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Introduction

The Feynman-Kac formula represents one of the most elegant and profound bridges between the fields of
deterministic analysis and probabilistic theory. At its core, the formula connects certain partial differential
equations (PDEs) with expectations over stochastic processes—most notably, Brownian motion. Its
historical development is deeply rooted in the evolution of both quantum mechanics and probability
theory in the 20th century, reflecting the interplay between physics and mathematics.

The story begins with Richard Feynman, a theoretical physicist who, in the 1940s, introduced a
new formulation of quantum mechanics known as the path integral formulation. In contrast to the
operator-based approaches of Schrödinger and Heisenberg, Feynman’s formulation described the evolution
of quantum systems as an infinite sum (integral) over all possible classical paths a particle could take.
Each path was weighted by a complex exponential involving the classical action functional. Though
conceptually revolutionary, this method was formal and lacked rigorous mathematical underpinnings,
particularly because path integrals, as envisioned by Feynman, were difficult to define within conventional
mathematical frameworks.

Meanwhile, in the realm of mathematics, Mark Kac, a prominent figure in probability theory, was
exploring the connections between stochastic processes and differential equations. In 1949, Kac devel-
oped a method to interpret certain path integrals probabilistically. He observed that expectations over
Brownian motion—random continuous paths—could provide a rigorous foundation for expressions re-
sembling Feynman’s formal integrals, at least in the context of diffusion-type problems. His results led
to a probabilistic representation of the solution to certain linear parabolic partial differential equations,
now famously known as the Feynman-Kac formula.The significance of the Feynman-Kac formula extends
far beyond its original motivations. In mathematical physics, it provided a bridge between quantum
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mechanics and diffusion processes. In mathematical finance, it became central to the pricing of financial
derivatives, where asset prices are modeled by stochastic differential equations and option pricing prob-
lems are reduced to solving PDEs. In control theory and statistical mechanics, the formula helped unify
diverse methods of analysis.

Over the decades, the formula has inspired numerous extensions and generalizations. These include
versions involving stochastic differential equations with jumps (e.g., Lévy processes), infinite-dimensional
systems such as those arising in quantum field theory, and nonlinear analogues appearing in the study of
backward stochastic differential equations (BSDEs). Nonetheless, the original idea remains both concep-
tually and practically important: that solutions to PDEs can often be interpreted as expectations over
random paths.

Thus, the Feynman-Kac formula is not merely a technical tool, but a conceptual synthesis of ideas
from physics, probability, and analysis. It illustrates how probabilistic methods can provide deep insight
into deterministic problems and vice versa—a theme that has become increasingly important in modern
applied mathematics.

1 Physical interpretation

1.1 Time evolution operator and the titular formula

This section is mainly based on [1]. Let H = −∆+V be the quantum Hamiltonian, where V is a potential
and −∆ is the Laplacian. Let us assume that V ∈ L2(R)+L∞(R), that is, V can be written as a sum of
a square-integrable function and a bounded function (it is not essential to understand the equation, but
it is important in the proof). The solution for the Schrödinger equation for such Hamiltonian is equal to:

ψ = e−it(−∆+V )ψ0.

Everything’s great, but what actually is e−it(−∆+V )? Here comes the ”Feynman-Kac” formula:

Theorem 1 [Feynman-Kac formula no. 1]: Let H = −∆+ V be defined as above. Then:

(e−itHψ)(x0) = lim
n→∞

∫
R3

. . .

∫
R3

eiSn(x0,...,xn,t)ψ(xn)dxn . . . dx1, (1)

where:

Sn(x0, x1 . . . xn−1, xn, t) =

n∑
i=1

t

n

[
1

4

(
|xi − xi−1|

t/n

)2

− V (xi)

]
.

Looks quite confusing, but it has a meaningful physical interpretation, which we’ll discuss next.

1.2 Physics behind it – path integrals

Let the particle with mass m move along the curve γ : I −→ R3. From Lagrangian mechanics we know
we can define the action to be:

S =

∫ t

0

(m
2
|γ̇(t)|2 − V (γ(t))

)
dt.

Briefly speaking, the particle chooses the path that extremalizes the action. Let m = 1
2 . If we assume

that the particle moves along the path that consists of finitely many straight lines, and on each of them
the velocity is constant and the particle spends equal amount of time on every one of them, the action is
described by:

S =

n∑
i=1

1

4

(
t

n

)(
|xi − xi−1|

t/n

)2

−
∫ t

0

V (γ(t))dt.
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Figure 1: Path of the particle

Therefore, if we approximate the potential, we get:

S =

n∑
i=1

t

n

[
1

4

(
|xi − xi−1|

t/n

)2

− V (xi)

]
.

This formula is exactly the same as S(x0, x1, . . . , xn, t). Thus, we can say that the integral∫
R3

. . .

∫
R3

eiSn(x0,...,xn,t)ψ(xn)dxn . . . dx1

corresponds to taking the integral of eiSnψ along all possible polygonal paths.
There exists an amazing interpretation of this equation. To obtain it, first one has to define the

kernel of an operator.

Definition We say that K (t, t′;x, x′) is a kernel of e−i(t−t
′)H if:

(e−i(t−t
′)Hψ)(x) =

∫
R

K (x, x′; t, t′)ψ(x′)dx′ .

From now on we will denote K (t, x, x′) ≡ K (t, 0;x, x′). Because e−i(t1+t2)H = e−it1He−it2H , we get
that

(e−i(t1+t2)Hψ)(x) = e−it1H
(∫

R3

K (t2, x, x
′)ψ(x′)dx′

)
=

∫
R3

∫
R3

K (t1, x, x
′′)K (t2, x

′′, x′)ψ(x′)dx′dx′′

and on the other hand

(e−i(t1+t2)Hψ)(x) =

∫
R3

K (t1 + t2, x, x
′)ψ(x′)dx′,

therefore

K (t1 + t2, x, x
′) =

∫
R3

K (t1, x, x
′′)K (t2, x

′′, x′)dx′′.

Analogously, it is easy to show that

K (t, x0, xn+1) =

∫
R3

. . .

∫
R3

n+1∏
j=i

K (tj − tj−1, xj−1, xj)dxn . . . dx1, (2)

where t0 = 0, tn+1 = t and 0 < t1 < . . . < tn < t.
From this property, we can conclude that eiSn behaves like a kernel of time evolution. The kernel can

be interpreted as a weight that tells us how important each of the previous positions of a state is. The
stationary action principle suggests that a kernel should be larger for points near the stationary action
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curve and smaller for points far from it. So maybe we can take all the curves and assign a proper weight
for each of them? eiSn is a great candidate for this! The Feynman’s idea was that

K (t, x0, x) ∼
∫
Γx0

eiS(γ)/ℏdγ,

where Γx0 is the set of all curves that start at x0. We have added ℏ to the equation to give the
Hamiltonian the proper unit (ℏ is present in the Schrödinger equation but it was neglected previously to
shorten the equations). ℏ is extremely small compared to other quantities, so any path that diverge from
the stationary path is canceled by the path that is really close to it because eiS/ℏ changes rapidly. If the
curve is close to the stationary path though the phase factor is negligible and the factors are adding up
instead of canceling. This is exactly what we wanted! It also gives us a powerful intuition: the particle
is moving along all possible curves but only those that are close to the stationary path are interfering
constructively and the rest of them cancel each other out.

Unfortunately, the equation above isn’t well defined and there are some other problems. Luckily, there
exist very similar formula where the ’i’ is missing. In this case we get:

Theorem 2 [Feynman-Kac formula no. 2]
Let Γ(0, t;x) be a set of all curves that begin at x for t = 0. Then

(e−tHψ)(x) =

∫
Γ(0,t;x)

e−
∫ t
0
V (γ(s))dsψ(γ(t)) dW t

x(γ),

where W t
x is the Wiener measure defined in the next section.

2 Functional approach to the Wiener measure

In this section we’ll define W t
x,x′ and study the consequences.

2.1 Solving the heat equation

Let u(x, t) be a temperature function. Heat equation tells us that for some κ ≥ 0

∂tu+ κ∆u = 0.

There are multiple ways to derive it. We’ll do so by assuming

ϕ(x, t) = −k∇u(x, t)

for some k, where ϕ is the heat flux. Assuming that heat is proportional to temperature, we have∫
∂V

(ϕ|n̂) = ν

∫
V

∂tu ,

for some ν. However ∫
∂V

(ϕ|n̂) =
∫
V

divϕ,

so we get that
divϕ− ν∂tu = 0 .

By substituting the expression for ϕ we obtain the heat equation. We will find a solution for it. Without
loss of generality κ = 1

2 . Let u0 := u(·, 0). We can see that this equation is analogous to the Schrödinger
equation (but without i). We can write a solution as

u(·, t) = e−tH0u0,

where H0 = − 1
2∆. Now we’d like to find a way to write the solution in a more meaningful way (because

right now it tells us nothing). To do so, we’ll define a kernel of the operator

Definition 1 Let R ∋ t 7−→ U(t) ∈ B(L2(R3)) be a group homomorphism. Then we say that K (t, ·, ·)
is a kernel of U(t) if ∀ψ∈L2(R) ∀t,x∈R

(U(t)ψ)(x) =

∫
R3

K (t, x, x′)ψ(x′)dx′
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and denote:
ker(U(t)) := K (t, ·, ·) .

Now let us find ker(e−tH0). We will denote the unitary Fourier transform by F . Using its elementary
properties one can check that

−∆ = F−1p2F ,

where p2 - multiplication by ∥p∥2. Therefore we have:

(e−tH0ψ)(x) =

(
F−1 exp

[
−tp2

2

]
Fψ
)
(x) =

=
1

(2π)3

∫
R3×R3

eip·(x−x
′)e−t

∥p∥2
2 ψ(x′)dp dx′ =

1

(2π)3

∫
R3

(∫
R3

e−t
∥p∥2

2 +ip·(x−x′)dp

)
ψ(x′) dx′ =

1

(2π)3

∫
R3

(∫
R3

e
− t

2

∥∥∥p−i x−x′
t

∥∥∥2

dp

)
e−

1
2t∥x−x

′∥2

ψ(x′)dx′ .

It is then straightforward to show that:∫
R3

e
− t

2

∥∥∥p−i x−x′
t

∥∥∥2

dp =

∫
R3

e−
t
2∥p∥

2

dp =

(
2π

t

)3/2

,

and because of it

(e−tH0ψ)(x) =
1

(2πt)3/2

∫
R3

e−
1
2t∥x−x

′∥2

ψ(x′)dx′ ,

and thus finally we get

ker(e−tH0)(x, x′) =

(
1

2πt

)3/2

e−
1
2t∥x−x

′∥2

.

2.2 Wiener measure (Heuristically)

Before we start, we have to understand what we want to achieve. From the previous subsection we know
that

(e−tH0ψ)(x) =

∫
R3

K (t, x, x′)ψ(x′)dx′ ,

where K (t, x, x′) = ker(e−tH0)(x, x′) = (2πt)−3/2 exp

(
−∥x−x′∥2

2t

)
. We strive to construct a measure

with the following interpretation: the value of ψ in x after time t is ’a weighted average’ of values of ψ
on each curve that start at this point. Moreover, the weight should be determined by K (t, ·) from the
previous equation. One could write it as

(e−tH0ψ)(x) =

∫
’curves staring at x’

ψ(ω(t)) dω .

The hint is given by the following property

K (t, x0, xn+1) =

∫
R3

. . .

∫
R3

n+1∏
j=i

K (tj − tj−1, xj−1, xj)dxn . . . dx1 , (3)

where t0 = 0, tn+1 = t and 0 < t1 < . . . < tn < t. One can prove it analogously to the proof in the first
section. Additionally, it is easy to check that∫

R3

K (t, x, x′)dx′ = 1 .

Now let us denote a set of all curves [0, t] ∋ t 7−→ γ(t) ∈ R3 such that γ(0) = x by Γ(0, t;x). We can
define a measure on this set as follows

Definition 2 Let

C(t1, t2, . . . , tn, I1, . . . , In) :=
{
γ ∈ Γ(0, t;x) | ∀i∈{1,...n} γ(ti) ∈ Ii

}
5



and
C =

{
C(t1, . . . , tn, I1, . . . , In) | n ∈ N, 0 < t1 < . . . < tn < t and ∀i∈{1,...n} Ii ⊆ R3

}
;

we define

wtx : C ∋ C(t1, t2, . . . , tn, I1, . . . , In) 7−→
∫
I1

. . .

∫
In

n∏
j=i

K (tj − tj−1, xj−1, xj)dxn . . . dx1 ,

where x0 = x.

It is possible to extend wtx to all Borel sets, such that the extension will be a measure.

Theorem 2 There exists an unique extension of measure wtx to all Borel sets of Γ

W t
x : β(Γ(0, t;x)) −→ R+ .

This measure is called Wiener measure or Wiener conditional measure.

The theorem is left without a proof, however we’ll discuss how one can approach it later on in this section.
First of all, let us see what are the properties of this measure.

Properties of W t
x

1.
∫
Γ(0,t;x)

dW t
x(γ) = 1 ,

2.
∫
Γ(0,t;x)

f(γ(t)) dW t
x(γ) =

∫
R3 f(x

′)K (t, x, x′)dx′ ,

3. For 0 < t1 < . . . < tn < t

∫
Γ(0,t;x)

F (γ(t1), . . . , γ(tn)) dW
t
x(γ) =

=

∫
(R3)×n

F (x1, . . . , xn)K (t1, x, x1)K (t2 − t1, x1, x2) . . .K (t− tn, xn−1, xn)dx1 . . . dxn .

Proof [Sketch]

1. ∫
Γ(0,t;x)

dW t
x =W t

x(Γ(0, t;x)) =

∫
R3

K (t, x, x′) dx′ = 1

2. We will show it for a simple function f(x) =
∑k
j=1 cjχAj

(x), where Aj ⊆ R3 and cj ∈ C. We have

∫
Γ(0,t;x)

f(γ(t)) dW t
x(γ) =

k∑
j=1

cj

∫
Γ(0,t;x)

χAj
(γ(t)) dW t

x(γ) =

k∑
j=1

cj

∫
C(t,Aj)

dW t
x(γ) =

=

k∑
j=1

cj

∫
Aj

K (t, x, x′)dx′ =

∫
R3

 k∑
j=1

cjχAj (x
′)

K (t, x, x′)dx′ =

∫
R⊯
f(x′)K (t, x, x′)dx′ .

One can conclude that it should follow for the wider families of functions by approximating them by
simple functions.

3. It can be shown analogously to 2. (One can take f(x1, . . . , xn) =
∑k1
j1

· · ·
∑kn
jn

(∏n
s=1 cjsχAjs

(xs)
)
.

□

Equipped with this measure we can prove Theorem 2. Before we do it, we need just one more thing.
According to the first Feynman-Kac formula, we have that:

(
e−tHψ

)
(x) = lim

m→∞

∫
R3

. . .

∫
R3

exp

− t

m

m∑
j=1

V (xj)

ψ(xm)K

(
t

m
, x, x1

)
K

(
t

m
, x1, x2

)
. . .

. . .K

(
t

m
, xm−1, xm

)
dx1 . . . dxn (4)
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Now we are ready for the proof:

Proof of Theorem 2:
We will prove the theorem assuming V is continuous and has compact support. Using (4) and the 3rd
property for

F (x1, . . . , xm) = exp

− t

m

m∑
j=1

V (xj)

ψ(xm)

we get that: (
e−tHψ

)
(x) =

∫
Γ(0,t;x)

exp

− t

m

m∑
j=1

V

(
γ

(
jt

m

))ψ(γ(t)) dW t
x(γ) .

For continuous functions with a compact support, the Riemann sums are converging to the integrals, so:

lim
m→∞

− t

m

m∑
j=1

V

(
γ

(
jt

m

)) =

∫ t

0

V (γ(s)) ds .

Additionally, exp is continuous, so almost everywhere:

lim
m→∞

exp

− t

m

m∑
j=1

V

(
γ

(
jt

m

))ψ(γ(t))
 = e

∫ t
0
V (γ(s)) dsψ(γ(t)) .

Now because:

exp

− t

m

m∑
j=1

V

(
γ

(
jt

m

))ψ(γ(t)) ≤ e∥V ∥∞tψ(γ(t)) ,

we get ∫
Γ(0,t;x)

e∥V ∥∞tψ(γ(t)) dW t
x(γ) ≤ e∥V ∥∞t

∫
R3

K (t, x, x′)ψ(x′) dx′ <∞ ,

and finally, the Dominated Convergence Theorem yields:(
e−tHψ

)
(x) =

∫
Γ(0,t;x)

exp

(∫ t

0

V (γ(s)) ds

)
ψ(γ(t)) dW t

x(γ)

□

3 Trotter product formula

3.1 Lie product formula

To make our way into understanding the Trotter product formula easier, it will be helpful to consider the
proof of Lie product formula, which is essentially the same equation - but instead of operators we will be
working with finite matrices A and B.
Lie product formula:

exp(A+B) = lim
n→∞

[
exp

(
A

n

)
exp

(
B

n

)]n
(5)

Proof:
Let Sn := exp

[
1
n (A+B)

]
, Tn := exp

(
A
n

)
exp

(
B
n

)
, using identity: an − bn =

∑n−1
m am(a − b)bn−1−m

(which is true for numbers, as well as matricies and operators, since it does not mess with the multipli-
cation order, and can be easily proven using a straightforward induction argument),
we can write:

∥Snn − Tnn ∥ =
∥∥∥∑n−1

m=0 S
m
n (Sn − Tn)T

n−1−m
n

∥∥∥ ≤ ∥Sn − Tn∥ ·
∥∥∥∑n−1

m+0 S
m
n T

n−1−m
n

∥∥∥ ≤
≤ ∥Sn − Tn∥ · n · (max {∥Tn∥ , ∥Sn∥})n−1

(6)

If the last inequality is confusing, one may consider the following argument, which can be easily under-
stood by introducing a new matrix Mn, defined as such: ∥Mn∥ = max {∥Tn∥ , ∥Sn∥}:∥∥∥∥∥

n−1∑
m=0

Smn T
n−1−m
n

∥∥∥∥∥ ≤
∥∥nMn−1

n

∥∥ = n
∥∥Mn−1

n

∥∥ ≤ n ∥Mn∥n−1 ≡ n (max {∥Tn∥ , ∥Sn∥})n−1
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Now, knowing from where last term in 6 came, let us have a look at what we can do with it:

• for ∥Sn∥ ≤ ∥Tn∥:

(max {∥Tn∥ , ∥Sn∥})n−1
= ∥Tn∥n−1

=

∥∥∥∥exp(An
)
exp

(
B

n

)∥∥∥∥n−1

≤
[∥∥∥∥exp(An

)∥∥∥∥ · ∥∥∥∥exp(Bn
)∥∥∥∥]n−1

≤

≤
[
exp

(
n− 1

n
∥A∥

)
· exp

(
n− 1

n
∥B∥

)]
≤ [exp (∥A∥) · exp (∥B∥)]

• for ∥Sn∥ ≥ ∥Tn∥:

(max {∥Tn∥ , ∥Sn∥})n−1
= ∥Sn∥n−1

=

∥∥∥∥exp [ 1n (A+B)

]∥∥∥∥ =

∥∥∥∥∥
∞∑
m=0

1

nm
(A+B)m

m!

∥∥∥∥∥
n−1

≤

≤

[ ∞∑
m=0

1

nm
∥(A+B)∥m

m!

]n−1

= exp

[
1

n
∥(A+B)∥

]

Thus, in both cases we can estimate:

(max {∥Tn∥ , ∥Sn∥})n−1 ≤ exp

(
n− 1

n
∥A+B∥

)
≤ exp (∥A+B∥) (7)

Now, let’s go back to the 6:

∥Snn − Tnn ∥ = ... ≤ n ∥Sn − Tn∥ exp(∥A+B∥)

Which, in the limit of n→ ∞ is equal to 0, since ∥Sn − Tn∥ behaves as C
n2 :

∥Sn − Tn∥ =

∥∥∥∥∥
∞∑
m=0

1

m!

(
A+B

n

)m
−

( ∞∑
m=0

1

m!

(
A

n

)m)( ∞∑
m=0

1

m!

(
B

n

)m)∥∥∥∥∥ =

=

∥∥∥∥1 + A+B

n
+

(A+B)2

2n2
+O(n−3)−

(
1 +

A

n
+
A2

2n2
+O(n−3)

)(
1 +

B

n
+
B2

2n2
+O(n−3)

)∥∥∥∥ ≈ C

n2

3.2 Trotter product formula

Trotter product formula is essentially the same formula as the presented above Lie product formula, but
now A and B, instead of finite matricies, are semi-bounded operators on H. In the context of Feynman-
Kac formula, we don’t need Trotter formula itself, but slightly different formula (that arises when one
attempts to prove the Trotter product formula).

Theorem

Let A and B be self-adjoint operators on H and suppose that A+B is self-adjoint on D := D(A)∩D(B),
then:

s lim
n→∞

[
eit

A
n eit

B
n

]
= eit(A+B) (8)

Proof

The full proof of the above formula lies beyond the scope of this presentation, however, it will be illumi-
nating to recall all crucial points of the proof, and how its construction resembles the proof of the Lie
product formula presented above.
Let us start with defining operator K(s), s ∈ R:

K(s) =
1

s

(
eisAeisB − eis(A+B)

)
, (9)

one can see, that K(s)ψ → 0 as s→ 0 for each ψ.
Since A + B is self-adjoint, it follows from Stone’s theorem and the uniform boundness theorem that
K(s) are uniformly bounded:

∥K(s)ψ∥ ≤ C ∥ψ∥A+B for all s ∈ R and ψ ∈ D, (10)
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where norm ∥.∥A+B is defined as: ∥ψ∥A+B = ∥(A+B)ψ∥ + ∥ψ∥, and set
{
eis(A+B)ψ|s ∈ [−1, 1]

}
is a

∥.∥A+B compact set in D for each ψ.
Crucial part of the proof is the statement that:

1

t

(
eitAeitB − eit(A+B)

)
︸ ︷︷ ︸

K(s=t)

eit(A+B)ψ︸ ︷︷ ︸
ψ̃∈D

→ 0 as t→ 0, uniformely for s ∈ [−1, 1] (11)

Now, after mimicking steps in the Lie formula proof, one can prove that norm of the expression:[(
e

it
nAe

it
nB
)n

−
(
e

it
n (A+B)

)n]
ψ =: Ξ (12)

can be estimated by:

∥Ξ∥ ≤ ∥t∥max
|s|<t

∣∣∣∣∣∣∣∣ ( tn
)−1 (

e
it
n (A+B) − e

it
nAe

it
nB
)

︸ ︷︷ ︸
K(s= t

n )

eis(A+B)ψ︸ ︷︷ ︸
ψ̃∈D

∣∣∣∣∣∣∣∣, (13)

Since we already argued that K(s)ψ → 0 as s → 0 for all ψ ∈ D, the inequality above completes the

proof that
(
e

it
nAe

it
nB
)n ψ→ eit(A+B)ψ as n→ ∞.

4 Probabilistic glossary and the Wiener Process

In the following sections we’ll lay the groundwork needed to establish the promised connection between
operator theoretic approach and probability theory framework, and in turn explain the Feynman-Kac
formula for Stochastic Differential Equations (to which from now on we’ll simply refer to as SDEs).
To do so, first we need to introduce basic definitions from probability, and the succeeding subsection
can be skipped if the reader is already familiar with them. This entire section is based heavily on [2]
(unfortunately, available only in Polish).

4.1 Random variables, stochastic processes and martingales

This subsection is rather dry, lacking any examples for the listed definitions (although we provide some
succinct motivations and intuitions) – we recommend consulting a good introductory probability theory
textbook to fully grasp the subject, but at the same time we hope this overview suffices to understand
the rest of the text.

Definition: A probability space is a triple (Ω,F ,P), where

1. Ω is a nonempty set (we call the sample space),

2. F is a σ-algebra of subsets of Ω,

3. P : F → [0, 1] is a measure satisfying P(Ω) = 1.

It’s customary to say that something is true almost surely instead of almost everywhere in the proba-
bility context. Similarly:

Definition: A random variable is just a measurable function

X : (Ω,F) −→ (E, E),

i.e. for every set e ⊆ E, the preimage {ω ∈ Ω : X(ω) ∈ e} belongs to E . We call (E, E) the state space,
and later on we will only consider it to be (Rn,B(Rn)) for some n. Next:

Definition: If X : (Ω,F ,P) → R is integrable (i.e.
∫
Ω
|X|dP < ∞), its expectation (or expected

value) is simply

E[X] =

∫
Ω

X dP.

For now, we’ve only introduced new names for already known concepts (expected value of a random
variable is it’s average, i.e. its integral, and it’s an intuitive notion, e.g. expected value for a 6 dice roll
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is 3.5). Let’s say we wanted some gauge of how ”spread out” a given random variable is. We could try
to define it as E[X −E[X], but (check it!) it’s always 0. That’s why variance is defined in the following
way:

Definition: For a random variable that is both integrable and square-integrable, we define its variance
as

Var(X) = E[(X − E[X])2] = E[X2]− E[X]2.

The last equality is a result of a simple calculation, and we encourage the reader to see it for themselves.
Here’s another ,,new” probabilistic concept: let (Ω,F ,P) be a probability space and letX1, . . . , Xn : Ω →

(E, E) be random variables. They are said to be (mutually) independent, if for every choice of mea-
surable sets A1, . . . , An ∈ E ,

P
(
X1 ∈ A1, X2 ∈ A2, . . . , Xn ∈ An

)
=

n∏
i=1

P
(
Xi ∈ Ai

)
.

Equivalently, the σ–algebras σ(Xi) = {X−1
i (A) : A ∈ E} are independent, meaning that for any choice

of Gi ∈ σ(Xi),

P
( n⋂
i=1

Gi
)
=

n∏
i=1

P(Gi).

The most important thing about this definition is that (in non pathological cases) it aligns with our
intuitions (the reader can toy with some simple examples involving, let’s say, multiple dice rolls).

For the purposes of the next subsection, we ought to define what’s a distribution of a random variable,
but we believe that at this level intuitive notions are enough. Instead we’ll already steer into the direction
of stochastic processes:

Definition: Let T be a totally ordered index set (usually N or [0,∞)). A filtration on (Ω,F) is a
family {Ft}t∈T of sub-σ-algebras of F such that

Fs ⊆ Ft whenever s ≤ t.

We will interpret filtration as a ,,bookkeeping” device representing the increasing knowledge of an ongoing
process, e.g. in the case of a series of coin-flips (with discrete time), F0 could be a trivial σ-algebra, as
we know nothing as of t = 0, then in t = 1 we know the result of the first coin-flip, so F1 is bigger, as it
separates possible events with respect to the result of the first coin-flip, and F2 is even more ,,atomised”,
and so on and so forth. We are now ready to get down to the nitty-gritty:

Definition: Given a measurable state space (E, E) and an index set T , a stochastic process is a
family of random variables

{Xt}t∈T , Xt : (Ω,F) → (E, E).
For each ω ∈ Ω, the map

X•(ω) : T −→ E, t 7→ Xt(ω)

is called the trajectory or sample path of the process. We say {Xt} is adapted to a filtration {Ft}
if each Xt is Ft-measurable. Two stochastic processes are said to be equal in law if they have the same
distributions (not the same trajectories, as they can be defined on different probability spaces!).

Unless stated otherwise, from now on for every stochastic process we’ll assume its natural filtration,
i.e. the family of sub-σ-algebras {FX

t }t∈T , where FX
t is the smallest σ-algebra with respect to which all

the random variables Xs, for s ≤ t, are measurable.
Examples of stochastic processes include the aforementioned coin-flips, a random walk on the real

line or on a grid, and it is also common to model population dynamics in biology or even stock prices as
stochastic processes.

We could, in principle, already discuss the Wiener process, but to better understand it, we need
two more concepts... The following definition looks rather intimidating at first, but it has very neat
interpretations that we’ll try to familiarize the reader with after a brief discussion of its consequences.

Definition: Let (Ω,F ,P) be a probability space, G ⊆ F a sub-σ-algebra, and X be an integrable
random variable. A random variable Y is called the conditional expectation of X given G, denoted
by

Y = E[X | G ],

if
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1. Y is G-measurable,

2. For every G ∈ G, ∫
G

Y dP =

∫
G

X dP.

We won’t prove this, however one can show that such a variable always exists and is defined uniquely up
to values on a set with probability zero. Now, also without a proof, we’ll list some useful properties of
conditional expectation:

Proposition: Conditional expectation satisfies:

1. Linearity: For integrable X,Y and constants a, b:

E[ aX1 + bX2 | G ] = aE[X1 | G] + bE[X2 | G].

2. If X is F-measurable, then E[X | F ] = X almost surely.

3. E[X] = E[E[X | G]].

4. |E[X | G]| ≤ E[|X| | F ] almost surely.

5. The ,,Tower Property”: If H ⊆ G ⊆ F , then

E
[
E[X | G]

∣∣ H] = E[X | H].

6. Monotonicity: If X,Y are integrable and X ≤ Y almost surely, then

E[X | G] ≤ E[Y | G] almost surely.

7. If Z is G-measurable and X is integrable, then

E[ZX | G ] = Z E[X | G].

With all that in mind, we can discuss how to understand conditional expectations: one could say
that the expected value of a random variable is its simplest approximation; one can also readily see that
the conditional expected value is a more detailed approximation of a random variable (in some cases it
would be simply a function that is constructed by averaging out the values of the original function on
consecutive intervals of the real line...) – in finance it’s used to model ,,realistic” approximations of some
,,ideal” random variable, which are necessary due to limited knowledge of the probability space. If we
restrict ourselves to L2 spaces (which are Hilbert spaces), then E[X | G ] is an orthogonal projection of X
onto the subspace of G-measurable functions! There’s more to this story, but it would require introducing
the notion of conditional probability, which we won’t need further down the line.

Instead, we’ll use conditional expectation to define a class of stochastic processes with an additional
useful and fairly intuitive property:

Definition: Let (Ω,F , (Ft)t∈T ,P) be a filtered probability space. A stochastic process {Mt}t∈T with
each Mt ∈ L1(Ω,F , P ) is a martingale w.r.t. (Ft) if:

1. Mt is Ft-measurable for all t,

2. For all s ≤ t,
E[Mt | Fs ] =Ms almost surely.

Using one of the properties (namely 3.) of conditional expectation listed above, one immediately
finds that for a martingale the expected values remain constant, i.e. E[Mt] = E[M0] ∀ t. That’s why
they are said to be modeling ,,fair games” (one can show that no betting strategy, which is formalized
in the notion of stopping time, can beat the game, i.e. guarantee a net gain), but they also prove to be
extremely powerful theoretical tools. This concludes our review of basic probability theory.
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4.2 Wiener process

We are going to define (and discuss) perhaps the most important stochastic process of them all, used
throughout all the natural and social sciences to model a wide array of phenomena.

Definition: We call stochastic process {Wt}t∈[0,∞) a (standard) Wiener process if it satisfies the
following properties:

1. W0 = 0 almost surely.

2. The increments of W are independent, i.e. Wt+u −Wt is independent of past values Ws for all
t, u > 0 and s < t.

3. The increments are Gaussian, i.e. Wt+u−Wt ∼ N (0, u) (meaningWt+u−Wt has normal distribution
with mean 0 and variance u), again for all t, u > 0.

4. Wt(ω) is continuous as a function of t for a fixed ω ∈ Ω.

It is not at all obvious whether such process exists. There are many ways to construct it, but the
details of the proofs are rather technical and lengthy. For our intents, it suffices to refer to the simplest
construction, as a certain limit of infinitesimal random walks, which also explains why the Wiener process
describes Brownian motion (or can be a simple model for stock prices, or why it’s so prevalent in general,
and also why the normal distribution pops up). Consider a series of i.i.d. Rademacher’s variables, i.e.
Xi, i ∈ N, with P(Xi = ±1) = 1

2 . For t ∈ [0, 1] let

Wn(t) :=
1√
n

∑
1≤i≤⌊nt⌋

Xi,

so that for any ω in the sample space (representing a single trajectory), Wn(t) is equal to a sum of ⌊nt⌋
random -1s and 1s (,,a new one” every 1

n seconds, one could say), scaled by 1√
n
. By Donsker’s theorem

(which is a generalisation of the central limit theorem), as n → ∞, Wn → W – the Wiener process for
t ∈ [0, 1]. Having such process, with some trial and error, it is easy to extend it to a process for t ∈ [0,∞)
(essentially, it’s possible thanks to the fractal nature of the trajectories, which we’ll soon state rigorously):
just take W ′

t = (1 + t)(Wt/1+t − 1
1+tWt). It is also obvious how to construct multidimensional Wiener

processes. Now an intrigued reader can try to prove the following:

Theorem: A Wiener process exists.

□

Aside from the sole existence, to understand further discussions, we’ll need only the following two
properties of the Wiener process: a trajectory is almost surely nowhere differentiable and almost
surely has unbounded variation on every arbitrarily small interval (this pathological behavior
is in fact expected from our construction). Nonetheless, we’ll list some other interesting properties,
and again, we won’t prove any of them (though some are almost immediate, while other require rather
technical auxiliary lemmas):

Proposition: A Wiener process satisfies the following properties:

1. E[Wt] = 0 for all t ≥ 0.

2. Var[Wt] = t

3. It’s a martingale (combining this fact with the Optional Stopping Theorem, which we don’t have
the time to cover, would yield us many fascinating and powerful results).

4. P(Wt > r) = 1
2P(sups≤tWs > r) for r ≥ 0, meaning that the probability of arriving at some point r

at time t is equal to 1
2 the probability that we’ve arrived at it previously, because from that moment

we could’ve equally well went either ,,up” or ,,down”.

5. During an arbitrarily small time interval [0, ϵ], the trajectory was almost surely both below and
above 0.

6. Here are a few processes that are equal to it in law: a time scaled process Xt = ±1√
c
Wt(ct), an

inverted process Yt = tW 1
t
and a shifted process Zt =WT+t −WT (with c, T > 0).
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Moreover, it is crucial for our understanding of the relationship between previously discussed matter
(Section 2.2) and the subject at hand, that the Wiener measure is the pushforward of the measure
induced by the Wiener process onto the space of paths defined before. This is fairly intuitive (and
strongly indicated by how those objects are called), but to further cement our intuitions and conclude this
section with some nice pictures, here are few sample paths of a Wiener process, taken from Wikipedia:

Figure 2: Sample trajectories of a standard Wiener process Xt

5 Introductory Itô calculus

Being fluent in probability theory language, we are now prepared to talk about (non-trivial) SDEs.
Warning: we’ll deal with only one among many inequivalent approaches to SDEs; on top of that, we
won’t discuss the theory in it’s most general form, but it’ll be enough to finally arrive at the Feynman-
Kac formula. This section is based on [3], where the reader can find further development of the showcased
ideas and tons of references to literature, that covers them more thoroughly.

5.1 Basic SDEs and Itô’s integral

Observe that we can get a new interesting stochastic process (called Brownian motion with drift) from
the Wiener process by letting

Xt := µt+ σWt

(modifying Brownian motion is very common to e.g. model noise). Using the known properties of Wt we
readily see that E[X] = µt and Var[Xt] = σ2t. Based on previous discussions and Figure 2, it’s easy to
imagine what are the properties of trajectories. We could also say that for every path of Xt the following
equation is satisfied:

dXt = µdt+ σdWt,

if we are thinking of infinitesimal incremets; SDEs are a way to formalize exactly this notion, of which
we now have a gist.

We want to consider equations of the form

dXt = µ(Xt, t)dt+ σ(Xt, t)dWt, (14)

where Wt is an m-dimensional Wiener process, µ : Rd × R≥0 → Rd and σ : Rd × R≥0 → Rd×m are
the usual measurable, ,,deterministic” functions – we see that in the previous example they were just
constant (so we already know the solution to the simplest possible equation!) – and we want a solution
Xt, which can then be called a diffusion process, because it satisfies the so called diffusion equation
of the form 14; we call µ the drift term, and σ the diffusion term. We also impose an initial condition
X0 = x, x being a random variable. Because the solution depends on the initial condition, we’ll usually
stress this fact by denoting it Xx

t . As it turns out, a proper way to interpret such equation is in integral
form:

Xx
t = x+

∫ t

0

µ(Xx
t , t) dt+

∫ t

0

σ(Xx
t , t) dWt,

with the integral being... well, it depends – here comes the ambiguity. In fact, there are even uncountably
many inequivalent ways to define stochastic integrals, but the central idea is the same, and it’s based on
Riemann–Stieltjes-like integral.
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The first integral is straight forward, but what about the second? Because of unbounded variation

of paths, we can’t just define the integral
∫ T
0
HtdWt to be Riemann–Stieltjes integral with respect to

Brownian motion on every path, because we’d run into ambiguities. Instead, we’ll assume that our
integrand H is adopted to the Wiener process’ natural filtration, and then follow two simple steps:

First, we assume Ht to be a simple process, i.e. there exists a partition

0 = t0 < t1 < · · · < tn = T

and Ftk–measurable random variables Htk , such that

Ht(ω) =

n−1∑
k=0

Htk(ω)1[tk,tk+1)(t).

For such H, we simply define ∫ T

0

Ht dWt :=

n−1∑
k=0

Htk

(
Wtk+1

−Wtk

)
.

Next, let

H2([0, T ]) :=
{
Ht adapted to the filtration

∣∣∣ E[∫ T

0

H2
t dt

]
<∞

}
.

It’s easy to check that or any simple H,

E
[(∫ T

0

Ht dWt

)2]
= E
[∫ T

0

H2
t dt

]
,

and since simple processes are dense (a result similar to the standard measure-theoretic propositions

about density) in H2 under the norm ∥H∥2 = E[
∫ T
0
H2
t dt], the mapping H 7→

∫ T
0
Ht dWt extends

uniquely by continuity to all of H2([0, T ]). Analogous arguments also show that the resulting random
variable is a martingale. Our obtained integral is called Itô’s integral. Had we chosen the integral for
simple processes to be

n−1∑
k=0

1
2

(
Htk +Htk+1

) (
Wtk+1

−Wtk

)
,

we would’ve ended up with Stratonovich integral, which is the second most commonly used type, and
has differing ,,nice” properties (including a formula for transforming it into Itô’s integral and vice versa),
but we won’t discuss is it this text; similarly, other choices of sums produce other integrals, but we’ll just
stick to the Itô’s definition.

Having constructed a stochastic integral, we can now define what we mean by

Definition: a strong solution to a SDE as in eq. 14 along with the initial condition, is a process Xt

with continous paths and adopted to the Wiener’s filtration, such that:

1. For all T ≥ 0, µ(•, X•) ∈ L1([0, T ]) and σ(•, X•) ∈ L2([0, T ]) almost surely (so that integrals in the
next condition are well defined).

2. For every t ≥ 0, the equations: X0 = x and

Xt = x+

∫ t

0

µ(Xt, t) dt+

∫ t

0

σ(Xt, t) dWt

hold almost surely.

Moreover, under two additional assumptions, namely that there exists a constant C such that:

|µ(x, t)|+ |σ(x, t)|F ≤ C(1 + |x|), (15)

and
|µ(x, t)− µ(y, t)|+ |σ(x, t)− σ(y, t)|F ≤ C|x− y| (16)

for all x, y ∈ Rd and t ∈ [0, T ] (this is somewhat reminiscent of Lipschitz condition for ODEs), where |• |F
denotes the Frobenius matrix norm (and if the reader is unfamiliar with it, they are probably fortunate
not to have had to suffer through a course on computational mathematics), there holds a uniqueness
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Theorem 4.1: under the above two assumptions, and additionally the initial value x is independent of
Wts, with E[x2] <∞, then the SDE has a unique global strong solution satisfying

E
[∫ t

0

|Xs|2ds
]
<∞

for all t > 0 (uniqueness means that if Yt is another solution, then Xt = Yt almost surely).
We won’t prove this; it’s solely for completeness of our discussion of basics of SDEs. Instead, we’ll

dive into one interesting property of diffusion processes, that’ll lead us to a tool with strong connections
to operator theory...

5.2 Markov property and generators

Intuitively, if a diffusion process is governed by a differential equation, then its future state doesn’t depend
on the past, only on the present. Formalization of this notion is called Markov property. To define it we
first need:

Definition: Let (Ω,F ,P) be a probability space. For an event A ∈ F and sub-σ-algebra G of F , we
define the conditional probability

P(A | G) := E[1A | G] .

If X is a random variable, then
P(A |X) := E[1A |σ(X)] .

We want the reader to rest assured that this definition fits their intuitions nicely (and, along with some
simple lemmas for which we don’t have the time, can be useful for calculating probabilities). Now:

Definition: Let (Ω,F ,P) be a probability space and let {Xt}t∈T be a stochastic process with values in
a measurable state space (E, E). We say {Xt} is a Markov process if for all s, t ∈ T with s < t and all
A ∈ E

P
(
Xt ∈ A

∣∣ Fs) = P
(
Xt ∈ A

∣∣ Xs

)
,

where Fs = σ
(
Xu : u ≤ s

)
is the natural filtration. The transition function of the process is a family

of the so called probability kernels (which are very similar to kernels defined in Section 1):

Ps,t(x,A) := P(Xt ∈ A | Xs = x),

defined for all 0 ≤ s ≤ t, x ∈ E, and A ∈ E . The process (Xt) is called time-homogeneous if the
transition function depends only on the time difference t− s, i.e.,

Ps,t(x,A) = Pt−s(x,A) for all 0 ≤ s < t, x ∈ E, A ∈ E .

Showing the following statement is true is a bit tricky and we’ll omit it, as it is fairly intuitive:

Proposition: A diffusion process is Markovian. The diffusion process is a time-homegeneous Markov
process iff its diffusion equation is time-independent.

□

For time-homogeneous Markov processes we can define a semi-group of operators P which completely
governs its evolution and satisfies P0 = I (identity), PtPs = Pt+s for all t, s ≥ 0. Then we can formally
write Pt = etL and Xt = PtX0, where L is the so called infinitesimal generator of the process. For
now, we’ll only flash this definition of an operator semi-group, to signal yet another connection to our
previous topics, and immediately go back to precise definitions which will prove useful in studying SDEs
(in fact, the link between semi-groups and stochastic analysis runs much deeper than we could possibly
have covered, see [4]). For f ∈ Cb(Rd), define

(Ptf)(x) := E[f(Xt) |X0 = x].

Then the above hold for

Lf := lim
t→0

Ptf − f

t
,

whenever this limit exists. As it turns out, the infinitesimal generator of the Wiener process is the
Laplacian (and one more fan fact: its backward Kolmogorov equation, a sort of fundamental equation
for Markov processes, is precisely the heat equation!).
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Now here comes a little trick: consider a time-inhomogeneous SDE of the form (14). To transform it
into a time-homogeneous SDE, we define an augmented process (Yt)t≥0 ⊂ Rd+1 by

Yt := (t,Xt).

Let us denote Yt = (Y 0
t , Y

1
t , . . . , Y

d
t ), where Y

0
t = t, and Y it = Xi

t for i = 1, . . . , d. Then Yt satisfies the
time-homogeneous SDE:

dY 0
t = dt, dY it = µi(Y

0
t , Y

1
t , . . . , Y

d
t ) dt+

m∑
j=1

σij(Y
0
t , Y

1
t , . . . , Y

d
t ) dW

j
t , i = 1, . . . , d.

This let’s us define the generator: let f : Rd+1 → R be a function for which the necessary limit exists.
Then one can show the infinitesimal generator L of the process Yt is given by:

Lf(t, x) = ∂f

∂t
(t, x) +

d∑
i=1

µi(t, x)
∂f

∂xi
(t, x) +

1

2

d∑
i,j=1

(σ(t, x)σ(t, x)⊤)ij(t, x)
∂2f

∂xi∂xj
(t, x),

and it’s a result we’ll use later on.

5.3 Itô’s lemma

We’ll briefly cover one last piece of the puzzle needed for the proof of Feynman-Kac formula, which is at
the same time sometimes considered the most crucial result in SDEs theory. Ideally, we’d like to be able
to write down every solution of a diffusion process as a function of time (that’s obvious) and Brownian
motion (because we know a lot about it). Here’s a step in that direction: recall the second property of the
Brownian motion that we’ve listed, namely the ,,quadratic variation”, i.e. E[W 2

t ] = t – now knowing that
expectation of Wt at any time is zero and that increments are independent, we could say that (for now
only heuristically) (dWt)

2 = dt. That’s really the cornerstone of Itô’s calculus, and we can supplement
this relation between dt and dWt with dt dWt = 0 = dWt dt and classic (dt)2 = 0. In the usual calculus,
one can show that differentiable function with bounded derivative has quadratic variation equal to 0, and
that’s what makes Ito’s calculus different – objects in question are fundamentally distinct. We’ll see this
in the appropriate (one could say extended) version of the Leibniz rule.

Suppose we have a (sufficiently nice) ,,deterministic” function f : R → R and want to consider
f(Wt). What’s df? We will see that because f(Wt) is itself a diffusion process, it can have non zero
quadratic variation, and so it’s not simply f ′(Wt)dWt. Let’s ,,Taylor expand” f : f(Wt+u) − f(Wt) =
f ′(Wt)(Wt+u−Wt)+

1
2f

′′(Wt)(W
2
t+u−W 2

t )+ ... where what follows are terms of higher order, which we
can ignore if be believe in the relationships listed above. From this, we infer that

df(Wt) = f ′(Wt)dWt +
1

2
f ′′(Wt)dt . (17)

The formula above is the simplest version of the so called Itô’s lemma, which has a lengthy and
technical proof, which we won’t copy down. Instead, now that we have a grasp of where it comes from,
here’s a full version of Itô lemma:

Theorem 4.2: under the assumptions of Theorem 4.1, if Xt is a solution of diffusion equation of the
form and f ∈ C1,2([0, T ]× Rd), then the process f(Xt) satisfies

f(t,Xt) = f(0, X0) +

∫ t

0

∂f

∂s
(s,Xs)ds+

∫ t

0

Lf(s,Xs)ds+

∫ t

0

⟨∇f(s,Xs), σ(Xs)dWs⟩ (18)

□

As a corollary, we get the (often more useful) differential version:

df
(
t,Xt

)
=
∂f

∂t

(
t,Xt

)
dt+

d∑
i=1

∂f

∂xi

(
t,Xt

)
µi
(
t,Xt

)
dt+

d∑
i=1

m∑
j=1

∂f

∂xi

(
t,Xt

)
σij
(
t,Xt

)
dW j

t +

1

2

d∑
i=1

d∑
j=1

(
σσ⊤

)
ij
(t,Xt)

∂2f

∂xi ∂xj

(
t,Xt

)
dt. (19)

Important thing to note is that f(t,Xt) is itself a diffusion process!
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We can toy with our new lemma to get our first stochastic integral: simply take f(t, x) = x2. It’s
then easy to check that what follows from the above is that∫ t

0

WsdWs =
1

2
W 2
t − 1

2
t .

Cool!

6 The titular formula again

6.1 Probabilistic proof

Equipped with the Itô calculus machinery we’re finally ready to prove our titular formula with proba-
bilistic approach.
Theorem 1 [Feynman-Kac formula no. 2]: Let Xx

t be a diffusion process with some drift µ(·), diffusion
Σ(·) = σσT (·) and generator L, such that Xx

0 = x, and let f ∈ C2
0(Rd) and V ∈ C(R) bounded from

below. Then the solution to initial value problem:

∂u

∂t
= (L − V )u,

u(0, x) = f(x)

, is given by:

u(x, t) = E(e−
∫ t
0
V (Xx

s )dsf(Xx
t )).

Proof: We know that SDE equation for Xx
t is:

dXx
t = µ(Xx

t )dt+ σ(Xx
t )dWt

,
Xx

0 = x.

Let introduce a new variable Yt = e−
∫ t
0
V (Xx

s )ds, with SDE:

dY xt = −V (Xx
t )Y

x
t dt,

Y x0 = 1

Now we can consider process Zt := Ytf(Xt) = ψ(Xt, Yt), where ψ(x, y) = yf(x). Our goal now is to find
the differential equation for E[Zt], we start by using Itô formula:

dZt = dψ(Xt, Yt) =

d∑
i=1

∂ψ

∂xi
dXi

t +
∂ψ

∂y
dYt +

1

2

d∑
i,j=1

∂2ψ

∂xi∂xj
dXi

tdX
j
t

We put in derivatives of ψ and use more compact notation:

dZt = Yt∇f(Xt)
T dXt + f(Xt)dYt +

1

2
Yt

d∑
i,j=1

∂2f

∂xi∂xj
dXi

tdX
j
t

Now we can use the fact that:

dXi
tdX

j
t = [σσT ]ij(Xt)dt =: aij(Xt)dt

and get:

dZt = Yt∇f(Xt)
T dXt + f(Xt)dYt +

1

2
Yttr[a(Xt)D

2f(Xt)]dt

and by putting in SDE for Yt and Xt:

dZt = Yt∇f(Xt)
T b(Xt) + Yt∇f(Xt)

Tσ(Xt)dWt − V (Xt)Ytf(Xt)dt+
1

2
Yttr[a(Xt)D

2f(Xt)]dt

by gathering terms with dt and dWt we can finaly write:

dZt = Yt[Lf(Xt)− V (Xt)f(Xt)]dt+ Yt∇f(Xt)
Tσ(Xt)dWt

17



The stochastic integral ∫ t

0

Ys∇f(Xs)
Tσ(Xs) dWs

is a martingale, because - as noted in Section 4.1 — the Itô integral with respect to Brownian motion
is a martingale for square-integrable processes. This condition is satisfied due to the regularity of the
function f , the boundedness of Ys, and standard assumptions on σ Now we can take expected value of
equation, we get:

d

dt
E[Zt] = E[(Lf(Xt)− V (Xt)f(Xt))Yt]

Differentiation under the expected value was permitted, because function are smooth and bounded and
time integral is regular. Our equation is exactly initial PDE if we define u(x, t) := Ex[Ytf(Xt)] where
small x in the lower index is to take into account boundary condition.

6.2 Solving the Schrödinger equation with the Feynman-Kac formula

One could ask, why did we even bother with this whole huge stochastic machinery? For the sheer
beauty of mathematics? That’s an acceptable answer, but there is so much more to it than simply
that. Feynman-Kac formula is powerful tool for approximating solutions to partial differential equations
numerically, and among applicable examples is the Schrödinger equation. We will work out a simple 1D
example with harmonic oscillator potential, so that we know the analytic solution, and thus can compare
it with our approximation.
Hamiltonian for our model is given by:

H = − ℏ2

2m

d2

dx2
+

1

2
mω2x2

The Schrödinger equation is given by:

iℏ
∂

∂t
Ψ = HΨ

But to use our brand new tools we would like to perform a transformation called Wick rotation, it is
simply just substitution t = −iτ and look on the function u(x, τ) = Ψ(x,−it), so our equation becomes:

ℏ
∂

∂τ
u = Hu

The analytical solution for the ground state is of the form:

u(x, τ) = exp(−E0τ

ℏ
) exp(−1

2
αx2)

Now the sweet part is coming. From the previous section, we know that:

u(x, τ) = Ex[exp(−
1

ℏ

∫ t

0

V (Bs)ds) · u(Bt, 0)]

To approximate this formula, we need to generate random Brownian trajectories and for each one calculate
the following integral:

w = exp(−1

ℏ

∫ t

0

1

2
mω2B2

sds)

Here are some generated trajectories with weight distribution for the whole simulation:

18



Figure 3: Generated Brown trajectories and weights distribution

Trajectories that went further are in stronger potential, therefore, have smaller weights. With our
weights, we can calculate approximated solution:

u(x, τ)app =
1

N

N∑
i=1

wi · u(B(i)
t , 0)

For 2000 trajectories and time evolution from t = 0 to t = 1 our approximated function is well suited to
analytical solution.

Figure 4: Comparison for analitical and approximated solution
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