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Introduction

The baryon asymmetry of the universe (BAU)

                                             

must be explained by some dynamical mechanism ⇒ baryogenesis

Sakharov’s conditions:

(1) and (2) are present in the SM – B+L anomaly ⇒ transitions between 
vacua with different (B+L) possible at T≳Mweak, where nonperturbative     
(B+L)-violating processes (sphalerons) are in equilibrium

Electroweak baryogenesis fails in the SM because (3) is not satisfied 
[also CP violation is too weak] ⇒ need either new physics at Mweak,  
or generate a (B-L) asymmetry  at T > TEW

(1) B violation
(2) C and CP violation
(3) departure from thermal equilibrium

nB − nB̄

nγ
" nB

nγ
= (6.21± 0.16)× 10−10 (WMAP 5y)



Leptogenesis (generation of a L asymmetry above TEW, which is then 
converted into a B asymmetry by sphalerons) belongs to the second class

Attractive mechanism since (in its simplest versions) connects neutrino 
masses to the BAU

A lot of work has been done in the past decade:

- refinement of the calculation of the generated baryon asymmetry (finite T 
effects, spectator processes, lepton flavour effects...)

- alternative scenarios to the standard one, including low-scale scenarios

- attempts to relate leptogenesis to measurable parameters, in particular to 
low-energy CP violation (no direct connection in general)

This talk: possibility of realizing successful (and possibly predictive) 
lepogenesis in SO(10) GUTs



A quick review of (standard) leptogenesis

Generate a B-L asymmetry through the out-of-equilibrium decays of the 
heavy Majorana neutrinos responsible for neutrino mass

Seesaw mechanism:

                                     ⇒

                           (Majorana) ⇒ decays both into l⁺ and l⁻

(Mν)αβ = −
∑

i

YiαYiβ

Mi
v
2 (v = 〈H〉)

Lseesaw = −
1

2
MiN̄iNi −

(

N̄iYiαLαH + h.c.
)

Γtree(Ni → LH) = Γtree(Ni → L̄H
!) =

Mi

16π
(Y Y

†)ii

N
c

i ≡ CN̄
T

i = Ni

(Fukugita, Yanagida)



CP asymmetry due to interference between tree and 1-loop diagrams:

                        ⇒

When M1 << M2, M3, L-violating processes involving N1 tend to erase the 
asymmetry generated from N2 and N3 decays, and it is often assumed that 
the final baryon asymmetry is dominated by the CP asymmetry in N1 decays:

Generated lepton asymmetry: 

    g∗ = total number of relativistic d.o.f. (g∗ = 106.75 in the SM)

    η = efficiency factor that takes into account the initial population of N1, 
the out-of-equilibrium condition for their decays, and the dilution of the 
lepton asymmetry by L-violating processes (                                       )LH → N1, LH ! L̄H!

· · ·

Γ(Ni → LH) "= Γ(Ni → L̄H
!)

εN1 ≡
Γ(N1 → LH)− Γ(N1 → L̄H!)
Γ(N1 → LH) + Γ(N1 → L̄H!)

$ 3
16π

∑

k

Im[(Y Y †)2k1]
(Y Y †)11

Mk

M1

YL ≡

nL − nL̄

s
= 0.42

η εN1

g!

Covi, Roulet, Vissani
Buchmüller, Plümacher



Conversion into a baryon asymmetry:   at T > Mweak, the sphalerons 
(which violate B+L, but preserve B-L) are in thermal equilibrium

    ⇒ YL partially converted into YB:

    hence 

Can leptogenesis explain the observed baryon asymmetry?

⇒ must compare YB computed from leptogenesis with observed value

    - η essentially depends on M1 and on                                   , which 
controls the out-of-equ. decay condition / strength of washout processes:

    - εN1 depends on the Ni masses and couplings, but is bounded by a simple 
function of M1, m1 and      [case                      ]:

<YB >T = C <YB−L >T C =
8Nf + 4NH

22Nf + 13NH
=

28

79
(SM)

m̃1 ≡ (Y Y †)11v
2/M1

m̃1

|εN1
| ≤

3

16π

M1(m3 − m1)

v2
f

(

m1

m̃1

)

0 ≤ f

(

m1

m̃1

)

≤ 1

M1 ! M2, M3

Davidson, Ibarra
Hambye et al.

ΓN1
< H(T = M1) ⇐⇒ m̃1 < m̃

!

1 = 2.2 × 10−3 eV

YB = −0.42C
η εN1

g!

= −1.4 × 10−3 η εN1
(SM)



Isocontours of η in the (           ) plane:

       weak washout regime: 

       strong washout regime:

                        (for                          and zero initial Ni abundance)
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Figure 8: Efficiency η of leptogenesis in the SM, assuming zero (dashed red line),
thermal (continuous blue line) or dominant (long dashed green line) initial N1 abundancy.
Upper plots: η as function of m̃1 (renormalized at mN1

) for mN1
= 1010 GeV. Lower plots:

contours of η(m̃1, mN1
) = 10−6,−5,...,0,1. In the shaded regions the neutrino Yukawa couplings

are non-perturbative.

keep N1 so close to thermal equilibrium that η does not depend on the unknown initial N1

abundancy (similarly, an eventual pre-existing lepton asymmetry would be washed out if
N1 Yukawa couplings act on all flavours).

At smaller m̃1 the efficiency η depends on the initial N1 abundancy, ranging between
the limiting cases (0) and (∞), as illustrated by the gray band in fig. 8. As expected, the
maximal value of η ∼ g∗ is reached at m̃1 ∼ m̃∗

1 ≡ 256
√

g∗v2/3MPl = 2.2 × 10−3 eV in
case (∞). In such a case, η decreases at m̃1 & m̃∗

1, because N1 decays out-of-equilibrium
at temperature TN1

RH ∼ mN1

√

m̃1/m̃∗
1 & mN1

so that N1 reheating washes out some lepton
asymmetry. In more physical terms, the particles H, L emitted in N1 decays have energy
larger than the temperature T , and split up in ∼ mN1

/TN1

RH particles without correspond-
ingly increasing the lepton asymmetry, so that η ∼ g∗

√

m̃∗
1/m̃1.

When m̃1 <∼ 10−6 eV, N1 reheating starts to be significant even in case (1) giving η < 1.

19

(Giudice et al.)

m̃1 ! m̃!
1 ⇒ η ∼ m̃1/m̃!

1

m̃1 ! m̃!
1 ⇒ η ∼ (m̃!

1/m̃1)1.16

M1 ! 1014 GeV

m̃1, M1



Region in the (           ) plane where leptogenesis can reproduce the 
observed baryon asymmetry:

              Case

                      (Giudice et al.)

⇒                                            depending on the initial conditions

Case               : if                       , the self-energy part of εN1 has a resonant 
behaviour, and                       is compatible with successful leptogenesis 
(“resonant leptogenesis”)
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Figure 9: Allowed range of m̃1 and mN1
for leptogenesis in the SM and MSSM assuming

m3 = max(m̃1, matm) and ξ = m3/m̃1. Successful leptogenesis is possible in the area inside
the curves (more likely around the border).

In fact, even if N1 initially has a thermal abundancy ρN1
/ρR ∼ gN1

/g∗ " 1, its contribution
to the total density of the universe becomes no longer negligible, ρN1

/ρR ∼ (gN1
mN1

)/(g!T ),
if it decays strongly out of equilibrium at T " mN1

. For the reasons explained above, this
effect gives a suppression of η (rather than an enhancement), and for very small m̃1 the
case (1) and (∞) give the same result.

The lower panel of fig. 8 contains our result for the efficiency |η| of thermal leptogenesis
computed in cases (0), (1) and (∞) as function of both m̃1 and mN1

. At mN1
>∼ 1014 GeV

non-resonant ∆L = 2 scatterings enter in thermal equilibrium strongly suppressing η.
Details depend on unknown flavour factors.

Our results in fig. 8 can be summarized with simple analytical fits

1

η
≈

3.3 × 10−3 eV

m̃1

+

(

m̃1

0.55 × 10−3 eV

)1.16

in case (0) (40)

valid for mN1
" 1014 GeV. This enables the reader to study leptogenesis in neutrino mass

models without setting up and solving the complicated Boltzmann equations.

Implications

Experiments have not yet determined the mass m3 of the heaviest mainly left-handed
neutrino. We assume m3 = max(m̃1, matm). Slightly different plausible assumptions are
possible when m̃1 ≈ matm, and very different fine-tuned assumptions are always possible.

20

M1 ! M2, M3

M1 ≥ (0.5 − 2.5) × 109 GeV

|M1 − M2| ∼ Γ2

M1 ! 10
9
GeV

m̃1, M1

M1 ≈M2

Covi, Roulet, Vissani
Pilaftsis



Flavour effects in leptogenesis

“one-flavour approximation”: leptogenesis described in terms of a single 
direction in flavour space, the lepton                          to which N1 couples 
⇒ valid as long as the charged lepton Yukawas λα are out of equilibrium

At                     ,  λτ is in equilibrium and destroys the coherence of          
⇒ 2 relevant flavours:   Lτ and a combination of Le and Lµ

At                    , λτ and λµ are in equilibrium ⇒ must distinguish between  
Le , Lµ and Lτ

Relevant parameters for the discussion of flavour effects:

qualitatively                                ⇒ can deviate from the one-flavour 
approximation if e.g.                        and 

Barbieri, Creminelli, Strumia, Tetradis
Endoh et al. - Nardi et al. - Abada et al.
Blanchet, Di Bari, Raffelt - Pascoli, Petcov, Riotto - ...

L1 ∝ P
αY1αLα

T ! 1012 GeV L1

T ! 109 GeV

ε
α
N1

≡
Γ(N1 → LαH) − Γ(N1 → L̄αH")

Γ(N1 → LαH) + Γ(N1 → L̄αH")
m̃

α
1 ≡

|Y1α|2v2

M1

YB ≈ P
αεα

N1
η(m̃α

1 )
ετ
N1
! εe

N1
, εµ

N1
m̃τ

1 ! m̃e
1, m̃

µ
1



Right-handed neutrinos are suggestive of SO(10) unification:

However,   successful leptogenesis is not so easy to achieve in SO(10) 
models with a type I seesaw mechanism:

MD ∝ Mu ⇒ very hierarchical right-handed neutrino masses
              ⇒ M₁ << 10⁸ GeV , below the Davidson-Ibarra bound

Ways out:

 

Leptogenesis in SO(10) models

(i) 
(ii) B-L is a generator of SO(10) ⇒ the mass scale of the NR is associated 
with the breaking of the gauge group ⇒ MR >> Mweak natural

16 = (Q, ū, d̄, L, ē) ⊕ N̄

• flavour-dependent N2 leptogenesis [Vives]: N2 decays generate an 
asymmetry in a lepton flavour that is only mildly washed out by N1

• large corrections to MD = Mu

• other versions of the seesaw mechanism: type II (heavy scalar SU(2)L 
triplet exchange), type I + II (left-right symmetric seesaw mechanism)



Type I+II seesaw mechanism:

Right-handed neutrino mass matrix: 

     vR ≡〈ΔR〉 scale of B-L breaking

    ΔR = SU(2)R triplet with couplings fRij to right-handed neutrinos

vL is small since it is an induced vev: 

In a broad class of theories with underlying left-right symmetry (such as    
SO(10) with a        ), one has             and             

           ➞ left-right symmetric seesaw mechanism

ΔL = SU(2)L triplet with
couplings fLij to lepton doublets

vL ≡ 〈∆L〉 ∼ v2vR/M2
∆L

MR = fRvR

Mν = fLvL −

v2

vR

Y T f−1

R
Y ≡ M II

ν + M I
ν

SO(10) models with a left-right symmetric seesaw

Y = Y
T

126H fL = fR ≡ f



The SU(2)L triplet also contributes to leptogenesis. If M1 << MΔL, it mainly 
affects leptogenesis by contributing to the CP asymmetry in N1 decays:

The total CP asymmetry is (for                              ): 

Since the triplet is heavy, the dilution of the generated lepton asymmetry    
is mainly due to N1-related processes and depends on the effective mass 
parameter                                    as in the type I case 

In order to study leptogenesis, need to reconstruct the fij (which determine 
both the triplet couplings and the RHN mass matrix) as a function of the Yij 
(predicted by the theory) and of the light neutrino parameters (in principe 
accessible to experiment)

Hambye, Senjanovic –  Antusch, King

εII
N1

! 3
8π

∑

k,l

Im [Y1kY1l f!
kl vL ]

(Y Y †)11 v2
M1

m̃1 ≡ (Y Y †)11v
2/M1

εN1
= ε

I
N1

+ ε
II
N1

!

3

8π

∑
k,l Im [Y1kY1l (Mν)"

kl]

(Y Y †)11

M1

v2

M1 ! M2, M3, M∆L



Assuming that Y is known in the basis of charged lepton mass eigenstates,  
the LR symmetric seesaw formula

admits            solutions for f (for 3 generations) [Akhmedov, Frigerio]

➞ new possibilities for leptogenesis with respect to the type I case

One can obtain useful analytical expressions from a reconstruction 
procedure using complex orthogonal matrices [Hosteins, S.L., Savoy]

Application:  SO(10) models with two 10’s and a       in the Higgs sector

                     symmetric                               with

If the doublets in the       do not get vevs, this leads to:

(in general, Y and Mν contain physical high-energy phases)

Mν = fLvL −
v2

vR
Y f−1

R Y

23 = 8

126

Y (1), Y (2)

W ! Y
(1)
ij 16i16j101 + Y

(2)
ij 16i16j102 + fij 16i16j126

126 ! ∆L,∆R fL = fR = f

126
Md = MeY vu ≡MD = Mu

Reconstruction of the fij couplings
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Inputs: normal hierarchy with m₁ = 10ˉ³ eV,  θ₁₃ = 0,  all PMNS and high-energy 
phases vanish – v² = 0.1 vL vR



Among the 8 solutions, 3 different patterns emerge for leptogenesis:

- 2 solutions with a rising M1 ⇒ large εN1 for large vR

- 2 solutions with                       

- 4 solutions with                         ⇒ εN1 too small, but                            
or rises with vR ⇒ the observed baryon asymmetry could be generated 
from N2 decays (relevance of flavour effects)

In all cases, the washout tends to be important and a numerical resolution  
of the Boltzmann equations is required to tell whether some of these 
solutions lead to successful leptogenesis

Relevant ingredients: 

- contribution of N2

- lepton flavour effects (independent evolution of the asymmetries in the     
e, µ and τ flavours)

- corrections to Md = Me from appropriate SO(10) operators (affects the 
reconstruted RHN spectra)

M1 ∼ 105 GeV M2 ∼ few 109 GeV
M1 ∼ few 109 GeV



Solve the Boltzmann equations with flavour effects and decays of N₁ and N₂

Relevant quantities:

- flavour-dependent CP asymmetries:

- wash-out processes: ΔL and N₃ very heavy ⇒ associated wash-out 
processes suppressed. Furthermore, we neglect ΔL=2 processes since we 
deal with masses M₁ and M₂ < 10¹² GeV

⇒ only inverse decays and ΔL=1 scatterings associated with N₁ and N₂ 
enter the Boltzmann equations. The relevant washout parameters are:

Both the      and the       depend on the Mi and on the Yiα, hence on the 
reconstructed fij couplings

Computation of the baryon asymmetry

εα
Ni
≡ Γ(Ni → LαH)− Γ(Ni → L̄αH")

Γ(Ni → LαH) + Γ(Ni → L̄αH")

m̃α
i ≡ |Yiα|2v2

Mi

m̃α
iεα

Ni
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Figure 3: Final baryon asymmetry (left panels) and masses of N1 and N2 (right panels) as a function of vR in
the four reference solutions with a non-trivial Um and a non-vanishing Majorana or high-energy phase. The solid
green, dashed blue, dotted purple and dash-dotted red lines corresponds to the sets 1, 2, 3 and 4 described in the
Appendix, respectively. The other input parameters are as in Fig. 2.
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Inputs: normal hierarchy with m₁ = 10ˉ³ eV, θ₁₃ = 0, δ = 0, different choices of 
Majorana and high-energy phases – v² = 0.1 vL vR – Tin = 10¹¹ GeV

Successful leptogenesis possible for
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Successful leptogenesis possible for                       

The corrections to Md = Me play a crucial role here (not enough baryon 
asymmetry produced for Md = Me).
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In spite of a huge enhancement by flavour effects, the baryon asymmetry 
generated from N2 decays fails to reproduce the observed value (we did  
not find successful parameters – confirmed by Di Bari, Riotto in the type I 
case). Case + + – marginally successful, however not for TRH < 10¹⁰ GeV
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Impact of flavour effects (case Md = Me)
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Figure 2: The final baryon asymmetry as a function of vR for the four reference solutions, in the one-flavour
approximation (dashed black line) and with flavour effects taken into account (solid red line). The GUT-scale
mass relation Md = Me is assumed. Inputs: hierarchical light neutrino masses with m1 = 10−3 eV, θ13 = 0 and no
CP violation in the PMNS mixing matrix; Φu

2 = π/4 and all other high-energy phases are set to zero; β/α = 0.1.
The Boltzmann equations are evolved starting from Tin = 1011 GeV. The thick horizontal line corresponds to the
WMAP constraint.

successful for smaller values of vR (i.e. for smaller values of M1) than in the one-flavour approximation.
By contrast, solution (+,−,+) fails to generate the observed baryon asymmetry due to the strong
washout by inverse decays and ∆L = 1 scatterings, and this conclusion still holds for different choices
of the CP-violating phases.

Flavour effects have a much more dramatic impact in the (+,+,−) and (−,−,−) cases, which are
characterized by a strong hierarchy between M1 and M2. In these solutions, the observed enhancement
of YB is due to the fact that the asymmetry in a particular lepton flavour is only mildly washed
out by N1-related processes, while the total washout is strong. As a consequence, the asymmetry
generated in N2 decays is completely washed out in the one-flavour approximation, while its projection
on this particular flavour survives when flavour effects are taken into account. This effect, which has
been first identified in the type I seesaw framework in Ref. [23], will be discussed in greater detail in
Subsection 4.3. Despite the huge increase in YB, however, solution (−,−,−) fails to reach the WMAP
level, while solution (+,+,−) is marginally successful for vR ≈ 1014 GeV, where M2 ∼ Tin (for larger
values of vR, M2 $ Tin and N2 no longer contributes to YB, which then drops well below the WMAP
value).
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At              , the evolution of the flavour asymmetries                                   
generated in N2 decays is governed by the Boltzmann equation:

where

and W1(z) = rate of N1 inverse decays (main washout processes)

(using                                 ). If e.g.                                 , the asymmetry in 
the electron flavour is almost unaffected, while the asymmetries in the muon 
and tau flavours are exponentially diluted. This results in a large final B-L 
asymmetry. By contrast, in the one-flavour approximation, the asymmetry 
generated in N2 decays is completely washed out:

Flavour-dependent N2 leptogenesis

T !M2 Y∆α (∆α ≡ B/3− Lα)

(Y∆α)final ! (Y∆α)N2
e
−2|Aαα|κ1α

R∞
zin

dz W1(z)

! (Y∆α)N2
e−

3π
4 |Aαα|κ1α

κ1e ! 1! κ1µ, κ1τ
R∞
0 dz W1(z) = 3π/8

YB−L ! e−
3π
4

P
α κ1α (YB−L)N2

≪ (YB−L)N2

dY∆α

dz
! −2 |Aαα| κ1α W1(z) Y∆α(z)

z ≡M1/T , κ1α ≡ m̃α
1 /m̃"

1 , |Aαα| ≈ 1



Supersymmetric thermal leptogenesis ⇒ gravitino problem

If impose                            , only 4 solutions survive (generically)
No successful realization of “N2 leptogenesis” 
TRH < 1010 GeV
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Figure 10: Regions of the (vR, Tin) parameter space where |YB | > Y WMAP
B for solutions (+, +, +), (+,−, +) and

(+, +,−), and where |YB | > 0.1 Y WMAP
B for solution (−,−,−). These regions are delimited by the thick black

contour in the (+, +, +) case, the dashed red contour for (+,−, +), the long-dashed blue contour for (+, +,−),
and the thin black contour for (−,−,−). Inputs: set 1 of the Appendix for Um and the high-energy phases; other
input parameters as in Fig. 2.

5.3 Dependence on the reheating temperature

The numerical results presented so far were obtained starting the evolution of the Boltzmann equations
at Tin = 1011 GeV, in the approximation where the dynamics of reheating is neglected. In this ap-
proach, Tin can be identified with the reheating temperature. In order to estimate how severe the tension
between successful leptogenesis and the gravitino problem is, we therefore proceed to study the depen-
dence of the final baryon asymmetry on Tin. Fig. 10 shows the regions of the (vR, Tin) parameter space
where |YB | > Y WMAP

B for solutions (+,+,+), (+,−,+) and (+,+,−), and where |YB| > 0.1Y WMAP
B

for solution (−,−,−). The choice for Um and the high-energy phases corresponds to the set 1 of the
Appendix, the other input parameters being fixed as in Fig. 2. One can see that solution (+,−,+)
succeeds in generating the observed baryon asymmetry for values of Tin as low as 5×109 GeV, whereas
solutions (+,+,+) and (+,+,−) require Tin ! 7 × 109 GeV and Tin ! 3 × 1010 GeV, respectively.
While these numbers have been obtained for a particular choice of the input parameters, they unam-
biguously show that successful leptogenesis can be achieved with a reheating temperature below 1010

GeV in solutions (+,+,+) and (+,−,+). As for solution (+,+,−), Tin > 1010 GeV was found to be
a necessary condition for successful leptogenesis for all sets of input parameters we considered. This
allows us to conclude that, for generic input parameters, the solution (+,+,−) fails to generate the
observed baryon asymmetry if the reheating temperature is lower than 1010 GeV.

As discussed at the end of Section 3, there are strong constraints on the reheating temperature from
gravitino cosmology, and this potentially conflicts with successful thermal leptogenesis. Nevertheless,
some supersymmetric scenarios can accommodate a reheating temperature in the (109−1010) GeV range,
as required for solutions (+,+,+) and (+,−,+) to generate the correct amount of baryon asymmetry.
One possibility is that the gravitino is the LSP; the constraint that its relic density does not exceed
the dark matter abundance reads TRH " (109 − 1010) GeV for m3/2 ∼ 100 GeV [39]. This scenario
is further constrained by the requirement that the NLSP decays do not alter the success of Big Bang
nucleosynthesis (BBN), which can be satisfied e.g. by a sneutrino NLSP [72] or by assuming some
amount of R-parity violation [73]. Another way of avoiding the strong constraints on the reheating
temperature is to assume an extremely light gravitino [74], m3/2 ≤ 16 eV [75] (where the upper bound
comes from WMAP and Lyman-α forest data), or a very heavy gravitino [76], m3/2 ! 50 TeV. In
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plots: 

- successful flavour-dependent N2 leptogenesis (however, solution – – –  
fails if impose                           )

- solution + – + successful for vR as large as MGUT

Impact of corrections to MD = Mu
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Figure 9: The final baryon asymmetry as a function of vR for different values of y2, from y2/yc(MGUT ) = 0.1
(yellow/light grey) to y2/yc(MGUT ) = 10 (blue/dark grey). The reference case y2 = yc is plotted in black. Left
panel: solution (−,−,−), set 1 for Um and the high-energy phases; right panel: solution (+,−, +), set 4 for Um

and the high-energy phases. The other input parameters are as in Fig. 2.

5.2 Impact of corrections to the mass relation MD = Mu

In the preceding subsections, we studied the dependence of the final baryon asymmetry on the values
of the yet unmeasured light neutrino parameters. Let us now turn to the influence of the high-energy
Dirac couplings. So far we assumed that the mass relation MD = Mu holds at the GUT scale, while
Md = Me receives corrections from non-renormalizable operators. In this subsection, we study the effect
of a departure from MD = Mu. More specifically, we assume that MD and Mu are still diagonal in the
same basis16 but that their eigenvalues differ (yi "= yui). This has a direct impact on the right-handed
neutrino mass spectrum, since the Mi associated with some x−

j is to a good approximation proportional

to y2
j in the regime vR # 2σuv4

u/M∆|zj |2, while the Mi associated with some x+
j is independent of yj

(see the Appendix B of Ref. [29]). In particular, one has M1 ∝ y2
2 in solution (+,−,+) and M2 ∝ y2

2

in solution (−,−,−). One thus expects that raising y2 will enhance the final baryon asymmetry by
increasing the ε1α’s in the former case, and the ε2α’s in the latter case.

This is shown in Fig. 9, in which (y2/yc)(MGUT ) is varied between 0.1 and 10 in solutions (+,−,+)
(right panel) and (−,−,−) (left panel). We can see that the final baryon asymmetry increases with
growing y2 in both solutions. In particular, successful leptogenesis becomes possible in the (−,−,−)
case for large enough y2 (for y2 = 10 yc, however, N2 becomes too heavy to be thermally produced
above vR ∼ 1014 GeV, which results in the Boltzmann suppression of YB). This conclusion is however
dependent on the input Tin = 1011 GeV: it does not hold for the more realistic choice Tin = 1010

GeV (see the discussion in the next subsection about the gravitino problem). In the (+,−,+) case,
successful leptogenesis is possible for values of vR as large as a few 1016 GeV, and this conclusion also
holds for Tin = 1010 GeV. This is an interesting result, since gauge coupling unification favours a one-
step breaking of the SO(10) symmetry, with a B − L breaking scale close to the GUT scale (a lower
B − L breaking scale is however not excluded [71]). Fig. 9 also shows that y2 > yc allows solution
(+,−,+) to be successful with a Um containing only small mixing angles (set 4), thus alleviating the
constraints on the superpartner spectrum coming from the non-observation of lepton flavour violating
processes such as µ → eγ.

16This is a natural assumption if the CKM matrix mainly comes from the down quark sector. In this case, and in
the absence of cancellations between the different contributions to MD and Mu, both matrices have a strong hierarchical
structure with mixing angles smaller than the CKM angles. The relative rotation between the bases in which MD and Mu

are diagonal can then be neglected in the reconstruction procedure.
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Much more difficult: RHNs belong to the matter representation (16), hence 
are always around and couple to lepton doublets

Way out: “non-standard” embedding of the SM fermions into SO(10) 
representations

                  form a vector-like pair of matter fields

Motivation: E6? 

How to achieve this? 

SU(5) singlet in the 16:               ⇒ GUT-scale masses for 

                                heavy anti-lepton doublets and quark singlets

SM matter fields:

SO(10) models with type II seesaw mechanism

16i = 10i ⊕ . ⊕ 1i

10i = . ⊕ 5̄10
i

(510
i , 5̄16

i )

27i = 16i ⊕ 10i ⊕ 1i

W =
1
2

yij16i16j10 + hij16i10j16

v16
1 != 0 (510

i , 5̄16
i )

510
i ≡ (Lc

i , Di)

1016
i = (Qi, u

c
i , e

c
i ), 5̄10

i = (Li, d
c
i ), 116

i = νc
i



Quark and lepton masses:

No neutrino Dirac couplings at tree level: RHNs couple to heavy leptons

The heavy leptons (quarks) have hierarchical masses proportional to down-
type fermion masses:

Neutrino masses: 

⇒ 

where 

⇒ type II seesaw:

Assumed:

W =
1
2

yij16i16j10 + hij16i10j16

Mu = y v10
u Md = MT

e = h v16
d

Mi = hiv
16
1 = meiv

16
1 /v16

d

WII =
1
2

fij10i10j54 +
1
2

σ10 10 54 +
1
2

M54542

1
2

fijLiLj∆ +
1
2

σH10
u H10

u ∆̄ + M∆∆∆̄ + . . .

54 = 15⊕ 15⊕ 24 , 15 = (∆, Z,Σ) , ∆ = (1, 3)+2

Mν =
σ(v10

u )2

2M∆
f

- matter parity
- no mass term 10i 10j, no 54 vev ⇒ no mixing 5̄10

i / 5̄16
i



Requires a CP asymmetry in triplet decays. In standard triplet leptogenesis, 
the fij ’s are not enough: need a second set of (flavour) couplings, otherwise

⇒ introduce e.g. a second triplet with couplings f ’ij to leptons

⇒ loose predictivity: no direct connection between leptogenesis and 
neutrino masses (usual problem of leptogenesis: see e.g. Davidson et al, 
Petcov et al.)

However, in our scenario the states in the loop are heavy:

(the self-energy diagram does not contribute to the asymmetry)

Leptogenesis

ε∆ ∝ Im[Tr(ff∗ff∗)] = 0

∆s

Li

Lj

fij
∆s

L̃c
k

L̃c
l

S, T

Lj

Li

f ∗

kl

flj

fki

1

S, T ∈ 24



The      are heavy with hierarchical masses:

If e.g.                 , the trace is incomplete and 

Assuming                                     and                                       , one 
obtains:

 

 where

                   : opposite CP asymmetry           /                                 :       
no CP asymmetry 

∆s

Li

Lj

fij
∆s

L̃c
k

L̃c
l

S, T

Lj

Li

f ∗

kl

flj

fki

1

ε∆ ∝
∑

kl

ckl θ(M∆ −Mk −Ml) Im[fkl(f∗ff∗)kl]

L̃c
i

(M1, M2, M3) ∼ (2× 1011, 4× 1013, 7× 1014) GeV
(

tanβ

10

) (
v16
1

1016 GeV

)

M3 > M∆ ε∆ != 0

M1 !M∆ < M1 + M2 MS = MT = M24 !M∆

ε∆ ! 1
10π

M∆

M24

λ4
L

λ2
L + λ2

Lc
1
+ λ2

Hu
+ λ2

Hd

Im[M11(M∗MM∗)11]
(
∑

i m2
i )2

λ2
L ≡

3∑

i,j=1

|fij |2 , λ2
Lc

1
≡ |f11|2 , λ2

Hu,d
≡ |σ α2

u,d|2

∆s → L̃c
1L̃

c
1 ∆s → H̃dH̃d, HuHu(−ε∆)



➞      does not depend on high-scale flavour parameters - only on the light 
neutrino parameters and on

➞ the CP violation needed for leptogenesis is provided by the CP-violating 
phases of the PMNS matrix (the Majorana phases to which neutrinoless 
double beta decay is sensitive in the case                                   ) 

➞      can be large (     is bounded by perturbativity):

Dependence on the light neutrino parameters

Im[M11(M∗MM∗)11]
m4 = − 1

m4

{
c4
13c

2
12s

2
12 sin(2ρ)m1m2∆m2

21

+c2
13s

2
13c

2
12 sin 2(ρ− σ) m1m3∆m2

31 − c2
13s

2
13s

2
12 sin(2σ) m2m3∆m2

32

}

Uei = (c13c12e
iρ, c13s12, s13e

iσ)

ε∆
λL, λHu , λHd , M∆/M24

M1 < M∆ < M1 + M2

εmax
∆ ! 2.2× 10−4 λ2

L (maximum θ13) ,

! 3.4× 10−5 λ2
L (vanishing θ13) ,

ε∆ λ2
L
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                                    agrees with the WMAP value

if                     ⇒ the efficiency factor can be as small as                            
in the region where the CP asymmetry is maximal

This regime must be studied numerically. There is also a large efficiency 
regime that can be discussed analytically, namely the regime where

with 

Even though triplet decays are in equilibrium, a lepton asymmetry is 
generated thanks to               [Hambye, Raidal, Strumia]

Unfortunately, the condition              corresponds to a suppressed 
neutrinoless double beta decay rate, hence to a suppressed CP asymmetry 

nB

s
= 7.62× 10−3 η ε∆ (8.82± 0.23)× 10−11

η ε∆ ≈ 10−8 10−5 − 10−4

KLc
1
! 1 , KL, KHu ! 1 and M24 "M∆

Ka ≡ Γ(∆s → aa)/H(M∆) (a = L̃c
1, L̄, Hu)

KLc
1
! 1

KLc
1
! 1
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We find that successful leptogenesis is possible for                        

This scale is problematic in view of the gravitino problem, which requires
                                       in the most favourable cases (unstable gravitino 
with                          or gravitino LSP with harmless NLSP for BBN)

                                       
Ways out:

• very light gravitino (< 16 eV required by WMAP)

• very heavy gravitino (>> 100 TeV)

• non-thermal production of the triplets (                  )

• non-supersymmetric scenario with a real 54

M∆ ! 1012 GeV

TRH !M∆

TRH ! (109 − 1010) GeV
m3/2 ! 10 TeV



Conclusions

• Ways to realize successful leptogenesis in GUTs:

• Work in progress [L. Calibbi, M. Frigerio, S.L., A. Romanino]         

• SO(10) models with a left-right symmetric seesaw mechanism: 
successful leptogenesis even with MD = Mu

• SO(10) models with SM fermions split among 16 and 10 matter 
multiplets and type II seesaw ⇒ predictive leptogenesis

• build complete SO(10) models with SM fermions in 16 and 10 
matter multiplets

• study flavour violating effects in these models



Back-up slides



The starting point is the left-right symmetric seesaw formula:

with f, Y complex and symmetric. The goal is to reconstruct f assuming     
that Y is known in the basis of charged lepton mass eigenstates

Akhmedov and Frigerio (hep-ph/0509299) showed that there are     
solutions for n generations, connected 2 by 2 by a “seesaw duality”:

and provided explicit expressions for the fij up to n=3

In hep-ph/0606078, we proposed an alternative reconstruction procedure 
which employs complex orthogonal matrices

Reconstruction of the heavy neutrino mass spectrum

Mν = fvL −

v2

vR

Y f−1Y

2n

f −→ f̂ ≡ Mν

vL
− f



First rewrite the LR symmetric seesaw formula                                 as

with                                       and

               

where NY is such that                    (Y invertible)

Z complex symmetric ⇒ can be diagonalized by a complex orthogonal 
matrix OZ if its eigenvalues zi are all distinct:

Then X can be diagonalized by the same orthogonal matrix as Z, and its 
eigenvalues are the solutions of:

2 solutions            for each i ⇒ 2³ = 8 solutions for X, hence for f:

Z = OZDiag (z1, z2, z3)O
T

Z , OZOT

Z = 1

zi = αxi − βx−1

i
(i = 1, 2, 3)

f = NY OZ





x1 0 0

0 x2 0

0 0 x3



 OT
ZNT

Y , xi = x±

i

x
+

i
, x

−

i

Mν = αf − β Y f−1Y

Z = αX − βX−1

α ≡ vL , β ≡ v2/vR

Z ≡ N−1
Y Mν(N−1

Y )T X ≡ N−1
Y f(N−1

Y )T

Y = NY NT
Y



The corresponding right-handed neutrino masses Mi = fi vR are obtained by 
diagonalizing f with a unitary matrix:

and the couplings of the NR mass eigenstates are

f = Uf




f1 0 0
0 f2 0
0 0 f3



 UT
f , UfU†

f = 1

U†
fY



Note: diagonalization of a complex symmetric matrix by a complex 
orthogonal matrix

1) the eigenvalues of Z are the roots of 

2) the eigenvectors associated with zi are the solutions of

It is always possible to find solutions of the latter equation, but in case of 
multiple solutions, it is not always possible to find an orthonormal basis of 
the eigenspace. The problem arises when one non-trivial solution has a zero 
norm in the SO(3, C) sense, i.e.              ; then Z cannot be diagonalized.

If all eigenvalues of Z are distinct, the eigenvectors automatically satisfy
           , hence Z is diagonalizable (it can be written as                               )   

Det (Z − z1) = 0

Z.!v = zi!v

!v.!v = 0

!v.!v != 0 OZDiag (z1, z2, z3)OT
Z
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Figure 5: Regions of the (m1, vR) parameter space where |YB | > Y WMAP
B for solutions (+, +, +), (+,−, +) and

(+, +,−), and where |YB | > 0.1 Y WMAP
B for solution (−,−,−). These regions are delimited by the thick black

contour in the (+, +, +) case, the dashed red contour for (+,−, +), the long-dashed blue contour for (+, +,−),
and the thin black contour for (−,−,−). Inputs: set 1 of the Appendix for Um and the high-energy phases; other
input parameters as in Fig. 2.

of Ni is Boltzmann-suppressed for Mi > Tin. The behaviour of the other solutions is more interesting:
in all three cases, the final baryon asymmetry is suppressed for a quasi-degenerate light neutrino mass
spectrum. In the two solutions in which N2 leptogenesis plays a crucial role, namely (+,+,−) and
(−,−,−), this is due to the fact that the N1-induced washout becomes strong for all flavours, as a
result of the decrease of M1 (also, for (−,−,−), M2 decreases with growing m1). In the (+,−,+) case,
a larger m1 implies a smaller M1 and thus reduces the final baryon asymmetry. As a result, leptogenesis
fails for a quasi-degenerate light neutrino mass spectrum in all reference solutions but (+,+,+). For the
input parameters used in Fig. 5, successful leptogenesis requires m1 ! 0.01 eV for solution (+,+,−),
and m1 ! 0.05 eV for solution (+,−,+).

5.1.2 θ13 and δPMNS

We now turn to the dependence of the final baryon asymmetry on θ13 and δPMNS, the two unknown
light neutrino parameters which control the amount of CP violation in oscillations. In Fig. 6, we first
show the effect of varying θ13 alone, from our reference value θ13 = 0◦ to the experimental upper limit
θ13 = 13◦, assuming δPMNS = 0. The choice for Um and the high-energy phases corresponds to the
set 1 of the Appendix. Furthermore, the Boltzmann equations are evolved from a somewhat lower
initial temperature than in the previous plots: Tin = 7 × 109 GeV for (+,+,+) and (+,−,+), and
Tin = 5 × 1010 GeV for (+,+,−) and (−,−,−). The other input parameters are chosen as in Fig. 2.
As can be seen from Fig. 6, increasing θ13 generally reduces the final baryon asymmetry, especially in
solutions (±,±,−) where the effect is particularly pronounced. Solution (+,+,+) behaves differently,
although in this case too the maximum value of YB is obtained for small values of θ13.

One could be tempted to conclude from Fig. 6 that (at least for the chosen input parameters)
successful leptogenesis favours small values of θ13. However, it is not legitimate to impose δPMNS = 0:
since θ13 and δPMNS always appear in combination in UPMNS, one should study their joint effect on the
final baryon asymmetry. This is done in Fig. 7, for the same choice of input parameters as in Fig. 6, but
for a fixed value of the B −L breaking scale vR. One can see that successful leptogenesis is compatible
with a “large” value of θ13 (θ13 " 5◦) as soon as δPMNS is allowed to be different from zero. Such values
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Figure 6: The final baryon asymmetry as a function of vR in the four reference solutions, for δPMNS = 0 and
different values of θ13: θ13 = 0◦ (black), 2◦ (purple), 5◦ (blue), 9◦ (red) and 13◦ (green / light grey). Inputs:
set 1 of the Appendix for Um and the high-energy phases; Tin = 7 × 109 GeV for (+, +, +) and (+,−, +), while
Tin = 5 × 1010 GeV for (+, +,−) and (−,−,−); other input parameters as in Fig. 2.
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Figure 7: Contour lines of the ratio |YB|/Y WMAP
B in the four reference solutions, as a function of θ13 and δPMNS .

The input parameters are the same as in Fig. 6, and the B−L breaking scale has been fixed at vR = 5×1013 GeV
for (+, +, +) and (+,−, +), and at vR = 6 × 1013 GeV for (+, +,−) and (−,−,−).
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Figure 6: The final baryon asymmetry as a function of vR in the four reference solutions, for δPMNS = 0 and
different values of θ13: θ13 = 0◦ (black), 2◦ (purple), 5◦ (blue), 9◦ (red) and 13◦ (green / light grey). Inputs:
set 1 of the Appendix for Um and the high-energy phases; Tin = 7 × 109 GeV for (+, +, +) and (+,−, +), while
Tin = 5 × 1010 GeV for (+, +,−) and (−,−,−); other input parameters as in Fig. 2.
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Figure 7: Contour lines of the ratio |YB|/Y WMAP
B in the four reference solutions, as a function of θ13 and δPMNS .

The input parameters are the same as in Fig. 6, and the B−L breaking scale has been fixed at vR = 5×1013 GeV
for (+, +, +) and (+,−, +), and at vR = 6 × 1013 GeV for (+, +,−) and (−,−,−).
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