then A is =sid %o Dbe dense. with this de-

say that a polnt ast A 1s denss 1f an

" Becnuse, if AT = 0 for en opsn set

finltion we ¢an & only if AT + ¢

for every open set U = 0 .
U, then we heve by §4(8) U =RU = A= g c (AT)T =

A point set A 33 sald to be npowhere dense, if A~

1% ig svident by the formilea $4(8) tha

? = 0, With

this definition, t 1f e polnt set
A 1s nowhere dense, then every g ¢ A mlsc 1s nowhere dense. Fur-

thermore, if both A and B are nowhers dense, then A4+ B also is no-

Becsuse we have by §2(7), (8)
c AT+ BT

where densse.
(AL BY7 = (A7 +87)°

48 A~? = ¢ by sasumptlon, we ohtsin hence by $4(8), (4)

(A+BY 2B =20,

- Q.

and conasguently (A & B)

Theorem L. For eny point set A . both 4° — A" and A~ — A

ero novhere 4snse.
By wirtue of the formalas §

Proof. 4(3), (4}, (11) we have

(A% =AY = (AT AT = AT ATE
A-—o Awo.'-o

Aa-a }qd—l & An—Aﬂ--':__. a,
gt At e ATTAT = 0.

L]

kit

(A"~ Ay = (AT

A point set A 4is sald to be of the first category or &8 first catse-

gory set, if fhere is a seguence of nowhers dense -seta A, {w=1, 2yeve)

g4, §8) TOPOLOGICAL SETS 11
guch that 4= 5 4.. with th |
v 1s definition, we see easlly that if a

2

peint set 4. 13 of the flrsey cetegory, then every B < 4 also is of the

First catsgory; and for a sequence of first category sets A, (vr=1, 2 )
A = L, poes)’

the unlon 3 A, 2lsc 18 of the first category.

=t

Theorem 2.{Banach) For = system of open sshs 'UA( x & Ay, If
b s AT

AT, 1s of the flrst wategory very 811
oA gory for every » & A [ et AZ
2 L. 2,
. T, 8lso is

ef the first category.

Broot . By wlrtue of Maxlmal Thecrem, we can Find & maxlmal sys-
tem of open zgbe T (§y ¢ [7 ) such T ¥ ;
e ; P hat ‘Vn v’{.;_&:: & for ¥, % &g, and for
oy & there 1s 2 ¢ A for which T < T - For such s maximal
. . 3 ma.
system of open aste W, {rerf ), we sge sanlly that we have
s T = -
= T < (é—j—_, ).
A ] 1 T
8 AT, 13 by sssumption of ths first eetegory for every A e A AT,
a 1 5 - 2 -y m , r
lao ia of the first catepory for every ye {© , and hencs correspondi
ng
to ev
ery ¥ ¢ I we san find by definition & ssquence of nowherse denss A
such thab "
oo
AV, = 2. a‘qa’,w
For sueh Ay (& el” 3 pwal, &
I T 4 s pal, Bouec), a8 Aﬁvd'ﬂu Tor every ye ™ , we
LAY . Ay ] ) |
¢ f‘w we 0 for Pk ¥ 8, and hence we have by $4(1), {4), (11}
‘1?“ ( 1,"' ﬂ - . -
wl 2 < “r o= " 2 " -
| s Ve F A ) = (T o An ) = AT = 0
or ever ¢ o '
T A6 and werl; 8r000 s Thus we pbtaln for every yw=l, 2
) y y Brese
& R ) = 0,
and econsequently by the Formules §4(2), (8)

(2, T (T hi )" = 0.

Or the othsr hand we have by the formuls §4{11)

(2. Ae )7° = = -0
Er&r,fr,») {f%’vﬁ)(%%ﬂ)}
={Z %" " g e
(E T )77 Ay ) € (L W) (ZpAne) ",

Thererore 2.
P /’Eg)y iz nowhere denze for esvery ¥ =1, 2,.:. « As

= .,Z-AK,V :‘-E’Z" Aﬂ'.y;

AE Ty =
rer Tep kb £ fep

LA E T n
g Ve i3 hence of the flrst category. . We have cbvioualy

Z V)T H -
A(G’El" ‘Y) Cﬂ%vb‘ +{(%‘-Vg) —a%‘vtr},

ma'(3. p ) -
e Fep ¥ ﬁz‘r. Vy is nowhers dense by Theorem 1. Therefore we
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see that A‘{%Tﬁ elso-is of the first category.

& point set 4 1s sald to ., be of the gecond category, if AT is not%
of the first category For every open set T sueh that AV # & with
thls dsfinitlion we see easily that 1f =1} A, {(x ¢ A } ere of the second
category, then ).‘Zé'_" Ax 8lso is of the second category. If = point set
A 18 of the second catsgory and A £ B € A, then B alac is of the SG=
cond c“ategorm Bocause B U=+ ¢ 1mplies AU %0, since every polnt
of B is a contact polnt of A . Purthermore, 1f 4 is of the sscond
category and R is of the first category, then A4RB‘ is of the sscond ca-
LBEOTT . Because, 1f AB T"is of the first category snd %= 2 , then,
a8 Aﬂ”é AB U4+ 8, AU also s of the flrst category and =% 0 , con-
tradicting the sasumptlion.

Recalling Theorem 2, we conclude immediately:

Theoream 3.

If a point set.A 1s nov of the first category, then

ghere 1s sn open set U auch that 4T 1z of tne first category, snd 477

is of the second gategory.

We shall mlso say that the topology ¥ 1ls of the second category, if

the space R is of the second category a2 a polnt set.

§6 Balre sets, Borsl sets

& polnt set A is seld to be a Balre set, if we can find en open set

T wnd two flret category wets F, snd [, such that A= ¥ F'4 Fao with

3

this definltion we have:

Theorsem 1. Vor every Baire set A , the complement 4 also iB g

Baire set.
Mv If A= UF' 4F, for an open set .‘-U and two first category
sets F,, F,, then we have
A = (T +FIF = {°7° + (v -T)+FIF
= TR 4 Acwi- vty 4 FOLES .
Here 7'~ U'® is nowheré dense by §6 Theorem 1. Therefore A" 1s &

Baire set by definition.

-talned in such 4¢ is called & topological set.

y§5, §8) TOPOLOGICAL SETS 13

Theavew E. For every ssquence of Bairs msis A, (v=1, 2

sasels

] ]
both = A, =nd 1] A, sre Balre sets.
21 b (o1 e e e e,

Proof. We can put by sssumption

Ay = mg F:yi ';" G’y ( Py=lp 2,‘;..)

for first category setz R, G, (=1, 2,...). Then we have

S =G ETR -ZWR Y+ 2 6.
ZV - ZUWR ¢ ZUR < EF,.

T

o = o=
4s Z F, is of the first sategory, &% V% - 2. T"F."also is hence of the

(=2 ] b=y

first category. Therefore E? A, 15 a Baire set by definition. As

L] . Foaf .
ﬂ; Ay, = (g;e A )ﬁ'@e conclude by Thsorsm 1 further that i’f’ A, 8lac is s

Belre set.

"4 eollection of point sets & is said to be totally additi“ve, ir

% 3A tmplies ;& 34 snd gt 3 4, (v = 1, 2,...) 1mplies g 2 E_, A .
Considering complements, we see easily that if ¢ is t‘otally "s—.-c;ditive,
then gt » 4, (v = 1, .2,.,..,) implies o€ » _fi: Ay a For svery system of
totally sdaditlve collections gyl re A ), we see essily by definition

that I;!; of, 8lso 1s tetally additive. ‘Therefors there exists the

least totally addltive collection &% which contains sll open seta. Fayr

suoh £ , every point set B e ¥ is called a Borel -1 With this de-

finition we nave obwiously by Theorema 1 and 2

Thsorem 3. Every Borsl set is & Baire aset.

# collection of point seta f 1s.sald to be universally additive,
it gts A implies o2 4  and ks A, (A€ A ) implles ¢ 3 o A
A

Comsidering complements, we sae easlly that if OF is universally sddltive,

then X 9 4,(r ¢ A ) implies (4 3 A'!Z‘ Ax. Simileriy &s Borsl aets, we

8¢ epslly that there exlsts the least unlyersally edditive eollection

of point sets 94 which contains all open sets. Every point set con-

3ince every universally

;&g‘l.ditive collection is ndturally totally additife, we see by definition

“hat: 8¥ery Borel set ls a topologlcal seth, Consequently, all open

ﬁ§ end closed sets are topologloal aeta. Furthérmore, it i3 evi-

'91'}1?_ Py definition that if every point set composed only of a asingle



10

Fq

o

14 ‘ TOPOLOGY {Cheptar I

‘point is & topologic'al set, then every point set 1s & topological s=et.

§7 Gompact sets

A point set A 1is sald to be compact, 1f for each system of open
gets T, (A é&A ) such that 4 C}‘% '-D’,\ we can find a finite number of
slements 2, e A (v =1, 2,.00,3¢) such that A C A%JU‘JW.‘ Let 9T Dhe
a neighbourhcod system. . If for each system T, ¢¥¢ {A £ A} such that
A c X%U}\ we cen find a finite number of elements A.e A (b =1, 25,50,
#£ ) such that A C.%;U;wj then A is compact. Because if 4 Cl% A,
then for each polnt x ¢ 4 we cen Find w, ¢%C such that *e “U“gz.cﬂfnfor
some J\xé A s For such Up e¥T {x ¢4 ), ams A Cz%év“ s We oan
find by essumption & finite nuuber of points A, e (v= 1, 2,..., )
such that 4 ¢ é‘fﬁg“” end them we have cbhviously A4 < s% AA;., for sach
x,{r= 1, Byeoo, ¥ Consequently A4 1s compact by definition,

Theorem L.

If & polnt set A4 is compact, then 4B 2is80 iz com-
paot for every oioned sst £ .

It AB < |
Ac’:;&fb-ﬁ-ﬁ’ o FE A4
88 A Lls oompact by essumption, we cen find e flnite number of alements
Ru ¢ A (v='1, 2,.0., %) such that 4 ‘ﬁ_;{,w

AB C(Z A )B ¥ BB ¢ F A,

gince B = B ' =zf’” by the Tormula §4(3)

Proaf . Aa , Ghen we hevs obviaualy

LB, and hence

Theorem 2. If a polnt set A4 L3 compact, then every subset B cA

composed of infinlte points has a limlting point a ‘r,,q such that 8U 13

composed of infinlte points for every open set Usa .

Proof. If for each point # € 4 we can find an open set T, 3 *
such that BT, is composed only ¢f a finlte number of polnts, then, &8
A 13 compact by a's'sumption, we ¢an F£ind a finlte number of-points %, &M
{v= 1, 2,0.0,K) sﬁ.ch that A4 < %’Jﬂy, and hence

B= AB c'gTB‘Ux,,

contradicting t-he' assumption that & consists of infinite points.

57) TOPOLOGICAL SETS ‘ 15

Theorem 3. In order that & point set 4 be compact, it is neces-

sery and gufflclent ithat AA'LTA B~ =1 implies 4 ‘ﬁ Bn, =0 for some fi-

nlte number of elements a e A (¥ = 1, 2,..45 ).
A ‘T[' Ba7

c (1 B = . re
Ac(I B ) = Z 850 = Z Ba'®,

Proof. = @ 1a esqulvalent to
AEA
and similarly A »ﬂ: B8, . = ¢ 18 equivalent to 4 ¢ 2 B;:". Thus we
= =t

see €aslly Dy definltion that our Theorem 13 welid.

Theorem 4. If a point set 4 13 compact, then for any aseguence

of cloged sets B, > By > ... Such that AB, + 0 (V-%l, Z2,05:) We hava

AT B % 0.
A

.
Proof. Since f“[j‘. B'M = AB,+ 0 for every.wv=1, &,

.s, WE COD=
clude by Theorem 3

AT B +0.
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CHAPTER IT

CLASSIFICATION OF TOPOLOGIES

§6 Comparstion of topologies
Let A be an abstract space. For two topologles 7] end < on R,
i 7 >°f", then we shall say that 7§ 1= stropger than %97, or that 97 ia

weaksr than ".}f o

Theorem 1. Let %9¢ and 47 be nelghbourncod systems respectively

of topelopies 4 and 7 ou R. In crder that 4~ < 7, it is necessary

and sufficlent that %¢ » Us ¥ ilmplies T >V s= for some ¥ § T,

Proof. If T < Y, then %¢ 37 2 ¥ 1mplies obviously 7 s U * %,
and hence we can find by the definition of neighbourhood aystems 7 ¢ ?t
such that T > V2%, Conversely, Lf #f 3 U 5% implies W 2 V3%
for some 7 ¢ 7€, then % 3 X 2 x implies X > Waxz for some U €L,
and hence ¥ > 7 3 = for some v ed. -Consequently %2 X implles
s ¥, that 1s, T < 7T,

From the definition of compect ssts we conclude aasily;

Theorem £. For two topologies ¥ < ¥ on a space R, if e point

set 4 is compact by 7 , then 4 alsc 1s compact by ¥".

The discrete topology la stronger than every other topology, because
every point aset 15 open by the discrets topology. The trivial teopolo-
gy is obviously weaker than every other topoloegy.

For a system of topologies J,{A € A) on R , we see easlly that
the intersesction ;\‘I'El"l "IA alse 1s a topology oﬁ R . This tepology ;I;TA'IJ‘
1s obviously wesker than 7J, for every a e A, Purthermore, for any
topolegy “J which 1s weaker than I, for every A € A we have naturally

i ;l:l:a 1. Thua H “{, is the strongsst wemker topology of a sys-
A [

tem of topologies 7, (»¢€ A ), end will be dencted by ;\QA i For
g nelghbourhood syatem ¥, of ~f, (xe A ), we may denote the strongest
wesker topology of I, {~ e A) by lﬂ\;?’txa &

We shall provs further the sxistence of the weakestl strénger topology

of G laed),

For a neighbourhcod system ¥¢, of ‘7, {2 eA ), if we

i

11=3) CLASSIFICATION OF TOPOLOGIES 17
denote by 47, the totality of point sets ﬁ Uy, for every finite number
of point ssts U e i, A, cA{ v =1, 2,..., .}, then we see eaaily‘ that
#7, eatisfies the conditions in §2 Theorem 2. Therafore there existes
unlquely a_fopalogy ¥, for which 97, 18 a nelghbourkood system. As
‘h"a:mﬂ,h for overy A €A , this topoiogy ¥, is stronger than I, for
avery e A, if a topology "1 is avronger then every ’Ila (a e A,
then we heve obviou#ly 7| » ¥,, and hence ¥ 1s stronger than I,.
Therefore I, 13 the weakeast stronger topology of 7, (2 ¢ A ). We
shall denots by :}e}a i, or by :.l{ﬂ, 47 », the weskest stronger tepology
of a system ol topologles “f, {xe A ).

How we can state:

Theorem 3. Let 7, lae A ) be o system of topologles on & sapea
R. There exists the strongest weaker topology /M 7Y, and
g sea N T
m@a ':)‘ = JT&TA (l)‘”

‘Ihere sxlste the weskest stronger topology / 71, &nd for s neighbour-
AEA

hood gystem ¥, of U, (» e A )
[ -
{ J;T; _U:\v H U‘;yé'ﬁnb- e A {v=1, 2y...,t ), =1, 29..o}

ig » neighbeurhoud system of 1/ Y, .
B AEA

If e topology 4" is weaksr then a topology ‘7 on A, then for any

point set 4 we have A%Bé’rc Y, and hence Aﬂ%c ,42“, Thus we

obtain further by dwality

7- : -
AT =’y s a2 4T
Therefore we have that 4" < I implles .
L) To - —
A c A cAae AT e 47 .

Theorem 4. Let ", (A €A ) be & aystem of tepelogles on B spaca

K Buch that for esach pair A,, g€/l We cen find A e A for which we hawg
’1* 3'{. 7&) /1,\ &}o
A

Putting f =AlC{A I, s We _bhave then for every point set

e . ‘Y’\_o j’_ Ty -
ATE&ELAT AL = JL AT
Proof. From sssumption we ¢an conclude eeslly by Theorem 3 that

=
) 4 1s an open basis of 7. Therefore we have by definition

A:xc-‘\fﬁ?h XeA A2 Kets XEA

T
AT = = X =3 (F X)= 3 A%°
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From this relabion we conpclude the other assertien by duslity.
§0 Relstive 4opo oY
Corred-

e an ghatract spacs and S & subapace of R .

st A in R ®e obtaln

et R b
uniquely & point ast A&

ponding to every point 8
e 8 iz called

:n the subspace 5 - This polnt seb AS in the suDspac
the induced get of A into the subpsapcs 2 end asnoted by A% The
& subspece S s neamely AY = 8- As,

3
gomplenent A% means the one jn th

o s §-As = 8A" = 'S, we have then
: s A

(1) A5 = A7,

oint sets Al > € A ) we havs obviously

For any 8ystem of p

[» - £
(5 AT = & A

|
.“ S 8
! 3 TT =
. ‘ ) (Aéﬂ AA ) ;E& AA. -
Let R be now & topologlcal spece with 2 topologY ~1, end £ @ sub-
apace of R = putking
I .
&y - Pt = 1A Ae T,
nditions in the 3ub-

we see easlly ghat "‘15 agtisfies the _topologica.l co
space S and hence ~% 13 a topology on Lhe sSubspPACS s . Thia Lope-

"‘IS 1z called the reietlve topoloRy

we have obvionaly ®¥ {2)

of I in the subapacs 8.

logy
g the rsletive to_polog-,y,

¢oncernin
Theorei L. For & naighboufhood system T of T,
, s =i xS ne® b

~ 5.

the relative topelagy

: oood ayatem of

iz & nolR
& by the

y of the closed sets “7° in the gubspece

¢ Dy definlition
xe 1t

For the tol ali®

relative tODOLOEY ~ 3, we hav
, /\IS’ — { XSI .

@ by the formula (1)

and henc!
' TS = (YT ve'} = 1
Thus we have
: (5) SEL S

By virtus of (4] end (5}, we ontain gt OnNGE

o) l
GLASSIFICATION OF TOPOLOGIES . l
Q F 7 15

Theerem 2
LB Lo <. 4 point set A < 5 1
" £ 1s ¢pen or elosed b

v the relative

i topelogy ¥¥, if
4 and onl; i
f nly if we can find an open or closed set
X b i
A= 8X. . B

For a polnt set
et A Iin the subspace 5, the opener or cl
. closure of A

respectively such that

wit Sapes 2y ¥
1th ¥ t te the relative tOpOlO Z will be dsnoted b Q
A r /’q

£~80

raspectively.
¥ But we shall write 457 °, 45°7, 457 1
, natead of A
2

;’ﬁs‘a & ¢ 8 JS & - =
LI .
4’ fespseti?ely B On the othsr hand A and ﬂ ahould
wean the o o wit <] . ’ I
¥ Teney and clogurs of ,4 3 h r spect to th t ¥ |
e opolog Kl

Reeallin, i it 2L 8 3 =
& e definition of © closure wWe have b ¥ th grimu.la
oall th 1 i he 1 e for las

{z) mad (5)
A= T K
PEPSVEIE LY KO o= T x )¢ = -8
for evary point set 4 in R . Tﬁi;;;‘;j; W h) e
° @ have
(8) AST = (481" F

H &

ecalling §4(3), we conclude from {5) by (1)

Le -
A :A‘S’"’:Afﬁ-l

pnd hence we have

{73 ,‘lsa _.-':.{‘;.j_ﬂ" SIJ‘ZS

(RS o gty :
) = (A'8)5 = (A8

Fr } ang
From {8) and (7) we comclude lmmediately

¢ &

(a) AS @ AT e 4% e o4t -8
Thisz relation yislds at once . < ,

9} A8 1@pliea A% w gE

By virtue of Thsorem £ we have obvlously

{10 oZs
} A = AOS P /4-'3‘ = A‘S
Theorem & 17 )
_—— i S« Y, then we b )
ave for
45° = g gvery polnt set A
- A AS' = A-’S

Proof 8 3 ope tlo il v a8
TL by a8 3ump 1 Th, e have b fe) and §4( )

LA -8
5 tns other ha @5) AT = (A7) = AT
b nd we nave obviouzly 4% ¢ 4% by the f .
e formila (8). Thy
From ¢ .
nis relation we comcluds 4°¢ =4 by dualit
= ality.

) i.h. G £ 4 - h T h
LI NN Ir 38 OPCLCEY
ore s ds & b the then we ave

A°8 o ges-
= A € 3 /]‘ﬁ'g AﬂSa

By wirs
ue of (8), we havs obvlously Aos_ ;‘io'—s
< . on

Eroor.
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+he other nend we obtaln by the formlas {g) and §4(8)
AT = (ASEITE AT ST ¢ o= ATF,

fherefore ghe first relation 1= b=

= R by assumptlon.
’I“;'la secoﬁd %ill be conclude from the
Let & 2o dense by T If & point set 0 Lls re-
guiprly opon By ’17, then the induced set o5 algo i3 regulerly OpeR by
gho relative topalory y*, and (rsy =", 1f o subset T & 5 18
gg_gglarlg open by "15 , Then we havs o8 = =

1 o is regularly open vy 71 . then W&
—e -8 .gs

because 57
firat BY duallty,

talned.

Theorem De

nave by Theorsam 4

rroof .
"U"S_o = T}"""'s"@ = T
and hencd g& is regularly open BY 8, Farthermors ¥We heve DY §4{1l)

(TSI~ = To? 8T = T,
if a subasb Tl 18 regalarly open
then we havs DY PTheorem 4 snd DY the formula (8)

g8 = (wsy =" = gi-° = TS,

because 5 F % Yy gasumptlons

by “fs »

g hance gre s = W,

Theorem . I7 8§ is dense 0Y
rogularly open by ~ 5 then ¥¢ nave

(U.V)po - T° D

pesT =T, 8V

ry end tWo subgets T, T < & ore

= 7 by Theoxen 5, Wy AT by the

proof .

formula §4(11}

(v v)-o = {3 B v.—n)lﬂ. . —om® .Uﬂ-e-v“z.

s -8 ,.U-vc-s 8

by agsumption.

A_point aget A 1s dends in a polnd sst § by the To-
s dense b the reletlve

pecause £ = a

. Theoren 7.
a only if the induced set, A 1

pology ~ , if an ¥

LopoloZL N8,
Prbog .

1f & < (s A) , then we have by the formula (&)

45T = (ASE = S,
ive Lopoloxy ~“45,

{6}

Conversslys if

and hence A% 1= Qense DY the rslat

AS is densge By “15 , then we have by the formula
8 =

A 1s densé in & by 7.

AT = (A" % < (AEYT.

and hence

ssta.

§¢, §10)
CLASSIFICATION OF TOPOLOC}IES

For two subset |

e« 23
. s € 8, ¢« R we see easlly by definidi
elative topology ¥5' of T 1 mhen () e e
: ﬂr,g,” o n 8, colncides with the relatt

1 for the relative topology S op “f e

o in 8

(11) S Rl (,.Js,ﬂ)s, i, ‘thm;'is.
for S, 8. :

§10 Reguler topologies

A& topology
gy "l on 2 spase R 1iJ sald to be reguler, if
R

A \,,
%
for every A4 =°%

4 topoclogical Arx e
- ca a8
citn pace will be said to be pegular, L ita & y
this defi —r 8 topology 1
nitlion we see eaaily that if & topol L8 o
olegy I L& re
gular,

then for an open basis % of “{ we have 4
& = 5.
say that a topology 7 1s Ny £X .
rogular, if and only if 3 4
? 2 o lwmplles

A X 20 for some ¥ ¢ 7

Weo also can

The 1 5 a] -
- o P
regular then for each to olo
orem 1 If 8 to Olcg? is he
SiCEl 3et A r /4 3 G illEliBS 4 = ‘i 0-} a
Proof . Let @ be the tobality Of’ polint sets A such thet A 3 a
melieﬁ /4 > {G" i & if 3 /] s Tthen Fox any wa have {a F < A s and
A ' o € A {
hence "ﬂ-i 2 .g Ior evwer zg € }4 8 f 13 re b asumptio i
i} B A gular ¥ X2 »
ass )i <

can find ‘i;l'!.en auch that o >’ 3 4?: and "ﬂ } 4
X & ':F { } X #
hence ] .}}

Conzaquentl y wWe hawv 4 = v a hii} a8
q BvVe A{ }’ g for & ary 4 € A theat 1 A’B# i 14
» s P

a or A ilﬂplies [/ A d @ Furtnermora t & chvlous
/ﬁ ? fé Thus 3 1 i

A ( A ) 3 2:_. A
that o 2 A X € 1mplieﬁ xH F Therefore 0[ ia mivel‘sally

As “’Z is re )
gular, we sece e
azily that & .
: . contelins mil o
Per

Aeco ¥ at
I‘dingl, contains all topologieal zeta b? dafiﬂiti &
d on

Theorem v
2 If a tODOlOﬂV 7 ig x‘eguls.‘!‘, then evary compaeb to-

pological set 13 closed

£roof. Let

Ol:cjgica_l 88t - too wj hbe - con']pact topological ssat, ;qks' A’ 15 a to-

herefors, for sa;h pOiZZG};Y Theorem.l thet £ ¢ 4’ implies {£t" < A’

£1nd an open sot ‘?/4 , corresponding to. each point % ¢ A w

X such that z & Xu<{eFy Por such X, (= ez‘fe)
x P

] find = inite (s} p(}ii‘ltﬂ - X &
£ nupiber £ 1 A
wWe can Y] 1 W gueh
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shat A4 < b% K, Then we have by the formula §4(7)
k] - -
AT © 2 X= c {8177,
Therefors A 1s slosed.

alar end a point sob A is

ror every £ & A

Theorelm Sa If a8 Lopolopgy 7 1is rex

compact, then 1lts closure A- also i3 compack.
- (-3

E-I;ogqil.“ if A C}‘%‘ ¥,7, then for each

ny € A soch khat 7€ ¥l o

end hencs £ € A7

polnt % € A we can £ind

For such ., » 88 7 18 regular Dy assume

ption, thers 18 sn open aet Yy, for whieh z € Yo = Koo Then we have
nee we cen find 2 finite numberT ‘of polnts

obvionsly A & 2. Y, » and he
Fr

iy e (v= L, Boowss ) such that

A€ ﬁj Y,
ha formuilsa 34(7)
S e E A o E%T .

PR} =0

and hence oy ©

Therefore A  alav is compact.
Becalling tha reiation §9{8), we conclude easily

Theorem 4. 1f @ topology 1 18 regular, then the reisblve LOpPO-

logy 71 aksc 13 regoler for eVery gubspace & -
Thaorem 5. Per a gystem of repulsr topologles daolae A ), the

wsakest 3LTOnEeT topology U i, also ig regularl.
res

tnen we can fin

L L\‘)ﬁ"i,\ 3T 20 , d by §8 Theorem 3 a fil-

Proof.
nite mumber of polnt sats T, ¢1a, o wed (v=1 2, .00 % ) SUCH that
T > ﬁ. T, 36 -
auch that

1s regular By assumptlon, we can find V., €1a,

Ty, = TFA:IA"‘ 2 ‘V;v 3 O
vé;\fnﬁ* by §8 Theorenm 2.

gince every N
(v= 1, Byanas ¥ e

[
Then, putting ¥ = I’_i‘"U‘;y, we have Purther-
more, putting I 5‘\'%] "1, , we have
. .3 Ay, - a3 N fad
e T e gt T < TV <« M Un €T -

Therefore J.‘l.fj‘ A, ie rogular DY definition.
&

§11 Normal topologles

ith a topology"i . For an open

Let R be a.tcopologlcel space ¥

§‘-1'

QB §ll) CLASSIFICATION OF TOPOLOGIES 23

aet T s if x < YC T lmplles X < Z < T for some point set s Lhen
rd I

S8 e normel in an pen “ With this definit 0 we
ia 4a to b OF Q gat T niti Ilp

aee at once '
that if ¥ 18 normel in en opsm =et U, then -3
mal in every open et VL U ’ e

Theorem 1. E 13 ¥ EglJ;l,E..‘l’ then for = > open set 1 suck
ir 3 3 & SVErYy el
a i

that
at the cvlosurs ‘o~ i3 compaet, 7 is normel in o7

o i’C » & : 3
Proof Lf ¥ < ¥ hen we heve nauuzall.y X o Y e e o

Since “f is
& regular by assumption, we have by dsfinitio
n
Xl v = EL Z
A8 U7 is compact by ass 1 vrEer
umption, y - also is compact by §7 Theorem 3
» rem i, and

b wWo o nd it Ti he g e = 1 N
snca an fin & finite number of opon 3¢ tys Z < Y (v = b4
2 v L L 25 PRI ,; )

3 - £ S
ueh thet X~ .7, <Y° thet is, X < E v
Theorem 2. ge )

;lED dal 1in ..t'Ug‘ = Ly -
if QYT an open 2& sNen Ior Vo _Ee

auences of closed gets A., B, < Ti(v=1, 2
=1, Z,0.00..) 3uch that

(2 AZY (2 B7) = (é; A E ) =0

EET

we oon £ind two open sets 4, B ¢ T such that

A E AT ' Z B ;
) ?‘ET [ B > ;4;—.- 8. . AE' = 0,
Ereof. ines
ines 7 4o normel in 07 by sssumption, we can Find &
d v Wl hwe

ssquanser of open asots X
g par Yo (pe=l, B ) cons
Bysas aeutively su
A7 < % < TR B ) CE Y. T
e ps b

B =
VY < T AT (E K Y
For such open #sts " °
b8 ¥, and =
DSV Y, (=1, 2,...), If we put
ﬁnf%‘,x” E= 2 Y.,
then 1t is evident that
T > ADE A
‘ T ’ =
v Binee we have for ewery ¥w= L, 2 -
= by Bpiaa
-t
X, 2, Y. = s
Z :1’,“_-0, Y,?fmx‘,ﬂ-:a)
we obitain = ; :
X, th = (J for evexy ¥ ,p =1, 2,..., and hence A5 7]
8 topolo v o
£y "1 i sald to be locelly normsl, if there 13 s syste i
T m o

A

Q‘ 5'331 gegg » € A auch that ] = R ¢ 'z [
LR L% ( / ) . t ;7-;‘
kX . £ = and is normal in Py For

‘§=VBI*3 AeaA,

Theonem 3.
.—-—wgﬁ._ If 1 1s_loeslly normal and every open sst A sstis
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" 1) y guler.
then T is _re
fles the condition that. A= Tmpllez A = 1=15

Let A be sn arblcrary open set.
st “1.18 normal in T, beceuse ¥

For any polnt zeA
Proof.
nd &n open set T 2 * such th

wo '‘can i q -

o > {=} by ssaump

is looally noTmal By pagnmpiion. The;a we obhaln A -

S - AT =X *F -
a hence thers 18 an open seb W for wl_uich we have A

. 'J‘.'her@fora ~ is regular.

ylelds obvicusly 4 7 X 3%

his relatlon.
pace R 1is sald Lo be normal,

if 7 is normal
A topology " on & 3
. We also may say that & to
With this definitlion we have

pological spacs 1a normal, if 1its

in R

tenology 1 normal. -
T 3 ~ bz pormel, ih §S DBCeS
het o LUpUifEY 4

In GYdser ¥

Theorem . : N
fficisnt ehab Tor cpch pefr of c¢lossd astz A, B sub)s

BETT ard Su elenb - ’

¢ sueh that A < X g <Y

AR = we cen £ind Lwo ODSI seta ¥
= 3,
4

and XY = 0. s
£ if 4 1is normel and AB = ¢ for two ¢loaed 88 . .
- s thers 15 & point 36% ¥ auch thet

/
we have obwiously A< &' and hene

then ) o pon =
A< X <8 wn1s relavion yields A< X% Box =X
u a then
Conversely, if the stated condition is sptigfisd and A4 < B,
on ,
pen sebts ¥ ¥ such that

- g'" = A"B%'=0, snd hencs we c¢an find two ©
Thies relatlon -;rielda

-l = B,

A

Atey, BTeY, ead rY =10
f?“ﬁ)iCX'CY’c: 3

by definition.

obvlounsly

Thersfore 7 18 norTmel

Even Lf & Topelogy ~f on B 82pacd
ot necessarlly normak »
§ of R , then F 13

® 1= normal, the relatbive topeolo-

1f the relatlve popology
bt
- ’is o . spid to be com-

f‘1§ 18 pormal fow every gubspacs

El@talg noymals

§12 Gompact topologles
& is sald to be gompaet, 1f R 1

. g compect
2 topology "‘I on & Space
With thias definitlon ¥e have i
In ovder that a point set S e _compact BY L

& et
ficlent thet the pelative topology ~{* Dg COMPS

vy L.

FTheorem 1.

necassary end auf
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Proof. If & is compect by ¥ and 35 -—-% Xf for & system of

epen sets X, ¢ Y (» ¢ ), then we have § « X X, , snd hence we can
xEA

find a finite number of elemsnts >, € A [ »=l, 25:..., %) such that we

heve £ < E X, , thet s, & = £ X3,

e Therefore sthe relative to-

pology 78 qg compact By definitiom
Convewrsely, if the relative topolegy ’:{S 1s compact end & < F. ¥,
S @A

for a system of open sets X, ¢ T (i ¢4 ), then we have § = = X_{g

A A ’

and hence we can find = finlte number of slemerits doe A {#=l, 2,..

* ) such that

74
; a
8 = = X0 & 5 X

=t P g e

Therofore & 1s compact by 3.
Recaliling ths formule §9{11} we conclude immediately from Théorem 1

Theorem 2, if » point set A4 is compact by s relative topology

8
1" for some point set 8 >4, then 4 also 1s compact by the relative

topolegy for evervy polnt set & > A.

4 topelogy “I on @ spece R is sald to be iocally compach, 1f there

le & system of opsn sets U, ¢ 7 (A €A} such that 3 T, =R and the

closure T, is compact for ewery Ae A , We glso shall say that a

topological spece 1s loeally compect, 1f its topology is so.

4 nelighbourbocd system Y of s topology 1 1s called a compact

nelghbourhood ayate_y_x,' 1f the closure of every point set of ¥ 1 come

pact. With sthis definltlon, we ses easlly by definltlon that = Lopo-
logy I ls locelly compmet, 1f end onky 1f 1 has a compéct nelghbonr-
_ hood system.

.Recalling §11 Theorem 1, we obtain obviusly by definition

Theorem 3. If & tepolopy Y 1s regular and locally compact then

T 1s locally normal.

§13 BSeparative topologles

Let R be a topological space with a topology ¥ . A polnt & 1s

d_to ba -‘?-EEE;ILN'-_?.Q from s point £ by the topology 7, if ws can rina
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an open set T such thet T 2 6. but T F Fan mhus, if @ 13 separsted
from 4 , then we have o€ {41 If each point of R 1= gepareted by
the topology ¥ from every oiher point of R , then we shall say that &R
1s geparated Dy its tepology % , or thab the topology Y ia separative.
yith this definition we havs cbviously

Theorsi L.’ In order that a ropological =pace R be sgperated by

itz topology, 1t 1s necesssry and surficient that {2} ={=}t EOr gvery

point = € A -

& topeologlcel space B 4s celled & Hauadorif space, 1f for each palr
of @iffersnt pointa a and £ wme cen find bwo <pen agts 17 end 7 2ush
bhet @£V .4 ¥, and TV = 0. It iz ewident by definmitlon that
5 Hawadorfi space ia aeparatsd by 1ts topology.

Theorsen 2. If a topologieal spagse R is vegulear and separatzd;

then R ig a Housdorff space.

Proof. Por each pelr of different pointa g and £, we can find

an open set 4 such thet w e A vut £ & A4, becsuse R 18 separated by

posumption. Than thers 16 sn open set U such theb we U= A, bansune

"oss regulav by a:ss;mnptl.éy‘u Purbhermors, pubting e wer, we have
obyiougly @ ¢ = 0 aud Vo Aed. Pherstors K Lz o Hapsdorfl space.

Thecrsn 5. 1f u topelogy 7 ls yaparative gnd locally normal,

then 7 1g regulsy.

Yrool . Let A ba an arblbrsry opén set. Por each polnt & & A
we can f£ind sn opsn g9t W 3 & such that ~f is normal in T, becouds A

is locally normel TY agsuamption, aines 77 its furthermors separative
by sasumption, we have then by Thecrem 1 {alt = {a}l & A T , snd hence
This reiation

there la an open set ¥ such Lhatb {a}b e <AT .

yislds &€V < A Thepefors 1 19 vegular by definition.
1T & topologicel spsze R 18 agparated, bthen every peint of R 1Is
by Thecrew L itselt & pinasd #et, end hence every polnd get in R iz &

topologloel ssb. Therefore we obbaln by §10 Theorem 2

Thaorem 4.

If = topology T 1ls separative snd reguler, then

every compach sat 1s closed.

H153
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Fuvthermore we can prove

AX ram 5, z Hm:adort Spac i G ¢t set E clo
L0 & M I3
hao . 2P e B gvoery ompé&
. is losed.

Ir nE 4

T, 3y &
Let A4 be a compact set,
o . then correspond-
ing B¢ svery point x 2 4 ws o i

¥ point x & A& we can {ind open sets 7, and

Wi such Ghat

R MR & € WV, e W o= 3,

B

e
=
@
=
td

avsdortf space 2EE o]
TP space by assuwmpiion &1
> K suwption. Then ws have obvicunaly

P
o

- ] 13 compa ES3BUmD k- ¥ were = rENCs DA G
xe N i ¥ AP  hene g find
) rl o rh D &8 16 gre i :

BavER TG sainks moe 4
: poinkas wu¢ 4 {p =1, 2,..., %) such that 4 £ o F
= 2yow RO

et

Lo, 4 4 e 1, 2 :
y & A L= 1, Baeoo, w), we have obviously

il
ooz 17 o . Y
KR Ve, 3¢ Ta) =,
el hence g W o 47 N
fog Ve AT ieralors evary point @ £ 4 is -
o o polnt a £ 4 net e
sonbact point of A . This 4 i3 closed
Thos 4 1 586,
. o Housdorf? spacs R iz locally compact 4
: ach, .

noerisl .

Lba 2 com pact neix
st neig whoc -
ghbourhocd syaten. If e A a9

A FLE

, auch that a s & 4°
| + £ 1= e Heuwadorfs

COFreEnanding SR j 3 -
spondlng to every pelat % € 87 87 we can fing
s nd

bao open aebte ¥ end Y -
& 2 ehs M, end Wy sueh that me ¥y, , x g Y and ¥. Y o
e moduow Lo o
Slusz BT La compao ’ !
compust by sasumption, B” 57 alse iz compact oy §7 Theorem 1
b s 0

Wi hEncs we pan Find s

Tinite number of poinbs x, (v=1, 2 ) =uch
r Besa, T

thah BTRw Y ; i
P BTEC = [T For zuch 2, {wv=1, 2, 3}, pubid
1o Zpe...3t), pubbing
o= E 7T 2
pepy TR = {1‘
fean g v

Wi ontain Swo oposn daehs . Y

oo A N = BBy
e Y i b fhe . - -
IR S ANS T by the femsmles (87, (2) in, §4, we obbain
s Cha, w in
snd fenie N7 ow XTAT < B, thal s, 4 s
Adb L L i

Thsreg

L Acsopdingly ROZ
crdingly ® iz looally wuormal by

0 _bepoiogies Y o O e
LI2Bga0gies Y, < Y, gnow spece R, if R is

ein Fooslso 1a s JoRe ' 7
soparated by 7, god If R i: & Hous-

2y ow KT
ro Then B oelsc 13 8 Hausdorff spsce by "V
= ) d-=

Proof ir &
of - I A is separ ¥
zeparated by f, ., then For eny pair of diffsrent
nl
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54,
points o and 4 , we cam find U € I, such that T 20 but T

ted
Then, as ‘I, < Y3, we slso have Te Ta. Thus A also is separa

by Ja - Ws also can prove likewise Ghe other assertion.

Theorem 8. Por two topologiss ¥, < Jyon a spase R, if R is

» Oy then = T, .
compact by “f, 2nd a Heusderff spece by Ty, then Y, 2

Proof For every polot setb A e "Iz, recaliing §7 Tl{eorem 1, we

‘ om-
see that the complement A7 18 compact by 7, =nd hence A7 slso is ¢
pact by I, because T, € Tz, Conssquently 4’ is closed by ‘7, by

b
THeorsm 5, thet 1s, A4 € “I;, Therefore we obtain T, 2 Yz.
. Ed
¥We hevs obviocusly oy definitiocn

Theorem P. If e topologlcal space R 13 sepersted or & Hauszdorff

g
spece, bthen every subspace of g also 1ls sepebetied or a Hausdorff spac

respectively by ths velatlve Topolegy.

§14 Seguential topologles

Let & be a topologleal space with = topology ¥F. A gystem of

a.
open sets T, (A ¢ A ) is cellsd & nelghbourhood system of a point R

1f for each open set A4 2 4 we can find A €A such that ¢ T, € A .
For. a point. o, if there is = neighbourhcod aystem of o which is com-
pesed of countable open sets, then the topology ¥ 3s amid to be geguen-
tia) at the point & , and such neighbourhood system is called a countable

r
neighbourhcod system of A . If & %opology 1 1= sequential st every

point, then "1 is 3ald to be geguentlal. We. also shall say that a te-
? .

pologlcal space is sequentlel, 1f ita topology i1g sequential.
If 7 1s seguentlel at & polut & , then %s see sagily by definition

= eos) BUCH
that thers is & countable nelphbourhood system T, ¢ (»=1, 2, )

that T, 2 Ty 2 *-¢ *

int o
For & polnt sequence A, ¢ R (v=1, £,...}, 1f there is & poln

such thet for each open set Ao we can find v, such that we have .6 A

= - n-
for every v z W, , then we shall say that 0. eRI({w=1l, 2,...) 18 go

= f .
vergent to a Limit A and we shall write }}Qmm Oy
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Theorem L. ;Li }_E}Hlaa-y,fa_""' fnt“:lJ penal, lirgea_ =&, and F

18 _seguentisl st the point &, then we can find

that 1im
- e

Froof.

ﬁ-y{m apm =
For a countsable neighbourhood system Ty > T eae of Lhe

point @ , we c¢cen find Mel e =1, 2,...) such that 24 e Uy for -y

We see easlly further that thHere 1is Y (g Z M) sach that 2

for e 5 fw‘f"-s.'-n.

Vo yuaa, "fm-r arbitrary, becsuse Vi, Ty, an s

aph & '[TG-
Then we have obviously "5‘51_1"111‘= a,;wﬂz G, putting @,
s a neighbourhood gyatem of 4

Theorem 2. If 7 1is seguential, then for each contact p;)int @

of 8 point set 4 we can Find a point seuuence a,e 4 (v=1, 2000

such
thet lim @, = .
Ty e
5 Proof. For a countable nelghbourhood system V2T, ... of &

contact point @ of =& point set A ' as ae T, eT, we can finll s point

sequence &, ¢ AV, (v = 1, 2,...), and then we have abviously lim a,=a
i L8

Even If a polnt sequence is convergent, 1lts limit is not necessarily

uniguely determined. But we see easily by definltion that if K is a

Hausdorff apace, then for sach convergent point sequence its limit 1s uni-

.
quely determlned. Conssquently we see by §13 Theorem ¢ that if R 1s

separated and regular, then for every convergaent polnt sequence its limit

is unlquely determined.

A topology Y 1s said to be seperable, if there is & dense set whlch

12 composed of countsble pointss We also shall say that = topolexlcal

space 1s separable, if its tepology is separsble. Even 1f a topology

L8 separable, its relative topology 1s not necessarily separabie.

A topology "I 1a sald ts be completely separedle, 1f there 1s g

neighbourhocd system compesed of countable open sets, and such & nelgh-

bourhood.system 1s ealled a countable neighbourhood system of ‘T, With
this definition,

it is evident that if a topeology I 1is completely sepa-

rable, then “] is sequential and svery relative topology of 7 slso is

- completely separable, Furthermore, if a topclogy ¥ 1is completely

’separable, then “1 1s separable.

Because, for a countable neighbour-~
hood aystem U, (v = 1, 2,

+««)s & point sequence e, e T, (=1, 2,..,)
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constltutes a dense sebt.

) “q tel
Theorem S.(Tychonof) I a fopology ¢ 1ls regular end completely

segarsble, then T 18 normal .

Proof. For two point anta A &g - g comple &

T K - B as J =] Iagula and telﬁ
I " I’ - n a

sepax able, we cann filnd s ssguence O open gecs B‘P ( b= l, 2,000 ) aunh that

B = £ 8., B, < B" . (v ly 8,000)s

=i
- 4 L 2 =1
Hence we see DY dusllty that there is o seguence of clozed sets A, {» .
2,...) 8uch thet
A =TT Av Ay > AT (v =1, Biuevds
A -
E!:‘R

For such closed sebta 4, and cpen sebs Bo(r=1, 8,0ca) px.;.tting

Fﬁ '-‘:fti'ﬂ_;’ a!-j

[ZE] - “ B —_
Go = B, TT F—'fj 5 F, o= ,4& S p Gri,m ,
pm=e J
i = == . Then we
we obtailn open seks &, and closed sets £ (v= 1, Sraes)

& =1, Y5..., and hencs
bave obviously G, < F[M for every ¥, m=1, &, R

Z4, « T Fe.
s= pami
s A= A, R {y=1, 2,..:), wa have
= 2 afT EY) = 3 A8, = AR =4
Eo > Z(asmEl) = 54

f! =1
-]
3 h
bocsuse. A7 < R° by assumption. a8 G, C B, < B", we SVE. e
77 ¢ s - = ° 4 =8+ A = .
fir e f(eodadzar)= (8 YA ) =B
i = ;

s 4 - =4 OI’Iﬂ.Bl
Thue puuﬂing = = G-, , WZ Nave Af < WA B, Tharefors j iz n
] P

&=

by definition.
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CONTINUCUS MAPPINGS

'515 MapEingﬁ

Let R and 5 be two abstract apaces.

A correapondsnce g |, which

assigne to every point z ¢ R e point mexl ¢ 8 : iz ¢alled 2 mapping of

B inko £, and ¢ (=) the imege of = ,

Let & be e mepping of A into S . For a point set 4 < 5, the

totallty of points whoss imeges belong to 4 , is called the inverse imags
of A and denoted by @ '(A), thet is,
a" (A =i A e 4 ).

Coneerning the ilnverae image, we have obviously the following:

(1) noigo) =0, AT(8) = R,
(2} aTUA) = A
(3) a7l E AT FoattAn),
AEA rEA
{4} W AL) =TT mttoAn),
Aea NEA
(5) A< B implies p;-1¢A) < ' (B2,
(5) AB =0 implies s ""(4) " cB) =0,

Here the relationa {1), (2}, and {3) ars essential for the inverse lmage
%%, l.e., 4f a correspendence ;' whlch asslgns So every poink sst A< S
2 point set M4} £ R, satiafiss the reletio.ns (1), {£), end (3), then
there exista unlquely e mapplag ¢ of R into &%. such that &~ 18 a in-
verae image of O .

For g pplnt set X < R, the tobtallty of immges i(x) for = ¢ X is
called the Image of ¥ and denoted by ev¢X), that i3, mcy) = {acy s mex],

Concerning images of point sets, we have obviously the following

{7} X <Y dmplies (X)) <o (Y],
{a) m(}%x,)z%!m(x,\),
(9) m,(;q o) < 1T svdxa),
hEA NeA
{10} X <o "(A) implies ;)< 4,

AR g iaix) =iw T ;ucw) € i)} > % , we obtaln

{21} Bmlx) B K.
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Since x € L' (A) is by definition egqulvalent to ;mexd)e A , we heve
RlX (A = {oxd s xe X a'(AV}
=fmin): e K, meey € A} F m(lx)ﬁij
that is, we have

(12) alX AN = (KD AL
In particular, putting X = R in (12), we obtaln

{13) ala-1¢A)) = A(RIA.
$ince we have by (2) and (11} _

wCarn) )= o lar)) o X7,
we obteln by (7) and (13)

{1a) MR OL(RY € @LiX'},

If (R)= .8, then @ 1is cslled a mzpplng of R onto s, Every
mapping @ of R into & may be consldered as a mapping of R cnto the
gubspace R{R) of S. l

For m mapping @ of K onto 8, we ses at omoe that

gl dnl) R @ for every &¢ & .
If m'¢{al}) 1s composed only of & single point for every & € § then &

15 sald to be & trensformation from R to 5, that is, 2 transformatlion

from R to S is a one-to-one correspondence from R to s,
For a transfor;uatiﬂn ¢t from R to 8 , putting
Liay = ot {}) for every o€ 8 ,
we obtaln obviocusly a transformatlon £ from & to R . This trans-

formation 4 4is cslled the inverse transformstion of ;i end denoted Ly

a-', that 1ls, we have
a e = T ({a}) for every a4 €5 .

Concerning the inverse trensformation ! we have obvlously

it

o { micey) [/ for every @we 5 ,
atmeer) = % for every %€ R,
A mepping & of R into 5 may be sdald to be & transformation, If &

i1s a transformation as a mapping of R onto the subspace alR)yaf §.
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§16 Continuous mappings

Let 8 and 5 be topological apaces with topologles 7 and % res-
pectively, and A & mapping of AR into S5 . A mepping # is seid to be
continuous, if we have

o A) e ] for every A€ 9",

With this definition we have obvliously by §1%(2)

Theorem 1. in order that a mapping s be continuous, it is ne-

cessary and sufficlent that we have

oAy e Y for svery 4¢ “F°
for the totallty of clossd sets 7' and 4~/ respectively of R and &.

Theorem 2. In order that a mapping ¢ be continuous, it i1s ne-

cessary and sufficient that we have

(A% € (A for svery A4 < 8.
Proof. iIf o 1s continuous, then we have by §4(1) and §18(5)

ATATY = RTCA%° < A0
Gorwersely, 1f @ '(4°) CATCAN For every 4 < § , than we have by the
relationa §4{1), §4(4), and $15(5)
RTA)TC A = wTLACT) © mTI(AC)”,
and hence m~'(A% €T for every 4 € §, that is, sl is contlnuous by de-
finltlon.
Recalling the formula §15(2), we conclude from Theorem £ by duslliy

Theorem 5. . In order that & mapping < be continuous, it- 15 ne-

cessary and sufficient that we have

Tt AT) DTV (AT Tor every A4 < 5.

Thecrem 4. o In order that a mapping o be continuousg, it is ne-

cessary and sufficient that we have

OLEX)T D ACXT) for every X < R.
Proof If ;v is contlnucus, then we have by Pheorem 3 and by the

relstion §15(11)

AT (o)) P (m(X))T D XT

E

and hencs we obtaln by the relations §15(7) end §15(13)

ALX)™ 2 (TR D r(X7),
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foz ¥ «o F o, when we nave for svery

Conversaaly, 18 4 (x37 o di {7

A< & by the relution §1B{L3)
A- o (=" ¢AY)T Do (T 47

and hence by ithe formule §15(11) ‘ .
LAY TR T ICAY D) D oA

Therefore M la continucus by Thsoyem 5.

crd syatems rogpschlwely

Theorsm H. Lek 4¢ and By be nelghbou

In order thalt Le gcopbimuous, it is pecage

of 7f Bmd .

thet fov

g 4T gmzh they 7 0 x =nd

g 1s conbinuovs end @) € F € P o,

% & ATV(T) e 1, and hence we can find Ve 9F such thet x & ¥V < e (U

This rolatlon yields by the relablons §L5(7) and §15{i3)

ATy L o maTioT) e T,

Comversely, if (ix)e T ¢ W0 Jmplles =& , @i(Tiao T for seme We vk,

8
<4

ther for any "iF & 41 sublect To. & (W) *0, as & (V) implles by the

i

formals $18{11) 7.0 a'CC), ws have

P G B i v »

-

and  hence

=

ey

AL e T aimeant
Therefore ¢ 1a contilnucusz by sssamption.

Recalling §9 Theovsm 1, we conclude lmmsdiztely from Theovesm 5

Theoorvem &. If & mapping or 18 continuous, then fov every polnt

set ¥ < . and for envy point set A < & Inclucing the in
— - = T

]

also 1s continuous ag & mapping of the subapage ¥ Into the subspacs A

by the reolative topologies.

ST LETIDAST

Thsorem 7. If & mapping & 13_gontinuous, then for o

set ¥ < K lis imege MW}
Proof . If R(xXy < Ay s F (ae A ),

RREC)! CONTINUONS WAPPIT

X W AA xoant 1 Ty . . o~
Amo o la conbinuous by ug neve actiAd, s for GEORY A G 4

Frar of slemsnis Avésd {wwd, Z,...,

® } such that ¢,

ALY, Doecasge ¥ 1o compact by sssumphion.

Then we have by the relatlonz §LB{8) aud §L5{13)

1 Y 'it" g -1 '"zi
FEA s W 2 vl (A1) < P Ay,

Vinprelfore £ 00} Lz compant by definition.

saveuns, bhen 4w B < 8 fa-

ATV ER) cntical -
- -
and hence m~' (A} < #7"¢&) by definition.

Theoram €.

If twoe contlnucus wmeppings ¢, and gsg of A inte

Toceuss S im g

wy assumptlon. Then we

The i 7 b e '
Thaoyen 5 1oaneh that ®,e W , XM, ey,
o 3 4, . . N -
ba ¥y ) € Ay, end hence @, (X Y, Yo )0g (XY, Yo )= O Sines 02,
r® 5., I , [N, - %
with 0lg in X %7 sssumpbion, we have 6L, (XY, ¥e) == Gl (X YiYa), Therefops

we obtaln @, (¢ ¥, ¥a}=0, and henee X Y, Yy = ¥, sontradicting the EECHET 8

Sion thetd X ie dense in &._.and Y, Yo .
2 <] 7
Let R, , Ry, snd R; bo abavrast gpacss. For twoe mapplings o4y

of Ry intc R, and &, of £,

R4, pubbing

Poa L) = Gig (M, Cxn)) Zor avery we K,
r 3 w2 . 3 0 " P
P 0of By inko Rgp Thiz mapping Fiz; iz walled
@, snd My, and dsnobed by Sra My, With this
finiltion we see ssgily that we have
Yy p
N =5 gt g
LA = T (A COETST b
forlh o Tor every 4 < R, |

A ; T Renad e ot o - ?
TR now we bopelogical apeces. We aew 8t cros
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by definition thet if both mappings @, of R, into Rz and @z of R,

ipto Ry ere continuous, then the compgsitlon cac:, also 18 contipu,ous.;.

§1% Qpen mappings, closed mapplngs.

Let R esnd S be topologlcal spaces respeciively with topologies 7

and %, snd M @ mapping of A onto &, that is, (R = s, 7
.;:mtx) e 9 for overy x &1,
then v ia 2=1d Lo ba - opsn. With thie definltlon ws have

Theorem 1. in ordsy thset 2 mapplng o be opsn, it 1s necessary

and sufficlent that we heve

m(X®) < m(x)® far svery x < R,
Proof. If & ‘is open, then we have by definitlon
(X% =a(x>)" for every X < R,
-and hemce we obbaln by the relatlons §4(1) and §15(7)
MlXT) = KT € {7,
Conversely, if @(x°) < (& (x)* for every X € R, then ws have by the re-
letions §4(4) and §4{1) for every X ¢ "I
LX) = R(X®) < olX;®,
and hence AdX, = A (x;® ¢ 7~
Por the totaliliy of closed sete ' in R and ¥’ in S, 1f
mLX, € T for every X ¢ ¥,
then @ is saild to be closed. With this definition, we have

In order that s mapplmg < be closed, 1t is necsasary

Theorem 2.

and sufflcient that we have

ALEXTI D RIKGT for every xX < R,

Proof. 1f @ 1is closed, then we have by definitlon c(x-j=aoN ™)
for every X < R , sfd hence by the formulas §4(1) and $15(7)
CLEX=) = L (K™IT DACR)T .
Gonversely, 1f QA (X7) 2 OLLKT for every X < £ , then we have by the re-
lutions $4(4) and $4(1) for every X € 7'

AKX} = (R (KT,
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end hence M (K) = (X)) ¢ 7,
Recslling $16 Theorem 4, we conclude from Theorem 2

Theorem 3. in gorder that & mepping @ be contlnuocus and closed,.

it is necessery and sufficlent that we have

AAX") = 2L (x) 7 for every X <« R.

Theorem 4., If R 1is compect by 7§ and § is = Hausdorff spacs

by % , then every continucus mapping of R onto S is closed.

Proof. As R la compact by assumption, every closed set X e s
18 compact by §7 Theorem 1. Thus, If & mepping s of £ onte 5 is
sontinuous, then we see %y §16 Theorem 7 that for every closed set X €717
the lmage #i(X} ls compact, and hence (xX) Is closed by §13 Theorem 5,
because § 1s a Hausdorff space by asgsumption.

If the topology 7 of R is normal snd there is a

Theorem 5.

continuous and closed mapping g of R onte § , then the topolopy %-

of % also is normal.

Preoof., Ir ¥ >4 7B, then we have a~'(A4°) D A HBE™), As o
is continuous by assumpticn, Nt A%) 1s open and ;'8 )iz cloazed. As
" is normal by assumption, there 1s then a point set X < R such that

ATNAY) K TR,
For such X , we have by the formuls §15{2)
A4y D KT,
ANB )= (B D K = oy R
and hence by the relation §15{13} .
A >a(x-y, B™ >a (n/7).
Since ;. l1s closed by assumpilon, we obtain hence by Thecrem £ and §15(14)
7 A D A(XTY 2 LR
BY 2 (X)) sa(ny™ =a(xi®, .
because (R) = 8. Consequently we h-ﬂve A aix) » B, There-
fore 97 is normal by definition. .

Theorem 6. For en open and closed mapping ;o of R onto S, we

have that X % Y Implies g {x) > ALY .
Proof. If X® > %™, then we have by Theorems 1 and £
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we have onvionsly by @sfiniltlon

Theorom 7. In order that a tranaformatlon go from R to 5 Bg

open or clozed, 1t ls pezessary gnd sufficlent that the inverse Lrens-

formation st Ba conhinuous.

4 combinuousz transfcormation gu from a topologlcal space R Lo &8 Lo-
polosicel spece A dn called e homegmorphism, 1f the inverse transicormas-

tign ' i conbinuounz. A topologlcal space & 1s aaid to be bom

movophie to 2 wopolagical space S , Lf thers iz @ homeoworphiam from R_

e 5.

§18 Partition topologies

Lu]

Let 4 be mapping of a topologleal apace R with & topology I

onbe an abatrach apasce 3. Pubting
M0 =4 P e (PYel i
we ges 2asily by the vslaticns (1), {2), and (3} in §15 that P osatise

fiss bhe topelogy sondivlons, that ls, e 18 a topolegy on 8, This

pepology P iz sailed Ghe pertitlon topolomy of £ by a mapping Cw.

For the partifion bopology ¥ by f., we s5es at once by dafinitiom
that §@ 55 continueous for every bopolomy % C P on S Genversely,
1f & is conbinuwous fof a topology 4 op 5, then we have by definlticn
ot AY e ™ for every A €7, and henece Fp. Therefors we can
say that the partition topology ? of S i3 the strongesi among the to-
peleogies for whlch &M becomes continuous.

Let B Te pow an sbsbrach space. 4 system of polat sets P+ 0
{xd A ) iz 2allsd = partitlon of o, AT _

z 2= R angd PP =0 for A¥f,

A

& partitlon F (x¢€ A ) of R wmay be vonsldered as & space, considering

‘

svary P, a3 a polnd. Thia spscs Lz ealled o pgreéition apecs of R .
Foy a parblticon spacs P (A< A ), putting
o= g o) far P2 %, T
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we obtuin a mapplng F ‘of A onto the partitlion spass P, { A& )

This mapping 5 is called a partition mapping.

For a mapping < of R onto &, puttlng

F,o= a7 d{al) for evary o € 5,
we obtein Qb ! b ] E 3
abvlounaly a parsition F, (o e 8) of L. Thie pertition of
1 1 PR - § e s
R 1ls eelled the pertition of R by a mapeling o . For this vartiiion
B [l lon
afayy (a2 &), pubting
f o= Lo gfa )y for every o £ 8
3
Wwe obtalin a transformation from this partition space to £ i A oznd
8 — = . =2nG

S are topological spaces and o ls continuous, then we zez sasily thet
& g 3 F i
hig transformetion also is continucus for the partition topology of the

rartition space.

Lot A be a reg i
o be & regular space by a bopology ‘Y . By vivtue of 10

Theorew 1, we sse that o int T )
f hat for twe polots =, e R, if = ¢ {3* {7, then we
have {2} ¢ Ly~ 3 d - > T . fan
{z} 1937, end ir % E{Yyt, then x edy) " and hones {x}~ iy},
namely {x}{ " {yit " =4a. 34 4 w7 va £
‘ ¥ 4 Gensequently we have for every =, b R

2" =4{gi™ or fap {3} = g,

Therafore the totality of {=}~ for all = ¢ R constitutes a pertition

of K. This partition is called the topological partition of A hy 7

4

Por the topologieal partitiom of R, avary topolasichl set of R i3 ob-
viously by §10 Theorem 1 an inverse imape of a point set of ths tepolo-
glcsl partition spacs by the pertition mapping. Furthermoire, we seg
alse by §10 Theorsm 1 that for the partition topology of the topological

partltlon space, the partlition mapping is open and cloaesd Conzeguani
’ L i QUEBLT -~
1y, we conclude by Theoremas §13,L; §i6,8; and £17.6 that the pariltion

topology of the topological partition space 12 separative and ragular

§19 wWesk topologies

Let ou Ye a mapping of an sbstraet space X into a topologliceal

i

ne

6
el
it

5 with s topelogy 9 . Futting
T, =daica) s ATk,
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we see casily by the formulas (1), {2), and {3) in §L5 that ¥, satis-

fies the topology conditions, that is, ¥, ls a fopology cn R . This
topology "f, is called ths wesk topology of R Dby a mapplng & - For

the weak topology Y, of R by s, it is evident by definition that oL
becomes continaous, and hence naturally for every topology 7 2 I, on R,
@ wlsc becomes continuous. Converasly, if s 1s continuous for & to-
pology "I on R, then we have obviously Y =7, by definition. There-
fore the wesk topology of R by M iz ths weaksat topology on R for
whieh & becomes conbinuwous. Furthermore we ses sasily by delinition
%hat fl.'or e neighbourhocd aystem % of ¥,
fowicA)y . Aedt

1s & peighbourhood system of the wesk topology of R by & .

Let g, (xeA ) be e system of mappings of an abatraci space R into
topological spaces 5, respeciively with topologles ¥, (»~e A ). Core~

responding to every ie¢ A we obtaln the weak topology ~i, of R by &,

as defined just above. For these wesk topolomies "I, {» e 4 ), putting
A= U A "1, , we cbtaln s topology "f, on R, as defined im §8. This
topology I, 18 callied the wgak topology of R by s laeAd ). For

the weak topology I, of R by @ (r€ A4 ), as 4, > 1, for every A €A ,
sach mapping O, is coritinuous, a3 mentioned just sbove. On the other
hand, If every oty ( » ¢ A ) is continuous for a topology ~f on R, then
we have obvioualy *f  "1. for every » € A , end hence 7§ 7 Tes  There-
fore the wesk topology of & by = system of mepplngs gi,{»xeA) is the
weskest smong the topologissz fox which all &1, [ A € A ) become continuocus.
For a nelghbourhood system W7, of 45 (2 e A), {7 "CA S AW}t is 2
neighbourhood system of ‘I, for every » ¢ A , and hence by §8 Theorem 2

a3
| T a0 0 eWila,, AeA(r=1; 2], %=1, 2ioeed

©
Y
o
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1s a neighbourhood system of the weak topology of R DY e { g A)

RecalX¥ing §2 Theorem 1, we conclude from thé Theorem 1

Theorem 2. Let °{ be _the weak topology of R by a system of map-.
pings g, A » € 4 ). F‘or 2_subspace S of K, the relative topclosy ’f!s

of 7 in 5 g¢olncides with the weak topolegy of 5 by oo (e A )

Thsorem 3. The weak topology ¢f R by & system of mappings

(xeA ) ef R into repular spaces Sa{xe ) is reguler too.

Proof. By virtue cof §10 Theorsm %4, we nesd only prove that ithe
wealt topology 1 of R by & mapping @ of R intc & with a rezular to-
pology“"é"‘ iz regular. In this ease, since wé have by dsfinition

q = -{m“(v)‘: veTh,
we see easlly by the formulas (1), (2), and {3} in §15 that we have fop
every polnt set A< 3 :
R LA m RTCA, AT = i A
Thus, If @°¢P)2x for an open set U ¢ ¥, then 'U'almczz md-hence we

ean find Te ¥ for which U > v~ 3 "V »sfx), becausa ‘?"’ js regular by

assumption. For such ¥ €7 we have
Y)Y 3 (T 2T CT) 9 .
Therefore " is regulswr by dsfiniiion.

Theorem 4. Lev o, (~€A) o s system of mappings of R inbo

coppact Heausdorfy spacgs 3, with neighbourhood ayshome W, ( A € A,

In order that the wask topology of R by vp{A €A ) be compact, it is

nagessary and aufficient that for s system of points o.,¢8, (A €4), 1if
LN

T( G, T ) FE O

for every finite number of wpen sets T, eTh =1, 2,..., ) subject

is a neighbourhood gystem of ”ia N Therefore we can shate
Theorem 1. Let e, (e A ) De a system of mappings of an abatract

space R intev topological spaces S, with topologlés 9% respectively. -

For & nelghbourhood system %Y, of 7 {»€ A ), a system of point sets
L3
{ ol (Ta,) s T €W, Ave A (v=d, Byeuasm), x=1, 2,000t

o U, 2@, {¥=1, 2,...,% ), then there 13 a point x ¢ R for which

A = 07-1 (z) for every ic¢ A.
Proof. If the weak topology I of R by i (J\. €4 ) iz dompact,

then for a system of points Oy & Sa\ (} € A ) such that @, e T, & %Y
1% ! A gy

! —_ s

Lk=3,'2,...,% ) impliea TT A ‘(‘U’,\ Y& 0, there 1s by §7 Theorem 3

8 polnt = € B sueh that

xe T ( T oot (T ).
BatThe en AeA
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1z T

P 815 el T -
For sach % point 3% , wo heve by the formules {93, (13} in §15 and by §u6
Fov sush = polnt ¥, )

Thaoeem O

For swepy A £ A, BDG Dence o, = St xd op eIy o
for svery A

. G O
5 Honsdorid spaos For gvary » & A DY Assan@i.on

the atahed comdrnbicn iz sabisfizd, L

Conyarasly, we Alguwes

A cem of ¢l te by the all Lepoloxy ¥ ol A
. . - s R ¥ gloned sste by the weal Sof Y
Koo RLF e be a system of clos
b
P

oo Mer of plsment V.o 7 { e =
that = 5 for every Tipite number oL BLS E
sueh that ‘.’:i! X = G Yor every i

Thecren, bthere iz then 2 m

e 7 ogad T KL R

for sVery

aueh s maximal ayabam & ., 2lnce
T

or wsary rinibs momber of voint 2ebs J. €4

Tnsoen D

Y B CE YT E Lo gvery » &4,

:]

cinte @, ¢ S, such thet

S LRI fop avery AL Ao

i g

: Ve a8 4T ., for an srbitresy x & s, then ws
Fovr suzh @ {» & A, il #a ¢ Ty ¢ W Tor e I

- - R - i
. S ey L g Mhis relation yiclds Dy The
wave U, i, L WYd g For wvery s

Theyelcrs W

Gy tanldes
a8 FE, L= Ly B,o.., 0 ) dmpliss

N f
0 Fua T U YO F 0 for overy K & A
ez Ed

& t T o ! o LGl E -q s rmbner of cpen
] ) for ey finite w .
SZince the totellly of &) Ay C J--‘,)
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‘gsts ., # MA,( b= l, 2...0, ¥ ) consbltutes by Theorem 1 a neighbour.
hood syatem of the weak topology of R by a4, (2 €A ), we obbaln hence
X ek for svery k¢ A , and especlally ze¢ X =X, Tor every y € 1',
Therefors R is compact by §7 Theorem 3. '

In this Proof we see sasily that the stated condition is necassery,
when &, (A &A) are Heusdorff spaces, and sufficlent, when S, {(x¢€/)

are sompach. Purthermore we ecan prove likewlse

Theorsm 5. Let o, {»x¢ A ) be B system of wmeppings of R into

compact specsz S, with neighbbourhood syatems s . If for a aystem

of closed gets 4 < S,(xne A ),

.
oo, ! (T, )0

i

for svery finlte number of open aets T, e WMo =1, 25000, ®) such that

¥e kave T, 3 A\, (v=1; 8,...,), impliss ;I;TA RZ'CAYF O | then R
13_compect by the weak topology of R by ca(» € A ).

§20 Qontinuous Functions

The totallty of real numbers may be oconsidersd wg 4 space. This
‘apecs wlll be emllsd the mumber apasg in the segusl, In the number
space, ws define an interval (o s B ) for btwo differsnt real numbers ol -cp

to mean
(ot,7g)={5: a<i<pgl
end. a ¢lossd interval [« , 61} to mean

f,pl= {8 Lstgpl,

Furthermore we define for every real number of

i}

(ol, +oo)= {81 Ewal, [, +o0)

[

1T ¥z},
We see smsily that the totality of intervals satisfiea the condition

{%Z ch{}, (“5"’;0{]

i

(- oo ; o}

1

in §2 Thecrem 2. Thus there exists uniquely a topdlogy in the number

Space such that the totality of intervals ig a neighbourhood syatem.

This topology is ealled the number fopology. For the numver topology

.“™e see at onee by Theorems 1 and 2 in §3 that
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i Ay )
(0‘!;?‘)# :E"!;Pj s ["l)ﬁ.] :'( d?:w)
(o, fo0)” = [al 4090, [, =2y = (e M):
( \-.ﬁ (moo, ], ' (._.,,a,a[j";:(—w; B
0, ey )

Therefore wWe ¢afl cOonG da easlly by defl ition that the number Spacs =]
lu My fin
. .

. numbery topo-
regular Hausdorff spacs by the nmumber topolegy. The
a

1o ¥ is complstel SB[JBI‘&ble beeaaige the t()tﬂlity of intervals (04 3 P)

d system
for vational numbers el ; (3 gonatitutes obviously a nelghboushoo v

£ tha umber o olo e numbher tcmp()!() 8 arther locally COM-—=
Q n =3 P 1% Thi &F 1 T

‘ ] have
pect, that is;, we _
Every closed inbterval is compact by the number

Theorem L.

Froof . We guppose that [of % fanl (4% P but o F is co-
A E H 1 .ZJ( 2 J«) Al

vered b 0 init umber & i]lt@IVBlE ¢ 3 for A € 5 Let E
' ¥y f ite n f (c{) 2 ;\) .

iz covered
D the greatest lower bound of, yumbers § for wnich [t ,%]

e A, Then, W& have
by ne finlte number of interyals [ #, fa) for A .

obviously I £ f& , and further o o
oy < of < P Thus thers is »,€ A for whieh o, < %, fras
SN P

. L
gan find &, such that Hax {od, ala,}< &, <], and [t , §,

have naturally that
a finite number of ‘ntervals (n s Br) - Then we ha

[t ,§] 1a covered by.s

bject to £,< § <fass sontradicting the définition of ¥a.
Bau ° .

: miber topologZy.
tore [o,$] is compact by the

Lat F be phatract s C8a ,Il&ppi[l of R into the nunmber
214 r pa A 4

. space 1s called E function on R .

funetion
@ (x) of a point % £ R, 1s called the valuzm of ¥ at X, A fun
® R .

on R is sald to bs pounded, if
_0'4 < inf ¢(n} = BYP Flx) < +°9,
e o b such that

that ig, 1f we cszn find & positive number ¢ suc

lgee)| 2 & for every Z€ R,

We alsc say that a functlon ¢ on

is pounded in the subspace A .

For twoe funétio

r which
5, » ol 5 bocsuse thers is xeA fo

] is covered by

finlte pumber of intervals (e, f;) for every &
There-

For a funection & on R , the image

R is hoﬁnde’d in & point set A4 , If ¢

. ) N
ns @ ,% on R and for two reel nurbera o, p, putting
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oK)= L Pl)+ B yex for every x ¢ R,

we obtain a function w on R . This function e will be denoted by

o o+ B We defins likewilse &>y asnd ¢ ~1% to mean
FYYW(R)=Max { ez, wexdl,
¥~ =)= Min { Peed, ¥ixl},

A sesquence of functions @, (L, =1, 2,,..) 1s sald to be convergent

%o @ function ¢, 1f }Eﬂa % (x) = ¥cx)’ for every x e R, and such @
funcilon ¢ is called a limit of Fo{lr=1; 25.0..). A seguence of

funetions 4 (»= 1, &,...) i3 ssid to be uniformly convergent to %,

if for any pozitive number £ we can find V¥, #uch that

[Fux) =trexdl < g for every =e R and ¥ & L.

It 1s evident by definltion thet the unifopm converpence implies the

CONVOrgencs, We alao aay that <« (p = 1, 2,...) 1Is convergent or

uniformly econvergent to € in a point set A ., if it i3 30 in the sub-
space A .

We 8ee st opce by definition that if two deguences of functions
%, mnd Y, {(F=1, 2.0} BTe convergent or wniformly convergent to ¢
and % respectively, then allodd, + ¥, @ Yy , ¢ ~¥ =1, 2,...0)

are convergent or uniformly convergent respectively totg+ B , g v 3,

Fr, Furthermors we can prove easily : in order that a segusnce

of functionz 4 {v= 1, 2,,..) be undformly convergent in = point .sst 4 .

1t is necessary snd sufficlent that for any £ ¢ w

e can find &, Bsueh

E‘&E!%Cz)*‘:@(z)-lgE for every xe¢ 4 ang Vg e,

Let £ be now a topologlesl spees with o tepology ‘1. 4 function

& on R 1sg sald to bs continuous, I1f 4 1s sc as o mapplng of R into

the number space wlth the number topology. With this definition, we

have

Theorem 2,

In order that a function ¢ on R Do contimupus, it

is necessary end sufficlent that both point sets

{z: Fix) >} and {%: gm) <o}

are open, or both point seis

{2 @czizo} and (%7 ¢mrza}
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apre closed for every resal number of -

rroofl. If ¢ 1is continuous, then, since both (< ,_+a@) and'(—@o,«)
are o:e_n:y the pumber topology, the inverss lmege of (ef , + == ), mamely }
fx: gen) >« , and the lnverse image. of (-<=, fﬂ Y, namely{=z: [FXERE L
are open; and further the tnverse images of closed ssts (&, -&-F‘g) and
(oo, sl im 3 Fez) F ool i opnd {xt $EIso} are clossd.
Conversely, 1f both 1= écm)>d} and {= * =)< | sre open
for every real number ol , then the inverse 1lmegs of every interveal (=L, P}
-{x,:at<gvcm<{s}={x.: ) vt f{m 1 prmrw gl |
is 'f)lpan, gnd hence % 1is continuous by definition, bsceuse the totallity
of intervals (o ,ﬁ] i3 8 nelghbourhood systew of the numb sy topol.ogyo
If voth {7 ! ¥(x) e }and jx? @ex)=o} ere closed for every resl num-
ber ot , then both
{=: -qéczlc:oe_} = {x: qﬂc:x,) o},
1z 7 Pex) pet P = AT o) g}
are open for every real number # , end hense ¢ is conblnuous, &3 proved .
Just eove.
Gince both [of ,+ee) and (-0,sf ] ure closed by the nuaber {opology,
we ovhaln by §16 Theoren 4

: ' : o
Theorsm 3. Fop a continuous function ¢ om R, Lf ¥é=1 %

for xz & A , then we also have Felgel for =e A7 ; and if @ m) g =

for zé A , then we also have fix) %o for = & A .
Recallling §16 Theorem 5 we obtain imadiately

Theorem 4 Let 97 bz a ne:.p;hbourhaod syatben of 1. In order

Flelent
that a function ¥ on R Dbe _contlmions, it 1s necessary end sufficle
Lhav a Lunculonl on

“that fop eny a ¢ R end for any £ » o ¥e can find weqU such thet aeV
that for emny and for any 2
and |@ex) ~ o] S E for every %€ T .

By virtue of Theorem 4 we can prove saslly

For two continuous functions ¢ and % on R all

Theorem 5.

£ tlong ¢ + ¥ . Y ¢ .~ Y ars conbinuous for every roal
wne s 5

rumbera of and p .

Theorem & If a sequence of continuous funetiona fﬁ, {pe=1, _2,-...)
e N : i
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on R 13 uniformly convergent to = funstion ¢ on R

» khen o plao is
contimicus.

Proof ., For sny £ > ¢ wo can find by assumption # such that

Fop €2) — Gexd | =< 5 for every xeR,
end for sach point @& € R we can £ind by Theorem 4 an open set 7 € T suech

‘that &€ T and

| cn) — ?y;,(%”'é_ “;:E for every z & U,

Then ®s have for every polnt z ¢ T

[Fexd— P £ 1 Fo, o) - )] + |9, en) = £ cad ]

WA -

+ P, (o) — Fla) |
Therefore & 1a continuous by Theorem 4.

£.

Theopem 7.

If a'sequerice of conktinuous Functlons. g, (b=, B,...)

on g 1lg uniformly convergent im & dense sef A

then % (v = 1, 2,...)
is uniformly convergent .

Proof. For any ¢ » ¢ we can find by assumption #, such that

£ L)~ Flx) = for every e d and-w, mpy,,
Faad = E fw':n

As GF, - Q’M is continuous, we obtain by Theorem 3 .

E Al - Gule) £ £

for every e R, w,pm 2,
beceuse 47 = R by assumption.

) Tharqfore i {r=1, 2,.‘,:) 1s uni~
formly convergsnt.

A4 function ¢ on R 12 sald to be continuous in a polint set. 4, if

4 is continuous in the subspace A by the relative sopelogy 14, With

thls de'finibicn, 1t 13 ovlident by §16 Theorem § that Lf ? is continucus

in & point set A , then ¢ slzo iz continuous in every point set B < A.

Recalling §9 Theorem 1, we obtain by Theorem 4

Thsorem 8, Let U, (xe /A ) be a syatem of open seta. if a

function ¢ on R 13 continuous in T, for every ne A , then 4 also

is continuous in 5. Tx .
EA -

Theorem 9. For a compect set 4 , every continuous Ffunction o

is bounded in A, and we can find & maximum peint oo and a minimum point £

in 4, that 1s, o, Le A mnd ¢in)= ox) = #(4) Lor every x ¢ A,
Proof. ‘

For every resl number § < sup ¢cx) , we have obviously
. 2 E4 .
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Aflx: Gxyz i ¥+ o0 end {z ¢
) Since A 1s dompact by assumpiion,

o € AT': {erqexyz iy i‘orot-sup @),
We alsc can prove likewise that

)z I I 1s closed by Theorem a
we can find by §7 Theorem 3 a point

For such a point &,

(z) .
we have o‘nviously ‘f’f&)‘ Sup o

thers is & point 4 & A Tor which (&
{ae A } be a system of continuocus functlons

ye= inf ¢ CE)
zZEA

Theorem 10. Let <, > -
(=) =@ for_every x 5
on R+ For a compact set 4 , if %2{ @, . ¥

such that 4, ~ Paa (%) B D

Ag shg €4 WE CER find A e A

- ¥ ch that
a6 A then for sny & » 0 ne gen find A € A 34
for ever B
&g, (m) < E for every =& A.
S
P I If there is o poaitive number £ such that
ool .

Af{x: Cf_hcx)ég}-zq:o i‘oreverygex‘l,

s £ L] v A ( H puary )
then for sach £lnlt numpexr of elemants AL & v= 1 2 M there

1s by assumption A€ A for whieh we have

Min { &Py (1&)} 2 ﬂf; (&%) for every x= € A 3
ance -n‘ ! . x ™ = @A) 2 g =+ (13 Since
and h A {'X. N Cf_ky( )2 1 A { . = }

- A is compact by assumption and {= % S "
% T Fatr) Z .
we can f£ind by §9 Theorsem 3 o point & € A ;!;I'A i o
ry » € -
such a point o , wo have obviously ¥Fa (& = £ far every N -
: v =
: inf #a(2r =79,
dictlng the assumption thet we have ot

As & special case of Thsorem .
is convergent to @ ip & compack seb

functions q’l ) g falRIE o°-

¢ (»=1l, 2 } s uniformly convergent_in A to @ .
i = 1, ves

§21 TFields of Ffunctions
A funetlon ¢ on R 18 sald to be

Let R be an abstract space.

go 1 i el, gle value for every pOi!lt of R 3 and
a nst;ant, £ o takea mer ¥ & aingl

1 be denoted by its single yalus.
jons on R 1s called & field, if

g constant wil
A collectlon § of boundsd funct

1) § gonbains a constant 1;

. ;@ 3
2 f ? A o4 implies :f'v 3 ol tP"" for avery real mumbers ot :
) 2

v ¢p, ¢zl z £} 1s closed DY Theorem 2.

10, we have: 1f =2 sequence of continuous

then

§20, §21) CONTINUOUS MAPPINGS 49

&

3) £2 ¢, impliez ¢ 2 P, ok

With this definitlon, we see easily that for any system of fields

Fn (>~eA), the Intersection T £ also is a field. The totality
. AER

of bounded functions on R is obvicusly a field, Theref'ore, for any

ecollection of bounded functions fa there exists the lesst flelds con-

taining f; » which willl be called the field generated by A,

a

A fieid 4 1s saild to be closged, if f contalns every bounded func-

tion which 13 & limlit of some unlformly convergent seguence of funectlons

in £ . ¥ie also see likewlse-thst for any collection of bounded funec-
*

tlons ;F',, thers exliats the least closed fisld conteining f; s wWhich will

be czlloed the closed Field genersted by fn .

Theorem 1. The closed fleld genersted by a fleld # is composed

ef bounded funciiona which are limits of some uniformiy convergent se-

guences of functioms in £ .

Proof, Let £ be ths tetellty of bounded functions which are

limits of some unifermly convergent sequences of functions in + . Ir

4 and Y are limits or uniformly convergent sequences of functiona o9

and Y, e f (r=1, 2,...) respectively, then we have that oler + B¢ i3 o

limlt of the uniformly convergent sequencea of ¢ +f»“+;,€tf'( b=1, 2h..a),

that is, a(qv‘i-pv- & ? for every real numbers =« and g , and we obtaln

likewlse @Y Y , ¢ ¢ £, Therefore ? 1s & fleid. iT

€ -_)E' 13 uniformly convergent to a function 4 , then we can find ¥, ¢4
(v=1, 2,...) such that

[her) - @em)] = jzi: for every = ¢ R,

and we see easlly that ¥, (., =1, 2,...) is uniformly convergent to % ,
that is, @ ¢ f Therefore £ is & closed fleid, Farthermore it
1s evident that ? 1s the least closed field containing f , that 1s, £

is the closed field generated by § .

Let R now ve = topoloplcal space wilth s topoiogy 1. The tota-
lity of bounded continucus functions on R 1s obvlously by Theorems 5 and
6 in §20 & closed field. Thersefore we have

Theorem 2. For any covilection of bounded continuous functions £
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on R s ths_clozed rield generated by § 18 composed only of bounded Gon-

sinvous functions.

Let R pe compach by 71 and £ iy closed fleld of con-

Theopen S.
If for eny separated points », Y4 e R wWe £&n

sippous funchions on R

find & e & sugh thet ¢ &w) & Fy), then £ conteins sll continuous fune-

tions on R .
Proof. For sach pair of separated points & , 4 we can find by

assumption & & £ sauch thet ¢ (o) F ® 4D - For such ¥ , putting

= 2 . 3Fgd .
W= F e - PE ¢ ey - PLED F

we have obviously W £ § end W(ed = L, %)= -1. Therefors for

sach pair of sepsrated peintz % there is a function ¢ ¢ £ such that
&

pra) = 1 , Cf’cg.)-_es-l.

Let 4 be a cloasd set alfferent from g . if & & A, then o 1a

separatad from every polnt of A , end hence ecrrezponding %0 every point
ye A we oan find Pyéf such thet ¥y (3) = & end #yicer =~ 1 .
For such ﬁrg {3 a A } w5 have obviously
d AN >
Aﬁgﬁ{ gy 2 1i.
since A 13 compsct by §7 Theorem.l and {= 2 ¥yex) >4} 1is open by §20

Theorsm 2, there is a finlte number of polnts Y4, # Alw=1, By.0ep3s)

sucn thalb

Ac F Ix: ‘5"3"(%)‘?1},

P

For such points 4, (¥#=1; Z,000p % ), pubting

L TCINYRE M PEY
ws obbaln & functlon W ¢ £ such that ¥(a) = -1, ¥ ) =1 for every ue4,

and Wix) g 1 for every x € R . Therefore, for sach point & € 4 there

is a function ¢ § suoh tnet #¥iay=-l, el =1 for every x ¢ A, and
wiw) 5 | FoT @very x ¢ R .

Let 4 sand B Dbe two closed saty differsat from & dut aubject to
AB = 8. For each polnt 1€ B , we have obwiously % € 4 snd hence
there iz a functlon ﬂf’ge § such thet %cf) = =1, ‘fg (=) =1 f:cér svery X ¢ A,
and ‘fgtm)él for svery % € R, as provad just above. fl‘or auch ‘ff,t

{y e B}, wo can £ind likewlse a finlbe number of pointa Y. € & {r=1,
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2,e005 W ) Such that
3
Bao z. i*:1 @y (m)<ol.

Then, putting Y = (& :
* - gy tfgg ~ e oo ~t
. gx) ™ 0, w6 cbtain & T
Y & sueh that . 1 uaction
Vi) = { for every = ¢ 4,

¢ . for every = ¢ B,

and 0 g Y 3
= )< 1 for every = & R, Furthermore, we also see Ghat

for an 1
¥y closed set A = ¢ there 1s a function @ ¢ ¥ such that we have

02 Fén) < . , ’
= = 1 fTor ngr;r. * & B gnd ¥Cx)= 1 for every = g 4 or
Flxy = @ for every = AL . . D
'|' t ™ %] P . .
% % Be an erbitrsry conbinuouws function on R A8 Y- i3 pousa
a - G~

ed by §20 Theorem 9, puttlig

o= - Anfulm) of = aup P L= — inf Pex)
wa cbtai na | e }
ain a continuoua functlon %, on & and

&5 Yoln) g for every m¢ R .

If o = y
? then L!" le obv¥i & constant and hean H
A L] i ousl e 3 ance Y € i » ence

we as 1
suma that o > ¢, For every =1, 2,... , slnce both
A = 2 B ol
(=t ¥ g Hal ama {2 %o g Lt}
are closed by §20 Theorem 2, end we havs cbrlously

£ s Lo .
{1.11‘@(1)_3_;“;{‘{»&}{1:-5;&(1)5 v-l s}l =0
="' .

I'or every ww—m 1 2500 ¥ there is . & f = 1 Bioen S11L. the
c P Ed =9 H i { o » ) 1=
o # , = h v

@ & Fuln)g | for every = ¢ A and

' 1
$, () = { Tor x2S
0 for o cx) g EIt oo

¥

for every ¥ =1, 2,0ces M o Then, putting

ol

B
¥ == E P,

b=

we heave obviouasl: > =1
' Y that ¥ 6F end G V() g £ impiies

i
ftn) = { A
0 For w-t zpm
and hence = % F m
Fxl= g 0@+ F e + 2 F o, )
M =g | ®

= - ol
o ob F L, em),

Thus we ses th £ =1 .
8t Lt s o, ()5 £ dmplies £30 % g P g & o, ana
= = M 3

consequently we obtain | L = Fory
q ¥ Yol L) — . ol
. NED] txy = B Tor every X & K, Slnose
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hence we
£ i1s clesed by wssumption, we conelude therefore ¥, ¢ § , and hence

obtaln ¥ e £,

H
§22 Weak topologlies by functions
Let R be an pbstract 8pece.. Far a collesction of functlions £
sn R , considering every ¢ F asa mapping of R Into the number apace
with the rumber topology. wWe obtain the weak topolegy of R by £ - |
This weal tc]pelbg,y will be called the wesk topology of R by s collac-
fion of functions £ and denoted by €, :
Eecslling §19 Theorem 1 we have obviously
Theorem L. For s —colléct‘.ion of functions # on R s the totallty.
of Eo;;:ets {2 o< F(x}< fu (w=1, 2,..., %)} for_ svery finite.
number of functions % e f and of intervals (e, P} (=1, 2y00a; %) v
::aighbourhood_ system of the weak topolopy of R by & - :
Frow Theorem 1 we conclude imrediately
Theorem 2, For a collectlon oi‘ functions & on R , Lhe totality
of polnt sebs = 3 |9 (%)= eyl B (¥ =1 Biesor® 1} for_ every g

‘every & w0
finitéd number of functlons 4% € =1, B,e.0, » ) and for

k)
neighbourhocd ayatem of a point o for the weak topology of R _2 £

iz 8
Theorem 3. In opder that a point a ¢ R be separated from g :
polnt £ ¢ R by the weak topology of R by s collection of functicns 4,

£ such that
‘i1t is neceassry snd sufficlent that there is g function « ¢ 4+ 3Zuc

o) & P4HI-

5 i sepa-
Froof. For the weak topeology ”1"’ of R, if 3 point o 1s P

ted from a point £ by "i’c, then we can find by Theorem Z & Finite num-
TH

2 uch
ber of functions 9 € £ (¥ =1, 8.0, %) end a positive number £ =8

54 there
that { % § [F.(x)=-SL a3l £ (p=1, 2,.0e,%)} 34, and hence
1s i, for whieh |%, 41— Py tedl z £
Conversely, if ¢ (&) ¥ ¥4 for some ¢ ¢ £ , then, putting & =

_ L and hence & 1ls-°
| @la) — @)}, we nave £ & {%: (#ox)—d(a)|<gE}s and he

separated from § by Theorem 2.
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It 1s evident by the definition of wesk topologies In §19 that For
two collections of functions F, and f3 , if £, ¢ £,, then ths weak to-
pology of R by ¥, 1is wesker than that of R by 4, , that i-
E

£, < f, 1mplies 71 c 1¥
However ws have

Thsoren 4. For the clcaed Fisld 5-_’ generated by a caellsction of

bounded function £ on R , the wsek topology of R by # coincides with

that of R by £, that is, & = ~F

Proof . It 13 evidsnt by definition that every function ¢ ¢ 5
£ —
is combtinuous by the weak.topology 7. Acceordlngly, every @ ¢ £

alao {3 continuous by "1; on scceunt of §23 Theorem 2. Therefore we

obtain "IFC_"I; by the definltion of weak topbl‘ogies. On the other

hand we conelude "1§ > from £ = f”.; ) Conzeguently we' hava "I?=-' ¥,
Let R be a topologileal aspace with a topology I in the sequel.

Reealling the definltion of weak topolegiss im §19, we see thas every

#wgak btopology of R by continuous functions 1s weaker %hen F . A

collecklon of bounded continuous fanctlons £ on R 1s called a trunk

of "L , 1f 7 coincides with the wesk topology of R by £, lee., if

o= Vitth this definition we have

Theorem 5. In order that & field of bounded conblmuous fune-

tions £ on R be s trunk of I, it i= necessary and sufficient that

for eny o ¢ A¢ 7 we can find ?é.f’ such that #(a) = | and. pcexy =0
for every n € A. ‘

Proof, If ° =¥, then for any & € A « 7 we can f£ind by
Theorem 2 a finite number of functio;xs [ #=1l; 2,.05,2) and a
positive number & such that

Azl (- Faii<E (=, B,...,w)lC A,
For such o ¢ § (wv=1, 2,...,%) &nd £ , putting
Fexy=1 - Fin{ ¢, bglsiimﬂ]cpv(x%—?,(a}l},

we have obviously ¢ (a)= % , ¢(x) =0 for every %€ A , and ¥ ¢  ,

because § 1s & fleld by assumption.

Conversely, if for any < A€ "] there i3 a function ¥ ¢ F such that
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weed = 0 o) = § for every x § 4 , then we have obviously --

fx: gy - pead|< 1) < A,
and hence we conglude by Theorem 2 and §8 Théorem 1 that 7% 277, on
the other hand we have "If’C 'I, becsuse § is coﬁposed only.of continuéuﬂ

functions on R . Therefore we pbtelin 'Z'; =T,

Theorem €. - For » trunk § of ¥, every eellection of bounded

coentinuous functions including § alse is a trunk of 7 .

roof. Por a collectlon of bounded combinuous funcilons § son-
taining a trunk £, we have obviocusly by definlition
qF e 9f ¢ 1,
and hence 'T? = T, beceuse I¥= 1 by assurﬁption.

Theorem 7. If 7 i3 8 weaic topology of R by a eollectlon af

fudictions § , then there is @ trunk of 1.

Proof. By v_iz-tué of Theorem 1, denoting by £, the totality of
hounded functicons (¥ ol )~ @ for every ¢ e 4 and for every real num-
bers o <@ , we see that the weak topologff of R by f'; colncides with
thet of £ by £ & Therefaore £, 13 a trunk of g,

Recalling §19 Theorem 2, we heve obvlously

Theorem 2. For s subspecs § < R, gvery trunk of " also 13 a

trunk of ths relative topolopy ¥ in 8.

4§23 Completely repular topologles

Let B be a topologieal. spsee with a topology 7. A topology T

13 sald to be completely regulur, if for eny & € 4 €l we cen f}nd a

continucus function ¢ on R such that ¢¥(a) = { and ¥x) = & for

every = & A .

Theorem 1. If ~ is completsly regular, then 7] 1s regular.
Yroof. LaTor any o€ A€ 1, there is by essumption a continuous

function & on B Such thet @ (o) = | end Pcx) = g for every = & A ,
For such’ Gf s putting X = {x : Fre)> ai-g , we obtain by Theorems £ and

% in $20 an opsen zet X such that

A

-

|
[
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@@XCX‘C{%S ff(z.)gu;—:}cﬂo
Therefore ~f 1s regular by definition.

Theorem 2. - The condition that T is complstely reguler, 13 squi-

valent to ons of the conditions that Y coincides wiith a wesk Gopolozy of

R by funttlons; that there is a trunk of °] ; and that ths votality of

bounded sonbinuous functions 1s = trunk of T,

Proof. By wirtus of §22 Theorem 5, 4 1s completely regular, if
and only if the tobality of bounded continucus functions cu B is a trunk
of % . Therefores we obtain our assertion by Thsorems 6§ and 7 in 22,

Recalling §22 Thedrem 8, we conciunde fram Thearem 2

Theorem 3. P is completely reguler, then the relative Lo

pology ~{3 aluo is completely reguler for every subapace & < K.

For o funetion & on a subspace & of R , if there 1s & cont inuoss
fonction ¥ on R such that ¥ix) = pix) for every # & & , than % isg

apid to he a continuou.s extonsion of ¥ over A . If a funetion 4 on

8 zubspece 8 haa 8 continuous extenalon over R, then % must be by §16

Theorem 8 a continuoua funetion on & by the relative topology oy &

© For a dense get 3 » Lf & funetion ¢ on § hes a continuous extension

over R , then we see by §16 Theorem ¥ that the continuous extension 1'5
uniguely determined.

Theorem 4.{Uryschn)

£ Y is normel in an open set 4 snd § is

8 ciosed sst ingluded in 4 s then every bounded continucus function l's

on £ by the relative topolozy “¢¥f hog & continuous extension % over g 5

such that wex) = ;zg weyd for svery x € 4.

Eroof. Since the tobality of rationel nuwbars is countable, we
denots by Ay (+#=1, 2,..:) the totslity of ratlonsl numbers in the
interval (g.-éug werx), 2‘;‘% ﬁf’(z.-))., Then thers iz a segusnce of open
sets X, 4 {¥v=1, 2,...) such thet

{x:?(uic.d,}c:;(,a XS A= gmivel,} =0,
and X, < Ko FOT of, oo ‘Indeae,d., we suppose that Xy ,..., X, ., Bre
already determined in such g manneyr. Since & 1s closed DY assump= .
Eion, for every real number § both polint seta



TOPOLOGY “{Chapter I1I
56 |
fz: oy zgp end {xr e =i
. § Then, since
losed sets in R by Theorems 2 1ln 420 and B in §9. R
are ¢

{
% Feer <ot = ,f— {= ¢ o), - vl
: = i
fnt @0 st= Eofxt #0mz bt pl
IR ff’C'r‘-‘a}-ﬁdwi‘d P -[?t’. H &“C'&)édy};
[ wrmy v TS fE Pem B

L
£ ind by §11
i =~ 54 = B < 4 , we can T
for a point set B such that QM% Ko+ 8

7 K suah bthatb
Theorem 2 cpen sebs X, and f,, Busal

= Ap b Anr o= e ¥ 2 B,
sy, gL oo, L = A
EERV M ar ¢ gRCUR) ool Lol " 2
N B™ M. w A ¥ .

’ i DY first
oo ey i ! - ast ¥ we have obviously by the

o Por such an open 88t X, we
and K, Y, =0 .

relation
Lyp S X, = b,
RIS AR N R Ko < X, LT uly .,
and by the second relation )
of =,
Ko iz Pex) vt} =0, Hopn ¥ Ky TOT olp Zolen 2 .
Sy . iy 1o = 0.
pecsuss X, Y, = O implies X, < v, » namely X Y.
13

Fo %] SQUE af & o= utting
oy zats X ( lp 21, ae ) P
7 such g BESqQUEncs open P 2

“ e
inf oy, for = e #Z-He.
g FoBE e
L :ri v ~ _ <,
i au% L4 for = € _,,Z;. B
e s

tion setiafles ob-
me obtain a bounded fanchien 3 on # o This func

wiously for every = l: Bhmos
(x: Wimr<ot, JC X € fx 1 wemygot kL
secordingly we heve for every real number &
: = T olzt wow) <}
=3 Wexd< E} m‘{;i{
= Zo{w yori g} ‘:d‘%‘; Ko,
oy § "

B Further-
{x 1 wcxr =% { 1s copen for every real number ¥
snd hence {x ¥

. = Tr {m: wewd <ot}
more we havs {#: w32} o> § l

= : -z = = X 5
wi; Lo 0 W) = ol } ;175 Ko 375- o
al D - ] con-
. a Prom this relkatlon we
pecause of, > P implies %, 2 )c'f,,, el Xﬁ } f .13
- 4 (@3 = ;
lude that -{'x s lw) ;g} is clossad, and hence {5 %
clude . = ) -
Th reforé y 1is by §20 Theorem 2 a continuoua functlion on _
open. [} 4

° Be-
This sontinuous funstlon Yy 12 a continuous extension of <f
g
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cause} 1f %¢xy < o, Tor s polnt z ¢ & ., then we have » = Hyvs

1}’('72) = oly, that 18, ¢rx)e =, lmplies Yen) =< o,

and hence

Conasquently we
have %(x) z % (x) for every z ¢ S . On the other hand, 1f (=) <<,.
for a point %' ¢ & , then we have =z & X. , and hence %cx) = ©u . becauss
Xodn @ Pzl oo} =g Gonsequently we obteln likewiss that ¢w)
Z 4 (%) for avery x £ 8 .

& Therefors we conclude o=} = ¥ ea) for

every = € %,

Theorsm 5. If & Yopology Y is rsgular end ioeally mormel . then

the: kopoleogy Y ig completsly rasgnliar.

Proof . For o ¢ 4 ¢ 7 ws can find by essumption an open mab AT

such that 0. ¢ &7 ¢ 4 and ¥ iz normel in A7, Since Y 1 regular by

assumption, we have {6} < # by $10 Thaoven 1. If {o¥” 5= #, then there

1= a polnt £ ¢ & such that {a}” 5 4, and we have by §10 Theorem 1
{ai" {4} =0,

fal™ + {4V o/,
For such g and £ , putiting -

8 Tor =2 ¢ {a}”
Poxy = Z‘
i for =z g {g}
we obtaln a bounded continuouns functlon 4" on the subspace fa}™ 4 {4},

By virtus of Theorem 4, thers 43 then a eontinuous function % on R such

thet ¥(a) = 0 , ¥¢x) = { for every x & A7 . For such % , putilng

= - we obtain & continucus funetion s« on R such thabt wiea)=1{ and

wix) = 0 Tor esvery 2 ¢ A . It {a}” = &, then putting
1

“iie) = {

o for =z & d{a}
we obtaln a continumous function w on B .

for =efa}”

Therefore 77 i3 completely
regular by definition.

Recalling $12 Thecrem 3, we conclude from Theorem 5

Theorem 6. If a topology ¥ is regular snd locally compact,

then °{ is complebtely Tegular.

Theorem 7. If a topology Y is rogular and compect, then in

oerder that a collection of bounded continuous functions £ be a trunk

of ¥

it is necessery and sufficlent that for any palr of separated

points x , 4 Ehere is ¢ ¢ £ such that- ¢rcx) F LY.
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Froof. ‘The _nemesleity is evident by §22 Theorem 3. 1f £ sa-
fisfies tha stated copdltion, then ths c¢losed fisld genersted by + 18 by
§él Theorem 5 gomposed 6{‘ #1ll bonbimaocus Tunetions, and hence we s8¢ by

Theorem 2 and 522 Theorem & that #° 12 2 twunk of ¥,

§24 Compagbifisstilon

For a topologloal gpacs R wlith a topology ‘4 , & topological spece

E with s regular compact topology T is called o compash exténsiom of

# , Lf R 12 ineclnded in § and ¥ ocolneides witn the relative topulogy
* - ,

HFhar T R . " If a topological spscs R has & compack extension
,;{ » then R ia completely raguler by §23 Thecrem 6, and hence R also
mist e completely regulsy by $23 Thecrem 5.

Let R be a bopologlerl spacs with a completel}rl reguler topolegy 7 ,

and £ a trunk of 7 .. & ecompact extsnsiom B of R 13 called & come

sachification of B by §, 1t ‘f& astisfies the gcompectificabion condl-

hions: _
1) R 1s denes in R ,

2) BYBTY F & f has & conbtinuous extenslon ¥ ovver B,

3) . every sdding point & ¢ K — & 1s seperated from essh other
point £ ¢ B by #, that 1s, we can find ¢ € § wsuch that for the

contlnuous extension & of ¢ over R ws have F (&) % ¥ (£).

We shall prove Firstly that for every trunk £ of 1 thers sxlatz

a compectification of A by £ . La overy ¢« & £ is boupded, correg-

ponding to sach @& £ we can ©ind two numbDers ofy , g sueh that
. oy = G 0x) .5 f’iﬁ." for every =& R,

74 Fd & o
Considering £ aa & .space,.we denotse by A the totallty of funciions &

on-f such that )
oy = ®(F) 5 Py for every <f & £

snd there is no point = & & for which W (g) = #(x) for every ¥ € £ .
_ If there is no such funotion & on § , then we assume naturally A = o,

— o
Putting "R = R+ A, we obtain a spece R which includes A .

Further-

e e e et e
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more,‘correaponding to every v ¢ £, putting

. g (x) for =gR

& () =

: z (5} for = a 4,
wa obtaln a functicn 75;; on R . Let 7‘5‘, be the wesk topology of R br

1&: gef }.

such that ey, ¢ ¥, ¢ @5 there Is a point z 4 &  such that

Th_en for every system of real numbers g,f (2 )

Frn) = £ for every & & £,
and the closed interval [aa(,,, (B‘r’j is a compset Hausderff space by the
number topology. fccordingly we see by §1¢ Theorem 4 that ?‘f iz com-
pach . Therefore, putting
R=r"",

we obtain by §12 Theorem 1 a compact space & by the relative Copology
%E of "‘Z in F 3ince the relatilve topology :f'g" is by §19 Theorem 3
the weak topology by {& ¢+ Fef }, 7 Ris regular by §23 Theerem 2, snd
nence K 1s = compact extension of R . Furthsrmore R 1s densge in B

by §8 Theorem 7. ? ia obviocusly a contlnucus axtension of < ovar

z . It e R - R and Zo# . Fe¢R, then  there ism % & £ guah thet
- Eegs for ¢ F~R
G (&) oF -
#id) for £ e R,

that 18, F(E) % &),
vy & .

Now we can state

Therefore R. im a compactlfisation of B

Theoram 1.

For sny trunk § of 7 we can find a compactification
of R by £ . '

Theorem 2, Let ® ‘be s compactificatlion of & by 5 trunk £ of

1. In order that s bounded continuous funciion ¢ on R have & con-

tinuous extension over A » At necessary snd sufficlent that % be con-

telned in the closed f£ield genrated by .

Procf. Let &% be the continuous extension of P e £ over R end
f, the closed field gemerated by {F : ¥ &§ }. Recalling §21 Theorem
3, we see by the compactification condition 3) that fa 1ls composed of all

Furthermore we see eazily by §20 Theorem

[

continuous functions on K,
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7 thset ?0 ig the closed fleld genevated by # in R. Therefore we

obtain our assertion.

Theorem 3. Let R-end R be two compactifications of R regs-

pectively by trunks § and ¢ of 7. If the closed fleld gensraged

by # 1includes ¢ , then there exists uniguely a continucus mapping

of % onto B such that a¢x) = x for every = € R, and such s map-
pilng ¢ 1s closed. Such = mapping s 18 8 transformation from R to

rt

genereted by & .
Proof . By virtue of Theorem 2, we cen assume ‘that both # and

g are closed fields and # =& . Gorresponding to every ¢ € £ we
obtaln by the compactification cendition 2} its contimuous extenslon ?
over K , and corresponding to every ®<¢@ 1lts contlinuous’ extension &
over R . For esch adding point & € & = R , we have by the sompacti-
fication condition 1)
M — — - — - — —
RITA{Z @ |H (- A (BRI <E, ReR b +=o
for every finlte number of functions ¥, ¢ G-(wr=1, B .., »x) and for
every posltive number £ , and hence also
Rﬁ‘{&‘: 17 )= Eall<E, ReRt+0.
1l
Since ?{’ is compact, we can find by §7 Thecrem 3 a *poirit
we T (% 1§Fm - Fadge, FeRl
Feg Exa
and we have obvlously

(%} FLEY = § (&) for every ¥ ¢ @,

thet 1s, corresponding to each B eR~R we can Find & € R satisfying ().

Sueh a point & 1s by the compectificatlon condition 3} uniquely deter-
mined and differsnt from every polnt of R . Conversely We can prove
likewlze thst corresponding to each adding point &e®-R there is at
least a point @ & R — R satisfylng (#). Therefore, asaigning to esch
addlng polnt & &R —R such an:adding point & ¢ — R satiafylng (#), we
obtaln a mapping o of R onto ﬁ such that (i} =2x for evary = € R .
This mapping @ 1s continuous. ) Beemuse we have by (%)

q(m-(i)) = ZHED for every"!‘é%l- . iék—,

E , if and only 1f the closed field generated by # coincides with that

Lf R ig geparated by 1ts topolopy Y.
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%
and hence for every finilte number of functions P, e gt (=1, 2
- » ’

‘ ey ®)
and for every positive number £

a ({Z: 18R - Fta@n(<e (=1, 2,..., %)}
={Z R GE)- @I <t (v, 2,..., x)}.
Conversely, If @, 1is a continuous mapping of B onto ® such that
Pyl{x)= x for every ¥ ¢ R , then for sach functlon ¢ ¢ o , putting
YeE )= ?f:‘(m,ci’,!) for every X ¢ & ,
we obtsain a contlimions function Y on B and we have
Fix) = ‘;;(011(1?):':57(1) for every z ¢ R .
Therefore we conclude by §16 Theorem 9
¥(Z)= Px)= ?(Iﬁ.(i]) for every % ¢ R,
and hence (t,(% ) = gu¢ %} by the compactification condition 3).
Such = mapping g 1s closed. Because for esch closed set A< R »
‘ms A 1s compact by §7 Theorem 1, (A ) 1is compact by $16 Thecrem 7.
Purthermore, asm(d)=mn (x%_&{;:f‘.; ALE-N = Z. {2} 4% s (AR-RD,
CfL(E) is 8 topological set by the compactificatiojecﬂo:\lditlon 3. Thus
o{A) 1s closed by §10 Theorem 2.
If = & ., then corresponding to each polnt & ¢ B there exists uni-
quely a point e R satiafying (+), as proved just above, and hence v

is a treansformation from R toEK . Gonversely, if such a-mapplng @ is

a transformation from B to R s then the 1inverse transformation o' is con-
tinuons, because gL 1a ciosed, a8 proved just above. Thus for each Fef,

putting v¢%)1= ?(m“('i )} for every ¥ & B , We obtuln a continuous func-

“tlon ¥ on R and Yilx)= Fretiny) = ¥(z) for every x € R , e

conclude therefore ¢ ¢ 4 by Theorsm 2.

From Theorem 1 we conclude immr.clia-tely

"Theorem 4.(Tychonoff) In order that a topolopgical apace R has
g_compact extension, 1t is necessary and sufficient tHat R 1s com-
pletely regular.

We see at onee by the compactification cendition 3)

Thearem &, Lvery compactification of R 13 s Hausdorff apace,
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§25 Connectors

Let R be an abstract space. A correspondence W which aasigns

to every polnt = ¢ & & point set T(x)< R, 18 called & connector, if

T(=})» = for every point x ¢ R, The correspondence which assignes
to every polnt = ¢ R the point set 4=}, i3 obviously a connector, which

wlll be called the ldentlical connector and denoted by T .

For twe connectors ¥, ¥ , we shaell write Wzyor v T, if
Ty D TR for svery = € K

With thls definition we have ob¥lously that Uz V, VW implies T =2 W,

and T €T for every connector .

For two connectors U , ¥ we deflne their intersection UV to mean

{1) ' TFLR) == T(x) TCH) for every = e A .
The intersection U7 is obviously a connector, and we have

(2) TTIW = T T W), TV =T,

{3) . VT =T, TV 5 7.

Por twa connectors U,V we define thelr product U XV to mean

(4) T Ww) ow E. Ty for every % & R,
Jevn)
The product V¥ x ¥V is obviously a connector too, and we sea sasliy that
{5) (T = T)x W= Tx (TxW},
{&) TXxI = TxT =T,
(7) T & U x -V, T e UxV,

(8) T 5T implles TWx W< ¥ x W, WxW £ WXV,
Furthermore, for an arbitrary poilnt set A and a connector T, we

define 4 x T to wmean

(9) AU = Z. Ti=),

‘ : =eA

With this definitlon we have cbvlously
{10) Tx Vx}) = Wy x T,
(11} (AxT)x T= AX(TXVT),

(12) (Z An) T = Zo Anx T,
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{13} AXI:A’

A Aa T,
(14) A< B implies A« 7T« BxT,
(15) TE7T implies Ax T & 417,

For a connector U, we define 1ts inverse - =t to mean
- P ° .
TUheni =4y wigiex for every = e R ,
that is, we have
(18) § € U x) is equlvalent to x & T(y),

-1
The 1nverse T rlsc is arviously a connector and we have

(17, (T = 5,

(18) (v = gy,
(18) (T v = v xT",
(20) Tgv implies -t < v,

The relation (17) is evident by definition. Ye T V) i) 1s
eqgulvelent by (16) to = ¢ TV(g), neamely x ¢ TCY) TLY) , which also
13 vy (16) equivalent to Y € Ty vricx), namely e Tlyttiew) .,
Hence we obtain the relation (18), Ye (TR T =) is equivslent
by {18) to x e Tx VLY) , namely x € ¥ez), Z € U<y for some point
Z € R, This relation 1s by definition asquivalent to z € ¥~ ¢,
4e TUT'¢z) for some polnt z ¢ R , nemely we v-'x w-l(®), Thus
the relation (19) 1s proved, IfT£V, then y € T ' (z) Implies by
{18) x e Tey) < Tey), and hence Y e Toor), Therefore we obtaln
the last relation {2G).

As U¢=) 24  implies by {16) x e U™ Cy), we obtaln by (4}

{el) ‘Ucm)ag implies ‘G’cvt-)(l:_ ‘U’"x'U'(g.),

If AT (x)+ 0, then for a point 4 ¢€ AT (=) we havs by the rela-
tlon {21} U(xlc ¥ 'xU (4} end hense we cbtain by (9}

{22) ATR) 0 implies Tex) € Ax Tilx T,

For a connecter 7, we have

(23) (Ax T)BR =0 implies AlBxT""y=0,
Beceuse, if x ¢ 4 (B x ©v-'), then we can find by (8) a point 4 € B such
that x ¢ T '(g), g € & , and henve we obtain by (16) ¥ e U (=), Fe B,

X & A, namely y ¢ (AxT)B .
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4 connector ¥ 1is said to be symmetri¢, if TP =T, with this

definition we have obviously by (17}, (18), (19)

-1 -i
Theorem 1. For any comnector ¥ , s8ll connectors T U™, wxT7,

and w'x U ars symmetric.
For a connector ¥ we define
v=1, TY= p¥ =T for every ¥ =1, 2,004 &

T With this definition we have

Theorem 2. For an arbitrary polint set 4 =nd a connecteor w , put-

ting B = b_g; A xT¥, we have that ¥ U Impliss B xV=8, B x T =B,
Proof. fie have by the relaticns (12), (15), and (11)
BxV = ;}';.Axv‘:’xv c ;E;_.Axv"“ B,
‘and hence & x ¥ = B by (13}, '
and hence we obtaln by {83) B8(B'xv™)=¢ , nemsly g'x Tl « B,
Consegquently we have B 'x 7' =B’ by the relation {13].

Let A be now & topologlesl sﬁace. For a connector ¥ we define

its opener ¥° to mean

Tox) = {OT )}’ for every x¢ R ,

and 1ta closurse W~ to mean

Ty = { T} for every e R,

Similariy we can deflne further ™%, T°%" ;... . For any connector

U , Llts closure U~ is cbviously & connsctor too, but 1ts opensr o® 1ia.

net necessarily so. The opener T° 18 a eonnector, if and only if

every polnt = ¢ R 1s en inner point of T (X%},

§26 Uniformitles
A collection of connectors A€ is called a uniformity, if € satis-

fies the uniformity conditions:

1) W3 T 2V implies ¥ 2V,
2] Y2 T, V implies W 3TV,
3) For any € ¥ we can find Ve ¥ such thet v 'x Ts U.

For a uniformity %€ we have-

From R X ¥ =B we conclude B (BxV)=0,
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fa} wWew implief W T

Because, for any e 9t we can Tind by the conditiecn 3) T e 2 for which

Ti'x vV 5T . Thus ¥ ¥ by the formula §25(7) and hence oz -’

by the_formﬁlaﬂ {17) and (20) in §£5. Therefore ws have w~'e % by

the condition 1}. Furthermore, putting W = ¥ ¥, we obtaln by the

formula (7) and Theorem 1 in §25 that WxW =7 and Wt . There-

fore we have
(6) for any Ue¥ there 15 a ‘symmetric cormeetor 'we 9 such that
'I‘T XTg T. .
‘From this relation we comclude immediately
(&) for any 7 e ¥ there 13 a symmetric comnector ¥ ¢4t such that
_ VXV x¥ = V.
The cotality of connectors is obviously a uniformity.

This uni-

formlty 1s ocalied the discrete uniformity of a space R . We see at

on¢e by the condition 1) that s uniformity % 1s the alscrete uniformity
if end only if ¥ 2 1 .

For a uniformity ¥, u subset & < ¥ 1a sald to be =z basls of %, 1f
for eny e we can find Ve such that 7= U. Yie see easily by
the uniformity conditions 2) and 3) that every basis & of a uniformity

4 sotisfies the basis conditions:

1) for any U, Ve £ thers is We % such bthet ws TV ;

, 2] for any Ue ¥ there is ¥ef such thet v 'x Vg T,
A
Conversely we have

Theorem 1. If & collection of connectors & satisfies the basis

conditions 1) and 2), then there exists uniquely 8 uniformity 4¢ such that

4% is s basls of W,

Proof. If we denote by %t the totallty of conmectors © such thet
T gV for some Ve, then we see easily that 1% satlsfles the uniforme
ity conditisna 1), 2), and 3), that is, ¥T 18 & uniformity. Further-
mere 1t 13 evident by definltion fh.at % 13 & basla of this uniformity
w o, The unlgueness oI‘. such a uniformity ailso is evident by defini-

tion of basis.
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A basle ¢ of = uniformity ¥¢ is said to be a gymmetric basls of 24,
ir ¥ 4is composad only of symmetrle connectora. For any uniformity

w , {vo-t: vewW} 1a obviously s symmetrle baesis of . | Therefore
we have

Theorem 2. Evérv uniformity has a symmetrlc basis.

4 polnt 2 ¢ R is said %o be ssparated from a point £e¢R by 2 unl-
formity 9 , 1f there ls e #¢ such that W) 5 £ . If every point
of £ 18 separated from sach other point‘of R by a uniformity 4% , then
we shall say that R 18 separated by #¢ , or that %€ is separative. A

space R assoclated with a uniformity is called a uniform gpace.

§27 Induced topolopgies

Let R be e ﬁniform space with & uniformity 7. Denoting by ¥
the totality of polnt sets X such that =z ¢ ¥ implies Tmd < X for
gome T ¢ ¥ , we zee easlly that 7 =satisfies the topology condlilions,
that is, ¥ is e topoleogy on R . Thia topology { 1s called the 1n-
duged topology of R by a uniformity %1 and dencted by "Im, that is,

{1} AW § x: #ZexX dimplles Wzl X for some Wewr},

For the induced topology "IW of & by a uniformity %%, we have for
every point set A

(2) A= { =, A > U¢x) for some Ue¥t}f,
Because, pusting B={=x: A 2 Te¢x) for some Ve }, we have o'p*;".@.ously
by (1) Ac B c 4. For any rolint @ € 8 there is we ¥ such that
vfa) e A, For such U we cen find by §26(5) ¥ « ¢ such thet
TV 2T . Then we have
AP Teay> T(a)Xx V= F. Tz,

xeW(a) vt
Therefore we sbtain by (1) B ¢ 17, and hence

and hence B > V(&)
B = A°.

For each U ¢4 we can f£ind by §26(5) V& 9 such theat ¥x v < T,
end then we have by (28) ¥(x) « {T(x)}" for every x € R, that is,

v s U, Thersfore we obtaln

A
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(3) T*E VE for every wedk .
;‘hus for each Ue¥ its opener w* is naturally a connector, that
iz, U®x) » & for every x = R , and hence we cotaln by {2)

Theorem 1. For s basla gg, of a uniformity 44,

{Tota): Te&l

i2 s neipghbourhood system of a point a for ‘:bhe Inducesd topclogf g ¥

Let & be n basis of = vniformity 2€. Then we have
(4) A= T AxT = 7 .
oo A _ﬁf;f:g(,dixv) i
Because, for each point & ¢ 4~ we havs by Theorem 1 A Vol 0 for
svsey W€ ; and hence we obtaln by the formmula §25(z2)

w
Fiedao Ax V' x v

Tor every - ¢ %,
Tharafo;'e we coneluds by the uniformity condition 3) and by‘. (é)
' | ATC(Axw)" . for every wew,
Gonver.sely, far each point & & ﬁg“g’.aq X T, we have by the relations (9) and
(16) in 8§25 AU 'Ca) & for every U ¢ ¥ . 8ince &ﬁ is » basis of 27,
we conclude hence by §26{4) AT (r)4+ 0 for svery T e, and conse-
quently aae 4~ by {2). ‘Thersfore we obtain (4).
Sirce 4 x U° 1s by the definition §25(9) open for every W# % , we
ebtain by (4)
(B) AT € An T cidxw)® for every U € .
Putting A= We) , We oﬁtain hence For any connsctor W
‘ {6) W o= ('W}i*ﬁ‘f for every T < .
The.orem 2. For every 7 ¢ w s ;%A X T¥ ia open and elosed by
the induced topololgy Y

Proof.- Futting B = Li’ A= T, we have b‘;} $25 Theorem 2
& =BV end hence B~ 2 £° by the formula (5).
" By virtue of formulsa (3), (6), and §25({5), we have bbvioﬁsly
_Thecrem 3. For sny basis % of %, both { v*: Teé ¥ | and
{U": Ue ¥ also are bagls of .

Suc_h z connestor U° {s saild to be open, and " clossd,

’I‘he.orem.t&, R ie a Hausdorff space by the induced topclogy. "iw,

if and only if R is separsted by 8 uniformity ¥ .
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. Proof. If B 1is aepsrated by the Induced topology 3%, then R

1z seperated by ¥ on account of Theorem 1. Conversely, If R 1s se-
parated by ¥ , then for esch palr of different polnts = , ¥ we c¢en find
by the formula §26(5) a symmetrlc ceonmector ¥ & % such thet Trvx2F g,
nemely (V(x)x Tliygt =20 . Then we have by §25(23)

Vix) Ty} = Vo Tl =0,

gnd hence naturslly W=} Vgl = 0. Therefore R is a Hausdorf?

space by "‘3"'{,
Theorsm 5. Let ¥ 'be & besis of s uniformity ¥f. For a to-

pology 4 on R, we have 7 5% 1P and only if every.polint .x. is an in-
ner point of T(w) by 7 for every weif , that is, = & {7ex)}*° for
every z ¢ R Bnd UTe % . ‘

Proof. it 4 » 4% then we have by §B(1) {‘U’tw.)}za > %=y for
svery e ¥ , and heuce we see by (3) that x= 1is an inner point of =)
by ¥ . Conversely, 1f = é'{'U(w-J}’Io for every e &% and x eR, then
for each Ve § we can find by (3) v ¢ & such that U° z ¥, -and hence

Tom) S{ T} 3 for every x ¢ R,
Thus we conslude "1 3 7" by §8 Theorem.l.

Theorem 6. For s topology 7 on R and a basis ¥ of 41, ws have
4 c4¥i1r and only if ae Ae ¥ implies Tex)c A for gome Te .

Proof . Ir 4 ¢ 1%, then for a ¢ A« we can find by Theorem 1

Te4 such that T(a)c A, For suc.h = we can find further by (3)
.‘\7‘6 ¥ such that ¥ £ ¥°, and hence Wear< A. Conversely, if e e 46 7

"
implies Tlm)e A for some weé ¥ , then, as U°s ¥, we obtain V€ ¢!

by, §8 Theorem 1.

§28 Comparation of uniformitles

Let R bae an ebgtract space. For two uniformities 44 snd % on

R, Sra e 43, then we shall say that ¥ is weeker than % or 4% is

stronger than 41 . It is evident by the dsfinitlon of basis that if e

includes s basis of 4T, then 47 is stronger than . Furthermere we

e g me

i
1S
f
5
i
i
¢
¢
H
3
£
i

i o e e

evident that U4, 2 U, for every re /A ,

‘then every UL (A ¢ A ). Putting %32

Al .
§27, §28) ' UNIFORM SPACES Bt

ses easlly by definition

Theorem 1. For 2 basis w of & uniformity 4¢ end for a basis gt

of amother uniformity 4% on R , we have W %, if and only if for each

Ue s we can find vegr such that U=V,

The diserete uniforamity is obvlously stronger than sach other uni-

Tormity. The Lrivial unifermity, which 12 composed only of m single

-comnector ¥, such that T(z) = g for every x e R, is obvlously weaker

then every other uniformity.

Theorem 2. For & system of uniformities %€, (A e A ) on R there

, gxlat both the weskest stronger unifo:nmity U %, Bnd the strongest weel-
- | HEA

er uniformity N ‘F}{,\.,
T AEA o
FProof. If we denote by &, the totality of connectors Toy Dngen-Thse
for every finite number of connectors T, € Vi, s Aved {w=1, Breca, ® ),
then %, satisfies the basis conditions. Because, if V, 'xV, = T,
{v=1, 2,...,1), then we have by the formulas (7) end (207 in §25

(B Tag oo Tae X (B Vg Tan ) & Vo' x Ty = T,

= =

for every v= 1, 2,..., 2 , &snd hence

=i
A, ?‘\1 oo VA%‘)_ XV{ T“!v‘\z."‘ A ) 2 _U:\pv)\z”‘ Tase .
Thus we see by §25 Theorem 1 that there exists unlquely s uniformity 44,
sueh that %, 1s & basis of %, For such a uniformity 44, , it 1ia

For a uni-formi't};-' Y, Af WSV

for every A ¢ A ; then we have ¥ T ¥4, by the uniformity condition 2},

Consequently 4%, is the wee.kest--étronger' uniformity of ¥, {x & A }; neme-

by W= 4, Vs _

Lot %, (r e " ) be the system of all uniformitles which are weaker
-:;a'lé)r" fﬂa, we see easily thgt 1P, is
the strongest wesker uniformity of ¥, (~ € A ), nemely 4, = N\ ¥,
A2A
In this Proof we find 885y,

Theorem 3. = . If &, 1s a basis of 9%, for every ne¢ A , then

{m.,m,‘_wmm, ST, s e (asl, 2,..0,0), k=1, 2,...}

1s 2 basls-of the weakest stronpger unifermity . a4, .
m AEA

Theorem 4. If uniformity 2¢ 13 wesler than é uniformity 4p
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. .
then the induced topology 3% by %% 1a wesker thsn thet 4' by %° .

en R o,
that is, % <4 impiles 1% < 1Y,
Ifasde 7Y, then we can Tind by §27 Theorem 1 T € %

Preof . .
€
such that 7o) e A, As T @@L by §27(3), we obtain YT € TV by
§27 Theovem &, 1f # < 47,

Theoren 5. For s system of uniformities W, (re A ), the in-

‘ . ) & r topole
ducsd topelegy by ;‘JA‘W«\- coincides with the weskest satronge P oy

o ¥ e
of the induéed gopologies “i by Ux (A€ A}, that is, 7T AL

5 & we have obviously by Theorem 4
Proof. Az M U DU, (§ €A D,

(P = 1 L#N
3 W
TP aa >, T
‘For esch finits number of comnectors T, ¢ Yir, {v =1, 85.00,7), we have

iy,
LA Tt e %,
by §27(8) UL “°(x) 2x (v =1, 2.0, ), and hence T T =232

Since Tt T, 1%%(1)‘£ / 7", x 1s en inner polnt of Ui, Ti,.. Thy (2)
Fa- T 4 SEA )

by g, Thersfopre we conclude by Theorem 3 and §27 Theorem 5
T AEA _
Wa o ’i"\\iﬂ%“i Consequently we obtaln cur assertion.

X

29 Relative unirormities

Let £ be an sbstrect space end § = subspasce of R .

nector T in R we define the indﬁced connector TS of & 1n the subspace

bd
& to mean T 5(x)= STF(x) for evary % & 8. _ The indueed connecto

78 ‘is obvlously a comhector in 8§ .
0 Concerning ipduced eonﬁec‘tors, .we heve obviously by definmitiocn
(1) v 5 v implies ¥ g 7S,
() wvt = wivs, . 7
For svery polnts = , 3 € 5 , 4 ¢ (oS ¢x) iz by §86(16). equivalent to

8-t
' nt to % eTPTCnd,
z ¢ Ty, namely 2 € wfcy); and-hence i‘.urther equivale | 3

Therefore we have

(3) -~ (w9 = -gs—!_

(4) (vxv¥z vixTvE

15) tAxT)r¥ o A% xvusd,
‘Because, Wwe nave by the definitiocn §25(9)

For a con=-

f

L]
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-4 = o = 4 o= g
{4 x 0y smm z):xﬁASTfﬂ ﬂg,ﬁv ()

aml hence we obtain (5). Futting 4 =V¢=) in (5), we obtain

3
(Vxw) z 7% x 0t
and hence we conclida {4},

For a uniformity % on R , we see by the relations (1}, (2}, (3),

and (4) that the aystem of connectors {8 . g 5 } satisfies the uni-

formity conditions 2} end 3) in 8. ir U"s'_j W for & comnector

in &, then putting Vim) + wezx)  fop ,}_E g
Tewe) = /

Ter) Cfor m E &

2

we obtaln @ commector ¥ in R such that '1;‘ ® . For thls commector

¥ » we have further for every = ¢ &

E 3
VEex) = Ti) 4 ogon) = W=,

becouse Ui w by sssumptlion. Therafore { U5 . wWear } iz a uni-

formity on 8, This uniformity 1s called the relative uniformity of
¥ in = subapece 8 end denoted by 4 4 » that is,
(8) Ui={ o gaws,

With this definition we hawe eb¥iously by (1)

Thaorem 1. Hor a besis & of ¥, {gs ¢ Te¥ b i3 5 bagle of
the reletive uniformity ¥ of #¢ in s sulpapace 2 .

we have

2
Therefore we have "’IW'r / ] ('}’W)s by §27 Theorem 6.

Furthermore we have obviously

(7) Y <4 implice e q2f

Concerning indiesd topologiss we have

Theorem 2, The induced topology by the relstive uniformity ’M:S

of 4% in 4 coincldes with the reletive Lopolozy of the induced topology

,\;% PJ%; tnat %Eg ‘*!(WE) =(ﬂg%)s.

Proof. Por sach U ¢ %% , we have obviously Ty v % x) 5

and T%¢x)e (""{'W)"i by the derfinition of relative topologiely, Thin &

(ax®)

C(’IW)S by §27 Theorem 5. It ae 4% (4Y) then

there is by §8 Theorem 2 and §27(1) ¥ €Yf for which we have e} c AS,

Gonsequently we

obtaln our assertion.
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§30 Uniformly continuous mappings

Let & and S be two ebatract spaces and & o mapplng of A into 8
For s connector U in & we define the inverse image a ' T of T as
AT ) = aT (T oI for every e R,
The inverse image m~'7T 1is cbwlously a connector in R, and ws have
(1) ge @' T(x) 1s equivelent to eeyde Tlmed),
Recalling the formulas {4) end (&) i.n §15, we obtain at once
(2) T £V implies o' U g ™' 7,
(3) At (T T =(piT et T, }
We sse by (1) that ¥ e o' ¥ “t¢m) 1s eguivalent to eyl e TV (aem,

-1 o) hamel
namely gicw) € W (oe(4)} BY $26(18), and hence to X ¢t "T(a’- 3 ¥

Ye (o=t Yy fa ), Therefore we have

(4) ot gt = (et T

(5} At TiT) = AT ke,

(&) al(AxT) > atcA X ol
Bsecguse, for many point X € ot eA) X ATt there is by §25(9) ¢ A for
which z e A" T (y), 4 ¢ o=’ (A}, na:ﬂely ey ¢ 4 x T, Therefore
we obtain (6). Futting A4 = (=) in (6], ws conclude (5). On ae-

v i - tric for every symmetric
count of (4) we see at once that oo~' T g symue

connector .

8-
Let g and & be now uniform spaces with uniformities 27 and 49 re

ti-
nectively A mapping ;. of R into S 1s sald to be uniformly con

nuous, if @' e VL for every UeYd.
der
Theorem 1, For & basis & of 7¢ gnd & basis & of %4°, In orde

hat & mapping @ of R into /- be unifermly continuous, 1t is NecesSsETy
2 i .

Ehat & map]

: h thst e V)
and sufficlent that for each TeC We cen ipd Tey, such that 4%

implies miy) € T onend).

Proof If & is uniformly contirmous, then for eny e C , as
. - ed
a1 T & VL, there 1s TeY such that Vv 077, For such V ’

- e T CmLir)) Con-
$ e TIx) implles 3 &€ &= Yo (x) , namely ¢(y)

usrsely if the =tated conditio_n 1a satisfied, then for any v € q there
]

i find ¥ €Y% by assumption
is ¥, ¢ € such that ¥, § ¥, and further we can

S

j30) UNIFCORY SFACES 7

[<bs

such that #¢€ Ucx) Implles diqglre 7 ¢in ca 3, namely ¥ ¢ &'y, (=,

and hence we obteln U = n v = m"be (2). This relatlon yields

UV & ¥ by the uniformity condition 1}, Tﬁeref‘ore 7v ig uniforme

1y continucus by definition,

Theorem 2, If & mapping o of R into & 1is uniformiy continuous,
‘ther o 1s continuous for the Induced topolories 7™ ang ¢¥.

Proof. By virtue of §27 Theoren 3, {0°: Tet § i3 a basis of

W, and {T9°; T ¢4} 13 & basls of . Thus we see by §27 Theorem

1 that { T°ean Tew] and {vox): we %} are nelphbourhcod systems of o

polnt x respectively by "Iw and ’il'qp., Therefore we ébtain our asaer-

tion by Theorems 1 and 5 in §16.

For a point set 4 < R., & mapping @ of R 1nto £ 1s sz2id to be

uniformly continuous in A4,

if m is sc es & mepping of the subspace A

tnto & for the relative uniformity %4 of ¢ , that is, if

(-t g3fe ar A : for every w ¢ %°,

If a mapping oo 1s uniformly continuous, then- s i= obvlously uniformly

continuous In every polnt set A of R

.

Theorem 3. _'If 8 mapping . of R into g 1s contlnuous for the

induced topologles ¥ and %, and uniformly continuous in a dense set

A of R, then a is uniformly continuous.

Proof. For any ¥ ¢ 4@ we can find by §27 Theorem 2 and the uni-

formity condition 3) -7, « 4*  such thet (77)'x <5 7, For such V,,

nas(m."v,)’ﬂe mA by assumption, there is by a9(8) T, € W, for whieh we

heve (a"' 7 )= 0% | For such U, e 1% » e cen find further by §22(5)
1 i

a smmnei;ric Te W such that 7! XT=s 7° Then for any point = ¢ R

a2

a8 4 la dense by assumption,._ we can find a point 4 €4 such that

gé T (%) ¢ TLa),

For such ¥ e 4 , we have by $25(21) and §4(8)

TixYec T x Ty < v,‘*’(gmm TP = (At v, Cey1)y)~

A Ty Vil )T <« mot¢ - Caneglyy,
because 47 = R by agsumption and a~'(x)~ < 07-"‘()( ) for every X < ;S

by §18 Theorsm 3. ThJ.S we have naturslly x e o' ('7," (in (313) , nsmely
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Szl e WOl (B D ‘, and‘nence we obtaih oy §za{al)
Smeg € (TR TS (o ex1) €T (ALEI
tonsegquently Wwé have for every x € R
“{Tu)gm"‘(vrm(zz)} -V LE)
thet 18, ¥ @™ ¥, and henos oV eV, a8 ¥ e Tnarefores @

13 uniforadiy continuou'a vy definition.

§31 Uniformly sontinuons funcilons

In the num‘ber space, for 'any posltive nuwber £ , putting

"UECE)E(%’JE,E'FE) #or every resl mumper ¥
wa obtain & symmetric connechbor '@’é in the numbar SPace. with this
gefinition we se&s saalily DY §26' Theorem L that there exisbs uniquely a
unj_fﬁmit‘y, of which {Tg ¢ & w0} ils 2 basig. This uniformity will

ve ezlled the number wniforalty.

Let K be & unlform spacs with a uniformity . & funcoion ¢ on

R is s3aid to be uniformly conbipuous, {f 1t La 0 a8 & mapping of ‘B in-

w0 the number aapm@ with the nuubher unif‘ormitya

itk thls dofinition we have by §30 Theorem 1

Theoremn L. ‘Let ¢ be 2 besie af . In order that s functlon

¢ on R be uniformly continuous, 1t ig necessary gid sufficlent that for

'_g;;_tg £ >0 ¥We ©an find e % such that ¥ ¢ Fex) implies
ey Foyrls .
Oon agsount of Theorem 1, avery constant 12 obvicusly unlformly con-
yimuous, and #e can Hrove saaily following two Thecrems.

Theorem 2. For bwe wniformly conbipbous functions & and W, we

obtaln uniformly continuous funciions &Y w o, Y and o ¢ 4 ;&H{a for

every real numbers o, ﬁ N

Theorem 3. For a seguence of uniformly cantinucus functions

(o= 1, O,.0a), if 1% 13 uniformly convergent to 2 function ¥, then ¥

1g uniformly continuous too.

Theorem 4. Let T, (v»=1, 2,...) be_=n sejuence of symmebtTic eon:

Far esch pelnt = = : .
<€ 3 M ané .
. ‘MZ-:' A} UM dnd for any & we can find & such thab

§30
§30, §31) UNIFORM SPACES 7
| B
nogtors such that for a symmstrlc connector 77, we have

e B Weay ¥ Ty (b =0, 1, 2 )

(% N saas

For an srvit
, i Erary point sof A#%=0, wo can find s Ffunction ¢ on the aub

) [
Space 2. IS ) @ :
gpuce .= A x T such that for =z e sz Ax T,

$ e TUu(x) implies gz~ Pyl

L
ERrro
=0 for x e A,
: 1
Erys =
0 Fix) -2 fof % & AxT,
Z for zE AxU,*
g{w B a
. . for we 4 & W, M,
roof. . ‘
7 Putting_ T = 'U,,‘Mx ‘U,Ei X U,&F‘ﬂ’ X oeoox T
At o
=0, L (v=l, 8,...,0), p=60, 1, 2, -
b 2 ceny
T oE et 2 e
"we shall | on t
pirove firatly by the induction for » that

o= _____0( 2 rrf__. k1 '
ar? F'Egroe 3o twplles Vo z o x 7
1 =" o

This relation 1s velid eclearly for y.= ¢

. Wa mssume hence that thi

relation a
holds for @, L,c.ve, ¥ =1, If «& 13 sven, then we have ob

vicusly V., = Ve 2 TH, . ]
- 2 oo If &4 18 o0dd, then

; ] e ) ; putting d.-a{aa»f "‘é‘-f‘a‘

g heve T'zm ame—— .

gr-1 end hence T, z Vg # V., by assumption. This raw

'12.3\1‘;.1011 yields by the formulas (5) and (7] in §R5

Vot 2 To XU, T, = ¥, x T,
: . . 5

becauss ¢ 4 -1 '
5 T Conmequently we obtain our asssrtion. Thua

we ¢an concluds further that & >t z o implles T z T
; ‘ ‘ ) T = T

For eve.r ot e =
.:Yp ne % ¢ “Z_-‘_".-AK.U;F » putting

T

® ()= Ainf -

Aeg,ex

¥ >
& obtain & function ¢ on-bhe subapscs %. 4 % o,* '
P . P LI This Ffunction
ea ohwlously = T
= 754 xeAJ
-
M for e
o5 e =e Ax T,
g,u for = & 4 < U,
»
i -
zw for z &€ Ax V..

o _ i o

T F1d 7v = Fox) = i3
hen, patting T = 7 we have - 27 ; _

i;w obvliously ¥ ¢ 4 x ¥, , andd hence, If ¥ & T, (m)

. 2. 5
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then we have by the definition §25(8)

YEAX Ty x U, = A% Ve
for T/ = 'c+;f-;;, becanse V. x U, & Very 8BS proved jus"c abmfe. Accord-

ingly we have by the definition of %
1 L.
GeyyE T/ = gt gs & LRIt g
Since T, 18 symmetric Dy assumption, we obtaln likewise
)
PX)E PRI L ,
THerefore 4 & T,.(#%) Ilmplies [w@(x) -~ ¥ig) s 255 °
Theorem 5. For s connector Te¥l , if (A4 x T yB=0 , then we

can find & uniformly continuous function ¢ pn R such that .

¢ for =xe A,

pm) =
4 for x¢ R,

and o < Prx) = 1 for every xs R .

Proof. On sccount of the relation §27(5) we can find a sequerice
of symmetrie connectors T, e (w =92, 1, 2,...) such that

Tz, 2 Tz Tl X Lz (v=2a, 1, 2,--;1)7.

. Then, puti'.ing g = E;,r_/i-x ‘U‘M , we obtaln by Theorem 4 a I‘unction.éf. on
~ the subspace & sugh that = 0 for ze4d,
‘ ?(Xj{zi for z @ AxT,,
)z 0 for svery x &% , and ;E T, (x) implles |spexi—srcy) = E'A};‘:‘1
TIf we sat further ®¢z) =1 for x € 5 , then, &8 SxT, =8, 8 x0T, =8"
by §25 Theorem 2, we chtaln by Theorem 1a uniformly continucus funct-ibn .
% on R . Futting ¥ = ¢~ 1, we slso obtaln by Theorem € a uniformly
com:inuous.function 4 such thet
. { ¢
Y (x} = .
4 for & Ax7T,,

for. x €4,
and 0 € $oxdr 21 ‘for every # € R . __ Since (A x T)B =0 by assump-
tion, this function ¥ satisfies our reguiremsnt. -

Theorem §. For aevery uniform space R with a uniformity 72/ , the

induced topology ";[Mo__f'- R coincides with the wesk topology of R by the

totality of bounded uniformly eontiruocus functions, and henge the induced

topology ";[""'t of R 1s completely regular.

i
R

§a1}y . \ UNIFORM SPACES T

Proof. For @ € A g T, we can find by §27 Theorem 1 hnd 527(3)
U &% such that TU(ed)c A , and hence (Hefxw)A'= 0. Therefore
we can flnd by Theorem 5 a bounded uniformiy continuoué function € such
that ¥(a)= { . and ¢(x)= 0 for any =z £4. Thus ’Y“ cainecides by
f22 Theorem & with the weak topoclogy of K by all bounded uniformiy con-
tinuocus funetions, and hence Y s completaly resular by §£3 Theorem &.

For s point set § of R, a function ¢ on R 1s seid to be uniformly
continuons in 8 . if ¥ 1s uniformly continunus as & functlon on the sub-
apece § by the relative uniformity 49,

Theorem 7. If a function & on R iz continuous by the ind-ced

W
topolopgy 7, then ¢ is uniformly continuous in every compact set, -

Proof.

By virtue of Theorems 2 in §29 and £ in §l&, we need only
prove fche case where R 1s compact by the Induced topology T, If ¢
. v N

ia contirnmous by 1™, then for any £ » ¢ and for esasch point ® € R we cen

find by Theorems 4 in $20 and 1 in §27 ¥,° ¢ 9 such that

T )3y impllea- - !
, x i i3 I car— wogite 5 £,
Hor such U, there l1s by $26(5) a symmetric V. &€ YL for which we have

T ¢ W, = T Since R

Then we have obviously R = 2. W ¢x),
= &R

1s compact by assumption, we can find s finite number of points =, ¢ R

o v

(re=1, 2,...,% ) such that

] % a "

R = §.| 'V'zy ()= 2.V, (x.),

= =] v
For auch Ve, (Vb= 1, 2,...,3% ), putting Vo= W Vep o s Vaey, we obtaln a sym-
metric ¥V ¢ U0, For this T, if Wexd & , then there is =, for
®which ¥y, (%,),3 %, and hence we obtein by the relation §25{21)
Y& Vo, x Vo, o) € Tl (i)

A8 X & Ty, (Red € Ul %) by the formula §25(7), we obtain hence

19 (=) — Perd] < ¢,

_ 1
] TP Cr)— P < 5 &,

and : -
consequently | e cx) Fyrl= £. Therefore 4 is uniformly con-

tinmious by Theorem 1.
Let 5 be s subspace of R, For a function ¥ on §, a2 uniformiy

continuous funection ¥ on R is said to be & uniformly c¢ontinuous exten-

gion of ¥ ‘over R, 1f (=) = Y% (=) for every e 5 .



78 V TOFOLOGY : {Chapter IV

Theorem 8 Lvery bounded uniformly continuous functlon ¢ on a

subspsce § of R with the relative uniformity S hes w uniformly con-

tinuous axtension over A .

Proof. On account of Theorem 2, We can assume that
= inft pex) = -1,
g o=t R

Since ¢ is uniformly continuous by the relative unlformity v, we cen
find by Theorem 1 T ¢ % such that
1
-‘U(x.)ag, LAY 3 S, implies lwex)— Feur| = 5 -
For such Te V€, putting
A={zt gaye-L1, B={x: ¥ >3 i,
we héve (Ax TYB = O, becanse for.each ye A x T there is by §25(9)
“xe A such that Y e Trx), % & A, ‘and hence
i
gy <~ 40 leon— gopl< g 7 |
wnich yilelds cfcg) i Thus we ¢an find by. Theorem 5 & 1u..nif.‘ormly

combinuous function % on R such that

o for xe¢A
o) = . '
A { 1. for x ¢ B
and 0= ¥ex) = 1 for every % & R, For such % , pubting

2 1
1’{’: = '3" Y- 3 +
wa obtaln by Theorem 2 a uniformly sontinuona function ¥, on R , and
further, pubtting ‘
t?,cz)z,.%w(efcx;fthcx)) for =z e 8,
we obtain a uniformly continucus function %, on & by the relative unl-
formity 2% asuch that _
P
= L) =
gg% Gy (=) = f}f% o L) b
inf ¢, (x) = inf ¢, (=) = =1,
TEs 7EA : _
Similarly, we obtain consecutlvely ufiformly continuous functions "-P,_, an
g end & on 8 {¥=2, 3,...) such that for every v =2, 3,... We have
&, (x) = %(‘ﬁ,—‘ @)=Y, (%)} for every %e& &,
i el sl Tor every x € 5,

¥, ()1 S F for every = € K.

Then we have for every ¥ =1, 2,... snd for each Z ¢ S
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[ AT Y] e
Porm E(F) Ve + (4577 woen.
By virtue of Theorem 3, putting

L] f(?."'v“
‘H‘-Em)#ﬂé‘; (:%—J Hn €% Tor every ¢ £ ,

we obialn.a uniformly contlnmuous funetion ¥ on & . For thls function

% We have obviously (¢x) = Y c'x) for every e & . Therefore

is = uniformly continuous emtension of % over R .

Remarl., In Theorem 8 we can no't._tak_e off the. assumption that <
1s bounded. For instance, putting
Fow) = 12 (w=1, 2,,..)

wae cbtaln a uniformly continuous funcition ¢ on the gsubspacs {1, 2,... H
of the number space with the number unifornity. Such 4 has no unl-
formly contlnucus extsnsion over the number apace. Becguse, for each
uniformly continuous funetion 4 on the number space we see easlly that

thgré is @ positive number ¥ =such that

FPexse) = PO 5 o for every v=1, 2,,.., and e K,

§32 Bounded sets

Let R bs a uniform space with s uniformlty L. A point zet A
of R 1= said to be bounded, if for any 7 &% we can find a nebtursl num-
ber .6" and a finlte nunber of polnts &, & & (v = L; Bj;00.,.) such that

Ac 2 0%,

Here ave R (v=1, 2,..., %) may be Ffound in A . Becauas, if we have
A C:é-‘-' T¥¢ay) for a symmetrie T € ¥, then we obtaeln byf.the formula
25(21) A€ L TN for we AV A (va 1, 2,..., ).

Theorem 1. "If 2 polnt set A is bounded, tnen 1ts closurs A by

-the inducsd topolegy 'fj’fm also 1s bounded.

Proof. For an-y T e we can find by the relation §26(5) a sym-
metric ¥ e ¥ for which ¥ x Vg T, s A 13 bounded by sssumptlon,
we can find € and o, (#= 1, 2,...,3 ) such that A L.% TTa.,, We
have then by the I‘ormula.s §27(5) and §25(12)

- L8
AT Axw o = U ra),
=g
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. Phus A” is bounded by definitlon.
Tn order that = point set ‘A be boundsd, it 13 ne-

Theorem 2.

ceasary and ‘sufficlent that every uniformly continuous function on R

be bounded in A .

Proof .-  Since the necesaity 1s evident by deflnitlon, we shall

pro#e the sufficiency. If & point set A is not pounded; then we can

find by definition a symmetric U, € ¥ such that
. )29
A% Az T (e
for every & = 1, 2,... and for svery finite number of point &€ Ri{v=

1, peeer® )

For sueh U, ¢ 9L , we cen conslder two cases. in the first case

where we can find & polnt a ¢ A such that

A:% '_U],VCM %A é"@,"(ﬁ»)' for every pt=1; 2,000

considering by the relation §26(5) a sequence of symmetric vicinitles

U, eV {v=1, 2;...) such that
T, 2 Towr X Togg e =0, L, 2,.00)s

i . &a
we obtain by §31 Theprem 4 a functlionm < on the sn‘nspacg L'Z'.__' T ¥¢a) such

1
that Tp(x) » Y limplies {wce} — cfcg)l< 7oor, and
pex) z pm f; AL
L =

For such m function ¢ , pubting’
peay = 0 gor =& Z U (o)

we Obtﬂi‘ﬂ g uniformly continucas fanctlon & on R, becauss we have by

§25 Theorem 2 far every [u—‘ 1, 2,00
( £ 90w))x T = 3 TS,

=i =y

(;;_U' o)) % Ty :z(_f}f’_ T ),

This uniformly continuous functlon ¢ 1s not bounded In A , because

plx) 7 M for xr:AZ_"U (M-—AZ_E @),

In the second cesae where there is

Z,..s) such that

no such polnt & € A, wWe can find
s sequénce of polnts O € Ale=1,
«a =G
(£ v emi Z Biap)) =0
= L=t

becsuse A4 13 not boandad by assumption.

for ﬂ¢f1

For such o, A ( ¥=1, &

aea), putting

i,
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M for xe¢ £ T
v = { CEUran)  (pe1n.,
as oo
0 for x‘@ﬁZ.JZ,TT,”(a-F)
=] =i *
we ob i G
obtain a function ¢ on R . This functlon ¢ is uniformiy contl-

nuous, becanse we have by §2'5 Theorem 2
=3
w o
( Z BV« v, = 2 T au)
for every M=1L1, 2,..., end hence by the Formls §25(18)
(2 2 UYeu)xv, = £ 5
fre-rihin L3 M) X T, = fé-;% U;:y(a’ﬂ‘),
which yields by the formula §25(23)

(%%cha 1}k T = (%%Tf (ﬁ—‘m))

Furthermore 4 13 not bounded 1
n y D
‘ A ecause $Fla ) g um for every Mm=1,
paea s Therelfore our assertion 1s estsblished.’
%e obtuln by definitlon Immedliately

n -
~ Theoren 3. For two uniformities ¥ and % on sn sbstract space

R if i
s If W54 spd a polnt set 4 is bounded by %, then 4 also is bound
£d by 7. |

Theorem 4. 3 i 1
Th y ‘Lc.t 7 be a uniformly conbinuous mepping of a uniform

ap i
ace R with a uniformity 44 into = uniform space & with a uniformity %°

The image @ (A4) of every bounded set 4 1is bounded too

Froof. For eusch Ve 10, 88 @ 1s uniformly continucus by assunmy -
tion, we have ™"V €% , und hence we can find 6 and g finite number of
points a, e R (vr=1, 2,.,) such thet 4 ﬁ_(m"vf-(a.,,) | Th
have by the formala $30(5) . . o

H ® .
Ac Z o' vy = Z A7 Ticata)
= =t 4

end .her_me 7} £ & ; i
(,4.) < E_r TS (o(a.}) by the forqula f15{13}, Therefore
o (A) is boanded by definitlon.

$25 Totally bounded sets
Let R be = uniform spsce with a uniformity %, A polnt et A
of R 1s eaid to be totally bounded, 1 for any Ue 94 we csn find & fi-
nite number of points a, eR (r=1, 2,.. .5 ¥ ) such that

B
A< T T,

=T
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Bz
Hore &y ¢ A ¥ =1, B,s.., ¥} may be Tound In A. Basceuse, if we heave
'Qf"“ w¥ 5T, then A € g.'. Y (a,) implles by the formdia §en(2l)

for #, & A Ve (r=1, Byeus; ).

Ac f;i T (zu)

Therefore we conclude by definition immedlately

%

Théorem L & point set A 1s tetally bounded, 1f and omly if A

15 totally bounded by the relstlvs vniformity A,

Every totally bounded set is obvicusly bounded by definltion.- For
8 totally bounded sel A, every subset of 4 =also 1s totally bounded, as

we Bee at once by definltion. Therefore. every subset S of a totslly

bounded set 4 1s bounded by the relative uniformity 1%,

Conversaely we have

Theorem & .

sd by the relative unifermity 9¢°, them A is totally bounded.

Proof.’ If A4 is not totmlly bounded, then thers 1g by definition

i
¢ Y auch that 4 =+ A%‘U(a,) for every finite number of points o, & A

(=1, Zosees® ) For such Te4d we can find a sequence of points

myt A ( y—.:Il, 2,.0+) 8uch thatl Tla,) —551.‘,4 for pa ># . On account
of ths relation §26(5) thers 1s a symmetrie et for which Tx V¥ = v,

and we have by the relation §25(22)
Vi) Tlop) = g for vHa,

Putting & = {0, g ,;,.}, we ses then that S 18 not bounded by the re- )

Yebive uniformity 2%, oecsuse

v‘m»:@ﬂ-y} (p=1, €racals

Theorsm 3. if = point set A is totally boundsd, then its clo-

sure A4~ by the induced topology ’IW alse 1s totally bounded.

Proof. For any U € ¥Z., there 1s by the relatlon §26(5) a sym-

metric ¥ ¢ ¥ such that ¥x ;5_"0’., ‘and A < bZ:TVf&.. i3 implies by the
formilaz $27(5) and §26(12) '

AcAxT c 2 Vo xTc Z o,
Thevefore A 1is totally bounded bj definition.

Theorem 4. If a point set A L= compact by the induced topology

", then A i3 totally bounded.

For a point set A4, if. svary subsst & of A 13 bound-

e Ay S e e e e

=
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Broof. For any T € Y., we have obviously A < “.% AR hs
A is_compact by assumption, we can find = Tinite number of polnts & €4
{we=l, 8,..., %) for wnlch ‘
A< £ witenc Z U,
Therefore A is' totally bounded by definltion.

We have obviouszly by definition

Theorsm &, For two uniformities 94 and % on en sbstract apaée

LR s AT U2 9° gnd a point set A 1s totally bounded by ¥¥, then 4 also

18 totally bounded by Y.

_Tilgorem 6. For twe uniformities 94 and 40 on an abatract space

R, Af R ia totally bounded by 4¢ and every bounded unlformly contl-

nuons functvlon by 94 iz uniformly continuous by 4°, then ¥ la wesskor
than %%, that is, WL < ¥,

" Proof., If 4L i3 not weeler then 4?, then we can find by defini-

sion T, ¢ YL such that T, & 4. For éuch T, ¢ ¥, we have by the unl-
fcrmity‘conditio-n 1) U, £V for svery ¥ e 12 ,. and hence, corresponding
to every ¥ e we obtain 4 pelr of points Xy % such that

Tolg)d Yo € Tixgl for every ‘\;rlé%w
On asccount of the relatlon §26(6) we can find a symmetric ™, ¢ 4? such

that O, 2« o X T 5§ W,, and there 1s a fipite number of points a, & A

{v= 1, 2,.:., %} sueh that

A= bZi_r, T, (o),
becausdae R 1s totally bounded by asgumption, Then we can. find e
for which { ¥ ¢ zy e U (o)} 18 a basis of 4. Becéu'se if{Vv: Ry
¢ Ti(e,)} is not a basia aof 4° for every rys L, Zyueeos w.,. then, corres-

ponding to every v =1, Z,,.,,%, we can find V. ¢ 47 such that we have

not v,z V for all xy € U, la,) As
1.3
== A 1 w
e ;é,;{v v & Thian}, .

we coneluds then 223 ¥, Va ... Vs , contradicting the unlformity condi-
tion 2). For such Ve , pubting
%‘E-’{V : K'G’ E Ui ca""s"j)

A=dxy: v e &l, B=1{yy : veukt},
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we obtaln hence & busis ¥ of ¥?, and we have by the relution §25(21)
AX T © Tilow) x Ty CUTHRIX T, 2K T,y © N AES
for every =z & A . Thus we have for every W& %
Ax T T, Toinyg)d 7 yv,
and consequently (4 x T, 28 = &. Therefore we cuan find by {31 Theorem

5 & functlon ¢ on R such that ¢ is uniformly continuous by 2¢,

0 for =z2e A4,
Fix) = {
1 for = € 5,
and ¢ = ¢Lxy) g | for every » € R . But suech a function 4 13 not

uniformly continuous by 47, becsuse VWixg) 3 Iv for every ¥¢ ¢ and &
1s 8 basis of ’tp.

Similarly as §32 Theorem 4, we also can prove

Theorem 7. Let s be s uniformly continuous mepping of R l1nto
g uniform spece & with s uniformlity 4. The Image v ¢(A) of s to-

tally bounded set 4 of R is totslly bounded by %° iog.

§34 Weak uniformitiss

Let A Dbe an-abstract space. _For a mapping s of R into a uni-

form space £ with a uniforuity %°, putting

. ={a" v wel
we ses easily by the formulas (£}, (3}, (4), (5) in §30 that ¥, satis-
fiea the basls conditions In §28, and hence there 1s by §26 Theorem 1
uniquely a uniformity %€, on R such thdt %, 1s a basls of %4,. This
uniformlty 44, is called the weak uniformity of R by 2 mapplng & .

For the wesk uniformity %, of R, it is evident by definitlon that
¢ becomes uniformly coﬁtinuous by Vs . Conversely, if ox iIs uniformly
continuous for a uniformity #£ on R , then we have by definition %€ 2 &,
and hence AR PR Therefore we can say thet the the weak unlformity
of R by a mapping @ 1la the weakest uniformity of R for which < Dbe-
comes uniformiy contlinuocus.

Iet oy (» € A ] be s system of mappings of R into uniform spsces

§33, 434) UNIFORM SPACES 85
8, wlth uniformities %3 (A & A ). Correspondlng to every mapping

gy, (x &€ A), we can determine the weak uniformity %€, of A. by fa, as
defined just above. For these wesk uniformities ¥ of R (A e A),
putting N, =)\l;'ﬂ%;, we obteln & uniformity ¥, on R, as defined salrsady
in §28, This uniformity 4, 1s culled the weak uniformity of R by a
system of meppings d.{x~e A ).

For the wesk uniformity 4%, of R by cea (> € A}, as %L, > W, for
every XA & A , every mapping g, ls uniformly continuous by %4, . On
the other hand, 1f every A.(x € A ) is uniformly contlnuous for & uni-
formity ¥l on R, then we have obviocusly % >, for every » ¢ A4 , snd
hence ¥ > U, Therefore we can say that the weak uniformity of A
by & system of mappings #ix (> € A ) 1s the weakest uniformity of R- for
which every . becomes uniformly econtinuous. .

S8inee { o' v 1 Teql } 18 by definltion & basls of the weal uni-
formity ¥, of R by a mapping s, we obtein by §28 Theorem 3 that the .
totglity of {;,7" "T‘xg){ﬁ’t}_;? Vg )oee (ﬂt.h:: V.,.) Tor every VQ,&W’AV s ALE A
(P=1ly B,eve, ), =1, B,..., 15 a pasis of the weak uniformity 44, of
R by o system of mappings o, (A e A ). Therefore we have

Theorem 1. Por a system of mappings oia (> € A ) of & into uni-

form spaces 3, with uniformities 4 {» € A),

{:ﬁ;lmx.," T, ;V,'\Ve%b,-?weﬂ (v=1, 2,...; %), n=1, 2,004%

is & basis of the weak uniforrﬁitv of R by sl e A,

Recalling §20 Theorem 1, we conclude immediately from Theorem 1

Theorsm 2. For a subspasece 8 of R, the wesk uniformity of &

by a system of mepplnegs @, of R into uniform spaces 5, (> € A ) coin-

cldes with the relative uwniformlty 0% of the wesk vniformity 24 of R
by ;, (> €A ). .

Theorem 3. For the weak uniformity ¥ of R by a system of map-

plngs @, of R irnto uniform spaces 8, with uniformitles 4% (x € A}, the

induced topology N ¥ by 9¢ coincides wlth the weak topology of R by o,

TaeAl, considering every o, (A € A.) as & mapping of A into the topo-

logical space &, wlth the induced topolegy "i%‘,
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Proof. For each A ¢ 4 , lel ¥, be thelv;eak uniformity of K by
dvn , and ", the wemlt topology of ® by &, for the iﬁducad topelogy g%,
A9 oa 18 continuous by 350 Theorem 2 for the induced topology 7 W"s we B
have nsturaily T%* > Ta, For every ¥ € %% and for every x ¢f , as
¥eemac) & 1%  , we have by the definition of weak topologles
AT TRy D g FOn) = aat (T mdY E T,

Since {o, ' v @ Te¥ht is a basis of s, Wwe conclude hence by §27 Theco-

rem & thet I, > ¥, Therefore we have 7, = ¥ ¥ for every A & A , '
snd hence by §28 Theorem 5 .,\'I:} N = % that 13, 7% i3 the weak topo-.
A

logy of £ by @, {» ¢ A ) Tfer the induced topologiss "XVH" (~ e A4},

Let # Be e collecition of Ffunctions on R . Consldering every <«
of ¥ es a mappin'g of R Into the number spece with the number luniformity,
we obtaln the weak uniformity of R by § . This week uniformlty of R
i called the weak unifomﬁitx of‘ R. by £ mnd denoted by ¢ F,

For a finlte number of functions %, {(+ =1, 2,...,2%) on R and for
a positive number £ , we define a connector T, tf, ¢ L0 MESD l

Tepeyrnntpe, g (0 = L% 2 |68 ca) — ‘ﬂ.(aﬂ < £ (w=1l, B,...,2)}
for every polnt o ¢ R, With this definition we obtain by Theorem 1

Theorem 4, “For a collection of funetlons § on %,

{ U?’nnﬂo‘ﬁm;f S e £ {v=1, 2:‘1«"-"‘)974=19. Bioeo §

is e besis of the weak uniformity of R by .

By virtus of Theorem 3 we heave

Theoreom 5. The weak topology of £ by # coincides with the im-

duced topology by the weak unlformity of R by £ .

“Theorsm 6, For any c¢ollection of bounded functions £, R is to-"

t21ly bounded by the weak uniformity ‘?fff_o;f: R by ¥,

_ Proof. For every Tinite number of funcktions % ¢ F { v=1, 2,...,.

¥} end for any £ » 0 , we can find e, g (wve=1, 2,.”,)&5 such that
. A g Pulxd 3 g, for every X R,

end further )ﬂ,p# {r=1, E,...;K iA=L, 2,..., %) buch that *

o= Ao € Auyi < o < Ay = P

. . i
_AUDF = Ay ptmp < -'IE‘ .
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Then, determining points Epti, oo ma SUCH thab

5

J\"hf“»—u = "'f’_yfﬁirﬂn,“.,ﬁawj = . (5’.5 1, 29.-8-,93&]5

we have obviously _
k Cd“l:%::,“n v‘r"“" ey & (xf‘":""-‘f"’f-)w
Therefora R 1is totally bounded by dsfinition.

Theorsm 7. If s uniform apace ® 1is totally bounded by its uni-

 formity we , then 40 colncides with the wesk uniformlty of & by 8ll bound-

ed uniformly continuous functions on R .

Proof. Let‘ # be the totality of bounded uniformly contiavous
flme,tl.on'.:on R, and % the weak uniformity of R by F . Then we have
obviou_tsly by definition Y P, Furthermore ws see by §33% Theorém &
that W <47, .-CGonzequently we have o = 42,

Theor'gm 2, For the weak unlformity 44 ol A by a collection of

bounded functiony & on g , the totellty of uniformly continuous fune-

tiome coincides with the clasad fisld genserated by £ .

M.._ Let R be the compactification of A by { : § the con-
tinucus extension of £ over B i and T the weak unlformity of B by £ .
T.hlex_: U iz by Theorem 2 the reletive uniformity of % in R , thet 1g, we
have ¥ = W &, Therefore every bounded ﬁnifemly continuous funchion
% on R has by {51 Theorem 8 & uniformly continuous extension over R s
and hanée we have by §24 Theorem £ that ¢ is econtsined in the closed
fisld geheratex_ﬂl by ¥ , because the lnduced tepelogy “:t'm of R by ¥ coilm-
cides by §29 'j_‘heo.re.m B_Wit.h the relative.topo‘lagy (’jﬁ 1* of the induced
topelomy "gﬁ vy W . Furthermore it i3 evident by Theoreme £ and 3 1in
§21 that the wlosed field generated by § is composed only of unlformly

sontinuons funectlons by ¥ . Therefore we obtaln cur asssriion.
Theorem 9. For s topologicel space R with a complaetely regular

topology 7§ , there iz 2 uniformlty 4¢ on R such that 4 1s the indueed

bopology by UL .

Proof. Por the totality of bounded continuous functiona F, 9
is by §23 Theorem 2 %he weak topology of R :by £ . For the weak uni-

formity 2 of R by § , we have hence by §24 Theorem 3 that "I 1s the in-
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duced topology by ¥ .
Theorem 10. For & topologleal space R with & regular compact

topolemy 7f , there exists uniquely a uniformity orn B by which Y is the

inducsd topelogy.

Proof. Since ¥ Is compietely regular by §83 Theq:‘eni 6§, there
i3 by Theorem 9 a uniformity on R. by which % 1s the induced topology.
We coneclude further by Theorems 4, ¢ in §35 and 7 in §31 that such e uni-
formity is uniqueiy determined.

Reonlling §32 Theorem 2, we obtaln immedilately by Theorom 6

Theorem 11. For & wesk uniformity o7 8 collection of funcilons

on R, zvery bounded set is fotally _unded.

§35 Gompletenssas
Let R Be a uniform space with & uniformity €. A system of po-
int sete AL € B (2 e A ) 1s 2&id 1o be 8 Zeuchy system by 9T, 1T we have
ﬁ; Ax, #F ¢ for every finlte mubiér of elements r. s A (=1, 2,..., %],
and i‘cﬁ“ any T & we csn Pind A € 4 and & ¢ & smuch thet 4, < Tlad,
For & Gauchy'system ArlaeA ), if thers 1s a point a ¢ R such
that for any We4% we cen find A € A for which As € T el , then such

a point o. 18 ecalled & ilmit of Ay{xe A ).

Theorem 1. Let ¥ be a baslas of YE . Por a Cauchy system /4’;\

(& A ), in order that a point o be & 3imit of Ax(r e A ), it 13 ne-

cemaary smd sufficlent that Wle) A, =0 for every we g and A€ A

Proof. Since the necessity 1s evident by definition, we shall
prove only the sufficiency. For any &4 we can £ind by the rela-
tlon $26{6) a symmetric €4 such thet Wx TV x T & 7. For such

Ve W, as 4, (» € A) 18 a Cauchy system by assumptlon, we can find
Ae A and & polnt & A such that Ax & Vex}, and then Vex) Vea)+ 0,
because F{&) ,43\ # () by assumption. Hence we obtain by the Ijelatibn‘

§25(22) Ay & V(E) € V(X T XV < Ua) | Therefore a. is & li-

mit of 4, (A € A ) by definition.

#

&

¥
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A point sst 4 of © 1a sald to be compiete by 44, 1f every Cauchy
aystem An€ A (A€ A') has a 1imit in A . If R is complete by %,
then we shell say thai 4¢ 1s complete. '
With thls definiticn we have obvicualy

Theorem 2. & point set 4 18 complete by a uniformity 4, if

end only if the relative ualformity 474 is complete.

Theorem 3. If 8 point set 4 is eomplete by 4% end 4 1s g to-
pological set by the induced topology 1%, then A 1s clossd by ¥,

Broof. . For sach peint a ¢ A7, we obtsin obvlously a Cauchy sys-’
tem A Tea) {(Te¥t ). Ag A 1s complete dy mssumption, there iz by

Theorem i a limit £ ¢ 4 such that
ATe) ‘U‘(#_):FG for every U e 44,

This reiastion vields a & {£}°. Becenge, if 4 & {£} , namely if

¢ {.L}™ , then we can find by §27 Theorem 1 and §26(5) a symmetric

Te¢ 4 for which U x Tcay < {£} 7, that 13, "Uce X TIE} = &,

and then we haeve Tcn) U¢(4) =0 by the relation §25(23). Since the
induced topology "iw 1s regular by §31 Theorem 6, end A4 i3 a topological
sst by sssumption, we obiailn by §10 Theorem 1 A 3{4}_.36\‘” Therefore

A 13 ciossd vy %,

Theorem 4, If a point set A4 13 complete by a uniformity 2%,

‘then for every closed set 8 by the I1nduced topology "z“ the Interseec-

pion 4R alsc is complete by 97 .

Procof. For’ every Cauchy aystem B, c 4B (»~e A ) there 1s by

_Theorem 1a limlt & e 4 for which B, U(a} &= 0 for every Te 47 and

»ég A, end hence B Udlae) %0 for every el . AS B 1a closed
by assumption, we obtain ae¢ B by §27 Theorem 1. Therefore 485

1s complete by definitlon.

Theorem 5. In prder that a point;“'set A be compact by the in-

duced toEologg_"f:%, it 1s necéssary and sufficlent that 4 is complste

and totally bounded by 4 .

" Proof.. By virtue of Theorems 1 in §12, 2 in §29, 1 in §353, and
2 in §35, we need only prove the case wheres A=K, Let A -be ccmpact
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by the induced topology '?E'wa Then A 1is by §5_ﬁ Theorem 4 totally
. bounded by ¥ . Furthermore, for a Ceuchy gystem 4, « & (& €4),
there is by §7 Theorem 3 a polnt & & EITA A . For such a point

#

we have obviocusly A, Ta) == 8§ for svery Te% and A ¢ 4, and henee
. su.ﬁ]’_x_ 4 polnt A 1s by Thebrem 1 s limit of A, (2 &/ ')r. Tharefore
£ 1s complete ;oy W,
Conversely, let £ be totally bounded and complete by %€. We
denote by § the totality of bounded uniformly contlinucus functions on-

R ; by B & compactlficatlon of & by f ; by £ the continuous exten-

sion of £ aver R ; and by 4% the weak unifermlty of R by £ Then
we have W= ﬁﬁbg §34 Theorem 2. Por each point & & E., AT
(_-"5 €l ) ig obviously a Csuchy Systen. As f_ is by Thecrem 2 complets

by ¥, there ls by Theorem 1 a point & ¢ &  such that

. L TCa)T ¢ta) 0 for every%’e’ﬁ,'
This relation yislds & ¢ R . Because, if & € R , then @ . 1s separated
from @, Dy the comp‘acfifiea‘tion condition 3), end henes there is by §27
Theorem 1 and bhe relation $26{5) a symmetric iF ¢ ¥f such that Tr T (8)¥2.
which yields kv {ﬁ)ﬁ(@.):ﬂ by the relation §RB(E3). Therefore we

—

ocbtain B = , and hence R 1 compact by the lnduced topology ".YW

Theorem 6. Let R and & be uniform Bpaces raspentiv'e-l}[ with
uniformities 4 and 4. ' If a point set ¥ is dense in & by the in-

"duced topology "fw and & 1s eomplste by 4?, then for s uniformiy conti-

nuous meprlog Dz, of the subspace ¥ wlth the relative uniformily % into

2 there 1s s uniformly contimaous mepping &t of R into 5 such that we

have @ cwy = o (x) [Or every x € XK.

Froof. For each point g R — X , R{YTx)) (T £W) 1s a Cau-
chy system py a0, Begcsuse, for every W & 47 , &s g 1s uniformly con-
" tinuous by assumpti'on for the ;elhtive uniformity ’b‘(,x, there 18 T e ¥
such that T =a"' ¥, Vor sich T €1 there 1s by the uniformity
cordition 3) U, ¢ %€ such that U7 'x Uy & U, =nd we can find & point
Y€ X T, ¢x), since K 1s dense In R and o is an inner polnt of T}

for ths Lnduced topology "‘Iw Then we have by the relation §25{Z1)
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RU ) € X (U wT, (y)) e X TP < atyog
. . Fl
and hence we obtaln by the formula §15{13)
R (X Th=z)) < ‘V’(m.(;)),
Therefere o (X Tew)) (Te¥) ls a Cauchy system 1n 8. As 8§ 1s

complete by sssumption, there exlsts hence = limit A e 8 , that 1s, for
avery Ve 4? we can find Tz % such that G (¥ Tcxl)c I'V‘(A)-
Assipgning to every point = ¢ § — » asuch a limit A ¢ 8§ ; we obtain

g mapping i of R into 8 such that

Rlz)= Aln) for every = € X .
We shall prove now that such a mapping #A 1s conbinuous for the induced
topolegiesn ‘“IW end ’qu- AS @ iz uniformiy contiruous by assumption,
we see easlly that for every peoint # ¢ R and for every synmetric g ¢ 4?
we can find 7 €4{ such thet

AR TCzi) < TlEmex)),
For an arbitrary po.int set A CR, 1'% E-A"' , then, since = 1is an in-
ner peint of U‘(‘-.L) ; there 13 =& poiﬁt e ¢ AU%cx), and we can find the;‘;
17, e ¥ for which ’

MK Tyced) € (B (2),

As ¥ 13 dense in R by sssumptlon, we have then

X Tca) T¢n) F 0,

and obviously
ARLX T (a) T2)) € TR TR ().
Accordingly we obtaln
Foia)e Tx T (@),
HecAlling the relation §26(5), we concilude therefore
ALAY TR I} F O for every ve %>,
Ivis relation ylelds by the relation §26(4)

Fcx) e ALAIXTY Tor every W € 4”,

: F_‘“d hence Fex) ¢ & (A}~ by the formula §27(4). Therefore we have
_-.01-{‘,&{“) < A(A)” for every point set 4 € R, snd consequently #i is con-

: t"i"\'}"ous hY_SilG Theorem 4. Thus we conclude by §30 Theorem 3 thet &L

slduniformly continuous.
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Let ¢ and 4 be two uniformities on a space R with

Ir K <¥P and R 1g com-

Theorem 7-

the same induced topology, namely ¥ = o ¥,

plete by 4%, then R also is complete by 4.

Proof. Let A (x € A ) be a Cauchy.system by 4°. As eI
by assumption, A, (x € A} elso i1s & Cauchy system by ¥, mnd hence there
ts a limit @ £ A , beceuse R 18 complete by 4% by assumption. Then,
for each T €4? , as ’I“:’qu by assumption, we cen find by the relations
(2}, (3) 1n §27 T e and 2 € A such that Vier > T (a) > Aa. Ac-
cordingly a also.is a limit by ¥°.

Theorem 8. Let o, {x € A ) be a aystem of mappings of an abst-

ract spasce R Into uniform spaces S, wlth complete separative uniform-

Cibles 4P (x € A'). In order that the weak uniformity of R by &

{» € A ) be complete, it i3 negessary and sufficlent that for & system

of polnts x, € §, (» €A ), If
-~ b3
T oas ' (Vi tea) #0

for every finite pumber of comnectors V. ¢ UWn s Mt A (=1, Bhoaay ®),

then we csn find a polnt % ¢ R such thet Z, = ¢z} for _every A € A

Proof. For & system of points %, ¢ S,\ (» € A ) subject to the
atated conditlion,

:ﬁl ﬂ,‘::'(v;kfﬂ;..,)) (Va e¥i, 2 €A, u=1, &, ,..).
is by §34 Theorem 1 a Cauchy sysbem by the weak uniformity %% of K by
My (2 €N). Bscause, Tor eny finite number of connector.'s o € 1,
{r=1, 2,...,7t ) we can find T, € 43, such that ‘U‘A:' X T, & Va,, and
for a point %« & ﬁ" 0L (T, (nad) s 88 Ay, () € Un, L%a) (v=1, 2,..+,
3 ), we have by the relation §25{21)

Ty, () € Ta[' x Ta, (s, ) € Ta, (R, (2I),
and conasegquently
. " ” »
H oo, (U, (o) € T aa Ty (2.
Thus, if ¥ is complete, then there is a limit X € R, For a 11-
mit % ¢ R , we have f,{(x )= #, for every ANE A, Because, 1f we
have M, (2} + %, Lor some X € A , then, as 4@« is separative by assump-

tion, we osn find W € 4%, such that Vy(ou(x)) Tn (25) = o , and hence

posed of at moest countable connectors.
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(AT Var)) A (Vo (=ad) = 0, gontradlcting Theorem 1.

Conversely, for a Cauchy systsm ,-q,c A (¥ ¢ ") by the weak uni-
formity ¥ of R , we see sasilj By §34 Theorem 1 that for esch >~ & A,
axr(Ar) (¥ &) is a Cauchy aystem by %% . 4s %7, 1s complete by

ggsumption, there is hence a llmit =x, ¢ 3., and for every Tinite number

Ay
of connectors W, &f%, (v=1, 2,...,3) we cun find ¥, e/ (=1, &,..

» ) such that

L 3

o V7, s, ) D T Ar, #0.
Therefore, if 44 satisfles the stated relatlon, then there is g point
x ¢ R such that o, (=) = x, for every xe A . For such a point =

we have obvlously

»
-1 =7 o -
Ar ;Q" o' T, a) = A, T (T, (xagi)y =0
for every ¥ & {7 and for every finite number of comnecters T, & 4{)»»
(b= 1, 2,000, ). "Thus « 1s by Theorem 1 a iimit of A, (¥ 7).

Therefore ¥ 1a complete by definition.

§36 3equentlal uniformities

Let R te & uniform apace with & uniformity L. We shell say
that R 1s sequentlal, eor that 4% 1s sequentigl, i1f ¥ has = basls com-

A sequence of symmetric con-

nectors 7, {(rv= 1, 2,...) i3 sald to ve decressing, if

T, 2 Ty X Tuy for every v =1, £,...

On eccount of the relation §26(E5), we ses easily that 1f 27 1s sequential,

then UL has & basis {W, Us,... } ®hich is a decreasing sequence. Sueh

5 besls is called a decreasing basis of 2EF.

Recalling §29 Thecrem 1 we have obvicualy

Theorem 1. If ¥ 1s sequentisl, then the relative uniformity s

2130 13 30 for every subspsce 8 of R .

" Theorem 2, If a point set 8§ 19 dense in R by the Induced to-

i _M 77 ana_the relstive uniformity 215 13 sequential, then 97 18 se-~
quentiel too. -

.5
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izonf- If the relative uniformity «¥® 1s ‘sequential, then we
sse snully by fhe relation §26(6) that there ls e decreasing sequsnce
. €9t { »v=1, 2,...) for which *U',,‘&1 {y=1, 2,...} 18 a decreasalng basis
AN For emch ¥ e %€, there is thenm » for which %z w* that is,
SU.Cyp < ST for every 355“
Thisz relation ylelds by the formula §4(8) for the Induced topology g%
'U.fcy.)c (5 They) < v“c&{} for every 4 € A,
becnuse $7 = R by assumption. For each x ¢ £ , we can find a point
de ST, izl becsuse 8 is dense in R and x 13 en inner point of
Tpaq (%= For such s polnt % we have by the relations §es5(21) and
§R7(E) Upya () € Tpug ¥ Tpo (I C Ty () e T 1< Vil < VT,
Then, B X € T, ,, (%) € ¥ x vc;), we obtaln further by the relations
§25(21) and §25(19) Vx VI € Tx¥x¥X ¥ (Z), gnd hence we have
Voo 3 T2V XWX, Thus we conclude by the re‘lation §26(B) that

for every ¥ € %% we cen £ind »# such that U= ¥V, that 18, {T, Fgs..-}

is a basis of ¥ .

Theorem 3. if 4% is sequentisl, then the Induced topology e el

1s normal and seguentlal.

Proof. Let U, e% {(v=1, 2,...) be a decreasing basis of VL.
'or bwo elosed sets A ,B by the induced topoloay MY i AB = £, then
pubting A, =1% 1 Ty )A$0, T, (z)p =0 for some v t,
By, = 1% : T )Bx0, T, (x)A=10 for some v},
we have obviously A € A, and & < B,.by §%7 Theorem 1. Furthermore we
have 4. B, = 0. Because, if A4,B,# 0, then for any point = & A4, By
we can find » and m sach that .
' Ty (1A %0,  TIB=0,
Tue1 (2} B +0, TulxIA=0,
and hence pr > y+1 5 ¥ >, contradlicting o< pa+ 4.
For each point x ¢ 4 , as 2 € B , we cen find by §27 Theorem 1 »
" such that T.cx} & = 0 , and for every point y & Typg, () WE nave natu-
rally 'UH,_(‘J)A 3 x and further by the formula §25(21}

Ty {4V B € {Tpgq X Uy (2)}B < T, (B =0,
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Thus we have T, ,(z) < 4, for such ¥ , and hence we conclude 4 < 47 by
the formaln §27{2). We also obtuin likew!se 8 ¢ 8, Therefore
"jw 1s normal by $11 Theorem 4. Furthermore 1t L1s evident by §27
Theorem 1 that Y™ is sequehtlal.

A gseqience of points av e R (v=1, 2,..,) 19 said to be a Cauchy

geyquence by ¥, 1f for any U e ¥ we can find », and a point = € R

such that &, € Tdx) for every » z ¥y, , thet 1s, 1f the systew of point

sets § Ou,flpqqs--f {¥=1, 2,...) 12 a Gauch‘y system by #¢.
A polnt sequence a, e R {(v=1, 2,...) i3 sald to be converrent by
U to a linit a ¢R, if lim o, =6 by the Induced topology g%, With

thls definition we see at once by §27 Theorem 1 that we huve lim o, = a
1f and only if for eweh T ¢ %% we can find v, such that

a, & To) L Tor every vz v, .
Thus we conclude easily' that if '}}?mma,,,=a., then a,.(vr=1, 2,...) is
g Cauchy seruence by 2¢ and @& 13 a limit of a Cauchy system {ay 8oty -+ }
{(r=1;, 2,.04).

Theorem 4. If ¥ is asquential, then in order that m polnt sst

A be complets by 94, 1t is necesssry sand sufficlient that every Ceuchy

88quance G, € A{r=1, 2,...) 15 convergent to & 1imit a ¢ 4.
Proof. Since the necessity ls evident by definition, we need

only prove the sufficlency. Let {¥,,Ta,..« } be a decrensing basis

or X, Por a Cauchy systen 4, ¢ A {2 €A } we can find by §35 Theo-

rem 2 &,¢4 and A ¢ A {v= L, Z,...) guch bthat

As, € T, (a,) for every b =1, 2,...
Sueh @, {w=1, 2,...) 139-8 Cauchy seguence. Becsuss, for m z v Wwe
have

CF Ase Anp & Tolon,) Tullpm) & T (0n) T(ap),

'+ and'hence we obtain by the relation §25(22)

A € T, X Ty (&) € U, {00) for p 7 v,

.=:.Therefo,‘re there is by amssumption a limit a € A . For every w=1, 2,

Fwey We ean find then M > such that &€ Theis €23, and we have

Arp € Tulop) € T,y x Ty (o) € T, (2}
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Consequently such a limit & 13 & linit af A, (aeA). Thus A 1le

complete by ¥ .

Theorem 5. If v is seyuential, then ln order that 44 be com-

plets, it 1s necessary and aufficient that &very closed totslly bounded

@et is compact for the induced topology qve,

Proof. Sincs the necessity is evident by Thecrems 4 and 5 in §3%,

we need only prove the sufflciency. Por B Csuchy aeguence o€ R (¥ =

1, 2,...), 1t 1z obvious by definitlon that 4o, : »=1, 2,...1 18 to-
tally bounded, snd hence its elosure {@,: »= 1, E£,...3" alsc 13 se by
§33 Theorem &. Acoordinely fa,i v =1, 2,...F 1s compact by As-
sumptlon, and hence there is by §7 Theorem £ s point & such that

ia., @i, -2} T(a) £ o for every ¥ ¢ UL and p=1, Z,...
From this relation we conclude by §35 Theorem L 'that 3'_1,12‘, a, =&, Thus

¥t is complete by Theorem 4,

Thaorem €. It vt 1is seguentisl and complete, then the Induced

topology MY 13 of the second category.

Proof. Let {Ui,Ta,... } be a decreasing basis of ¥, oy

an open set 4 =0 , if A:‘%A,, A =0 {r=1, 2,...), then we can

find by $27 Theorem 1 a sequenca of points a, € A {w=1, 2,...) and an

increasins.q seyuence of natural nuombers At ([v=1, | sgel} that
A>T (80, (AT +ered A AT (203 Ty (200)

LA =0 Then we have

for every ¥» =1, 2,..., bescause (A~ +
‘obviously ap € T, (&) for pzw, snd hence a, (¥ =1, 2,...) 13 & Ceu-

chy seguence. A8 1 is complete by essumptlon, there 18 hence & limlt

& , and for each ¥ =1, &,... We c¢an find p such that T, (o) 3&p ; Pxuw,

and hence & e T, (ap)c T, xT, <A But we have a & > 4.7,
d M M L=

contradicting the sssumption éz‘l‘, = A-. Thevefore ¥ 1ls of the se-

cond cestegory oYy definition.

Theorsm 7. If 7% 1s ssquential and the induced topology 4% is

sep&rablé, then Y% 1s completely' geparable.

Froof. Let {Th , Ty ,...} bea decreasing basis of ¥ and &,

Gy,...] (& dense get of R by':(%. Then 'U’,"(a.r.\), (¥, =1, Syl

|
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1= “
4 neighbourhood system of "%, Because for sach x ¢ g and for any

.v:.- L, 2,... wo can find m such that T e T,

_ byg, (215 a&nd hence
& Tppq (ap) < 7,0 (ap) € T, (an)c T, ()
‘ P -

e
Thus ‘1% 1s completely sepsrable by definition.

§37 Complgtien

Let R be a uniform space with a uniformity %¢. "4 uniform space

R with a complete uniformity %% is said to be a complete extension of

R , if R conteins R ms = subspace and ¥ coincides with the relative

uniformity 44" of ¥ 1in R . A complete extension ® with a complete

unlformity ¥ 1s culled a gompletion of R , If we have.-the completion
fompietion Lompletion

) conditiona:

: ' B W

f 1) R is ¢ense in R by the induced topology 1%,

W 2) .- every X ¢ R =R 1= separated from the other poiﬁts by .

We shall prove firstly that there is a complebion of R . Yie ds.—

note by £ the totslity of bounded uniformly continﬁous functions on A .
Then the induced topology 'I'W of ¥ coincides b\;f §31 Theorem 6 with the
weak topology of R by f . We denote further by K the compssotifica-

tion of R vy £
) by -_F’.; by f° the contlnuous extension of § over® ; and by 7

the fo K '
pology of R . Then we see at ones that the induced topolegy ¥

1s the relative topology "jnl of ?‘Id in R, and "nf 1% the weak topology of
by f . In the sequel, we consider point sets in R and employ the

topologicsl notations for the topolopy N of R . We seb

R= 0% ve),
Tez) = R Tex)™®
TexyIER !
torresponding to every e ¥ .

for ® ¢ B =and ¢ R,

Then we see easlly that R < R € R and

ST Le -
: a cemnector in the subspace K . Furthermore we have obviously

(#) U zv implies T > 7

Since Tex)sT
e U(a:)‘sg 1s equivslent to that T¢(x)y~ "3 i’jg for some x € £
r

\i_e_'_;hav e naturally

_'..".(**)‘ Tt =T,
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Wor a closed Ve YL, If Fc%) 2 ¥ , ¥(F)» £, then we can find : Fem) = i ana  Fem) =0 for R EA.
two points ‘%, ¥ € R such that : Slngse such & 48 unlformly comtinuous in R by # , we can find w &%% for
Vx)"* 3 %.%, v(.yrg 3 g’ z, ) whlch Te®) 2 i Amplles | §F ez - F ey l“'%'- ~ For such we %, 1f we
end hence V(x)™ " ¥y~ + 0. A R 13 dense in R , we obtaln then : have Gez)=° 3 &, ¥ , then we obtaln by §20 Theorem 3
R¥¢x)™® ¥(4)™® & ¢, and hence naturslly R wexmy™ Fegim F0. As ‘ . ig(ﬂ),ﬁgﬁ)ig%, j?fj'cm)—-'q‘zciﬂgfé':
'l is.closed by assumptlon; we conclude further -r,rc-x.)‘v'(;c)-.?a by the for=- j and hence ?’(E) = ‘.:T . Thus we comolude
mula $9(6). This relation ylelds by the relation §25(22) I FoeE ) :w{%’aa 7 'thx}‘o c BEA.
Vo Tx77 2V, ‘ This relation yielas ¥E £ 4™ by §&7 Theorem 6. Therefore we obtaln
Therefore, if ¥ x ¥ 'k < T, then we have Ti(y)™° < Fex)™®, end hence cur amssertion ”Iq—’i 7—’335. From this fact we conclude at once that R
gew)"® 3, % , that la, T(R)? % . Thus we have : ; is dense In R by the induced topology A% gnd each point T ¢ B —~ A ie

(i) Vxv ' xV3 U impkies ?x"\?g T for a clossd ¥ ew, “ 'separated from the other points of R by 7.

Heenlling §27 Theorem 3 and the relation $26(6), we can conclude now * Finslly we shall prbve-that R is complete by ¥%. For o Ca\-mhy
that the botslity of U (-Te¥ ) setisfies the basiz conditlons in §e6, 1 oystem Anc K. (A €A ) by 3%, we heve T A4,~ % 0 , becsuse R is com-
and hence there 1s by §26 Theorsm 1 uniguely a uniformity % on ‘,5: such pact by ;i ) Thus we can £imd & po—ln:!?;_ . ;ﬁ' A for sacn 7 ¢ 77
that ¥ {ve) is a besls of 7. For such a unif‘ormityﬁ, W s the . “ there is by the raiation §26(6) and §27 Theéreméns an open ¥ & 4% for which
relative uniformity of 7] , thet is, ¥ = ’F{R. Because, for each open ) Ty TaVE . For such 7 ¢ ﬁ, we can find A,e A and a point 4
V¥, 1f wix) 24 s then, &3 both = and ¥ are inner polnts of (=) § ¢ R such that 4, < T{&). As R i3 dense In B by the induced topo-
by the relative topology ""%’R end R is3 densa in B oy %, we have by §9 logy "jﬁ, there is a polnt ¢ ¢ B VW(£}, and we have by the formula §E25
Theoramlé RO cn)~° PRS- F end hence R T(x) 9 }v , namaly we have e (21) Ted) o T ixV o). This relation ylelds by bhe formuls §29(5)
TRy, Toue Gl U for every open VL. Recalling $27 (R T %2 TR < (7txT)Rx TR o) ¢ TFcel.

Theorem 3, we conclude hence "ﬁRC v . On the other hand, for sach ‘ ‘ Therefors we can find by. §31 Theorem & ¢ € § sueh that

closed T € ¥, ns Ruc;;-o < WY by the formula {10) and Theorem 4 s {0 for % € R VL),
(z) =

in §9, we have for every point % ER for = € R~ TRco),

A = -e = =t }
() = - RT c Z Ty Tk T (= s -
v ¢ ¢ ? For the contimuous extension ¢ of 4 over R , we heve by §20 Theorem 3

Tty viyII=E
FRg Tk, ga\ F® 2% by th lati 26(5)
phat is, Th =g Thus we conclude v the relaticn §E6(E) N o Cfor % & (RTEN",
and Theorem 3 in §87. Consequently we have 7= Fin)= B
' ! for =x ¢ (R- vFce)).

Next we shall prove that the Induced topology §** by 24 colincldes As ¥ 1s an open connector, we can find B € ,‘—i such that V(&) =F B
- ¥

~rE - - i
with the Telative topology M~ of 1 in R . For ewvery W e 4 we heve end we have by the formula §4(8)

obviously bty the relation §3(10) (RTCE)" = (RB)™ 2(R™B7)7 S(RB) = L),
- T
Tz = UIRIIZ, Thus we have a4 € 4, < F(£} < (R V{4)), and hence o) = o, Con=

and hence we obtain JF 3¢ by §27 Theorem 5. On the other hand, if sequently we obtain by the formula §4(8)

€ Z A, A€, then we can find by §22 Theorem 5 ¢ £ §# such that acif-Thee))™ =(RTRe)) e (R ‘GR(C)”’)-’ = Thee)™®
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We conclude hence 4 € B by the constructlen of B , bscause R et a3
proved Just above. Furthermore we have by the formula §9(6) o ¢ R AS
= ,fifﬁ- for every a € A , and consequently by §20(3) A, T(a) #0 for every
» €A snd U &, Thus o iz by $35 Theorem 1 a Limit of Aa{a €4 ).
Therefore R 13 a completion of R . ’ .
Let % and B be two completions of R . By virtue of §_55 Theo-
rem 6, we can find s uniformly continucus mapping o of B into -”E such
that ot¢=x) == for = € R, and £ of _E" into E such that £¢2Y= = for
xé R . Then we heve £m (x) =2 for = € R ., Because, if & o) x
for some T ¢ R — R » then, as » is separsted from the other polnts, we
can find open sete A, 8 ¢R such that xe A , fa(z) e B, AB =10 .
As both mappings s end 4 are continuous for the induced topologles by
§20 Theorem 2, @~'4™'¢8) is open and contains ® . Consequently we
heve R A a4 '¢g) @, ns R 1la dense in " . From this reélation
we conclude by §15{12) Fm (RA)B ¥ 0, a8 £ fRA) =R A4, we

obtain hence R 4B % 0, contradieting 48 = 0. We alse can prove

Therefore we have £=a)

likewise that @.£(x) = % for every x €A .
‘Now we ¢en state ‘

Theorsm 1. Every uniform space R heg s completion uniquely 3

within s hofeomorphism.

Recalling §36 Theorem 2, we obfaln immedistely by definitlion

Theorsm E.

For a sequential uniform spsce R, its completion

18 seguential too.

Furthermore we have obviously by definltion

Theorem 3.

If s uveiform spaée 2 is sepersated by its uniform-

i1ty 4%, then 1ts completion is separated tgo.
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CHAPTER ¥V

METRIC SPACES
{38 Quasi-metric
Let R Dbe an ebstract space. 4 function wic(e,€) of 2 pair of

points in R is celled a gussil-metric,Iif we have the metrle conditlions:

1) 05 mla, £) < +eo,

2) mld, )= 0,

B3 m (o, )= mid,0),

1) mca-,'ﬁ)crm(ae,c)z_'mca,c).

& space R asscclated with a quasli-metric »r 13 cailed & guesi-
metric space. 4 gquasi-metric = will be cslled a metrie, 1f we hs-ve
further ‘

5) wm (s £) =0 implles a= 4.

A space R associabted with-a metric #1 1s celled g metric spsce,

lLet R be a quasi-metric spsce with & quasi-—metfic ». in the sequel.
For each point @ ¢ R and for every positlve namber £ , 8 polnt set

Tgtory={x: mie,x)<§}
i3 caliled a gphere with & rediug £ and e center a. .

Cone¢erning spheres we have obviously

(1)  Ugcarc Tpta) for £ 54,
(2 Tpla) = =z, 'U:,;m.) for £ = sup A,
AEA XNEA
(3) Ty (a)> Up(£) for £-8 2 mie,£).

Because, for every polint X & U;(f)we have w (e, n)s mca.,.&)-é- m(_'l'f,*-}‘ £.
(4) '6'5(&)'0;_(5)=0 for ‘E-ré‘f'-__ w{a, 4 ). .
Because, for every point = € U;¢e) we have by 3) and ‘;)
m (4, n) 2 m(a, §) — mla, x) > g,
Corresponding to every positive number .8 , we obtain B connecltor Te
in R as R3x — T;(x) for the sphere Ty (x). This connector T,

will be called m sphere connector with a radius £ by the quasi-metrie

SR If we need lndlcate the guasi-metric w, we shall write U™ .

Concerning sphere conmectors, we have cbviously by definition
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(5} T, = U, for 64,
(8} 7, =
Ev@' = vmm{g}g}_
7 -1 _
(7) Vg™ = U,
On account of the metric condlition 4), we conclude easily
(8) T ® Us 3 Up,5.
For a polnt set A end a point p we define wi( A4, a) to mesn
{9) v (A, )= inf wox,a),
P . .
bub w { @, @)=+, With this deflinition we have obviousaly
{10} wm( A, ) =0 Tor e 4,
{11} m{ 4,2} m (B8, %) for A 2B,
P <= inf
{12) -mf)\%m,m af wm (A. . a),
We also can prove easily by the msetric condition 4)
(13) m( Upta), x) g ma,x)- £,
(14} mlA,a)tmia, L) 2 m(A,L).

§32 Induced uniformities and topologies

Let.R be a quasi-metric space with a gquasi-metric wi. ¥e sce
easily by the formules (8), {(7), (B) in $38 that the totelity of sphere
connectors Uy Tor all £ > ¢ satisfles the basis condltions in §26, and
hence thers exists by §26 Theorem 1 uniguely a tinifornity W on R , of
whien U, (£ » @ ) 1s a basis . This uni‘formiéy % 313 ealled the in-

duced uniformity of R by o end denoted by 4™,

With this definltion we see af once that ‘U_q’; (v=1, 2,...} 1a &
basid of the lnduced uniformity ¥C". Thersfore we have

Theorem L. The induced uniformity 4™ by & gquasi-metric »e is

seguential.

Theorem 2. m (%, 4) 1s uniformly continugus by w™: for any

£ 70 we cen Tind a sprhers connector sy such that Ty (®,) 3%, U;cy,)ag

implles ;m(vﬂ:,g.)*m(x,g?j<£.

Froof. On account of the metrie conditions 3I), 4) we have

Iwcme, 4o)- M(‘,g)lé (L, Z) e lfa gl

?
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Thus, putting § = -% £ , we obteln our assertion.
We als¢ can prove Llkewlse

Theorem 3. w4, x) (x€¢R ) is a uniformly conbinuous func-

tien on R by the induced uniformity 27¢ ™.

Theorem 4. R iz separsted by the Iinduced uniformity 4™ if

and only if m i3 a metric.
' Préofv It 13 evident by definltion that. we have
E@I—UE ()= {a} for every o ¢ R,

1f end only 1f <+ is a metric,

- Theprem &. Let w1, and wm,; be two guasl-metrics on a space R .

For the indueced uniformities 44 ™ and 94 ™% we have ™t = M™%, 1f and

conly if for any £ > ¢ we cen find § > ¢ such that

(T, g,} < & imgiigs g (R, B £,

PBroof. If $£™ 5 44™% then we have T, ~¢ L™ for every £ > 0,
and hence we cen find § > ¢ such that T,™' < T, thet ls, wm(x, y)<§
impliss 'm,'{x,;)< é Conversely, if for sny £ - ¢ we can find f>7
such that Ts™ < U, % then we have obvicusly ™' > % 2

For the induged uniformity 44 ™, the induced topolepy by £ is call-

ed the induced topology by m and denoted by “f .

For the induced topology ™ we have

(1) AT ={x: mA,x)=0},
{2) AT =L m AL x)p 0]
feor every point set A . " Begause, If m (4, a) =0 , then we have ob-

viously 4 Uy (e) % 0 for every £ » 0 , and hence a &€ A~ by §27 Theorem
1. Conversely, if & ¢ 47, then we nave ATy a) # 4 for every £ »0,
and hence w (A4, &)= 0 by the definition. §38(g), Thus we obtain the
formula {1).. Recalling the formila §4(3), we obtain by (1)
A= A" = {x: m(4’, z_)=0}’ ={n: m(A,x)»e}f,
Recalling Theorems 2 1n §20 and 2 in §30, we obtain lmmedlstely by

§38 Theorem 3

Theorem 6. Every aphere Ug () 1s open by the induced topoio-
i -
Bx 1T
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Theorem 7. Let m, 8and w, De two qu-asi-imetrics on 2 space R .

. Wi
TFor the induced topologies ™! apd 74™*, wg have 4™ > 747 %, if end

oﬁlI if for eny £ » ¢ and for any o € R ¥ can find & » ¢ such that
pi, (o, 2) < §F Amplles mgca,=z)< &,
' m

Proof . By virtue of Theorem 1 in §27, 1if 4™ o L% then for
sny € >0 and R & R we can find 4 >0 such that T cad & TR,
We mlso can prove likewise the inwverse.

Every subspace S of R may' be considered as a quasli-metric space
Thig ssme quasi-metric = 1in a subspace

2
S 1is calied the relative guesi-metrie of » In 8 gnd denoted by ™ ,

by the same guasismetrie »t .

that is, 'm.g(x_,g,) = m(=,Y) for x, 4 el
With this definltlon we have obviously
(3} ‘UE"""s = (‘U’SM)S for every £ > 0.

Therefore we obtain

Theorem 8. The induced uniformity and topelogy by the relative

guagi-metric s colncide respectlvely with the relatlve uniformity and

topology of the induced-unif‘ormity_and topoclogy by »e , that is,
s s mSs o B
> = (e )F, g™ =

§40 Completiocn

Let R be s quesi-metric space with a quesl-metric = . By vir-
tue of §27 Theorem 1, the system of spheres { Ug(ed & & >0} 19 a nelgh-
bourho.c;d system of & point o for the induced topology I, . Thus we
see easlly that }_j;n;na.,-:: a 13 equivalnet to E.})ngc W gy O =0.

As the system of sphere topnectors { TUp % & >0} 1s B basis of the
induced unlformlty 4C™, we see further that a polnt sequence &, ¢ R (r="
1, 2,...) 18 & Cauchy sequence if and only if ,}{}Eﬁ,w W By a.(.,t) =,

A polnt set A is sald to be gomplete by g , if 4 is complete by
the induced uniformity 427 Recalling Theorems 4 in §36 and 1 in §29,

we have then obviously

Thecrem 1. A 1s complete by »+ if and only if %]i‘igwm(_a..,, ar,.):oJ

. and hence # 18 a quasi-metric on E.

“ity of B by#, that 13, 77 =M™
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a,eA (v=1, 2,,..) im":‘ljl_e_?‘ }i‘nlumc;\y‘a_) =@ for somes polnt 4 ¢ A

We shall say that R 1s _q_om;_)le-te by m or that o» 13 complete, irf

R is complete by m as a polnt set. 4 complete quesl-metric space

R with s quasl-metric # is called a gompletion of R , 1f K 18 a com-
pletion of R for the Inducsd uniformities %’—x, 2™, and m 1s a rela-
tive gquasi.metric of # , that 1s, % (x, 42 =i, ) for x, 4 R

Theorem £, Every guasi-metric spacs £ has a completlon unijue-

y

1y within s homeomcrphlsm.

Froof. By virtue of {37 Thevrem 1, considering R a3 a uniform
space with the induced unifarmity 4™, we obtain a..;:ompletion R of R
uniguely within a homeomorphism. Since 24™ 1s sequential, the unl-
formity ¥ of £ .also is seqﬁer;tial by §37 Theorem 2. Therefore we
gsee by Theorems 2 in §1l4 and 3 in §36 that for any a e R we ean find
o, € R (=1, 2,...) such that .}Lmﬂa..,_-;a.

a,feR , if

For m pair of points

L
(%) Mmoo, =2, lim 4= 4, aw,d.eR (v=1, 2,...),
then both @, and £, (=1, 2,...) are Ceuchy segquences, and hence
1 - =0,
L n o, 80 =0, i, 4
3ince we obtain by the metric conditions 3) and 4) )
’ lm(a'lh "gv) - m{:@-tvﬂ, {r” = ™ (O..,J C‘“J -+ M(JHJ _ﬁ(w)J
we conclude thus @
v}ﬁgm [ Coy, 4.)— ™ (8, ‘gt“‘)l =2,
Therefors mia,, §,) (#=1, 2,...) ls convergent for every o, , £, (=
1, 2,...}) subject to the condition (%), and hence tends to the same 11-
nit, Thus, putting
im (o ‘g) = l-_i_glgn fﬂ"—(@y, 'gv.),
we see cmaily that #& satiasfies the metric conditions 1), 2), 3), 4},
=1 Furthermore we have obvicusly
%Cm,g}:m(z,g) for =, 4 €K,
Finally we shsll prove that 4% coineldes with the induced uniform-
For any § > @ , we can find Ue %

such that TR¢xd s ¥ lamplies mt(=x,y)< ?:,-g , and hence U%z)%a,f lmplies
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#lo, $) B i, o)e min, 4)E -ii—é_‘ua'-%e < E,

because we conclude Yoy (R Tin)) from AT = K and #(e,£) is con-

tinuous by §39 Theorem 2. For such T & ¥ , we can find by the rele-

tion §26(5) a symmetric ¥ ¢7A such that ¥ x V< TS, and if Feed 3 £ .

then for a point 2t & K V (m) we have

o e Vix) ¢ Utixd, £ e TRV () & TR,

Therefore we co_nclude’_ﬁf 'J?,/La oy definition.

and hence 7’4(&\-;/8] < £,
. e relation §26

v hand, £ér any ¢4z we can flnd DY &
VTx¥=s T, and then further £ = ¢

On the othe

{8) a symmetric T € % sueh that ¥x

anen that mex, )< £ , %L, ¢ ¢ @ 1mplies V(=) 2 ¥ . For such W7 and

¢ , 1 AN 4 «%-E} o, 4 ¢ & , then we ssn Find two points = €

R Fa} &nd % €R ¥ ({) such that (e,
£ (L y)=E

dyede  meg, y)<Fe and
hence (=, ¥} = Fo(a, )+ LA, For suech =, j€f

we have thus ¥ (=) 2 ?f . mnd consequently

£e Vigi < “Fx) x VT & Floayx FaT € Tl

W™ 2 W, s we obtamin W o= w.

Therefore we conclude
§37 Theorem 3, we have chbviously
i1ts complation 1s & metric apace.

Recalling

For a mebric Space,

Theorem 3.

@ §41. Metrization

The induced uniformity Dy B quasi-metric is sequential by §3% Theo=

rem L. Gonversely we Dave

For o uniform space R with a sequential u_r.)iformit_l

auch that 4% colpncides w

Theorem 1.
ith the

ax , we can find a quasi-metric »m o0 A
tniuced uniformity 2™ by =4 .

Proof . Let {Us, Uiy Tayenn } be a decreasing basis of V.
By virtue of §3l Theorem 4, corresponding to ench point o % 2, there 1=

=
a function 4, on the Subspace% U,“¢a) such thab
i

T, tx)2 4§ 1implies JCPaCz)'—' C_,Va(aﬂ,)ig rral
1
Z v for % & T,te)
4, o) { 2 L €0,
z 1 for « & U, (&),

§40, $41) METHIC SFAuks y
()

fulo)=0 and 9, (x) 2o for evury z ¢ = U™ (&) Bor et
ey A . BT TSN PR S
putting i :
3 Min {4, cxi Tar "z >t
1 € 7
My tx) = i o } peary) ot du,
1 for = & wee ),
=g

we obtaln a positive function wr, on R such that

Q fo -
wacx)—_—{ TR
} 1 for =z ¢ T, e,
U,(ar.);g; implies lwa(#-J-—wa(;)]< 1 s
A = zk'
T, (e)3 x  implles w,(x) 3z -,
= zu
becauge we have by §25 Theorem 2
av
( & v,k w = 2 o0 2 ! z
Eoutenxa = Zolm, (Zure)xn = vlw),
For such functiona w, (& & R ), putting
&4 B
Fex,y) migi'; {waem)+ eyt
we have obviously
0g fex,pgl, PP =% L) Pl EI=0.
Furthermore, if we set
M, q) = Bu - Feg. %31,
) 8 sup | ez, 2) 7y, 2|
1en we see ensily that m satlisfles the metric conditlons 1), 2), 3), 4)
3 [ H)
that 1s, m 1is a quasi-metric on R . ’

We shall prove now that W= ™

for this guasi-metric w .
It 7, cx) 8 g, ; then we have

@,
a (%) % Wa.(?J'\" “2—::"..0
and henee Iror every poimet 2 ¢ R
t
Hln, &) 5 75331)‘*"@'—"‘ :
We also obtain likewise
@Y, z) 2 P, L)+ o
Thua T, (%) 3 Impl { ’
” 4 implies iz, ¥) = 7im. Therefore we have 47 > 4&™
On the oth
er hand, as U, x T, & Up,.we see easlly that U, (x> 5 4 im-
1
plies ‘UH‘(,z_.) TUply)= ¢, and hsnce we have

T w)3a or T, (p3a for every @ €R

'-:_I"his reletion ylelds

i
W () 2 —— 1
o (2D 2 grn OT @ (y) 2 o for svery o€ R,

2b¢|

“'and’ consequentl A
£ yuen Y‘l’(fz,j)?—ian.- Thus T, (%) 5 4 tmplies
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‘ 1
Loper, ) — PLY §I B TR

m(x, )2 _
Therefore we conclude

.that is, Mm%, 4) < -fé;—,, implies T, {(x) 3 & -
™S U . Consequently we obtein 24 = ¥W™

Theorem €.(Urysohn) For a topological spage R, if_i%s topolo-

gy ¥ 1g regulsr and gompletely separable, then we can find & quesi-

metric e QN K such that colnelides with the induced topolm.“zw.

Proof. Let {%,Us,...7 bea neighbourhood system of Y. As
M is normel by §14 Theorem 3, for & palr T Tu subject to T < Tpm,
we can find by §2$ Theorem 4 a continuous funection Cﬁ,,r such tnat we heve
0& Fupxrg 1 for every = ¢ R and
o ‘Tor = &Th,
Fpypu 02 = { .
1 for % & Uu.
Then the toksllty of such funetions ¥, . (T, T) 18 7 §22 Theorem 5
s trunk of "1, because for any & ¢ A € we cen find ¥, such that
ae U, '{UP‘C A, Therefore we see that there iz a sequence of func-
tionzs %, (v =21, 2,...) which 12 8 trunk of 71 . Let ¥ De the weak
uniformity of R by ¢ (v=1, 2,,..). Then ¥ ls ssguential by §=4
Theorem 4, &snd we see ‘Dy §34 Theorem 3 that 7 coincides with the in-

duced ;opmiog,y of R by ¥ . Therefore We obtain our assertion by
Theorem 1.

Lot my (> €A ) bee aystem of quasi-metrics on &an abstract’ épace
R For the induced uniformity g™ byma (> A y, the weakest
stfonger uniformlty :».L{n o™ 1s cslled the induced unifor}nitx by & sysa-

tem of quasi-metries =, {xneA).

Theoren 3. For & unifeorm space R with s uniformity 44 there

is a syshtem of gquasi-mebtrics m, (» €A ) on R such that ¢ coinelides

with the induced uniformity by wmalx €4 ).

EFroof. Gorresponding to every 7 et , we obtsin by §26(_5) B
decreasing seyuence ‘V'v'yé Yyt tp=1, 2,...) such that Vg, Ty, & 7
gnd there is by §26 Theorem 1 & uniformity W, on R of whilch Vv,»("=
1, 2,-.0) 12 8 tasis. Then we have obviously ‘D’t-r—ﬂL()'w’UI«u, and Wy 18

seguential. Therefore e obtaln our assertion by Theoreém 1.

T

g

. Conssquently we cbtain a—a
noted by ¢

~beeauae

.'WE have for every a, «8 € R

LINEAR TOPOLOGICAL SPACKS

CHAPTER VI

LINEAR SPACES

§42 PFundamental definltions

A s
pace R 1s cslled & commutative groun
'

o !

s £ €R we have .2 ¢ R such thet
1) e+ = £+,
2) m;+$)+&:::a+u§’+é)

3)
. for anya,,.@ef{ we.can find £

&= : -
Such an element £ ¢ & e e

Is uniquely determined.
=z ag + L= .f +Cy,

Becauvss, irf

then we can £ind by 3) 5 .g{ ¢ R . such that
&

E-
CEGHd, ,=ave,

and we have by 1) and 2)

C; = @+ = ,
s € (d+cive = (L4 (c,udi)+e

] | = (a4 2)+ o
herefore we denots such £ ¢ £ by g — £

2 ed )+ e cr+ d
= gt e =&,

Then ws have ‘natu.rall:;r
. _ £+ta-4)
or every 4 , »ﬁ.’ € R
e . Especially f = £ + (f~+#), and hencs b 1}
= + (-4 + ﬁ e
o~¥) = (£+ (a- E4id—4) = av(f- o)
= £ -4 for ever i :
. . ¥y &,Le & ©l .
e¥ery o & R we obtain the seme siement. a — & R

it e This uniquely deter-

(o€ :
£} Is called the zerc slement of £ and de

 For sach a ’
€ R we define —~a to mean @ — @ Th
. en we have
~(-a)=a N

0=
Gt (o) =a)+ (- (-a)) as
£+ tas (- ) =

G+ (f+-4dN=a+o=a,

i08

I for every twe slements

2
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ati-Ab)= a -~ L.
mmutatlve group g is sald to be & linear space, if for severy

al number o we nave of @& € R such bthat

A co

a €R &nd for every Ie

4) A(pa) = (AR
£) ala-+Pﬂr=Ca€+P)a—_,
6) da+ot £ = bt £l
7} 10 = .

As oo ko0 = (0+0)n = 00 by &), we haeve oa = ¢ for avery & € R .

Therefore we Nave a3 (~1)}R =pa=00by &), 7}, and hencse

(-1l = =
Furtnermore we have For every & . £Le¢R

ta-4)= oo =od,

bocause & (@ —4) = o (6 + =41 = wntolt-t) £ = oda—cl .
a subset A of a linear space R , an glement & ¢ R iz sald to

if we cen find = finite number of glew:

For

be & linesr combination from A

e A s8nd of real numbsrs of, (¥ = L1s 2,400, 2¢) such that

®
o= 2. Ey,
ot
aid to be linearly independent from A,
A gubset A CR 1s said to be M-

ments %,

if o 1is

An element oo e A is 8

not a linesr comblnation from A .
pendent, 1f every plement of 4 18 linearly independent from

nearly inde
that is, if “%‘,d“w"'ﬂa impiiea o, = o (e= L,
13

the other elements of A

2,...sn) Tor every fimite number of dlfferent alements %, s A4 (v= 1,2,

bb',“r)n

-§43 Menifolds

Let & be & linesr space. A -gubsst A 0 of ‘R 13 called a

A, B of R we define AxB to

manifold of K - For two manifolds
mesan
(1} Axé_—:{x._{,gzae,q,g_gg}_

With this definition we have obviously
(2} Axp=BxA, (AxBIxC = An(BXCI
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{3) 2. (A% B =
. = A £ ) —*(%—_ﬂa)K(%BP),
or & manifold 4 and an element a ¢ g we define 4 +a to
mean
(4) Avo = Ax{fal={x+a: zeAl,
Wi.th thls definition we seco easily
(5) (At+R)+d =(A+b)ea = A+ (asd)

(8}
- _E.A,(Aa-e—o‘): %AAA +a,
TT (A ) = . T
(8} "64( ,\+.a.) ;.UAA* + for ILAA:e:OJ
(AXB)t =(A+Q)XB = Ax(B+a),
) . s
(9) (A+a)x (B+4) = (AxB) + (a+4),
(10) (A+a)' = A'+a for A'=% 0
(11)  (A+e)-(B+a) =(A=B)+a for A>B, A-B*0
For a manifold 4 and a real number of we define o4 tom
ean
{12) dAd =Jdz: zecA}. |
With this definition we have cbviously
(23 - =
( ; d%/‘h—é_ﬂafﬂm
iz
) 2T An = ;‘:LdAA,_ for T Ax#0,
) .
5) Afd~-ctB = d(A-B) for A2B., AF0,
{16) (et AY/ = A’ for o F4, ,4'4;0
(17 LPA)=(xp) A, |
18
(18) d (AXB)=(XA) % (ot B),
(19) A A+ Q) = ol 4 + L.

A manifold A is sald to be llnear, if A;Q_ ’ .g 1lﬂpliBS A 3 of +ﬁ—g
a

for every real numbers of " P » that 15, it A XA = A s ntﬂ ‘:-A for every

real number 0 .
For a linear manifold 5 we have
(20} SAXxS5B c 5(4AxB).
Because. S 4xSB ¢ AxB, SAXS8B < §%x8 =35

For sn arbi
trary manifold 4 , the totality of linear combinatlons

" Trom A co [ 3 linear 1~
. nstitutss ebviously g linear manifold. hil T
ar man

fold is cal e a3e
. alled the linear manifeld generated by 4 w 11
b N see easlly

* that Tor m = S
. stem of linesr manif
i olds A}\ ( [ /‘ } he 1
+ t intersect ™ i[
ctlon 1 }4,\_

alao is & lines
o r menlfold. Th.el"efore We cen say that the linear mani-
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fold generabed Dy & manifold A4 is the least llnear manifold contalning
A . Every linear manifold of a linear spaca R may be considered

jpaelf as a linsar sSpacs. Tn this senas, & linesr manifold will, be

called a gubspace of R -

§44 Linear functionals

Funcitlons on a linesr Spacs are callea functionals. Let R be a .

Jinear sSpaACE. 4 functional ¥ on A Lls said to be linear, if

@ ¢ol 2+ f%';}) = a'lfPiﬂ’r)-%‘-ﬁ @{é’;) .
for every *, W ¢ & and real fumbers ol , ﬁ .

For a linear funetionpsl ¢ on & gubspace S of R,

Thaorem L.

we sen find a linear fupotlonal ¢ on R such thab lf:f('i).-;_“ o, ce) for ze8.

Proof. By virtus of ‘Maximal Theorem, We 5e¢e easily that there

is @ maximal gystem of elemenibs E, € B (red ) such. that for each e A,

e is iinearly independent from-& 4+ =5t A #=PT. Then for every ®&R

we cean find unlquely £, ¢ 5 end a finite nunber of elements a, e =and

real nupbers e, 2 (¥ = 1, 2,.00, K1) such that

x = x‘,-i-z_ci.,.u;\k

Thus, putting wlry = g, (%) . WE see easily that ¥ satis-fies our

vagqulirement.

Theorem 2. Corresponding to eVEry element A, % ¢ there éxists

a linesr functiomal ¢ oL g, such that gexy =1,

Proof . Putting :_S'-':;:{-_E'Jt, s oo < Fa oo} and e EExa) = &
for.ever’y real mumber I , we o'bt‘:ain cowvlously a subspace 5. aﬁd a linear
functional ¢, on S. . Thereforé there 1s by Theorem 1 = linear func-
tional ¥ on R suech that @ (x = &, (£) for &5 , &nd hence pray=1.

Tor a functional ‘l{— defined on & manifdld A of R,

Theorem 3.

in order that thare 18 a linear functional ¢ on &, such that cpcx)—"‘?(x}

if 1s necessary and gufficlent that Z%, = 0,

for every X € A

2,6 d (v=1, 2400, ¥t ) lmplies Z,;’ Yor,) = 9.

Proaf. As the necessity.is gvident, we shell prr've the suffi-

. ® obtaln & lingar functicnal ¥, on 8
. e
'Ké r' 2

~ mal -
mal aystem subjegt to the indlcated conditlon.

44
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T Let 8 be the linear manifold genersted by A h r

. Then for

each z ¢ & we cen T1
nd s finlte number of el
ements ®,e 4 and re
reul num-

bers of, (p= 1
v (¥ 5 Baeo.yw ) such that =z = é'—b"s-%u, and 1f

.
= id e =
K= & et ,E,— Brodp s T g € A,
then we have by assumption

"
. -2
%"t!,ll'(xu)z %ﬂr ’!{—(_’?{w)_

Accordingly, puttin >
-4 Cf’,(z)-.;-g_vduﬁ"czy) for = = E‘_d‘-‘t"czu} . €4
= - i r

we bitaln ° =
a a linear functional ‘f on ,S such that ‘fﬂ cx} l]“t ED] for A
: X E .

Furthermore there 1ls by Theorem 1 & linear functionsl ¢ on P, such that

o) =
) ¥ (x} for z ¢ § , and hence c=) = (%) for z e 4
€ A,

ne yw v e (o t .
e shall prove th so-crlled Banach's extension th Q
i 11 e0Tem

Theorem 4. 0t
Lat f be_a functionel on R =such that

MR Y)

F M)+ pmey),
. /M('al'm)-_-:o(,m(-x.) for o« = ¢
For a linesr funetlonal ¢ ble
[

on 2 subspace 8§ of g subject to
Fo () 5 pan) for z¢ §
—— k]

%e can find a linesr functlonal ¢ on £ such that

Fx)

i

& (x) for =xeg8,
Fiw) g po) for every xe R
Proof. L ‘

_ We consider.all linear functionals ¢, on subspaces S
—= } EN

{»€ A ) such that & ¢ 85, and
Fali) = @ cx) for ze¢ S

“l’.\(%)§ﬂ-££) for ’:‘G.S),

. ;
or . a P )\t € /] , € Fi
B two emsnts s W shell write Cf‘\l < ‘fA_ if 5,\" o S_)\ﬁ.and

P xd= f, (x) for =ne¢ 8,

BS’ virtue of Mex m 141 maximal SYSt < A 8 h
imal Theore we can find a em | uc

that £ ] : A 5 .
. lor ave Ay, .A-g, € e have ‘f ' < A, OT Aq.C. A Far such
Y " w v o ‘f K t o] a ma

ximel system {* , putting 5, = = 5, =and
_ sep 2
“ﬁ;:r.).—:_f-f’_,_(a&) for #e 55 , A €
such thet ¥, € ¥, for every

and h =
ence there is A, € [ for which % %, s 88 7 1s 2 maxi
° X1l

For such A, €[ , we



if oro 0G o) apter VI
ee mnl TOoVE Ba, = N 1f there ls an el en X, € Ag 2 ne
need ¥y D : o em t 5 t n

wn have for every %, 4 € Sxg

i

Gr, () — Fa (Y= Fa,(x-4) g p(x—§)

€ plx+A) A p (- Teds )
= s
that ! LRSS z.,)—‘fiég);é,uchfx.)-qrMcz) for every %, Y .
hat 1=, - - - .
Thus we can £ind & real number § such that
AP -E =R =y () ST EM (z+ne) = FrolE)

for swary % € Ba, . For such & , pautting

Y+ Ex,) = P, Cz) + Yy

& ¥ A T e a8 1 ar z W aln linear funeg-
2 v ]
for ever A E S end for WV er real n mb e obl 8

Furthermore

t1onpl ¥ on the linear manifold generated vy { Sn, » Aol -

; for > &
we have obviously W (x)= o, cxy for x¢eSx, s for ¥ ’ |
= < 1 i
Y+ f Xl = Fa (=) + Er g Fa,cxd+ ¥ (,“(_.i:_x,.xu_ %, ( f’c))

= ;p*(‘!{x-rz,)ﬁﬂfx-l'iz.),‘

exy) - Fa, (EXD)
nnd for §< @ Yo+ §Ae) E La, 2 v E(-p (- %71 *y) 2, O
= prx«»sx,).

A i . a t sub-
< that [ 7 8 maxlmal aystem
han wo RAVe ‘f 1} » cpntradicting g
Ao ?
J at, L the indicat,ed cO.’(ldltiOIl. Eherefox‘e wie oktain s = R and

hence “a, sapiafles our requlrement.

<+ also
1f both functlonals ¢ and ¥ on R ATE linear, Shen o ¢ jg-q..

bers o .
in mhylouaty » lineaT functional on R for svery real numl , B

linear SpACH.
fhaee the batnbity of linear functionsls on R constitutes 2

1~ binarr APACS M 1< Q 1 nea fu ctionals on R is called
FELAN cpmpo3 d of al i T n 13
> - »

-
‘i masociated spece of R and dencted by R .

45 Flnite-dimensional linear spaces

r 8 Lol e w & amber <
) y 1inear 8p BCE. Ir 9 can find a natur 1 b
e, A4

dependent, then
anrh Lhat pvery x + 1 elements of AR are not linearly lndep

gnd the minimum of such ® 18 called

A 1ln sald to be i'j.nibe-dimenalonal, )
with this definlition we 889 at once that 1

; ; of R .
the S then Wwe CA&an find # elements

i8 Finite-dimensicnal with the dimension » .

*
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Z.e R {w=1, 2,...,5 ) such that =, (+=1, 2,...,% ) are linearly in-
dependent, and every x ¢ R may be represented uniqusly in a form
X = ﬁ_ ol s, .
=
Such & system of elements =z, (+=1, 2,...,x) 1= called a besgls of R .
Conversely we 3ee emslly that if R has a basis of x elsments, then g
is finlte-dimensionsl with the dimension » .,

Theorem 1. If R is finilte-dimensional with the dimension s,

then the assoclated space Ti of #, also is finlts-dimensional with the

- same_dimenalon X .

fzeof. Let 2, &R (¥=1, 8,...,%7) be a basls of A . Put -

ting for every real pumbers o, (r =1, 2,...,x )
- = )
T { 20 ) = (e, 2,0.0,0),

we obtain a basis %, e® (v=1, 2,...,x) of & . Because, if
—

and hence % {v=1, 2,,..,% ) are linesrly independent. Purthermore

for any % ¢ ® we have for every resl numbers e, (e =1, 2,..., )

and hence X = Z F(xp) Zp.

Theorem 2. If R is finite-dimensional, then for any linsar fune-

tional ¢ on the associated space E there exists unlquely = ¢ g such thst

FeL Y =% (xn) for every % e X,

Proof. Let e R (v=1, 2,...,%) be a basis of R and .6 R
(vr=1, 2,...,%) a basls of § such that

R (e ) = e (=i 20, n),

as obtained in the previous Proof. Futting

® —
x = %?tx,_)x,’

~we have then for every reasl numbers a{{m( p=l, Byaaa, )

= = Fad —~ " —
P%dﬂxﬁ.(x)—_—j‘z_;—la(ﬁ xf.(?;_'eﬂcx,)x,,)

s —_ vy ~
= 2 AT = P e T),

and hence ¢(% )= A (z) for every X ¢ g, Furthermere, if we have
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T e XY for every % eR then, putting
%= ‘%d,x.,, é;-.::w' Pu,xvﬁ

we obfain .o(,q =%, (x) = T gy =fo (b= 1y 840.0,0¢), and hence we con-
cluds the unigueness of such = .

on mecount of Théorem £, we see thab 1f R 18 finlte-dimensicnal,
then g colneldes with the assocliated space % of the asasoclated apace
Z considaring BVery = .@ A ua a llinear funetional on R by

SRR Y = E LR for every Z &R,

Thus we sonclude by Thecorsm 1 ‘

‘Theorem 3. If the mssoslated gspegs B of R 1s finite-dimen

alcnal with the dimension = ‘then g, eglso is finita-;dimensi_onal with

£he asame dimension ¥ .

Rechlling §44 Theorem 3, we obtain by Theorem £

Theorem 4. it R i3 finite-dimensional, then for a funetional

¢ on_s manifold A of the assosisted space % , in order that there is

% € £ such that pLF ) = He) Lor svery &'eﬁ", it 1s necessary and .
0, % €A (v=1, 2,...,%) implies
Z? % (K. 3-—-0

A4

sufficient thst Z%bx,’

=

For the associated spauce R of a linesr space R , a menifold A of

R 1la said fo bs fundemental, 1f Hx) =0 for every % 5,4 implles °

x= 8 With this deflnition we have

Theorsem. B. If a linear ma_ﬂif‘o-lrl A of the asgsociated space 7

ig finite-dimensional and fundementsl, then R 1s finite-dimensionsal _and

o
A=r.
— .
Froof . Let ¥ be the dimension of A Then the associated

spece of :E is.hy Theorem L finlte-dimensional with the dimension x and
every x ¢ & may be considered as a linear functionsl on ,E’ by
2lE) = T for every % €A.
Thus for overy %, ¢ B (#= 1, E5.0., K+ ¢ ) we esn £ind real numbers ofy
(ve= 1, 2,..m, w41 ) such that %:- el o= & and
Lﬁ&x.,)—*z;m’ 2 (R} = for every X e .4,

et

gnd then we have’ _Z‘efb %, = 0 , because A f’undamental by assumptlon.
[=E-7) .
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Therefore R is by definition finlte-dimensicnal end its dimension iz not
Teal 1 by 3

greater then ¥ . Accordingly ‘& also is by Theorsm I finite-dimension-

2l end its dimension is not E Ty o
. =) greeter than # . If A4 < K, then eveny

s

£ A is linearly independent frow A adi
g ¥ independent frod A, contradicting that the dimenaion
of & 1s not greater than x . Thus we have 4 = 7

§486 Quotisnt speces

Lat R _be a lingsr space and 4 o linear manifold of & . For two
elementaz = , % € A we da¥ine . .
==Y (A
to zﬁeanlm#g s A . With this definition we have obviously .
% = x iA}

=y {A) implies d=a (A,
wey, $ = Z (A) implles 3t = 2 (A).
4 menifold ¥ of R is eéllﬁd 8 I’e;ﬁdua ciesa by 4 , if we have
. A=de: 2=a, (431} . far every m, & X ,
?oncerning residus elasssa, we see sesily by definition that corves-
ponding t.g gach ® e R. there exiats uniquely a residue classz X z=x by 4
snd for every residue classea X, by A we have X ¥ = & or % ':-'"-Y
A i1s cwhvlously itasll a redidue cless by 4 containing & .
Since %, = %, §i E Y, (A) implies
| a.‘:ac.g_ve» TR - P e {A)
for svery real 11u@bers of , B, we see that for every residue classes ¥ ,
Y by 4 end, for every reel numbsrs of | £ we can Iind uniquely a residue
clase £ by 4 aueh thet x £ X , 3 €Y dimplies stz @y € A Sugh
e residus class % will bs demoted by sl X + Y . Then we see aaaily
?hat tltw totallty of residue closses bj A constitutes a ilnesr space‘.
This linesr spece ia e_alle{i a guotient space 6f K by & linesr manifcld
A end Geuoted Dy £ S A .,. Ths residue clasas 4 1s obviousiy the zero

alement of B 74 Furthermore we have obvlously

{1 A+x &8 RIA for svery # ¢ & ,
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(2) At (et py) = « (Ar =)+ plAcE),

(3) (Aex)x (Avu)= A+ (23,

{4) A+ x = 4L for x eX ¢ R/A.

Putting cuem}= A+x » WS obtain a mepping of R onto the quotisent
apace R /A4 - This mepping o will be a quotient mepping of R DY A -

For the gquotient mapping v of & by A , the image & (w) of & menifold

T of & 1s denoted by T/ 4 and the imyerse imege o ~'(¥) of a manil-

fold ¥ of R A by ¥ A, Tnen we have obvlously for every manifold

W of R

(%) (W/AY = TxA, U/A=(UXANA.
Furthermore we see enaily by definition

{6) (‘UK’V)/A-'—’(‘U’/AJX(’V/.A),

(7) LT/ A = HLT/AY,

(8} (U4 0IA = (TrAVI(TIA,

(8) T /A € (FIANTV/A),

(10) g7 luplles T/4 2 TIA.

There sxilats s mapplng & of o quoblent space R/ A

Theorem 1.
a
“ipto g sueh that @&(x) e X for svery % ¢ R/ A &an

Al X +pY) = o aLR) *+ pm(‘{).

Proof By virtue of Maximal Theorem, we 3&¢€ easily that there

: t to
13 a maximel system of residue classes %, € R/A (»€ A) supjec

t.
the condition that the menifold ¥, (» €A ) is llinearly independen

Furtnermere we obtein by Cholce

i ely
Then, we conclude easily tnat for aach Xe€ R/ A we <an find unigu
r

t
& system of real numbers =, (» €A Y such that ok, =& srcept for @& finite

mamtrer of » and
= ol .
X Z—- )nx.\ a

= = we have (X)) & X
Thua, putting (JL()()"-:E‘&—;\"‘:.XA for X = %l Ko

for every X&é R/ A , mod for Y = % fo X

(ol +pyY) = Al . {ated; b B0

A5A
= 5 fﬂ“&"’ﬁﬁﬂia = dm(x)—a».ﬁm.(Y).
by

Every functional ¢ on R /A may be consldered as a funetional on

Axlom & system of elements X, € Ko lmeAd
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R by the relstlon

Fiay = P(X) for ¢ 4 & R/A.
Then we have cbvlously ¢(x) = @w(4) for H~—ye A . Conversely, 1if
g functionsl & on g satlsfies

Py = Tyl for x,wge,é’j
ther. we see that ¥ may be considered as a Tunctionsl on the gquotisnt
space R /4 by the relation

FX) = @) for o« ¢ X ¢ R/A,

If a functlonal ¢ on the quotient spece R /4 18 linesr, then <

also iz obvlously lineasr as a functlonal on E . Gonverszely, if a li-
near funetlonal ¢ on R satlsfies

Flx)=20 for every = € A,
then we nee easily that ¢ walso iz Iinear as a functionsl on the quotient
space R /7 A . Therefore we have

Theorem 2. For g ilnear manifold 4 of R , the manifold of the

aggoclated space '.F?
% F(z)=0 for every xe A}

colneides with the associa{:ed apace g /A of the quotient space A/ A4

as functlonals on R/ 4 .

Theopem 3. Por g £finito number of slements E,, (=1, B,ucey28)

of the sdsociabod space ﬁ' o 1L we put
A=z T t)=0 for ell w=l, 2,...,2},

then the quotisnt space £ /A 48 finlte-dimensional snd ths sssoclated

space R /A4 of R //4 coincides with the iinear manifold generated by

A, (r=1, gsese3 X} 88 functionsls on K /A.

Proof . Let # be the linear manifold generated by X, (W= 1, 2,
eeey K e Thenn B is obviously finite-dimensicnal. Furthermore B
is Tundgmental as functionals on R /A . Because, for a residue class

L& R/A , If F(X) =0 for every % € B , then we have
Folx) =0 for every v =1, 2,..., and * € X,
and hence 4 = X . Thersfore R /A 1s by §45 Theorem & finite-dimen-

slonal and its assoclated space coincldes with B as functionals on R /4,
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For a finite numbet‘ of lineax funut?onala . Bn R,.'

Theorem 4.

ond resl numbers A lv=1; Broous # ), ln order that we cen find =& &

such that @ (x) = of, (»= 1, By..., %), b is nooessary and _sufficient

that % .y, =0 impliss ,égv of, = &,

R
Proof. As the necessity ib evident, we nesd only prove the sul-
flciency. Putting A={% 3 %inFG for every » =1, B,OM,W'&

we obtain 4 linear menifoild A of R and the quotient space A s A s
finite-aimensional by Theorem 5. Thus t:hare 15 by §45 Thsorem 4 '8
residue claas X ¢ & /A such thab PR = of, Tor suePy F.m L, Bracs; H

and then for an elament ® & ¥ ¥E havwe obylously 94w )= ol for sVery v =

§47 Product aga@eu
et R and § De two linear spaces. The tp’ca},ity of peirs of
slements {%, 43 Teor x & R, ys & tg ealled the prpduct space of A
and S and denoted by (R, 8). We define ol (ﬂ;g.g;) Wh!a;xhgﬁ to mean

n:;c,,g 3 ﬁ(:’(zadng_,)_- {s‘?{nfﬁ‘&g godz’ﬂ'{%)

for every real numhers of ? . Then we sez eadlly that the produo%
space (£ ; §) alsc 13 a linear Spece. ’

For manifolds A4 of K and B of § we defins {A,B) 50 mesn a ma-
nifolad oi‘ the produst spacs (£, &) composed ef 8ll (¥, g"r) for 2 ¢4,
q € B, With this dsfinition we ses ab Onee that if both A =and B
eve linear, then (A4, 8) slso is linesr,

Foyr twe linsar spaces R snda & , 1f there is = Lransformation #&i
from f, to S suech that

O (ol 2+ Pg) = o(ﬁ.(?l.)+P!?ii§)
for svery *-, 'a(e R snd real numbers el (3 , then R is sald to be 1so-
morphic to 3 by & tresnsformetion ¢ , and such a transformation - 1s

called a linsar tranarlormation.

With this definition, it 1s obvious that the llnesr manifold (iet,5})

cf the product space (R, 4} 1is lsoworphle to § by the transformation:

5
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(@, 4) —>» 4el,
Similerly the linear menifold (R, {o}) 1is isomoryhic to R by'the trons=

o

formation: (%, 0) - 2z ¢ R.
Th ) v )
gorem 1 The guotlent space (g, 53/({ef,8) i isomorphie to

R by the transformetion: ({x},5) — ceR

Proof. For each = € R , {{x}, £) 1is.obvlously by definition &

residue class of {R,§) by the lineur manifold Ciet, &3 . Thua we

sge further that the indicated transformation is & linear transformstion

from (R,S)/C{GE,S) to R,

[

& linear space R 18 ssid to be Iisomorphic to e linear space & . 1
there 1a a linesr transformation by which A 1s isomerphic to S

Th p 2 i i
eorem 2. For a linear manifold A of s llinear space R , there

is a linear transformation & from the product space (R /A ALY to R
3 v —

such that A ((B/A, A)) = B x 4 for svery B < R.
Proof.

On amccount of §46 Pheorem 1 there i3 a mapping &, of R /A
inte R such that ;m,(x )¢ ¥ Tfor every ¥ e'R/A and

o (el A+ BY) = 2t Uy (X) +pRsLYD.
‘Then, corresponding to every palr ( ¥, gl) for X e R /A, 4 ¢4 we ob-
tain uniquely an element m,(xnge R . Conversely, for sach xée R
we have A+x e R/A , Oy (A+n)e A+%, and hence i, (A+x}-x ¢ A,

Thus, putting ¥= o, (A+2)— * , we obtaln

2= O, EA+r)vY, ArreR/IA, Yo A,
Thersfore, putting AR, )= mo(;(H-& » we obtain & mapping @i of (R /4. A)

onto R - Thls mepping M 1s & transformation. Becsuae, if

'mg(-)i:)"‘guv— ma(x:z.}*ga, Xy, %6 RIAA, g,,?le}i’
t
hen we have Gro (%)= Mo (Xa}= é{,'—-&{neﬂ , and hence ¥, =X, , as ft, (X J€ X,

Rs (G 6 Xy, Furthermore gt is linear, becsuse we have

Al (X, )4 Bd¥a, fa)) = A (LR + BXy, s+ Ay )
= 0, (ol X, +p xg_)+o<3,+(3;a'=.°4(m?()‘-")*’é’v}*ﬁ(m‘xa)*cpﬁ)
= A ALK, 40) +PA(Xe, fa)).
As ¢ (X) € X , We have for every g < R

RUBIA AN = O (BJAYX A = BxA.
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CQHAPTER _VII

A

YICINITIES

§48 Fundemental definitions

pRec e i-
L ar . A + 1 4 a
at A e a line ) ce me !.1f01d v of ® 1ig csa 1 vic

[s] b A 4 W [/ such thet
;] ; ¢ K 6 can find ¥ o>
ﬂitg M if for any

rz eV ' for aéng’.

he zero ele-
With this definition we see that every vieinity v contains t
sl
t 0 For a vicinity ¥ , every menifold T >V also is obvlously
men .

py real num-
{cinity by aefinltion, and of 7 glso iz =2 yiginity for every
a vic

her ot $‘] becst & O an x wa CAan nd b ae aitlon X - O auch
2

= &
that g(_l--x,)ev for 0 35 & , and nence (x etV for 0% % =

F wo v vl v v v v ity
t icinities and a ? the intersection 3 B8 so iz & lein N
or i )

7 < v = = then we
bHecaule if 2?[ & 1 for ¢ < i B" and Z_X €Yy for ¢ ? Xﬂ 3 h
8

have e V, Vy for 0= < Min { &, ¥y f-

- =V, A mani-
& menifold ¥ is sald to be pymmetric, 1f ¢ v
With thls defl-
fold ¥ is called a ggsr, 1f VLY for vs Es

) v v is sym-
1vilon easlly tha for an ar t vl B, ,({ )
mn 1o we aee sil & (o] bitrar m nifold 7 C

o etrio atar for every
m-et'?iiej E—- g U is a atar, and .Z- g V 1s 8 symm

posi‘cive nu.mber ol .
A gtar ¢ 1s apld to be soalar-cpen,
= 5. ET.
. v FEIT S
& atar Y i= seld to be scalear-closed, if
;Tjﬂ 37,
lar-open, if and
with this definition we ses sasally that a 8T&T -7 1is scelar-opels

hat we have
1y if for any * ¢v we can find 2 positive pumber £ such thae
only

& - for any
1+ E,) x 17 ; and & star v is sealar GlOSEd, 1t and only i
C T ’

~gyw EV
x €W we can find & positive rnumber £ < 1 such that (1

Z §7 is snalar-open, ana 11 &7V

Thus for an arblbrary star V. o A

is scalar-closed for every posz.t.ive number & . .
‘ fin a
A vicinity ¥ 1is sald to be of finite charscter, 1if we ¢an

positive pumber of such that
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AT KT <ol W for A+p=!; dypegzo,

and the greatest lowss bound of such « 13 called the character of T .

If a vielnity ¥V 18 not of finite character, then the character of ¥ Iis

defined as + oo

Theorem 1. If a vieinity v 1is of finite character and scalar-

gpen_or scalar-ciosed, then we have for its character

k”vxpﬂ?' CAT for x+m=1, A,ma g0,

Proof. We have by the definition of character ¥ that we can
£ind & rnumber sequence P, »1 {v =1, 2,...) sueh that E.é.bn}._ G =1 and
Tor 'eve;ry p=1;, 2,.0. _ l

_ )\'Vx,uchﬁ,v' for atpzil, X, g0,
and hence by the formula §43(18)
A?L.y.v x(ui—i-vv CHT for raepz b X, B0,
If ¥ 1s scalar-closed, then we have by the formula §as(14)
ATRAT € AXRY = X QAT = X7,
If "V is seaslar-open, then we obtaln by the formulama (3), (13) in §43
AT xpT = (Z-—\-‘V)X(Z-Mr vicxnvV,
We must remsrk that if the character % of a vieinity v 1s leaé

then 1, then ¥ =R . Beosuse, 1f X < ! , then we can find s'poaitive

mumber £ < { such thet ¥ > Ly xl{-,vyv', Thus we have V 3 = f"
for every v= 1, 2‘,_.,.,.,_arid honoe we sonclude ¥ =R by the definitiocn
of vieinitles. - 4 vicinity ¥ with the cherecter X £ 1 1s gald to
be convex. .

Theorem 2. Every convex Vicinit;r is a atsr,

Proof. - If. & vielinity ¥V 18 convex, tnen we can flnd a numbar

sequence’ P, 2 1 (¥= 1, 2,...) suoch that l'Zl'.j.’rr}m Fo=1 and
A.'V_'MIM'V"Cﬂ,V for -\‘f'f'"sla Adf"%ﬁ.
Consequently we have AW < PV forogig ! and y=1, 2,00., -Thua

we conclude AT ¥ for ¢ < 1 , end hence V 1is a star by defini-

ticn.

Thesrem 3. If g convex vicinity ¥ 1ls scalar-cpen or scalar-

¢losed, then we have for eovery finite number of poszitive numbers ol
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.fkigl., 21-°"nx)
AT KAz TR +or AT = (olyrotas =*" 4ol ) V.

Proof . If a sonvex vicinity ¥ 19 scalar-open or acalar-closed,

then we hive by Theorem 1
AT xpm T =T for A+m=10, A, mzo.

ositive numbers ol , (3 by the fermla §43(18)

.clTxF,'V' (d+p)(mvx£?v}=(¢+p)f_

e we obtsin easlly our assertion by th

If a syrmetrle vieinity <f 1s of finlte character,

Thus we have for p

Furthermor e inductlor.

Theorem 4.

then ;ﬂ 3V 13 a lipesr manifold.
— 76

"Proof. Recalling the formulia §43(18), we see sasily that if =

vicinity ¥ is of finite character, then there ias & posaitive number <k

" gush thet ¥ X ¥V £V, and hence X, ge Ti' v Implles

w4 € T a7 = T gv’
: ¥»a £vo
As ¥ 1s symmetric by ggsumption, % € ;I’To‘g'V' implies by §as{14)
rd

au.e‘rfiatv ﬂg-\r for oh#d.

A vielnlty ¢ is said to be Eroger, ir 1T PV o= {el:

§49 " pgeundo-norms

‘Lot R be a linear fpace. A functional WXl on R 1= called 'S

pseudo-norm on R , 1f nan gz o for every ze R, end
LE=l= EELEA for every Teal rumbeT £ .
tzp (&R ) is said to be proper,

porm Nzl { E€R ) is said to be o

& pzendo-norm 1f nxil =0 implies
a=40 . A pseudo £ finite echarac-

tor, if there 1= & posltive mumber o, such that we have

I+ gl g izl )
and then the greatest lower pound ol su
13 not of finlte

for every %, 4% € R eh of ls

eglled the charscter of NI, If a pseudo-norm kAl
r 13 defined as + & - Foy the character

character, then 1ts cheracte

¥, of & pseudo-norm. | Z i We heve obvipusly DY definiticn

Nz + gllg X Cux 4 g

§48, §49 :
s §49) VICINITIES
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for sver - . ‘ev =3 = Rg-
- , ¥ X . ';f- &R - It is ident b&‘ definitlion that x 1
= N il

.pecially = - Q %)
- 3 iIf X = {1 , then E norm tx¢ 1z sa . conve A
a seudo id ¢ ba M=}

P =2 ‘
seudo-norm 1 ald to be a T, b 1s pr DeT
Ll n 3 a norm, 1 it (*) end convex

Theorem 1. '
rem if e pseudo-norm Kan on R is of finite charascter

wlth the charscter ¥ 3 then for SVOry pGSltiVﬁ numbar &4 3

1z el =}

is a syumet:{ ic scaisr-closed UlCillit? with the = ¢ character , and
. am X

{#x ;7 Ml <}

‘iz & 3 o)
ymmetric sScalar-open vicinity with the seme character %

Froof. Putt = .
ing ¥ ={x:! fimlgot}t, we have obviously that xeTV

impiies —
2 €V , that 1s, ¥ 1is aymmetrie. "IEf AL E VT, then pailz
o 3 > El

and hence there is s positive m:.mbe; £ 3uch that

WEx = 5 xil > of for ¥ »1-&£
thet is, 3z & ¥ fo 7 J
: 5 E v rE »t-t. Thus ¥ 18 a symmetric acalar-closed
star. .
E) Furthermore we see easgily tnat ¥ is a vicinity

For a Positive number 2 , 1If

ll1+3‘.f| 7(("1“*-;!61,") fer every % ,;e,ﬁt
then &, &7 implies for x+tm =1, M
Jllz-r/\‘-g. s X CAlizh +,ung,u) < N,
and hened A7 x/v_t'\?“C')L"V' , because
XV = {')L'x..: Nxil=sor = {a  HEUG Kelh,
Conversely, if =, 3% &€ ¥ implies -

}x-:-,v.y_ex‘v‘ for awp=1, A, 20,
than for & ]
ny. %,y ¢ R ,ux.n#a,n;u:e:a , we have_i"-x oy ey
ang hence, putting - ’ " e
Ex '
5= . i n
‘ nEa e gh M= Epenen
we obtaln ———2t ¢ .
AP ';L-a-g) ¢ X V. .. Thls relation yielés
e+ ytlg % TEYIENTIPN
In th '
the case, where lzill % 0 , !!3“1 = ¢ , we have obviously Fy e W
for every ¥ » 2 , end hence, putting ’
(R ql
A o . %
we obtat e e T B
ain
likewise 1 4yl K (zi+F) for every § >0 which yiéld
3 3
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Cpwk g g KAl
we amlao can dlspose 1ikewise the case where N H=ugli=0. Therefore
the character of W colncldes by definition with that of tne paegudo-norm
Rl - fle plso cen Drove 1ikewlase our agsertlion sbout T s il <ot }
Let ¥ bve a gyumetric star vielnity. Putting
== inf [%4,
zeg T
we obtain a pseudo-norm izl on % . Recause, it is evident that ws
“heve fLil =0 for every z ¢ R » and for every real numper
lztl= 1nf - [E]= inf JAZ| = letlliZdl,
EXXE N xe 5T
Thig pseudo-norm wxq 1= salled the paeudo-norm of ¥ sand denoted by NxElg,
that is, : ‘ ' -
(1) Nxllg= inf LEI. ‘

_ XEET
ftth thia definition we have obviously

(2) {a: uw_nvéoz}'t'aavc{x: Nty B o T for of 0. )

Furthermore wWe S8€ spsily thet we havs '
(3) Nxly o = Eix‘.’“"-“*vs 4
{4) 7 < T implles Mzlg = EA Y
(&) o x 7 < W implies Hax {Nxtle Il Flv bz i ylig.

Because, I VXV 7, then we have

Hulio = inf IE0i¢€ inf

&h'v ;-.4-;1!; ET 2he Rrge ETET %1
< inf 1% Max 4 4 g 5 LGN ,
S i v LR 1 v glet

The character of & syrmetric ster vicinity ¥ eoin-
cines with that of the psendo-norm of ¥ . Gonseyguently, the Eseudb—

norm of ¥ 1lg_cgconvex, 1f and only if ¥ is Convex.

Theorem 2.

Proof. Let %, be the charscter of the paeudo~norm e of 7 .
1 AT rpTC + ¥ for Aa+p = 1o A, 20, then we obtein by the for-

male () that #widy, Kgig < | implles
A+ pprdily 3 * for A+p=1, a0,

and hence the character of {z 7 Uiy = 1} is mot grester than b N

Thns we obuain by Theorem 1 A oz Ay, and consequentljr the character oY

% 1s not less than g - on the other hand, 1f X, < #e9, then the

charscter of {= 2 WXy g 1} ‘eoincides by TheoTen 1 with %, , snd we see

§49, §8
549, §30) _VICINITIES

2] the formula (2) and §48 Theorem 1 that =z y €7 im[ lies
P 3

BAzx+ma i 5 X
PR for aqpm=mi, X pza

P G HpoW A KA+ E}T for every £ > 6 )
by the formula (2)

which ylelas
, becauae we have

{2 1ty sijc iz linlg= (¥} C CItE)TV
Thus we ¢
onclude that the character of ¥ 1is not greater th
wish to prove. n nem

e ave a uaLly ¥ 10n he fello ing_ e eore H
W ¥ bvio 1 b defir Q t w two th na

eorer a I TINme Ly y 2 3ca - 3
h 3 I os tric vicinis ;o1 lar-clo ed, then we

have for of >0
AT = {x 1 Hzlg =L},

Jhed [
4 if F 1= scalar-open, them we have for o >0

AT ={x 1 Nile <=},

— - e P -
Theorsem 4 The seudc-norm |l il of @ S)[mmetric gtar vﬁclnitv

¥ 1is proper, if and only if ¥ is proper

§50 gQuasi-norm

A Tunctlonal litaHi on R is called e gussi-norm, if
. ~110 4

1) Mx z e for every = ¢ R

2) il gl impiies W2 M WP,
3) M= -+ & o= mau+ Illg.a'“;

4) %lgna Wizl =0,

We concl o ; k=3 - ki
ude 1rmr1edlately from 2) that M2 0 = ll— %A or every 2e R
On accou £3 h | u
ount o ) we ave hfnce or evel'y rea numbers o jE‘
]
["!0‘?{!“— i[lr_'nl’_ﬂ'” = H!(ai—lr:‘)ll!l

Iher‘efcre we see g ‘ a eVer
ee that !H zfl-1s a
ontinuous functlon of % Y
for sve

e R p AN conse%u.ently el = [ bﬁ' 4) . A quaSi-nOIm W 1= seid

t
o be proper, if izl = ¢ lmplies = =20

Theorem 1.

For g guasi-norm Wx#i on R =and for every o =&
Tt Wl g a) .

is a Lax :
scalar-clcsed symmetric vieinity, and
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(z: mea <}
ig & .scalgr-open symmetric vicinity.
Froof. Puttling ¥=4{% © memse(} . 1t is svldent that ¥ 18
symmetric. 1f x € W , then we have natursliy ﬂfx e el - aince

CME = U 1s & non-decressinf contiﬁuous funttion of ¥ 2 o , &s provéd
just sbove, there is & positive number £ such that
A | I for § »1-E&.
Therefore v is sca]lar—closed by definitlon. Oon account of 4}, for
every X & R We o820 find ¥ > 0 sueh that ME =Wl Fel for e 35 ¥
and hence T 1z A vieinlty. We also can prove 1ikewlse the other &9=
sertlon aboutb {2 s meh<e i,
Oon account of %) we have obviously
f-lllxlll Luf- 2 W for every xeR,
A quasi-_nom W m is said to be of finite character, if we csn find po-
sitive rumbers = ,  such that
Luxdz Wz for Ml so.
if & uasl-norm Euxlll 15 of finite charmcter, then

Theorem 2. AL B e ——

we . con £ind 28 Eositive nunber < such that the characters of
A wmEis 8T and  Jxt wzm =< 5t

ape bounded for &< H el .

are poundent -oo

Proof. I mx W is of finite charécter, then we can find by de-

finition positive rumbera ot , ¥ -euch that
Suxh 2 zuLaw for WL WS-
Fence, 1f M, W4M S 3 gol wnd A ap=1, 2.¢ 20, then we
have by the postulates &) and 3)
T R Lpgn
. _ -«cmﬂ’xm-ﬂuf—gm <:%_—-1||xm+—"lllgtl'n£§
Qonsequently, pubting Ty = I . mxlgEf, we have for 0< E o
A_‘V,: #‘Vgc-—«'v’; for A+f¢f.-{, AMpmE0.

Theraefore the character of “Vg 1a not greater than -%f for every poaitive

munber § Bl We also cen Prove 1ikewlse the other assertion sboub

the cheracter of {z:mxuw<3t

vieinitles o = 0

Accordingly we have

18 a2 gquasi-norm on R .

cim and AT x{v.v*c"xv for x + ;o =
aasi-norm i i

§80)
VICINITIES
Theoram ‘ . -
B For o sequence of symmetrie star vicini
2Agaram nitles

1, 8,...) such that

V> Vogpy ®* Vo /for' w= 1, 2
— ? »

putting e :
VS =Het T =

. v ; » T, (=1, 2 .,

,E_*m;x-v;h-,(,..xvg»

N ’

Ziave  Ee=o0,4,

Ty =R for T =1

il = inf < r
Er or every x ¢ R,

we obtain s quasi-norm [

ocn R such that Nzl <
21 Sdoa Lash =
and we have for every v= 1, 2

pess

o

Proof.

for every = ¢ R,

Mzl < —
<z e o= JIH’.ITI‘S'EI;}
From the co ‘ -y B
natruction of = il- we conclude immedistel
¥

o< Mzig §

| iz mxm<-——}c V‘,c{x.mzmg L1
As every TV, (v=1, :

fer every x e R,

(r=1, 2,...).

-) is H AL t ‘ e
. 8 etric s arl'l -U"C 9.13‘0 ig & Symm tric
star fox every ‘r » & , and hence, if D:Ffdi ="'FE, thenﬁxé U,.;. 1‘mp!jes
o X €& U'E o Thus we have th p |
) rlies Hiel =
1 M= i Eal
E. or T = ZT — T = "

Ty wo have obviously -

v, x T =
3 N AL LI £l
Thus we obtaln T e
Wl + lilgl[l
= infT + Inf T/’
7 0L = inf '
> infr: FEAPY Xely, g€ 'o‘t(.T+T)
= xd-#E'U':-z-r:!CT-r't’) = "'I-r}m .

For ever
yxeR end ¥v=1, 2,..., we can find by the definition of
such that ¥ x € 'V‘ for 05 § = o and hence
illgxulci; for 02 5 .
i1._1)‘:1:’ WEzxms=

=0 for e : '
very % € R . Therefore m

O . If s svmmetric sta nl v L f finlt haract ~
Theorem 4 tar viecl t
‘ 7 18 0 e C

»,m 3 0, then there 1s a

on R, -3uch that
{. s i &1H ! } [ 1) { "—"
x 1 x & e
S W<
2v 0 )v < I M=yl ¥,

1 =t £
I x|l = < x il for Maxi <
-
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rutting vy—-m‘v (v=1, 2,...), we
= V..
{n Theorem 3, and

ave obviously

proof .

Vear * o1 = (ﬂx)bt‘i
~norm 4 z W

a8 descri‘oed

‘Thepefore wWe obtain a quasi

we have for every w1y By
A i
M “ e T A mE S 55
{1 WXWU<L ,}c(u},vc{ =5 b
Furthermore, &2 weo have for T < _3{ '
ﬁxvt—ﬁfxvﬁxeuxzxvx .
g, .
= Tt ¥ Vi =Ty,

_we obtain for nx u(‘.f. —-}'-

; .
B2l inf T =
2T T we2iUe
on R, muatting

inf T = —-mEm.
ze Tym 2

For & quasi—norm AL
i, §) = L=y,
we obtain & quasi-matric m o R - " This quasi-metric' «;m. 15 celled the
~norm Il % on R . A menifold A of R

-metrlic by & gquasi

induced quasl
‘ia aald to be complete ©Y & quasi
~metric, that 13,

—norm Ml %M on R . if A 4a complste

if 1{}1&1 W2, = Zpe p implies

by the 1nduced quesi
for some e A,

lim 0, - 2 8= [
if R 1s complete OY it.

A quasi-norm pegf on R 1s seld to be’ comglete,

51 R Relative yicinities
For‘ s viel-

Lot & be & pER-Clay menifold of & linear 8spece R .

patting 5= 5V we

obtain & yieinity Ta in the subspals

nity w in A
8 . This vicinity S is cslled the pelative vicinitx of F in the
e obvlously

ive wicinitles we heav

Concerning relat
scalar+

subepace S .
scalar-closed

Theorem L. If 8 vyielnity ¢ 1=.8 mmetTic

open, or m BEED, ghen its relative vielnity '(fs also ia 89 r-spectivelg

Furthermore We eonclude easlly DY definition .
racter of the relative yicinit 75 1is not

Gonseguentlyl ‘l:f.' a viclnit}_r ~7 1is c:omre:t.=

graat;ar than that of v -
then the ralative'vicinltx w5 of ¥ also is 80 for svery gubspace S
y be consldered o‘nvl_ously B8 & ?seudo-

Every paeudo-noz*m onn R M

Theorem £ The che

i
1

Y

§so, §81)
VICINITIES
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Qrm o a aubs o
‘ race s ° i
n n In thig aense, we have cbviously b defl O
| T €, nition
Theorem 3. The seudo-narm llx i ¥ of a symmetrle st AT v ty
& 3 =8 lcinl 1’

colncides with pseudownolm x of the relative wvic llit? i a
the
] “'V’s icl
in
,

subsgace that- % = z I for GWGI& xE S e
5 14 8 15! n ﬂe-‘r ] Rl
ha image v_/ of a vicinit‘.y 7 b the iotient m n of" &
S
qQ B'ppi
T ] 1:4 on‘t‘.g

X e Jquo en ‘ ¥ L L
th unoti t apace . QD¥1o ds & v t i the
R. / 5 18 obviousl by Ffinition a leint ¥

qu R ———nio T
otlent apace /S @ This Uicilli'by ) /,S 1= called the relative
.
Uicinitg of v in the quOti. ent ap&ce R— /!B .
ncermn ‘ ve vicinities in & 8| witlent ace, we abtaln imme-
Co 1llg ralat P
i 1) &
. ’

diately by definltion

Theorem 4 : ‘
A If & vieinit
¥ V. 1s_symmetrl
- ¢, sgalar-open .
. Scalar-

2
closed oY a StﬂI, then its relative vicin ¥ v /ﬁ
8 gL 1
it in ot lent Jpace

R
/5 n8lso is so respectively

Furtt
. 1eTUCrS We : ude easil ¥ b ¥ : i
tl w cong 7 1 L definltion

Theorem §
4heorem o, The charsech .
er of the relativ :
e vioginity
v /8 in a

quo en apsa R /5 is not gr'ea . han tha T ‘? ‘ g ¥
t1 t ae te!’. % t o v Conseguentl
e a viec 7 ‘? CXp nean e T 1 ¥ 7
T 8 cony eLaclve ATl / g also la
if feinit i t t1 1at vicinit B0,

For
a pseudo-norm =il on R , pustin
g
Xl = zi?i e for ¥ "
re obtaln a paeud R
pseudo-norm fi Xl on the yuotlent space A /' , ‘
e &
. Becevse

we have obwviousl
1sly Xl 20 for eve Y
= ! vary X & R/S
; and

"5{ X ” i X ol X
I o, b4
for ever real number ol :F o, h O=1c Q tllel " ‘.1“()!; ent
¥ . This pseud norm " X n q

apage R /8 1z «
called the relatlve pseudo-norm of 1'%l
M in R /78

Theorem 6
e Y The cnaractsr
of the relativ
s pseudo-norm {| X
i of &

pseudo-nbrm =i i
n
8 qgotlent space R /& 1 not grest t
er than thet of

nxll
a Conseyuentiy t
¥ the relatlve pseude-norm of 4 conve ‘
X pseudec-norm

is convex too.
Iroof I
N T nzx+
. il = x(ﬂlll-ﬁﬂ‘&u) for every X
eve by definition ’ a e

{8 =
+ Y"—xiénE+Y WXl inf Rz«
ReX,  yeY T

< 1ir ‘
‘&tr}(f: & KO +Hyl) =
$ey S0 = X LRX A+ YN}
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Theorem 7 - For &8 gymmetric ster viciniﬁ*{ v io R
R /7S

s of ¥ in s yuotient sSpace

peeudo-NorL of‘_“igp_q_gggggp_—norm W g
colncldes with the pseudo-normn of the relatlve viclnity /8 in R/%

that 1s, we have BXty = (S Ly for X £ R'/S.
‘ Reca&lling the formuias {5) and {(7) in $46, we obtain DY

Proof .
= b = inf ( inf
gefinition WX by = 1nf % hy inf ( x?;v'E”
= inf 1§l = 1o o= N .
% CLEYINE X & FOFFE) ¥ v/ 8

§52 adjolint norms
na 1ipear space R .
by’ a vicintty ¥ L

For a linear fune-

v i

Let § be e vieinit
s gdefined a3

glonnl ¢ on R, the adjoint norm e lly
{1) Ne g = BUD 1P )],
eV

n we have

With this definitlo )
= |l ¥y for ol 0.

(2) nep Uy g

Because We nave for every of 0

lepll, o = U tepead] = Bup |<ruznsut.na°nv'.
redT xe T

Furthermore wWe have obvlously Ty definition ’

U implies Mely 2 NAla

(3)
which are pounded in T,

The totellity ©

18 called the adjoint SDAacS of
Re= {9 Neily < +o=t.

{5 = linear

f linear fanctional an R
a vieinity V and denote

Then we Bee epsily by definition that R-.v

soclated space K of B

Theorsm 1. The adjoint norm (3 lkv{‘?;-.

on Lhe adjolnt SPace B, of & vicinity V - _
ately thet we

From the definition (1) we canclude 1mmedi

Froaf.
20 end Ut @& Iy = |o| KBy, that 1

have Wo il g
fef.g we have by {1}

on Ky - For every @,
AE 4+ LN = sup R I el
zew
< = (=) + su T = R 7
< sug | & (2 m%i-& ]| ilatl_v--HM“-m
(z)=0 for svery zeVT,

TR lhg = ¢, then we have vy (1) B

avy Ry thet is,
nenifold of the es-

eﬁv) 15 a complete norm

RB Ny ils a peeudo-norm

§51, §52) :
VICINITIES
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Ilence ] = g becguse for every & ¢ W G =4 0 h
) + R Wa an find 3uc. + we
> hat

have ot 2 ¢ W
/ . Therefore iy 1s a norm R
If 1im uwa,—¢ o
. v~ 8. g =0, then we have obviously by (1)
- y
u,lifé‘“ [ Eutmd) =~ Gpltz) | = :
" P 4 far ever
Yy eV .

Sin ‘
nee for everyl:. €R we ¢an find o ->‘a such thet o :'c'e v, w bt
) B - , We obtaln
Therafore putty;_&"“'q [Buln) = Gp ()= 0 for every xR
e ; ng fFCxy = f}})mm E.!M ¢x) for every = e &" |
r functional & on R . Then we havé for sver o
v =1, 2,...

PR (%) = Feu)
M= 11 — _
fkj;hmw ta.,(lx),ar x|

h .

il = -~
MR, - Tl

b Y =4 by’ i
-01‘ aver L eV 3 and haence ({w)
a@ —’. im -
G naequently we obltain Cf & and lim a "i @l = . el o
&) R il v
¥ ) Rt I Therelfore

the norm L& ly is complete

m 2 2 . "
~a if ij L > = ad; I
Theore a vic:.nitv is swmmetric scalar-closed and

. .
convex then fo any ’io & we ¢an find a linesr fun 1 8 Cf & -
3 . 13 .1 2 ctionsl R
_—.__S‘l:h :%h:: chxa) > “(fa HT’ = |
. Froo gr s g ‘+ = ‘g ar ey = 1] ] o] ain
] Putting e mbe 1
7 { % Ko/ it TI'y Tre s} r ; » We b
el QU Vv R zar functional F s linear man eneratad b t‘| he
by sl line ona 11‘" Q < ear a old o ¥
i s

st £ element # F ] v Ve a8
i
fat .18 o urthermore we have for e iy 1
'y rea nunber &

[ (5%, 0| = |3 = z

Tty L E Xl

Therefore we can fi D 44 rem 4 m 1 84 fanc cnal cf on R
nd T % Theo in T netl
[

auch that
Foll a)= ¥ ({Tae) for every real
ot o o - ¥ real number £ ,
= Taoky [ for every x & R
L

bacause he gedo=1n onve bg % Theorem
ol norm ;lx[{v(xeﬁ.) 18 convex 4
¥ 2

For ek h th 4 i
) 3 Cfg we uve by e de ni on ( )
i
because it ¥ L H 4 T
i =1 £ ) '
- = 1o -7
. = e by the Forumula 09(2} 34
w - LG e is sym

e, i = :
A ALAHE

metrle and scalar- i - v - =
r-clossd b 835Uy Q we have |12, | 45 heo
r Il, | ~
o 1 by 4
ki

rem I, and h ‘
» And henee W ¢, ly < 1= ¥ ix,) = ¢¢
Theoren 3 - . o
. For a V_Iicinltv Y, the manifold
o T =ixor iAo i
_ il UE g for all @ € R}
) T
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r-closed convex vicinity ipeludine ¥ , and

15.the leasl syamptric soale
J.

we have Re = Rg., VBN T K\Ehy (& €Rv
We ses &b once by' the constructlon of 7 that T 27 and

o 1s symmetric and scalar-closed. For a+p=1, >,M2 g , if
%y Y s T , then we have
& e o>

JE(ax+pgdls 2 |G e+ plael =
Thepefore U iz A gymmetric scalsr-closed

and hence »% M4 € v

Por avery aymmatric scalar-closed convex wvicinity

SoONVEeX vieinlity.
If there

w >V, the intersection UW also 1s obvlously such & one.
such that %, T W , then we can find bY Theorem 2

18 mn element %, €T
contradicting

¢ B such that &, (%e) > W&y s

a linear fuinctional
ve JCUOWCW, and hence

‘the constructlion of ¥ . Conaeyuently we ha
v.gloged convex vlcinlty including v .

o is the least gymmetric scalw
e conoluds by the rormula (3

on the other hend, ¥

From T 27 W ) thet we have ’ﬁ..ﬂc -.é-v
and K@Uy T IR Iy for every ae Ry ¢ have Ob-
viously by the conatruetion of T that ﬁﬁ 7?’..‘? and NE e = j& by for

overy B e Ry -

For 8 sme\:ric star wicinity v we have

for every & ¢ R, Bnd *¢ R,
for every € R

Theorem 4.
1l fakg lnly

Nly=sup (&
D RBUgSI1
For every § 7 U%*Ue » 83 —é—-z.e‘v by the formula §49(2),

Proof .

we have by (1) i’é.c-,}; xjlg A& Ny , that 18,
1 el FAT gy for avery ¥ = Uiy,
and hence we obtaln B¢l s Na iy txlive From this relation we COn-

clude immedistely hxligz SUP 2 el -
NElgs i .
For an element X € R, if § > Sup {6 ¢x2i , then BSub 1R cpml<
| UElp =1 H

Wiy s

and hence we: obtain
' IE(%I)Iéna’.nv for every BERq.

1f ¥ 1s convex, then {x: Uxlsd t} is by §40 Theorem 1 a symmetTle
saalar-cloaed convex vielnity including + , and hence we gonelude DY
Theorem 3 thab il-;;-x.llv_é { , thet is, kxHg = § - sccoraingly, if ¥
W ily 5 2up |mewdl  Tor every xeR.,

then we have
KBy 1

1s eonvex,

e e

§52)
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5.
heorem Lat 7 be & symmetric convex vig nitv ugh t
1 sSug at ths

seudo=-nor: ) R adjoin Euce o
E Lhxzlly (= e R) i3 complete and th 1 f 7
¥
& ad] t 3

For s svstem of linesr Tunctlonals Zs & Rv ( A €N ), if

sup | &
MEA Al < oo  FOr every z ¢ R

th ve =
en we ha SUD || B il :
p aily = veo,

Froof. Since the peeudo~-nor (-4 |l.-0= 1s completa b\i assumption
H © »

= ¥ =
We sSce b Theorems & in 6 d 339 th G the second cate
§5 an 1 in o tha A 1s r b
I

gory for the ind
u
ced topology by the Induced quasi tri
=metric. If we
put

vE{ % I'a(xd]l g v
=3 for every aen}
3

ot " b 3
]llen we heve o t‘iously B a3aum [a) 2 4
¥ th n R =
o

r im | - = 5 M= 2
PPy b ~ "‘V fanl A“’ (/ } ‘
L 1 78 a. [ Ay € l, 2,‘,.. 3 then, since we have

'__ — —_ — —
b? Theorem 4 (259 (a)l = Aep (@, -+ o, —_ R (&) = o -7
= I' A £ )} I Qy ' ! I i
Y ,t4! 3 LR = L+ 0 4\il'.‘r &, “V,

we obtain Iﬂ..\ = 2 » o
[}
| for e ery A €N th&t i Lo
3 [- V4| [
tad [ o v nseyuent

El Au B
e £ ' ¥
¥ (& i b &
1 is cloased T the nduced prBlOP b Theorems in 914, 3 in $36

Therefore we CArn ngd such hat ES 0r {1 in-
£ ¥,
> ] )4 Q
o he n

duced togpolo
gy, and then we ¢
en Tind further
* A, e A,
L

snd £ » ¢ sueh that

He, -2, <
v < £ Implies
& A, . Then Nxle < £ implies x
Las + a, € Ayy

and henece furthe = -+ 4 -+ =
r [
! atlzyl & !‘a—kfaoJl lau\ x ﬂ.p)' & & “+ W
= = A a)‘

for every i ¢
A A
S llxzlg st implies | & 5 o< £
T v o <E£ , we obtain

hence by definition

HEA" = 8 -l

F= 84 & 4 Y .

md ¢ """"5%11. 4(2)[—8"3:113 fa.,,(-éx)[‘: z

onseyaently sup & 2 by z = £ (1ancao)ire
gl sl g2(=up 17, ¢ | g

Thegorenm &, R T B

Let v be an aIbitr‘arp vicini 3 - - 0O -
ty in R
Y - For A 11

near manifo L& &
A o R, ; the manifold of the adiolnt s
1a il ce R I -7
p=t ¥ 2= :

{3 : @
@) =0 for every e A4}

coincides with ti
he sdfoint space of the relative wicini '
nity /A in th
4N rne

uotient sp 4

space R /A, gnd we have @ g =lla

quotient spag w4 = HWEUy for every d ¢ R.
7

3U =] t £ ¢ b oz hat (=) = ko) avary xé& /‘]
ct o th ondltl 1A (x) I+ T

Iroaf, hyer
"y linesr functlonal & on the guotblent
2 lent apace R /4

mar Le cnside T
ST re . c ) LI lon
as a linesar tnm tional on R o] h
[+ 4 r the elatlo

a" Y
. () = & (X] for ze X e pry
nen we have obvlously sup (& (x | "
S M= F
From This

34p .
o VR (0,
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relntlomn We conclude enally our goaertion.

Theoren 7. uet ¥ obe 2 s*Emr_;v}_r_irc_ccmvex vicinity end ¥ w posi-
or of elements %, € R end yesl numc

five nudber. =

bers of, (¥ 7 12 2., % ), A0 order that gggr-_e_;g_j__li;1aaz- fanctional ¥
am g Zuch _thab
!
1 Flie = 7.

(f(xyj—:of,/ {w=1, '23».”-1'{),
1¢ ia necegsary and sufffle.ient that we have

® ®
| 2 E.ohh | = ¥ lZ 5. 2l

=1 =i

or every real numhers B, ly= Lo 2oeene ).

for
If there 1s aach &

1inear functiopal & on f, then we

krave by Theorem & for every resl nambers E, (w= ks Breees " )
1E ot i = 190 2gnols ¥ HE vxte,
Conversely, We guppose now that the indicabed condltion 12 satlia-
fied. T;i.;xen é g, 0, = 0 implies obwiously ‘% ¥ ool = o . Thus, -
1f we dsncte by ﬂ- ¢he linesr manifold penerated oY w, (v=
§44 Theorem 3 & Jinear functional o, on A

{w= 1, '2,.uu;}'t)=

such thab

tnen there is VY
f'ﬁ, [ = &

P, we have by sasumpblon

For _'Bucﬁ
1 C%%y#ul SRR AR nE e %l
for every real mudpers ¥, (e = 1, @pe-er® )y that 1&g,
- A s lly for every ¥ e A .

ps T is sonvex by easumptlon, the pseudo-norrri Ny 18 convex by 49
Thua we CGan £ind by §44 Theorem % g linesT functional q’_

() = o, (%)

Theorsm 2.
for every = €A,

on R such that

(pexilm YuEls for every ® €8 5

ey (w=1, 2,...,% ) and Ne iy = Y.

and hence FLx.) =
o-called Helly's theorsen:

Finally we shell prove the 8

Theorer 8. Let ¥ be @ avrmetric convex gyicinity in R and ¥

] For a finite number of linear funetionals &, tRe

s positive number -
(w= 1, By.-es™ ), in order ¢hat for any positive

and pesl qumbers Xy
€ (¥+£)V such that

pumper £ we can find &0 element *e

JIor any £ =

§ )
1

[7 1 x = el =
» € a) 13 (V l, 2 ){,)
Puscy

1%t is ne g
gessary end sufficient that we ‘have

1z et ls 0 2. 57, iy

=30

for eVery résl numbvers F I
-

b= 1, Boa..,: )

Froof, If there 18 an element =, & 7 guch that
o ¥+ E)

A () = o for BUEI’y w= 1 Ppeos, M
w @ v £
» a

7

then we have | e llp = i+ E by the formula 49
v o= I
§ (

iﬁ-?v“‘ul""'

i
= {2 5 Bucx
2 w )= 5 &
A8 £ >0 may be _arbitrar; l O (r+s)il‘f"}i%”a’
B

2) and hence by Theorem 4

vl

wWa obtsaln thus EOI' every ; (l’:—-" i, 2 LI 4
Vs » 2 2 )

k%
lZ bl s rngd s a .,
= b -

& a
Gonver Sely we Ssume now that the 1ndicated condltion is Satisiied

Putting A
=f{x : @ =
wit} =0 Tor everys = 1, 2 {
sesa,2 } , we obtaln
a

linsar manifo
ld 4 of B ]
» and we see by §46 Theorem 3 that th
e guotient

space R /A 1s finlte~-c mensio ¢ &880ciated an )
1 1 nal and th
Sp = /A

i3 composed
of 8ll linesr combinations o

fron &y (A‘-—-l’ 2,5-:1, )f)o &a
|8} ¥ assump ion Z_ %‘ o, = 7 » can find b
Il im a2 b 85 tieo | i wWa i
o §45

Theore :
M 4 aresidue class X, e R/ A
such that

a.,(!( !—'ee!y (Vzl 2 K.
& 2 b ) .
) 4eng .

For
such )(0' we have by sssumption

N }Z [ - T 4 = oA, | = | F
=L a)l | t
ié ;V Blmr HL:ZE gv aw "v

by ) =
: er ea w ( . .
or ev r I numbers E L4 ly 2, sy M )_, and hernce

(X 2 X UE Ny for B € R/7A

A5 f = & -
v ] L
- A
v, R/ﬂ heor K
s K& &l for B « by T orem 6 we obtain henoe b? Theo

rem 4 [l X |l = n
v = 1
/A & , because V/4 13 a symmetric c ¥ by
onvex vlecinity b

Theorems 4
and 5 ]
lin §51. S5lnce we have by §51 Th
eorem 7

i =
Foll gy = zi;;r)f; Bz,
o

we can find t < ¥ g
herefeore Ky € KQ such that y x 1]
€E(¥+ E)V by :
the formils §49(2) and obvigusl w
sly

Tl ™o = &, (K, ) = of,

Fo
T sueh x, we have  x,

(r=1, 2,...,%),
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§53 -Defint
1 in R 1=
apRCEe. A system of viecinitiss -

Let B be g llnear 50U -.
| [ ir :-
called a linesl topolo on R » E

. ) vedp, v U implies ge, ;

ES 4 s .

72] o, TeY implles o7 ¥,

’ T #0;
) ¢ implies y 7 e Y for eve T § at
5 V tha
ny 7 € { we can find o eY? such
"’ o rg eV for 0 ¥ % 1,
that ;
£ any T e ¥e can find T € ? such )
) - or

xT < V. -
. l topalogy is called B linesr

. linesr
A linear Space asgoclated with =&

polog D comp
gopologleal Spece. If P 1s

‘ n

4 1s opviously s lineaT topology © 2 .
. on R .
1ipnesr topold
the trivisl id

ology is cailed 4 1s called o basis of 40, 1FFO
nat AU € V.
7 ¢ 4> we GBI find there 13 a basls of ¥,

_,__.__.——-—_________B_-—-Bl there 18 8 SPsi=——
Por a lineel topolo ?{J on R

Theorem . nittes.

: tric star vicl
1y of 8 2 ueh
snich Le composed o2 can find by definitlon ve s
we

For evsry v e we have soviously

a vicinitﬁ' R,

1i-
g by def inition. Thisa

then

near top
of @ linesr topolOgY

Asubaat%
ge¥ snd a >0 such t

any

pProof. For such.v s

) < is ob~
§1;rc'V. Hereﬁ?{‘zﬁ

i v ong L %: y the postulata l).
icl'ﬂit and helonga o] ki) h
¢ 8tar N
ynine\‘:ric star 71011}15165 contained in q: con-
*

i.
tnat |0 € T-0TY LoF ¢s L3

‘hence 2.
and nenee o

viously a symmetT

.Thereforﬂe the totallty of 8

atitutes 2 basis of A 4, if s mapifold

if & manifold
of @ linesr topolod

basls &
Thﬂe}& 2. E_?.E——-a-——"""_ g thenva (ve%) _.._—-——-—also is
—_— P

ty of
Aso 13 contained in evely vicinity

& B
g basis of - yoy 1 TxA €W

¢ we heve obviousl

very ¥ £
For © £ind by 5).0-(,{, gnd » > 0

¢ every v €W°, we oan

. h
Proof. sue

furthsermore, o

osed only of & singl #
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Ux“@’cﬁkv o 8nd hente A TAAICA (T T) < T .

gee by definition thet Vx4 (Fe %) iz o basis of ¥,

Thareforo we

A llnesr topeleogy %° 13 sald to be of finite chavacter, 1F thers is

& basls of 4° which is compossd only of symmetric astar vicinitles of F£1-

nite character. A linesr topology %9 1s seld to be of bounded cha-

racter, if thare ia a besis compozed only of symmetrie star viclini-

ties whose chatogters are bounded, & 1inear topology %% 1s sald to be

eonvex, 1f thers is m basis of % composed cnly of syrmetrie sonvex vwici-

nltiea,

Theorem 3.

I & colieetion of vicinites ¥ ip B satisfies

1) for every ¥ . ¥ ¢4, we_can find Wei and X >¢ puch that
AW o TU, .

2) for any <4 we can find we¢% snd X »>¢ such that
YU e v foz 1$lga,

3) fop muy Wey, We can find Te ¥ and A we such that

AT AT <Y

then thers exists upiously e linesp topoloéy W of which ¥ 1is a baglas,

Proof. Dencting by 4° fhe totallity of vielnities <F such that
we have F > 42T for some s £ and A >4 , we epnelude pasily from as-
sumption that 4% 1s a linear topology eontaining ¥ as & basis, Fupr-
thermore it iz evident by definition that every linear topology contaln-
ing % &% & basls coincldes with KO ‘

Vie shell say that a linear topoldgy 4 on R is geperative, or that
£ 13 geparated by 4%, ir g‘ér‘wv =4o%,

43 en immedimte consegquence of Theorsm ¥ we heve

Theorem 4. If a symmetric star vicinity ¥ 13 of finlte cheract-

gr, then thers exlsts uniquely a linear topology of which ¥ 13 a basis.

_@ered 88 & connecter in R by the sorrespendence: R 3 ¥ s W =

§54 Induced topoloples

Let R De a linesr space. Every vicinlty ¥ in R may be consi-

o
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3 ' V € G wWe an fina b 141
u B .
iderin er j.ciﬂl'{;‘] € a3 B8 ! , . ? | |
R gonside g e : | | a E
. S t1 fies e bhasls (,-ondj.tic.na Bl §2€, ; : : . ) ‘ n 3
co ) il that ‘Zaﬂ 8a 3 : L 3 | e | — n | on TF a0
rmector we seeg eab v t 1 WI . ¥ Gef Mﬂ t
‘ a ence’ there exists by §26 Theorem 1 uniquely & unif'o‘fmi'l:,; on R of : L= Thus W 7
v nd h ity is cal.l.ed the induced U.IlifOI’mit‘{ : . ‘ 9 ) = %“3
: iform v 1 . Lor L
. which 1ﬁ) is n baslis. This un o] . |
¥ B’ ine ; ‘2!9 d a not,ed o) L 7oA . The indn A -tO}jOlOgSi by : ( ) .. ) Wi
b 13 ax topolog an a ¥ C | 4. ( ) g "e ha
¥ tOn()lOﬁ}: by & LineaT p ] N
i ity called the induced ( xB)
this indueed 'Llnl.f()r'mlt v 1s ' EL‘ASS‘ » WE h_a{ra ouvlous N /"] 8% ﬂ ¥ B 3 and A x5 is open b}’ (BJ »
b()]JD] CEY #t{a and ﬁen()t.ed by (\i ° . "': [ L3 E P . .
F ¥ e have by the fDI‘Iﬂ\ll as (2 ) » ( ) i as A xR z : ( |
¢ log 1 w A & "
GOT‘.GET‘Uln. the induced topo .c )
in §2 fo v I‘H 1a A < R .“: €B 18 we obtaln )
§ r eve nmanifo | . 1 1 9 7
] A = '5 E . T+ A for. aome ¥ & ’d{“ } 2 | ]B)t T xT &) |
{ ) ; . a A 2 “ | . : . )‘V‘ and
A E :4 ¢V - (f'lx U)n :.i, herefo (BX 1% [ (4,{81
(e) e . ni L - f ¥ we shall ‘."ﬂ‘i_ts ‘A or A : _ ( ) a
1 7 h i i tOpUlOE“,Y 5 l.‘ J he ormul
4 W € (o} 2% the duc | 0
fhen need ind =2

. Thearem 1.
- oblvely. ;
1pstead of A% or AT respeghl

If e manifold 4 is symmetric, then both A° and 4°
& obbein by (1)

are symmetric too.

For every element & ER W

vedl Theorem 2. If a manifolé A 13 a ster, then 4~ 1s scalar-ciosed
. ADTaex for some : l
Ava = {4t v} and A" 1s scalar-open.
s Awe D VEEYES for some
= A ’ " o
={=%" At a2 T+E forsome‘\?’c‘?{’j:(ﬂ{u . Proot

I A is a star, ther 4° mlso iz & gtar, bscouse § 4 < A

implies z 4" < A"' by ths formula (6). Purthermore A4~ is scalar=closed.

That is, we heve for every & € R Because, for any z & 47 we can Tind by (1) ¥ e 4
a
(5) 4°+0 = (ATE).

such that T+x ¢ 47,
conclude by the formula 343(10)
n we

Por suck ¥ ¢% we can Find further by definltlon £ = ¢ such that -~fze ¥
tio

From this rela

(4) Am v = (Av0) .

n
For every real number o ¥ & we

Then we have (j.gix ¢ Few & 47° , that is, (i-82% & A~ . There-
e (1) fqre A7 1s scalar-closed. ie 8lso can prove likewise that 4° 1is
ave DY

gcelar-open, if A4 is atar.
i AD>VT+x for some ¥ €4} -
ol A"’ = bl

Theorem 3.
for some T € 0 | Theoren

—.={e-<x:dAjeiT+dx ]
{2 ol 4 > THEX for scmeve‘gﬁ}.—s(o{ﬂ)

For a vieinitvy 4 , the characters of A
not greater than that of 4 .

and A% ape

Pronf.
and hence We have

(%) o A° = (LAY for ol &= 0.

Recalling (5), (6), (9), (10), we see that X4 xmd < x 4
tnplies A 4° K/“Ao CAA, LA wp AT C LA, Thus we obtein Theorem 3.
ude by the formula §45(18)

From Theorem 3 we conclude lmmediately
From this relaktlon wa concl

e (8) o A = (ot A1 Tor L F O
i we obtain at oncs

Theorenm 4.

If a vieinity 4 is convex, then both A7 and 4°

By virtue of the formulea §43(5),

a -
(1) AT < Aaqv"a(,ﬁ:t*&’) for ¥ €Y

-, we h
For eveTYVeﬂ(’, as WC T

Thecrem 5. For a lineer menifold 4 , both A~ and 4° apre 1i-

y aef inition.

i ‘near I
ave cbvioasly V~ & w0 o M_
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142 ' . nave by definit

we
Ir A4 1s & linensr menifold, then
Proof -
o*d T4 and AKAC}?},
-]
A A= (A C A
snd by (9), {10) further

AP XA C (AR €A%,

end A are line=r manifolds.

8)
Phus we obtaln. BY {5} end (

A AT = (ex.A)GCA_’

A-x A C (AxATC AT

Tnerefore A~ from (1) and (2)

tely
¢ ¢ we conclude spmedia

>0
For a hsasis & o 4 for some ey and A t,

(11) =it ADTE v)°
A)C)x
(12) A'zw‘p” ArxrV v[‘;,‘w,(

poth
b :13 Y of B linefd togolonxﬂ’{-’
For a Da

veg] cma {Ve:r VeE!

re basises of %P tod.

Theoren &-
EPI

LI ﬁ;} is &

) t of (5) and (8), we sce that 1V g
Q
rroof . On aceoun e AN

we csn £ind oy de

Vor any U e .
we have DY {6) and {7}

basis af U .
auch that AT X2V v
’ x 'v - = (A wT

and then

C AT AT .
18 of % by definition.

-, is a has niy of
Therefore { V" vest pasis of 4° whlch 18 OO oged ©
pe a DA 2

rie aLé ‘V ] ities We l’E‘VB [P 3 A A and onlg if
h Bl
trl tar icin 1 s

symmebyle BRoS —mmmmme o= 0 © gor every Te%.
inf o - v . X
we A by the formuls (32}
a’éA",then we have DF %0
proof . ir or every Ve and
ot AxIV ze ¥V

an endc [

‘ ]

s ha a. E =]

is € A Suc & v + ah

Thus there . h t kA .

Thisz I’Blﬁtion 9ields by 949(2) 0 x’uv.ﬂg . A3 E > 0 maey be arbls
I o = “ f'o very

!.'ﬂ.f Q. X =8 . evel v 3 z,

in hence then for &very
trary, ve obta o " ~liy =0 for every veds rnis
Gonverselys Y 12:4 A such that &~ iy <A
4% ¢ :
¢ we can fin «»T for svery
ey =and 27 e 0§ A
v 1elds by §es(B) G- F €AV and hen® 1n (12) @€ A .
pelation yie T

or
Therefore %e obtain by the f

If topolo ~f on & iinear SpPeCS
If a topology ____‘_____,_;E__—
ror every o ¢ R,
. for every A = 0,

geg and A0 . R satisfles
8.
Tneorem

l) Aéai MA-&'&GA‘
gy Ae?l impiies AA €T

854, §58)
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3) for 66 A¢ 7 8nd e/ we Con find of ¢ sueh that “xe d,
4) for pede we con find B ey Zuen that
L EB <4 for J3is 1,
5) for ge 4 £ we cen find Ce’] such that
CxC A, vecl,
then there exis.ts unlyuely a linesar topology % on g, such thet ~{ eoln-
cides wi.th. the induced topolosy by 4° . Furthermors {4 : ¢ 4 ¢}

is 8 basig of 4.

Proof. Every open set 4 29 is a vleinity by the assumption 3),

4}, Furthermore we see easlly that the totality of open sets contasin-

img 6 setlafies the conditlons in Theorem 53.3, and hewcs there exlists

uniquely a linesr topolopy 4° on R such that {4
of 4. For such %

For a linear topolegy ¥ on R,

aeAe"Jj— i3 a besis
» 1t 1la evident that - = ¢

if its Induced topology "j'w coin-

¢ldes with ¥ , then we see by (B8) that {4 : o €A€I} 315 a basis of ¥,

This we obtain the uniqueness of such a linear tovolory 4°.
We sfall say that m manifold A 1s open or closea by & linsar topo-

gy, if 4 1s 30 by the induced topolopy ’Iqo by 7.

855 Comparation of linear topologies

For two linear topologies % and ¥ on a llnesdr space R, 1f 47 2%,

then we shall sey that 9% is stronger than % or that 4% is wesker than ¥
Let @ (e A ) be a system of linear topologies on a linear space A

and 4, & basis of .. respectively. If we denote by & the totallizy of

Wy Fag oo Ve

for every finlte number of wicinitles T, € Ga, (¥=1, 2,..., %), then &

satisfies the conditdons ln Theerem 3 in 853,

In fact, the condition

1) is snatiafieq obviously. For any 7, € Kﬁ‘-w we cen find Ux, € &,

and f. >0 such that § U, < Vi, for o< &
Min

i, .y

£ f., and then, putting p =
- f~ ; we have obviously for 4% §F = F,

FOOLTag o Un ) € Wy, Tag v - Vi,
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we cen £ind ! space R, the indused topolory 4% by 40 is wesksr than bhat e by o,
144 For eny Vo, ¢ Tav : .
naition 2) Ls sebisfied. ther Wa, € & i if end only if % < %,
that is, the 8 7, .and further Wi, : !
& 4 f, > ¢ sueh that fu Ua, % 6 Ta, & o Th putbing € = i Proof. If 9?< ¥, then the induced uniformity%m by %* iz weak-
“ & A &l [ 5 e B en, F g . .
v o that §Wa, & i, for o= &S - ' er than that ®U” vy % , end hence 1¥c 1" by §28 Theorem 4. Converse-
and &, > ¢ aucy — W VT, 3 C v_&“ fhaoeo Ea .
obtaln P Fn, Wagmoe Wawd £ FCT2 T " wnere exlsts ! : ly, ir "1“"’(: "1%, then we have by the formulas (1} ang (B) in §B4
in GLf,  ue : . refore er i '
L aitlon 3) 1s satisfied Too- The ‘ Por ! {Ad: ochde¥tcy,
that- 18, the cOn . besis OfEQZ - i
linear topolody 4 such thab % is a w2 o 4 + and hence 4° < ¥ by §8¢ Theorem 8
uniquely & linse - P and hence % H :
: opology 47 we have opviously ¥, 2 G 4p 1o strong- i Theorem 5. For .a system of linesr topologles WoAn €4 ), putting
this llnear ’ linesr topolopY i . :
On the other hand, if & ve ' WP = 42, we have m‘?{’___-_ w %‘3{’.& A ’T‘qu 41‘&.
gor every » ¢/ vuiously ¥° 3 & and nence ' rea A€M ""ﬂ ‘
rv a& /A, then we have © 3 1nest ; Proof. Recalling Theorem 2, we obtain Y= %“"3- by §28 Theo-
er then %, for every the meakest SLTONSCT - 224
' ap, by definition. Thus Y5 1
obtain WY, Py

: E rem 3, and hence "Lq) = U "1%’ by §28 Theorem E.
ite % =V . . HEn
4 (e A }, and hence we may wE N e very .
. han € .
sopotosy oF B i topology on & 12 obviously wesker U .
ar
The trivial line

n R .
1inear topolofy @
1opy that is, it is the weakest
sther 1linear topQ R

. §66 . Relative linsap tonclogies
ing X
) on & , putt 5
jogies ¥ (>e A v
£ linesr topolog
For a system o

i Let & ‘be a linear manifeld of u linear apace & . For a linear
% o
g o= pe 4(\,1/ LaEA) C Be- \‘r . topology U on R s we zee essily by definition that the totality of rela-
aker ;
we obtain the shronpest WeaiSh A ana if ¥ < %, fer |
sously U, € %o for every ™ &/
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cauge; we have oDV

o follow- il S B This linear topology 1s ealled the relative T top(ﬂgpy e
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lection of vwieinities ¥w*
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(¥e¥) is = basis of the relative linear topo-

logy #7* in & subspnce 4.

The induced uniformity by the relative linear topology ‘?f’g is obvious-

1y by definitionm the relative uniformity of the inducsd uniformity M?by
% in a subspece 8 .

by 8§29 Theorem 2
e
S V ).@fl
wo basisg ©

W then Theorem 2.
= 1, 2p000 ’
for every ¥ 4
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P, aleso 1B CUNESRe
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Linenr toRG ¥
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BAE
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" ' - AFSE
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qaotiant ﬂl@ppﬁ.lig i‘lﬂ COUCi!iL\GU{E}:. GOnB@tuilth WS Obh&il! cur aBB3eY tilom.
S a ineeld =
[3) if e lingal” Tmanifold is ClOSBd 3) 1 € to clo
Theo sl £

40 on R o then the guotiept 2pags g /8
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RiE
1inear tOpolofy AR

1r 5+ ¢ ¥V/8 To

s sepsrated o thg relative

e a1l T £4? , then we neve by §46(3)
pProaf. ’ L e §54(2)“

A
&+% € §nT for a1l Fed? , and hence

: &2(-" Y2
e Ve e D 1 spaces with Line&r fopolo-
i topologica 1 .
nd & be two pinear "
S We see onally that the cobality

for veY?, UE W .
1 §5% Theorsm K

pizs A ADnG ot respechlvely.
; (v, 9

ftions
dwct space (R.8) aapiafies the sond
in the pro J

£y P
exiais anl aly a linenT tOPOlop on the Ioducb SPBCG
here x % N 3

po8is.
& , el is 8
o v 47 and a , end denoted by

e e This lineer

(&,5) of whien (7, T

o of
lopy on (R, 3) is oalled the roduct
tonoLoRy

§56.ﬂ §57]
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with this definition we have obviously

Theorem 7. For a basls ¥ of 4 and ;. of %, (7, W) for ved,

T ¢ @  constitutes a basis of thne product (¢, W),

A linear topologlcal space R 1s said to be lsohomeomorphic to a
linear topolegical space S , if we een find a linesr tranaformetion from

‘R te 3 which i3 a homeomorphism for the in#uced topolopies. With

+ this definitien we can prove easlly by §16 Theorem &

Theorem 8. Let R &nd 5 be two linear topological spaces with

linear topologies 47 and 9% resvectively.

¥Yor a llnear transformation

'aj, from g &o § ; in_order that R be lschomeomorphic to § by ;. , it is

NecessATy ar}d sufficient thet for anv Te4f we can find We4? such that
(V)< U and for any Ve4® we can £ind 7 e4f such that ¢ v) > 7,
-Recalling §av Theorem 1 we obtain by Theorem 8

Theoren .

The quotient space (K,S)/(-{bi‘,s) 1s_ischomecmor-
phle to R for the relative linear topology of the product 42, 1),

Theorem 10. For & linear topclosical spece g with a linesr to-

*pology 4, 1f s linesr menifold A& 1is contained in every Ve , then the

product space (R/§ , 8} 18 ischomeomorphic to & for (42 "5, 140§,

Proof. By virtue of §47 Theorem 2, (R /8 , §)} 1s isomorphic to

R Dby a linear transformation such thet the imege of ( ¥/5, 5) 1la ¥x4&

for every V& ¥, 4z 8 € T for every Ve%® Dy mssumption, the rela-

tive linear topolopy ‘ff‘g is the trivial one, that 1ia, ‘7{’3
of & .

1w composed only

Therefore we see by Thecrem 8 that (R/S, &) 13 1schomeomor-
phis to R .

887 Bounded manifolds
Let R be & linear topologicel spmce with a linear topology %7 .

4 manifold A of R 1s sald to be bounded, If For any ¥ £%° we can fing

X >0 such that A ¢ ATV . Wlth this definition we see at once that

for a vasis & of 4, & manifold 4 is bounded if and only if for any
Te¥ we can Find X > ¢ such that 4 < a7,
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We see further by definltion bthat 1f 8 menifolda 4 [ts boanded, then
%

old also is pounded for every real number & . ¥ pboth 4 end B are

bounded ‘oy“{“ , then A x B also 18 bounded. Recause, for eny V¥ € kel

we can find by definitlon we4? such That o x U<V, end = =0 sueh

thatACvi‘Usﬁf«"‘U‘ Then we have AXBC AT At T < el 7,

Heealling the formulsa §40(2} we have obviously

Por a basis i of s linser topology 97, B nanifeld A

Theorem L.

ia bounded by 40 1f and only if sup Ay <+ = for svery e,

ne d

Theorem 2. Tf a manifold A Ls boundsd by 47 , then the closure A°

by the induced btorelogy ’i"p is bounded too.
sroof. =~ For any e q* we cen find by definition T ¢? and Ao

such that TX T < V. A < XT . Then we have by §84(7)

AT c AT exT <XV,

Therefore A~ 1s bounded by gefinitlon.

1f where 18 1o pounded opeh set except O then asvery
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equential
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Theorem 2.
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if a linear tLoOpoioOf
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vasis of 47 , then we can find by def
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Thersfore we have
kg
Theorem -

ed chara¢ter.

i 3 it
For = syametric atsr vicinity of fin

orem linea 11 QL0 of W . 7 a ba Ther aefore W& have
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The em 3 & ]

‘Pheorem 4.

. F 1
a SESCB!U of 1linear bogologies of sin‘ﬂ.le vieln tg Q‘,\
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AEA
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In m':'der that a linear to alo '((.) b

Theerem 5.

¥ G =suffi t that thera 8 A Q a8 op T

n A g 1N TL 21l clemnt at boun ad en mani old
i T i

1t 1t coe38AT &

WY E % ¥ ¥ Bound-
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EveryT lingpX Lo slog t of pund

e character 7 there 1s by §53

a % !:‘ =3 i thGI‘ is
Fo a linesT £opolo of finite acharacter
by 5] t &

§88, §=0) LINEAR TOPOLOGY

different tfrom @ for the induced topology e

Frocr.

If % is of 3ingle vicinlty and ¥ 1is & Leals of %2,
then ¥ 1n obviously & bounded manifold end ¥ 2 @ by the forrule §£4(8)

CGonversely, Lf there is a bounded epen manifold A % &, then we can flnd
by the formuls §54(l) T € ¥ and o,¢ R such that 4 = "V 4 &, For
each ¥ ¢ 4(3_ there 13 a symmetriec T e % such that o »x 7 < ¥,and we caﬁ
find ot % g

such that of T > 4 = W +&,, Then we have

T € AT 4t € X T R T o T,
becasuse A, ¢ T implies —n, € o T . Thersfore 7 Ls a basis of 47,
Hecalling the formulas (2) and {3) in §49, we ses sazlly

Theorem 6. Lot 4% and ¢f be two linear topolosiss of sinale vigl-

nitly with symmetric star basises ¥ and w7 respectively.

In_order that
Y >,

it 1s mecessary and sufficient thet we can find o » 4 such that

dlizily; z lzilg

for svery = ¢ R,

A llnear topology of single vicinlty 4° 1s said to be normable, 1f g9

1s convex, Thus, for m normable linesr topology ¥7 there is s symmet-

rie convex viclnlty ¥ ¢%® such that ¥ is & basls of §°

Furthermors
we have obwlously

Theorem 7, For a convex linesar topolopy %7 there 1s a system of

normable linear topologies % (A €A ) gush that %2 =A{{A %

s We obtain obviocualy by definition

Hecselling §56 Theorem 7

Thearem 8, If both linear topological spaces K agnd £ are 59

guentlal or of single vicinity, then the produet space (R ,5 ) else 1s so

59 gompletengss

Let R, ba & linear topological space with a linear topology %7

nlete.

A manifold A4 1is& said to be complete, if 4 {is complete by the induced

uniformity ':‘/Ev:.u If every closed bounded manifold is complete, then

we shall say that R is conditionally complete, or that %7 1s condltion-
ally complete.

If R 1s complete, then we shall say that ¥’ 41s com-
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£ symmetric star vieini

ties.

Let 4 be s pasis of %P composed only ©

Recalling the rormalas {2) and (3} in §49, we s€& easlly bY definltcicn
a Ceuchy aysbtem For the induced

menifolds A, (> € A ). is
f for any ves and &
v Arg A O Tor eTEry finite num-

that a system of
» @ we Cen find n e

Lre
aniformity Wt , 1T and only I

gueh thatb aup NE-$hy<E and .
sue 2 x,;ep,ﬂi; Fhy Anidrg
per of elements i, A lv=1, PPN ) I We sée further that = Cauchy
is convergsnt Lo a 1imlt & ¢ B if and only ‘if for any

such that sup fx—-aly < &
L An

£ slemente G, & R (v=1s 250--)

gystam An (K € A)
'\je% and § =¥ We canf‘lnd)\eﬂ
#s zlso J&% 1ikewlse that & sequence 9

v i lim new.- G llg =0 for every Tedr,

18 n Cauchy sequencse 1t and onl
lr,'p&-iﬁaﬂ .
fo B Limit &~ € R if and only

snd that &, & R {v =1, 24 wae) 18 convergent

1f 1m0 s — il =0 fér every T & &

nt by definition that ever

N cauchy ssyuence 13 bounded

1t is evide
vy ¥ . Therefore we obtaln vy §B6 Theorem 4
Theorem 1. 1f s linear topology ?{3 18 seguential and condition-

éllx complete, ghen %0 1s completbe.
§36 Thsorem 8

Furthernores we have ©OF

1# @ linear topology g0 is seguential and complets,

Theorem Z.

then the indueced vopology ;:!1_1.’(“ 1s of second catepoTy . .
i

If a linesr topolofy 7w 1is seguential and {'ti",' ST g e
F elemenis

13 a decreasing pasis of %? , then for any %, ¢ T, Lthe sequence 0O
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Thecrem S-

g Kot °
x,,ﬂ*x,ﬂé.,._g.lywe‘i?y for every = 1; Byoes
Eroof. As T, % Viw < W, we heve by definitlom

gy & Fppg &0t T ¢ Voo &£ Fpa = X Veap € .

Thus we obtsin for every §= 1; 2ioen

N.a‘*‘}’_m-é"----i’x,,_i,Fé _vu +(1'+7L£¢.As.i-zr’)‘!
and consequently T4 ovo T (b= 1, 2,0.-) 18 8 Csuchy Segquence by %2 .
1ss ¥ and

Theorem 4- yor two complete se wential linear tO ole
o, AL YK and & 1is separabed by 9%, kRen we nave o= W

e & decresaing basis of F° amd 4 Ty

Proaf. Let {7 s Frooes %
o
For essh p= L, 8.0, Zince TP Vet = For
Poi

L IWEEE) Y thet of ¥ .

" and hence o ¢ T

§59) ~
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and the induced topology ‘i’; - Geor cory 2«
= - Qg v iz by Theorem 2 of seco d . t

‘ J ( 3 W ecuberory, we ca

b4 ) 3 3 "
find ¢ ? such thet ¢ % @ for the induced tonolopy “1° and
3% : AnG

hence ’ I a n 1 1 arn
(AR
¥ the formula 54( ). s w nd i
(%] =4 b $ 5 T ca 1 & elem
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G- & R.. and such that ¥ & oo T - This H ¥ 2 5]
£ o 1 ralatio leld 5] t
Fid 5 T 7 g

formulas (5} §
» (10) 1n §3¢ that ~a & o= ¥ ana

- ] [
Theref m F (T ra)ve-e) oy, Mo e
erefore we can fi Bt [ X -
ind py<p L o« LY
2% wes Such that e -
V, ¥-
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. % . ¥ A& T,,,,H_‘ , HS @& € Uyq‘:(a-p wo can fina . » g aas
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r Itew LE & i ]
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(+) e T
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[E10 a
IR U
1 a, 4'2&?)_6 -
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. )
f (
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£l N
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| & w2 that iB, 1 [ v

= r 5; P Q ful b= for e Eery
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. Po,
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WA R
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In a guetient space R/75 1is complet
mplete

and sequentigl.

Proof i
et et {W , V. .
i > ¥a,..a | be a decressing basis of ¢
- . on

account of Theo
Tem ’
4 In §56,{ K /5 LHBSS - .
vas | 5 a basals of the
re-

lative linesr topolon / In a notient a ce f 5 he 2 @3
> a /
i % q P » and nc 7
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al, F
or a Cauchy sequence X, é R/8 (r= 1
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an
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- Ky, € T /5

o [we 1, Yyeaels
}(ﬁw}ﬁ

= L ..) such that
and then further X, & T (r=1 e

- K (w= 1, Byaenkhs

& "'731; = }’\f“b-ﬁ'l b
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AE 84 oy oos ¥ T Funp g ™ S e
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IR I
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. Therefore R/ B
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condl tionally GO lple te chen the

goren 6. i both 1inegl tonologle t‘: e} e} R and %Y on S are
iy 1 £ gies
Th 2

complete OF

: g7, ).
by the produc P
ditionsell complets
— . @ a Cauehy.aystem by the product

£l .
ae .
f. Let A< (.R»JS) ( ]
e . e’ end T &V we van find By definition A.td,
e, n), any
nae R, and 4, ¢ S such that A, < (T, Tegede
Ao O]

3. Putting

we conclude easily Ay ¥ ({0},82¢ ('T-hiﬂ.as )

(A€ A }.s
o) = A% (l0of,8) _ )
(B 85 ) Therefore B, (. eA} 1a 8 Cauchy sys

en 7 From thia relation

we obtein hence By & V¥,

Lo »nE for a bounded manlfold A
i1 ‘owl .d Furthermore, if Anc A { Al
.

by ” . = we ¢ de easily thal
{ef 44 ) . then p.uttlnj (B,S),Ax{{a[’,&), e conelvnde
> E R o {

e =
fore there ls Dy &SEUW
ded by 4. Thers

A} and B 1s boun
Bac B (M8

Putting
(»edA ),

" piom a limit £ of B,\(xéﬂ)by"fﬁ,

(R,CN2F A;\K(R,‘“})
e (e d ) oy .

1n 1iuewise a 1imit © of &)
T suen that E‘*o‘;v+‘£’ Cp, € T +C,

A3 66\8)\’?0‘ ] C‘\Crongﬂ we

Then Por bvery Veé¥°

and T ¢ %L we oen find &, gnd p, €A
: ) o,
and hence { Bua, Cp, 3 & (Fad,T+E) g
) = (B, Cx
have (8a , 5 2(8ac, Cp, ¥, An =(

v kvl : very » €/ .
quently we ovtain Al o f, redro o Therefore (¥, ¥t) 1s oom-
§ i. ore 2
: ¢ A ) by §35 Theorem
is & limit of Ay (x

for every & €A . Conag-

and henee (4. &2

plete or ‘conditionally complets.

§60 Complebion

1y Cauchy systems by % .

§89, 80) LINEAR TOPOLOGY

Let R be o liuear topologleal space witn a lineer topolopy %2,

A linesr topologieal space % with a linesr topology @ is called a gom-
pletion of R, if

13 K 1s complete by 4@ .

2) % combains R as a linear manifoid,_

39 4 1a the relative linsar tdpc],ogy of :%_53

4} R 1s denss in | for the induced topology ’"1123 vy 49,
5) 10127 2 g,

Theorem 1.

For s linear topologlcel space R there exlsts unigue-

"ly a completion of R within an isohomeomorphiam.

Proof.

We supposs firstly thet A is separsted by a linear topo-
logy .

Consldering R 23 a uniform apace by the induced uniformity
w*f’s we obtaln by -§.57.Theor9m 1 = completion R of R with a uniformity
% unlguely within a homeomorphisam.

Then & 13 separated by ¢ by
4§37 Theorem 3.

[ L d [ P L
For -every % 2 e R , both RT(KX ) apnd RUTLE) (Tet ) are obvious-
We see easily further that

ARTLIE) X gRUCT) (¥ewl)
"12 = Cauchy avstem for every real pumbers. ol ; B ' Thus there exists

uniquely its Limit % e 7. For this limls % é‘r::': ws deflne
o= ool ok f& ?; .

Then we csn prove easlly that B

E dis a linear apace and contmins 2 asz a

lingar manifold.

If E=cl® + PE + then for any o, € ¥ we can find by definition

o, eqn sueh that o R‘E{,"CEJ ®HAR T, (E‘) < R TR Furthermore, for
Ty Uy ST, ¥, « Ty g W,, we havs

| % Ty CE) X p Uy ) € ol

Bscause, if %,¢ T, (%}, T T, (§3, bub iz:dﬁa*ﬁgz AR

s then we
can £ind W, ¢4 such thet VRIZ) T (Z:=90, and W, €14 " such that

Wis U, , AR T BRW, (T3 BW, ().
On the other hend, since we conclude

Wic’idcv@(’i')cU}xvﬁ(’f}fl'@k(%h )



POLOG AL > E 1II
156 LINEAR TOPOL e SPACE (Gll& ter V

%, e have . :
and similarly W, (%) < 'Q’ch) ; W

AR W (T )< ,r(tnCz.)
R (a‘;‘)xPRW‘(’m)Cg{R‘U’,'Cz)?‘-{!K‘U",_E} .

= tradictin
uently we obtaln a(RW.C:t.?KFR‘W,t}’) 0, con hat R
Conazeq

5 &N £ efore we have ;)z:wed
‘ i 4 se In R, b& the induced Opclogy '\1 her
thet iIf &+ ol i + P the o] ¥ U & w T e auch that
% @ can £ind (3
hen fobr an
) 3’ 3

Teg) € T, LE D
(*y . * TR *§ ¢ T by ¥ In ¢

olog? "f :
We shall denote mersly by #f the induced tOp T

o apa %, TR we can

. nat for any TME -
We obtain by (#J t

the seguel.

l:?.’ = Thus for any A € i
find T, & W S‘mh that <z ' .
. . 1

),
that A 2> T¢
zfz(z)ve'rft such

o then there is by §
amd & €¢R_, 1f zed,

t =l:
and hence we cen find T, e such tha N
| A-n- D'U‘C:L)-!-a o TR+,

% e for every & ¢ R .
Thepefore we conclude thet A ¢ “f implies A+

€
rove likewise that A €7l implies ot A
A of B andot*a,asd/!e';f

1 for every o *¥4.
We also cen p - oesin
Thus feor an arbitrary manifold

(-]
a‘ L]
Accordingly we have further £o<A) < o (_,.,eﬂ) A .

LATC L AY .
Therefore we have
() (t A)” =t A% - for ot w0 . y Fo. A

: : weh thet - (o) = A "

1 ge A€ ,'then we san find TeW s S ) v

that
® , we can find a star ¥ ¢ 4’ such

R
as U~ €U
such Tedl » cor avery * €R ,

(Trvirm € KT =)

and further ¥, e ¥ such that

F+x = RT &S far every X € R.
R R

h.B[l asg ig den g in or any 7‘ € we can find suc B
T R. ) R. ) T K
>

% ¢ U,°Cx) , snd hence we nave
. -
e To(x) & (THE),

Uth

@ < ot
From this relatlon we copclude by (w¥} for

L e (AT Ak ZIT & LV AR

anég X €V . Then we hava

i
Let' 4 be a positive number guch thet o =<
. (W +ett ) < - (o) < AL . o wen
. . I . = £ sue .
2l 10 5ed e”l, then for any ¥ e R we cen find ?_-
Thus;

. From (#%) we conclude easily by $43{16)

§80, ¥81) LINEAR TOPOLOGY . 15Y

I‘d,ﬂ)“:eﬁ,ﬁ“ For of 0,

Thug, 1f 4 is a symmetric star, then A7 also i3 a symmetrie star, be-

eause x 4 < 4 implies a.Ad” :;4".. Ife e A €Y, then there 18 we 4F
sueh that T ¢s)c 4 =nd for such Te ¥ we egan find & aymmetric star

W& such that T o g ek, Then we have for |3/ 5 i

A2 wte) 2 T2 FT" 25T "*30,

Pinally we smce at once by {#} that if 6 e 4 @ 9, then there 1s T €47

such thet T .x votelc A. Therefore there exlats’ wmiq_uely hy §B4

"‘heorem 8 & linear topology 'I{J on R auch 7f 13 the induzed topalogy by '!f’

‘Then for the relative linsar topology ’Zf’aﬁ ag the induzed to‘pology in ®

oy ¥ ? coincides with that in R by 4, we coneluds by $3% Thearem § that-

¥ coincides with @"“‘,. Farthermors, as the inducad uplformity by %

eoineides with %€ 1n a denee set R, we ase by §30 Theorew 3 that 2 i=

P Pt [
the induced uniformity in R by % . Therefore %7 ia complsate. We

can conclude the uniqueness from the uniqueness of gsompleticn for unif‘drmib;y_é

If R is nos separated by ¢°, then, putting & ={&}7, we obtaln by §52

Theyoren ¢ & closed llnssr manifola & ;- and hence the quotlent apaces R /5

i3 by §56. Theorsm & separated by the relative llnear topolegy W”‘s,

Therefore thers sxists uniquely a complstion ® of R/ S . Then ws

conclude eagily that the product space (K ,5) 13 a eompletion of (Rfg, £

A8 (R/8, 8) 1ie by §56 Theorem 10O ischomsomorphie to B , we see that

there exists uniyuely a completion of & within m homeomorphi sm,

Theorem 2, - For a 1inesr topolopieal Spaue' wlth 4 seguentisl 1i-

near topclopy, its completion aleo ia of El sequential lingar topolopy
Proof

“#he complation o:E‘ & linear topologlesal space Ft with a
séquential linear topology 1s & eompletion of R for the induced unliform.-

1%y, and hence i1t .18 by §37 Theorem 2 sgquential too,

§61 pinite-dimensional linesy spasas

Let a linear apdce R bs Finlte-dimsnsional wlth the dimenslon s

and ®,. (»=1;, 2,...,%) a basls of R .

i

Every element of R may be
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7 . o= 1 2,,..“33(.)‘,
ented unigquely &8s & linear comblnation of .. { +
repres g
1f we put . . r m)}
: .l (vwe=1l, Beess "
- % X, - 1, =
N {ET V and the

¥ e ¥ b3 R
then we see easil that gg isa a 8 etric convex vicinit n 3

pseudo-norm of ¥, is given by
L
= i 15,1,
I J:E;il gw oy “ vo v:l,iii-uvt, ™

AB g g o svmmebric onvex viclin there @ tlsta 53 aorem 3 -
1 c T init T her xl b? § Th re ind
L o

“is a basls. This linesr

' ieh V,
quely 2 linesr topology ‘Iﬁ on R of wh o

ated by ¥s o
leinlity and R is separas
bvloualy of single ¥
topolegy 47 13 obv

Furthermore %7 Lis complete. e
then we have ﬁ‘l?i_t’pw |g£y_{,..-* d;v,f

F ooty @ (p=1, B,een),
Becauss, if.él.j,,,-.-_»Ml oo My

: = 0
lm @ = Rplig :
Fap o0 . of we obtaln
1. 2 ,¥% , and hence, putting D{kdf}glm e T
Ly Breoen

L _—
im g — 2ol R llg FO.
e "~ =

If we set
Ly = 2 es ey ¥ El
1(“-(;,2"-.—:;,,1;’) = gM (/A"'l’ ’ )

then- we 8e9 nsl < Q ¥ b ‘tﬂ caQ c
he nduce un
< 1 that © 1nd: d 1forml Incides w th the

=1, Braaay?t.  BY
weak uniformity by thess linear functionals ‘f’l‘* (p=ts 2

virtue of 7 Thecrem ever bo d man ol b t‘: ded by ]
¥ ir a i 1a boun o Bh
4 unde
§5 T 3 2

¥ ¥ g heorem 11.
induced uniformity, and hence totall bounded T §34 iy

3 have = ¥ .
If R 1is separated Dy a lLinesr topology %2 , then we L4

Because for any U@Q wWe ¢c8n find ) i ion e symm rl &
? b de nlt et e abar Te ?3

= 1
L for ¢ =% § 5+, » ,
such that T® < ¥, and & > 6 such that §x, ¢V

[%4

4 Q E < of = 1 Brace )‘f—)
oy . p2 3 Then we hﬁefl‘.l vi_ ( ¥ ? 2
Cga g N

ZW- gyz" € -UMC-VJ

) T a 01
- Therefors we have %% > 47 by de.i‘iniyion

that is, o« T € T . .
th ther hand, let & Dbe & closed star basis of %¥°.
s othe nd, .
T AT ={of,
Tedy, Ao .

g rtlon.

separated by §* by szsum |

S is closed by "‘1% for every ¥ & g

Then we have

As ¥ 247, we have by §85
L]

Theorem 4 AL ’i‘w, and hence XAV
If we put

= % —
p- % Mex 15, 1=1},
A= { = g.y Lo B I3 N
e totally bounded by the n

and » »¢.

then 4 1s obviously bounded by ¥ end henc

o By e e e

N

Y
¥
o

§61) LINEAR TOPOLOGY 159

duced uniformity ﬂb'i%by W, , as proved Just above. Furthermore we sse

easlly that 4 1s complete by 9% , and hence ciosed by the induced topo-

logy 1%, Thus 4 1= by §35 Thearem 5 compaet by y ¥ As
T (AT)d =g,
Tey, A »p

we can Tind by §7 Theorem 3 a finite number of vicinities 1@&33’— snd o

= [nd
(p=1, 2,...,¢),) sueh that (I 2rVudd =0, Since 1T 3. 7. is

a star vicinlty, we obtain hence ‘ﬁ)\f‘ ‘V',“ < Ve Theresfore we obtain
. ‘l‘u'—'!

L Consequently we have ¥ =%, Thus we can state

Theorem 1. In a finitandimenéional linear space, there exists

uniquely a ssparative linear topology,

cinity, ang

which 15 convex and of single viw

P& bar s (L=, Byoruyn)}

s & baais of this linear Lopology for a basls z, (

=1, Byane, ) of m,

For an arpitrary linesr topology 4 on g , putting 3 = {9}, we see

by §56 Theorem 6 that the quotlent space g /5 1s separatesd by the re-

lative linear topology ?(JR/‘S of 47, and further by §56 Theorem 10 that A

is ilschomeomorphic to the preduct space (R /S5, 8, Thus we have

Theorem 2., In_a finite-dimensional linsar spacs, evsry linear to-

polegy is convex, complete, and of single vleinity; snd every bourded ma-

nifold 1s totally boundsd by the induced uniformfty.

Ag an immedinte  consequence of Theorem 2 we have

Theorem 3. If a linear n.m,nifol&d A of a 1ineaf topological apsce

is finlte-dimensionsl, then A 13 closed by the induced topolog.v.

Theorem 4., For a linemr topological space g with s separafive

linesr topology 4 of finits charecter, 1f there is s vicinity T e¢? ,

which is totally hounded by the induced uniformity, then R 1s finlte-

dimensional.

Proor. We can assume ‘obviously that ¥, 1g a symmetric star vi-

einity of flnite chsracter. Then there 1z a positive rumber A suech

that for the pseudo~norm Jt:r_uv“ off ¥, we havs

() .nz-a-y.nvag7L(.uxu%+n;uv')_

A 12 separsted vy ¥, , that is, ll’r.l[.va =g impiies . =¢ , Be-
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. ¥§ a by, =0 for gvery reak mum- _

" = then we have
gauae, if GRkilly =8 P e L

n ¥ hence e &V 0T ave & %: epRIE a by 08 aun-
be L 2 and ; e T Ty % pit:] is s tiv |
it T nee W lan
tlon there 1is Eﬂ sugh that g -8 1 fo some ? » and henc I O
s & & 1 t

. . ] is
contradicting by §67 Theorem & The assumption that T

bounded by ¥,

totally bounded by the induoed uniformity.

taf e — %l =0,
For a finige-dimensional linear menifold 2 , if Jnf :

: Lim I =Tl
then we can find a geguence e € & (p=1, 2,...} sueh that A, Hoa Wb

by Theorsm
o Hp U = O . dince S5 1s
= 0 , and hence by (%) P}rig“ I ehy

: 8 basis, thers
2 eomplete by the linesr topology on S of which T is & ba .

On accbunt of

_—gg g =
exlsts then %,¢ S sgcn that #Eﬁ%"xﬁ e,

1y o= xn,68. Thus
(%}, we obtain thevefore flm,— t-llg, =0 - snd econsequently .

if &% &, then, pubting
= inf la-%ly >0,

w at . g utting
e can find ®,¢& $ such that ila=%o g, < 2. Por such X, &5 , P _
o
: 4 = ! e Xa ),

USRI S—

imﬂl“isu“vg B - A s

4. apna for every £ &8 , a8 X, +illa-Tolv, »
i

- | ot _ i

. o =xe — Mo~ Zallgp X1 > = 1

".-g -— LI"V(, ) 2 Z?‘_QL.,.- e

2ila~ 2, liw, ) e of
5f 2 iz not sinlte-dimenaionel, then there is & seguen b

we have Ndlq =

3o

Tharefore,

elemenis z, 6 {v='1; 2,...] such that
for wappt.

=1, 9,...), but &, e, oeo}

;
4
— = -
NHe Wy = 4 » Wy~ X lly, Z %

Then we have by the farmula §49(2) AL e T, (¥

ot tota poundesd by the nd\lced uniformi ecaule if
ia n 1 S 1 ¥ B I

(2, a0 1€ By Lo Vo &)

= wey ¥ ‘then we can
for some Tinilte number of elements Gy, & R(+= 1; Byn0ey }s

e Thia relation
find ¥ and p =% § such that ., ®p € (-—-‘V;-f Gu )

{ d hence by {#)}
! el AN
ylelds b §49(2) M Xu~Gully 5 Jr * I Zp =&y g, £ =3J’x
L Iy = '%f , contradlcting Nat.—Xp il = N
. B

§62 Weak linesr topologles

a linear topological space with a lipesr topology .
1f ¢ 13 conbinuous

Let & be

£ functionel ¥ on R 25 satd to be econtlinuous vy Y,

§81, §s2}) LINEAR TCPOLOGE 161

¥y the induced topology % i » and ¥ i3 sald telbe uniformly continuous

by ¥, if ¥ ia uniformly eontinuous by the induced uniformity ﬂffqﬂ
With this def‘inition we have

Theorem 1. In order that a linesr functional 439 on R be conti-

nigus, 1t 1s necessary and suffielsnt that we can find a symmetric con-

vex viciniby ¥ €% such that & is bounded in ¥, thet 1is,

rlﬂ_.vllv':::% [P ezd| < wos,

_M- If & ls continuous, then, putting
V={=: itrexot=g i},
“Wwe have Ye4 , because we can find A C‘V" such thet ¥, < 7. Fur-
: themore ¥ 1is aymmetrie and convex, bscangs ]Cf(z]f [?ca)igl impliea
for A + = }/«. =0 .

l‘f(a‘kﬁt-@"ﬁﬂ»})lullf"cxl*f&?’c#)i Al‘f’(a’.)i-ﬁ-/&c{-‘fca‘p)f _
Conversely, 1z Jl%f’!l.v <+eoa for a symmstric convax vicinity T ﬁfﬂ .
‘then fer any xse R, and € »>@¢ .we havs by the formla 552(2) -
EV +x, © X, Hf(thlé ncfum, = EH‘PIF-V}
= {x lﬁ?cz-)—— Perarlm Elleptig b,

.Thergfore o ig unifermly continuous by the induced uniformity fyfi‘é, and

hencs naturally continuous by the induced. topolog:r ’I%
In tnis Proof we - obtain further

.‘I'heorem 2. If a linear functlonal & oh R is continuous by ?F,,

..then f-f i uniformly continuous by L/

Now let R be merely s linear spuce and ¥ a linear functional on R
Putting ¥ #_{# : M"c:_&}lg i}, we obtain a symmetric convex vici'nity s
in g , as prdvéd' jtist abova. Thus there exists uniquely by §53 Theo-

rem 4 n linear topology ‘?f? on R. of whleh ¥ 13 a basia. By virtus "

of Theorem 1, we see &t once_t_hat ¥ 1s continusus by this-l_ineér topelo-
gy 4‘3“'? . For e linear topology ¥? on B, ir @ is continucus by 2,

then ’!{J _rﬁﬁst contain nafurally YV, and -hence .2 '{(J?‘ Thersfore G T
istme weakea‘t linear topology by which < be eontinuous., This linear

topology ‘?("" is called the weak 1linear topolcgy of & by a linear func-

tionsl ¥ A3 eV o ={x: ftay= PCa)ls £} ,wocbes easily that .
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the induced uniformlty by $° ¥ golncides with the wesk unlformity of R

by ¥, omd hence the induced topclegy by % ¥ goincldes witn the weall topo-

logy of R by .
Por a collection of linear functionals £ on R, thers exlsts the

weakest linear topology on R by which every linear functional of § be

continuous. Begause, for the wealk linear tepology f{’? by ¥ ¢4, put-

ting ¥ =
and every 1ihear topology on R,
then %°. Th.il.s 1inesr topology 4 on R 1is called the weak
Every weak lineayr topology of 13 i_si ob-

‘%P‘f we ses easlly thet every # ¢ F 1s continuous by ¥,
by which every . ¢ § 1s continucus, is

atronger

linear topslogy of R. vy F

wiously convex by $565 Theorem 3.
With this definltion we obtalm by §56 Theorem 2

For a collecilon of linear funcbionsls # on R, the
- for every

1, B,..0,3 ) 15 2 basis

Theorem 3. ’

totallty of menifolds { % : I (z2l51 (vel, 2, i)}

finite nunber of linesy functionals g ey (r=

of the weak linesr topology of 2 by £

Reoalling $55 Theorem 5, we obtaln further

Théorem 4, Tits induced topology and tha induced gniformity oy the

wealt linear topology by a collegtion of linesr functionals :f' coineide

“’espectively with tho weald topology and the weak uniformitvif

‘Let f and § be two collectlions of linear I‘unctionals

Theorem .
on B . For the weak linsar topologles 1{9 P 7{‘.%‘- respsctively by F, %—
it is necesasary and sufficient that the linear

in order that ‘l{-‘f ) Q{‘J@,
manifold generated by £ in the associated space 7 of

2 contains s} .

Procf. Let F be the linear manlifold genersted by & 1in the as-

sosiated space B of A . It is obvlous by definition that every ¥ € £

is continuous by %?f., ' Thus the weak linear topclogy of A DY £ coin-

— .
cidss by definltlon with that of R by F. tTherefors, if § > &, then

”If’f— is by deflnitlon stronger than 'Z{Jg.

er than f{}@, then for eny ¥ & @ we can find by Theorem 2 a finite namber

of linear functlonals @, & £ (»= 1, 2,...,% ) snd £ > ¢ such that

it L.t} 28 (=], 2, .,u)b e i peag 1L,

Conversely, if "%”Fis strong-

. I‘inite number- of -1inear functionsals #ole=1,

§ez)
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that ia :
P AFecl g {w=l, 2,000, %) impiies #wexdl g1 Thean, 1
. , for

£
any o TG » § L7 = e v l, 2 ks impllea W fal & o= and
. lb >i_ ( - ? »“"ﬂ‘p*‘) 1 l £ ’-J!‘ﬂi
hence | l(z?fﬁ"i : = = _l
Lig - Therefore we conclude that %ﬁ, () =@ ( Ve { 2 )
ol L g 3 e K

impliss Ylxy=0g. If we sat’
(r=1, 2,..5=)¢,

then A4 1is obviously a linear manifold of R , and conaidering 4
prind b

A=ix: Tz =o0

as &

1 ng nct nal 0]1 the gdoti& t apaca A. W e by 5 heorem &
gr fu iO TL =3 /A ¥ e Ze §4 T

th v ¥) V Fa
at ® ery lil’lBBI_‘ T nctic:-nal '..on R /A is 8 linear comb inatio I
. d n o &

=1 Brves }
_ 5 AN As Y ta)y=p f£Or every m e 4, may be consider

ed s a 1 : RAA
.inaar_ functional on. R ey -» 808 hence % 1s & linesar comb»i'nationr

af = . . -
of @, (r= Y, 250065080 Thus we have .4 #F  Por svery 7 ¢ %I-

Theor . : :
am 6 in or{l:ler_‘that the weak linear topology of R, by & col

lsction of 1
ineg;-_ Tunctionals £ be of ,singlé vicinity, 1t is necessary

and suf : ear
uffiglent that the linesr manifold penerated bw F# in_the sssoclated
_ _ : 1 ate

space B of % be flnife—dimensionalq

Froof., ir & i3 conteined 'in a lindar man‘lfold generated by a
llnear e : 2y...,3% ), then the weak
D gy R by £ i1s by Theorem 3 of single Vieinity with a basis
| r{_xz Iutxzl gt (=1, 2,..,,:)},
Conversely, if the wesk linear'topoloéy t{)f of R byef is of single vi
¢inity, then we can fipnd by Theorem 3 = finite nuﬁber of linsar functionals

k7 ¢ such that x ° : -
: i lheexslg i (v 1, 8,v.e,% }} 19 & basis of V’f

and & g wWe co iyde by hecream that ont ed i e anl -
hehnc ne T o) a f i1 ¢ aln in the Inear m 1
) “

fold genereted by ¢, (v=1, 2;...,x .)

Theorsm 7.

In order that a menifold 4 of E D2 bounded by the

waak 1] ;
sk linear topology Q{Jf by 2 esollection of linear functlonals F it &
. ! s

necessary and sufficient that we have

Sup l‘f(?t)i < e for svery e e g

Proof,. IF a houuded '.')y ?ﬁé then T eack @ f we haves
— . A El £ A € s a2
by haorem 3 { % - (%) = 1} ?{?5 we can find by definitien o &

i L . ch | = € )

such that

Aca{m i igcmgit={x: 19wm)lg=},
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and hence sup lecadlget. Converssly, if aup | Lxdl a2 v =2 fOP

every ¢ € F then for every finlte pumber of linaesr functionﬂls v e F

; : il gz el for every
{w=1, 2,..:,% } w8 can £ind of > ¢ 3uch that ;;Sg,% |¢f,r_f l=
val, %,...,% , and then we have

Acot {2 ¢ 16 23IE1 for every ¥ = 1, 2,000, ),
Thus 4 L= bounded by Theorem Z, _
Recalling §34 Theurem 11, we conclude immsdistely from Thecrem i

If a manifold A 'Q_f_ £  is boundad by the wesk linesr

Theorem B..

pology 4 n A is
topolo qpf'gj_‘_ g Tor a collection of linesar funetionels £ , then A 1is

totaily bounded by %7 ¥,
Tf a lineer manifold ‘4 of R 1is ciosed by the weak

Theorem 8.

linear topology 2 of R for@

collectlon of llnear funetionals £ , then

= @

for any #,¢ 4 We can Find w g § rsuch that ¢ ¢x,) 4 8 but  #F e
6 — e —— flotfiasto-y
for everx xed .
Proof. For o linear menifeold A of R, if ¥z} = ¢ for every

26 A, §ed , implles % (%)= 0, then for svery finlte numbor of -

" paar fulnctiolnals @, éJC’ (=1, B,.u0,% }; eonsidering ¢, as linear func-

%= e Bl
& = F o & = and hence there
ticnaiz on & , A B o= 0 lmpliea & Fuulz) =0,
io by 146 Thearem 4 & ¢ 4 suca that G (a)= o) (r=ly B, 8.
Taua, if ,yqﬁ is closed by the weak linear _topology ‘?{‘f, then we must

nave %, € A . |
The wesk linear topology of B. by a collection of

Thecrem 10.

lineiar.ifunctio.nala £ is separative, if end only if § is fundamental.

Proof. If the weak Yinear topology 1{){" 1s separative, then for
any ® 0 we cen find by Theorem 3 ‘f’ € £ such thet Plxd k0 and
hence § 1is fundémental; Convgrsely, L His' fundemental, then‘f.ox'
-'any x g we. gan find & &§ sucnh that peryE o, and hence we conclude

by Theorem 3 that the weak linear topology ‘?{ﬁd is separative.

§63 Quasi-normed linear gpaces

4 lineer space R associeted with a queal-norm Il & § {xe R} 1ls

e S R T BT A ek T g e g

s amem e 0

okt e

CNIE S P WU S,

e » W frumar e

T e
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calied a gnuagi-normed linear spaca.

With thisz definition we see saally
that, putting W, = {x : w=xll 5 @l for o >0, we obtain g aymmztric

star vieinity W, for every o« »¢., and we have

"Td < _vea ' f‘orl G oz ot o f‘:{ .
Vaﬂ, s T@_ﬁ ‘:_ -v-g,el,
because W -y Mg i+ f!!c‘}. for every =, &oe R Thererors

there exlsts uniquely by §563 Theorsw 5 o linegy topologjsr‘% on & such

that T, (¢ >0) is & basls of %7 . This lineer topology %3 1a called

the induced linsar topology by a quasi-norm = g (%= e R ).
Since YV {e=1, 2,...) ia obviously e basis of %3 , we obtain
W . B

Theorem 1. The induced linsar topology by a quaai—no'i-m is sz

Furthermore we have cbviously by definition

Theorem E, A quasi norm 1s proper Lf and only if the induced

111'139& topolicgy ia separative,

Theorem 3., In order that the induced linmear topology by A quaai-

noxm i g ﬁ-f&ﬂ ) be of singls vicinitv{ it is _necsssery and sufficient

shat we con find of =& zueh thai

lim  sun WE =N =8, '
B 28 Rz FHeal
Prooi, - If the induced iinear topology '3;00 is o simgle vicinity,

then we cen find o > 4 such that Ty ia 8 baais of ‘?{3 for the notation
indlicated just a‘bcwzss end for any £ = § we can find A » ¢ sueh that
2 Ta < Tp o that is,

Wa i =g Tor m=w g o,

this relation ylelds o.bviously

iim sup Bgxll =g0.
E-rf wiiil g o :

‘C'onv.e'x'sely_, 1f this relation holds for some of > & ¢ then we see easily

thet. ¥, is a basls of ¥} for such o >4,

Theoremn 4. If & quasi-riorm 18 of Finlte character, then the in-

duesd lineer-topology 1s of sinple vicinity. .

Proof. If a guasl-norm MZ I (2 €R ) iz of finite chara_cter,

then we cen find by definitlon two positive numbers of , ¥ such that
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.-»mvam m-—»vcm for mms £,
and hence we have for svery b= 1, 2;... . '
.,mxa:a m__, x il for il e,

Thus we have
1im sup ngz[u;:a_
40 mrmga
Thersfore Ve 18 @ basis of ths induced linear tbpology by Theoren 3.

(,\L R ) ig uhiformly continious

Theorem Da _A quasi-norm fx il

‘ny the 1ndueed 1inear topology.

Proof. A3 we have by dsfinition. _f;‘or every =, 3 R
_ Pt~ agul = e — g,
we coneclude easlly by definltlon our asaerfion.
We have defineﬁ already In §B0 the completeness of a quaesi-norm.
As the induced linear topology by 8 qus.si-ncfm ia sequential by Theorem i,

wa have obvlously by the.definitiom of completeness in §52

Thaorem 6. p guasi-porm i3 sompiete if sndé onljf if the induced

iinsar topology is complets.

Resallirlg §50 Theorem 3, we obtain immedintely.

For a aequﬂntial linear tepology ¥ oon & linear sSpacs

Theorem 7.

22 ig phe indnced iinsar topolegy .

R there ia a guagi-norm on R_ by waich

Purthermfore we have by $50 Theorem 4
Theorem B. For a linear topeology %4* of slngle ylcinity there 1e

g guasi-norm such that %7 1 the {nduced linear topology and

Nl --—-— = -" i = i for el = -:,%-

2%
for some positlve yumber A |

TSt

16%
CHAPTER IX

ADJOINT SPACES

§6¢ adjoint topology

- - ‘ :
et R. be g linear topological spece with a Iinzar topoloegy %¥°.

A ilnesr funciionsl ¥ on R 1s said to be bounded, if we have

| | | isg.% TPex | = Hoo -

For every bounded wsnifold 4 of R by %7, With th_is. definition we

shall prove Firstly

Theqram l. Every continuous lineer functional, 13 bounded.

Proof, ) i ;
: of If s linesr functional % - 1s contimious, then we can £ind
by §62 Theo;em da awmqt?ie' convex vieinitw 7§ %2 auch that
e 1@ )] < hoo.
F
or’ mny bounded manifold A we can find by -deflpltion .ot = ¢ such that

AcaT, Then we have by the formula §52(2)

Su ’
el lgea)| = sup topem| = Hzf“dv = AN ly <+ oo

Thersfore '-f i1s bounded. by definltion.

T i ' squiva . .t
sorem 2. If a linear topolegy %49 is 1valently' atrongest or

stendard, thsn - every bounded linear functional is continuous.-

Proof ) L_Eu % be & bounded linear ,functional on R.. Puttiﬁg
| v, ={%® tepezalg 1},
Wwe see easlly that ¥, is a symmertric eonvex vieinity. Thus there is
uniguely by §53 Theorem 4 z line ' of .
m 4 a lihear topology %,, of which V, 318 a bdsla.
Then, for sach bounded manifold 4 br 49, putting of = sup ¢ Cx) ) we
. - .
have o
A <ol TV, , because of Y, == f_{ofx IPCe g P {3 1 (FCxI] g o}
= L -
Thus every bounded manifold by ¥ alsc is bounded by %2 Theraefore
B - i
we sce essily by
Iy by §B5 Theorem 2 that %*“%? is equivelent to 4. = as
i is e%uivalently strongest or standerd by assumpiion, we obiain hence
=i >4, 27,. Therefore & is continuscus by §62 Theorem
The totelity of bounded linear functlonsls on B 1z cslled the ad-
loint space of & by s lineer topelogy %7 and de;not.ed .ﬁy ‘E@ With

thla definition we see easlly that the adjcint space -E’%ﬂ i3 a llnear ma
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nifold of the associated space B, of R .
Let ® bhe the to‘tality of bounded manifoids of & by ¥ . Corras-

ponding to every A € G , patting for & € ¥

Ty= % ¢ 1F etz 1 for ovary. &€ AL,

‘we obiain a symmstric convex vicimity ¥, 1n ths adjeint space »_Réw_, nes

cause [H e % 1, 11 C@.) {=1 for every t-¢ A Impliea

ﬁ(Az-&-ftha) ﬂr.:ml LS T dvf»ﬂ:iﬁzv:mig?
for A + f"" {1, 3, 5“ =20, For such ﬁ}';a we have opviously
ol Vg = "fﬂ

A8 Ae’m implies &t 4 e and A, BEMR izﬁpliesﬂ-@ﬁeﬂ, we see

for every =t »&.

eaaily that. the system of‘ vlcinities ‘ﬁ;! {AedfL ) in ﬂ aatisfies the

con@iti‘ons: in §55 Theorem 3. Therafore there exlsts unlquely a iinear

topology 4 on. AP which the system T, { £ €L ) 15 a basis, This
With this

‘linesr Bopology. @ is called the adloint tevology of LR
.'dafiniticm we dee &t ﬁnce that a linear topelogy esquivalent to % has the
same adjolnt topology with @, .

A eglleetion of bounded manifolds # in & by ¥ is egalled a oot

Cof#, if for any bounded ‘menifold A by 40 we cen find R 9% osuch thet

AcCB, Por & root # of ¥, we sae easﬂ.j] by definitlon that
4R osup |E (2= res for every A ¢ ®J
B oar ‘;J]

is the adjolnt spsee of R, by 4®, and the system

{£ : i wigd for avery zeA} {Ae®)

is o baels of-the adjoint topolog},r @ of 9. Becmuse for any bounded

manifold & we con find A €R “such that 8 € 4 , =nd then
A AL SRR

“Theorsm S., The adjoint topologv 1s convex and separative.’

Proof. The adjoint topology 4?5 of 47 1s obviously convex by de-
rinttion. vor & ¢ BT, 1f & # 0, then we cen find @ € & such that
aiay>l. For such @ g & , putting T={% : 1Tca)l s i}, we nave

BET but Ve @9, becaunse @ is itaelf a heunded manifold of R by ¥7.

Thus % is seperative.

For each @ € R , putting

for . every e B} >1{%  [Zcalgt for every med],

st e

§6d
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3} = fa) 2 = R'—E"“
Wwe can consider a k ear functional on . The we Ve
ide a. a a in & hen h
a

gqrem 4, . Fery
Every slement a, e R is continuoua by the ad] oin‘t Q
Th 0=

for xeR”

iRl = Ta)

Proor, ¥ . 0o e by 1{3 &
Ever a g R is urided a8 o memif‘old Thus P
FRAslN [l L
ting vV = {x o 12 (@)Ig i}; we have V E%

- 5. 8nd hence we conclude by §6.

TEB()I‘em 1 thet o, 1= conti uous b %9
n ¥ a3 a linear functional on 4

Theorem 5.

In order th
- at_a manifold 4§ of the ad‘]o;nt apace & W
€ bounded by the adloint topelogy @{J

it is necesssr:v’ and sufficient that
by %4? ws hawe

for every ‘Dounded manifold 4 of R
8 Z ¢ i

‘i‘@;ﬁpzeﬁ‘ [Z €23} € won .

is boundeéd by f.he edjoint -topology ?,

bounded manifold A of R by 47, putting

Pfoof'. It &
then for each

VA‘={2 H Ii(ﬂ-)lgi- for e\repyaeﬁjs.

we have Vy € ?‘9 a,nd hence m'e can T db 8 tilo e =G © | €:
k A ¥ s . In Y [s1 flni ixl Suﬂh thi A
&

ol Ty For such of %0 we heve
_ 3up [Birrls . .
mef , 2day xed?ﬂ,zsd‘zm”‘ “pi¥ I?m”&d

Converse PARC e V
ly, ir sup 'R ¢zl < @ 4orﬂever‘v b
s Aes e, ou.nded ma‘ﬁif‘old A
C. then, Putting of = sup '
_ Rej, =
AC:{%_;‘_ Ex(&)l,_,;@: Tor every a.e 4}

lx e, " we have

= {aFE: [Zearl g 1 for everyae/q}—_ec(ﬁﬁ

5 the s Stem Of VA for all bounded manifold A of R 1z b definiti
n on
a basis oy % ﬁ is ther efore Doullded b? %

Theorem &, F'or every ¥V ¢ %, the manifolg

iz @ IENE YN for svery we vV}
1 ndec
3 c;osed and. bounded by the adjoint topology ? of %9

Proof, P

OoT each bounded manifold A of R we can r

ind by a -
tlon et > ¢ such that 4 <=V, . ¥ deflni

Thus, putting

A=q{% : 1i(xai< 1 for every x e v},

we have 83.1 x al =
p CE (‘K.)lﬁ aup fx(_?a’.}i‘::{ SU.P i /CW-H Z ol Thua
jﬁ 1= by heoreu. & bOll‘ld d ¥ n}‘ =
= T e b o%’) I‘urthez‘more A s closed b ?1: be
3
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vanae g = Ti - §% :[F=xlz= 1) and every = ¢ ¥ may be considered by
- e ¥ . - g
Théorem 4 as s continuous linear functicnal on the adjoi.nt spacs & . by ¥7

Theorem 7. if i ig convex, them for any 'Vé"?(”:,

{m i IXemdl=m 1 torevery T ¢¥}

is g bounded menifold of R by 47,

Prooi‘- .Por every <losed convex vielnity ¥ é’_{{*‘g as T is by §5§
‘Theorem 2 scalsar-closed, —pptting
E;:.{'JE. D E ey = for svery = ¢V |,
we have by §52 Thsorem 3
. =i P |E RN L | for every K2 A4},
: F e that
) }f 15 bounded by Theorem 8, for any ¥ €%* we can find & = a__ such
44 T , and hence
{=s 1R¢zyig ] for every R ¢ T }.
C’{.z’.' jRexd)i=w I for every ¥ ¢t A |

' = . 7 i
= Lo 1o (Lx2] €l for every X ¢ A I = = V.

Theorem 8.

If 4> 1y egulvalently atrongest or stgndarﬁ, shen for

svery bounded manifold A4 g_f.:ﬁ‘%owe heve

{z aiciaié‘! for every £ e 4 } & 7, ‘
- N ; He d | ws aee
Proof. Putting T, = { % ! {E (=3l g1 for every AY,w
eastly that VW, is s symmetric convex vicInity in R . Thus there 1s
13 a begis of
by §5% Theorem 4 a linsar topology %% on R such. that ¥,
i-
e For esch bounded manifold A of R by ¥7, a8 we have Dy defi_n..
- ‘ ‘
7 thas
tion {2 ¢ 1H¢r)] <1 for every xé 4} € %7 , there iz & > ¢ such
Ac o {E ¢ IRem)lg 1 for every e A}

. . F
{% ; 1Bl g i for every e AL,

i

or B &£ A L : Werefore we NLave
and hence |Z(z3l £ 1 for X ¢ 4 , me=4A. Thg !

{
:&"’AC“Von

by 47, too.
, o= (¥4
lently strongest or stendard by assumptlion, we obtain hence ¢ = ¥ '?f',,

. .
Thus %7~ %% 1s equivalent to 42, A3 ¥ 13 equiv

= 2%, . and conaeyuently ¥, & %7, N
; _ .
A manifecld A of the adjoint space R 1la said to be unlformly bound

Consequently every bounded menliold A by % Ls bounded

e iacy e s i e

ed, if we cap Tind V& % such that

‘$84, §65) ADJOINT SPACES i

_ s8up 1R (%)= goo,
T, nwqw
With this definition we see easily

Thsorem 9. If 8 menifold A of the adjoint space § 1 uniformiy

bounded by % , then A iz boundsd by ¥

Theoream L0O. If 4% ia convex and every bounded manifold of ﬁwiws_

vniformly bounded by the adjoint topolory %, then % i3 standard.

Proof. Let %7 be a standard linesr topelogy equivalent to %9.

The existence of such %%, 1s obvious by. §87 Theorem 8. For every azym-
metric closed convex vielrity v e 42, , putting

fzileil{xﬂgl‘ for every = ¢ ¥},
we have by §52 Theorem 3

T=ix ¢ IR 221 for svery % ¢4},
Recalling Theorem &, wk see that 4 1is bounded by % , because ™ alao is

the adjoint tppolog;y of %2, . Thus 4 13 uniformly bounded by assump-

tlon, and hence there is by definition ¥ €9 sucn that |Tezdi < 1

for
Red, x=2U, Hence we have U < v, and consequently ve 4.
Therefore we conclude 4% 547, and hence naturally %4 = 47, |
{65 Weak topolog
Let R be s Linear topologiesl space with s linesr topology %+, ?3:%

the adjeint space of R by 4%, and @ the adjoint topolopy of %2, Every
element a ¢ R may be considered as & linear functional on _RT‘F by the re-
lation: @a¢¥)= X c¢ea) for every % ¢ Eqp. The waak linear topolegy

of E’{P by the system of linear functionals o (o & R) in this sense, is

called the week topology of the adjoint spacs B 7. Bince every a ¢ R,
is contimuous by §64 Theorem 4 as a linesr funetional on Eqp by 1‘?_5, the

wegk topoalogy of ﬁY) Is by definition wéake_r then the adjoint topology @
Recalling §62 Theorem 10, we see furthey that the weak topology of ﬁ“?)is

convex and separative,

A manifold ;&f of ﬁqp will be saldcfo be weakly bounded, ¥eakly total-~

1y _bounded, weaklwy closed,or weakly compact, if ,:17

ls 80 respectivsiy by
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the woak tDpO.LO of ¥ . On the ot 4 ws ghall a8y eroly that
B¥ A ner hend 1 merel

10§
anifold 4 of B 12 bounded, totally bounded, closed, or open, A
a m a4 A ; vour
18 so respectively by the adjolnt topology ¥° of %°.

Recalllng §62 Theorem 7 we have obvicusly

. s .
Theorem 1 A manifold j’ of -the sdjoint spece R " 1s weakly .

] ;z,). <l+m for ever z & & .
boui’ldad,. if and onlS" iI‘ su.pj_, 1% ¢ 1 i

We obtain further by §62 T‘ﬂeor'em_'fi
Every weskly bounded msnifold # of £ RY 1s wealkly

Theorsm 2.

totally bounded.

Theoram 3. For avery vicinity ¥ in g,

{""i' tOE 2l g 1 for svery x e}

is weakly bounded.

Broof For each 2 & R Wwe can find o = ¢ sush that ""”_tx’ eV .
m - o =
Putting A = [ % ¢ 1Z(xdls 1 for every = ¢ ¥ } , we have for such
IERCEDRN-3 tor every L ¢ 4,

Therefore A4 1is weakly bounded by Theo-

. 1
and hencs . gsup E® cxdl g & -

rem L.

‘Theorem 4., For every vicinity ¥ e4?.,

{F: (E¢e)lg | Top every me7}

is. weakly compact. : :
" proot Putting 4 = { & 7 1Rl gi for everyze T}, we see
ool .

| to ever
by Tusorem 3 that Z iz weskly bounded. Thus, eceorreasponding to k4

%€ R we cen find by Theorem 1 § »¢ such that .
' W B E(R) £ ¥y - for every T ¢ A,
- ¥y & =
For a funetlonal F on R subject to the condition
‘ L ¢ <ch) e for every % € £,
- Z _

- fi-
putting Aug =1E 1 |Few) — Feool<s), 1f A "'T Axvis# 0 for every
P A e T

> @ , then < is
nite number of elements %, &€ R (v=1, 2,...,x) and & : _

A eR . and
linaar Ifunctionsl on A . Becsuse, for two elements % , 3
a

real numbers o, f , for any £ >0 we can find X ¢ A Ag £ /q«z+pg,,,
For such ®- we have naturally 1R (x)— ®cx)|< g, l:’E(g)— SP(;J]<E,

i?(“"‘*’ﬁﬁ)" Gf(dx+f33)[<2)

‘82t _or_ standard.
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end hencs i"“f'-")-ﬂfﬁ‘f(yi-v%"(e;&x-r!sg)f Z (Rl +IBE. A8 £ >4 may

be arbitrary, we otain therefore & (x4 lﬂé) = oed tfc:z)mﬂ-,ﬁ 9"(&') .

Furthsmox’e, for any 2 € ¥ and £ »0 we can find F e ,;q";!'& g » and
we have {¢cx)| .g [BCusl+ 82 1+ £ Thus we conclude fopema|gd
for every z ¢ ¥ n. fecordingly ¢ s continuoua by ¥ and e 4 .
Therefore Eﬂ 13 weskly compact by §19 Theorem 4.

Thgorerﬁ 5.

LY = bounded menifold F of B 1s weakly clossd,

then Z is weakly compact .

Froof.. We can assume obviously that %2 ig equivalently atrong-
ast. Then. for a bounded manitold A o B, putting

T={x: 1Z2¢xylgs §{ for every ¥ ¢ 4 }
we' have T eqy? by §64 Theorem 8, and obvinusly

AC.{':E‘. I =) ) g f‘oreveryzc-‘V‘}

Thereftre, 1r ﬁj i3 weakly closed, then we conglude by Theorem 4 that ,4

i3 wenkly compact.

Recalling §62 Pheorem ¥, ws conelude emsily

Theoren &, dn_order thet a linear mapdféld A of ¥ ne be weakly

closed, it ia neceasary and sufficlent that for any x ,7{“ %e can Tindg

*€R zuch that F(m)eko bubt T (e =0 for every % ¢ 4,

& funetional % on the adjoint space R?: 12 s8id to Be weaklz contl-

s, 1 4 is gontinuous by the waal topolngy of rY, A8 Bn immé-

diate consequence of §62 Theorenm 5 we have then

Theorem 7. If‘ 8 linear fungtional ¥ on RTP i3_weakly continuons,

then we can find ®eR such that (%) =% ¢x) Tor every ¥ ¢ R%u

THeorem 8, Let a linear topol_op:v ‘?{9 on R be sgulvalently strong-

If & lnesr menifold F of R fe weskly closed; then
putilng A= {x: Texy=op ror every X € 4 i,
jeint space R A4 ?gi_’ R/7A by the relstive linear topelogy of Y2, con-

sidering svery s‘c'_e—ﬁ 28 & Ynesr functional on the quotient spacey R /.4 .

Broor., We conclude by §62 Theorsm o

coineides with the ad--

A=1% 1 Ti=oe for every w g g4}

48 every % ¢ f_ 1s by §64 Theoram 2 continuous in & by 93, ‘recalling the
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definition of the relative linear tepology, we see that every FeAd is
continuous in the guotient space R /A by the relative linear topology
of %, end hence 4 € m*{ Onthe other hand, we see sasily that for
every bounded menifold &8 of R, B /A &lso 1s 8 bounded manifold of
the quotient spece B + A , end hence we coneluds B7a%7. Thus

we obtain our ssssrtion & = R/ A4 v

§66 HNormallty
et & be a linear topologicel space with a linear topology %7.

4 is sald to be normal, 1f ¥> contalns all closed convex viciniltles.

Theorem 1. If the induced topolopgy "fv by %? ls_ of the second

cstegory, then 47 1s normal.

Proof. For an arbltrery vicinlty ¥, we have by definition
wo
R = Z vV,
As R 1s of the second category by ’3@ by assumptlon, 1f T, 1is convexland
ciosed by 4’ , then we can find hence V €%’ , x ¢ R , and » such that
TeXx cp W, » and then ws have
T oy VX v¥ C 21T,

that 1=, -ig; V< e Thus we conclude T, ¢%® , if T, is a cleosgsed gon=
vex ¥lcinity. Therefore %? ia norusl by definition.
Recalling §58 lTheorem 2, we obtain by Theorem 1

Theorem 2.

;ﬁ " is sequentisl end complste, then % iz normal.

As the weak topology of the adjoint space ﬁqp is wesker than the ad-
jolnt topology "IE of ¥* , every bounded manifold of Em i weakly bounded
by definitlen. Conversely we have .

Theorem 3. If 47 is normel and gquivalently strongest or standard,

then every weakly bounded manifeld ,Zf of the adjoint apace ﬁvp 18 bounded

by the sdjoint topology r{ﬁ, and hence the wesk topology of "ﬁ'{ﬂ 1z equiva-

lent to the sdjolnt kopolopy % .

Proof. Let A be a weakly bounded menifold of Eqﬁ . Putting

T={x : {Zixrls | for every X €A };

S S
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we see easlily thet ¥ is convex. By virtve of §85 Theorem 1, for every

Z & we h E ]
R ave gs:ilpj [Z ()| <+o2, and hence we can find A = 2 2uch that

sup 1% =4 e e .
. gpﬂ {Zegnllst tor 1315 A . Thne ¥ is a vielnity in & by definizlon.

Az Y2 1s equivalently strongest or stendard by ssswmption, w

. svery ¥ & R
is continuous by §64 Theorem 2 , and we have obvicualy

=T {z: 1Eerrlgr}

Ee& A “

flence ¥ 1s closed by 47, As %7 1s normsl by agsumption, we obtain

therefore T ¢4’ by definltlon, and we have obviousliy
A< % [ emi|l=mt  for svery ZeV}
Recalling §&4 Theorem &, we conciude thus that ,;an is bounded by ?

Thearem 4. Let 4? be normel snd egulvslently strongest or stan-

dard. For a sequencs &,z EY (v = 1, 2,...), If &, ¢} (v=1, 2,...)

is copvergent for every # ¢ R , then there exists & ¢ %% sueh that

ylibmw By ) = & €=) for every = g & ,

Proof. By virtue of §65 Theorem 1,{ &,, y,... } 1 weakly bound-
= a7 . —
ed in & ", and hence it is bounded by the adjoint topology %4 of 4?, e
> P -
eording to Theorem 3. Therefbre, putting

T={x: {Zefmdl = [ for every » =1, 2,...F,

we have T¢ Y by §64 Theorem &. If we set
Ple) = 1lim &, %) for ewery = € A

then we see esslly that % 1s a linear fanctional on & . furthermore
H

as {ay(zj{< ) for every 2 ¢ ¥ snd p=1, Ziec0s We oObtaln [#fecxi|< § for

every % € ¥ , and hence % ¢ Ew by Theorems 1 in §62 and 1 in §64.

§67 completensss’
Let & be now merely s linear space and ﬁ.' the associated space of
g Considering every £ € & as a llpesr functionsl on E by the re-
lation: ¢E)=Z (zy far every % € E s we obtain o week linear topology
of ﬁ' byx (e f). This weax linear tovology 1s cszlled the wesk to-
pology of the assogiated space ?’7\ . With this definition we have

Theorem 1. The weak topoloey of the associgtéd space ?_’ of a 1i-
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nesr space @ 13 complete.

et [r
Proof. For a functional ¢ on.fg , if for & é‘ £,
] % 0
% I Rawey~ w1 5 (v l, B, m) P
gara .

= 2 d &£ = &
for every rinlte number of clements #. & B {p=1, 2,00.,7) and £ s

e R that for any £ ¢
then we have for every real numbers =t , and £, 4

we can find % ¢ £ such that

{mim)— Pexdf= £,

o

1B - Fple £,

| & fetue 84y = (d._x-a-@?)ﬁ =&,
. > & may be arbi-
and hence {d?(i)-ﬁ-{%%"(})ﬂ?cdx-ﬂ-ﬁ?”g E. da 2 ¥y .
= S ) for every # , & R, an
trary, we obtaln & (edz4f3) = ol 4.9’.81%)—( ﬁ&%g} o] 7 x

1 bera o E% that is, € z.. As the yumber uvniformity is som-
real num 5 3

lete we conclude b §35 Theorem 8 that R i complsetl 2] the weal uni-
P i 2 AL ¥ B " sl e i
foxmity which is bg 765 Theorsm the iformit e weak bo-
§ ; 5 induced un 1 i T by L$
Ly =

—
.pology of R .

Theorem 2 Tf g 1inear menifolé f of the sssociated space A 18

fundamental in R , then j” 13 dense 1n A by the weak topology.

Q0 g 9] For every finite number of
Fr 1w Let & ¢ B be ar trary. v
= 5 : P o= -it)n.lsly ey R W b S
] 5 B D e == {3 implies [s)ak; -
elements L, & R (_l 1 2‘,@4,93@ )» o E g P g, @ 3
@ e P 42 .
s conalder ing Bsvary . 88 & linesr functional on ﬂ by the
il = - F

-
S) = 5 ¢ . A = G A
relatior:x" w (F)=E {n,) for & ¢ A, we can find by §46 Thecrem 4
* 14

~
a « = Zoanar¥ . a Thugs & i= a2 con-
guch that R {n,)= & (%) for every » =1, 2, ,

.
‘ ‘) dense in &
tact point of 4 by the weak topology. Therefore A 1z den

by the wesk hopology. ;

Let B. be next & linear topcloglesl space with a linsar u0pologyf(:’ .

We ‘shall prove firstly:
The adjolnt topology 47 of 4 L1g complete.
We ean agssume by definition that %2 1s equivalently strong-

Theorem 3.

Proof.

t or standard Let A, (A € A ) be a Cauchy system by the adjolnt to-
c9 .

=%
Since the wesk topology of the adjolnt spacs R is weaker
‘A3

pology 49 .. .
than "? E- (A€ A ) aldgo Ls a Cauchy system by the weel topology.
» Ay

. -
the amsscelsted space % of & is by Theorem i complete by the weak topo ?)

% topology.
gy, there exlaets e 1imlit A, ¢ & of £, (A € A ] for the weax 4] gy
2

[RNE

ﬁ‘\"’
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A3 A (2 e A) is a Cauchy msystem by £ , for eseh boundsa manifold 8 of
R we can fing A, €A such thet X, 5 6,3:0 implies | & ¢a3 = gfﬁ) 1= 1

for every = € B, tecsuse 4 & 'Eeedlizy for every xé&}'e‘?ﬁ by de-

Tinitian. For eny € B and £ » ¢ we oan find T e A,, such that we

heve IQ‘-(zJ - E“z)l,{ﬁ, becanse 3.’, 1s a limit of A_;(A € A) by the

wesk topalagy of R Then we have | % ¢a)~ B,¢(%1} < §1+2 fop every

T € Aa,. A3 x & B and E »>¢ may be arbitrary, we conclude hence

1229 - @y )< g for every Eg,@y and x & B

From this relution we esnclude further that E’, 1s a bounded linsar func-

tional on A by 4?, that is, a‘,e Eqﬂy and for such 2,

A, € 1 E : lRen)-docudlg 1 for every e s },
Thus, putting 77, ={% 1 1E=H g1 Por every % ¢ & } , we have ﬁ)‘bc'ﬁ-g_*'é‘o-
This relstion yields by the definitlon of the adjoint topology %7 that &

[
is n limit of 4, (rneA) by 3@, Therefors R ¥ 1s complete by & .

Theorem 4. If %4 1s normal snd equivalently strongest oy stan-

dard, then the weak topology of the adjoint space 'Eq'p is conditienally
compiete. '

Proof, If a manifold 4 of B Y 4g weskly bounded, then 4 1s

bounded by §66 Theorem 3. Thus, it E is furthermore weakly closed,

then E iz by $65 Theorem 5 weakly compact, and hence neturally complete
by the weak topology. Therefore the wesk topolory of Eq‘ﬂ 1s condi-

tionally complete by definitlon.
Recalling Theorems 1 In §58 and 2 in §68, we conclude immediately
from Theorem £

Theorem 5. If % ig sequentlal and complete, then the weak #n-

pology of the adjoint apace ﬁ'w iz conditionally complets.

§68 Reflexibilitz
Let & be o linear topologicsl space with a llnear topology %%, and

the adjoint space of R with the adioint topology@ of %7 . The

wesk linear tobolooy of R by Ew will be called the weak topolopgy of R
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it
by ¥ . if & manifold 4 of R 1is bounded, closad, or compact by the

wealf topology of R , then we shall say thet 4 1s weakly bounded, weakly

closed, or weakly compiacta

Theorem 1. If %7 is convex, then svery weakly bounded manifold

of R is bounded.

Froof . Let & manifold A of & De weakly vounded . For each

aymmetric convex vicinlty ¥ ¢%? , the sdjoint norm W ft ¢ is by §E2 Theo-

— ~ L =0
vem 1 complete in the adjoint apace Rg of . a8 Ry ¢ R by Theorems

1 in 62 and 1 in §64, we have by §62 Theorem 7

Sup!ﬂ.{'&)lad-oﬂ for evervaER-F_

Gonsidering every =z ¢ R a8 & linear ‘functional on ;{v by the relation'
2 (%) =% ¢a) for svery e ﬁv , we obtain then by §52 Theorem 5

sup { sup )} §<+e2,

xed  WENgp=1 s

and hence sup Uiy < +oo by 452 Theorem 4. Therefore ,4 is bounde
Hep

by §57 Theorem 1. -

If 4 1s eguivalently strongest or standard, them every ¥ R 1s

by §64 Theorem 2 =& continuons linear functionasl on & by #4? , .and hence

the wesk topology of & 1is by definition weaker than %7 . However we

have conversely

Theorem &. If % is convex, then every cicsed linear manifold

of R is weally closed.

Proof. Let Abe aclosed 1linear manifold of & . By virtue of

§56 Theorem 6, the quotient spece A /A 18 separated by the relative 1li-
near topology ¥
For each x,€ A there exlsts by definition X, & R /A such that #,& Xg,

and then we caen find by Theorems 2 in §52 and 1 in §62 -a continuous 11-

near functlonal ¥ on R /A such thet (X} F7. If we considerws %

as 2 linear functilonal on R, then # is obviousiy contlnucus, @wend = ¢

for every w & A, and ¥ix,)= wIX k0, Pherefore we can conclude

that 4 1s weakly closed.
By virtue of §54 Theorem 4, every x & & may e consldered as a com-

tinuous linear funetional on the adjoint space ﬁw by the gdjoint topo-

R/ ymieh miso 1s convex by Theerems 5 1n §51 and 4 in §EB.

i ;
o
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lopy %°. Thus, 1 ﬁ’w is fundamentsl in B , then we can consider F(‘.

28 a linear wanifold of the ad]eint space of R.,?'d by the adjoint tOpclogy

o On account oi' §67 Theorem 5, we obtain immedistely

of R by 4? is fundamentsal
in R, then, denoting by Egv the adjoint space of % by tha adjoint to-

Theorem 5. If the adjoint space R T

polegy %, R 1is denss in R ¥ by the wesk topolosy of & ©,

Even if ﬁqp 1= fundsmentsl in R , the linesar topology %2 of ® 1is
not necessarily the relative linear topolegy of the adjoint topelogy of

= = 1
the adjoint teopology . Ir g ? 1s fundementsl in £ and %? woincides

with the relative linear topologj of the adjoint topology of the sdieint

topology 47, considerir_xg & 23 a linear manifold of the adjoint space ‘-;:‘24

of the adjoint space ?ﬁgﬂ, then ¥ is snid to be reflexive.

Theorem 4. & lirear topglogy 247 is ;eflexlve if and only if %2

is separatlve and standard.,

Proof., If 42 ia reflexive, then % #s separstive and convex by

§64 Theorem 3, and for any bounded manifold A of the adjoint space Ti%
we have by the definition of the adjoint topology

oA i%,?{%)a__,é i

for every £ e 4 | e 4,
.

Thua we conclude by §64 Theorem 10 that Y 1g atandard.

‘ Corwr:‘a:[nrselyj i ? 1s geparative amnd atandard, then the adj int space
=¥
R is fundamental in R Dby Theorems 2 in §52 and 1 in §oz. For each

closed aymmetrie convex vicinity we % , putting

=3R s 1R il | ror every eV |,

we obtaln by §64 Theorem 8 a bounded manifold ;f of Ev’ and we have by

52 Theorem 3 VT ={x ! I Rex3| %1 for every R e A 1, Favthermore
K = ¥

for every bounded manifold g of ﬁ?p we have by §64 Thecrem A

1%x: 1Reayis 1 for every Re 4 } ¢ 7.

Therefore 7 is reflexive.

IT 4% is reflexi¥e, and further A colneldes wita the adjoint space
AY of the adjolnt space R 1, then we shaill say that 4? is repilar, or

that A is regular by 47,

Theorem &5, In crder that a lineap topclopieal apace R be re-
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lar by its 1inear topologxfp 1t 1a necessary and sufficlent that both
gula

A
%2 snd 1ts ad;]oint copologg‘tgj be reflexlive and the weak topology of

by ¥ be conditionally complele.

Froof If 42 ig regular, then the adjoint topology 4° 1is by de-

V . ) R
fin.ition naturally reflexive. Every weakly bounded manifold A of

fs by Theorem 1 tounded, and henece if A 1s furthermore weakly clozed,

then A 1s weakly compact by §685 Theorem 5. Therefore the weak topo-

logy of R by %? is conditlonally complete.

i : yenk
Conversely, we asgume that both %27 ond 47 sre reflexive and the wea

ot B O ¢joint
topology of R by 47 is condltijonelly complete. Let & ¥ be the ad]

snace of the adjoint space B, hs @!:-3 ia standard by Theorem 4, for
2p

B i 62 Thesrem 1 & symmetrile
each % €. R ¥ we can find by §64 Theorem 2 angd §

7 4 eV, For
convex vicinity F e % such that | ZFe®d)l=1 for every Z 7.

f l c¢h
such % ¢ %, we can find by definitien a bounded manifold B of A sueh
3

t v L] very ve 47 c‘lh
that, putting. {7& s Ext. s { for every = ¢ & } , we have ERTS
»

= 2 +em }
If we set = 4§ = ¢ "isgp’ﬁ’ 1= eyl Fs

=4 = 1 jEemdl= forevery‘feﬁ'ﬁh
! init
then A is a linear manlfold of R aed T is a symmetric convex vicinity
in the subspace A . As of > B , we have .
18 ¢ 1Reed| | for svery e Wi T, < T,
and hence for every finlte number of elements i, & R
egonsidering the adjeint norm by ¥ , we havs
= % .
e 1+, = a - — “5" 5
i%@y%(ﬁz,l"s = !?:'{,",‘;",'E“m“‘”—»
at
Accordingly we can find by §52 Thecrem 8 % ¢ 4 such th
(v= 1, 2,000, %)

i —
- T

T, (w) = ELR)

. Cn the
Thersfore % is a contact point of 47 by the weak topology

ther hend, as £0 ={x:1Z¢dgd for ctery F e T, b, F, ¢%” , we ses
other , Y = : =

by $68& Theorem 1 that Q'Ef is weakly bounded and furthermore by definitlon
¥ oike

that 4T 1a weakly closed in R . Since the weak topology of R is
at. &

] I d hence
conditionally complete by sssumption, 4T . is weakly compact, an 11

;‘ T e in et T, Therefore
2 is weakly closed in R v, Thus we obbtain

=9
we conclude R == R ° .+

PR
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Theorem &, Let A be ragular by its ilnear topology %42, Fer

a closed linear manifold A4 of A,

if the relative linear topelogy e #

of 4 ang igs adjoint topology "-—?;ﬁ are standard, thsn ‘}{""3 iz repular,

Proof. Aé ¥ ia separative, both 44 ang 24 ara reflexive by

" assumptipn. As- A is 2 closed linsar manifold of ® by assumption, 4

is weakly closed bv Theorem £, and hence the weak topolegy of the subapace

A 1s conditlonally complete, becsmse the weak topology of & is so by

Theorem 5. Thus 44 1s regular by Theorem 5.

Theorem 7. If 4* 1is reflexivs, complete, end its adjoint topology

4 15 regular, then 49 alss is regular.

Proof. For the adjoint spaceﬁ%& of ths adjoint apace ﬁq“t con-

sidering R as & linear manifold of Eqﬁ, %? coineldes with the relative

linear topolegy of %he linear topelogy of ?'@, because 4" is reflexive

by assumption.-

Purthermore R is by §3_5—_Theore_m 3 8 closed iinear“ma—
v :

nifold of R 48 the edjolint topology @?’ is regular by agssumption,

the linear topology of ﬁ.?ﬂ also is regular. Therefore 4% 1a regular

by Theorem &.

§65 Sequentisl roots

Let & be a linear topological space vith a linear topology %7,

If there is a sequencs of-boﬁnded manifolds A { = L. 2,...) in & such

that 4 (e =1, 2,...) 1d a root of %, that 1s, for any bounded manifeld

A of R we can find » for which A4 < Av , then such a raot A (w1,

8:+5.) 18 called a sequentisl root of k'

Theorem 1, ir ‘?{-’ has & sequential root Aclr=1, g,. .»), then

the adjoint topology 4 of 4% 1s sequential,
Prooft. Putting ﬁ

=§{% ¢ {Femilg ! for every m¢ 4.}, we
obtain by definltlon a basis T (v= 1, 2,...) of @ . Thus %% 13 wo-
quentlal by definition.

Theorem 2. If 42 ia convex and ita adjoint topoiogy 7!{"3 is =se-

gquential, then 4 has = seguentisl root.
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7 ‘ %, puttin
Proof For & decreasing basls F, {(F =1, 2, vee) of ¥, p 4
A.={=z 2 |Zezrlg i for overy X € % b
& - =
e Z,..0) In R Dby
obtain By $64 Theorem 7 bounded manifolds A, (= l, 20a.)
we ai
WP For each bounded manifold -4 of R , putting
F={F ¢ imtxrt=s 1 for every = € 4,
i e F oD T
have T & 1?5 by definition, and hence we can find # such that ,’
we h
Then we have cbviously

Acim 1 1E (I 2 1 for every e T J € Au.

} is t1al Troot of %7 .
Therefore A4, {» =1, 2,...) 1= a sequen

log % has
If 47 1s scyuential, then 1ts adjoint topology P

Theorem 3.

a sequentinl root. ‘
utting
For a dsersaslng basis ¥, (w»=1, 2,...) of ¥7, 1 g

Proof.
A, ={% ST ezd|=1 for evory % ¢ V. I,
ats = 1, 2;..}
obtelrn by §64 Theorem & a seguence of bounded manifolds A4, (w . 2,
we n

in th ad 8] .R . A ig: ’\ alon ¥ Ongest b §58 Theo-
the oint space { &) 1a eyuival tl sty ¥

-— —.‘;{3 y
rem 1, for eanch bounded manifold A4 of & ', putting
| —
T= Lt iZiarigt for every e 4 },
. " ) VR
*s%? by §64 Theerem B. For such We%® , we oan find ¢ sue
we have “F &Y ¥y 364 Theer
that % 2 % , and then B
Ac{ElFcmigt for everyzZeTia A, ,
Thus A, {v= 1, 2,...) 18 a sequential root of ¥°.
L

2y %% hae &
If 47 1s standard and ita adjoint topology 4°

Theorem 4.

sequentisl root, then %% ig setuentinl. B .
- ] n
For a sequentlal root A, (»#»= 1, 2,.~.) of ¥, put z

Frooef. .
T, =f= 2 1Z w321 for every T e de b, .

each cloased cone-
we have by §64 Theorem B T ¢ 42 {(+= 1, 2,.-..). For

vex T E€4?, putting
A=1% 1 1F g1 for every :R‘..E v,
- we obtalin by §64 Theorem 6 a bounded msnifold ,-52, of ﬁ‘?ﬂ} and. hence we can
£lnd ¥ such thet 4 ¢ A Since we heve by §52 Tlieorem 3
T={x1iTcezrlsl for every® €A},

wWe O thus T 1} fo such & . o} = 2,000 %
btain > T Therefore 7 ¥ 1, » 5

L I
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a basls of ¥ |

Theoren §. Lim“f{) is sequential, complete, and has g Sequential

root, then %? 1g of gingle vieinity.

Proor. If %% 49 Sequentiasl and compiete, then ths induced topo-
logy “1% by % 1= of the amscond category by $5¢ Theorem 2. Furthepr-
more 1f %2 has a sequential- root Aler=1, 2,.. .)s then we have

R = Z A,
because svery e R 1s itself a bounded menifold of B . Thus we e¢an
find » such that 4,7° %0 by the Induced topology ¥V, Az 4.7° alco

is bounded by §57 Theorem 2, We can concluds by §58 Thecrem 5 that Y 15
of single Vieinlty.

Theorem €. IT Y iz of single vieinity, then its adjoint topo-

logy‘?(? also is of single viecinity.

Proof., Let ¥ be a besis or 43, By virtue of §64 Theorem 6,
putting F = {% ; IZ ¢l for every *e&F} we obtain a boundad mani-
fold ¥ of the adjoint space ﬁw A8 V 12 a bounded menifola of R,
we have further “W@f? by definition. Thcrefqre, recaliing the for-

mila §54(8}, we conelude by $58 Theorem B that @ 13 of single vieinity.

Theorem 7. If %7 is standard snd its adjoint topology %73 ia of

single vigcinity, then % also 1s of single vieinity.

Proof, Let §F be a basis of w, By virtue of §84 Theorenm 7,
putting ¥ ={x 1% =t for every e F ¥, we obtain & bounded mani-
fold ¥ or g . As F i3 a bounded manifeld of the adjolint space FR?V
we have further T«%? by §64 Theorem 8, Therefore %? is of slngle

viecinity by §58 Theorem b,

Theorem 8. If both %? and its afdjolint topolopy @ are sequentigl,

then 43 1s of single vicinity.

Preooyr, Recalling Thseorem 3, we conclude from assumption that %2
has a asquentisl root. On the other hand, @ is obwiously complete
by §67 Theorem 3. Furthermore, @ is mequential by assumption.

Therefeore, we can @onclude by Thecrem 5 thatr the sdjoint topology‘?'? ia
of sigle viclnity.
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and 1ts adiolnt topolo-

Theorem 9. If %% ia Gonvox, seguentlal,

gxffi 1s seguential, then 4? iz of single vieinity.

By virtue cf Theorem B we gee at once hy assumption that

Progf.
@ is of single vieinity. As %2 is standard by $58 Theorem 1, we con-
clude by Trgorem 7 that 4? 13 of single vlcinlty.

on aceount -of §58 Theorem 1 end §68 Theorem 4, Wwe have obviecualy

4 sequentlal linear topology 4* is reflexive iF and

Thecrem 10,

only 1f 47 1s convex and geparatlve.

§70 Strongest sonvex linear topologiea

By virtue of §53 Theorem 3, We 2ee

Let R be a linear spaece.
easily that there existas uniguely a linear topelogy %2 on R such that

the totallty of convex vicinltles in R is a basis of ¥I, This iinear to-

13 ecalled the strongest convex linear topology on R . In-

“pology 4,
doad, %% 1is obviously stronger than every other convex llnear bLopology

on R . With this definitilon we have
The atrongest convex linear topolosy %% op R 18

Theorem 1.

standaprd, -ncrmél, and seperstlve,
It is obvious by definitlon that LA

iy gtanderd and norm-

Proof.
al. By virtue of §44 Theorem 2, for any element X, ¢ we can Iiad a
such that P Hs) = 1. Then, putting

linear functionel & an R
TV=1i%: igerig +}

we obtain a convex viclnlty ¥ ., and hence 7 €%°, by definition, but T ER,,

Therefore 42, 18 sepsrative by definitlon.
If & mapifold 4 of B 1s bounded by the strongest

Theorem 2.
convex linesr topology %% , then A 1s contained in a finite-dimensional

1inear manifold of R .

ff there ls a sequence @, € A (vw= 1, 2,...) such that

Proof.
then we can Find by §44

szen &, is lirearly independent from the others,
Theorem 3 B linear fuonctional % on A such that i, =V for every b=
fepewrig it, we obtain a convex vielnlty &

1, B,..., snd puttlng ¥= {2

:
yi
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in R .. Fo W v v e E T
T such ¥ , we have by definition ¢ . but o
avery »m 1, 2., ¢ i agg & Tor
Y 2o Thme &, {(#= 1, 2,...) 18 not boundeq by 92 l
Thecrem 3. The sdjoint b n Qx.
n space of B Dby the atrongest ap vex 11

neay bODOng? ﬂgﬂ coincides with the assoclatend Epace R OI R and the

illt topo ogy of “"J colneid B u\eak topo ogy of
adio ol 1 22 with the pol R
B

Proof.
Por evary linear functional § on &, wé have obvi '
definition {x - i
o { AR LS F- 1y e4, We conclude hencs by Theorems 113
and 1 §64 that ¥ 1s tn ’
e adjolnt apaece of ® b
vy ¥, . For each

bounded manlf Oldi A of R bﬁ "4’,, » 88 ﬂ ia contained by Theorem 2 i a8
rini te—dim. - E
engional iine ar mazlif‘old. we gan fing b ¥ 561 Theotem 1 £1
- a nite
c 1inearly independent elementa ‘@‘b ¢ R ( o= l 2 3 ) f
numbey £ 3+a0y ?#) such that

A z
{ dg, Ry 3 j@'svf For every »=l, 2 e §
' "3 Sy ey .

5
" Then, putting ¥ =
= x ° . ‘E_ ;.
. ‘i Jw(au)t:;:}n for every Ve 2, w b, we

i ¥y W = for ever x } o Therefo 5]
have ohv ougl . S { k- § E3 (%)I < ] (9 A
. )
we conclude bj definition that the adjoint t:opology of E@ colncides lth
N

the weal topology of be

Theorem 2. Iir
; # has a basis of linserly Independent eountable

element
BLe g2 a,¢ R (v=.1, 2,...), then, putting for 4 = 1,

_go.n

{fﬁ' ﬂpi [:ﬂ‘.wj-f.‘g/ (fm‘“’lg Biveay o)}

®¥e abtain a Sequentlial root b=l 2 = of %t
- Ag,f ( Ll L ) the atlongeat conwex 11

4{% on R, the weak topolopgy of the ‘aasociated space ?i" of
R is sequentlal, and %, 18 repular - B

. Proof. If 8 manifold A of A 14 bounded by %% , then we, can Find
7 Theorem 2,#, sueh thst A 1s eontsined 1n the linear manifold 3 geng
Tabted by &, (¥= 1, Byaua,¥g). Then A is naturally bounded in £ b
:he miative ilneds topology of %% , and hencé we can find by {61 The.oj?
f:;ﬂ: ¢ such ghat A c { iq’ B 1 lon [gel (= 3, 2;,,;,%')f, aﬁ.d
i Z knxd{d, %} we have obvlously A< A, Therefore A, (#= 1, 2,
. is a se;ue'mt*a.L ‘root of ‘W Recalling Theorem 4, we see by §69
tan:q dlLthnt the qweak topology of B 1s ssquentizl, ang sonsequently
& rd by <&
o ¥ 3£8 Theorem 1., Accordingly, we conclude easlly by Theo
i in §64 angd 7 in §65 that %% is reguler )
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NORMED SPACES

§71 Induced Linesr topologies,

& linear space g assoclated with s norm weed (= ER ) isacallad a
normed SpACE. 4 normed space R is naturzlly a quasi—normed._liniaar
spece, and hence we defined already in §63 the indused 1inaar_topoi_og§r..v
This indnced linear topoleogy is called ths norm togolog;‘z of & .. | Wi;h
- this definltion, we see easily that the.norm topology is separative, :
single vicinity, and further {= 3 X HU=1} 1s o basils oft 1t, begause

NExi = tEinas for every real nurber .,

vicinit ¥ - L = it apher e ° The unii
'i il i t} 1s called the un Bh @ f R
Thisg a = |
[ i = { . A =l M fiﬁ a ilnpl‘ies
spher‘e 1s convex, becanse, Ll = 1 . !g- i fﬁ' 3 I3 &

Tastemy S MELH+MmAg0 5 Arpa= 1,
Therefore we have

The norm topology 18 separstive, convex, of singla

Theorem 1.

vicinity, and fhe unit sphere is & CONvexX baals of 1%,
..

&
Coﬁveraely wo have obvlously by the formula §4o{)

ze is s&-
Theorem 2 If o lilnesr topology %7 on a linear spaze R

& v e . T By VE 1c.initg 17 i
4] rative CONvex of slnﬁ;le icinl El and e symmetrie convex ¥
. 2 :

i a basig o 2;:3 r h h D3 3 norm Fx - 1 . T R
] .then = eudo o] x &) ] 5 8 norm on &I 2

norm topolopy colncides with W,

By virtue of §61 Theorem 4 we obiain immedlately

L N
he If the unit sphele 81 g normed SLace R_ 1g tota 1,
orem 3.

1 - nsional.
hounded by the norm topolegy, theh A is finite-dime _

’ 1-Norms.
fie have defined . already in §50 the. completencss of 'quas:
y §8 rem &
As e norm i3 neturally 4 guasi-norm, We have by §B:§ Theeo £
8 {283

{ [ nd. onky
Th 4 A normed space & 1is ccompiete by the norm, 1f and i
rweorem 4., . :

1f @, 1is cowmplkete by the norm topology.

For. +two norms & and & on linsar ace wa shell Bﬂ‘? that
& : i ﬂ.ﬁ B it Hoa a. ap R » B
i 1 g than {® 4§ L if the
] “eg'k s an ol Q t iz it ia stronge
il H b th il 3 4, P a 4 T 5 ] &

orm topology by x4, 18 weaker than that by Hxfiz.
n o

nofmeg space R , the lsssi closed
i, 2

by §54 Thecrewm B, snd hence A~
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heoren 6. In order that a porm sl

ke weskor than a norm kAP
Dsessary snd surfleient that we can find & >0 sueh that

enf o, it 1.

Bretiy & o Wiy for svery mep |
Ergef. Fer a normsd space R, dencting By 7 the unig sphere of

R , we sase by Theorsm 1 that the pseudo~norm fizx iy oOf T coineldsn with

the norm of R &nd 7 is = basis of the ROrm Lopology. Tharsfore we

conelude our asasrtion by §58 Theerem &.

Por two norms A7f, and WLk, on & linesap Spaca R, we shall say that

Be Wy ie sguivalent be il , and wprite Hotli, ~ A

Zla{m e R), 1f e u, ia

weaker and atrongsr than flao e at the aame time, that is, the norm topolo-

g7 of Wad, colncides with that of izlly, B0 &,

¥ith thim definitlon we heve obviously by Theorem &

iy
Theorem 7. Wa

hgve i, ez {® e R ) AT ang only Af wo pan

find two positive numbers of , £ much that

By $ el < i% fm i, for_svery seg |

Rescalling $B9 Thesrem 4, we obtain furgher

Theorem 8. I o norm iy is weeker thsn a ROr@m find, on R, apd

2nd nxli, &re complete, then fitiy 1s eguivelent to #wmug an &,

hoth Hxi,

& normed space R fa sald to be Separable or gompletsly separable,
1f it 12 a0 by the norm topology, as defined fn §34.
R@@&iling §36 Theorem 7 we hawe them

Theorem @.

If a normed space R ia meparebls, then A 42 come

pletely separsabls.

& Rineer menifold A of a normed space R may be consldersd itsalf

28 a normed space with the norm of & . In this semas, 4 will be

salled a gubspace of R . .

Theorem 10,

For & asquence of olementa a,{r=1, 2,...} in &

ilnesr wanifold contalning il @y, (b ==
seea) i3 geparsble ms & subspace of R

Proof. Let A be the Lineer menifcld gonerated by e {1r= 1, 2,
0oe}a The elosure 4~

by the norm topology aleo 1s & linesr manifold

i3 the Lesst cloaed Linsaw manifcld son-
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Denoting by B the pobelilty of lineer oM

balning d, (b= 1) Bsosede

binstions T, efy by Trom fe{r= 1, 2,...) Tor all rationel maEbers of,,
-

(2= L, 2,000, %), Wwo soe saslly thet B is counteble gnd denae in 4  teo,

end hence A4~ 1ls separable by deflnition.

{72 Apdjoint spages

Let R ba & normed space and ¥ the unit sphere of R . The ad-

joint space of ¥ masooiated with the adjoink morm of W, ss definsd im

£62, 1s sellad the sdloint spase of R . Thus the adjoint apace R of

f also la o normed SpRcS. Since the norm of R colncldss obvioualy

by definitlon with the pseudo-norm of I, we have by §562{1)
(L} NEN = sup |Rcx2| {(ReR)
£T @

and by $52 Theorem 4 further

{2) I1Zexdig izl (me R, EsR)
(3) Bk = sup 1E (R (meh ,ReR).
NERE !

Papthormore we have by §62 Theorem 1
The norm of the sdjoint apace ie complets,

Thaores 1.
The adioint =pace B of R coinecides with the adjclnk

. Theorsm 2.
gpage of R DY _the norm Lopology, snd. the norm topology of R eceoincidesg

with the edjoint topology of the norm ropology of & .
As the wnlt sphere U of R is cbvioualy by definition
ition that the

Proof.
bounded by the norm topology of R , we sea at once by defin
adjeint speace R of A 1s composed of all bounded llnear fapctionals by

the norm topology of R . Furthermora, for the unlt aphere T of B .

asz wo heve by (1)
T =1F 1 1Z)ig i for every % ¢ U},

we concluds by §64 Theorem,& that % is bounded by the edjoint topology,
and by definition further that T e a vielnlty of the adjoint topoleogy.
Thua we obtain by definition that T is = basia of the sdjoint topelogy.

Therefore the norm topelogy of K ecoincides by §71 Theorem 1 with the ed-

joint topolegy of . ths norm topology of R .

A

§72) . . "
HORMED SPACES 8
- : Q

Lot i m

st B be the adjoint epace of a nommed spaes f and Foon
wphere of K . Por 8 i ) s
Foy near manifold 4 of §, 1r F

M A iz fundamental

in F , then, mitting

{4} oz = sup P E (o]

wa obtein - 2e T
& n

orm le![;{ on @ .

(weRr),
Indsed, we
. g6 easlly thot N ldﬁ- ia

a paeuco-norm on R . I8 0 2hy = ¢ , then T xl=g rop every % ¢ 4
and hénes x = 5 , beceuge 4 is fundemental in R ¥ assumption H
thermere, as ¥4 ¢ T, ws have by {B) ' o
{8} eu.xu;{ % Nl {neR ),
that ls, this norm W« iy is wesker then thet of X . I7 this norm
HI_NI iz eguivalent %o tha norw of K , theg is, if we een find {
2
guch that ), Hxltz Z izl for svery x ¢ B » then ,eT is sald to be of fjnite

gheracter, and

(6) A= sup  AEN
LET N S
is callad % g
ad the ghayscter of o fundamentel linesr munifold i or ®
E o Ir

4 is m 8 cha @.Lh@x’g then the
at of finlt g eéhapracteor A of (4 L definmd ag
Foar a wn 9 ;4 | : L) %. LR
anifolkd of the adioing Space R wg d ot e by A] by 1
o v a0
aupra of A b:ﬁ' the Weak t Opﬂlﬂg? of R . Thearn wa have

I L] & L
Fop fu awmental 1 neay anifald ;ﬂ (s} i
Theorem 3 14} & nd ta i gy manifo of ths a Qiny

5pace £ , we bave

(T 437" :3—,::’?5,
i 7
I and only if ¥ £ % for the charastsy . of E‘

Proor. Ir }f_ [ SN & Q ATl & o TF tlsl av
27 hen for &
Il g o A4 for Fany finlte

numbay
bar of elements =, ¢ Role=1, 2,...,1 ), we have by (8)

E
(Z 5, 8| ={a¢ %
A=l st it ye s
Gonsidexing %, {p =1, 2 = o “iDrerell = s%?“’x”ﬂf-
" =45 .50 ) na linser funetiomels on A by the rel
ela-

tlom: #, (%)== % x i
(x,) For avery x € A, we conclude hence by §52 Theorem

8 that for an
: F & 6 we can find % =7 .
2 éff'@'&)(‘ﬁ'ﬂ) snoh &h =
ab xbcxu}"‘z{x

>
for avery 1= 21
fr Ly Boanapie, ana consequently we havs ! e € T4
1+g 7° d
e J - i =
oo a (R} e B v = s £ 1
A M)j: r !C’v{?o-y}a‘ {r=1, Broon, X)),

=)
g
(5
=
1]
[27
=4
L5
&
fot
i
=
=]
2u
®
]
[
=
ja%
(23
I~
o
=]
&t
=8
]
or

Therefors we have
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1 = F T W
= T e (T4

) ¥ = 7 then for any
r Lo 5 7)Y~ for a positive number & ,
1 c(TH)
— ] we esn Find X, ¢ 7 A
¢ R ®mnd £ >0 , sorrefpondlng bo every & & U
= - % n Ze T
4 = £ and hence £or every
Ty (R »
such that | 5 ERES) . ] w
i*-“;.xcz)[ = £ 4+ W=l = E RN,
55 =& may
- he Formuls {3). Hewa 2
Thus #e obtain ‘;? Gl < £ + i=dy by the :
be arblirery, &nd hence ws comslude yacli 3 i umaﬁ for eyery =& R,
Accordingly we have i = ¥ by the definiticn {&). o
s1d te
& fupdemental Linear menifold 4 of the sdjeint apace R ig 3
UL i B

La norm 1Lmeiamant;a]. in » F the character o ,E iz 1 theak iB, if
&. L £ 2

nEi = sup [EXCSE for every % ¢,
g A
With this ciaﬂ'inition we have obviously bY Thecrem I

Theorsm 4. f!iﬂﬁﬁ'mﬂflt&l linesr mﬂllﬂ.fﬁld ;ﬁ of the Edjﬁi!lh EDEQ@

TAa 5 Gne weal to«
£ i3 norm fundemental, 1f snd only AF T4 ig denge im T by th

pology of B . B | ]
Por the wnlt spheore &7 of tha sdjoint spses R We have oheloualy
Fe{f r 1Fwdg for overy ® ¢ U},
Thus we obtain immediately by §65 Theorem 4

A nt apace B Lis weakl
Theoresn 5. The wunit &phere T of the & Jjoi h:d

_— iatel
Re¢alling Theorsms 2 in §5& end 9 in §62, we obialn immediately

SPACS
Theorem £ F_o:t- s elossd linear manifold 4 of & pormed sp 3

and Lement A W3 CBT ind ] such that Ad{=)= @ For ‘59@1"2
ap | A, € 2 I 2.8 R,

xe A spd Eewyy= 1.

) 2 ia sa= .
Thaorem 7 if the adjoint space B is separsble, thon R
parable Log. B _
£ Let B e A (=1, 2,...) ba dense in R bF ths norm 2
Proof . . o { .
2 can
1 of K Reecalling the definitlon of the adjoint porm, ¥
palogy .

N b= .ng i 3 ....1 -
find SeqUencsa e R i, B,na.) spel that G.les) 2 a ﬂa-ul'ﬂ, 1t Ry ll =
nd a 4
A G Y =1, Brecele
Let be the leasst ¢losed linear manifold contalning @ { o N .
1 V - 1z 4
Then A iz b §?1 Theopsm 10 3@?9?&7{)16 sx a sybspece ef R #

88 Theoprem 2,
t epincides with R , then, ss 4 iz weakly closed By §
dGoey Nno

875, §73) NGRMED SPACES
fop

121
an element o £ R~4 , we can find by §62 Theovem 9

& ¢ A sueh that
& lmy = ]

Tor svery = e 4, & () + 0 , and BAN = 5 For suzh A €R,

we heve for svery » = i, 2,...

i,

WO~ Bl 2 | T (o) — Beowd | = [ B, Cavdlp L am
WO =B 2 AN =NE o= {— dE 1,

6nd hence HE. — Bl g &M{%Hﬁpfﬂg t— Bt oz

3 » contradicting that

By (o= Ly By00.) ave dense im & . Thus we obbain A= £, and hences

B 1s senavgble by definition.

§73 Quotient spamces

Lst R be & normed PAce. For a linesr menifold 4 of R . we have

dafined the quotient zpace B /A in §46 and the reletive peeudo-norm on
R/7A in §51 as kN = inf fwxu For X ¢ a/4 . Thls pseudc-norm
Eze¥

¥XR® 1s convex by §51 Thaorem 6.

If 4 ia glosed by the nora Lopelogy
of K ,

then we ges sasily by §51 Theorem 7. §56 Theorems 4 and 5 that the

relotive pasudo-norm IxX% 13 proper snd hence a norm on & S A Thusa

for a cloeed linear manifold 4 of -3

wg obbain m guotinnt space g .2 4

2z a porsed space with the rolakive pwudo-nnorm, snd we have

Theorem 1. The norm Gopology of a guotient spase R /4

by o
menifold 4 zoincildes with the relative ligear topolomy of
the numtopalogy of £ on ths quotient BpBoe R /A

slocsed linsar

*

Furthermore we obtaln by §59 Theorsm 5

Theorem 2. If the norm of # ia couplete, then the norm of the

guotlsnt spacs RAA D7 8 olosed Linsar manifold

Theorem 3,

A iz complate ton.

If & linear manirold A of the adiolnt space B is
Woekly olssed, then Tor ths Linesy menifold

={%: Fi(nr=o for every Z « 4 },

ecn.ﬂidering 8Y6ry % ¢ 4 a8 o linear funstionsl on the quotient spacas

R/A . A colncides with the adfoint spece R 74
space.
Proof.

2f R/A4 8B 3 normed

By virtue of §85 Theorsm 8, j§ ooincides with RrA4 as
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2 linser spacs. Thae we nesd only prove that the norm of & colncides

with that of R /4 . a8 N AW 5 rei Tor every = & X , we have

sup A1EZ (X Il gz sup | Re=d) for every £ ¢ 4.,
nxg gt LEY R
On the other hend, for sny X ¢ R, /A4 pubject to H30H %4, we ran find

# & ¥ for whish =0 < 1, and hence

gup | REX)l= aup {Z(x¥ = sup ([E il
IR = T onmios ot _
Therefore we have HEN = aup{ EX G SY for svery £ €A,
T

&
o

Far & Lineer menifold 4 of the adjeint spacs A , putting
A={x 2 T(e)=¢ for svary Z¢A },

we obtain s closed Linear manifold 4 of R . Then we cen conzidsr by

Theorem 3 ,Zf sg & linesr menlfcid of the adjoint spees R ~.4 of the quo-

tient space R/4 . The chearacter of & linssr menifeld A of ths ad-

joint space B is derfined by the character of ,t_f ez » linear manifold of

the sdjoint speece R/ A . Denoting oy A™ tha elesure of = menifold

;{ of the adjeint space % by the weak topoleogy, wé concluas essily from

§72 Theorem 3 \

Theoren 4, For & linear manifold A of the sdjolnt spage H , =9

hevs (T A ;;.;;T. T A AL end omly If § ¥ for the echarsoter i of

F =2nd the unlt ephers 7 of R .

& linear msnlfold 4 of the sdjcint apace A is zaid to be porm fum-

domentel,if }lf iz s0 a8 & linear menifold of the sdjoimt spece & 4 of
she quotient spsce R/ A for A=1{%: Rxy=0 for every Zedl,

®With this definition we hevs obviocusly by Thaorem %

Theoren 5. 4 linsay menifold F of the sdicint space E 18 norm

fundamental, 1f end only 3f T4 is dense in H 4 by the wsak topology.
For_ o linger manilfold & of the adjolnt aspace T,

Theoren &.

pukklng A= {x: Zlx)y=0 for every%z’eﬁ'}, wa heays
;W’ﬁ{ﬁ o E(x)=0 For every ® e A},

Proof . Putting B ={X ! E()=0 for every € 4 } ., we ob-
tain obviously by definition a weekly closed ilmear manifold B of R,
snd on acoount of Theorem 3, B coincides with the sdjolnt space R ;A

of tha guotient gpace R/ A . A2 A i obvlously fundemenital in the

k£ ’
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quotient space R/4 , 7 iz weakly demse in B by Theoprem 5

Finally we will prove

Iheoraw %,
! raw V. (Banack ) When the norm of £ 4o compiete, for a it

n i
gor mandfold £ of thepn sdjolnt apeoe X, If T4 i weakly closed r

| £ B8 or
the unit aphers ¥ of ® , then j‘” alga is weakly ¢losed.

Proofs 4 = = Y Ld
4 -4 ('ﬂ“‘a‘ } = {et U. et A d = cdfj)}; for sver ot =g 2 2 86a
b O w >
¥ &Esumption that (ﬁ{ ko }A la .weakly cloaed for = ary oA i3
« o an
Smer =T A » ®We gen find E such tha AdlE - 2 B
el B ¥y -] 3 t b2 2 = & . B

cm g BT \
use, a3 4 (44§50F ) is closed naturally by ths norm topelogy, we oan find
5 ol

2 po3ltive nuwber £ <uaER such that (RRERTI(ET +8 ) = ¢p 1«1
== » B0

w& heve ObWiouﬂlE & W o4+ o < AHFEH v, For such £ » Wa have ObUiOLlﬂl
¥
P

ET «

_QZ:E;'E;E‘I[W. : Efﬂm)—ﬁczﬁﬂg&-}_’

ACLET + BEIETF +8)=0.
Slnse £EF 4+ H 7
ET 4 H < 4nENT , and (4 4m0T) s weakly compact by §72
Thaoren &, we cam find & finlte nuwbsy of @lenoents &g fam= 1, 2
auch that bRl = 1 and - - P

i .
T4% : = =
A’im,-ﬁvz PR (Ryp ) B Ry IS E (A F 4 E )= g,

Similerly we can find gon
Ngee
wtively #"*ﬁ‘ {p=1, Bovoanptp b= d, B,..,)

such that j Tyl 5 1 And

— ®
A TTA{FE @ 13¢ L. (L
i U7 By ) = B (G mpd |5 1 = 00,
18 we cen find e sequencs of elements x, { o= 1; 2,v..) such thak
}i’mm HElf =3,
| AJI-{':L P HE (R~ E(a) s th=p,
Lot ¢ be a spece of pumber Sequences = {(§: p=1, 2 ) aab
Wi =1, 2,...) sub-

Jeet to the econa :
ondltion: l’l_g.;& ¥, =0, with the norm

gt = sap gy g,

Lot V-
Then we see saglly that, putiing ’
)qa:{ (& (=) b= ly Bioes) o 55@/3-}
El
®e obtain a linear manifold 4, of ¢ s end, putting

do= {E{ze): w=1, ha04),
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we have N4 — 9.0 & 1 for every 3¢ Ae o Thue we csn Find by §72 Theo-

rem © a contlzuous ilmesr funetional %F on' & suech that iyr=0 for every
ye A, and @y s For such % , pusting
olo = Ly = {h t Bm0 for spup , Hom 1),
wo see sasily thet & (5, ,%g,-04) :;,;%ad“'g"” and hencs g."':.% fet, | = =2,
42 R is completo byraaaumpticn. we chtain hénce an element.z, g R aF
g = % ofy oy
end we have for every X € 4

o,

it

= . o2 =
Elus)= F of, % (a,)
drzy

B (med = E ey & (m.) = -"ffguJ = 1

defa

Thersfors every & & 4 12 not a sontack pelant of ,;f by ths wszk Bopology,

that 18, 4 is weakly closed.

674 Yesk convergencse

Lot & be g :ﬂorm&d apace , & sequance of slements G, ef {+r =14,

Boeno) 12 gald to be norm convergent o a limic e £ , AT

1 — .
;_@Bn}m Ho,—all =0,

that is, if ‘];,g._’m @y = g for the norm topology. Az the norm topology

1g separative, we see eesily that sush a limit a i3 devermined uniguely,

if it exiasta.

=

Sonecorning norm convVergence, We can prove pasily

Theorem L. If Mm e, =a , lim Lo = &€, then we heys
Mo (o, pd.) = ofot p-@.,
Theoram 2. im o, =@ s gn}_'n}aaéb =g implies }%ﬁmna«“; Gy = ol G,

Thoorsm 5. }}Jﬁ‘, f, =6 implles }_@Dﬂ A, 8 = jfall,

Let £ be the sdjoint apase of R ., i sequense of slemenvas A, R

{v¥= &y 8,000} i ssid to be weakly convergent to a 1limit & ¢ £, 1f

Aim Bty =8Lln) for every = 4 &,

and then we zhall write
w=llm G, = &.
e = gy

¥a recognize oaslly by definition thanuniquamsm of sush & limlt & € %,

sy i
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if it exiata.

Phoorem 4. - By =3 imp E E
w &}’mmm =d implies A%%aﬂ Rl Z gl B H.

Progf. Far sn¥ £ >0 we can £ina b the definition of the ad-
joint vorm = ¢ R such thet & (m) BARN — £ Jimi=s ‘For sueh m s g
we have by assumnt A = Z . mu. '
¥ phion Gim) -bl—vji@é By (XY = yliig“ taull . and hende

Hp aF i zaEi-g for evory £ =g,

Thus we obbaln our asssrtion.

Let R be somploens.

AB convergent for every x ¢ K, then &, (v = 1, By.0:) in woakly conver-

Thaoren 5. If B cdle =1, 8,...}

Zent and we havo &;ﬁ’%mn Ryl = toa .,
Froof. 42 R 1ls completo by agsumption, we conclude by Theorsma

A
1 in $68 and 2 in §66 theb the porm topology 12 stendard and norwel
Thus we obtein by §66 Theovem 4 thet A, {»=1, 2,...) is woakly comver
gent, and farther by §66 Theopem 3 that mp WE N oo
L LI AT » "

Theorsm 8. If R ia complate, then w-lim =&, lim a, =g
_ ? - G S cig b epag T
lmpliss 2B G.iev) = T2l ,

v

Proof. 48 w9 have by the Formmula §?2€2)
VB tow) = Bled £ [Futa) - Botad] + VH, cod = &fazl
ERE NN, —al - { Butar - & cadi,

and &sg:ﬁi%”"i! Bl <+ = by Theorem 5, we soneluds by aasumpltion
L}g,puin;'éﬁ,(.a_&)—ﬁmzl:a.

Theorem 7. it R 1= soparable, then e¥ery bounded seguance R, R,

{e= 1, 2,...) sontaing a ¥esxly convergent subseguenss.

Proof. Let 2p¢ R {Ffa 1, 2,...) be dense in & by the norw jo-
pology. From q,y& R lr=1, 2,...) wo can fing by the diegonal method

a subseguéence o (=1, 2,.00) such that Zt.'i,ﬁcap) {(#F=1, 8,...) is con-

vergent for svery FP= 1, 2,... . AB G (o= 1, 25.00) f2 bounded by

asgumption, we sen find ¥ w2 sush that HE&?@ =¥ for every =1, B
" - »

peoa

Lat 2 be an arbitrery slemsnt of R ., For any £ » @ we cen find by

assumption P auch that fidg —2 P < £, and then for overy s, mf= 1, 2,.,.

' - - -
’ vﬂ.‘ﬂ.(ﬁ) aayf,c.a(?i)ié ia"’?‘(“’!’)—alfﬂfz)!

Ry - s w
[ Ry ing) e-a.,,,.(:t)l%-{@.,f,(ag,;_a?'(ﬂ?”
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S ATy, AhGp= 2 U4 | Fope R Ap =2 B+ [ By, Cap) = Brigr Lp2 ]

= Are + ia&ff.(ﬂ-;?) d.ayﬁ,(afll,'
S Pias we eomncludes that Eg.,fﬂ ¢z) {pmo L, B5..0) 1n convergens for every % éK,
and hence, putting Pin) = ,ﬂ;"&@ ﬁkpfmj Tor avery 4 ¢ R, ws obtain o

linear funcileonsl ¥ eon R Furshermore we have for every = ¢ R

Igeif = 1im | &va )l g YRS,
poe
Therefore we concludé ¢ ¢ R , snd consequently S {pr= 1y Booao) 1z

weakly convergeni by defimition.
4 seguence of elements &, ¢ R (v=1, 2,...] iz sald to be weskly

gonvergent to & llmiv ae R, iF
Lim X (6w} = ¥ (ad for every ® € R ,
b e
I 2 - = R
and then we shall wrlte w g._i.?mﬂ oy, = e

Bvery o € £ m&y bo considered se & linsar functlonal om the sdjolnk
ApeGe E of R by the relatlon: ac¢X ) =i (a) fLor every X ¢ ", end we

have by the forsmle §72 (3)

Foql = s:up IEXCSIN
FEF R

Thuns we have by Theorem &
Theorem 8. weiim o, = o lmEpliss Lim el = gai,
T ——— —F =D gy =

As the adjoint spees B is complste by 72 Theorem 1, we obteln by

Theorens D and &
‘Theowem . wellm @, = 0. , LB &. =& impliss
S s v hew Py S

‘l}bm a_y(@_s’)g a:(;;‘.._,gg 2an W, g = deo,

b, Byaes

§75 Repulsrity

Let R Dbe a normed =pace. The norm topolegy of R ia by §71 Theo-

rem 1 and $56 Theorem 1 sepsrativs, standerd, abd hence refliexive by §68

Theorem 4. Purthermore we ses by the formmla §72(3) thet R may he

considered ss & subspece of the asdjoint space ﬁ of the adjolnt space R
by the reletion: x(E) = E(x} for every X ¢ Z =nd x ¢ AR, and then R.

1s norm fundamental in ?E N Thuas we obteln by $72 Theorem 4

Theoram 1. The unit sphere 0 of R 13 weakly denss in the unli

B

{
i
i
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== =

sphiers T of the adjoint gpece @ of the adjeint spese 7z

Ws shell conslder the regularity of A by the norm topology in ths

Bagqual .

i
Theorem 2. R 1s regulay by the norm kopology A and enly if
tha unit sphere ¥ of £ s Heakiy eompact, .

Proof. If & 4is regular, then the uplt aphers ¥ of & coinecides

-wlth the unit sphere T of B » and hencs weakly compact by §72 Theorem 5

Converasly, If the unit sphere 7 of R ig waakly compact, then ¥ ooin
cides by Theorem I with the unit sphers & of B » end hence K colneides
with ﬁ o

Fhaorewm 3,

If & ias regular, then svery closed linser menifold

of R is remlar sa a subapace of 2 .,

Prourl . If & linesr manifold A of R 18 cloged. then 4 1 woakly

clossd by §68 Theoram 2. &2 R iz reguler by azgumptilon, the unit

sphore U of R 1a weskly compaat by Thaomm 2. Accordingly w4 is
wealkly sompact. Since s¥ery boundsd linaap functional om A may be

axtended by §44 Theorom 4 g a boundsd linear functionsl on & . the uniz
aphore T4 of the subspaee‘ A is weakly COMPRET . i‘hus A ig regul ay

by Thesrem 2.
. .
Theorem 4. If B 18 complete end thne adjoink spece § of R ia

rogukar, then X alae ig regular,
Preof. If the adjoint apsce B 1a regular, then the adjoint gpacs

R of R iz regulsy by definitisn. 4 R 1= compleie by asgumption, &

may be consldered as a clessd linear menifold of E . Therafors R also

is reguler by Theorsm 5.

Theorem 5. If A 1a reguler snd separebls by the norm topology,

then the sdjoint space i ef B ia separasble by the norm topology

’Px‘ooi" If R is regular, chen R mey e considersed by dsfinition

83 the sdjoint space of the edjoint spece R . Thus, {f R is separsble
r

then R 1s separeble by §72 Theorem 6.

13
T™heorem 6. Ifr A 1= regular, then every bounded gegquences of sle-

ments o, & R {(r=1, 2,...) contalns a weakly convergent subsequence.
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Proof. Lot A4 be the lemsi closed linsar manifold containing all
By R =1, Rroaale sz R is vegular by ssaumption, 4 alss 1a re«
gular ag a subspoes of R by Theorem 3. Furthermore A 1z ssparable
by §71 Theorsm 10. Ganaeduently wa se¢ by Theoyem & that the adjeint
space A of A 1is separsble teo, Time we can concluds by §74 Theorem
7 thet 4, ¢ R {+= 1, B,...) contains a weskly convergsent subsequsnte.

Thaorsm 7. If % i3 wepershls end every bounded mseguence of cle-

nenks X, & R (o= 1, 2,...) conteins s weakly cohvergent subsequence, thsn

R iz regular,

Prsof. Lot 2, ¢R (ee= L, 2,..-) be dense in R by the norm Topo-
_'mgg{ Then w8 cen Tind by the formla §72(3) a saquence of slsments
B ¢ B (w= 1, 2,...) sueh thet B, (s8,) 2 {;M%ﬂ, WE =1 (=1, 8,..0).
Let ¥ be an arbitrary bounded linsar funcitlenal on the sdjoint apace R.
&a we have for every finlte mumber of real nuabers £, {¢= 1, 2,...3 )

t% frcm| = @ (%hﬁ,) [ = .Htfﬂlllé_;%a’fg, m
we cen Find by §52 Theorem 8 =peR (F= 1, 2,...) such thet
By (Rp) = P E,) for every &= by 2r0005
Bag o Hepld + 1 for every £= 1, E,,;. f
From this sequense Ap (F= 1, 8,020} W8 zan aslect by assumption a weally
convorgent oubzequence xf"m(f“= i, 2,...), and, puetting » = Wta%&;mm &“Fﬂ_
WE 300 easily'that we have for every s =1l, Byone
B f2) = %@mﬁy (xp) = FeBLY,
. Thersfore there exlats &n element = ¢ K such that
G Ry = P By ) for every = 1l; B,0.0 .

For an arbltvery % e B , considering % [y » &gz, ... instesd of B,

My secsp-We cAn find likewlse an olement g £ R sush that

2&(3.) PR, Eg,cg,)g e (E.) for svery p = 1, 2‘,,... .
Then wa have neturally o, (=) = E,(g,} for every = 1l; Zi000 = Puat-
ting A=4% ¢ iai)s_-ia:;em}, we cbtaln obvlously & weakly closed linsar
manifold ,2[ of the adjoint spece R . If 4 does not coincides with

the whole K , then we can f£ind by §62 Theorsm 9 %, &R such that =, 4 ¢

but X (KXo =0 for every % ¢ A . For such %, ¢ R » 83 @& € A (b = 1,

e ozann

&

§75, $78) HORMED SPACES

2y:04)y we have Mo, =2 83 | & = 199
T EA N B A () = B tme3i = B, taw) = Lga,n,
AS Rbe—x, Il g Haey - Heeil , wo obtain hencs for every &= l: 2-“”
B~ 2o 1z Maz [, 4- jad, Than) x L -
contradletlng that &, (v = i, 2,..0) iu denss in & . d‘ Therefore 4

coineldes with B , and =
» and hence = = ¥ . fzeordingly we obbein X cmd = ¢o)

As e R may be arblérary, we conclude hence Zon) =

. ¥R} Tfor svery ZeR,
Thus R is regular by definition.

&76 Iniforaly convex norms

Let R bBe a noried BPASE. e LIf fop any; two poaitive mumbers E>g’

ws con Find § = ¢ . such thaet
. e H?,!i"!a?’,;!l’izsﬂwé&}uﬁ-és" EL N 18-

iy '
plies j= i gl oz oo g i &, then we shall 28y thet R is ppi-
formly Lopved, or that the norm of % 1is wniformly esmvex

Lo “ e
Theorem 1. In_ordgr that the nerm of £ bs widformly convew, it
i nysr, 4

is necsasary 2nd sufficlent thag Fop

Y £ >¢ we zen find & » o0 sush

thet dzil=ngi=1, Hx-%0 » g implles A T
Proof, Az ths necessity ia trivial, we shall prove ths sufficleney

or two pasitive numbers g =& we can find by assumpticn £ =0 asuch that

Rocdbe= gt = § Bu—at & £7¢cg-g7)
im‘n ies Na+ 2
L i e 42— £s If hgnog iy r@magan;,;;d?umaé, i % &, then
1 i &
B w1 HyE = g
YT u%ﬂ # i (2-g0 + u;f.méui ¢
Z — -y AFH - barg L
mq P g Z "M (E~E') 2 gr0g—gr)
and hence we obtain -==—= l
f XA ﬂ’g.;f iz g£- Fs. On the other hend,
T bt " it BAH = gis
R RyH & !u-xﬁ e 20 IR
- 1 15—
2 M.tr ot gq - g’u‘x:‘;m‘ '

Consequently we have #=il -+ gz =gy + Fo s, Az

Ust i+ a5t 2 fm— FUEE »2 g UFe- wna,
we have Zfull & &~ £° , =nd hencs we obtain

Mt W6z Uzt g+ J@%ﬂ
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Theorem 2. Lot & be uniformly convex. For s manlfold A of
the adiolnt apecs K , Lf lm E (gp) == % (2,) Lor every * ¢4
T T R TV R Hophe sup 47 (8]
& —pea EeF A
then we havs ilnm fos=a2,,
T b —p S _
Proof . We cen assume obviously that a, = ¢ . For each ZeA

we heve by essumption

1 el = Lim 1% (2o 3= Llim 8% ddanl,
b =iy o & — a0

1% ol

and hence ilﬂgn = sup -Z-Z2 o 1im faud. Agcordingly we conclude
Fe 4 WE Y S

by aasumpbion
lim Heodl = ook,
b —5 D
If we have not E"E;fn By = fg, then we can find £ » ¢ and p sube
on
sequence g, (prp=1, 2,...]} such that
oy, - o, 0 E & for every pi=sl, 2;...
A2 B ie uniformly convex by &sam.mp*-:.ﬁ.o*p.9 for a poslitive number
f e Min £
é v &gl ? ! |
we san £ind by definition § > ¢ such that Mzl Mgl g7 s (Mtl-ugu|ge, bX-ghx L

i
tmplies WEA+ gl g Hx+ g8+ 8. As Nagw <o, and Llm Wao.fe= il fod,
1
wa sen find Mo sueh that H Ges 0o "é_: N E"g_&?mﬂ_,ﬂmaﬂj = £7 For every

M & ple, and hence we have for svery o & Mo

Fove 8l S Neutl + Rell =8,

IPP
Accordingly we hava for every pt mpe, end ZeR
[R (aupd + o) & NFU (ol +ro,0 -8 ).
As lﬂ_.am =z (op) = F(a,) for every % ¢ 4 by assumption, we obtain hencs
e _
2R (adl s LR N (A NG, ~&)D Tor every ¥ € 4,

snd comzequenily by assumption

H (&,
oot = gup toi®l o pp w4y
ge,g HEHK kS

sontredieting & ¥ ¢ Therafors we have Llm a, =a,.
Recalling the formula §72(3), as a speeclal cese of Thsorem 2 we have

If g iz uniformly convex, then

Theorem 3.

w-g.};r& B, = &, }}kmm Eoul = il &t

implies E’lﬁf_‘ﬂéw S, = o .
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877 Uniformly even norms

Let R be a normad apace. I for smy Ltwo posltive numbers & LB

w6 can find § »¢ auch that x4, gt ze’, M= ~gd=F  implies
e R e s+ & aiz~g'ﬁg

then we shall say that £ ia wniformiv gven, or that the nerm of £ is

uniformly aven. ’

Theorem 1. in order that the morm of £ be uniformiy even, it

18 necesgary apd auff‘icie"m that for any £ % ¢ we opn Ffind & =& gugh

that wzi =1, futeg & implies
B e g+ Hx-8Ng 4 + Edgn,
Proog. If the norm of R i= uwnlformly even, then for any positive.
nunbher g . %_ we can find by definition a pesitlve number 5‘4 %- aueh that

iz , M;ﬂ! = Iia:w#riég,g impliag

P - E
PHUQN szt g e 2pueaygy,
For mueh &, 4 , 1f jlade{ , B4l s &, then, putting:ﬁ-.‘-:adam@,,.g:aam-g
. -
we have g, Ty 2 o= pgn »-L, "z-dll= 24fy = 24
and conssquantly o+l +rila-Big 2 & c944,
Conversely, it Mxl =i, 40z & Amplisa
ﬂx-ﬂ‘;laﬁ“‘ﬁz"’éﬂﬂé & 4 Eﬂt}-_ﬂ’
then, putting §= Mind{ed, £}, we sce thet for jan SN Z E, na~-filg &

as o+ z Lucli-~pa-fU0 226 ~d, B £ , patting

Ea+ £8 (a+ Ly, g= W(&,_*gja

we have Hxll =1, hyt g .g": % & snd hence
Z

LURM , LugR . , + g da-ga

i qo0 £ Nar dF = Tas£d
that 1a, gag TUEE = ot dg"_ﬂ, He -4, Thersfore A 12 unlformly

even by definition.
Theorsm 2. If B is nniformly convwex, them the adjcint space 7

of R is uniformly even.

Pronf . I R 1s uniformly convex, then for eny £ > ¢ we gcan

find by Theorem 1 in §78 & >¢ such thab Tzli=jigi=1, un- gz £

lmplies #x+4iig 1~48. For such & , 4 , if0@a=1, nirs .

!U’\
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¥, % ¢F, then we have by the definition of the ad)elnt nerm
i %=

Ygrp%-F8= saun 10T« Fiomy ¢ (K -TFICu
T ¢ ﬁiwﬁ%gﬂmgg %‘?J = - # & i

= EZime T (g LT IR RS 4
s MR A A L LR R L s LR A A

Here, if !im-—g.ﬂ zf§ , then, as ﬂx—gﬁg 2 s we have

R+ gl Filn-yt g 248 » 28 =
Thus we cbtain HE +§ i ag"i.mg B g+ &af il Therafors the sds
joint apace E 18 epiformly ewsn by Theorsw L.

TheQrsl Do Ir % ig wniformdy even, thon the adjoint sSpsce &

1 uniformly convex.

Proof. Ir R 1s m.lﬂ.farml;; even, then for eny £ » ¢ we can find

by Theorem 1 § > ¢ mch that Naft=1, nge = & =53 & R, .implies
n-;c-aay,i? +5a1£—-y,ll-__:7 A -;%‘ Hg;ﬂ.

For sueh £, & , BER=pgH=1, #T =Tl =¢ ., f,szﬁ , then

we can find by the formmla §7R(1} ¥ ¢ R such that

=5, ° (Z-Fuyrz s,
and we have then HE + f = sup {fz«rg}r_m}
iy
= 8up | % xeyd - g,(z §) = (E-F 200}

£ IR
£ 2up {Etaw;u#—am gh z&é‘?

-1
' g,..+THgJ!-=-=’£¢§\=£-—-'é:'EJn
Therafere the adlolnt spase B is unifcrmly sonvex by §76 Theorem 1.

Theopen 4. If & is uniformly convex and ecomplete, them K 1s

rogular by the norm Lopolosy.

Proof. If R is unlformly comvex, then the adloint apece E of
A iz uniformly even by Theoram 2. Thus the adjeoint spacs ﬁ of K
13 uniformly convex by Theorem 3. For an arblirsry ReR , wo can

find by the formula $72(1) a sequemecs H, € K (p= 1, 2,...) such thet

M

% ¢ gsn?ﬁm-f;g HE, 4= 1 (=1, 2,vc0)a

=Lly 25400}, B8

For auch %, € (v
—_ HL —_ — 3 o
ELE(EI =S I X CEZ R s uR el Z hox

i

for every finite number of real numbers §, {(+=1, 8,00, ), ®e3 can find

M* )

v
[

by §52 Theorsm 8 & pequence %p ¢ R (P=1, 2,...) zuch that

Ztzp) = E (H.) for v =1, Byeees § s

il
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ﬂ?tjwﬁﬁﬂﬁﬂ-a--}-r £or P=1, 2,000 .
Then we have obvilousiy for GV¥ORF w=w L, B,.,,
Mu Focxp) = e
and farthor
24 = LTUP I E T
Trus, comsidering R as a subspmes of 2 by the relstion:
R(E ) = F (=) for every T ¢ R
we obtaln by §76 Theorem 2
1 ~ % U=
%,_bmm e~ %@ .

&s R is complete by aagumption, we concluds hence % ¢ & .

fherafore
R 12 regular by definition.
Iheorem 5. I R 1z uniformiy oven and complete, them R is
resular by the norm topology,
Proof. If R is uniformiy even, then the adjoint spmce B of R
is uniformly convex by Thecrem 3 and complete by §72 Theorem 1. Thus

R is regular by Theoren 4. As R 15 complets by ﬁwumptibm we ton-

eluds hence by §76 Thoorem 4 that R is regular,



OHAPTER XI
MODULARED SPACES

§78 HBedular copditions

Let £ be & linear apace. 4 mapping s+ of @ into { ¥ 2% %’g*m}

ig seid to be g modular on R , 1f m satisfles the poduler condltions!

1} (@) = 0,
2) o (= R) = o ) for every = € R,

3 for amy = ¢ R we oan find A = ¢ asuch that we (2 %3 < -+ =2,
4) wm{Ex)=¢ for all ¥ >0 lmplles x =0,

5} dep=i, ol,‘ﬂ 20 1mplies m(dztfy) | Lm(x) +@w(g)3
&) ‘ mg’;z)-—-@luﬁp 1m(§=r.) for svery %6 R,

4 linear spsce R asscocisted wlth a modular we 1 called &. modulax'sd

spsce, and m(x ) the meduler of am element * € R .

Let R be a modularsd space in the seguel. We zee sasily by 5),

&) thet m(i¥=)} is a conven non-dscrsasing funetion of ¥ z ¢ and left

hand conbinuong. Thus we aee further by 2) that If = ld ) < + o

for goms oL > 0 , them m (¥ =) 1s a comtimuous convex functlon of § for

i51g o,
melm 2), B) we conclude easlly
{1} m(z+g)§%%(£x)+4§mm;¢),
(&) e ¢ ;Zi,;!a(y:{&,) = éjﬁ,lg@ylmmu,) Tor %i“vlé f,

As = (1= vy, We obbain further
nom (1-8)Y + ELY o+ g (XgD

(3} Mctigmz:;)-kzm(g-r—%"(iﬂg)) for o< £5 1.
& seguensa of elements &, & Ri{y= 1, 25...) is sald to be modular

sorvergent 0 & iimit & ¢ R and denoted by
HeliE O, = .,
b =D OO .
i we have lim mfla,-al)=0 for every Ezm 2. Such e limit @

13 determined wniguely, 1f &, (& =1, 2,...) iz moduler convergent. Be-

esuse, 1f iim m(iﬁﬁe-e,"@-)) iim mii(n,~fn=0 for every § & 0

k4 =
then, as m(?;: Fie-831 % v:d?m-m({mﬂ,«-e".\}-t dew (Glo-£3) by (1), we

sonclunde sl f(a-£1} = @ for svery § p ¢ , and hence a—F= 40 by 4.
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By virtue of the formals (1), we can prove sasily

Theorem 1. g-lim @y = &, melim £, w4 ilmplies
melds (o G v P £o} = ozga.-yf.t-g.
m-lim & = &, Aim ol = o iwplles melim ol f, = e Gbo

Iheoren 2. If melim 2, =& and we(Fav)<<os for evary » w1,

Rysoosy Ehon me hawve Lim = )
SS0E B0 Ne¥e  Lim i) T om (&) < 4+ om0

1"0

Proof . Un Eecount of the formula (3) and the medular copditiom

5%, we havs obriously for ¢ < £ < 3
el BN PR G 4 - |
= (éei s —={megacy + mt—g- (o — @31},
end hemce i ($&)< + & by agsumption. Furthermore we obtain likewlae
3, = 4 .;S_, i
(aac) £ YRR + 5= | m (4a) + M(:g— (Ba—ad} i,
and hence Wwe goncluds by assuvaption fow avery £ =4
—
B i (28u) @ mcan) + _%, s e ),
Thus wa k: P :
have }im PR{AB) 5 2o ) - bom , Similarly, from
L, P
fa) = Mf@vu}'ﬂ‘——{wf a.b.)qpm(.g_(ab.,m)jj{
we cgonclude hence min) g idm mie,) , and from
R ]
ian) 5 mle) + £ fm c2a)+m (F (mpmad)
we obkain likewise - ﬁ'}"ﬁ WMy Z w(A), Therefore wo have
%},{“MM(WH ) < b oo,

Theorsn 3. If m=-1lim 0, = - =
—— = o) Fid 0 m}}lﬂma’f‘hv“‘a‘ﬁq (fd:lg 2,;.,;,),

oy
Proof. ; 3
o We can find by asssumption Ve (pa=1; 2,00.) auch that

g (e ay, — fn))i-;f;f
Then we have by the formula (1) for P BELA >0

then wo can Find Y ((w*—: 1, B;,..) such that m-lim @ .,tm':a’-
—— ',m—hw
for every{yxml,, |

H
we (A Cpe, iy, — B &
Pty Nz ‘i (2‘\(0",“‘;" "ap))»e- 1m(z&(a. - )
;afm + = e ’”‘-(lkfa.fh—a)‘)_l

A

and eonsge
quently {%;l_)mm A (g —-—a))= O for svery A = 9,

o Ban
F
If a segquence ., ¢ & (+¢= 1, 2,..,) i3 modular convergent, then we
zas sasi)
¥y by (1} ﬁ_}l;igmm (2 (Gua—,)) = 0 for eVery A = 0. if every
geguense 4, ¢ R (p= L, 2,...) subject to the condition:

1'1mwmz)h(mﬂ—w,g,)) = 0

ot Tor svery A =8,

+& modular convergent, then we shall say that £ 1& modulay compilete, or
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that the moduler of R 1s gomplate. ' then we can find o linaear funetlonal ¥ on A gueh that
For a ssquence A, & B (#»= 1, 8,...), LT we have A ¥(m)=win)  for avery xe A,
m"ﬂ'j.'fl“(m-e’a.,,-a-.“-{wﬂ;v'}-::&n . FR) SV F mlE) for every x &R,
chen we shall‘ sy that = series :‘Z_j', ‘?“” is modulsr convergent with gum & , f groof. We consider all Llinesr functionsls ¢; on & linear meni-
snd we shall weite g = % .. i fold A, (A eA ) such that 4 < A, for every » ¢ A4 ,
Theorom 4. If R 1is modular complebe, then for every asquonde Gu(n) = Fxn) for =z ¢ 4,
., § R {vr=1, 2,...) gubject fo  sup m(ai<ier, snd for every ah- Falz) 2 r+mcz) for xe A4,
solutely convergent series };}d, , the series ,;5:':."0')" &. iz wodular gon- For two elements Ay, 2, € A , we shall write %, < ., , IT
vergent. s ‘ An,c Any,  Fa,2) = (x)  for every x & A,
Proof. Reealling the formula (2) we have by sssumption By virtue of Maxlmai Theorem, we can find a meximal system [/~ < A
b, ,%."‘u & )OS P,%HE‘M ;Eg}»ﬁat,imm,) =0, : guch that for eny Aq, Ax €7 we have #,C %, or ¢, < %,. Pox
Aocordingly the series gd» O, 18 modular convergent, because R iz mo- such = moximal system |7, putting 4, ‘:‘%,, Ab; s
dular somplete by assumption. : Holx) = 4, (2) for =eds, el
: Q._,, we obteln & lineer functlonal ¥, on a llneer manifold 4, such that we
have ¢ < ¥, for every » ¢{° , and hence there is A, e I7 for which we
§79 &M&M have ¥, = ., , Decauss [ iz a maxiwmal system subjact to the indicated
Let R Dbe 2 modulared spase. 4 linesr funotional ¥ on R 1s said ‘ copdition. For suech A, ¢ [ we need only prove A = R .
to be moduler bounded, 1f .5 Hov we assums theb #,¢ R bub xz, & A, . For every ., ¥ ¢ A,
m?:)pg: [P endIt< hom.’ | ' and poaltive nuwibers » ¢4 We have by the modular condition §)
Theorem 1. - in opder thet & lineap functlomel ¥ on R be modulay . ALY rem(x s % )=V (p +p T ty- ?gf o) = ¥, eud;

= 1. 1
At xai+,umc§-7;x,)+ et = Ty (et t)
4+ ¥ A
(A+ﬁ){@(—ﬂ—A+M J+r—%(~——¢ij;# )bz o,

bounded, 1% 1=z neceasery and guffielient that we can find two poeltive num-

)

;
]
bera ot , & guch that o P(w) g ¥+ »edxn) for svery x £ R, |

Proof. If ¢ is meduler bounded, then we cen find by definition end conseguently
‘ . . i
L h thet = A i)l = 1. If 15 m(n)<teoo , then remm (s Loy y - - __F,
> ¢ sue S LR g W S irts ' L R AN I R A kY Rl ~E 1S
we can £ind A > @ such that mcaz) =1 , 0< A= {, end we have by the Therefore there exlsts a real number of such that
modular condition 5} 1= s {Ax)} g Awm(x]}, For such x we have hence ‘ )‘{V*m(t"”;\'zd"“&c’ﬂjgMgfﬁ{_‘ﬁ(;)-»{-—mtgax—;x.,)}
. - "“a .
d iR = L porny s £ 5 men, -t for svery #, y € A,, end positive numbers > , pm . Putting
' € R. ° The in- . =

Therefors we conclude oé?(ngT-f'M-(?t) for every = € R e . ‘ Wiz 4 IR, )= Y, (%) + ot FOr % ¢ Ay, , —oo< §< vos,
werse is evident by definition. i we 209 emally that % 1is a linesr functiomal on the linser menifold ge-

Theorem 2. Let 4 be 2 linesr memifold of R . it s linsar w neretad by A, and x, . Furthermore, fok £ »& , putbing A = —%
functional ¥ on 4 szatisfies : ‘ ) "= -%—, we have

Piw)m ¥+ mix)} Lor every xéﬂi, Y(x+rEx,) = Yo (m) + Eot
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E hiz){F+m(zsEL) Y0} = T (n+ 2,1,

‘P(zﬂixa):lj@ocm)‘§d !

£ Yy lm) - (¥, (X)) =V o min—Fa,)}

= vl e §xs). .
Thus we have ¥, < % but ¥, ¥ Y , contradleting thet §” iz e mazimal sys- s
tom subjeet to the indicsted condltieon. Therefore we have _4;-19 =R . ;
and hence %, sailafles our requirement.

Theorem &. For an elment- a e R » Af there is £ > ¢ sguch thet
w{{{+E)@)<+ o , then, putting ) )

F=ef—wmiay, of = lm L fmecre grey— mearl,
we oan find o linear funeiismal 4 ph R amch thai
L Ie) = § +anla),
Fex) 2 ¥ i) for every xc¢ k.

Proof. Putiing % {fa) = 5o (-’-m:r( L < +e0), we cbbaln oh- _
vicusly & iimesr functionel %, on the lineer menifold gemerated by & ke
ailnglo element @ . Ag wi(E &) is s comvex function of £ , we have

wafay — o) {é"{. for o £§ <=1, 1
- £ = for §F =1, ‘
amd hence moe) ~mifa)gel (i+ §} for every & & 0. Therafors
v ifels £o & Frmita) for everT F ;
Eap@éialrly ws obtaln ¥ 2 0 , putting % = 0. As &t z 0, we heve hence
Flial 2 5 o T al for avery resl number £ . !
and further ¢ (o) = = ¥+ mwola), Then we san £ind by Thecrsam 2 = I
linesr funetional ¥ on A such that ,‘
Piay = P (a) = § + i), |
FE) & § + wein) for svery ® € f .
5
§80 Modulsr sdjolnit apaces

Lot & bs a modularsd apece and R the totality of modular bounded .

¢

linear functlonals on A . Ye see easlly by definitlon that A con-

stitutes & linear space. Wow, putting
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{1L) mm)_aup{ Elw)— weird} for every ZeR ,
we #hall prove that # astisfies the medular conditions in §73.
It 13 obvious by defimition
1) EXOEE
27) A= l= M (E) for every Ze¢ R,
Reaalling §79 Theorem 1, we cbialn immediately by definitlon
51} for any X € R we can find o >p such that # (et %) <+ oo,
If # (% %) :la for every £ > ¢ ; then we have by definition
EX(n) = wmiin) for overy x ¢ R and § > g,

On the other hend, for any » ¢ £ we zan find o » ¢ such thet ¢ w =}

<-4 os , and for such = we have hence for every I = ¢

Hen) g DEH) T (-n) z WEE)
= Fa e

Meking E tend to +ec , we obbain therefors Eex) = Thies we havs

4') FLFHE)= 0 for every § >4 implles % = (.
For et4p=1, o,B=¢ ws have by definiltlon
LA E 8 Yy = ! By - 3
gyl S {et Rmrd pEim) - memr}
< of map -{i('zﬁjmm(z}]’+ﬁsup {g’{x}—m(x)}w
34

Thersafore we have

ohy

50) v po= d, 26 Lmplles WMiXE +pflg MBI+ TLY),

For svery % ¢ K we have by definltion

)= sup ( sup {EFEx)- wi{zi}) = gup H{(LEI,
Reulg o pg§cr BZ Ry
thet 1ls, we heve
1) ) = sup WIER) for every Fed,
o2yt .

Thus # 1a by definition a modular on R . This modular #5 1is

called the sdjoint modular of w+ , and the linear space B =saoclaeted with

o

the adjoint modular 8 13 called the medular sdjoint spamce of R . For

the edjoint moduler %8 ws haVs obviously by the definition {1)

{2) IR 5 MR ) + mein) for Te R, meR,
Theorem 1. The modular edjolnt apace R of R is moduler complets.
Proef. For a sequencs @, € R (=1, 2,...), if

=] Tpe =G =0
p%}ﬂwM(E( o . for every ¥ & ¢,

then, aince we have by the formule (2) for every X ¢ R and ¥ z 9
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FRulfn) = § R (VR)E Pl (Fu— By e (Fi),
and alnece for sny = & £ we can find by ths modurar conditien 3) ¥ » @

gugh thet »A(F )< +o2 , we have hence for such T "» g

- _ o LA
ﬁn}éﬂ,}wi R lm) = O 3T ﬁﬁ:’* for every § > 4.

Malting § tend to + =2 , woe obtalm consequently
1lim | B () = Ru )] =2,
o —2 oo
Therefore, putting Pla) = ‘}E}Igg &, (=) for every = & R, we obtain a
lineer funciional ¥ on R and we hsewse for every § =&
FPin) — FH,(m)lg 1im W (§ (Ba—Ruld) + m (%),
Pn—pN .

Therefore we 9¢e saaily by §79 Theorem 1 that sush ¢ iz modulsr bounded,
thet te, # € £ , anf we have by the definition (1) for every » = 1, Bpees

ROFLF—-Bedd 8 Llm 5 5 (&pu=RD),

S

Conasquently we obtein E.Ei._amm FMEELF —Eud) == 0 for every % » @,

 Theorem 2. For svery = €& ®o _have

M) = aup { R Lw) R ) F-
Teg
Ereof . We have cbvicusly by the formule (2) for every a ¢ R

wln) > gup { R (ar- (K},
= Ee E

For en element & € R , 4iF there 1z £ » g such that wm({i+E)a)armr, then

wg have by §72 Thecrem 3
(%} mia)s= mup { F (a)- AIEI,
HeR
Purthermore, 1 =i (A e} <+ oe for svery positive:pumbar » = 1, then
mian)= sup { E (i )-8 (E)}
&R
for p £ A <{, Bs proved Just above, end hence we obtain by the moduler

conditlon 6) mefe) = 'SUD 4 (A &)= Sup sup {R(aa)-meRI}
og X< -5

sx=1 R(x)za

= sup {E{a)— PIR)}= sup { Fea)— (X3},
RLX) 2 0 e @R

Therefore we need only prove (#} in the case where we can find a po-

sitive number £ < 1 such that wm ({1-E£)a) = + 5°. For this purposs,

we set FLFe) = % (=00 <« = 42 ). Then we have for every ¥ = &
¥ FeEals F{1—E)Y+ w{fa) ("":‘{;(&i(’i’m)s
because we {({—E£)0-) =+ Dy assumption. Accordingly we can find
by §7§ Theorem 2 G, € R =uch that .

Arlia)= IFia) (=90 < Fa+too)

R

¥
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' Byl g r(i-elt mix) for every % ¢ £ .,

For sueh &y ¢ R we have by the definltion {1}

M) 2 F 1= 8D,
and hence Er(a,)mﬁ(&d,) ALY = F (i~ F) = ¥§ . Therafors we
heve for every & >¢

sUD {_‘f.[&r)—"ﬁfﬁ‘d‘} = ¥E.

Téa
HMaking ¥ tend to +ee , we conclude from this relation

sup { Rea)- M)} = 20 manin),

fe R

es we wlsh to prove.

Theoram 3. For & manlfold 4 of the moduier adicint space B of
&, if }nﬁ_}m}m’izabjgiﬂ@.) for svery ?ic—.g,

wifa)= sup | Bla)— = (R I},
e F
then wa have a2 in moa,).
b i B
Proof. Por any ¥ ¢ A'?- wa heve by the formala {2)
Zlou) =W AIR) 2 wmfa) FOT @¥6ry & = 1, 2y000 »

From this relatlon we concluds by zssumpilon

EX N ~ FLEY s Lim wmrc@,) for every EEEES“
e

sné hemnce furthsz by sczsusption

LY = LI s e
b —p T

Hegsalling Theorem 2, we obbain 28 A speclel case of Theorsm 3

Theorsm 4. If  Mm F o) =H(a) for syery L ¢ &, ghen we
have e la) = bim e {a).
& otfip 250

For. a modulsred space R , every lineer manifold 4 of R may 'bs;:s con-
sidered ltself as a medulared space associated with the zame medular of
R In this gsense, A will be called a gubspsce of R,

As the modular adjointrspacs E of A dlsc is e modulared space by
the adjolnt modular # , we can consider further the modular adjeint spercs
® of F with the adjolnt moduler 55 of ¥i. Phen, by virtes of Theo-
ram 2, R may be conzidersd as a subspace of ? by the reletlion:

(R =R ix) for every #e R end T € R.
If R coineides with ths whols ﬁ in this sense, then we szhell say

thet R ia peguler, or that the modular m of R 13 regular.
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§81 Modular norms
Let A Dbs a modulared space. For every > > ¢ , putting
(1) Vs, = {2 ¢ waim) £ A §,
we obtain a sealer-closed symmetric convex vieinity in R . In factg
for every = € R, as ,e_gl}::’ngmc:; %)} = ¢ , we see easily that Tx 1s a wi-
einity in A . "It 1s evident by ths modular condition 2) that Wa is
symmetric. For every #, 3 €Un, o4 f =1, o, fzs implies by the
moduler gomdltion 5) wefotim+ @yl ot m{m) 4 M we (k) =i, thet is,
- T, end hence Tn 1s convex.. Furthermore we see al once
»7 the modular conditicn &) thet U is sealer-closed.
The visinity . defined by {1) will be celled x sphers of K .
Concernlng spheres of A  we have obviously by definition
{2) e = Wy for P=h w0,
For a pozitive nmumber § « jﬁ wa have DF tha modular c-ondition 5)
mE®&) = Ewm (x}) for every = € R,
Thus we have

{3) E W, o Ty, for ¢« 2

i

From this relation we cgnclude eanlly
¥

f4}: Ty, @ ool Ty Zor o

(S9N

|15

1.

For every -4 » ¢ , a3 Ta 18 2 symmetrice convex vieinlity, we obtalm
uniquely & linesr iopolegy 4°™ om [ such that Ta is a basls of v,
Furthermore we aee by the relstions {2) end (3) that this linear topology
4™ 45 the ssme for ovsery A > & . This same linear topology %?™ 1ia

selled the modular tepology of A . Thus we have

Theorem 1. Every sphere T, of R is ltself a baslia of the mo-

dulsr topolepy of R for all A >0 .
Theorsm 2. The moduler topeclogy of 2 is of single viciniby,

convexn, and geparative.

Frooy . Ths medular topology 47" ia obvlously of single vieinlity
by Theorem 1, and furthermora convex, because Tx 1is symmetriec and con-

vex. For any element * = 0 , we can find by the modular condition 4)

Qi;—;‘b

—ig
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e »p such that miax) =0 . Then, for a poslitive number i . vt (et )

we have obviously « % & s , and hence = & -‘;,‘:- Ta, . AS T, is & basis

of the modular topology ¥%™, we see that P 1a separative.
Theorsm 3. We have m=lim £, =&  Lf and only iFf 1im &, = &
e e B =l 2D e e 20 D)

by the modular topolomy 4 ™ of R .

Proof. 1P m’}iﬂ,q 8, = 0 , than for any I » ¢ we harve by defi-
nition }iﬁéﬂ 'm-. (E{0,—2}) = ¢ , and hence for any X > €& we can £ind
Vi such thet ¥ (a,—a)€ Ta for v 3z, , that 1s, a, e—%—vA +a for
VB iy o As T, 18 a basis of %™, ws have hences o a. = & by
tha modular topslogy 477,

fonverssly, Lf .;,3-}3%- P = . by Y7 then for any two positivs -
bers &, 4 ws csa find pp  such thab 4, ¢ -%:‘ETA ko For mom oA, 8N4
hence I (Gu—a&)é T, for v z V, , that is, m{(S{a, —-a))z a for vz, .

Therefore we have }_ﬂ.ﬁmﬁowc séa,~ a3y =0 for svery ¥ »o , thet ia, we

L m-lim 4. = 4.
. b ahen

have,, .
For svery A »0 , a3 U, is symetrie end convex, we see easily by

Theorems 1 and 2 that the pseudo-norm of T, 1z a nork on R and the mo-

fuler towology of f. eolncides wlth the norm topology by this norm.

Tae poeude-aore of L sphere T, of A #ill e called the modular nogym of
g =nd denoted by W il {2 ¢ & ).

Goneerning the modular norm M %M we have obviously by definitlon
(5) o mmws 4= dxw it owmegm)s 1§,

From this relatlon we conclude sasily

(8) Wz = inf i Tor every £ R,
migalm1 151
Theoram 4. Mam e 1 implies weewdz mwem » 82d Mg = T

implles medw) z= Ml .

. Proof. If o<M=mg{, then we con find § z 1 such that we
have My x Ml = {. Ther we have by (5) ®{E =) =1 , snd hancs by the

moduler condition 5) ¥ wm(m) g mefz) = 1. Consequently we obe

tain w(m)} = “%— = itz ét.
If @izt »1, then for any ¥ subject te 1< < Mzl , we heve ob-

viously m%—xuq > 1, and hence by the formils {5) and the moduler condil-
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tion 5) -%—m(z} z m(-%—z;) =1 , that is, 1< F=<m=m 1mplies ostix)
> % . Thapofors we have wmoxm) ZMaM , 1€ #xm =>4 .
Am tho norm hopology by the wodular norm colncides with the modular
topology of R, we have cbviously by Theorem 3
Theorem 5. We have. m-n]',i;n @, = & if and only §f
i 2
Iim W Ge— G Bl=¢7.
Ll -2
Thevelforse we have further

Theoyrem &, A modularsd spaes & is modulser cemplete, if and only

if the moduler norm of K 13 complets,

Recalling the definition in §79, we see at once thet a linear func-
ticnal ¢ on R 18 moduler boundsd, if and onmly if ¢ iz bounded by the
medular norm. Therafore we have

Theorem 7. The modular adjoint aspace of R goincides with ths

adjolnt apace of R 1y _the woduler norm.

Thersfore we hav¥e by Theorem 5

Theorem 8, m-}_fg’mw [ ;lmglies }i;n“?t (e, )=%le] for T e R,

882 Quotlient spaces

Lat B e s modularsd spacg and A e llnssr menifold of R . For
the guotlent speace R /A4 if we mest

{1) wm{¥} = pgtdg;%ﬂ-[ &2{(%(},?&‘)} for n e R/AA,
then we se9s easlly thai mt¢ )} satisfles the modular conditlonsz except
4). If A 1s closed by the modular topology %% of R, then 4 ()
astlsflies furthermors the modular condition 4). In fact, 1f for an
element X, ¢ R /A, m(EX;)=0 for svery § g o, then we can find by
definitlon a seguence of elemsnta #, ¢, (»= 1, 2,.:;.) such thet

m(yzcy)4_f_,. for avery = L, 2,000

end hence m-lim %, = 0 by definition. as A is closed by assump-
gion, every resldue sless X ¢ R /A 1s closed by the modular topology %77
too, end hence we obtaln ¢ € X, by Theorem 2 in §81, that is, X, = A.

Therefore, 1f a linear msnifold A of R 1s closed by 3™, then (X}

g

&
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defined by (1) i3 a modulayr on tho quotlent space R /4. This modu=

lar smex ) will be called the reletive modular of the modular = of A .

Goncerning the relutive modulaer we have obviously by (1)

(2} M) inf_;C dmcx) £ ww (LA EIHR 37 fow evary @ v 8,
T xe
{3} Bup  am (X)) E sup A Bx) for o« <@,
Lt O E-| ]
(4) inf (=X} z inf m(pT) for « = 8 =2,
Wiz i m{EIE 1

Furthermore we sonclude sasily from {2)
" Theorem 1. If m {4+ E) % ) <+o0 for some € >0 , then ws havs
mlH)= inf <wt{m),
Er

Fhsoren 2.

The modular norm of the guotlemt space R 4 Lis the

i‘elstive norm of the modular norm of R. » Ehat is,

mX W = zi?t;‘. ] for every % ¢ R/A,
Praok. Putting WX 0 = igi A for X & R/A , we obtein the
2
relative psesudo-norm of W=l on R # A , ss defined in §51. For any

A > XN, we have then 1| »JI%XH s &nd hence we oan find = ¢ '-)'i-x sueh-
that gz i =" , which yleida ms(x)=< i by the formula §BL{5). From -
this relation we conelude by (2) that m (% ®1= 1, snd henoe Hl 3% Kl 0,
Therefore we have

BXR =z B

that 1s, X 2 WX,
for svery X ¢ A /4.

On the other hend, for any » > # X il , sonsidering 2. subject 5o
e 2 >HXN, ws have lﬂg-—:’i\; ®H<{, end hence we conclude llkewisa by (L}
and §81(5) that we can find % ¢ 3= X auch that w (x)g 1, which yislds
Mg § by §8L Theorem 4. Thws we have [I}{-— XHh<£1, and consequently

Ixleg &, Therefore we conclude XN < XU for every X € R/A.

Theorsm 3.

If 8 linsar menifold 4 of the modular edjoint space

R of R 1is weskly closed, then, puttimg

A=i{xn: Rexd=20 for every Z €A b

A4 ooincides with the modular adjolnt space of ths gquotient aspace 2/ A

a3 a modulared apaca.

Proof. Recalling §73 Theorem 3, we zse easzlly by Theorein 2 that
A coincides with the adjeint spmce of R /4 by the #odinl a7 Norm.

Thus we conclude by §81 Theorsm 7 that ﬁ eolnelides with the moduler ad-
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joint spacs of A /A . Tharefors we need oanly prove thet the adjeint
moduler ¥ of m in A colncides with the edjoint modular of the relatlve
modular w (X) (X & R/A ), that is,

FCE) = sup {ﬁ()()""m(x)} for every ¥ ¢ A .
e rsA

In fegt, we have by Theorem L and the modulsr conditviom &)

5 - = 3up Z(X) — .
3, AR 00 = M 00T 2 gy {F00 - prwen |

1w 5RmOCE ).

= |y sup § K gz} — mink;
Xe EX3: :
Theorem 4. Fow 1xite nurber of 2lemsnis B, ¢ B &nd resl rum-
pciialad bl B0 DO tme
" . e o . : kN .
borg ef, (b= 3 Byeeu, Wi, A8 5 B R, =@ lmplleg o ZL el =8, ongd

for a poaltive number »y , iF

H It —_—
Z5 2T+ WL R E)
=t =

for every finlte number of resl numbers J§_{v¥= 1, 2,...,% ), then for

any posltive number § « ¢ we can find en slement x ¢ R such that

{1~ )RIS ¥, Tl = A, (=1, 2,0..,3¢).

Proof. Putting A= { = B.ix)=¢ for svery =1, 2,...,3¢},
wa obtain a clossd linear menifold A4 of R , and the quotlerit space R/ 4
is by $46 Thecrem 3 finite-dimensionsl, and further the modular adjoint
space of B /A 1s composed of all linear combination from A, (wv= 1, &,.
sap M) ia [.;i;? ¥, By =¢ lmplies ?ﬁ? 2 o, = 0 by asgumption, we cen
find by 4§45 Theorsm ¢ an slement- ¥, € R/4 such that

Rufxv)zdy for every = 1, B, .00, ¥«
For such X, ¢ R /A we have by the sscond assumptlon
;% A (X) = E fd 5 ¥ ¢ #(E RE)
for every finite mumoer of reel numbers ¥ (=1, Z,.e0,3% ), and hence
we conclude by §8C Theorem 2 that w (X,) =2 ¥. Therél‘cre for any poe
aitive mumber § « § we can find by the definition (1) =x,¢ ¥, sueh that
M- L) %) € ¥,

znd for sueh Xy &%, we have cbvicusly for every y = 1, 25000

By (do} = Ry Mo} = ofy,

§B3 asscciaited norms

.
Ey
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Let R be a modularsd space. The medulsr adjolnt apace A of R
ia 1tself a modulered apace, and hence the medular norm is defined on R .

We obtsin thus o norm on R 85 the adjoint norm of the medular norm of &

that 1=, as
(1) Hse M = map (FE ¢l for ewsry = ¢ R,
EEAT
This pnorm 78 (= € R ) 1s called the megociated norm of R . By viviue

of the formmle $2L{5) w¢ elsc can define the assoeciated yvorm as

(2) HEZ U = asup | E o)l
TERYE §

Prom (L) os concolude lwmediskely

for eveTy = ¢ R .

{a) PR3l s tzadE (reR ,%eR .,
Theorem L. The masoslated norm is equivalent to the modular

norp and we have for every x ¢ R
g

RA L = 428 s LpxH.

F

Proof. If mxU 5 ¥ , then we have m{xz)x 1 by the formila §81
{6}, and hence by the formula §B0(R)

A2d = sup ig-s'zm'a{ = {4+ men) 5 R,
ki

L) G
Thus we conclude AxH g 4 M=l Lfor every x € R .

Yo suppose now Nz =1, If 1= Wme¢E)<+c2 , then wa can find

A > sueh thet WMIAT) = 1, o< A= {, and then we have Dy the for-

smiles (2) and ths modular condition §)

Fin)-FE)=tamm-mitamigs L - Lanari=a

Thoe o (E) 21 implises H(x)- FW(E)g o, sccordingly we have by

§80 Theorem 2

WLl ) = Sup T ew)— wmlEIL L aul ® € =
m{ 4 }_ﬁc%gf ®) =Anidg 1,

FRLE)
and hence Hlx#l = [ by the formuls §80(2). Thersfors 92 concluds
Mew < Hay for svery =& K,
Theopem 2, Tne edjoint norm of the modulay morm coincides with

the asgociated morm of the meduler sdjoint space ® of # , thet ia,

PEH = sup | Fcx)] for svery T & R,
oo 2 2 - -
Proof . Lot ¥ be ths modvlar pdjelnt space of £ and ¥X the
asdnlar of £ . Fhom we na7s DY the definitlom {2}
— =3 ey : j— by
L %mﬁ.;«* Fa ey for evsry = € R



218 L1KEAR TOPOLOGIGAL SPACES {Chapter XI

By virtus of §80 Theorem 2, & may be considered ms & subapace of -3 oy

the relation: wm(f}= & {®} for every B¢ E . Thug we have cbviousgly

HE Nz sup - & emd) for every X & K .
maga} & ©

For an slemont % & R , we can ©£ind obvicusly a sequsnce of élements ES

{v=1, B,.:.) such that
FoeE) AR~ B R o3 1 (b=1, 2,.00}-

==

Themn, ag § H, %) 35 BB, o+ ®IGE

e

Z 1+ FIEE) for every real pus-

ter £ , we can Tind by (82 Tascrem ¢ #, 4 R auch thed

E (R e T (%), an (41— ) B ) m 1,

For msuch %, (=1, 2,...) #8 have
Zi-Lon = 1- 518 iz c-LyEe- L,
Thus ws heve for avery ysi, 2reee
sup ifﬂﬁllg(ﬂ—-%)(ﬁiil‘—%)ﬁ

gl £ 4
and comsequently, meMing » tend to = , we obtain

sup lE (w)iz WEDN.
R |

Therefore ve have DY the formuls §81({3)

HE = Sup  |F cmdle BUp [ Rewd],
. mea) g 1 mallg 1
Recalling the formuls $72(3) ws obtuiln obvicusly by Thevrem 2

(&) Wil == 2ap (T ¢xy] for evary = ¢ R

BER |
Consaquanily we have naburelly

{5} IR(m)]g HamMARa {xe R, ,Xe )

Gonecerning the asscclated norm, 1. Amamiya obtained

14 wely )

——

In fact, putting o = yinf %‘(I‘Q’M(_ﬁﬁ)]p a8 fol 5 1 4w (Yn) for every
Een .

(6) st = inf
-]

real number £ , we cén find by §79 Theorem £ %, € E susch that ¥, (%)= of

[

and (¥, 5|, and eonsequently Bz i zef by definltion. On ths other

hend, we have by definition
izt =_8up [E(E=)] g {4+ m(Fn),
FLEVE |

gnd heonce [ =il < oL,

8¢ Simplisnsss

£

L

)

4
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Let & be & modulsred spaca. I8 migm) = 0 lmplies = =# , then
we ahall say that & 1g pimpls, or that the modular +n of 2 ip siEple.

Theorsm 1, In order thab the modulsr adjolnt speos ¥ of B be

aimple, 1%t 12 mecvspury and sufficlent that

il F
g.ig;@ _’i,_.__,,_,.-» = for svary weRr,
Proof. Ag = (¥ 2} 1is @ convex function of § , there sxists ob-
viously the limit 1im “ZEFEL. i im ZEER v vor some o € R
= ¥ F s g =

and for some ¥ >0, then we have cbviously Y = wm{fa) for every raal

mamber # ; and hence we can Find by §7¢ Theorem 2 & 2 %  sush thad '
fAea) =y, Bex) = »iemn)  for svery 2 e R,

For such ® ¢ ¥ , we have % (& J=0 by the definition §80{1), buk af@)fbﬁ’c

Conzeguently R 12 not simpls by dsfinition.

Conversely, if A (E)=¢ apnd Lim M = ¢ Ffor svery H &R ;
¥—=e K

then we have by the definitien §80{1) H(x: — wim) 5 ¢ for every ¥ € R, ,

and hdnces for any & € £ we have

TLE R)

IRend = for every £ » £ .

Moking £ tend to ¢ , we oblain hemse R (%)=& for ev¥ery = £ & , thaet

18, M = @, “fherefors E is simpls by definition.
Theorem 2. - in order that we have

e BLIE) o,
Y g -

1% s mecessery and suificlent that Lim we(w,) = G impiiss
& ——

far evary ¥ ¢ A ,

for every % ¢ R .

Proof. For an element % ¢ R ¢ iT we cen find & sequenee %, € &

A}”i_bmﬁ (A, =8

{v=1, 2,...) end ¥ > & such that g}j._émwmcxvj =0, Ble,)> ¥ fop BTary
=1, 2,..., then there is obviously a sequencs &, » o (&= 1, 23”;)
such thai %}}mﬁe Ry = @, ;—'E:M(?nb){-g-s' fof evary =1, 2,... . Thsen -
we have for svery ¥ =1k, 2,... ‘
of, & Loy ) — ot (2,) LI
. 2 ) 'E" L ¥,

From this relation ws conclude by the formule §80(2)

e (e, B i

%%EE ] for every v=1, Bo.0.,

& p—
but  lim o, =g, ‘

§enversely, 1f we cen find f ¢ R end ¥ > 6 asuch that
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iim L a'j.>{>g, LR ) < +od,

- &G
then therse is ;y the definition §80(1) a sequence z, ¢ R {+= 1, B,...)
such that %E.rxy) - W) P -=-3-; Y. From this reletion we concluds
by ths formula $B0(Z) M (&) + %% (R} Bw,) > ¥ or ## (X)) and hence
FLE) ~ F »(r=1) ™ (), for every ¥ = L, 2,... .

Making ¥ tend to = | we obtaeln therefore

Lim o (%) = 8, but lim Eoem,) 2 X,
s T ;‘:;‘;9 -

From Theorems 1 end £ we conclude lumediately

Theorsm 5. In order that the modular adjosint spacs ?EP of the mo-

dular edioint space § of B be simple, it 13 mecessery and sufficinst

that im (%) =¢ lmplles 3im Hex.) =g for every e R .

sa— b —poa . s > 0O .

of R is simple,
4 e f Ey 3=m i #, = 5

then }}911: e { Hy o lmplles 3,_21;?!” Heyin) =p for every =« .c 7,

Theorom 4. If the modulear edjcint spepee ®

Proof. ¥Ws have by the Formuls §80{(2) for every = e R end ¥ > g
I & (522l g B (Fo )+ w (5 2),

Thus we obtain by sssumption for f »g

Tim %, )« MCEEL
o D o = 75"
As  lim SRR by Thearew 1, we obtein thereforsa 1lim H, (=) =2,
E->a & =
Theorem 5. If the modular edjoint spece B of m 1s simple,

then for-any sequencs %, ¢ R (+= L, 2,...) subject to, the conditlon:

i, R (R

we can find uniguely ¥ ¢ A such that }_j_,wm“ R =-Z2=40,

"“25)$0,

Eroof . if lim (i’,-ﬂiy) = & , then ws have by Theorem 4
| T— a0 2 o
lim SE.F () — F.lxd)| =g for every % € K,
b —poh

Thus, pubting Plx) = }im %, (%) for every x € R, , wo obtain a linear
functional ¥ on R . &nd we conclude by the formula §80(2)
Zy(n) = ®(m) = lim 5% C E Hy ) + s oot
=00
for every ¥ = l; Z5000 o From this relation we conclude further < ¢ R
and we have by the definition §80(1) for svary b=, Boese
FAE, =~ FYE e F - R )
pr=see !

Making i tend to =o , we obtalin thersfore by apsuwapiion

lim W (E, —F)=0.
b =P o
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I }%&ﬁ{iy-i)ﬁa, g}_ﬂbnj;oﬁtibggiv = ¢ , Bhen we have by the

formba §78{1} = ( -;%{E ~F3) =0, and honce E -~ § =5 , bocouss A ia

zimple Dy aasumption. Thus euch % Sz unlquely determined.
Let A be glmple in the seguel. Then we cen inEroducs & NEW Gom-
esption of convergence. £ gsoguence of elelouts @x ¢ R (= 1, 2,..0}

is sald to be gopditlonslly moduler convergent to 2 Limit @ ¢R , If we

cen Yind o =g asuch thab
Lim g {of . — @ 3D =
o win D
and then we shall wribs Bameelim 6L, == oo
. )

If o sequsnce Ay R (r=1, 2,...) is conditionally modular con-

vergent, then the limit s determined uwalguely. Besauss, if
Jim o sm{et iy —a)) =@, o (B la -4 =0

for twe positive mumbers of , B, then, putbing I = 'é“f’ Hin dot, g, we
gonelude by the Topmulz $B80{2) » (¥ ia-L£ ) =0, and hence a =.4 , as
B is simple by assumpiion.

It iz gvident by definltion thei the condliicmally modular conver=
gonse iz waaker than the moduler convergencs, thai is,

m-’.E._i‘é;rnu‘W fl, == &, implies c«-mn%gym [ A . T

Concerning the conditlonslly modulsar convyergsncs, wWe oD prove ensily
»y the formule §80{2)

Thoeoren H. I eemelim o a, =m & c-ﬁz-s’l}b%s& = 4 , than we huve

o-u-1ig (oo, o p )= tasfd,

and further cwmus,g.gmm sy, iy, =2 ol for E—?md“” = ol

§85 Unifowrmly simple modulers

Let & be & modulersd apece. if
ing e {ER) > for aver
wefz) Z i ER) 78>0,
then we shall say thet & is uniformly simpls, or that the modulsr w= of &

ta wpltormly simple. If £ Y2 uniforsly slmple, then K 1z =2imple,

bavguze fop any slement X S 06, as W% 23 15 & non-dscrsaaing convex

fwneiion of ¥ 2 &, we cen Find by the medulsr condition 4lal = & such
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that »u (ol 23 = {.

Theorem 1. In order that £ be uniformly simple, it ia necessary

and aufficient that the condlivionally modular convergence poincides wit_h

the modular convergence, 1. e., ‘}Hnmcmcx,)=@ implies }gnwmf%xb)‘—‘-‘@

for every % >0 .
Froof. We suppose firatly that K 1z unifeormly siwmple. T

g.gnw'm{mﬂ,)mg, Ty == B {ee=1, 2,c00i,
then, as # (%=} 1s a non-decrezsing convex function of ¥ z 2 , we nan

find o sequence A, > & {+= 1, 2,...) such that

> i for ¥ = A
M(%%b}‘f v ne
L £ 1 for o= ¥ < A, .

For suah 2, { =1, 2,...); woe have obvloualy for &very v = L, Bys0-
1 :
mfﬂy.}:M(mf'ﬁf\»za-?)g- e { f A A > A
B 1im --—-1 "
Az R 1le uniformiy simple by mesumption, if }}@m@c T 7 & for -some §re,

then we heve 1im ws (@) 2 inl m (S%)} » 0, contradicting the azsump-
Py = oawiz e

. _ ' S I _ .
tiomn: g.j.gmw win,y = 0 Theresfore we have ll:igam il [ T, For
eny § » ¢ we dan find ¥, suchk that % <{ for overy & z i, and hente by

the moduler condition 5)

i i for
WX B oo (AT < g &*_%%.
Therefore we have 1lim an(¥faxa.) =¢ for every ¥ = 0 .

Benondly, if R is not uniformly simple, then we can find by defini-
tion § = €0 such that inf wm{fdx) =¢, end hence we can find a ge-
wmielE t
quence %, ¢ R {(#= 1, 2,...) such that Jm TR I =0 but e (.3 m ]
o
for every ¥ = 1, ;.00 -
Recalling §81 Theorem H, wd obtaln lmmediately by Theorem 1

Theorsm 2. If R 13 uniformly simple, then for any £ =% ¢ We can

find § >0 guch thet M=M 2z £ Impliea wmmexy z &.
A modulared space R, lsz said to be uniformix monotons, or we sheli

85y that the modular =n of R 1s uniformly momotomg, if

i
1im e 3w =
§ e & "m(i‘);! mEx) o,

%ith this definition we have

Theorem 3. If A is uniformly simple, then the modular rdjolnt
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gpaos A of R is uniformly monotons.

Proof. Az w{% %} 13 s non-desrszasing comvex function of Fme .,
corresponding to every slemant X £+ 6 of £ , thers ls by the moduler econ-

dition 4) A, » ¢ such that

£

>4
w (E %) g for % »Agn,
=

= 1 Tor gz ¥ = Ag .,

Then we have neturally (L i« £} =1 for every = € £ , and honee

ing Lhad X2 >0

pint awn { = = for every § =&,
pecrause R 1s wniformly simple bF sssumpition. Thue, putting

£= Inf w2, dx),

GHR E R

we. heve by the modular condition 5) and the formula $80(2) thagp if

. . £ -

L‘d:%e:..ﬁg f"};?j ook ) 1,

then wa hava
- - .
Ea E’?i)-«%;f- w{AAxPu) =z AP Fehp®) — o (AR £ F)

¥&
‘éé‘»?{‘ﬁCE3+mfa,zxg%_.%
B
L AFLE = :;%—5: }osm @2,
e z
Therslore we corcluda by §80(1) thet o= § =< T MG nplies
3

—Fn E R )= = g 1 »
E R ) @<§§?Js-_’;—ﬁeﬂ.{xfﬁlxﬁx}d‘éﬁmfk‘kirx‘)i
< BUp = p ) 2o 4 T A
= ac?gé‘,a:@z&xx (22aP%} 3 &Hs?',-lipﬁh A8 1R Aumdf
£ A CFLEI+ 1) = & 8
and conzeguent k - =y 4
aequenily gl—i-zﬁ@ % i”ﬂs}l;gz WmMIER 4. 43 § > ¢ may be ap-
: bitrary, we cbtelm hencs lim .1 gy WLEE) =
7 : Frs $@€a§)}gﬂﬁ‘ﬁf'§1)_@_
Thaoren 4, If R is uniformly monotome, then Tthe modulap adjeing

gpate § of & 1z uniformly aimpls.

Proof. If MIRIE 1, £ e A , then we have WX =1 by §84
Theorem 4, and bence ARV ZT W EM = 1 oy §03 Theorem 1. ss
A% H = aup | R ¢m)]
wiEd

by $83 Theorem 2, we san Tlng then £ € R such that FLe) > -t;.i—, wfadg 1.

Papr 5.1_:1.011 “- ¢ R we have by ths definivion §80(1)} for every £ , P =@
FOEA)E FR(Pa)—m(pal & P{% ~ Lemicr o}

42 F is wniformly monckons oy essumptlon, for any ¥ » & ws can find

f w0 msuch that mixy€ {  impliosg %m(}?m)@ ;}g, and hence
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LS,

migRiz plE - FecrabE g

From bthis relakion we comslude

ine F(yR) z 2 >0,
FRIE it

Fhas B is uniformly simple by definition.

26 Finlteness
Let A ba 2 modulared space. An element o € R 1s sald te be
finite, if m{fa) < +o° Lo svery E > 0.
Wizh this definition ws have covicuwsly by §78 Thoorem 2
LR

Thgored l. If  melim @, = @ 208 sUery G {o=1, Bpows) LB

finlte, then the 1imit 4 glso 1s finlts snd we heve for svery &

(o) = 1im a (§ &2,
[

az m(Ex) 18 a non-dscresaing convex funcilon of ¥ #, we have

obwicusly by §8L Theorem 4

Theorem 2. For = Finita element M. & R ¥we have Ma il = {°if =@md

onky if waled =1,

If every siement of R is Cinita, then we shsll aay thes B is fimibe,

or that the moduler = of R is finltae. With this dsliniblon, we 08D

sonelude immedlagely from Theorem &

Theorsm Ja If A is finlie, then wme have
9
|t J =] Tor @ = & R
= g =S 2L 6w

& modulared space F. La seld te be walformly fimit@g or we shell a8y

that the mofulsr wu of R is wniformly finits, 1F

sup e (E %X ) = TS0 for every ¥ =&,
Tmied 5 1

Thaorem &. if R is aniformly finite, then for BNy £ > @ ¥e_can

find § > ¢ such thet |4 — @l =4l [ < § 3impiies ji-— m{,.»,)i

43 R 18 uniformly finlte D¥ pesunption, we can - pud

R
it

Proof .

of = Bup st {4 ) =+ o0,
wind e |

IP s (@)= 4, tiwm ag m{ § &3 i o pon-dscreasling COMTEXR function of

¥ £ &, we 880 sasily thet we have
M) g 1+ (-1~ 1) for 12 % = £,
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LElEa) 2 1t (e i) (=) fer 0 2 £ 21,

Thus wetm) =1, |5 — ] = { implies [wi(fmi—-1l 5 (- 12{% —~ i}

i

For an arblirary element = < o , as we { ——
e

%) =1 by Thsorem 3, we obw
talw henes [mixl-1]1%5 (at-1)fM B —~ 1] for gzl — 1] <= 1.
From thls relation we conclude emsily ocur assertion.
& modulered speee R 1s sald to be uniformly increaging, or we shall
gay that the modular <« of R 12 uniformly inmcrsesing, if
gl}_}mm _%., mg.g;‘g . M ELE HL) = o,

ThooTom S. If # 1z wniformly Inereesing, then for any twe po-

sitive yumbers £ , £° e cen find £ » g such that wexiz s, M(E)I=£’

jmpliss wfm) — E (e} g .,
Proof. If mendz | XYz £ then we cen Pind of such thet
miat ) =1, o acl =

and we hav¥e then by the formula §80(2)

b= I - 1 —
L) = — Kot E -E,{mcx)-;mmwm“_é_&l‘?(_sfq‘_?)r‘

Ae R 1s wuniformly insressing by assumption, we cam Find A > & sveh that

!
A Anf W LE ‘ )
7. (Ex) 2 E+E°+1 for § = A,
Far sush x, , iFf #ni®m) < Bz} +£& , then wa have
o e £l g ° =
doel{-rdZ)l L (Rexi+E)E 214l £ 5 §4 871,
- 1
and Hence o = A, This relation 7lelés

mim)<%fé¢£’+?)< ACE+E T+ 1),
Therafors, pubtbing & = Mex {x¢g+ /443, 1], we see that m(=) = 5"
FRCEY g £° lmplles o (x) 2 R+

Theorem 6. If R 1z uniformly incrgasing, then the modulap ad-

foint spece & of 2 ia uniforml.y finite.

Prc».of, Iif R 1s unii‘omly increasing, then for eny A » 0 we can-

find by definition ¢ > {1 such that

1 : |
inf g (ER)E LA for § z¢.

weEy w d
If W(EIg 1, 1% m(x)<+oo, then thers iz 5 » 0 sueh thet

{ 1
| ) AR A
and hence by the formuls §20(2)

“f(-%%x)gﬁqiu—w(%x)é 2.
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For such £ ; i § = f , then we heve

—a "'? i
lmm_.mm;,.;g{z‘ig%xjm%mmgmi 2,

%

[LEY

end 1T @< ¥ g P, then we have
REemy ~wing 5 A i’(é—-‘z) = 2FA .
if WCRISE, wez)=1, then we have cbviously by 80(8)
AR() —mex) £ A (FAcE )+ amemd) ~wfx) | LA,
Furthermere 1t 45 evidsnk that if # ¢&Igf, (=) = + o=, then
A Rim)—-mrln) S 0.
Consequently we obtain by the definitlon §80(1)
_aup WM LAR}E LPA,
FEY g %
Therefors R iz uniformly finite by definitlon.

If R 13 uniformly finibe, then the modulsr adloinh

Theovem V.

EpACSE il of R 1= uwniforaly lncrenalng.

Proof. if mM¢E} =1, then we have by Theorsmz 4 in §81 end 1L in
585 WEAZ HEM = 1, and hence we can find by §{835 Theorem 8 # €K such

Por auch X , w2 have by §80(2)

ghat X{x) >~%5 weln) g 1.
- g i,
%é«ﬁﬁf%} z EFipn) -~ %m(?:&} z ¢ = T,«s@ff:&}
for every ¥, F » @ . 4e & is vwhiformly fimlte Dy sssumpblon, for
Ap=  sup e ffE) < +we . we have
el ok §
%=%’é{‘g=ﬁ}‘> Aow g

= 2
Therafore we cbtaln for every § > 4@

any ¥ = ¢ , putting
for evary § g A, .

i i _
iim = _Inf FLERY 2 o P 1,
oo P omcRIBA ¥ = & _
snd consequently Tim -+ dnf FREFRY = &2, Thus B iz unle

Feper § WeER)BA

formly incressing by definitlon.

§87 Upiformiy convex modulars

A modulared spsse A 33 sald to s uniformly comvex, or we shell say

ihet the modmlar we ofF B iz uniformly con¥sx, 1f for &ny two £, ¥ > @

we can Tind & » @ such thet X)), mH g1, mix-glgé implies

Fimey oty (g (ergi) £,

with this definition, we will prove firatly

v
}
|
3
H
y

AR
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Thaorem 1. Lot 2 he u;nifo:ﬂnly COnYen. for a manifold A& of

the mofuler sdjolnt spaca £ of R , if

Ju Zay) = X (o) for svery Z s 4,
W LE) =  Bu ! R Y — WM LE
E%P}‘_ 4 sy wmLE Y,
&1_1'5339 ALy} = mclR) < hom,
then Ma o to,-a)=e,
Proof. If we can findé £ > 9 apd a suhssquencs & . (,‘«f«=1,, 2,
== -

cved from A, (= 1, 2,...) auch that
m(ﬂ-vf&—“a—) = £

then there is by sssumptlon § > ¢ such thet we have for avery gs= 1,8
E

for every p=l, 2

sEeop

IR
ko ad [ & & _."‘
2 { ¢ -?u)ﬁ-’m;t&-}t‘z~”"C’£C-ﬂ’»yﬂ,+&}3+§~

Then, we we have by ths deflnition $80{1) for overy X ¢ R

] .
Pt —_ . >
(g (dvure)) = x(,_é (O tal}} - & (£,
we obtein by aspumption for every ¥ e 4

wica) = lim 1 @ =

z MR Z {mteu, 1+ meert = Bra) - mcE) 5,

contradicting the sssumpilion: wtia) = sup f Ry P CRIE,
Ee A

Theoram 2. I R 13z uniformly convex ana unifeormly s:“[mple, then

1% -y - % - 3
b_f‘:)_;‘n% (o) = Kda) for svery T ¢ K ,

i
};mmm(up}g W LR e

lmpliss m-lim o, = o,
L X
Proof. By virtue of §80 Theorem 2, we have for avery @ ¢ £

Wrle) = 8 = —dT R
Ee% 1E () —mcFEI},
Thus we cen conclude by Theorem 1 from our agsumption
.}}—iﬂm " A{A, —a)=40,
Ae A 1= uniformiy aimple by assumption, this rslation yields by $85 Theo-
rem L m-}_i_}pm Ry = R

Theorem 3. If R 1is uniformly simple wiformiy finlte, and uwni-

formly convex, then ths modular norm i

of R 1ls uniformly sonvex.

Procf. &3 R ls uniformly simple by sssumpiion, Tor tmy £ = £
we esn find by §85 Theorem 2 £ >0 osuen that flx il = £ implles mef)y £
For such £, as & ia unifornly cenvex by agsumption, we can Tind by de=

!
Flaitlon §' >0 auch that m(x) , =g} s 1 , m(x-4)z £/ Thplisa
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%{mzzu-mcnu z M(--fx%gn*- g

Parthermors, ss [ ia uniformly finlte by meswaptlom, for such &' we can

find by §86 Theorem & 4 = ¢ sueh thet

({=Mumisgd implies ﬂ‘J-m[:rfj,[é.%g"

If mze =mgl =1, g -8 &, then we have wremd) = meeyd= i

by $96 Tosorem 2, end wm{x-gl xE £ by the definitiom of £ 7. Conss~
guently we obtsin 1= % {amim} + =i} P = o (% (ma %) + &, and hence

Tog o g s - ; = ; .

1 m(Lintyly m 6. Thia relation yilslds 1 — 8 - izayduiz §
by the asfinritlon of & . Therefors MWW =Wx o= 1, Mm% =L

implies £ Az A+ iM, and hence the modular norm ig vmilormliy com-

Fax DF

‘-‘1

$76 Theoram L.

By wiptue of §77 Theovem 4, if = novmed space is vniformly convex and

complets, them it is regular. Therefore, recaelling §81, wa see by Theo-

rem 5 thakt if & modularsd space Z 1s uniformly simple, unlformly finite,

wpliformly convex, and modulep complete, Then R is regular. Howsvwer

we can prove the regularity of g under weaksr assumpilons:

If R i3 uniformly 2imple, unlformly cONVeXx, and Mo

THaorsm 4.

auler complete, tken B 1S ramil.ar .

Pronf. Lot B be the meduler sdjoint spmcs of the mouler adjeink
spEoe B ¢ For any ® @? sk jact to BEcfi<+es, we can £ind by the de-
Fipltion $80{(1) = set‘meﬁcs %, e R =1, 2,...) such that

T30 2 B2 R s
Then, o8 we heve oY the formuls §a0{2)

L = e —_— = —— K'—"'
z_gﬂ,ﬁtm,)gﬁcx)-rm(%hzu)
P . =

for svery ilnits number of real numbers F,(+» =1, Bises, w), we can find

vy §82 Theorem 4 = sequence Hp € R{p=1, 2,...) such that

v RgtEp) = X (FL) for avery w=Ll; Z,eesr Fo

for svery F = Ll, Zy-ue

mi(i-5r%s) & B (%)

wor such xp(?zlp 2,cn0) We have
iim m(-u—-—})x&»(ﬁ-n-;;-)xf,,)—_ra,

"ﬁn,y—bm
Beceuse, 1L wa cen find £ > ¢ and two AUD3EQUENCEs Aw , Mv (+= 1, Bpaaal)

fpom { 15 2,..- p such that we have for every =1, Z,.c:
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m((!w—};}z’.%-ﬂ(?w}h’)m L)z E,

then, as R 1is unii‘ormly convex by aasumptlon, we can find by defimition

£ >0 sueh thet {m,(fﬁn—%bm}&)+m((1~¢;)x ¥

- 1 !

Z o g (0= 0%, +# (4 T §) = &
for every ¥ = L1, 2,00 o On the other hend we nevs

i{mffs‘“‘i‘)?f-ml*%&f{[ == . =
[ Fp 4 Fae b A ‘ﬁ)”ﬁ,A}-gw(%BJ

end by the deflniticn §80{1) for P g 2., P

1 a ;L P H
v (g (8= 30 3B+ {1 = o PR 1)

= R N - . R
= e %yt”ﬂ P, = L F&;zﬂy,}ﬂ = LE Y
e 1 g —a
= ] e omas = - L S =
4 o P EAa FA £ e}

Thusg we obitain Toxr such &

3 e LI
i s = .
B P g?_fa[,

ek

Hemig ! CRed = F L Ep )+ 4
Tor every £ £ Ao, Mo, Haking » tend to o= , we concluds hence
FR)g BT )= (Rp)a & = B f%)p—}-mrs‘

for every F= 1y 8,.0.; contradicting & =4,

fs A i uwniformly alimple and modular complete by sssumption, thers

griste by 85 Theorem L = & & gu i !
ks A g s ~ 3 i = 3
& @ thet m-lim (t= <32, = =, and
chen we have by Theorems ¥ in 581 and & im $3C
e w Y | = 05
{ ”53 L= iR B LRE],
K AAY = Ho ) fer avery = L1; Briese o

For an arblirery % ¢ 7 ., we Blac can apply ihe same processz te &
g

= = =
g Tdse0e ImBtend of My, Hgyeo., and we obiain likswise %, ¢ £ guch thab

Wi, s FLeEy, Eiwm,dw ®(FE),
o lHel= 5L E, )} for svery w= 1, ,..,

For such #; , if #miw~ ¥, 1 > g, Then, az R,l ig uniforwly convex LY @a-
sumption, we cen £ind & » # such that

"Ef{'ﬁ’&tzﬁ-%ﬂ-mw.(%a)} B ‘;w'(-;-- £ eI S,

Vsand then we have by 480{R) fer every ¥= 1, Z,...

== = i
e (R YR e — ¥ -
(H Iz (E{xuwza))*e?‘ﬂ?z_,ﬁ&(:}f%fﬂ%w-—vﬁfam-é‘
= RA(F )= B (E 048z M (Fr1- % 5
contradicting & =2 . Therefore we have i (W = A, =0, end hencg

x =¥, , becsuse R 1s uniformly simple by assumption. Aocordingly
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we Nave B(XI = T (ayd = ENERR As Z ¢ £ may be arbiirary, we

soneluds that T(wx) = % (&) For every £ g7 . Trus & iz regular.

§88 iniformiy even medulers

& modulared spacs A& I1s =ald Lo be uniformly even, or ws shall say

that the modular 41 of R 1g upiformly sven, I{f for eny two positive mmm-

wera £ , ¥ we can find § » 6 such that mfﬂt), MEYISH ¥, M2~ %0 g &
5

4
implies E{wcm%e-'mt;“}:__g '5’5’?;(-—"(?-*‘&)} E M~
With this definition we havs

Theorem L. i R is fipite eand uniformly aven, then for sny two

positive numbers & , ¥ w®e cen Find & »4 such thet wii=d, wuiyl g W,

me— il 5 &, dpp=i, o, @20 implies

ol sAL R ,BmcgJ = M(ahf'_ﬂag;) + EME-gl.

Proof . For any &, ¥ >0 uwe can find by defindtion & » ¢ such
that me¢®) , =cgdre ¥ , #x— g0 =& implies
i - sy o - \ . E pie
E.c['ﬁﬂﬁou)-kymc;?j}% M(%,f%+g3;+_£-§gq& g.ﬂﬂ.
For sush £, ¥ , &, we shall provs firstly by the industion that
Ty, malg) g ¥ MER-gilE §  implieas
2,
,fmcx}-ﬁ\-.xé%-m(gé_y< M{—;,:-;-L‘r—-“;g]'?"e it = - &N

for every palr of naturel numbers £ , ﬁ subject o &+ £ = 4%

It 13 evident in ths casze: r = 1 . We suppose thet it holds in

the cass v , and ci-P{Er:ﬁ“’Hy @ < f . Thern, as = « £, @& have
N &

ol ,63
Foor WHORD b o L gd - e ( °f,ﬂ % *-3%1%”

Jb“‘“g‘;

1 ol
E‘i’axbmfl\»)+%mc§)“mf R Tl B8

“i.m_{w ("'"’;V’e’ Q_V—e{ &jm&mig)j!-_m( ga‘H‘x+ ﬁuv‘i-'l #}

shemsc-gurfendhar AzBaoglig sy,

because we have by the modular eondition B)

w(_m;(-far ﬂ"dg) -—nf?nn:'zm‘ﬁ— ;@:fiimfg,zs’g%
n1=-—:z;+ ;L‘,_m_-g, éu!i-—* R N

ib
Thua -the case ¥ + 4 1g proved.

In general, if o + P = *,6 B ¢ . then wa cen find obricusly.
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two ssguences of netural wawbers o, , fo. (o= 1, 2 )
" poan

d“’+ﬁf’g L {+r=1, Doocaly
o,

lim 22 _ £y

P T T L 3»11&3“5; =,

Then we have by {78 Theorem 1

- =y Br )
melin (T X+ R Kzapy.

As R ds finlte by assump’ciun,, we oblain hence by §78 Theorvem 2

o

m g g-)c—m(dzae-ﬁg;)
On the other hand we have for every = 1, 2

= Ly &peouw

&
-—"*wt(:c)-&--f—w(w)qcmfﬁix_? By

o 5 7 o Bl EHme g
48 proved just sbove, and consasguentiy ws obtailn
o WL LE) o flm(?,) = me ol 3t +py)+ £ Mon—-g .

Theorem 2. If R ig finlte and uniformly sven, them the modular

norm of R is uniformly even.

Proof, As R is finlte and uniformiy even by assumption, for any

kR i3 T - —
£ We can ind b ¥ heorem 1 a pozltive pumber & such that
ES

weRY, mey)r = 1, Br-ull g 88, L w@=i, <, Az laplies

eﬁmez)+ﬂwatv}¢= m{d‘h‘.‘t'ﬁ:\é‘f, —%ilaxﬂgﬂl!.
For such £, 4, if =il =1, g é“, then, putting

=Wz+yud, gi;-:mx_';uu,,
wg heve Dy $88 Theorem 35

?"{f;Tf%*E-}):M(—Lca:ag))z

B
Az o omomam - .
. M_ M oMMz -8 > L, ﬁ?;lil'm’f.ﬂf-_mg.ﬂig‘j_,é‘:,_%x
an - a,
Pis mf?i-?-gj..({,;_g)m = f.m}!ﬂg 2 5, we have
Hi-’-(;{_“ 1 1 ¢
* Bl g - maegn s 2
Therefors P ¢ LR
c:( mitmegyy 4 L _
f = d*pmf—m—”)ﬁm( *ﬁ”‘)ﬁ“——mgm

that 1is, 1 < = (. 2
g - ) 4
P ) 3 It & o,

Un the ather hand we have by the modular condlilon 5)
a ‘
M ——x ) 1 u g i !
ot )=@£+F M(G(z+dl’))+a&n_-:—,@ Mf-fa?{'x,—-gg,))::;
and hence by Theorem ¢ in §61

£
molgis ) s “‘M@ %l

Thus we obtaln o +
Fg auri+ CxrgrRuglE L4 EwgH,
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o&+P FAE NS 1 ling,m y&a 5, Tharefors the modular norm

15 uniformly even by §77 Theoorsm 1.

bhecsuse

Heecslling Thecrama 5 in 877 :md & in §81, we cbteln by Theorem 2

R ia finits, uniforaly evan, &nd modular complete,

Thaorem 3. 1

then R Lg repgulsar.

B is uniformiy aimple, uniformly inereesing, and

Theorem 4. if

shen the modular adjcint space E of A iz vniformly &YGHL-

upiformly HOnVeR;

@ s uynifermly inereasing by sssumption. for any ¥ = &

[y

Proof. &
wo cam Find by §E6 Theovem 5 ¥ » 1 such that wooE AT, wixdrm ¥
e EIw ¥

ca ) - e £ 3 2E &, "hue we havs by §80{1l) that

L)

implics
implies ] e LR = .;sgpﬁ {Femsr ~ wendf.
Therefore, 1f #& (£ ), W (E) g i . then ve have

{Ecmna-gfgi-m;x)mmcg)!,

§80(2) end §83{3)

-—"i’mfﬁ} +m€3.}}=- BUP
mﬂsus-mf§3.&3}

on the other hand we have hy the formalas
% n i = (R >+ P+ T ¥ L -
By o+ o) = (B2 i g ineg) w (Rogilg (> 143)

g LT (E(E AT hwm (G (XY s wE-F RN

==

Consequently we have

—j-{m"(:a’,)-‘ﬁ § E (-—-»(1!;-1-64.3)
1 - ,,-“\ vz (7Y A ]‘"Iv
-+ s o -— P _(z+ ¥
. ]P s o { i 5 ;’E. HTa "Lﬂ b awn { & ) ;

Aw R 1is udfcrmg calﬂm’a by assampiion, for any & = g we can ind by

§85 Theorem 2 £’ »¢ such that Wi # oz 4f luplles wi%) @ g’ For

such £7, a2z R’ is uniformly convex by egsumption, We Can find by defi-

nition &£'» 0 such that =%}, MM (g3 ¥/, 'mcvc—-g)gg’ implies

i ' i . . ef

—ﬂ'-{mtm)%'mty_)} = m(—i—(?\,-’ﬁ'g,))-rs .
I

How, putbting § = -—i;: , Wwe assuma that

G (EY, BIIIET, mE-fag s,

Tf mel{n) a» w{YrE v end II?L—;LIE
' L o 4 L
iﬁ[z-"i“ilx-’}hééé‘s

¢’ by the definttlon of e’ ks we copclude by

Thecrems L in §87 =md ¢ i §5L
Br-adg glim-yng ZOMRHEign] g By,

we obtein hence

‘z # & , then we have vy §83 Theorem 1

o

a

ag : ' |
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=

TGRSRl ¢ e (e (x4

4 &4 m(ﬁ'(z+§))=%imcm%mc§,ﬁ}
%2 Sv -3 =0,

Thersgore wa have

1{.“- —
TiFMB)eméall s el 2, - 4
H & ﬂg__,’m»f%(iﬂwkgﬂ)}agiﬂm §"#’&&

@

Beceuse wm - (g {
% THI] - = v o —
2 g37 i Tin) + e g3y =2, secordingly B ig

uniformly even by defimltion.

Thecrem 5. £
If R 1s wniformly finltd, uniformly ipcressing, and

i fom ) 7 iy
BLY @ven, then the modulan 2djcint smac@ 7’5: is uniformly sonvexn

Proaf, W s
rrogl Az B is uniformly increasing L‘, asswption, for muy ¥
suEptlion, £or any & > &
we cen find by {88 T =
- heorsw B ¥ o9
i such that Ff(E21 35 &
Wy oy

i = o
wplies Hez) - mixds @, Thua we have by $80(1)

FRER J = sup

mm)ga’f{E(z)"‘m"‘”} for & (E) 5 ¥,

Iy {3
AR, R LF) =y, then we have by ths modular condit;ﬂ,on g)
'&L(-—C‘?&ury.))‘: ——-{w-l
LR 5 57 f”"}
and hsnee rE Y
LT eF) =
T sup {ﬂ‘fn’.cm}uﬁ»gfﬁi))wmezJ}

on th ?ﬂtﬁ)ﬂt'@”
& other hand we have by §80(2) for every = &R
N *

(%) = &
(m',-*!-é)-ﬂ- FREEFS S ?J(;,U

¥

s Emem o

< Mf’&)nﬁ’f}ﬁ(éﬁ)-&?‘b&@z*é{}-@*M{Z—d‘gJ-(%“‘g}U‘”
Thus we obtein for svery LepR o

=~£‘mf%3+m\#); = m;e—xm‘f; 1) b <-z=-ugfgg
= an —
s S {7 ] (M("*§?—+@’.’“f{x"§"") R

- E
or any posltive mumber £ « 1, if # ¢ =% -:;I)F £, then we have b3
& &2 ¥

Th
eorems ¢ in §81 end 1 in §835 R % - ~FUz 8 F - ? 4 > £ endn
= 3 ENGE We

can £ind by §83 Theorem 2 4, € R such that
. ;
(% @)‘(égo)??g; Bgaih=1,

and conge ]
quantly weg) =1 by §86 Thecrem 2. fa K 18 uniformly

Tinite py assumpticn, putting

M
¥l= swp  mdyim)<ios,

we havs thai »e(x) Fioa :
B ¥ imolles wmefg ). §¥ Becanae we h.:;vm by

the wodui oy i )
the modubar condition 5} e (ﬂip 2y e
Wé ’-_'1“%;”;‘1"”5(3‘:.3":.“_: [ and

Wi (R R} == M{Q"’(mﬂ-’})
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For such y ¥, sz R is unlformly even by essumption, we cen find by

o

definition & pozivive number & < 1 sueh thet

4 - o
E'EM(E&)—r-wafégJ} gm(%(ma-g.)} o+ T%" oa = g M
Then e (xd s ¥ impliss

—

for wmem); wmiyy F ¥V, we-glog 28,
{#n(a.z.J —i-m(g,g‘g,ﬁj? =y,
A

mint §8,) 5 5

becauss 02 5 < i 2T, mv:;;g):: 1,

Mem+85) ~tw=Fgdll = 25 BYoit = 28,

we have thersfolbs that sm¢x) £ ¥7 implies

i -

‘g‘{ Mf?ﬁ‘#’é&g) + 'mdii'--"&-ggl b men) + -%é: .
Conssguently we obtain

Bap ‘["%‘(mcz+§39)+m(md‘53d))wwCaf.)'%—_§=‘,'E—éé:.

WA lRr) g v

Pyrthermors, &8 n-;-.- (E - g ¢ ggd) > %_Qg we soncluds hence

Lo e s e e . P

Eﬁm(z}+m€})}gmf%(?ﬁ+§})+%Ag-m_‘%ﬁ{;

B )

= (- (e T0) e EE
4 = %l)-{" )

Therefors B le wnifornly con¥ex by definitlon.

$ag be pow FPECe
pewy LEEEES

For two measurseble functions ® () and ‘g‘.{—:—} on the closed interval

g5 £ 1, we shall write X =4 , ir { + 2 224 =$§"_{-£—3E- ia a polnt get

of messure zeve in the sense of Lebesgus. Then we see easlly thal ths

totality of meamursbls funcitione constitutes a linssr space in this sense,

nemely ths guotlient space of ths llnsar space gompeaad of all messurable

functlona by the linsar space compased oniy of ali meagurablae funcilons

which vanlah up %0 a set of MEEREUPrE FHro.

Let plt) be = mossurabls function subjeet to bha confitlons

1€ ple) g v o0 (o5 ¢g51)

Wo admit for p(t) %o asmume + o2 . We shall denote by fapgey bBhe

totality of messursble funetions % (+) for which ws can fipd » = P

such thas
§ pee
5 —»»L»ix.xa-.r)i dt < +oa,

) e PlEd
FBers we sdopt the eonvenition: e S T ST that is
o P ° Yoa Cepot 8 4 = f
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i +ow ]
::;;c( ;{ for & =z o % i
Rl er ot = o,

Then, putting
BrEs
f=ees]  de,

i) = Jﬁ
s PLE?

we 3 =3 i
ee sasily thag L'[oHJ constitutes a modulered space

Theorem 1.

. pees 18 _modular complete.

Proof. Ifr 13 b3
po,b-n-lzvm w2 { ea(’?f‘m-ﬁu)):a for every X »¢ , then we

can find a subsequen 4 =
G co Ry (/A—l, 2ic-0) from 2, (=1, 2,...,) such

that =2 (« -
L] Zar’,m ) = i, Then wWe have by §?B(2)

L
L - > '—'i

) €& mﬂ):ﬁfg,w<1
o g =

T oavery el 2.0 , Accordingly we zpe that
FYa

E:S

Pzﬂ I g (E) = o, (¢

. .
, +8 convergent up %o & point set of measurs zera. Futting

Wit = A, ¢ ¥
v CF) F Z;, i g ) = Xy () 3
we gee easlly that i " j
e (% -7y, )51, and hence = g Lopesr Puriher
more we have Ly the formula §78(2) "

[
we (af o= (=, e A i
#=ap ———

e o e
4 h w7 e ) g prap g/ T af?
& ance ¢ Foow —= = -m“ . =
il 4P (% =2 7)) g for svar 3
Xl 7 F=l, Bioce « Thus

e conclude =l Xy, = %
5 O @

e From thls reletion we 2ee sasily thab

Ly

we have -
a-lim %, = x

Theorem 2. g 7 3 .
= 2 Lopeyy i finlte, then pe+) 1z bounded up to s

peint set of messure zero.

Proof. Let. %, ve the cheracteriztic function of the point sat
{1+ - Y& BLEY < i} {ev=1, 2,...).

If there 13 & fequemce Yo {p=1, 2,...) such thai
fg ?C!,Fbt‘t') At 5 @ for every g L, 2,054,

then we con T - .
nd ol >0 (=1, Byosa) such shap

Ty POTY
- T Koy, (3 di =1 (p=1, 2,...),
nd, putting x (v) = ¥
FY = ‘ZS Hpw Ay (+), We 853 2as8ily that =

But 1 ea . AT - TR = e
b ey, ('13: )e F ;i’ g Ty ]

r p oy R us ®we obinin our asserilon,

Theoram &. If poe) iz '

If P(v ) is bounded, then /i"giﬂc-m 48 uniformiy
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it ptt) = ¥ , them mex) E 1 lmpliss = (¥ =)= g7

Proof.

for avery £ £ 1. Thus Lpess is uniformly finlte. Furthermore

Mm%} g { implies m(5z) Z B’ tor o< ¥ F 1. |Henve Lpcyy 1
uniformly simpie by definltion.
If Lpesy LB uniformiy simple, then ji®J) iz

bounded up to s point set of mesagurs LEro.

Theorem &

Proof. If o = inf wm(-t =z ) 7 0, then for a positive num-
= ) 2 4 2
ber F' such that —51; < of , dencting by X the cheracteristic¢ functien of
ftt ptr>p} we have {'% (2t =0. Becsuse, if we heve
o

j"}{,(t) d+ 40, then we cen find § > ¢ such that
]

1
{ 1 E"ﬂ.xuu’t:u

] +}
and, putting = (<) = ggcw, we have 4 () = { but m (% 2] = 5%’ < e,
Theorem 5. L’P‘“ i3 slmple, 1f and only if p¢¢) 1s finlte
up to a point sst of measure zéro.
Proof. Denoting by X ., the cheracterlstie fumction of the peint
get {t : p(t) = +eo}, we have ovvlously by definition
PoE) dt = a.

o1
——— Kea (22
Je 11472 ( )
Thue, 1f Lip¢s; 18 simple, then X (t}=0 up to a polnt set of mes-
Bure zard. Conversely, if 1 = p(+) <+==, then we aes easily by de-
finltion that »(w) =0 implies m{(t) =0 up Lo a point set of measurs

ZOro.
The totality of finite elements in L pcgy 18 called the finlte

gubspace of L pe¢y and denoted by L__i,“_, R We sea easlly thet the

+
finite subspace L’P(fl 1s a linear menifold of /upces. As L‘Ffﬂ

is moduler complete by Theorsm 1L, we obtaln by §86 Theorem 1

Theorem &. The finlte subspace L,;“J of Lipeey 18 finits

and modular complete.

For & ssguence %, € La;cﬂ {L=1, 2,...), &F
o= +51)

Theorem 7,

Mm X, (t+) =0
Vv —r o

and_there 13 #, ¢ .’_...‘Fp cyy uch that (% (£ 2 Halt) (02 t5 1),
then we have ‘}1__1;\.}: mx, I =0e,

Proof. i mocsunt of Lebesgue's theorem, we conclude from cur

§
d
§
4

and, putting

§89) ‘ HODULARED SPAGES 237
assumption thet Ao (g .)= 9 Tfor every § > #, and hence by §81 Theo-
hal

rem 5 }gﬁ;mx,,mﬁ@.

Correaponding to pi{%) , we define fi{t) (25 € £1) as
1. 1.
e e = Los 2510

+ .
Denoting by B™ the totality of bounded posltive measursble Functions om

the closed interwal: g 5 ¢ =1, We have then for every poslitive messurable

function :,’;i(-w
) A L Gee) 1
{#} Y T $(4) T 4 = sup '{j HOE) HCE) o T ﬂ—jq—1~ ACE)
EX- N A o P&}
Because, we have by Young's ineguality

i L pee) 1
o) y(e) dt = LIy 1 gets
je b L e YA J@ 00 Yeer s,

On the other hand, dsnoting by % ., the charecteristic function of the poink

P‘ﬁd"t‘i i-

set {¢ ¢ ytry=+o=f, iy

LI Lt
j ?i't’} ?(E) xm{f)d‘f ..':-'ﬂ,

2

then we cen find a ssguence $.¢ B8 (v=1, £,...) sueh that

_1
11m A tees £ 9 § et
= () d4 = —_
v ) i & t= ] g et e,

fen
z, = oy, 0e) P (- %, 0e),

we have

] 4 . 2w
X () g t)dt - { T AL IP RSO G I
J@ S L pen Mtt) “ Ja e #oTLdE

If

L gee)
L fan HT K lt)dt = soe,

then, we hevs

9 E Pead
HRA S e gt dd = [Tt X aen) A |

1
= lim ¥ { J; Uoa (T L) dt — jtxw ()t } = 1o,
& .

£ oo

and EX ., ¢ 87 for every § »o.

Making use of the notation

— ! (23]
”""“-’“5 Lo pxeyf
[

— T 9 ¢z
P dt, WK) = L f—t_;)-[z(_-wﬂg A,

we see esally by Young's insquality that if = e/, pegy and Z e Lff.g_)
E

then R (+) X(¢) 1s integrsble and

| -
!jg Xet) Ret)dt | & m(x) + 7 (R

Thus, putting

. 1
() = j Xit) met)dt,
o
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we ase that /_?m; is contalned 1n the moduler adjolnt spuce of L pee

8.8 8 subapace.
How we shall conaider the case where !-'}MM ig simple, that la,

Tgpid)<ees (o3 T E1), Renoting by ¥, the charmeteristic func-

tion of 4% ! pee) £ v}, we see easlly that lim 3, (¢) =1 (s 5 1),

and thet # € Loygy, luplies = Ay € fupeyy FOT @very v= 1, 2,00, .

£
For smch modular boundsd linsar functional ¥ on Lp.ey » 28 F L2 bouvmde

¢4 by thes modular norm, we see gaslly by Theorem 7 that for sny bounded

sequence of measurable functions Zu () (=1, Br0ncl,y ;,ﬁ;@m% W () = 3

(0= +21) implles

|m].i-u FOrp ¥ =4 for every b= l; 2,..0,

because 2, & Loy, fov every p=1, Biooe - Therefore we obtaln by

Radan-Hikedym's theorem B measurable function X ¢4) such that for sny

charscteristic functlon of measursble agh %Y we heve

k]
‘!’("}Libjss Fisr Rt E terdt {w=2, Bievels
&

From thiaz relstlon we comclude eaglly by Thsorem 7V thatb

£
1
Pzrwm | ReerAitrde for every X € Lip
& .

Furthermors we chtaln by {'ﬁ']
fee

- ]
o) = j [ % cea]t 7 dt,
o ‘f{‘z"‘
Thersiore we have
Theorem 5. I e pee) i1z simwle, then the modular adjsint specse
- ] f ' . S TR T
of ths finlts subapace Loeer coincides with i‘“’i’h‘.‘) for TR

Kecalling Theorema 2 and 3, we cbialn thsrefors

Theorem 2. The modular sdijoint spsce of L‘F‘ﬁ?‘ noincides wlth

L?(,” 1f and only irf B\_A.p pet) <o UP to a point set of meazury ZSTO.

Since we have 5%19 gir) < +oa 'if end omiy if ié}f Flt? =1 , we con~

clude emssiiy from Theorsm 9

L0, _.f_‘#ﬂ(ﬂ 13 regulsr, 1f end oniy if

1< e pde) £ sp plE) <3

Thecrem

up B0 & peint set of msasure EOT0.

Recailing Theorems 3 in §85 end 7 in §86, we obtain by Theorem 3

Theorem 1i. 1L 1£f pet) > 1, then Loy 18 yniformly wono-s

|

o
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bons _and welfopmly inepessing.

Thsoram 1B, I i B ’
= 1 T btz BUP por) o ew, then Lo, is

andf =Y G X8 = LNe 5 R aa L
Cru, OV g ATL orml =3 the moduln
4 unifor ¥ aven AL h seme time) and hotk duler

norm and the. sssociabed o A
12ted norm o B
£ Ly Bre unlformly convex sad uniformly

even at the same time.

Proof., : 1
Proof Lat ¥, We the charactevistie funstion of {4 3 plelz ah
and | ;2 y
Ty owthat of {1 poey =2 §, Then we see by definltion that we
have for every g « LPMJ
MR, o (R, ) = mdL
oy two positive mumbers ¥ , £ |, we assume
ey, vl f) ) wi (- B) 2 f
Then we nawve  a { ¢ sgm‘@) 2o 2 LR R AP B Lg
) . I

TE g f o R . , .
o AVE G ok Ghen By vieine of the inequalivy

we obhtaln

q ) .
R R Ll - R e T ST PR

On the cthar hand, putif
; v ing !bo = SEP fiw} oot ee , we havs
Bl e (e 3 H o
TR 3 gy m e gin,) 3 L s
E gty 4

Furthsrmore we have. by the modular conditlion 3)

w2 (et I, )

i .
gimian) +m (fnof

My

Therelors we in -
nevetore we obtain gimie) e m(£)} 2 wm (L (avd)) ¢ €
go

Secondly we sonailde la .
¥ onglder the other case: = ifa—£1%,) = "XE’ TF

we put L= Win kL., A
T 2 M.;n{ Ty’ } and denots by ?C ths charactsristie funchion

9

of Foe
f 0 ladtl e Lol = e/ (lacer ] w1022, B 81 gfcnen we have

e lp - d )T -3 8 w (E Clala 1ED)
i, :
£ F fmctiia) v mcneig)f = ﬁ”wé“fi"’
and hency 4 SN2 I PR A 4
- e f (ﬂ;a £3%3 ) & ) ¥ = ‘,;:’ 8y virtwe of the inequality

RAT NN ALy E+WIP + @fﬁow[ £ ﬁ'ﬁ -7 (¥

= # e -

i, % 4 TR+t J 2 J

Tor 12 p g4, putting 1 +6= igtf P{TY , we obtain

1
TA P la W)+ ome o i i
~ AT RSN g (g (o *“3“’”)‘*—’5 m (a1,

{n the other hand, we have

i .
B (g (amf) k) 2 % e ((a=d)XKa) B 72
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and by the modular ¢ondivion 5)
Lo (=R em (B (1= Had) | 3 mm (o Caed) M= Had),
Theralore ws obktaln

r
dimervmet it zom (k aren e SEL.

Consequently we have
! .l g & g5’
E.{fﬂ{m,)-#m(aé’}’; z m (g a+$)) + Kin { 319“ v t.
Thus A peey i3 unlformly convex. Ao cordingly we conclude by §88

Theorem 4 that L-PNJ is uniformly even. Furthermore, recalling §87

Theorem 3 end $88 Theorem 4, we gee ¢aslly that the modulsr norm of L u,.,

is uniforrly comvex snd uniformly even at the seme tims; and hencs further

by Theorems 3 and 4 in §77 thet the assoclated nowm of L.jp.e; 8k3c 18 ao.

Finally we conalder the apsclial case where p¢+) 18 a constent.
In this case, putbing p=p(+) (g t= 1), we sss easily that the modu.
Loy ot {ﬁj , bhe modulsr morm Mz #H , and the ssscelstsd norm =i are

given ez follows:

{ :
) = j Loyseenttde,
&
: ! JF
P
it o= ‘{ L f:}iltfﬂi A+ % for p<+oe,
1 —1—=
Mol = 2m 4 {meertde f> . for p=+oe,
’ lu—bﬂe-ew( ] ;. q
U = pF ¥ A= for f<p<ten, o +p=1,
el o= #a for g =1 or +oo .

_ §oa ‘-L"F‘a s du pao BpBOES
For messursble functions % ¢+) on the closed interval 0= T =1{ , we
shall maie use of the noktatlons: i
7 P =
Pl = tmezsftde F e e
! # { jo ][ % . %or lgp =< r
% = iim %% dt 7.
% foo= M { | 1xcer] {
On sccount of Holdsr's lnequality, we havs then
. i 1
it 1 —_— == =
(1) j jreeryerdlde 2 uzaubrrg_ or L=t
Fu.rthermore, denoting by B the totallty of bounded measureble functions,

B SUUU MW SN—

¥
¥

o e TR i i o e e g e
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we een prove easlly for every measurabls function Yot
(2) WY By = sup § e gerride,
e

nzllpgi x2e¢hB
By virtue of the irgequality

14
22t 1Tz (L2 T

weo obtain easily

for § »>& »d,
(3) Ky 2 Ixls for f »6 21,

We gece ensily thet Ix lp 13 & norm on L., and it 1s evident by
definition that = I, 18 equivalent to the modular norm of L’P . Thua,
dencting by ‘3{3" the modular topology of ‘LP » Wa sese that ‘?PP 1ls the
induced linear topology of Lp by the norm nedly .

He have obviously by definltion

(4) Ly € Lg

For any p>1 . putting

bipoy = T Ly,

. 1=f<p
we obtain a linsar space bip o

Tor P >6 gz 1,

Furthermore we define a llnear to-
pology ‘7{”%@ on LP' as '
a Pre ?
7{ 1<§’4p .?()
conzldering every 4{’5 as the reldtive linear topolegy of ‘V’E in Ly,
Then ‘Q"’F is sequential, becsuse ws can Ffind a 28qQUAnNCe b, < P aas
such thet lim p,=p , and we have by (3)
P-0 Fv
=0

But ¥ p-e iz not of single vicinity.
{5) Tp =421 lxty, 51},

Because, putting

we heve by the relation (3) that v, > 'Um > .., and U}% L,P_o (r=1, 2,

ov.) constitutes a basis of %*F7°, Thus, if %P°% 1g or single vi-

cinity, then we c¢an find ¥, auch thst ‘q,b 1..9.,,,, is & basis orf ‘1{?-0 ,
@
and hence the norm ili’(_llm mist be equivalent to the norm HX.JEP‘, for
P

evary ¥ z I, In L*F"” However we have obviously B < LP for every

g1, =2nd Hxdly 13 not equivalent to fzle in B for F+95 .

In fact, if F »>& , then for every positlve number £ < |, denoting by

’)(,a the characteristic function of the Iinterval ¢ < ¢ « £, ¥2 3863 9A-
1A
’ 1 { FTE
aily that Hj;x Hp =1 but = £,
¥ £ glp {l —TEP xg_ "gv £
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an svery °F 1s convex, 4 F"® alee Lw convex Uy §65 Theovem &.

A.ﬁ every *Pﬁ is sepmkative, ‘%';F"g alse s so ebyviously by definitlon.

Therefore 4T % is reflaxive by ﬁ?haorams 1 4 §88 and 4 in §68.

For 1g p <+eo , pubiing

Laqu-a = %?PLE'

we ses easlly by (4) that f.p,, 1s 8 iinear space. if
i f
-E-vf—-,é-ﬂs'i, pril, fj =+o.

then for ény % &l ysp » we oan find % > ¢ such that & ¢ Ly , end,
putsing ,.% L3 -—L =1, we have ; < p end T 13 & continuous Linsar fune-
tlonal on L&; by the rslastlon
%Zc::.)aj;iw;)sncwdﬁ for welg,
Gonseguently every % e L?-w wmiy be sonsidoved as s conblnuows Linsar
functlonal on L,F,Mﬁ, by ‘Ef‘?”’. Fuorthermors, &8 idwlhg is gtendard,
for easoh boundsd Linear funoilonal % on L., we Gan £ind by §64 Theo-
vem 2 F < p asuch thap @ fs contimous by 4% in L p.s . A8 Apeg
is denss 1n Ly by fl’{"ﬁ' , thers exlsts uniquely £ Ly such thet
Fiwr= Pin) far every i € L poa,
Therefars .L,f“,, colneidss with the adleoint space of LF hy &FC
Thus we can introduce the sdjoint topolegy of 2P amto degae . vhish
will be denoted by e LAl
If & linear functional ¥ on ligse 13 Dounded by e 747, ghen for
any § < p , putting ’E' o+ ﬂ% ={, as Ty 1870y §64 Theorsa 5 a boundad
manlfold of logas ©¥ qe it there sxlata uniquely %y ¢ Ley such that
WweRy= R (2y) for every % &Ly,
vecause L;,g ¢oinaldez by §89 Thecrem 9 with the adjolnt space of Huy

Purthermare, for any other 3= p s sach g coineldes with é&; . Be-
cause, 1f ¥ < ¥ ‘, thsn, putting -%7 g 1’2” =1, we have %'« 7 , and henco

ws heve by the relmtion (4¢)
‘ E(zyg) = T (=yge) for svery R ¢ Ly,
Aa B c,:,{.,.1 sl L,z, and A 4is dense in L,,?' vy 2 ( , w2 conclude hence
H(mg) =L (Xyr) for every ® & Ly,

Consequently we dbtaln %g e L ' and Xg = Xgt o The‘x;ef-oi'e we conclude

i o R et S

s e

§80) HODULARED SPACES
that &y ¢ Lp., @nd

R ) wm K CRp) Tor every ¥ & Lpso.
Thus Ap_y is ragulsr.

Now we o i H : i
ugn state: Apas i3 sgguentis]l andwagular, but not of

Bingle vielnity. fgse 12 the adjoint spacs of A, fox

B L R |

[ & [ f"‘:‘i’m”
Ageordlngly, fozarp 8lao ig reguler and hasz a sequential root by
o
: o - #
§69 Theorem 2. By virtue of Theorems 1 in §67 end L §59, we sas theot
‘L‘P"’ﬂ la complate. We have obviouszly by definition that “":"P o4 F
- b )
tut Lop.p dose not colncides with Lo o Becauna, as €7P-8 cnf g
lep by definivlon, 1f Lp., wsclneldes with Ao . then we obtein by
§59 Thaovew 4 that 47777 = wp sontredicilog that 47F7Y 1a not of single
tlalnlty. Thevefors we sos furbher Lhal e
i o5 Turbhap thal Lo, @4 p Wb Lug, does

net colncldes with A..? s
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COMBINATION OF LINEAR TOROLOOICAL SPACES

§91  Eroduct gspaces

Let R and & be two Lineer topoclogicsel spaces with linear topologles
% end Y’ respectively. For o basis ® of ¢4 and & basias & of §?, we
obtein by §56 Thneorem 7 a baals (U, ¥) (wed , Tefs ) of the product

(¥, %) which is the linear topology of the product space (R , 8 ).

In this § we shell consider ths adjolnt space of the produsi apace [R_s 8,

Thsorer L. For s pounded manifold 4 of (R, S) we can find a

pounded manifold B/ of R send e bounded manifold & of & such that
A< (B, L),

Proof. Putting B ={= : (x,y)ed}, C={y: ¢x,4reAl,
we havée obvicusly 4 « (8,¢). For sny Feq¥ and et , as 4 1is
bounded by assumption, wa cen find of > ¢ such that 4 < (o ¥,s7),and
hence we have B C 4T, OLaV, Therefore £ snd € ars bounded by
definition.

Let B be the adjoint spuce of R end & that of & . For sny % €
R end ¥ ¢ g, putbing

(R, §Nxy)= R +Feg) (zefh, pef )
we cbtaln obviously & linear functlonal (%, g )} on the product space
(8,5, - Furthermors (%, 3@:) j& bounded. HBecauss, for any boundsd
manlfold A of (R, 8) ,; we can find by Theorem 1 @ bounded manifoeld B

of £ =snd € of S guch that 4 < (B,C), For such 8 , £ , we have by

definition esup X ()l <+ oo, sup'g%f(g)yc.#roo, and hence
xeh dee _ | -
sup (%, 33(%, 91| = sup Il v+ gigsl< +o-
(% 4)€ A » ¢ INE el yec

Gonversely, for eny bounded lineer functionsl ¥ on (R , &) , putiing

Ter)= Fix, 0, Gy = Po, ) {ze R, yeb ),

we cbtailn a linesr functionel ® on A sand g en 8 . For sny bounded
manifold B of B, 28 (B, fo}) 1s a bounded menifold of (R, 5) , ws havs

sup {X (%) = aup
we B (= 36 (8,4e})
and hence T 18 bounded, thet 1s, we have Ze¢ X .

l e, yol <o,

We glao can prove

k4

!
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likewise that §e 8, Furthermore we have

(i,gnz,g.n: Flm, 00 Fro, Yoo of €=, g1,
Thsrefore the product spage (R, S'J may be considered as the adjoint Bpass
of {R,S3) mersliy ss a linssr space.

How ws shall prove that the linesr topology of (E, E,} coincidss
with the adjoint topology of the praduct (4%, 47 ), Let & be the ea-
join% topolegy of W and %° that of . For any bounded menirolda A4
of { R, 8) we can find by Theovsm 1 5 boundad manifeld 8 of R end & of
S such that < (B, €). For sush (&, £J , putting

TF={Z: 1%czrl g for every xe B},
Fo={y: {%¢9)) = 4 for evary 3¢ O},
®e have by definltion ¢ F, F)e( q,‘%: @2)! ared
for svery (xjg) € 4 }
IR (ey+ fgﬁgﬂ s 1
D {E, §) f%cxiﬁ;_f,e;js f?”tg)]gu;- For xeB, yeel
= (59, L 7).

i

LR, 00 12, 30=,900 5 1
> 4R, F)

Tor every x¢ &, ned }

Thus the adjolint topology of (%, %”) is weaker then (L, ). On the
other hend, for sny ¥ ¢f{ end T ¢ 7% , vwe can find a boundsd manifold

B of R and € of & such thet

T2{&: 18y =q for svery x= e},
Toigs Fepisa for every y ¢ (¢ }-

"Hers we cam assume obviously that B and ¢ are aymmetric, thet ia, we

have B =(1)B , € =(~-1)0C, Then (&, £} ia obvious'ly a bounded
manifold of (R, 8) and we have
R, I [Fex) + Fegdl s 1 for every x e 8, yece}

<{eE, i jRexalg, [Fcgilg1 for every me 8, yeci

Thug the adjoint topology of (¥, %?) 1z stronger than tEE, Py,
Consaquently we obtain

Theorem 2.

The product spase (f, ¥, colmcides with the sdioint

2pace of the product spacs {R, S) by the relation:

(B, =, 4) = T(x) + Feg) (TeR , e85, meR, ye§),
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fop the sdiclnt spees B of R ang ihet 3 af & -

If both A and 5 are standayd, then the preodust gpace

gm D
Theorem o,

{R, &) alzo i3 atanderd,

Proof . For any bounded memnfold A of (K. ) we can rind bya
Theoren 1 & bounded menifold B of B and € of § such that A < (& €.
For such B , A , ws both & aﬁd S gre stendayd, puitling

wedw 2 (EizdlZE for every Z el |,
v=iy: 1Figistd for overy ¥ € €/,
weo have by $64 Theorem B that ¥e ¥, V¢ 47, and

BUD ¢ 7 1(%?.35)(?@,})1
£at . ES) "”} o
¢ JZ;!)C('D’J?‘)l ,sgup iﬁc%),eké_ﬁﬁ;}a 5 7.
I BUB s pa
o e, ywrfj a.&jﬁ,g.» ¥ o .
A ] Tl initio g A B, 8 s stendard
Pras A is eniformly weunded by del initlon, and henes (A,

53

by §864 Theovem L0, beoniss (R, 83 1o obviously conisi By 548 Thaorsm 7.

TFf both £ ond 8 ere sepsrsied, Lhen (R, 83 La chelounky aopse
paged by deflnition. Theprelfore we obtain by Thworasm 3 and {88 Theo-
vom 4

Theorsm & If potn R mnd A pre pelflexlws, than_the produet

space (R, 5) zlac is reflsxive.

YRR : iatel
By wirtes of Theorsm £, ws goniclude lmmed 5

If both R and 8 Ars regular, then the produch 8pess

Thasorsm 5.

(R, 8) also is regulbel.

§o2 Ercduct norma

Let & &nd & be two normed apaces. A norm B{%, 43l on tha pre-

duct spece (A, 2) is szid 0 be a product nori, if

s, a3l = Ll for svery #« &R,

I, g2i= gl _ for every 3¢ &,

L= = (k=430 for every X ¢ £, Y€ 8§,
Putting
{1} e, yolly = K=+ Hyh {ze i, 3258 ),

' roduct norm 1a
we cbtaln cbviously e product norm W, g.}llN B This pro

g =

T by the minimum norm.
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cakled the marxlmum norm. ind, putting

(2) Bea, gollp = Max {Hen, ng,u} (=& R, %65 ),
we wbtain 2 profaict norm fl(x; 83 e This norm 1s ealled the minismm

0oy, For these two norms we heve cbyiously for every z & R, e g

(3) BEsty 29 Tem = WO, YOy m £ 0 (o0 W e
Por every product norm I (=, 434 we conclude chvicusly by definition

I, g)li =M (X, 0) 4 (a,g)" = o+ “gua

ez, g3h = 0 (%, =g = -;t fHCH g2+ wi%, g0 }
2y hize, ) = TN

and similarly il¢x, 3_) 1z "2’ 0.
(4}

Thus we have far every x e £, 3€8
Bem, 33 2 8 (x, Gl s dite, g1l

Reeailing §71 Theorem 7, we zee by the relations (3) and {4} that
the norm topology of the product apacs (R, 5) 12 the sems for svery

product norm, Furthermeirs we have

Thecrem 1. The norm topolcgy of (R> 5) by & product norm coipe

eides with the produst of the norm topologies of & and £

Preof. Por the unit sphere ¥ of 8 and ¥ eof & , (@, w) ia
by §66 Theorem 7 2 baals of the product of the norm topologiss of A snd
5 , and we have obviously

ET, T={c(=x, yr o KXR I, 5 i}

Thus the product of the norm topologies Lz the norm topology of (&, &4)
Congeguently we obtain cur asasrhion 2y the re-
lations {3} snd {4).

Let ® be the adjoint space of R end 2 that of & . Then the
product space (R, E; is by 4§91 Thecrsm 2 the adjoint space of the pro-

duckt space (R, 5),

Theoxem 2. For & produgt norm of (R, §) , its edjoint noym ia

g2 product norm of (ﬁ) SF .

Proof. For a product norm l (#, 531l of (R, £)

we have

Bex, el = sup ezl = SUD (e o= 1%
Beae, )iz g LY e s

beceuse Nxfls Hiw, )0 by the relatlon {(4}.

0n the other hand, as

Bzt < { Implies Wex, o)l 1, we have
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PEN= sup |% (®I] = sup ;iu:pg:i[(iJa)N,
Mg | Toilm s

Thus we have Il =d{%, 031, Wa con prove likewlise j[g,'u =H{a, ‘gﬂl

for every ¥ & Furthermore we have for every L eR, J€3

g.
%, )= B (%, G, 53| = sup (E,-F ), =43
e, 3o lt(a,gﬁ!gii P FICE ll(:t,-g){[é't! 0T

rrmf;ﬁgr““” “Eixtma = e E, G0N

Thersfore || ( ¥, §) 1 18 & product norm on (F, §) by definition.

Theorem 3. For the maximum norm of the product spacs (K, 53 .

its sdioint norm 1z the minimum norm of (&, §). For ths ninlmum

porm of (R, §) » its_adjoint norm ia the maximum norm of (&, 5.

Proof. For the adjoint norm [ (%, 5,’ i of the minimum norm, we
have by definition

NCE, T = sy {Rem2+ FCyrf = HEHAX TN,
» Bixudg%g, n it o ¢ E} f ¢

For the adjoint norm i (%, ‘j,' 3 il of the maximum norm, we have further by

dsfinlticn
HeE, 5)“5 sup
B+ gl =1 _
= sap ( sup {m(z2+ gca)})
2% 51 Honzg, ngts i~F _ B
= sup { % HEMN + (1— 5 WF AT = Bex {uii, wgat,

PEEE

{R e rFopi

§9% Product of modulared spaces

Let R end £ bve two modulared spaces. For the product spacs

(AR,S), putting
B, 4 = W) 4 (L) for weR, §€S5,

we see easily thet m(%, ¥) is a modular on (R, 83J. This modulared
apace (R, §) 1s cellied the product space of two modularsd spaces R and S,

Theorem L. The modular norm of the product space (R, 5) 13 8

product norm on (R, §) for the modular norms of R gnd 5 .

Froof. #e obtaln by the formula §B1{6) for every = € R
1
M, o)l = Anf oo Mz,
Ak ) m | %
and llkewlise [l (@, 4 ME o= W oF for avery % €5. Furthesrmore, for

eVery (%, 4) € (R, 8) we have

lik £z, ?Hl[ = inf

[
- IS TP B
DR PR RV PIFEELL ¢

1_
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Therefore we obtain our sssertion_ by definition.
Let £ be the modulsr sdjoint spece of & and B that of § .
v Then we have

Theorem Z. The produst space (R , §) coinclides with the adjicint

gpace of the produst space (R, 5) by the relatlon:

(Z, Gil=,u) = T(u)+ Fig)

for Ted, FeE, =ecd, pe€8.

Proof. Reealling §81 Theorem 6, we mes 8t once by Theorem 1 end
§e1 ‘I‘hsorem-E that (K, §) coincides with the moduler sdjoinml space of
(®,8) a3 a linear opscs. 7 Furthermore, we have by definition for
evary (%, ) & (&, 82

=, 4) =zzeilfp§ss {%E ez +Fig) - mﬁm)—-mca;}

= LAY T B (y'? D

Thus we ocbteln ocur asssrtion by definition.

As the gasoeleled norm of (R, &) 1z by definition the adjelnt morm
of the modular nomm of (&, BJ, we obtain hencs by §92 Theorsm 2

Theorem 3. The sgocclated norm of the product spacs (&, S) ia

& produskt norm on (R, &8) for the associated norms of R agnd §.
A modulsred spase K 1s seld to be jigometric to a modulerad space
8 , if there is a transformeticn @ from A to S such that
m (P (YY) = welm) far every = ¢ M
With this defimltion we have

Theorem 4. The product space (L‘P'('”’ Lopy e Y} is isomstrpic

19 ‘L‘Paf‘ﬂ » AL we put

P2t} or O <t Lo
pyet) = { . &
Lopatat -1} for ¢ <t <+,
Proof. For every % € Lfﬂgf'\t)s ye Lﬂ;%c-t) , butting
—'—“__E'X(ﬂ.‘t) far 0<t<,-%'
(2 408 = .{ ap,:m . :
g A for o~ < ¢ =
4, pautruy‘ 1 3 t<t,
we obisln s measurable functlon (=, 4Ji{f) for ¢ << <1, 2nd ws heve
j1 b pem ue [T e = 2 j% i yzeaer ™ az
s PyiT) ? . e Pola®)
+ — Paldt~1) e e () A PLLRY
?'j; S L0 At 3

%
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Thus we ses easlly by definitlom that { Ly e, b pgees) 19 laometrle to

A"’pg{"&} "

8§94 PBilinesyr funcilonals

Let £ and S Be two linear apeces. & functlomal F on the prd-

duct speace (R, S} 1z =ald %o be bBilimesr, IT
PLE ARy, g)= Plme, g+ F L, 43 for =4, ®3 e/, gaid,
TR, i Ya)om PP T F T §a) for = eR, ¥, 4265,
and for svsry real number Z
(8w, p)= FPH, Fu)= ¥ ¥en,u) For zeR, el
A

For a Linesr fumnchionel ® on R end ¥ om &, we Gefine ¥ § to mesn

s bilinesr fumctiomsl on (R, &) by the relstion
BEem, )= Ee) g for xeR, ps8,
For two bllineer fumnctlenale § , ¥ on (R, &) , we define o ¢+ 8%

for &very resl numbers e, § to mean a milinear fumckbiomal on ( A, S by

the relation:
(d@,}.?%}(x_}g_)f;gﬁlf(?f)?)‘fi@‘%&f?f}g;} for ek, def,
With thia definitisn, we sse assily thab the tobelliy of bilinewmy

3 i1 3 REE Thiz linesr Space
functionels en (&, £} cometlbutes a linear space

- ""'e..,, .
i3 culled the bimasceisted spasce of (K, &) and denocted Dy R 3

Fopyr the assocliated spacs T or £, and that § of £ , we have thsn

cbviously that ¥e & , ¥ ¢ & Implles 5:“'%;(" € RS spd for every real mde
ver ¥ (351§ = WGEfI= 577 for %R, el
(E+”13§ﬂ§y?-+3fz? for ¥, M. ef, 1€8,
1 n -
%(a’!"’gtJﬂEgu*iﬁ . for eR, §isdn @ &5,
o

Furthermore we see aib once

If %, e B (=1, 8,.0.,2 ) are_linesrly independent,
ot o

Theoremn 1.

= g g T i, & 1 W o= & For e¥ery
then ﬁ_ W, =06 , 8,685 {r=1i, 8;..0, %) implies ¥, Lor 7

;“A»‘ g}; ﬁr-]
o ] )
o Y = ) s « S B
=1, % B If ¥, £ 8 {w» Le 2ye00, % ) 2re binserty ludspand
= L; ey 2 L & i 5
5 % .= - = % igi = 0 Ffor
ent, then Lo o O, Foe R (v=l, 8 a..,00) lmphisa wH,
E _ P
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[y-r

Every element (=, 43¢ (R, 35) may be sonsldered ss o limear function-
2l on the blassosiated space A8 by the velmtlon:

- O
for every Z & &5,

\ 0%, $ILE) = F (2, 4)
Thus we can introdute = woak linenw topology into S by the aystem of
‘tingar functionals =, ) for all ze R andg e S, This weal 15
near kopology 1s callsd ths wsak topology of the blaasssisted space K&

On account of 335 Theorem 8, wo can prove likawlse as §87 Theorem 1

Thecrem 2. The weel topology of the bleszosimbed GpAnE E? is

complete.
How let A e=nd 5 be linecar topological speccs with linear Lopnlos
gles 44 and 47 respectiwaly.

Theorem 3. In crder thet a bilinesr functional ¥ on the:ipr'cdugi;:

gpace (£, S) he conblimucus by the rrodust (494, €73, 1% 1s necessary end

spfficlent that ws_ can find 7e4v and ¥ eq? such thai

m%;i,pg}av 1 cm, 42 = os,

Proof . Lf 4 1= continuous by (9%, 4%), then we can find by 8D
Thecram 2 Te % and ¥ e such that

(T, Fle §em, yr 3 lyim, ga) =i},
Convworsely, we sazume for some I¥ef andl T e 47
'24":%&5%‘1?3:? v em, g <=, .

and ¥, We & star vieinity of 97 auch that YV, 2V, o7, Then for soy
¢ R, Yo &8 wh-con find o » ¢ such that et T, Yy €of Wy, emd
for eny positive number § = of » 18 (=, 43 - L=y, gg} EE LT, V), then
we have ‘-%‘af:zz-,?:@)s‘ﬁ . -;-(gﬂg.p)@??gﬂ ’;E;tgé v, -;%‘g,,@“?}’h

and hencs m‘:—;?e %‘n‘y’i T o v,

Thess relations ylsia by o=
svmptilon fepen, G~ F(Hoy $odi2 Eat ) ‘f(‘:g?‘ {m=2,3, ‘:’l’é“ﬁ'
i i . -
‘t'-é@fﬂ‘f"(—;xo, ué?'(g-gg'l_}g = LEAYN,
.

4 Bllinear functiomml ¥ om the predust spaes (J’el, &) 45 seld to be

Therefore § iz contimuous by the produst %

2

bounded, Af we have Tor evary bounded menifeold 4 of R, S)

10} g
“‘#JP i g (2, 52« o3,

Rocelliing $91 Theorem L, we have then obvicusly that % ia boundaed, 3£ At
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only if we have for every bounded manifclds & of R and & of kS
B ¢ < e .
a:eB_,Pg(GGI(? 2w, 41|
If boeth A end & are seguentiel, then every bounded

Theorsem 4.
the

bilineay functional % on the product space (£, ) 1s contimious by

product { 4, 4°).
Proof. Putting W = {¢=, 422 (=, 221 = 11, we see at

once that W is a vicinity in (R, &). Purthermore, for any bounded

manifold 4 of (R, S), we can find A >4 such that

sup ﬂq’(gt.,g}l:( |-i;:p(xgg)[§‘i,

t,3) € &+ 4
and hence 3:;& & W, namely A CATY.

Theoram 8, we obtain W e (%, ) by §658 Theorem L.

sup
Feure A
A8 (R, .83) 1s sequential by §58

Thersfore % is

contlnuoua by Theorem 3.

§95 Biadjoint speces

‘Let A snd S be two lilnear topeloglcal speces with iipngay Lopolo-

gles 9 amd %° respectlvely. The totality of bounded bilinear funs-

tienals on the product space (K, 3) 1s cslied the pladjoint space of

{R, &) and denoted by s . Let J2 Be the botslity of boundsd me-

nifolds:of (R, §2. We sse sasily by §563 Theorem 3 that, putiing

—

Ty=1Z: 2=, 12 tor tm,4)eA, T e RS}

corresponding to every 4 ¢¢L, we obtaln a symmetric convex vielnity 'ﬁﬂ

in RS , end there exlsts uniqusly by §53 Theorem 3 & linear topology P

on B8 such that the aysbem T, (A€l ) 15 a basls of FF. This 1li=

ngar topology*a‘_ﬁ 1s called. the bisdjolnt topology of the produet {724, )
and denoted by YL %, The bledjoint space R & 1is defined es a lLinear
topological spece by the biadjoint topology ¥ 4°.

Theorem 1. For eny e 8nd v &Y,

{Z @ VE(x,4)|si for every X ¢ U, %V}

is a bounded manifold of the biadloint spece R &,

Proof. For eny bounded manifold A of the produet space (R, S )

we can find by §91 Theorem L a bounded manifolds B of R and & of S

S

e oy A e i
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such that 4 ¢ (B, €), For such B ,C we can find o =@
#B QT , &L,

such thsat
Then we have cbviously
-4 Z 1z :
4 talx, g)lg i for every z ¢ o, yev}
C{E D2t 01 for evary = ealB, neatd}
e d 30 £
={Z 1 1el* 2%, 422 fFor every = ¢ B, e}
i s =
Sig® STz, 5| for every (=, yre A},
Thsrefores 4 % : {2 (=,37]51 for every =ew, @&V } 1is bounded by the
definltion of the diadjolint topolegy 44 47 .
Let R be the adjolnt space of & and & that of & . For sny X e &
&n kvl = o= == N
a ge g, zy iz obviously by definition s bounded bilinear funetional
on the product spece (£, $).

Theorem 24 If both # and & are sgulvalently strongest or sten-

derd, then for any bounded menifolds B of @ and & of F, putting
A=4%9: Zed, FeEi,
%e _obtain e bounded menifold 4 of the biadioint space 3

Proof. By virtue of §64 Theorem 8, as both £ and & save by as-
sumptlon equlvalently strongest or standard, putting

Te{w ! 1% ey

W

1 for every Z & }
>

."7 {'g_‘., 1Fegrl g1 tor every fﬁé@[‘s

we heve Te M and Ved?,

i

For such.7, ¥, we have obviously
Az 1Z [ Ren, g3l 1 Tor every X eV, 4¢ ¥}
B

because I g(-x,'g} = ) Ty,

Thva we aee by §95 Theorsm L that

4 1= & bounded menifeld of RS.
For any x e A, }e 8 , putting
RY(ZI)= Z (=, ) for every Z ¢ R &,
wa obtein obvigualy 2 1linesr functlonsl # g on the biadjeint spsce RE.
Thus, recalling §94, we obtein the week linear topolegy of RE by the
sys‘te@ g (2e R, 3eb5), This wesk linesr topology of RA is

ha we have by definliion

¢

PR toegeZit= |Zex, y)js1}e RS

for every e R and 4 &8, x;, iz a continucus linear functional con

celled the weak topology of Rs.

the biadjolnt susce R 5, Thus we hava
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Theorem 5. The weak topolosy of the biadjoint space Ef’,-ﬁ is wea,lzr,f

er then the bledjoint fopology 4 97,

For every £ ¢ &, ¥ € 5, we have obviously by definlilon

Y (EF) = BE(H 4= Femd Bog)d

&

for every % & B g{ g, Thusg -sx,g. may be consldsred az a billinear

functional on the product spacs (E. '§) by the relations

RYEE, Fr =R Foo (ReR,Ted ),
Then we have

Theorem 4.

For every xze&f, § £ 3, B o iz a continucus bi-

linesr functionsl on the product apace (.Ea', 5,

rroof . On mccount of $64 Theorem 4, for any xep and ¥ &5,
we cen find T ¢if end Fedf for the adjoint topology W of 9% and that
"l? of 4* such that sup [E {n2[<+teu, Bup ﬁ‘gfg)! =4 wo, and hence

e T He F
su w w -
fiéﬁppge% =y (:;,g)l < 4 em,
Thus %Y ls continuous by Theorem 3 in fos4.

Theorsm 5. If both R and 2 have ssquentlal raota, then the

bladjoint space K& i3 segusntial.

Proof. Let B, {r=1, 2,...} bs a saguentlial root of R and £,
(=1, 2,00.) that of 5 . . Then we sse easily by deflnition that

PR 1Zalgt for mefy, getul (r=d )
43 & basis of the bledjoint topology WK 4.
Finally ws szhall prove

The biladioint topology ls complets.

Theorem 6.

Proof. Lat ,Zi:,k {» €4 )} be a Cauchy system by the biadjolnt to-
pology 9K . Since the weal topology of the hisdiclnt spscs E & is
by Theorgm & weaker than W 5 ﬁ; {» s A ) alaso 1s & Canchy syztem by
the weak topology- Az the bisssccisted apace ﬁ ig complets by the
woek topology by §94 Theovem 2, there exiats hence a limit 7252,@ E‘g of
,#T;\ {x & A )} for ths weak hepology.

For every bounded menifolds B of R end C of B, as

£F 1 JZn, 45t for avery w e B, gel j e T,

wa can find X, ¢ A such that ES‘TF@E_‘\@ implies

g
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E0D
PRGL Y =W ey ) m g for every x 5, yep
— i ) <
because Anitaed ) iz a Cauchy system by U, For eny = ¢ & 1 e

_ v 2
and £ 0, we can find ¥ ¢ 4, such thet

@

1T i, 8) ~ %, (e, g0l < &,
- = [ing . e
vgesuae Z_ iz 2 Limit of Ay (26 A) by the wesk tepology.
have

| Then we
B‘M‘(zgéﬁ)—"zo(g‘ﬁ}a{‘)ﬂéi"?‘ﬁ tar every *ﬁvé,j: B Az x € B yed
e b " ] il
and £ » 9 may be arvitrary, we conclude hencs
bdew, 93— Flox, 431 %o A,
| & AL DRI for every me_ﬁ}.“xe’&&;@@a
Frowm this reletion we conclude that %, 2 A5 and

AH, < {2 ¢ JE(xggJ_z(xgéiJi g1 for every meé g, see}
Thiug Z, is a limit orf An{aed) by the bladjoint topelogy Zx 4@

s N Con-
scquenthky 4 %7 is complete by defipition.

§96 Cross spaces

Let g, and 8§ Vo t B ® 7
wo linesr apaces. For any = ¢ & and wes

2

putting

{1 2g(Er =T o, 4y {Ze B8 1,
we obteln 2 llneasr functicrgl Xy on the blasscciated spass E& of tha
produst space {'Ri,‘ &, For zach linesr functlonsls 2y {xe k., %eb )
we heve obvlcualy by the definition (1) 9

{2) Y = g
(E=z)y = xiFy) =k %y for svery resl number f,

(5]
(4]

i?&q-ﬂ-"sc;;)g::xngwf;z%ﬁu; (-:(,“-,-,{_le‘rg,g };ALCES}

Tlfitga) = Ryt LYy (e, 4, ¥aeb)

- - N ="

Thua, 1 we denots by RS the sssoslaged apees of Eg » then we
havs =y & RS for every z ¢ A and ded.
Pomm )

i The linear manifold of
L

generated by the systenm =y (R eR, $€8) is galled the cross
gpacs of A snd & , and denocted by R S .

Let H Tbe the &ssociated spmes of R and & that of & ., For

svery % & B end gé‘g’g aa?i?éRS
i -

» putting
{zZ RS ),

B¥ery L € R way be consldsred es e biilmesr functional on the product

lej)

) z(%‘t’,@«[")gz(gg;



e N POLOGIC PACES apoer XI1
2ES 1 OPQLO g Rl ch 1A

space (K, § ).

(s) xy C®, §oe Ram Fegd

Eeiaeeia].ly we havs by (L} and (5) o
(nepr, wed, RER, Jei ),

lrmid o~ N in R
Theorem L If a linesr manifold 4 of R is fundamental

Z,3)1=4
i1 dsmental in S, then & (22,3
and @ lineer manifold B of 5 1o fun

- for svsry Ze A, g‘é'g implies z =o for z e RSE.

» B
Proof n account of the defin ion o he 8 3pacs 5
r itio it cros )

svYary 2 may De Tepr esented as & ine omb @ K
Z £ R iy ar ¢ ination Lrom g’

i 3
Furthermore, for any £ € R 8 we can find #H, ¢ R

{XER,:?:GS}H

{w= 1, 2 , % ) end %E;,&S {r= 1, 2-°'°’u)such that
= L, Biea0
%
z—:% 75-;,‘&54

Eike) 1z
a 2Z (.k =1, 8 , %) ere Linearly independent . Beceuae,
Ky g p Bpass

e
= S,

e

then ws have by the relations (L), (3), and {4)

-1

Y W § o=t = 5. Rel§erelFau),
= p oty 5 = Z
Zo e = L Rege v (Zte s e T

= % 3o b = e }
1 = ( B 1 2 p PE ) BRI'g lil’iaa'ﬁ"lf independent, then X, ( l, BB L.
w 2 # ¢
Q £} t } [o 7 LA6 [2) O}
2 Lin BFLF ind pé’ﬂd e} 85 Linear functi nals on A b he €
8.3 ar 3 € T retleti

ZlE) =E (&) for svery R ¢4,

bgosies A is fupdamental ln B by assamption. Thus if s
ﬁﬂzyiﬂﬁf}gk(?}ﬂ"&:(ﬁ'n‘gjz:ﬁ for. evary €4, é?-{‘"vv
iy o

theon wWe have éb}r {94 Theorem 1 for svery % € B
%;cgv;ggyagxso (w=l, 2,c005% )

= ( =1 LN )]! SCARRA B is fﬂndm@nt&l in S b?
and hance ?b = §{ ¥ » Eg e D

o # " = & ]
assump@lcn Therefore Z { s W} =8 for every & & A » '3 B implfl |5
Z.o=0.

) g 4 ACE
Theorem 2. Ths bissscclative gpace R § of the product sp

kA ] S
{R, %) cgoincldea wikth the aasocletive space of the crods Spac &
)

P - et & —"'ng .
by the relatlon: Z (2 =2 (%) for Z&eRS, & 4
by the Texatlon i2%

? y Every Z & E}J may be considersd obviously ez a linear
roof . s
Punctioual on the cross Spacs £S5 by the relation:
Flz)=Z(Z) for every Z e R &.
| aturslly
Furtharmore, i€ F (L) =0 for avery Z ¢ k4, then we have n
Al H

- . _ Y ¢
Eow,y) = wy(Er= T(ng) =0 for svery X £R, HE8;

— -

e
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and hence ¥ =g, On the other hend, for sny linear functiconal ¥ on

RE s> butting

Tlw, 47 = @(awy) for every z e K, umes,

we obtain cbviously a bilinear functiopal F on (&, 8. Thus, we

cen £ine unliqusly Z & R & such thet

§ (=, })-':f(ﬁsg) for every = ¢R, e s,

and hence ?cxy,) =% (=Y) for every = &R, fe S, Putting

A=1z: ®tz)=F¢t=), zeps},
We obtain obviously a linear manifold 4 of R 8
713, (:ce&,y,eS).

s Wnich conteins all
As RS is the linsar menifold gensrated by
3 (2 eR, Y €5 ) by definition, we conelude hence A = RS, ana .
wconssquently (=) = ZL(z) for svery z ¢ &R §,

Therefore we obtain
our asgsrtion.

By vilrtus of Theorem l, we can state

Theorem 3.

et
-9

gd spece ®E  of the product space (R, ¥} by the relation:
Z(X, )= (%7

The cross apace RS is a subspace of the bilassoeiet-

for zepsg, Zef, QE?S'.

On account of Theorsm 4, for the crosa space ?’2‘ g' s BYery I e ﬁ?

may be considered as a linear fumnctionel on the eross space R 5§,
In this senes we have

Theorem 4. The oross spece R § of the sssocisted spaces £ eand

E 12 8 subapscs of the biassociabed spece R §

; that 1s, for T ¢ % &,

Fezi=op

for every =z ¢ R'§ implies g.

= B o
Proof. Let B be the essocleted space of and 8 that of § .

Considering every = ¢ R by the reletion:

i~

€&,

R 1is obvlously a subspece of R and Furthermore fundementsl in £ ,

z
7
a3 & linear functional on R
KK} =% (=) £

for esvery

Similerly, & 13 a subapace of Zg‘" and fundamenial in I§ It T(z)=0

for every Z €& 8, then we have naturally for every = e R and ¥ E 5
'Z(z,g): 'f(x;):o,

and hence we obteln Z = 0 by Theorem i.

For a subspsce B of R and s subspace & of £ s %he
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; &
orong spAcy SC ip a subgpeos of tha oross sphoee R 5.,

. z 4 o, £ 40
Proof, We nesd by definition only prove that for &, & B, Frel

£ &, 4 only if ws havs’
{ v =1, Brocag ), We have &%Tmpg.yw@ in BE, 1f and only
_ﬁi Ko Go w & in 8. For any 2, ¢ B, Fe el (=L, Spo0a, My
EN )

we cen find by tho method applied in Preef of Thoorom L, lipsayly inde-~
sueh thaet we have

2 !

Z_, Hope %p = Z, 'xnvl %’Ej

L= HE-N 4

2 ,3%') dn B € as well as in R S,  Thus, If
soeug ¥ :

3
3

#
pendant . ¢ B (=1, Byenoset)

for anme rﬁ.“’;p‘. e & {w=l,
d 4 = p ¥ ay = § Tfop svery &= Eyoaop ¥
L r‘s!." g in B, then we h ezj; ¢ for &var i, 3 5
g g

]

ond honeoe .fZ_; 2y =0 in RS,
= .
P oafyl =0 in BC.

# 5 , then we ecnclude likewise n:‘é:'ﬁ 2

=’ ; s .
Conwersaly, iF % S g =0 in

§87 Crogs topolegles

3 ) 5 L s wid naar topeolo=
Let B znd B be twe linear sepologieal spases with linear togp

glea ¥ and 40 prespsstively. The ad;}oim; IPRCS # of R is n subspace

# 1 ] ce & : ) aak =
of the mssoclated space A of & , and the andjolnt space S of § le

ot = L=
- o ez 3 GeE
a Thua for every # € £ &
apaoe of ths assvpeiated szpace £ of 8., Thaes , 7 4

¥ © may ba songidered by $95 Theorem 2 & Linser functional opn ths cross
a E) 8 |
ppacze £ &,
SEgeET:)
& linear topology 9%% on the cross 2pEGS BE is s2ld to be & U084

BopoleRy, 1f

L} y? 1o standsrd, -
21 for overy bounded menifoias B or R and € of 5,
fwy : meB, Hel } 1s poundsd by 7 .
I3
ok ¥

3} for svery bounded menifolds B of B end & of
{25+ Re B, Te £ 7 1ls uniformly bounded by W2,

Lat @& be the totalley of bounded menifolids of the biadjoint ﬁzpagﬁm

e A8 evsPry Z & X8 1ls by dsfinitionm a linsap functlonmei on -4

pubtlng for sach A € &
Wy =42t {z{fi{g | for every Teh b,

3 Fuorthermoro
we obtain & convex vieinlty Wy im the cross spacs 5.
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we ssa easlly by §53 Theorem ¥ thet there sxlstas wnlqusly o linger tepo-
logy s, on &8 mush that wa | AR is & vesle of Fa2, It iz
obviouz by definitlon that Fefr im convei. fecalling §95 Theorem 2,
we 595 by definitlom that P42, satisfles the condiltion She For evary
bounded manifolds B of E und & of 8 , rutting
W o={% . IZE €. 931 £ 1 Ffor every xe o, A

WS have Wedl @ by definiiion. Thus, Ter sach bol;nded manifold 4
af m » W san find = > ¢ sush thsth f?— = sl TP ¢ #nd then we have

{eyg i xeB, geet o {z lz2 (Z¥ g1 for every E¢ T }

=of{z: j2(E)=1 Cfor EVEry Zeod W b € of Wy .

Conseguently iy = €8, Y¢C} iz a bounded manifold of £ 8 oy FT . |
Therefors 2, satisfles ths condlbicn 2).

4, 1s stronger than every cbher somvex limear tepology on &  sub-
jeet to the conditions 2) and 3). Besouse, for a conven linsar LOpG-
logy 439 on R & subjsct®to the conditions 2) end 3), if wo dencts by
ﬁ%‘m the adjolnt space of RS by 939 , then we ses by §96 Theorem B
that A& K 1s & subspace of the bimssoeiatbed apace WE’. Furthérmere;
Bs we 2qe by the condivion ) that WSy E & R & e iz = bounded Dilinssr

functional en (R, &3, & & w2

ia 2 zubspace of the biadjolint szpacs
EE . For any closed convex vleindlsy w ¢ 9% , as Wf‘igra@alarecloaed
by §54 Theorem £, Putting

A=4%  1Z 23l a4 Top every 2 ¢ W, Z ¢ 8 ).
we heve by $52 Theorem 3

W= iz (ZFizil= i for svery T e A},

Furthermcre 4 is a bounded manifeld of B & . Because, for any bound-
ad menifolds B of R and & of 8 » We can find by the condition 2) o> 2
sush that {xz;,_ T eR, yeg < W, and then

Aciz: iZiaitg o for every z ¢w, ¥ ¢ %

[

it

®{Z: 12023 2 1  -for svary ZewW, T<HS }
C At E T ix g1l g for every xeh, 4elj
Thus & i by definition a bounded manifold of .S , and hencs we heve

W € B’ by definition, Therefore %%, is stronger than %7 .
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By virtus of §57 Theorem B, thare sxiste the standard linear topolo-

gy 0 which ip equivaleni to 7. . Such %> setlsfles obviously the

cenditlons 2) end &) koo, anA hence ®%, is strongsr than #%3 , ao proved
Just sbove. Thus #O, ls standard, and consequantly %2, iz a cross
topology on R 5. Thereforas we can state

There sxista the strongest cress topology mpA on the

Theorgm l.

gross spese R 5 , end for = rook & of the biadjeint space E &

i tz(2ils i tor every Ze A | (Ae @)
ig g bagis of %% .

There exists the weakest croga topelogy %4m  on the

Theorsen 2.
L0805

croag spees RS . a\nd Y7, LB squivaient to the llpnsey topelogy on R Y,

of which for 8 root ¥, of B end & root & of §

fz : ia(xgrjgt for svery #eB , T e} (Ee® ,EBe )
1a a basls,
Proof. By wirtus of §53 Theorem 3, we cen introduce & linear to-
pology 947, Into the crs:;rs.s space R & such that
{Z: 12 ¢R¥)]€ i for svery ZeB, FeEf (Be® ,Ea)
15 & basis of WPy . Then #47, satisflsa obviously the condition 3).
For evory boundsd menlifold £ of R end & of 5 , and for svary B ¢ Z
& &, we neve 57 85 Theorewm 2 .
‘ K@B,;Eeaigajyeﬁ [RZ ()] <+ oo,
Conzeguently 933, satlsfies the condition 2) too. As 97 la convexX,
.t..hm"e exists by $57 Theorem B a stenderd linear Lopology %%, on R &,

wnleh 18 equivelsnt to 7, . Then M, alsc satisfles obviously the

conditions 2) and 3), and hence #y2, is e cross topology on RS,
For sny cross topology #4% on R 5 , every pounded menifold of R 8
oy is obviously by definition bounded by %47, too, and hence naturelly

bounded By M7 4w . Accordingly s ~ Mi., 13 egqulvalent to b

A8 9% 1s standard, we obtain hence %7« Nl © WP, T™is relation
yields by defimitiom %%, < %7, Thersfore %47, 1s the wealkest cross to-
pology on RS&.

By virtus of $9€ Theorem 2, the bilassociefed space E“é colnecides
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with the asscciated spece of the cross spaca A 5. For the strongest

crosa topology 9%%s on the cross space RS, Lf a lineap funetional &

P

on A& iz bounded by #7s , then ¥ is by definlilon & bounded wilinesar

functional on the product spece (R, 8J), that s, ¢ ¢ & & ; bocause for

20% bo P P
¥ unded menifolds & of £ and £ of & imy: med, ye } 15

13

bounded manifold of R & . Conversely, every & ¢ B8 is a continuous
lineer functional on A £ by #4?, . 22 we see ab once by the dsfimitilon
of B, . Thus the adjeint spase B & % of 25 by %7, colncldes

with #& 28 e iinear spsacs. And we wee further that the adjoing to-~

pology of %3, 1s stronger than the biadjoint topology %t 4° . If a
menifeld A of RE is bounded by IW4P , then A is uniformly bounded in
R& by #%: ., on eccount of tha definiticn of 447, , Thus we heve

Theorem 3. The sadjcint apage f’ﬁ%ﬁ‘ of the c¢crogs space g & by

the stronpest cross sopology 2, coincides with the biadjeint épac@ -3

of the product aspace (R, 3} sxcept for limesr topelogies, The ad-

jolnt topology #2, la stronger thasn tha hiadjoiﬁt topelogy but equival-

ent to this.

$98  Cross norms
How let & wund & be normed spaces. 4 Bllinear functional ¢ om the

product gpace (R, 5) is said toc be norm bounded, irf

s . ¢ o g o
f_!mghpng‘ﬁ%i b ew, gif < +eo {meR, wad),
With this definition,; it is cbvious that % 1s norm bounded if and only if

& 18 boundsd for the norm topologiss of A and 3§ . Thus for the bi-

adjoint space RS of A and 8 by the norm topologies, we can define =a
norm on R§ by the relation:

{1} WE N = aup VE co, goi {nekl, 28,

Mg, Wy g
Thizs norm on R 5 ig celled the biadjoint norm of the norma on A. snd 8 .
We see eagily by definitlon that the nmorm topology of K 8 by the biad-
joint morm colncldss wlth the bladjoint topology of ths norm topologles

on R and S . Thus we heve by §95'Theorem § that the biedjoint norm
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— - - ﬂg -
ig complets. For the adjoinit space E of # and thef & of we heve

obvlously by thsg definition (1)

7]

(2} NEG N o= AR ONG (msh, GeZ).
45 she cross spase A& i3 by definition a subgpacs of the esdjoint

apace of the wisdjoint space RS , we obtain & norm onn £ & as the ad-

F 3 g 1s called ths
joint nerm of the bisdjoint norm. This ROPM o a2 &

meximun DOYE on tha eross spsce RS  and denotsd by A% e (B EREY,

that 1s,
= ¢ RE, zcRS)
WZW, . .= sup |z (23] { Z s
(3) AT hgd s !
With thia definltlon we have
{4} i]a".gell%&x“; ﬂixmug,n {xeR,ye%)a
Bocguse, Hui = 4, iyt = ¢ 4mplies by the definitlon (1)}
3 = sup |E (s ysf s d
WG Ron KEN 54 J ?

he other hend we bhave by the
and hencs fTY ., S hxd aig,uno On the T

formula (2) and §72(3)

® r _ou [ ZRexdyTegd] = dzEfingi,
it ? ﬁq‘ramvz = liﬁilg?, !igﬂ‘fa ' & ?
We have furither ebviously by §87 Theorem 1

Phe norm topology of ths oress space A4 by _the

Thaorer 1.
Aagul el

mavimum nors ls the atrongest cross LopaloEy .

Reeelling §$58 Theorsm L, we obtain by §97 Theoerem S

Theoram 2. The adjoint space of the sresa space R% by the

ard S
mazimam norm coimclides with the biadjoint space Re , end we ha

gup t2 23 {TeRS , 2E¢RE)
H2ilgpn &1 .
for the bladjoint norm HZEH (E € RS ).

{8) HE =

Becguoe we have by the dsfinitlon {I)

RERz  ocup {2z CE 0,

B2l & i

on the other hend we have by the formuila {4}

if

I%B= sup

e, RYa£i
Goncorning tnd maxlmam nOTE O th
b

B LY P )
e crogs space R & we have fartharp

l'i(x,@g)ﬂn’ Bup 12¢E3h,

B

W

T

’ = Wate O Ye 0o
(&) 2l = zigfimgc, & LE it gy o
o 5 w3 have b
Aensuge, putting HEl, = zi-f,—!f o - iié‘,;,& , ws he ¥

>R T -

= inf (ET Y P iz,

i",z-“mm.m = %=£’E"E& <3 !

joa COMBTHATICH OF SPAGES 2635

Thue, we see spaily thak iz e (2 & RE ) zatisfles the norn conditions,

Furthermore we havs by this relatlon

Eizﬂﬂé‘ﬁ.ﬂ w= ﬂ!%aﬁ,lﬂngg 5!225‘3 = Hi‘!’-@tﬂ?ii’a

and hence we cbtain

[lmg;nﬁlﬂs:uxlln'lg,ﬂ QK_@R_;“?@%}B

Thus for the blassoclated specs A8  we have

(zeR ,yuesS Fe k¥,

2

1E¢2rt 2 sup z
U2l = g T PO 12 e, 431

Accordingly we ace by §96 Theorsm £ thab the adjolnt spece R & | of the

eross spscs RS by the norm Hzll, (2 ¢ £ 5 ) is contained in thes ad-
Joint space of g2 5 b¥ the maxinum norm and

REd, = 42y (2 7%

for ths biadjeint norm ¥ EY { ¥ ¢ £F ), On the other hand we have

by Theoorem 2

HEW o= up {Eez) = sup {Femyi
" ‘qﬂﬂm&;ﬂﬁ ) R ET =i !
Therafore & & colneldes with EE  and wo heve

U2 N, = 4T 4 {ZeRg ).

Gonssequently we have by the formula §72(3)

Bz, = gu Frwal = = = - "
! nﬁ.‘!?@g;g €=l Rnﬁ:‘%?‘éfzﬂ Nz e .

&z the bisdjoint norm of the edjoint norm HEN { E<E ) and

WE &

(T\j €B }, we obiein = norn on the cross spoce R S . Thiz norm 28 cgll=
ed the miplmum norm of the ¢rcss space 238 and densted by fizn et £ 30

{2 &pr% )}, that is,

() HZ U . = sup
' NEHEE WEN5 1
With this definition we hawe ohwlously vy ths formula §¥2(3}

jzeg, i (Fe®, FeF ),

(8) Bz Moo, = R GIG Y (neRr, wes ),

Theoram 3. _For B norm j=zf on the ¢ross speos A4 ; in order

that ths norm topology of 828

be & cross topolegy, it is necsssery snd

gutficient that we sen f£ind two

pogitive numbors ot D{B Such thaf
ﬂﬁgngdnmaﬂgﬂ (2e &, »eg )ﬁ

azz‘a",ﬁg;rg@sszuuﬂﬂgﬂ (ZzeRE, EeR , T,

Proof. If the norm topolegy of R85 is a eroas toepelegy, than

ws have by the condition 2} in §97 that =i 21, gtz 1 implies
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DG4
eyl g for some o 70 , end bhence i F hmu g 3 and BY thes

copdition 3) in §87 thet Azl = 1, 1®MET, EE noas implies.fcr A0ME

@ Fi 31 ? and hend 2 (% &3l = z Znn i,
0o, l2(E % A nee | { % I = Fw ARl f g«
onwaxselg f & nopm @20 ( Z € R&) aatiefises the indlcated con-
G g s 1 -4

ditiona, then we sos eegily that the norm topolegy satisfles the condi-

¢ions 2) end 3) in §97. Lo the norm topology 2 atanderd, bthe norm

topology 1z by definition & cress topology of R & .

=
A norm 20 on the sross §pace ARS8 is called a grosg norm, i

(3) Nz Il = Ryl (mem, yeb)

{10} |1(E§J]gﬂl%l1liiililﬁ.ll (Z&RS,EEE,%&S),

With this definition, we =288 ezaily that both ths maximum morm and the

MOrS
minimue norm on ths o¢rcess spacs 2 & ars cross NOrma. Purthsr

wa have

In, order that e norm g2 {ZeRB Y be & Ccrogs TOTH

Theorem 4.
1t is nocegzary and sufficient that ws have

BZRprye % B0 & 2 lnan for every z &R B .
(7 ¢&5% ) la a cross norm, then we have by (10}

gn the crosg space RS

Proof. If =l

and {7} for every 2 ¢ K&

HZ i = sup fﬁfﬁlgn TEN awin s
= WEHE, nFUE L
and further by (9) end {6)
’ L
tz4 = inff-:‘.;;a 521. Hat il = :mf 5 o Vgl = W mam .
T
Converssly, 1f uzumm = nzil 5 nznm&& for svery Z € R G, the

we have By (4) and (8] floe gy o=l gl {xeR , we&d ), and DY 7))
1ZCET 5 HElmia FEARGE 5 #ZNRELRE E,

Consequently Nzl (% € £S) is & cross norm ©F definitlion.

$99 Biedjoint modulars

Let. 2 end & be modulared EDAGEE. A bliinear functional o on

the produchk spaea “i‘fﬁ;, 5} 4a sald %o bz modular pounded, 1r
el %€8]

B0 AT IR
W] 0, B fg'm R

With thia defipltion we have

T e

98, §59) COMBIKATION OF HPACES

Theorsm 1.

265
In erder thet o bilinesr functiopal F en_the product

a

peCe (R, $) be modalsr houndsd, 1% im necpszapry and auf‘ficiun‘c that wa

¢an rind two positive numbera o and ¢ such that

o pem, u) __=r+-§-('mrz3+m(3))2’
for svary xz:g and Yés,

Proof. Ir @ 1; modular boundsd, then we can find by definition

% > @ such that

aup ) i
‘m(ﬂ.)cuﬂ m(#J<I ia{ ch:#”’ __,;._‘f T

If 1 <mizi< +a0 , 4= meg) < +oo , then we can £ing positive nusbers
=

% 27 =1 such that miE=m) =4 s ML gY = Then we have by the
modular condision 5) ; mix) Z 1, Trely) z 4

dﬂfc::,zd Wd?(%’n,?‘?)q 1

1T § « mln) < + oo, -mt;.)gt,

:» and hence

B FEy B mimdeecy),

then we can find a Positlve number E o= Aq

guch that wi(Fx)= 1, Then we-hevs ¥ w(=) = 1 , and hence

AR Y= P () m i

| - - mea)?
" a3 2
¢ ¢onalude likewise that <) =1, 1« wiy) <+ 2@ implisa

A

of Gzt £ D
Pl 4) 5 T Fegn .
Therefore we have for every # ¢ foend % &8

t
dgen, gy o4 o4 L (et ey 1™

Convarasl ir 1 2
¥ &l Fex, g ¥+ —ﬁ-(mcx.)apmca)) for every =z ¢ R

and % ¢ § . then we have obvicusiy

”'“5)2?, gy 51 o (=, wle r¥r+2

Recaliling §8% Pheorem 3, we gee ni ones by definitlon thet s bHili.

neap functignal F on tﬁe product space (R, 3) iz modular bounded, if

and only if % i3 nomrm boundsd by the modular norms of F and 8, snd

hence, 1f and only if ¢ belongs to the bisdjoins space B3 of B epd

3 by the norm topelogies for the modulsar norma. Thus the biadjoint

space R § wili be called the

wodular bladjoint space of A end 8
How, putting ‘
(1) WALZ) = s - 33
= &P Ws{zc-x,g)v- tm)e )"} (Z ¢ A8 ),
we shall prove that 7% satisfies the moduler conditions.

It 1z evident by definitlon that
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L o O, ‘
o merene finltlon
Rocsiling Theoresm L wo cbtain lmmediately BY dsfin S

fop any g & we can find o » & such that WA Z) S
o then we have BY definition

- + 5 3 @
1r WY For avary = H

Z) =
LR RER S 7”““3-’*’“@”3

o suary = & B i 'a% 33 and E 8. on the other h@_ﬁd for SOy & R,
for TS SO S =2 7 . -5'. |

uog S ws can i a0 bl ‘DOﬁ_tﬂ.; 5 numbeTs % . E sugh tha i L%;‘; a e g
aind WOE w i kBl LEY T WG z ¥ 1}

, < vo0, end then

e (v WY .
3 (= )1<Min«t§tm+mm33}
LT e in & ¢#, 5)——@? Thas We
bieln B
> G@nazsquently we 0
for avery 4 > 8.
nawd )
=8,
47 Fi {3 F)= 8 for evory ¥ wo implles =z
A >
] el
Furknermere T 080 Prove paslly BY definitlio -
N . Ty, Bg &
¥ ER R d,pud impiies For aYery Zis Za
&t =1, = < ey
‘°fo<":‘77,+@%’g,)éew'r‘i(z;a:u»@m(m,ﬂn,
" - -
FR(E)= eup WLFED
&'} . i (2D i

kg o Llalr e Ol I modaler 4 zall
This m L e (4 & I ,.E&j in D .5 L
Bl ¥ 5! o fa] % spRoe 2 e se wd tha

£oend 8.
§ tha modulers of A
plad] ‘imﬂiﬂ;’?ﬁ?ﬁ&%&t oL

— sz
alng the biadjcint nodular B [,

Conmeary
1y by the aefinision (1) ey .
, Ziw, ) E MeEY '“‘f'r»”‘(-:r.)«:»rwug;)) {m &R,
- norm M
£ the modular !
Z % be the bladjolnt norm O
Let REU ( Z € 8 ) ‘

{zeR) and HYH {gcs 1, that 1a;

NE = zup |2 ¢x, gl
winlg e, wLS) S g.. 2)
Then, we heve ob¥lously by the formule i
| (3) s¢Er=s i impliss HZINS 3.

O e 27 d i Thes L
the otnar hand, we have plready p‘x‘aﬁ ed in Fr ool o GOTE L
5L

op wtig) >t
.

chai REN g 1 implles for i) |

= % +M{"d}3
i, 41 & —“‘ (o i®D
jumplies

HENg t
Thus we obtein by the definitien (1) that %

P Eem g)_i ICNTIE amgﬂ)g}
0 i
AR ww‘em&ag?’ﬁ?ﬁ}%i 2

(E & RE& ), we have obvlonse

§98, §100) COMBINATION OF SPACES 26%
Therelors ws have

(4) i

bl

= 1 impliea M E ) = 4,

By virtue of the rsletions {3) and (4), we conclude that the modulan
topology of £5 woincides with the norm topology of=H& by the piadjoint
norm for the medular porms of & and S . Therefore we have by Theorsm
6 tn §85

Theorem 2. The bisdjelnt modular of the modulars of # and £ is

somplete, and ths moduler topology of the modular bladjoint apace ® £

goinecides with the bledloint topclogy of the modulsr topologisz of g and
F. '

Reealling §81 Theorem 3, we obtain by (3) end (4} relatlon of the hi-

adjolint norn end the modular norm of & 4

{5) MZW s HZ0 £ 3 W7 (ZeRs),
For the sssosisted norma NEZN (X ek} and ﬂg!;'ﬂ (gf ¢®% ), we have

obylously by definition

()  kEFf= uman‘g«' (e, 5 el
for the modular adjoint spacss R
&% w

For svery £ ¢ £ and 3}" we have by definition

L

L]

g} = 3up

G, ye i i ﬁ{x}g{ﬁé@}mi- (mfz)%«m{?j):&@

W,

iy RP ye ‘{ €FCR) = wmnd 3 mé@‘)-& chgsjvw{wfz) zvng;yf%
T 1= x) e w1
Accordingly we have

ilA

o U E T Eed
(7) FUTG) £ + {m 2+ m ot (FeR, Fe8)
Prom {5), {6) we conelude immedimtely by §BZ Theorem L

MW g 1%y iglg #MZTumyH,

ﬁmﬁgm Z NEd &lgﬂ Z HEM !I[J,ﬁﬂ

Therefore we ebtaln by §8L Theorem ¢ for every E € R, Je [

(8)  FuZamim oz mEIH s RENUZN G AMEMNTN,

$100 {ress medulara

Let P ead 3 be modulered spaces. We can define a modulsr en ths
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erops ApR0e RS 8 tho @.d.joint woduler of the biaﬂjoint modular &R LF)
(% ¢ A% ) for the modulsr bisdjolnt space R S . This modular on the

ercas space R 8 ia ealled the etrong meduddr of

R &L, and denoted by

s , thet is,

WL = 3 Z(Z)=®mLE
_ alZ) ze-%’s{ (2)-MmLEog (% ¢ RE)
for the bledjoint moduleaer
LT )= . Zz -a . 4 5 =&
L) xsa?{l:g.es {.zfz,gJ 7 (mix) emig))*} {Z e R3),

A R, y)s mCE )+ i (mem) +meg), we obteln Lmmediately

(1) e lnY) =

{mcx)+ mc;.)j- (steR, g2e8),

Furtnemra, recakling the fomu,la §¢9{7), we have
WL 2 zcxﬁ)‘--;g-{;ﬁ

Ma(2)z Z(EF)- ¢R)+FmE S

that 1s,
{2) ZCRG) g Mal®) + g {mcx)+m(§35
We shall demote by Mz m, (2 ¢ RS ) the moduler narm for %he
strong modular L, - Then Wz gi, HEM 1. NIz 1 :mel.ies
!‘ZCEE 3} = 4 , veceuss we have ma(z)5 !, RIS, gy s by

§B8L Theorem 4. Theyefore we. gconclude

{3) azcxaui ZMzW, MEMNT N (zeRS, TeR, 7e8),

This relation ylelds by the formula §83(4) and §83 Theorsm 1

MEWMBYN £ 2 Nayt,,

On the other hand, if MM g 1, myw g 1, then we have am,(xy) = 4

by (1), and hence -m‘@(--:r.;g)-e. ——m,,(x;,r,)s.—. i. Thus we obtain

1
i
7 Mxgu, s Waumym

2
by §81 Thsoram 4. Consequently we have

(4) -—ﬁ“iil“il}ﬂl< Mz gMa s 2 Wz wmyt (xeR, yed),
By virtue of Theorems 4 and 5 in §96, we see thal the cross space
R 8 may be conaidered es s subspace of the biagsoolated space of the
product spase ( A B g). Thua we can define & modulsr cn RS aa the
‘Diadjoint modulsr of the adjoint modulars # (X ) (EeR) and % CEE 2
(5 € g Yo This modnler on the cross space RS 13 callsd the weak

modular of RS and demoted by me(z) { 2 € RS ), that is,

(ZeR, 5§,

§100) COMBINATION 0® SPACES PHER
15 e (P ) = - ,,,.,
{5) e R} = m"“ﬁp%ﬁfzm‘*?? (FAEy+ TN}
With thisz definition we. have obvlously
(&) Z(RFY g Map(2) e g {55 (X)) 4 MOGIPT (FeE, FeF),

Recallirg the formala $99(7), we obtain furthermors

(7} Thar (R4 F %{Mm”m‘:}’i& (xR, yged).
Denoting by Iz M, (2 ¢RS ) the modular norm for the wesk mo-

dular ., , e have by the fomul& §09{5)

(8) BZR e % BEH £ 3 M2 Mg, (RERS)
for the blad]oint norm
HEZH = sup jz(ﬁs&‘w‘)g_—; sup TZC‘E?’)!.

MEBS{, 60 F g
Consequently we have

R}, MmeEIE 1

(9} 2 (RGOl 2 3 Mzl MEMBEIN, (zeRS, TeR,FeF),

Furthermore we obbeln by ths forouls §99(8)
{10} %wmmfﬁ&m Wy s S g (e, ;espv
By virtue of Thacrsms 1 =pd £ ip §27, we obialn by dsfinition

Theoram L. The modular topelogy of the eroas space R & by the

gtrong modular v, 18 the strongest oross htopology, and thab by the weak

modular wmt,, 18 the weaksai erposa topology.

A modular e on the crosa spece R & 1s called & crogs modular, if

{31) m(ﬁg)é%{m(x)—a»m{g,)%ﬂ* for weR, yek,
(el zeRP gz v pime+ RGO ror 21ers, ReR, Feb,
wWith thla definition we ase et once that both the strong modular

and the wealk modular are cross modulers. We pan prove further

Theorem 2. In order that a modular r'm, On Lthe cross apace £ 5

be a8 cross moduier, 1% 1s necossary snd sufficient that we have

for every z € R'§

for the atrong wodulsr i, aznd the weelk moduler e, on A 5,

Mo (L) 2 M(Z) s m,(2)

Preof., If #ty 42 & ercss modular on the cross space R 3 , then
e Pd
for ahy elemsnt Z of the biassocliated space RS we nave by (11}

sup P E(m; gt = sup P Eeaaf,
gl migrs 1 (2} &

Thue we g@e by definition that the wmodular adjoint spacs R Sw'i of RS
¥y

by the modular i, ia contained in the biadjoint space RS o (R, 81,

2
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Fe ARG : by (11)
For the adjoint moduler i, (%)} {(ZerS ) of -t 4, wa have DY {

FA, (Z ) = aup {fz’(z)—mitz)}
RER S . 2?
= 8% Z(x I TN ES BT D P LA
"’xenp,;;-&s-i :J 3 ?

and hence we obtailn by the definition §209(1)
— ——o ¥l
L, (E}z @ (E) for every % € RS

for the bladjoint moduler # of & smd 8 . Accordingly we have

by §80 Theorsm B for every =Z ¢ R 8
LY = sup___ T gx)— g (EI}
g L ﬁ@pﬁsm’iz Pl

sup__ {Elz) — T (ZTI} = ma(Z).

Te f8
Recslling ths defimition {5), we obtain furthermore 0¥ {12}

WA

w L, {R) 2 8U — e LR ) L )]'?-"‘...MW(?L)
for every Z & RSq

Conversely, for a modular “m, on the cross space R § , 1f

mw(z)gm,(z)gmA(z) for every Z &R 3,

then we have by the formuler {1) for every it ¢ R and y_.e s
"y g ™y (%Y £ %{MCmJ-a_:mcg)}f, _

and furthermore by the formula {6) for every T ¢R and 4 € Ey

Z(XY) g PLLR) +%{ﬁ(i}+€ﬁc'§)tz,

Therefore wh, 18 @ cross modular on the cross spece

® & by definition.

2T
HOTE X

Definition of linesr bopologles

Linssyp topologies were defimed first by Xolmegoroff as follows.
Let R be a linesr spacae. A topology f on B 1s sald to be a linear
topology on R , if

1) the operation T4y ”{ T, 4 €R ) 1s contimous by Y , that is,

for sny ¢ , feR 2nd a+f € TeY, we can fing a2 e F Y, and

zgé’W&“Isuchthat FxW < T,

2) the operatlon ;’x- (2 &R } 1a contimuous by the number topo=

logy and ‘Y, that is, for sn¥ & € & and resl number of, 1F o &%Ue’j’)

then we can find & ¢ ¥eé7J snd £ >0 such thet

Ex e for weW, (8—olj<é,

Let ¥ be a linear topology.-on R 4in this sensa. Prom the con

dition 1} we coneluds the% for avery & &8 ., the transformatlon
OL(n) = 3 - q

from R te R itself is contimuous by ¥, and hence £€¥ iaplies 4+a &Y
for every o ¢ K., From the conditlon 2) we conclude Likewise that
As T imiiss e e for every real number of o g . Furthermore we
see by &) thet for any pe 4 ¢ 7 and Aef , 23 fa =&, we can Tind £ 50
such thot §2¢ 4 ror I8]< &, and that for sny ¢¢ f¢°7 ws can find € »o
and £ £ B €7 such that EEB < 4 for 1El=s 1. Finally we aee by L) that
for any se A ¢ we can £ind oe B £ such thet B x B ¢ .4 . Therefore
there exlsts uniquely by §54 Theorem 8 a linsar topology 42 in the senss
of the text sueh that the induced topolegy by 4? coincides with 7§ .

Conversely it is obvious by definition that for a linear topology &7
in the senss of ths text, the induced topology "f?by %? satisfies the con-
ditions 1} and 2. + The definition of linear topologles in the text ia

due tc von Weumsann,
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HOTE I

Linesr quagl-metrics

4 queal-metric m(Z, ;) (?ﬂ,‘;} €A ) on & llnesr space K ia zald to

be a linear guaali-metrie, if

o

1) for any § »o we cam find & > ¢ such thet €, 33 = §

implies wm (z+Z, g,-'rz) = £ for every &%, ’2}( , TEe R,

2} gl am {@y,0) =0 iE}Pli@S Mo w (Fa,, o) =0 for every

reel number ¥,

3) Mm ol =¢ 1mplies Jim w (o, x, p)=o for every X R,

With this definitlon 1t is obvious that ths Induced guasi-metrie by
a guasi-norm ig a2 linear quasi-metric. How let e C'x,,g) (=, gf- eR)
be 2 linear gquasi-mefric ln the sequael.

From the condition 1) we ponclude that bl-;jép%am(a”’ £, =90 1mpiles

B.E,gﬂm‘?ﬂ A e, $nrad =0 for esvery % &R,

)

Therefore we obbain by 3) that lim &, = o 1mplies
. b = oy

Llm e (ef, &, i) =& for every ¥ e &,

. Yo
-and hence, from the reiabion
Lot oy, 0) — mt (ot ®, 00| =5 » Colpm, ol ),
we conclude thet }Enm o, = ol lmpllies
B}Egsmm (et X, 0) = »t{ct 3, &) for every xe R,
that 18, m{Ex, 0} is e continuéua function of ¥ for every # € R .
For en srbitrary & »dJ , pubiing

F(E)= Inf w(wm,0) for ¥ w0,
wlfr) = §
we have obvloualy

PLEY = inf ’m(—%zj g) for T -8,

wely,0) > £
As Wf,[é.x , ¢) 1s a continuous functiom of £ >0 for every T € R,
4¢%) 1s upper seml-continuous for § 0, Thus there exlsts s con=

tinucus point §, 70 of &, For such io , we have ¥(¥,) »0 by

the conditipn’2), and hence For a positive number § < ffcgajswe cen find
$’% 0 =ueh that 1% ~-%5,1=8 iwplies ¥(§)>4§, For such 4 and &
1f V!l =5’ “m(%,0) € § , then we have naturally

]
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end hence we obbtaln

MY+ §,0%, 0) =, " {F,m, 0) =g

For any £’ »p we can find by the condition L) £ » ¢ such that
LS DF - implies m(z:nrzjg«;- z,)<_2?_£/_
For such £ » 9 we obtaln thus
MLPE, )5 MIT+EIR, [x) + w ((+ 5,07, 0) = £ + tes,

Therefors we tonclude that fop any £ ¢ we can find 5 > ¢ end §'> ¢

‘such thet i5{=< & , m(x,0)= ¢’ implies mEx, 0) < §,

Now, putting
Vg=1{n: mcx,0 = s} (& >0),
we 8¢¢ emslly by 3) that every U‘s (£ >0 ) iz a vieinity in R, end 1t
is obvious that wse have
Ty Uyr = Ty for S =1Mnd{g, g},
For any £ >0 , we can Mnd § ¢ and & "~ ¢ such that
U5« Ty for [¥lx &,
a® proved just above, Furthermore for eny £ » ¢ we can fing by 1)
. ; - i ;
a pesitive number § <4 & such thet =2 (=, Py < 4 implies

M('X;-&K:%e{-z) -

o

g Tor every =, 4, = ¢ R,
and hence ws have that mefe, 0} =§, i, @) =§ implies

wWla+$,0) =< mlatf, £) +med, o) = %5*5‘ = &,
thet is, Vg x ¥y < Tg,

Therefors, by virtue of §55 Theorem 3 there exlsts uniquaely a linsar
topology 4~ on R , sueh that Te (£ >0 ) 18 a beais of 49, Such a
linear topology ‘?P 1s obviously sequentiael, and we see ¢28ily by 1) that
the induced uniformlty by 4> coincides with the induced uniformity By the .
quasi-mstrie we(z, ¥) {2, ‘? eR). '



BOTE TI1X
{C) epaces
Lat S be a topological epsee. The totality of bounded conti-
nuous functlons on S5 constitutes gbviously a lineer space. This ii-
near space is called a (¢) space. We can introduce into the (C) aspace

o on a topologlcal space S5 a norm 'DN'.
e i == Xaﬁu% bepemal (.‘Pécj'
Then we see eaally that (¢ L3 a complete normed space by this norm.

Let A be a normed gpace and B the adjoint spacs of B . By vitue
of §72 Theorem 5, the unit sphere TF of ﬁ ia weakly ccupact, and we havs
by the formla §72 (3}

HzZp = sup | E ¢l for every xe& g,
& T
Furthermore, it is cbvious by definition that for every = € £ , putting
Fe(E)= X lr} {RedF),
we obtain a continuous functicon ‘f’%' on the unit sphers IF by the weak
topology and '
-Cfuﬁrzﬁxﬂ;, = o o '*’f P . ror YeTy *, H € R

4]
ol = zuD 5@ £F 3 for every mef.
e
Therefore we can state that for eny nermed apace R, there is a2 com-
pact topologlesl space T such that R is isometric to z linear manifold

wf the {C) space on T as a normed apacs.

HOTE IV

Inegualities

Yie have smployed seversl inequalities wibthout prool in §82 and §00,

Wow. we ghall prove them in the sequal.

gi .

£ for & »¢, - .# ias a convex funmction of
d-ﬁz( /Zeg ) zo i ‘i?ji
% 7 0, and hence —%—t’n@-—:i, P g

AR AES ATERE S0 S EE A 22

Asa
1, §.,% »0 lmplies

i
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that is, F £ o %;f z EE 7a, Therafors we obtein Young's ineguallty
i1 s gite gt
»
Tor £,7 zo0, -E;.-rné»_'fig pef oz i
For positive measurable functions = (¢ ) and _;J,(wﬁ"i (o= 251,
putting 1
1 b L
_ i, 1P !
_{J(ﬁ xeeyfde P, P‘—"{i (3}6—5:)?4{%]2?4
we abtaein by the Young's ineguality
L L) Ned) = e (o ?zﬁfe»))P+ .l (= (f“)?
ot p & = 3 (= ¢ E e,
end hence
_.L i 1 d : t {
g jﬂ rie) p(eldi = -}9—-{—-’?‘ =1,
Therefore we obtaln Hblder's ineguality
. K
£ s oy 8 1
o J ot geards = {j x ) P {j’ geerd |
rrogtgel, pgz
Putting
P50 =c5e) v (s ter ¥zyza,
we hawve
; - 2 - -
YLD = S rame plosent ez o)
ks » a‘ . - Pea
T lL D= 5 G, = plp-nd oyt gyl
Thus, if P & 4 , then we have
Cf?gq(gﬂr');__g@ ' for e¥sry ’;g’g‘—agg
Therefore we have for s e zo
. (JP%(E ?)gf(g,ﬂ):fz_?%?”a
and hence & (y, 1)~ $p, 1z 2 EP" 2’;{%@‘ hs p z £ , we obiain
FELY) QgF’,,L(gP_-z)Yﬁ’ z2cgfaenly,
that is, we have
vt e l-if 2 2 e PhigPy o pzaz,
From this relstlon we conclude
g1F ¥ zan P £ P
; > ],__:__,2 ] +j—m=-~z | for pg &,

It 1s well known:

oo .
—0)eos {pope
(1+>;)P=% AISDIIERS S22, for %)<,
Ir 4 = P-(,,‘Z, then, putting of, r_ﬁ;
o, = BPot) .. (povii]

o (r=1, 2,...},
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we have obviouasly

oy, >0, Algy py o @ for k=@, L, ,cces

and hene for ¢ £ § = { .
z 2
(14"%)?“@“61*‘%)?3:%!%0(&”%&“§Z+PCF_1)§ .

Therefore we obtain for g peg , 1¥! 2 171

15+ wiPe ig -y z 2a15iP+ pep-0) 1y P ™

From thiz relatiion we cemclude for ts p=l

IR §§+W§P+ Plp-1) | £ '”‘-'Pj i-1)”

2 = Z 2 RV Z
As ’dd.:f‘w‘fpﬂ-—-: F(F-!)'é'?_&.-i’-”ﬂ for p»i1, £ 20, ‘ﬁ'P(P;;?)

iz 2z gonvex funcilon of + Z & , and hence we have

i = § B

w2 Pz (g2 5

= . - oG f
for svery finite number off 5 >0 (=1, 8,...,1¢), Putting p = =
in this inequality, we obtaln immediately

3
L E s P iF o2 {d 2 o1 & »
e Z 180017 245 2 a7 for p»& >0,

2%7
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