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Birefringence of CdS and CdSe crystals. 
 

The objective of the present experiment is to measure the birefringent response of CdS and CdSe 

through optical interference. The results of the experiment shall allow one to obtain the difference between 

refractive indexes along different directions in the solids considered, which can then be analyzed in the 

context of an excitonic model. 

 

1. What should you know before attempting the experiment? 

 

I- Basic knowledge of the physics of semiconductors [1, 2, 3, 5]: 

a. Band structure, electrons, holes, excitons, 

b. Mechanisms for light absorption above the absorption edge. Spectral response (shape) of 

different optical transitions, 

c. Selection rules for absorption. 

II-  Optical properties of semiconductors [1, 2, 3, 5]: 

a. Refractive index, 

b. Crystal birefringence [4], 

c. Relationship between optical constants (𝛼, n) – The Kramers-Kronig relation [7], 

III- Parameters of CdS and CdSe [6]: 

a. Crystal structure, 

b. Band structure around k = 0, energy gap, 

IV- Experimental techniques for the measurement of optical birefringence [6], 

V- Basic techniques for optical measurements 

a. Inner workings of a monochromator, 

b. Lockin-based (modulation-based) measurement techniques. 

 

 

To prepare for the experiment, you should be familiar with the text below. Special attention should be paid to 

terms and words in bold letters. 

 

In a crystalline solid, electrons are subjected to a periodic potential. Their wavefunction, in this situation, 

can be described in terms of Bloch functions. Free carriers in this material, thus, do not behave as non-

interacting electrons in vacuum. Instead, they have different values of mass and can possess positive charge. 

The latter are conventionally termed as holes, and usually inhabit the valence band of a material. Meanwhile, 

carriers with negative mass, called electrons, exist in the conduction band. In insulators or semiconductors, 

the conduction and valence bands are separated by an energy gap. 

 

Besides the well-known monoatomic 

semiconductors of the group IV of the periodic 

table, there exist a family of semiconductors 

composed by alloying elements of the family III 

and V of the periodic table, as well as alloying 

those of the family II and VI. These are named, 

rather dully, as II-V and II-VI semiconductors. A 

diagram representing different materials of these 

groups are presented in Fig. 1, together with their 

respective energy gaps. 

 

Semiconductors of the II-VI family are 

compounds in which cations are metals of the 

group II of the periodic table (Zn, Mg, Cd, Hg,Mg), 

whereas anions are elements of group VI of the 

periodic table (O, S, Se, Te). The width of the 

Energy gap in this family ranges from values close 

to 0 eV (CdHgTe) to those above 3.5 eV(ZnS). The 

 
Figure 1 – Gap vs. lattice parameter of alloys pertaining to the 

II-IV family. 
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possibility to achieve mixtures of alloys with fractional stoichiometries (e.g. Cd0.3Mn0.7Te as an alloy 

composed by 30% CdTe and 70% MnTe) allows the precise engineering of the energy gap of the 

semiconductors of this family. 

 

Conventional semiconducting alloys usually crystallize in two similar structures: Zinc-blend (cubic 

symmetry) and wurtzite (hexagonal symmetry). In the latter, one of the crystalline axis is differentiated, which 

enables the occurrence of a phenomenon known as birefringence. 

 

Light is an electromagnetic wave. In an isotropic medium, it can be described according to  

 

�⃗� = 𝐸0
⃗⃗⃗⃗ exp[𝑖(�⃗� ⋅ 𝑟 − 𝜔𝑡)] ,

�⃗� = 𝐵0
⃗⃗ ⃗⃗ exp[𝑖(�⃗� ⋅ 𝑟 − 𝜔𝑡)] (1.1)

 

 

where the electric field �⃗�  and magnetic field �⃗�  are orthogonal to the direction of propagation of the wave, 

denoted by �⃗� . Such a description means that light is a transversal wave, from which we may define its 

polarization. As a convention, the direction of the vector �⃗�  is chosen as the polarization axis of the light. In a 

material medium, the speed of light is reduced, with its wavevector amplitude being given by  

 

𝑘 = 𝑛
𝜔

𝑐
 (1.2) 

 

where n is defined as the refractive index of the medium in question. 

 

In medium with an anisotropic refractive index, the speed of propagation of the light depends on its 

polarization. In a birefringent crystal, the component of light with polarization parallel to the material’s optical 

axis will have a different propagation velocity, than light polarized perpendicular to it. Therefore, the 

refractive index of each polarization will be different (𝑛∥ ≠ 𝑛⊥). 

 

The spectra response of 𝑛(ℏ𝜔) below the absorption edge due to excitonic phenomena (crossed-

resonances) is well-described through  

 

𝑛(ℏ𝜔) = 𝑛0 +
𝑁𝑒2

2𝜀𝑚

(𝐸𝑋 − ℏ𝜔)

((ℏ𝜔)2 − 𝐸𝑋
2)2 + (ℏ𝜔)2Γ2 

, (1.3) 

 

Where 𝑁, 𝐸𝑋 and Γ are the density of states, Energy, and resonance widening due to excitons, respectively. 

The parameter 𝑛0 is the refractive index without any excitonic contribution. The widening of the excitonic 

resonance line Γ is caused mainly by oscillations of the atomic lattice (also called phonons), and possess a 

value of the order of few meV at room temperature. At lower temperatures, Γ tends to drop towards very small 

values. It is easy to see that if Γ → 0, equation (1.3) becomes simply a peak function of the type 𝛿(𝐸𝐺 − ℏ𝜔). 

 

Note that birefringence is affected by different selection rules for excitons, whose degeneracies of the 

energy spectra are lifted by crystalline fields in the solid. The spectral response of the refractive index of a 

birefringent material can be approximated by the function (see fig. 2a) 

 

Δ𝑛(ℏ𝜔) = Δ𝑛0 +
𝛽

((ℏ𝜔)2 − 𝐸𝐺
2)2 + (ℏ𝜔)2Γ2

, (1.4) 

 

Where 𝐸𝐺  is the gap energy and Γ is a broadening factor with different origins.  
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Because the refractive index 𝑛 and the absorption coefficient 

𝛼 are both functions of the dielectric constant 𝜀, it is possible to 

obtain one of these parameters by knowing the other. This is 

done through the Kramers-Kronig relation, which enables the 

calculation of the spectral response of 𝑛(ℏ𝜔) from the 

absorption spectra 𝛼(ℏ𝜔), and vice-versa, 

 

In the experiment treated here, the light will be led through a 

birefringent material (a crystal with Wurtzite structure), 

propagating perpendicular to the crystal’s optical axis. The 

polarization of the electric vector, therefore, will lie in the same 

plane of the optical axis, and shall be set at 45 deg. relative to it. 

This allows the description of the light propagation in the 

material as the superposition of two waves with orthogonal 

polarizations: one polarized perpendicular to the optical axis, 

and one polarized along it. Because the polarization is set at 45 

deg, both components will have the same amplitude, but will 

propagate in media with different refractive indexes and – 

therefore – at different (phase) velocities. When exiting the 

material, the phase difference between both light components 

will be given by 

 

𝜙 = Δ𝑛 × 𝑑 × 𝑘0 (1.5) 
 

with 𝑑 the crystal thickness and 𝑘0 the light wave vector in the air. By measuring the light emerging from the 

material at a polarization angle perpendicular to the incident beam, an interference pattern should be observed 

(work out why this happens and why for this polarization). For each 𝜙 = 2𝜋𝑗 (j integer),  a minimum of 

intensity will be observed (see fig. 2B). Through equation 1.2, it is possible to relate such intensity minima 

with the photon energy ℏ𝜔 according to 

 

ℏ𝜔 =
ℎ𝑐

𝑑 ⋅ Δ𝑛
𝑗, 𝑜𝑟 

Δ𝑛(𝜔) =
2𝜋𝑐

𝑑 ⋅ 𝜔
𝑗,        𝑗 = 1,2,3… (1.6) 

 

Therefore, the interference pattern of the transmitted light shall allow the extraction of the spectral response 

Δ𝑛(ℏ𝜔). 

 

2. Experimental procedure 

 

A. Prepare the optical setup for measurements: 

a. Measure the sensitivity of the experimental setup with two different detectors 

b. Define the figure of merit of the polarizers available 𝐷(ℏ𝜔): 

𝐷(ℏ𝜔) =
𝐼∥(ℏ𝜔) − 𝐼⊥(ℏ𝜔)

𝐼∥(ℏ𝜔) + 𝐼⊥(ℏ𝜔)
, (2.1) 

where 𝐼∥ and 𝐼⊥ are the transmitted light intensities through two polarizers in the co- 

and cross-polarized configurations, respectively, 

B. Measure the transmission spectra for CdS and CdSe (use the appropriate polarizer and 

detector), 

C. Measure the spectral response of the birefringence for CdS and CdSe through the 

interference method, 

D. Analyze the results using a model accounting for the light-matter interaction. 

 

3. How to prepare the report 

 

The report should contain the following sections: 

1. Abstract, 

 
Figure 2 – A) Dispersion spectrum and B) 

interference spectrum in a birefringent material 
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2. Theoretical introduction, 

3. Description of the samples and experimental setup, 

4. Results and their analysis, 

5. Summary and conclusions, based on the measured data. 

 

Please note that: 

 

1. The abstract should consist of a few sentences containing the description of the experiment and its 

main results, 

2. All equations should be justified, and their origins explained, 

3. In the description of the experimental setup, the characterization of the polarizers (𝐷(ℏ𝜔)) and the 

calibration curves of the monochromator (using different detectors) should be presented. 

4. The results of the experiment are the transmission and interference spectra. Considering the 

transmission spectra (and the optical response of the detectors), one should calculate the spectral 

response of the absorption coefficient 𝛼(ℏ𝜔). At the same time, the interference spectra should be 

analyzed in order to determine the number j of interference fringes and to obtain Δ𝑛(ℏ𝜔) through 

equation 1.6. We define the number j by assuming that 𝑗(ℏ𝜔 = 0) = 0, and Δ𝑛 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 for 

small values of j (define small). 

The spectral response Δ𝑛(ℏ𝜔) should be discussed and adjusted through the theoretical equation 

(1.4). The fitting parameters are Γ, Δ𝑛0 and β. Take 𝐸𝑔 as known from the literature and assume that 

𝛽 is a negative number.  

5. Provide a physical explanation for the observed results. 

6. When preparing the presentation, please remember that figures must be correctly labelled (e.g. Fig. 

1, 2, 3, etc...), and should be referred by their labels (NOT by “see the figure below”). Figures should 

be accompanied by a description below the figure. Tables (if any) should also be numbered. 

However, differently from figures, tables are titled (i.e. the description is atop the table, not below 

it). Whenever a reference is used, or results from other authors are cited, they should follow with the 

appropriate reference between brackets (e.g. [1]). The referencing style is up to the author of the 

report, but should be consistent. 

 

4. Further reading 

 

1. J. Ginter - „Wstęp do fizyki atomu, cząsteczki i ciała stałego” 

2. K. W. Szalimowa - „Fizyka półprzewodników”  

3. T. S. Moss - „Optical properties of semiconductors”  

4. S. Pieńkowski - „Fizyka doświadczalna”, tom III - Optyka  

5. J. Pankove - „Zjawiska optyczne w półprzewodnikach”  

6. M Nawrocki, JA Gaj, J Żuk , 'Birefringence of CdSe and CdS in the vicinity of the fundamental absorption 

edge',  physica status solidi (b) 68, K181 (1975) https://doi.org/10.1002/pssb.2220680264 

W. Wardzyński 'Dichroism and birefringence of single crystals of cadmium selenide', Proc. Roy. Soc. A 

260, 370 (1961) https://doi.org/10.1098/rspa.1961.0039 

7. http://en.wikipedia.org/wiki/Kramers-Kronig_relations  

8. Encyklopedia fizyki lub Wikipedia w wersji angielskiej - hasło: monochromator, 

K.K., R.S., BC  08. IV 
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Appendix A: phase-locked voltmeter (Lockin) 

 

A phase-locked voltmeter is a device that measures the component of voltage that is modulated to a certain 

frequency. All other components of the signal (with different frequencies) are disregarded. This allows a 

very precise noise rejection, by exciting the system with a known frequency and measuring only the system 

response at the same frequency of the excitation. A visual explanation of the procedure is shown in fig. A1 

 

 
  

  

 
 

Rys. A1. Principle of working of a phase-locked voltmeter. The signal (lower curve) is compared with the 

excitation (upper curve). The excitation is known. The output of the measurement is calculated as the 

difference between the measured signal during the “0n” cycle (taken as the average of the signal during 

that period) minus the signal during the “off” cycle. By using this method, all frequencies much larger 

or much lower than the excitation signal are rejected. 

 

For more information, look at „lockin amplifiers” on Wikipedia, or the encyclopedia of your choice 

 

https://en.wikipedia.org/wiki/Lock-in_amplifier 

(last accessed on 08.04.2023) 
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