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@ LH systems
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Lie systems

A Lie system! on a manifold M is a first-order system of ODE'’s in
normal form on M which admits a superposition rule

1J. de Lucas and C. Sardén. A Guide to Lie Systems with Compatible
Geometric Structures. (Singapore: World Scientific) 2020.
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is the general solution of the system, where A € M is a point
related to the initial conditions.

Some examples

(1) N-dimensional t-dependent frequency
Smorodinsky—-Winternitz oscillator.

(2) Riccati equations and Kummer—Schwartz equations.
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Lie systems

A Lie system! on a manifold M is a first-order system of ODE'’s in
normal form on M which admits a superposition rule, i.e., a
t-independent map ® : M x M — M such that

X(t‘) = Cb(X(l)(t), ce ,X(k)(t); )\)

is the general solution of the system, where A € M is a point
related to the initial conditions.

Some examples

(1) N-dimensional t-dependent frequency
Smorodinsky—-Winternitz oscillator.

(2) Riccati equations and Kummer—Schwartz equations.

(3) New!: t-dependent electromagnetic fields and t-dependent
coupled oscillators.

1J. de Lucas and C. Sardén. A Guide to Lie Systems with Compatible
Geometric Structures. (Singapore: World Scientific) 2020.
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Characterizing Lie systems

Theorem (Lie—Scheffers, 1893)

A first-order system of ordinary differential equations X on a
n-dimensional manifold M of the form

dx;
d—);:X;(t,x), 1<i<n

admits a superposition rule if and only if
(i) Exist 3 € C*(R), 1 <i </,

X(t, x) = B'(£)Xi(x),
(ii) The real Lie algebra (Vessiot—Guldberg Lie algebra)

VX =R(X;:1<i</)

is ¢-dimensional.




A Lie system X on a symplectic manifold (M, w) is a Lie-Hamilton
system if VX C Ham(M,w).
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A Lie system X on a symplectic manifold (M, w) is a Lie-Hamilton
system if VX C Ham(M,w). Then, ix,w = dh; for each t € R and
Heo = Lie({ht}ier s 1+ -}o) is the Lie=Hamilton algebra of X.

Some remarkable facts about LH systems

(1) LH systems on R? have been classified under local
diffeomorphisms?®.

(2) The LH algebra H,, has a natural coalgebra structure which
helps to obtain a superposition rule®.

(3) Quantum group theory can be applied to H,,, yielding to the
so-called Poisson—Hopf deformations of LH systems.

? A. Ballesteros, A. Blasco, F. J. Herranz, J. de Lucas and C. Sardén.
Lie—Hamilton systems on the plane: Properties, classification and applications. J. Diff.
Equ. 258 (2015) 2873-2907.

bA. Gonzélez-Lépez, N. Kamran and P. J. Olver. Lie Algebras of Vector Fields in
the Real Plane. Proc. London Math. Soc. 64 (1992) 339-368.

°A. Ballesteros, J. F. Carifiena, F. J. Herranz, J. de Lucas and C. Sardén. From
constants of motion to superposition rules for Lie-Hamilton systems. J. Phys. A:
Math. Theor. 46 (2013) 285203.
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@ Representation theory approach
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Lie systems from representations?

= g r-dimensional real Lie algebra with generators Xi,..., X,.

2R. Campoamor-Stursberg. Reduction by invariants and projection of linear
representations of Lie algebras applied to the construction of nonlinear realizations. J.
Math. Phys. 59 (2018) 033502.

R Campoamor-Stursberg. Invariant functions of vector field realizations of Lie
algebras and some applications to representation theory and dynamical systems. J.
Phys.: Conf. Ser. 1071 (2018) 012005.
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Lie systems from representations?

= g r-dimensional real Lie algebra with generators Xi,..., X,.
= [ :g— gl(nR) faithful representation of g.
= (Linear) realization ®r : g — X(R") spanned by

X, = or(X,) = x'T(X

af%’ 1§a§r

= Lie system X on R” given by

X = ba(t)Xa-
a=1

With VG Lie algebra VX = R(Xy,...,X,) ~ g.

2R, Campoamor-Stursberg. Reduction by invariants and projection of linear

representations of Lie algebras applied to the construction of nonlinear realizations. J.
Math. Phys. 59 (2018) 033502.

3R Campoamor-Stursberg. Invariant functions of vector field realizations of Lie
algebras and some applications to representation theory and dynamical systems. J.
Phys.: Conf. Ser. 1071 (2018) 012005.
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© New LH systems on T*RR?
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The Lorentz Lie algebra so(1, 3)

= Real form of s((2,C): so(1,3)c ~ sl(2,C).
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The Lorentz Lie algebra so(1, 3)

= Real form of s((2,C): so(1,3)c ~ sl(2,C).
= Spanned by J, P;, Ki, H (1 < i < 2), with commutation
relations

[vai]:Eiijv [JvKi]:EU}gv [JvH]:Ov [P17P2]:_Ja
[Ki, Kol =—d, [P, K] =—-0;H, [H,P]=-K [H,Ki] = —P.

= Faithful and irreducible representation I : s0(1,3) — gl(4,R)

Ki P> —-H-P, —J+ K
Ar — 1 —P, Ki —J+ K> H+ P
T2 -HAP Ut K K P

J+ Ky H-P; —P; —Ki



= Associated realization ®r : so(1,3) — gl(4,R)

1 9 9 d 9
Xy :=¢ = — i _ v
1 r(J) 5 <P2 o0 + p o5 Pag 8p2> ,

X o) % <p15q1 "~ P00~ T om +q268 >
K=o = 5 <”8§ & az "1 ai ap2>
= ol = 5 <qlfn P 23?32)
Xe 1= r(Kz) = % <p28<9€h+p186 +q26a +qlai2)
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= Induced Lie system X := 32°_, b,(t)X4

90 (ba(t)an + Bo(8)a + (ba(t) — bu(D)p + (ba(8) + bo(D))p2)
99 _ 2 (bs(t)ar + bs(8)a2 + (bu(1) + bo(8))pa + (bat) — b2(D))p2)
Ot 2 (~(Ba(t) + bu(®)as + (bo(e) — ba(t))az — bs(t)pr — ba(t)p)
P2 2 ((bo(t) — Bu(8)a + (ba(8) + ba(8)) 2 + bs()pr — Bs(£)p2)
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= Induced Lie system X := 32°_, b,(t)X4

90 (ba(t)an + Bo(8)a + (ba(t) — bu(D)p + (ba(8) + bo(D))p2)
99 _ 2 (bs(t)ar + bs(8)a2 + (bu(1) + bo(8))pa + (bat) — b2(D))p2)
Ot 2 (~(Ba(t) + bu(®)as + (bo(e) — ba(t))az — bs(t)pr — ba(t)p)
P2 2 ((bo(t) — Bu(8)a + (ba(8) + ba(8)) 2 + bs()pr — Bs(£)p2)

= w=dg; Adp; + dgo A dp> canonical symplectic form on
T*R? ~~ Lx_ w =0~ X is an LH system.
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= Induced Lie system X := 32°_, b,(t)X4

90 (ba(t)an + Bo(8)a + (ba(t) — bu(D)p + (ba(8) + bo(D))p2)
99 _ 2 (bs(t)ar + bs(8)a2 + (bu(1) + bo(8))pa + (bat) — b2(D))p2)
Ot 2 (~(Ba(t) + bu(®)as + (bo(e) — ba(t))az — bs(t)pr — ba(t)p)
P2 2 ((bo(t) — Bu(8)a + (ba(8) + ba(8)) 2 + bs()pr — Bs(£)p2)

= w=dg; Adp; + dgo A dp> canonical symplectic form on
T*R? ~~ Lx_ w =0~ X is an LH system.

= Hamiltonian functions (1x,w = dhy)

2

1 1
(@1q2+ prp2), o= 7 (a1 — 62 +pi —p2)  hs = 5 (a2 — qopy),

h = 2

=N =

1 1
hy = 2 (Qf - q§ - Pf + Pg) , hs = E(qlpl + q2p2), he = 5(“71‘72 + p1p2)

span an LH algebra H,, ~ so0(1, 3) with respect to {-,-}.



0000e000000000

= Choose a, € C*°(R) such that
a1 = bi+bs, a» := by—bs, az := bs, as := br+bs, as := bs, ag := b1—bs.
yielding to the change of basis

/ 1

hi == h1 + he = p1p2, hy ¢=h2—h4=§(Pf—P§)7
1

hs := hs = 5(@1p2 — q2p1) hy=ho+he =5 (a1 — a3)

’ 1

hs = hs = 2(ChPl + q2p2), hg == h — he = q1qo

on the LH algebra H,, ~ so(1,3).
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= Choose a, € C*°(R) such that
a1 = bi+bs, a» := by—bs, az := bs, as := br+bs, as := bs, ag := b1—bs.
yielding to the change of basis

, 1

hi :=h1 + he = p1p2, hy ¢=h2—h4=§(P1—P§)7
1 1

h = hs = >(q1p2 — 42p1) hy=ho+he =5 (a1 — a3)

, 1

hs == hs = > (aqp1 + q2p2), he := b — hs = 12

on the LH algebra H,, ~ so(1,3).

= Take a, = 0 for a # 2,3, 4, so hy, hs, hj span H,, ~ so(1,3)
and

a(t as(t
W= 2§ ) (Pt —p3) + 3§ ) (q102 — qopr) +

as(t) ( 2 2).

5 . —qz

is the t-dependent Hamiltonian of correspondent the system.
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= Choose a, € C*°(R) such that
a1 = bi+bs, a» := by—bs, az := bs, as := br+bs, as := bs, ag := b1—bs.
yielding to the change of basis

/ 1

hi :=h1 + he = p1p2, hy 1=h2—h4=§(P1—P§)7
1 1

hy = hs = 2(q1p2 — ¢2p1) hy = hy+ hy = 5 (Q% - qg) )
1

hs == hs = > (aqp1 + q2p2), he := h1 — he = q1q

on the LH algebra H,, ~ so(1,3).

= Take a, = 0 for a # 2,3, 4, so hy, hs, hj span H,, ~ so(1,3)
and

as(t)

B o= a(t) ( 2 2 :

5 P1—P2)+

(q1p2 — q2p1) +

as(t) ( 2 2).

5 . —qz

is the t-dependent Hamiltonian of correspondent the system.

= h, is the Lorentzian kinetic energy, hj is the angular

momentum and hj is the potential of the isotropic oscillator
on the Minkowskian plane M1 = (R? ds? = dg? — dq3).
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h' describes an LH system on T*M*!, which is a coupling
between two 1D LH systems on T*R through the angular
momentum term:

W o— (azél‘) P2+ a4§t) q%) _ (azét) P2+ a4£t) q%) n a_aét) (@ps — o).




Example: a t-dependent Bateman Hamiltonian

where




Example: a t-dependent Bateman Hamiltonian

(1) = s (1) = T aule) = m(09(),

Q(t) = \/ % (k(t) _ 47;((tt))>

and m(t), k(t),~(t) > 0, k(t) > 2

where

4m(t)"
L = g (Ot ) @ = gy 003 =)
= (MO @ —(0p), T = 5 (MR (e +(0)pr).

is a coupling of two 1D t-dependent harmonic oscillators.
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Example: a coupled Caldirola—Kanai Hamiltonian

m(t), k(t), y(t) > 0, )\(t)::%, Q(t) := /<)
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Example: a coupled Caldirola—Kanai Hamiltonian

m(e),K(E)A(0) >0, A =29, Q)= /4
az(t) 2f A(s) ds7 a4(t) _ m(t)Q2 f (s) ds’

()
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Example: a coupled Caldirola—Kanai Hamiltonian

m(t), k(£),7(t) >0, A1) =28, Q1) = /=4
az(t) ( ) 2f A(s) ds7 a4(t) _ m(t)Q2 f (s) ds’
dql = 1 -2 )\(s s
S f> |
% - % ( (e (e) f T - 33(t)P2> ;
% = % <m(t)ﬂ2(t)62 ‘]: A dSQ2 + a3(t)p1> .

is a coupling of two 1D Caldirola—Kanai Hamiltonians.
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The symplectic Lie algebra sp(4,R)

= Creation and annihilation operators a; and a:-f 1<i<2):

[ai, a}L] = 4§y, [ai, aj] = [a,T, a}L] =0.
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The symplectic Lie algebra sp(4,R)

= Creation and annihilation operators a; and a:-f 1<i<2):

[ai, a}L] = 4§y, [ai, aj] = [a,T, a}L] =0.

= 5p(4,R) spanned by a;faj, a:.ra;-f and a;a;.
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The symplectic Lie algebra sp(4,R)

= Creation and annihilation operators a; and a:-f 1<i<2):

[ai, a}L] = 4§y, [ai, aj] = [a,T, a}L] =0.

= 5p(4,R) spanned by a;faj, a:.ra;-f and a;a;.
= Label the basis as
X,',j = a;faj, X—i,j = a;(a;,r, Xi,—j = ajaj,
with

Xij+eieiX—j—i =0, i :=sgn(i), gj :=sgn(j), —-2<i,j<2.
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The symplectic Lie algebra sp(4,R)

= Creation and annihilation operators a; and a:-f 1<i<2):

[ai, a}L] = 4§y, [ai, aj] = [a,T, a}L] =0.

= 5p(4,R) spanned by al [aj, a; JT and a;a;.
= Label the basis as
Xiaj = ajajy X—i,j = aja}, Xi,—j ‘= ajaj,

with

XijteiejX_j—i =0, i :=sgn(i), gj :=sgn(j), —-2<i,j<2.

= Commutation relations:

[Xf,jvxk,ﬁ] = 6ijf,IZ_6i£Xk,j+€i€j5j,7[Xk,71—6,‘6j5,',,kxijg, —2< 0, k0 <2,
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= Fundamental representation I, : sp(4,R) — gl(4,R)

X1,1 X2 —Xo11 —Xoi2
ol X Xep —Xiip —Xoop
@1 Xymr X2 —Xia —X2,1
Xi,—2 Xo,—2 —Xip2 —X2,2

Ar



= Fundamental representati

X1,1
Xo,1
X1,-1
X1,—2

Ar

w1 =

= Associated realization ®r,

1o} 1o} 1o} 0
X;=0r, (Xi1)=gim=— —p1=——, Xo:=&r, (X12)=q1— —p2=—,
1 Dl( 1,1) = q dar Plap1 2 r 1( 12) = q1 Ers p26p1
15} 0 0 0
X3 :=®r, (Xo01)=qr=— —p1=— Xy = dr (Xo,)=go— —
3 Fo; (X2,1) = @2 oa P1 o 4 Fo; (X2,2) = @2 i P2 o
o} 0
X5 = q>rW1 (X_l’l) = Q15— ap X6 = q)rwl (X_172) = _q267p1 - q187p27
X7 :=&r, (X_22) = —qo=— 9 Xg =&, (Xi,-1) = P1i7
wy ap w ) q
Xg :=®r, (Xi,-2) = —84- — X =P, (Xo,—2) = 9
9= ®r, (X1,—2) = p28q1 p1 90 10 = Pr,, (X2,—2) = p28q2'

on I, :sp(4,R) — gl(4,R)
X2 —Xo11 —Xoi2
Xop —X_o1p —X_o2p
Xi,—2 =X —X2,1
Xo,—2 X2  —X22

sp(4,R) — X(T*R?)

000000000800 00
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= Induced Lie system X = Y"1 b, (£)X,

S~ bi(t)ar — ba(t)ax + (1) + bo(E)p,

d
% = bo(t)q1 + ba(t)q2 + bo(t)p1 + bro(t)p2,

d
5 = —by(t)p1 — ba(t)p2 — bs(t)q1 — bs(t)q2,

% = —bs3(t)p1 — ba(t)p2 — bs(t)qr — br(t)qa.
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= Induced Lie system X = Y"1 b, (£)X,

% = bi(t)q1 — bs(t)q2 + bs(t)p1 + bo(t)p2,

% = ba(t)qu + ba(t)g2 + bo()pr + bro(t)p2,
% = —bi(t)pr — ba(t)p2 — bs(t)q1 — bs(t)qo,
% = —b3(t)p1 — ba(t)p2 — bs(t)q1 — br(t)qo.

= w=dg; ANdp; + dgz A dps canonical symplectic form on
T*R? ~~» Lx_ w =0~ X is an LH system.
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= Hamiltonian functions (tx,w = dhy)

h1 = qip1, h2 = qup2,

1
hs = q2p1, hs = q2p2, hs = qu,
1 1 1
hs = q1q2, hy = 5(757 hg = Epf’ ho = p1p2, hio = §P§

span an LH algebra H, ~ sp(4,R).
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= Hamiltonian functions (tx,w = dhy)

h1 = qip1, h2 = qup2,

1
hs = q2p1, hs = q2p2, hs = qu,
1 1 1
hs = q1q2, hy = 5(757 hg = Epf’ ho = p1p2, hio = §P§

span an LH algebra H, ~ sp(4,R).
= hy, h3, hs, h7, hg and hyg are a set of generators

bs(t t bg(t bio(t
h= by(t)qupa2 + bs(t)qepr + Sé Do 4 b7§ )ed + 8§ ) p2 4 102( )p2.
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Example: a t-dependent electromagnetic field

= Take mj, e,y € C*(R) (1 < i< 2) such that
my(t), ma(t) > 0 and 4(t) # 0.
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Example: a t-dependent electromagnetic field

= Take mj, e,y € C*(R) (1 < i< 2) such that
my(t), ma(t) > 0 and 4(t) # 0.
= t-dependent vector potential A on R3 given by

1

1
Avi=—san(t), A= oan(t), As=0.
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Example: a t-dependent electromagnetic field

= Take mj, e,y € C*(R) (1 < i< 2) such that
my(t), ma(t) > 0 and 4(t) # 0.
= t-dependent vector potential A on R3 given by

1 1
Avi=—san(t), A= oan(t), As=0.

= Scalar potential

1 1
o=d1+d2,  di=5a, d=5q
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Example: a t-dependent electromagnetic field

= Take mj, e,y € C*(R) (1 < i< 2) such that
my(t), ma(t) > 0 and 4(t) # 0.
= t-dependent vector potential A on R3 given by

A= *%Qﬂ(f)a Ax = %qw(t% As :=0.
= Scalar potential
pi=pitb b= idh b= d
- Choose
br(6) = () + L0, () = s b0 = s
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= t-dependent Hamiltonian

he = (P — e(t)Ar)? +el(t)¢1+ (P2 — ex(t)A2)*+ex(t) 2

2my(t) (t)
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= t-dependent Hamiltonian

h =

(pr = er(t)Ar)* +er (D)ot 5 (P2 — e(t)A2) +ea(t)d

2my(t) (t)

= t-dependent magnetic field
B=V xA=(0,0,7(t)).
= t-dependent electric field

OA 1 . .
=-Vo¢— Friab) (=2q1 — q19(t), =292 + q2%(¢),0) .
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= t-dependent Hamiltonian

e = (p2 — ex(t)A2)’ +ex(t) o

(pr— el(t)Al) +61(t)¢1+

2my(t) (t)

= t-dependent magnetic field
B=V xA=(0,0,7(t)).
= t-dependent electric field

OA 1 . .
=-Vo¢— Friab) (=2q1 — q19(t), =292 + q2%(¢),0) .

The coupled systems obtained from so0(1,3) can be generalized to
sp(4,R)-LH systems consisting on different coupled oscillators in a
natural way.
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@ Conclusions and open problems



Conclusions and open problems

= Reduction by scaling symmetries. Contact Lie systems on
three-dimensional Riemannian and Lorentzian spaces of
constant curvature (Cayley—Klein approach).
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Conclusions and open problems

= Reduction by scaling symmetries. Contact Lie systems on
three-dimensional Riemannian and Lorentzian spaces of
constant curvature (Cayley—Klein approach).

= Construction within sp(2/N,R).
= Poisson—Hopf deformations of the sp(4,R)-LH systems.
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