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Rozdział 4 

Optyka jonowa
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Elementy układu jonowo-optycznego
Jony opuszczające tarczę – produkty reakcji i wiązka pierwotna – przechodzą
następnie przez układ jonowo-optyczny (separator), którego celem jest : 

separacja, czyli oddzielenie wiązki pierwotnej (!)  i selektywna 
transmisja wybranych produktów,
transport produktów do układu detekcyjnego,
umożliwienie identyfikacji jonów.

W skład separatora mogą wchodzić następujące części : 
obszar dryfu (jonowód poza polem e-m),
element dyspersyjny (sektor pola magnetycznego, magnes dipolowy),
element ogniskujący (soczewka kwadrupolowa),

element korekcyjny (soczewka sekstupolowa),

układ filtrujący (np. filtr prędkości Wiena).
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Magnes dipolowy
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B
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Na cząstkę o ładunku elektrycznym q, poruszającą
się z prędkością v w polu magnetycznym B, działa
siła Lorentza :

υr
⊗ LF

r LF
r

υr B
r

q= ×

Gdy pole jest jednorodne, a prędkość prostopadła do
do linii pola, tor jest okręgiem o promieniu ρ : 

, 
ρ
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υ
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q
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q
mB == υρ – sztywność magnetyczna.

W przypadku relatywistycznym :
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Ważny związek : . [Tm]
Q
AB βγρ 107.3=
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Dyspersja w stałym polu magnetycznym

Promień toru cząstki w polu B jest proporcjonalny do jej pędu. Odchylenie toru
cząstki po przejściu przez sektor pola B zależy więc od jej pędu (dyspersja).

Załóżmy, że dwie cząstki o takim samym ładunku, ale o pędach p0 i p, wchodzą
w obszar pola B w tym samym miejscu. Jaka jest odległość między nimi po przebyciu
toru o długości L ?

Cząstki poruszają się po okręgach o promieniach odpowiednio :

i   Bqp=ρ

ρ

p

=ρ +0ρ , xs δ+ ϕρρ cos)( 0−=s

0ρϕ L=

( )( )00 cos1)( ρρρδ Lx −−=
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=
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( )( )00 cos1 ρρ LD −=

Dyspersja :
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Magnes dipolowy (GSI)

127
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Soczewka kwadrupolowa

Kwadrupolowe pole magnetyczne, w płaszczyźnie
prostopadłej do prędkości cząstki, w pobliżu osi :

( ) , xGyGB ,=
r

Jeśli 0<Gq zυ (tak jak na rysunku), to
występuje efekt ogniskowania w kierunku 
pionowym (y) i rozpraszania w kierunku
poziomym (x).

Obrót układu biegunów o 90º (równoważny zmianie znaku G) zmienia kierunek
ogniskowania. Układ dwóch soczewek kwadrupolowych, jednej ogniskującej
w kierunku x i drugiej ogniskującej w kierunku y, ma własność ogniskowania
w obydwu kierunkach. Dlatego w separatorach zawsze występują dublety i 
tryplety takich soczewek.

⊗ wówczas siła Lorentza :

LF
r

υr B
r

q= × ( ). yxGq z ,−= υ
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Model soczewki kwadrupolowej  
(4 magnesy sztabkowe) ,

i prawdziwy „kwadrupol”
(ESR w GSI)
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Obszar dryfu i magnesy kwadrupolowe (FRS w GSI)
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Filtr prędkości Wiena
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Układ skrzyżowanych pól E i B :

Siły te równoważą się wtedy gdy :

. 
B
E

=υ

Tylko cząstki o tej prędkości v przechodzą
przez układ bez odchylenia. 

Na cząstkę naładowaną, poruszającą się z 
prędkością v prostopadle do linii pól E i B,
działają przeciwnie skierowane siły o 
wartościach :

⊗
BF
r

EF
r

BqFB υ=EqFE = i .
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Przykład : Filtr Wiena na separatorze
LISE w GANIL.

Parametry :
długość : 2 x 2.5 m,
wysokie napięcie : do 350 kV,
odleg. między elektr. : 10 cm,
pole B : 0.01 – 0.1 T.

Maksymalna dyspersja : 3 cm/%



132

Macierzowy opis układu optycznego
Bieg jonów w dowolnym układzie jonowo-optycznym wygodnie opisuje się przy
pomocy formalizmu macierzowego. Występuje tu daleko posunięta analogia 
do opisu promieni świetlnych w zwykłych układach optycznych.   

Główne założenia tego formalizmu :

4. Stan cząstki po przejściu przez dowolny układ optyczny dany
jest jako wynik mnożenia macierzy tego układu przez wektor 
opisujący stan początkowy cząstki (przed układem).

3. Macierz układu złożonego z wielu elementów jest iloczynem macierzy
odpowiadających tym elementom.

2. Każdy element układu optycznego opisany jest przez macierz
(tablica 2-wym.), która opisuje wpływ tego elementu na stan cząstki.

1. W każdym punkcie układu stan cząstki (promienia) opisuje wektor 
(tablica 1-wym.) jego parametrów zawierający wszystkie istotne 
zmienne, jak położenie (x, y), nachylenie toru (x’, y’), pęd itp.
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 , iVMV ×= 11
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element n

fV

stan końcowy

.   1, −×= nnf VMVK

. 11 MMMM nn ×××= − Kgdzie , if VMV ×=

Działanie układu n elementów optycznych można opisać poprzez jedną macierz M :

Zasada opisu macierzowego
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Prosty przykład :

Zastosowanie formalizmu macierzowego w optyce geometrycznej.
Stosujemy przybliżenie 1-go rzędu (liniowe).

2x
2α

oś optyczna
1x 1α

x

Łatwo zobaczyć, że : 
. 

, 

12

112

αα
α

=
+= lxx

Obszar dryfu o długości l

1x 1α

x 2x
2α

l

W każdym punkcie układu opisujemy promień świetlny podając jego
odległość od osi optycznej (x) i kąt między jego kierunkiem a osią (  ).α
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– macierz dla odcinka dryfu długości l

Cienka soczewka skupiająca o ogniskowej f
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f
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h2α
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Zauważamy, że :

– bo soczewka jest cienka
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Cienka soczewka rozpraszająca o ogniskowej f

Łatwo sprawdzić (ćwiczenie !), że macierz dla soczewki rozpraszającej 
otrzymujemy biorąc macierz dla soczewki skupiającej o takiej samej ogniskowej 
i zmieniając znak . f

Przykład 1 : Złożenie dwóch soczewek o ogniskowych 1f 2fi
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Otrzymaliśmy znane prawo, że dwie cienkie soczewki (blisko siebie) odpowiadają
jednej soczewce, której ogniskowa wynosi :

. 
2112

111
fff

+=
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Przykład 2 : Wyprowadzenie wzoru soczewkowego

Załóżmy, że w odległości x przed soczewką o ogniskowej f umieszczamy 
przedmiot o wysokości h. Pytanie : w jakiej odległości od soczewki utworzy
się obraz przedmiotu i jaka będzie jego wysokość ?

f

x
y

h

H

Układ optyczny składa się tu z trzech elementów : dryfu o długości x, cienkiej
soczewki o ogniskowej f i dryfu o długości y. Macierz odpowiadającą temu 
układowi konstruujemy przez złożenie elementów składowych :

. )()()( xMfMyMM dsdxfy ××=



138

=××=  )()()( xMfMyMM dsdxfy =















−








10

1
11
01

10
1 x

f
y









+−−








=

11
1

10
1

fxf
xy

. 














+−−

−+−
=

11

1

fxf
f
yxyxfy

Warunek utworzenia obrazu oznacza, że wartość nie może zależeć
od kąta  

2x
1α (pęk promieni wychodzących z  jednego punktu przedmiotu

jest skupiany też w jednym punkcie).

Warunek ten jest spełniony wtedy, gdy 012 =m :
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Przykład 3 : Połączenie soczewki skupiającej i rozpraszającej

Załóżmy, że obie soczewki mają tę samą wartość ogniskowej (z przeciwnymi
znakami), i że odległość między nimi wynosi . (  )faa <

f

a

A

f
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B
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Jeśli 1<<fa , to : 
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W tym przybliżeniu powyższa macierz jest równoważna złożeniu dryfu na 
odległość a i soczewki skupiającej :
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Istotnie, oba układy są równoważne jeśli : .aff 2'=

Widać, przy okazji, że . fafff >>='
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Przykłady macierzy jonowo-optycznych
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Wektor zmiennych : – położenie horyzontalne (w płaszczyźnie dyspersyjnej),

– położenie wertykalne,
– kąt w płaszczyźnie horyzontalnej, dzdxpp zx ==

dzdypp zy == – kąt w płaszczyźnie wertykalnej, 

00000 )()( ρρρδ BBBppppp −=−== – odchylenie
pędu (sztywności) od wartości na osi optycznej.
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Magnes dipolowy,
czyli sektor jednorodnego pola magnetycznego, w którym oś optyczna ma promień
krzywizny ρ0 i długość : 0ρϕ=L
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Magnes kwadrupolowy

siła Lorentza ma postać : ( ). 0,, yxGqF −= υ
r

( ) 0,, xyGB =
r

Dla cząstki poruszającej się w polu : z prędkością ( ) υυ ,0,0=r

Równania ruchu są wtedy następujące :
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Rozwiązania tych równań są w postaci :
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Stałe wyznaczamy z warunków początkowych : 
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Ostatecznie otrzymujemy :
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Jeśli obszar pola magnetycznego (długość kwadrupola) wynosi L, to 
odpowiednia macierz ma postać :
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qGk =gdzie
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.1cosh,1cos
,sinh,sin
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Jeśli magnes jest krótki, a dokładniej ,1<<kL to możemy przybliżyć :

Macierz przyjmuje wtedy postać :
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W dobrym przybliżeniu jest to
złożenie obszaru dryfu o długości L
i cienkiej soczewki skupiającej o 
ogniskowej 

Lk
f 2

1=

Złożenie obszaru dryfu o długości L
i cienkiej soczewki rozpraszającej o 
ogniskowej 

Lk
f 2

1=
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Uproszczony model separatora
Macierze dla magnesów dipolowego i kwadrupolowego, uzupełnione o macierz
dla obszaru dryfu, pozwalają już modelować realistyczne układy do separacji 
cząstek. 

Podstawowe zasady działania separatora fragmentów można jednak opisać i 
zrozumieć dzieląc go na bloki funkcjonalne, z których każdy, poprzez jedną macierz,
może reprezentować złożenie wielu elementów jonowo-optycznych (magnesów).   

Sekcja dipolowa (dyspersyjna)

ρB
– składa się z jednego lub więcej magnesów dipolowych;

po obu stronach każdego z nich znajduje się układ 
soczewek ogniskujących i korekcyjnych. Sekcję tę 
charakteryzuje wartość Bρ – sztywność cząstek na
osi optycznej.  

Sekcja dipolowa ma zazwyczaj własność obrazowania : w płaszczyźnie
ogniskowej za tą sekcją tworzy się obraz przedmiotu umieszczonego w 
ognisku przed nią. 
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Przykłady sekcji dipolowych 

Podwójna sekcja dipolowa
separatora FRS

Schemat pojedynczej sekcji dipolowej separatora FRS.
Nie pokazano soczewek korekcyjnych. . m 11≈ρ

Sekcja dipolowa separatora LISE . m 6.2≈ρ
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Własności optyczne sekcji dipolowej opisuje jedna macierz. 
W dalszej dyskusji, dla uproszczenia, pomijamy współrzędne
prostopadłe do płaszczyzny dyspersyjnej (czyli y i αy).

Wektor zmiennych :
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– położenie horyzontalne (w płaszczyźnie dyspersyjnej),
– kąt w płaszczyźnie horyzontalnej, dzdxpp zx ==

00000 )()( ρρρδ BBBppppp −=−== – odchylenie
pędu (sztywności) od wartości na osi optycznej.
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'D

– powiększenie liniowe,

– powiększenie kątowe,

– dyspersja (położenia),

– dyspersja kąta.

Warunek obrazowania : położenie w ognisku 
nie zależy od kąta początkowego 

Twierdzenia Liouville’a : 
objętość przestrzeni fazowej 
jest stała Det(M) = 1.
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Najprostszy separator : dwie sekcje dipolowe
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Macierz całego układu :
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Jeśli m13=0, to cały układ będzie achromatyczny. Wymaga to by : 212 VDD −=

W ognisku końcowym tworzy się obraz „przedmiotu” z ogniska początkowego
bez zniekształceń związanych z rozkładem pędu.
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Pierwsza sekcja dipolowa (Bρ1) przepuszcza cząstki, których sztywność
magnetyczna zawiera się w pewnym przedziale wokół wartości Bρ1
określonym przez konstrukcję spektrometru (akceptancja) i ew. ustawienie 
szczelin. Wartość Bρ1 wybiera się dowolnie w granicach zadanych przez
konstrukcję magnesów. 

Przykład : Separator FRS przepuszcza cząstki o sztywności . %5.1±ρB
Wartość ρB może być wybrana w przedziale od 5 do 18 Tm.

Jeśli między sekcjami dipolowymi pęd cząstek nie zmienia się (straty energii
w ew. detektorach są do zaniedbania, lub w ogóle nie występują), to ustawienie
drugiej sekcji dipolowej musi odpowiadać pierwszej : . 12 ρρ BB =

Separator przepuszcza wtedy wszystkie cząstki, dla których wartości 
Q
A

βγ

mieszczą się w pewnym przedziale. Ponieważ prędkości wszystkich cząstek
są podobne, warunek ten w przybliżeniu oznacza, że :  %

0

δ±







≅

Q
A

Q
A

Ograniczenie to jest zazwyczaj niewystarczające !
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W celu dodatkowej selekcji jonów przepuszczanych przez separator, miedzy
sekcjami dipolowymi (w ognisku pośrednim) umieszcza się degrader.   

Sekcja degradera

– warstwa materiału, którą umieszcza się na drodze jonów
w celu zmniejszenia ich energii kinetycznej (pędu).  
Zwykle ma kształt klina, tzn. jego grubość zależy od 
położenia w płaszczyźnie dyspersyjnej (x). 
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Model separatora fragmentów z degraderem :
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Zasada działania degradera opiera się na tym, że strata energii jonów w
materiale, przy określonej prędkości, zależy tylko od Z2. Wartość Bρ2 (drugiej
sekcji dipolowej) dobiera się tak, aby optymalnie przepuszczać jony o wybranej
liczbie Z.  

MeV][A ⋅E [Tm] ρB

pierwsza sekcja

1ρB δ±

degrader

0ZZ <

0ZZ ≈

0ZZ >

druga sekcja

2ρB δ±
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Separacja jonów z degraderem

N

Z

Załóżmy, że wszystkie jony są całkowicie odarte z elektronów. Wówczas  . 
Z
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Q
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=

• Pierwsza sekcja dipolowa przepuszcza jony o ustalonym stosunku . 
0
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• Przez drugą sekcję (po degraderze) przechodzą już tylko jony w 
wybranym przedziale . dZZ ±0

0Z
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Degrader jako element optyczny 
Warstwa materii na drodze jonów zmienia ich prędkości i w ogólności zakłóca
optykę spektrometru. Poprzez specjalnie dobrany kształt degradera można 
zmniejszać te zakłócenia, a nawet modyfikować własności optyczne separatora.  

Macierz optyczna dla degradera :
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KD – „dyspersja”, czyli jak położenie
wpływa na zmianę pędu,

KV – „powiększenie”, czyli jak pęd
początkowy wpływa na końcowy.

Do dalszej dyskusji przyjmiemy następujące uproszczenia :

1. Degrader ma kształt klina, tzn. ,  xd
x
xdxd K
K

θ+=







+= 00 1)(

gdzie : 0d jest grubością na osi optycznej, 

KKxd θ=0 jest kątem jaki tworzy nachylona powierzchnia degradera
z osią x – dla 0=Kθ ma on stałą grubość.
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2. Zasięg jonów w materiale opisujemy przybliżonym wzorem (patrz str. 89) :   
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Wracamy do modelu separatora z degraderem :

)1()2( BρEBρ MMMM ××= ∆

Macierz całego układu :
















×















×















=

100
'1

0

0
010
001

100
'1

0

111

11

222

22

DVW
DV

VD
DVW
DV

KK

. 


















+

+++++

+++

=

KKK

KKK

KKK

VDDVD

WDDDDVD
V
D

VV
WVDDV

V
W

VDVDDDDDDVVV

11

21212
2

1

21
2121

2

1

221212121

0

'''1'

0

Własność obrazowania jest zachowana, ale własności optyczne zależą od doboru
parametrów DK i VK.  Pojawiają się dzięki temu nowe możliwości.  

[ ] . Det KVM =
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1. Tryb monoenergetyczny KK V
D

Dm
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10 −=⇒=     

Aby spełnić ten warunek, możemy dowolnie wybrać grubość degradera na osi
optycznej (d0), a następnie odpowiednio dopasować jego nachylenie :
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Wszystkie jony (ze źródła punktowego w tarczy) mają tę samą energię w
ognisku końcowym. Cały układ jest jednak dyspersyjny : . 2113 VDm =
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2. Tryb dopasowanego degradera ( )111
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Parametry degradera muszą wtedy spełniać związek :
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Macierz układu ma wtedy postać :

Z dokładnością do czynnika (VK –1) jest to taka sama macierz jak dla układu 
bez degradera (patrz Wykład 12, str. 10) ! W szczególności, jeśli układ bez 
degradera był achromatyczny (D2=–D1V2), to taki pozostaje. 
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3. Tryb achromatyczny 
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Uzyskujemy tu tryb achromatyczny nawet wtedy, gdy separator przed włożeniem
degradera nie był achromatyczny. Jeżeli był (D2= –D1V2), to przypadek ten sprowadza
się do poprzedniego.   
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Przypadek szczególny : , 
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Nachylenie degradera pośrednie między trybem monoenergetycznym a dopasowanym
przez co układ staje się achromatyczny. 
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4. Jednorodny degrader 00 =⇒= KK D    θ
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Macierz układu przyjmuje wtedy postać :

Jest to tryb komplementarny do dopasowanego : pierwsze dwie kolumny są takie,
jak dla układu bez degradera. 

Kładąc 
KV
VDD 21

2 = otrzymujemy układ achromatyczny !

Układ taki nosi nazwę spektrometru strat energii.
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Przykład trybów pracy separatora

Zależność pędu (Bρ) od położenia (x) dla wybranego fragmentu w ognisku  
końcowym separatora FRS obliczona w przybliżeniu liniowym. 
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Parametry w a), b) i c) : achromatyczny spektrometr

z dopasowanym degraderem
mrad 5.5=Kθ

achromatyczny spektrometr,
degrader monoenergetyczny

mrad 4.12=Kθ

achromatyczny spektrometr,
degrader pośredni

mrad 0.9=Kθ

W przypadku d) D2

powiększone 2× , tak że

, 
2
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21 −=
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VD spektrometr dyspersyjny,
degrader pośredni, 

całość achromatyczna
mrad 0.9=Kθ

Przykład dla reakcji : 238U @1 AGeV + 9Be 212Pb (E.Hanelt, Ph.D, TH Darmstadt, 1991)


