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Motivation
How to model a system?



Motivation
Modeling control systems based on data

I The parametric modeling is very time-consuming or even unfeasible.

I Limited to the number of parameters to estimate.

I The modern control methods based on data-driven approaches as
neural networks, in general, does not present safety guarantees (i.e.,
a quantification of the uncertainty in the modelization).

Lack of safety guarantees

I There is a need to construct algorithms based on data guaranteeing
the security of the system.



Overview modeling

¿Why are data-driven models so interesting?



Data-driven control design



Parametric modeling

¿Which model is correct?

Number of fixed parameters to estimate θ, with prediction based on the
parametric model estimated.

The complexity of the model is limited due to fixed number of parameters



Non-parametric modeling - Data driven modeling

Properties:

I The model scales/adapts with the number of data N .

I Depends on the set of data D = {X,Y },
I The complexity of the model is not limited, the model learns from

the data

I Very flexible but often “black-box”behavior” (lost of interpretability).

I Probabilistic interpretation with Bayesian statistics. In particular,
Gaussian regression models



Bayesian Statistics
I Combines previous knowledge with data to obtain an improved

model through Bayes theorem

I Model M, data D, previous information of the model θ.

I Prior: Previous knowledge without data.

I Posterior: New knowledge with data.

I Likelihood: Likelihood of the data D with model M and parameters
θ.

Gaussian processes extends the concept of Gaussian distribution to
an infinity collection of variables.

I This extension permits to think a Gaussian process as a distribution
over functions and not only over vectors of random variables.

I In general, Gaussian processes are defined as a distribution over
probability functions.



Overview of the course

• Session 1:

(I) Introduction, motivation and background for the course.

(II) Data-driven modeling with Gaussian Processes.

(III) Learning-based tracking control of Lagrangian systems with uncertain
dynamics.

• Session 2:

(I) Online learning-based formation control of multi-agent systems.

(II) Online learning-based flocking control of multi-agent systems.

• Session 3:

(I) Online learning-based trajectory tracking for underactuated vehicles with
uncertain dynamics.

(II) Learning-based fault-tolerant control for an hexarotor with model
uncertainties.



Multivariate Gaussian distributions

Gaussian distributions can be extended to a finite collection of variables,
considering µ ∈ Rn which represents the different means, and a
covariance matrix Σ with dimensions n× n which is symmetric and
positive definite.

Definition
For ~x ∈ Rn, the density function for a multivariate Gaussian distribution
is given by

P (~x) =
1

(2π)n/2|Σ|1/2
exp

(
−1

2
(~x− µ)T Σ−1(~x− µ)

)
where |Σ| denotes the determinant of Σ.

Gaussian processes (GPs) extend the concept of Gaussian distributions to
an infinite collection of variables.

I This extension allows us to think of a Gaussian process as a
distribution over functions and not just over vectors of random
variables.

I In general terms, Gaussian processes are defined as a distribution
over probability functions.
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Review on Lyapunov stability

Lyapunov’s direct method is concerned with autonomous dynamical
systems

ẋ = f(x), (1)

where f : Rd → Rd is a continuous function.

An equilibrium of (1) is defined as a state x ∈ Rd, such that f(x) = 0.

Without loss of generality, we assume that the origin is an equilibrium,
i.e., f(0) = 0.

Note that this assumption does not pose a relevant restriction since a
change of variables can always be used to ensure it.

Lyapunov stability theory investigates the asymptotic behavior of
solutions x(·) of dynamical systems (1) in the neighborhood of equilibria.



Review on Lyapunov stability

Definition
The equilibrium point x = 0 of (1) is
• stable if, for each c1 ≥ 0, there is c2 > 0 such that

||x(0)|| < c2 =⇒ ||x(t)|| ≤ c1, ∀t ∈ R≥0;

• asymptotically stable if it is stable and c2 can be chosen such that

||x(0)|| < c2 =⇒ lim
t→0

x(t) = 0,

• unstable if it is not stable.

Since we generally cannot determine closed-form solutions for nonlinear
dynamical systems, directly using the conditions in the previous definition
is not possible.

Therefore, the the behavior of a proxy function V : Rd → R≥0, the
so-called Lyapunov candidate, is investigated. The theoretical foundation
of this approach, which is commonly referred to as Lyapunov’s direct
method is given by the following theorem:



Review on Lyapunov stability

Theorem
Let x = 0 be an equilibrium point of (1) and S ⊂ Rd be a domain
containing x = 0. Let V : Rd → R≥0 be a continuously differentiable
function such that V (0) = 0, V (x) > 0 for all x ∈ Rd\{0} and
V̇ (x) ≤ 0, for all x ∈ S, then x = 0 is stable. Moreover, if V̇ (x) < 0 for
all x ∈ S\{0}, then x = 0 is asymptotically stable.

Once a Lyapunov candidate has been chosen, this theorem provides
stability conditions that can be directly evaluated. However, the results
are only qualitative due to the definition of the stability concepts.

In order to obtain quantitative guarantees for the evolution of the system
state x(t) in the proximity of an equilibrium, comparison functions can be
employed.



Lassalle’s invariance principle

The set M ⊂ Rn is said to be (positively) invariant set if for all y ∈M
and t0 ≥ 0, we have s(t, y, t0) ∈M , ∀t ≥ t0 where s(t, x0, t0) is the
solution of ẋ = f(x) at time t starting from x0 at t0.

Theorem (Lassalle’s principle):

Let V : Rn → R be a positive definite function such that on the compact
set

Ωc = {x ∈ Rn : V (x) ≤ c}

we have V̇ (x) ≤ 0. Define

S = {x ∈ Ωc : V̇ = 0}.

As t→∞, the trajectory tends to the largest invariant set inside S. In
particular, if S contains no invariant sets other than x = 0, then 0 is
asymptotically stable.



Learning methods
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Learning methods



Learning methods

Gaussian Processes: Prior knowledge + nonparametric + uncertainty
quantification



Gaussian process

What is a Gaussian Process? It is a Gaussian distribution over function
space.

Gaussian Processes are defined by the mean and covariance functions:

ϕGP (ξ) ∼ GP (m(ξ), k (ξ, ξ′))

I ξ values in the domain

I (ξ, ξ′),all possible pairs in the domain,

I m(ξ) is the mean function

I k (ξ, ξ′) is the covariance function.

C.E. Rasmussen. Gaussian processes for machine learning. MIT Press. 2006.

C. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.



Gaussian process

In other words, a Gaussian process is a collection of random variables, of
which any finite number has a joint Gaussian distribution.

[
y1

y2

]
∼ N

([
m(x1)
m(x2)

] [
k(x1, x1) k(x1, x2)
k(x2, x1) k(x2, x2)

])



Gaussian process

A precise, more explicit formulation is given in the following:

Definition
Let X be a (multidimensional) index set, and denote by {ϕ(x)}x∈X a
real valued stochastic process over X . Such a process is called Gaussian,
if and only if, any finite collection of random variables {ϕ(x1), . . . ϕ(xν)}
is a ν-dimensional multivariate Gaussian distribution.

A GP is fully specified by a mean function m(x) and a kernel function
k(x,x′) in function space

m(x) =E[ϕ(x)],

k(x,x′) =E[(ϕ(x)−m(x))(ϕ(x′)−m(x′))],

and thus, we can write

ϕGP (x) ∼ GP(m(x), k(x,x′))



Gaussian processes

• To understand the basic functioning of the GP, we have to move our
point of view from function to feature space.

• The GP model essentially circumvents the intrinsic limitations in
expressiveness of linear modeling by first projecting the inputs x,x′ into
some (high) dimensional feature space using the kernel function k(·, ·)
before employing a linear model there.

• The so called kernel trick allows for computationally efficient implicit
calculations in the feature space.

Figure: The mapping φ transforms the data points into a feature space where
linear regressors can be applied to predict the output.

• Therefore, the essential part in GP modeling concerns the kernel k(·, ·).
The mean function m(·) is often set to zero in practice, as this simplifies
calculation without limiting the expressiveness of the process.



Different kernels for the covariance function

Let the covariance matrix be denoted by Ki,j = k(xi, xj ; θK), where k
refers to the function kernel or covariance function, which establish the
correlations among different points of the process.

One of the most commonly used kernels in control theory is the square
exponential (SE) kernel with the form

kSE (xi, xj ;A,L) := A2 exp

{
− (xi − xj)2

2L2

}
+ σ2

nδij ,

where θK = A,L, σn ∈ R to be determined are called hyperparameters.

The hyperparameter A describes the signal variance which determines the
average distance of the data-generating function from its mean. The
length-scale L defines how far it is needed to move along a particular axis
in input space for the function values to become uncorrelated. σn is a
signal noise. The squared exponential kernel is infinitely differentiable,
which means that the GPR exhibits a smooth behavior.



Different kernels for the covariance function

• Apart from few exceptions, the kernel functions can be divided into two
classes: stationary and dot-product kernels.

• A kernel is called stationary, if the obtained covariances are invariant to
translations in the input space.

• A dot-product kernel depends on the non-stationary inner product
between inputs.

• Typically, non-constant stationary kernels depend on some kind of
distance measure between input samples.

• Part of the most widely used stationary kernel functions in machine
learning is the squared exponential kernel and Matérn kernel.



Other kernels: constant and linear kernels

The equation for the constant kernel is given by

k(z, z′) = ϕ2
1.

This kernel is mostly used in addition to other kernel functions. It
depends on a single hyperparameter ϕ1 ∈ R≥0.

The equation for the linear kernel is given by

k(z, z′) = zT z′.

The linear kernel is a dot-product kernel and thus, non-stationary. The
kernel can be obtained from Bayesian linear regression. The linear kernel
is often used in combination with the constant kernel to include a bias.



Other kernels: Polynomial and Matérn kernels

The equation for the polynomial kernel is given by

k(z, z′) = (zT z′ + ϕ2
1)p, p ∈ N.

The polynomial kernel has an additional parameter p ∈ N, that
determines the degree of the polynomial. Since a dot product is
contained, the kernel is also non-stationary. The prior variance grows
rapidly for ||z|| > 1 such that the usage for some regression problems is
limited. It depends on a single hyperparameter ϕ1 ∈ R≥0.

The equation for the (stationary) Matérn kernel is given by

k(z, z′)=ϕ2
1 exp

(
−
√

2p̌‖z − z′‖
ϕ2

)
p!

(2p)!

p∑
i=0

(p+ i)!

i!(p− i)!

(√
8p̌‖z − z′‖
ϕ2

)p−i
with p̌ = p+ 1

2 , p ∈ N. The Matérn kernel is a very powerful kernel and
presented here with the most common parameterization for p̌. Functions
drawn from a GP model with Matérn kernel are p-times differentiable.
This kernel is an universal kernel which will be explained next.



Universal Kernerls

We are interested in kernels with the following universal approximating
property:

Given any prescribed compact set Z of X , any positive number ε and any
function f ∈ C1(Z), there is a function g ∈ K(Z) such that

||f − g||Z ≤ ε,

where K(Z) := span{ky : y ∈ Z}, where k is a kernel function and
ky : X → R is the function defined at every x ∈ X by ky(x) := k(x, y).

The set K(Z) consists of all functions in C1(Z) which are uniform limits
of functions of the form

f :=
∑
j∈N

cjk(·, xj)

with cj ∈ R parameters typically obtained by training data.

Intuitively speaking, a GP with an universal kernel can approximate any
continuous function arbitrarly exact on a compact set.

Matérn and squared exponential kernels are universal.



Bayesian approach

The Bayesian approach to learning models differs from other methods in
two fundamental ways:

I an a prior distribution is selected based on prior knowledge,

I predictions about future observations are made by integrating the
model’s predictions regarding the a posterior distribution of the
parameters, which is obtained by actualizing the a prior distribution
with data.

This approach is actually very useful for Gaussian Process, as they have
the ability to incorporate new data into the process in a very simple way,
updating the a priori distribution .That is, as data observations are
incorporated into the training, the model will learn and improve,
adjusting to the data.

Intuitively, such an adjustment process can be observed in the following
figures, where each symbol ’+’ represents the incorporation of new data:



Bayesian approach

Figure: (I) Figure: (II) Figure: (III) Figure: (IV)

Figure: (V) Figure: (VI)

In Figures (I)-(V) can be seen how the process learns from the known
data points and adjusts to them as they are added, one by one. The
more points it has, the more precise it becomes. Besides, the a posteriori
distribution shown in (VI), once it is determined, is also a GP.



Training a model by using GPRs: An overview
Bayesian approximation: Update of the prior distribution with new data.

(a) Space of possible (parametric) a priori models. (b) Given a piece of
data, the process learns from the data. Note that we not only have a
point estimate but also a probabilistic distribution on the estimated data.
(f) Posteriori distribution.

The posteriori distribution is again a Gaussian process

Specific kernels generates bounded trajectories (confidence of the model)



Training a model by using GPRs: An overview
Bayesian approach: Update of the prior distribution with new data

• D = {X,Y }, X =
[
x{1},x{2}, . . . ,x{m}

]
∈ Rp×m and

Y =
[
y{1},y{2}, . . . ,y{m}

]
∈ Rp×m are the training data.

• For the test input x∗ ∈ Rp the prediction for f(x∗) are obtaining by
conditioning over the data which gives rise to the posteriori distribution.

µ (fi |x∗,D)=k (x∗, X)
>(
K + Iσ2

)−1
Y:,i,

var (fi | x∗,D) = k (x∗,x∗)− k (x∗, X)
> (

K + Iσ2
)−1

k (x∗, X)

for all i ∈ {1, . . . , p}, where Y:,i denotes the i-th column of Y .

• The kernel k measures the correlation between two entries (x,x′). The
function K : Rp×m × Rp×m → Rm×m is the Gram matrix with elements
given by Kj′,j = k(X:,j′ , X:,j) + δ(j, j′)σ2 for all j′, j ∈ {1, . . . ,m} with
the delta function δ(j, j′) = 1 for all j = j′ and zero otherwise.

• The vector valued function k : Rp × Rp×m → Rm, with
elements kj = k(x∗, X:,j) for all j ∈ {1, . . . ,m}, express the covariance
between x∗ the training data with entry X.



Training a model by using GPRs: An overview

• The choice of the kernel and the determination of the corresponding
hyperparameters can be seen as degrees of freedom of the regression
procedure.



Example 1

In this example, we use three GPRs with the same set of training data

X = [1, 3, 5, 7, 9], Y = [0, 1, 2, 3, 6] (2)

but with different kernels, namely the squared exponential, the linear, and
the polynomial kernel.

The Figure shows the different shapes of the regressions with the
posterior mean (red), the posterior variance (gray shaded) and the
training points (black). Even for this simple data set, the flexibility of the
squared exponential kernel is already visible.

Figure: GPR with different kernels: squared exponential (left), linear (middle)
and polynomial with degree 2 (right).



Example 2

We assume a GP with zero mean and a kernel function given by

k(z, z′) = 0.36792 exp

(
− (z − z′)2

2 · 2.71832

)
as prior distribution. The training data set D is assumed to be

X =
[
1 3 6 10

]
, Y =

[
0 −0.3 0.3 −0.2

]>
,

where the output is corrupted by Gaussian noise with σn = 0.0498
standard deviation and the test point is assumed to be z∗ = 5. The
Gram matrix K(X,X) is calculated as

K(X,X) =


0.1378 0.1032 0.0249 0.0006
0.1032 0.1378 0.0736 0.0049
0.0249 0.0736 0.1378 0.0458
0.0006 0.0049 0.0458 0.1378


and the kernel vector k(z∗, X) and k(z∗, z∗) are obtained to be

k(z∗, X) =
[
0.0458 0.1032 0.1265 0.0249

]
k(z∗, z∗) = 0.1378.



Example 2

Finally, we compute the predicted mean and variance for fGP(z∗)

µ(fGP(z∗)|z∗,D) = 0.0278, var(fGP(z∗)|z∗,D) = 0.0015.

The figure shows the prior distribution (left), the posterior distribution
with two training points (black crosses) in the middle, and the posterior
distribution given the full training set D (right). The solid red line is the
mean function and the gray shaded area indicates the 2σ-standard
deviation. Five realizations (dashed lines) visualize the character of the
distribution over functions.

Figure: The prior distribution of a GP is updated with data that leads to the
posterior distribution.



Model Training

• Data set D = {xi, ỹ(i)}Ni=1, with N ∈ N, x ∈ X , ỹ ∈ R.

• Input data matrix X = [x1,x2, . . . ,xN ]

• Output data matrix Y T = [ỹ1, ỹ2, . . . , ỹN ]

Output y∗ for test input x∗ follows a multivariate Gaussian distribution[
y∗

Y

]
∼ N

([
m(x∗)
m(X)

]
,

[
k(x∗, x∗) k>(x∗, X)
k(x∗, X) K + σ2

nIN

])
,

with Ki,j = k(Xi, Xj).

Prediction based on conditioning

y∗ ∼ N (µ(y∗|x∗,D),Σ(y∗|x∗,D))

µ(y∗|x∗,D) = k(x∗, X)T (K + Iσ2
n)1Y

Σ(y∗|x∗,D) = k(x∗, x∗)− k(x∗, X)T (K + Iσ2
n)1k(x∗, X).



Example 3

• Example: N = 4 data points Y at X = [−1.5,−1,−0.40, 0]

• Covariance of input data

K(X,X) =


1.70 1.42 0.87 0.51
1.42 1.70 1.34 0.97
0.87 1.34 1.70 1.48
0.51 0.97 1.48 1.70


• Covariance with test input x∗ = 0.2

k(x∗, x∗) = 1.70, k(x∗, X) = [0.38, 0.79, 1.35, 1.58]



Example 3



Example 3

Prediction for y∗: µ(y∗) = 0.18, Σ(y∗) = 0.01.



Model training

• Model training refers to optimizing the parameters of the mean and the
kernel function. We consider a smooth but unknown mapping f with
f(x) = y.

• Optimal approximation of f , given the input values xi, is obtained for
the dimension-wise globally maximum likelihood of the observations yi.

• Usually, the hyperparameter optimization is performed using standars
gradiendt decent methods to minimize the negative marginal log
likelihood, which can be calculated analytically,

h∗l = arg minhl − log p({(yi)νi=1}|{xi}νi=1, hl).

• Since an analytic solution of the derivation of
log p({(yi)νi=1}|{xi}νi=1, hl) is impossible, a gradient based optimization
algorithm is typically used to minimize the function.

• However, the negative log likelihood is non-convex in general such that
there is no guarantee to find the optimum h∗l , σ

∗
n.

• In fact, every local minimum corresponds to a particular interpretation
of the data. In the following example, we visualize how the
hyperparameters affect the regression.



Reproducing Kernel Hilbert spaces

For computation of the model error we will need to assume some
properties of the covariance functions. To stablish such properties we
need first to introduce the notion of Reproducing Kernel Hilbert Space
(RKHS).

Inner Product and Hilbert spaces

Let H be a vector space over R: 〈·, ·〉H : H ×H −→ R is an inner
product on H if it is:

I i) Linear:
〈α1f1 + α2f2, g〉 = α1〈f1, g〉+ α2〈f2, g〉 ∀α1, α2 ∈ R, f1, f2, g ∈ H,

I ii) Symmetric: 〈f, g〉H = 〈g, f〉H ∀f, g ∈ H, and

I iii) 〈f, f〉H ≥ 0 and 〈f, f〉H = 0 if and only if f = 0.

The norm on H is induced by the inner product as ‖f‖H =
√
〈f, f〉H .

A Hilbert space is an space with an inner product which is complete (i.e.,
all Cauchy sequence in the space converge to a point in that space) with
respect with the norm induced by the inner product.



Reproducing Kernel Hilbert spaces
Kernel functions

Let X be a non-empty set. A function k : X ×X → R is a kernel if there
exists a Hilbert Space H and a feature map φ : X → V such that
∀x, x′ ∈ X

k(x, x′) := 〈φ(x), φ(x′)〉H .

It can be noticed how there are almost no conditions on X (eg, X itself
doesn’t need an inner product). Besides, a single kernel can corresponds
to several possible features, as in this trivial example for X := R
equipped with the usual inner product on R

φ1(x) = x and φ2(x) =

[
x√
2
,
x√
2

]T
.



Positive definite functions

If we are given a function of two arguments, k(x, x′), how could be
determined if it is indeed a valid kernel?

I a) Find a feature map. This is not always obvious. If the feature
vector is infinite dimensional, e.g, the exponential quadratic kernel.
Besides, we know that the feature map is not unique.

I b) A direct property of the function: Positive definiteness

A symmetric function k : X × X → R is positive definite if ∀n ≥ 1,
∀(Q1, ..., Qn) ∈ Rn, ∀(x1, ..., xn) ∈ Xn,

n∑
i=1

n∑
j=1

QiQjk(xi, xj) ≥ 0.

The function k(·, ·) is strictly positive definite if for mutually distinct
xi,the equality holds only when all the Qi are zero.

The next result shows that kernels are positive definite functions.

Proposition: Let H be a Hilbert space, X a non-empty set and
φ : X → H then 〈φ(x), φ(y)〉H =: k(x, y) is positive definite.



Reproducing Kernel Hilbert spaces
The reproducing property

Even though a kernel neither uniquely defines the feature map nor the
feature space, one can always construct a canonical feature space, namely
the reproducing kernel Hilbert space (RKHS) given a certain kernel.

The reproducing property (kernel trick):

∀x ∈ X , ∀f(·) ∈ H, 〈f(·), k(·, x)〉H = f(x).

The feature map of every point is a function: k(·, x) = φ(x) ∈ H for any
x ∈ X and

k(x, x′) = 〈φ(x), φ(x′)〉H = 〈k(·, x), k(·, x′)〉H

An extremely useful property of Hilbert spaces is that they are equivalent
to an associated kernel function. This equivalence allows to simply define
a kernel, instead of fully defining the associated vector space.

Formally speaking, if a Hilbert space H is a RKHS, it will have a unique
positive definite kernel k : X × X → R which spans the space H.



Reproducing Kernel Hilbert spaces

Definition: Let H be a Hilbert space of R-valued functions on a
non-empty set X . A function k : X × X → R is a reproducing kernel of
H, and H is a reproducing Hilbert space if:

I ∀x ∈ X , k(·, x) ∈ H
I ∀x ∈ X ,∀f ∈ H, 〈f(·), k(·, x)〉H = f(x)(the reproducing property)

The RKHS is the smallest feature space of a kernel, and can serve as a
canonical feature space.

Theorem (Moore-Aronszajn)
Every positive definite kernel k is associated with a unique RKHS H.

By Moore Aronszajn theorem, if k : X ×X → R is positive definite, there
exists a unique RKHS H ⊂ Rdim(X ) with reproducing kernel k (recall
that feature map is not unique, only the kernel is unique).



Reproducing Kernel Hilbert spaces

Importantly, any function fH in H can be represented as a weighted
linear sum of this kernel evaluated over the space H, as

fH(·) = 〈fH(·), k(x, ·)〉H =

nφ∑
i=1

αik
(

x
{i}
dat , ·

)
,

with αi ∈ R for all i = {1, . . . , nφ}, where nφ ∈ N ∪ {∞} is the
dimension of the feature space H (H is the Hilbert space s.t. H ⊂ H).

Thus, the RKHS is equipped with the inner-product

〈fH, f ′H〉H =

nφ∑
i=1

nφ∑
j=1

αiα
′
jk(x

{i}
dat , x

′{j}
dat ),

with f ′H(·) =
∑nφ
j=1 α

′
jk
(

x
′{j}
dat , ·

)
∈ H, α′j ∈ R. Now, the reproducing

character manifests as

∀z ∈ X ,∀fH ∈ H, 〈fH, k(x, ·)〉H = fH(z), (3)

in particular

k(z, z′) = 〈k(·, z), k(·, z′)〉H.



Reproducing Kernel Hilbert spaces

The RKHS is then defined as

H = {fH : X → R|∃c ∈ H, fH(z) = 〈c, φ(z)〉H ,∀z ∈ X}, (4)

where φ(z) is the feature map constructing the kernel through
k(z, z′) = 〈φ(z), φ(z′)〉H .

Ingo Steinwart, Don Hush, and Clint Scovel. An explicit description
of the reproducing kernel Hilbert spaces of Gaussian RBF kernels.
IEEE Transactions on Information Theory 52(10), 4635-4643. 2006.



Example

We want to find the RKHS for the polynomial kernel with degree 2 that
is given by

k(z, z′) = (z>z′)2 = (z1z
′
1)2 + 2(z1z

′
1z2z

′
2) + (z2z

′
2)2.

for any z, z′ ∈ R2. First, we have to find a feature map φ such that the
kernel corresponds to the inner product k(z,y) = 〈φ(z), φ(y)〉.

A candidate for the feature map is φ(z) =
[
z21 ,
√

2z1z2, z
2
2

]>
because

〈φ(z),φ(z′)〉R3 = φ(z)>φ(z) = (z1z
′
1)2+2(z1z

′
1z2z

′
2)+(z2z

′
2)2 = k(z, z′).

We know that the RKHS contains all linear combinations of the form

fH(z) =

3∑
i=1

αik
(

x
{i}
dat , z

)
=

3∑
i=1

αi〈φ(z′),φ(z)〉R3 =

3∑
i=1

〈c,φ(z)〉R3

= c1z
2
1 + c2

√
2z1z2 + c3z

2
2 ,

with α, c, x
{i}
dat ∈ R3. Therefore, a possible candidate for the RKHS H is

given by

H =
{
fH : R2 → R|fH(z) = c1z

2
1 + c2

√
2z1z2 + c3z

2
2 , c ∈ R3

}
(5)



Example

• Next, it must be checked if the proposed Hilbert space is the related
RKHS to the polynomial kernel with degree 2. This is achieved in two
steps:

• (i) Checking if the space is a Hilbert space (Homework) and

• (ii) confirming the reproducing property.

• The condition for an RKHS must be fulfilled, i.e., the reproducing
property fH(z) = 〈fH(·), k(·, z)〉H. Since we can write

〈fH(·), k(·, z)〉H = 〈c>φ(·), k(·, z)〉H =

3∑
i=1

cik(·, z) = c>φ(z) = fH(z),

property (3) is fulfilled and, thus, H is the RKHS for the polynomial
kernel with degree 2.

•Note that, even though the mapping φ is not unique for the kernel k,
the relation of k and the RKHS H is unique.



Reproducing Kernel Hilbert Space: Summary

• In summary, we investigated the unique relation between the kernel and
its RKHS.

• The reproducing property allows us to write the inner-product as a
tractable function which implicitly defines a higher (or even infinite)
feature dimensional space.

• Next, the RKHS-norm is exploited to determine the error between the
prediction of GPR and the actual data-generating function.



Model Error

One of the most interesting properties of GPR is the uncertainty
description encoded in the predicted variance.

This uncertainty is beneficial to quantify the error between the actual
underlying data generating process and the GPR.

Assume that there is an unknown function fuk : Rnz → R that generates
the training data. In detail, the data set D = {X,Y } consists of

X = [x
{1}
dat , x

{2}
dat , . . . , x

{nD}
dat ] ∈ Rnz×nD

Y = [ỹ
{1}
dat , ỹ

{2}
dat , . . . , ỹ

{nD}
dat ]> ∈ RnD ,

(6)

where the data is generated by

ỹ
{i}
dat = fuk(x

{i}
dat ) + ν, ν ∼ N (0, σ2

n) (7)

for all i = {1, . . . , nD}.

Without any assumptions on fuk it is obviously not possible to quantify
the model error. Loosely speaking, the prior distribution of the GPR with
kernel k must be suitable to learn the unknown function.



Model error

• More technically, fuk must be an element of the RKHS spanned by the
kernel. This leads to the following assumption.

Assumption: The function fuk has a finite RKHS norm with respect to
the kernel k, i.e., ‖fuk‖H <∞, where H is the RKHS spanned by k.

• This sounds paradoxical as fuk is assumed to be unknown. However,
there exist kernels that can approximate any continuous function
arbitrarily exact. Thus, for any continuous function, an arbitrarily close
function is element of the RKHS of an universal kernel.

Next, we assume that a GPR is trained with the data set (6) and the
assumption holds. The work

Niranjan Srinivas, Andreas Krause, Sham M. Kakade, and Matthias
W. Seeger. Information-theoretic regret bounds for Gaussian process
optimization in the bandit setting. IEEE Transactions on Information
Theory 58(5), 3250–3265. 2012.

derives an upper bound for samples of the GPR on a compact set with a
specific probability.



Model Error: Information-theoretical approach
Theorem (Srinivas et.al)
Given the assumption, the model error ∆ ∈ R

∆ = |µ(fGP|z,D)− fuk(z)| (8)

is bounded for all z on a compact set Ω ⊂ Rnz with a probability of at
least δ ∈ (0, 1) by

P
{
∀z ∈ Ω, ∆ ≤ |βVar

1
2 (fGP|z,D)|

}
≥ δ, (9)

where β ∈ R is defined as

β =

√
2||fuk||2k + 300γmax ln3

(
nD + 1

1− δ

)
. (10)

The variable γmax ∈ R is the maximum of the information gain

γmax = max
x
{1}
dat

,...,x
{nD+1}
dat

∈Ω

1

2
log |InD+1 + σ−2

n K(z,z′)| (11)

with Gram matrix K(z,z′) and the input

elements z,z′ ∈ {x{1}dat , . . . , x
{nD+1}
dat }.



Gaussian Process Regression: Summary

Idea:

I The posteriori distribution is Gaussian over the functional space.

I Update with new data.

Adventages:

I Fully probabilistic.

I Robust against Gaussian noise.

I Explicit description of the uncertainty:Not only do I know the output
data for the prediction, but, how I can vary it. This gives us a
mitigation of the model uncertainty.

Disadventages:

I Computationally expensive

Prediction with knowledge of model uncertainty: Safety guarantees.



Data-driven control: Summary



What next? → Feedback control

q ∈ Rn, L : Rn × Rn → R.

Equivalent expression:

H(q)q̈ + C(q, q̇)q̇ + g(q)− f(q, q̇, q̈) = u(t).

Classical approximation:
u(t) = Ĥ(q)q̈d + Ĉ(q, q̇)q̇d + ĝ(q)−Kdė−Kpe.

I For Ĥ = H, Ĉ = C, ĝ = g, f = 0, one can guarantee asymptotic stability.

I Another case: increase Kd, Kp to minimize the tracking error.

I But: (I) big errors in presence of noise, (II) saturation of the actuators, (III) the
stability is not guaranteed/ dangerous.



Feedback control based on data

Control law: Consider τ̃(p) = H̃(q)q̈ + C̃(q, q̇)q̇ + g̃(q)− f(p) with
H̃ = H − Ĥ, C̃ = C − C̃, g̃ = g − g̃.

u(t) = Ĥq̈d + Ĉq̇d + ĝ + µ(τ̃ | D)−Kdė−Kpe.



Safety guarantees

Boundedness of the tracking error: The data-driven controller guarantees
that, for ||ėT (t0), eT (t0)|| < δ, we have that

P{||ėT (t0), eT (t0)|| ≤ r, ∀t ≥ t0 + T (δ)} ≥ ρ

with r = r(||u||H,D).

This result shows the evaluation between the tracking error bound, the model
uncertainty and the feedback gains.

T. Beckers, L. Colombo, M. Morari, G. Pappas. Learning-based Balancing of
Model-based and Feedback Control for Second-order Mechanical Systems.
2022 IEEE 61th Annual Conference on Decision and Control (CDC).
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Position control and trajectory tracking

Consider the controlled Euler-Lagrange equations

H(q)q̈ + C(q, q̇)q̇ + g(q) = τ (12)

where τ ∈ Rn denotes the torques for the system.

Let qd the trajectory we wish to track. If we have a perfect model of the
robot and q(0) = qd(0), q̇(0) = q̇d(0), then we may solve our problem by
choosing

τ = H(qd)q̈d + C(qd, q̇d)q̇d + g(qd).

Since both q and qd satisfy the same differential equation and have the
same initial conditions , it follows from uniqueness of solutions that
q(t) = qd(t), ∀ t ≥ 0.

This is an example of open-loop control law: The current state of the
robot is not used in choosing the control inputs.

This strategy is not very robust. If q(0) 6= qd(0), then the open-loop
control law will never correct for this error.



Position control and trajectory tracking

There are no guarantees that if our starting configuration is near the
desired initial configuration that the trajectory of the robot will never
stay near the desired trajectory. For this reason, we introduce feedback
into our control law.

This feedback must be chosen so that the actual robot trajectory
converges to the desired trajectory. In particular, if our trajectory is a
single set-point, the closed-loop system should be asymptotically stable
about the desired set point.

Computed-torque control: Consider the following refinament of the
open-loop control law: Given the current position and velocity of the
robot, cancel all nonlinearities and apply exactly the torque needed to
overcome the inertia of the actuatior,

τ = H(q)q̈d + C(q, q̇)q̇ + g(q).

Substituting this control law into the dynamic equation of the robot we
see that q̈ = q̈d since H(q) is positive definite.



Computed-torque control

Hence, if the initial position and velocity of the robot matches the
desired position and velocity, the robot will follow the desired trajectory.

This control law will not correct for any initial condition errors which are
present. Next, we improve the control law with a feedback and consider
the computed-torque control

τ = H(q)(q̈d − kv ė− kpe) + C(q, q̇)q̇ + g(q),

where e = q − qd, and kv, kp are constant gain matrices.

Substituting in (68), the error dynamics can be written as

H(q)(ë+ kv ė+ kpe) = 0

and since H(q) is positive definite

ë+ kv ė+ kpe = 0.



Computed-torque control

The computed torque control law can be written in terms of two
components as:

τ = H(q)q̈d + C(q, q̇)q̇ + g(q)︸ ︷︷ ︸
feedforward

+H(q)(−Kv ė− kpe)︸ ︷︷ ︸
feedback

Feedforward component: Necessary torque to drive the system along its
nominal path.

Feedback term: Correction torques to reduce any error in the trajectory
of the robot.



Proportional derivative (PD) control

In its simple form the PD control has the form

τ = −kv ė− kpe (13)

with kp, kv positive definite matrices and e = q − qd.

If q̇d = 0 and kv, kp > 0 the control law applied to the system renders
the equilibrium q = qd asymptotically stable.

Since we are interested in tracking, we consider a modified version of the
PD control law:

τ = H(q)q̈d + C(q, q̇)q̇d + g(q) = kv ė− kpe (14)

The control law (14) applied to the controlled Euler-Lagrange equations
results in asymptotically stable tracking if kv, kp > 0.



Data-driven control



Data-driven control

Goal: Improved performance with stability guarantees



Uncertain Lagrangian systems

q ∈ Rn, L : Rn × Rn → R.

Equivalent expression:

H(q)q̈ + C(q, q̇)q̇ + g(q)− fu(q, q̇, q̈) = u(t).

where

I generalized coordinates: q ∈ Rn, control input u ∈ Rn,

I T (q, q̇) = 1
2 q̇

TH(q)q̇, H(q) : Rn → Rn×n the inertial matrix,

I the Coriolis matrix C(q; q̇) : Rn × Rn → Rn×n,

I g(q) : Rn → R, g(q) := −∂V∂q .



Classical Approach

Classical approximation:

u(t) = Ĥ(q)q̈d + Ĉ(q, q̇)q̇d + ĝ(q)︸ ︷︷ ︸
Estimated model

− Kdė−Kpe.︸ ︷︷ ︸
Feedback control

where Ĥ, Ĉ y ĝ are the parametric estimates of H, C and g respectively.
The terms Kd y Kp are the feedback gains, where Kp is the proportional
gain and Kd is the derivative gain and e = qd − q is the error.

I For Ĥ = H, Ĉ = C, ĝ = g, fu = 0, one can guarantee asymptotic
stability.

I Another case: increase Kd, Kp to minimize the tracking error.

I But: (I) Large errors in presence of noise, (II) saturation of the
actuators, (III) the stability is not guaranteed/ dangerous.

Murray, R. M., Li, Z., Sastry, S. S., & Sastry, S. S. (1994). A
mathematical introduction to robotic manipulation. CRC press.



Assumptions on the disturbance

• Let us consider a fully actuated system. In particular, we consider the
controlled Euler-Lagrange equations, where the control now is
decomposed as

H(q)q̈ + C(q, q̇)q̇ + g(q) = u+ ud, (15)

where u ∈ Rn is the action of control and ud ∈ Rn is the effect of an
unknown external force.

Assumption 1: ud can be parameterized as ud = fu(p) with
p = [q, q̇, q̈] where fu : R3n → Rn is a continuous function.

• Hence, equation (15) can be written as

H(q)q̈ + C(q, q̇)q̇ + g(q)− fu(p) = u. (16)

• The assumption restricts fu to be not directly time dependent which
holds in many application scenarios. For example, the common unknown
dynamics in robotic systems, i.e. Columb and viscous friction.

• The kinetic energy in the EL equation is of the form
K(q, q̇) = 1

2 q̇
TH(q)q̇ where H(q) : Rn → Rn×n is the symmetric and

positive definite generalized inertia matrix.



Assumptions on the estimates

• Property 1: The non-unique matrix C(q, q̇) is always defined such
that Ḣ(q)− 2C(q, q̇) ∈ Rn×n is skew-symmetric ∀q, q̇ ∈ Rn.

• Consider the EL system with the unknown dynamics fu. If a priori
knowledge of the system is available, a hybrid learning approach can be
used which is a combination of a parametric and a data-driven model.

• We consider the estimated model to be given by

û(t) = Ĥ(q)q̈ + Ĉ(q, q̇)q̇ + ĝ(q), (17)

where Ĥ(q) ∈ Rn×n, Ĉ(q, q̇) ∈ Rn×n and ĝ(q) ∈ Rn are estimates of
the true values which also satisfy the skew-symmetry property given
before. Furthermore, the estimates must fulfill the following property.

Property 2. Structure of the estimates:

There exist h1, h2, kC ∈R>0 with h1‖x‖2≤x
>
Ĥ(q)x≤h2‖x‖2, and

‖Ĉ(q, q̇)‖ ≤ kC‖q̇‖ where Ĉ(q, q̇)q′ = Ĉ(q, q′)q̇ for all q, q̇, q′, x ∈ Rn.



Assumptions on the estimates

• The identification of these estimates while guaranteeing Property 1 and
Property 2 can be achieved following the identification procedures.

Aström, K.J. and Eykhoff, P. (1971). System identification-a survey.
Automatica Vol 7(2), 123-162

• Note that “structure of the estimates” (Property 2) is required for the
estimates only and not for the true system.

• Without prior knowledge of the system, the estimates are set
to Ĥ = I, Ĉ = 0, ĝ = 0.



GP based computed torque



Learning

• After the parametric model is selected, a GP is trained with m data
pairs D = {p{i}, τ̃ {i}}mi=1 of the system consisting of
p =

[
q̈
>
, q̇

>
, q

>]> ∈ R3n as input data, and the difference between the
real system dynamics and the estimated model as output data.

• This residual dynamic is denoted by

τ̃ (p) = H̃(q)q̈ + C̃(q, q̇)q̇ + g̃(q)− fu(p), (18)

with H̃ = H − Ĥ, C̃ = C − Ĉ and g̃ = g − ĝ.

• For the generation of training data, the real system can be operated by
an arbitrary controller as shown in the following Figure.

• The only condition is that a finite sequence of training data of the
system can be collected whereas stability is not necessarily required.



Model error

For the computation of the model error, we assume the following for the
covariance function of the GP.

Assumption 2: The covariance function k is chosen such that the
functions τ̃1, . . . , τ̃n have a bounded reproducing kernel Hilbert Space
(RKHS) norm on any compact set Ω ⊂ R3n, i.e. ‖τ̃i‖k <∞ for
all i = 1, . . . , n.

• Assumption 2 requires that the covariance function must be selected in
such a way that the residual τ̃ (p) is an element of the associated RKHS.
This sounds paradoxical since the residual is unknown. However, there
exist covariance functions (universal functions), which can approximate
any continuous function arbitrarily precisely on a compact set.

• Therefore, any smooth residual dynamics can be covered by a universal
covariance function, i.e. this assumption is not restrictive.



Model error

An upper bound for the distance between the mean prediction µ(τ̃ ) of
the GPR and the true function τ̃ is given in

Niranjan Srinivas, Andreas Krause, Sham M. Kakade, and Matthias
W. Seeger. Information-theoretic regret bounds for Gaussian process
optimization in the bandit setting. IEEE Transactions on Information
Theory 58(5), 3250–3265. 2012.

and is extended for multidimensional functions in the following lemma.

Lemma 1: Consider a Lagrangian system and a trained GP satisfying
Assumption 2. The model error is bounded by

P
{
‖µ(τ̃ |p,D)− τ̃ (p)‖ ≤ ‖β>

Σ
1
2 (τ̃ |p,D)‖

}
≥ δ (19)

for p ∈ Ω ⊂ R3n with δ ∈ (0, 1),β,γ ∈ Rn and

βj =

√
2‖τ̃j‖2k + 300γj ln3

(
m+ 1

1− δ1/n

)
γj = max

p{1},...,p{m+1}∈Ω

1

2
log |I + σ−2

j K(x, x′)|, with x, x′ ∈
{
p{1}, . . . ,p{m+1}

}
.



Data-driven control design
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Tracking control with GPR

The goal of tracking control is to follow a desired trajectory with the
closed loop system. We start with the following assumption for the
desired trajectory.

Assumption 3: The desired state trajectory is bounded by ||qd|| ≤ q̄d,
||q̇d|| ≤ ˙̄qd with q̄d, ˙̄qd ∈ R≥0, and qd ∈ Rn.

A bounded reference motion trajectories is a very natural assumption and
does not pose any restriction in practice.



Tracking control with GPR

u(t) = Ĥ(q)q̈d + Ĉ(q, q̇)q̇d + ĝ(q)︸ ︷︷ ︸
computed torque

− Kdė−Kpe︸ ︷︷ ︸
PD-controller



Tracking control with GPR

u(t) = Ĥ(q)q̈d + Ĉ(q, q̇)q̇d + ĝ(q)︸ ︷︷ ︸
computed torque

+µ(τ̃ |p,D)︸ ︷︷ ︸
GP-model

− Kdė−Kpe︸ ︷︷ ︸
PD-controller



Tracking control with GPR

u(t) = Ĥ(q)q̈d + Ĉ(q, q̇)q̇d + ĝ(q)︸ ︷︷ ︸
computed torque

+µ(τ̃ |p,D)︸ ︷︷ ︸
GP-model

− Kdė−Kpe︸ ︷︷ ︸
PD-controller



Tracking control with GPR

Figure: Controlled trajectory tracking (classic PID) for the two-link planar
robotic arm.

T. Beckers, D. Kulic, and S. Hirche, Stable Gaussian Process based
Tracking Control of Euler-Lagrange Systems. Automatica 103, pp.
390–397, 2019.



Safety guarantees

Boundedness of the tracking error: The data-driven controller guarantees
that, for ||ėT (t0), eT (t0)|| < δ, we have that

P{||ėT (t0), eT (t0)|| ≤ r, ∀t ≥ t0 + T (δ)} ≥ ρ

with r = r(||τ ||H,D).

T. Beckers, L. Colombo, M. Morari, G. Pappas. Learning-based Balancing of
Model-based and Feedback Control for Second-order Mechanical Systems.
2022 IEEE 61th Annual Conference on Decision and Control (CDC).
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