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Biological and Physical-Mechanical Swarms

Complex behavior in the biological world

macro biological groups and swarms

Micro (cellular) sets and formation of patterns in multiple particle swarms



Robotic Swarms are coming!

Image: NBC News

Persistent Surviellance

over geographically extended
areas, situational awareness,
suggested route for emergency
services.

Environmental Monitoring

ocean dynamics sampling,
evaluating the impact of
pollutants on biological
populations, validation of climate
models, wildlife monitoring,
storm modeling and prediction.



What is a robotic Swarm?

Much more than a collection of
robots

● They actively coordinate
their actions to achieve the
overall task.

● Coherent, better intelligence
than the sum of the
individuals.

● Sinergy: resilient, spatially
distributed, graceful
degradation.



How do we control swarms?

Challenges to go beyond the centralized paradigm of the coordination.

● Individual capacities are limited.

● The information is local, partial and may be erroneous.

● Distributed interactions (communications) prone to failure.

● Heterogeneous dynamics, multiple scales.

Autonomy engineering

How to coordinate individual elements into an overall coherent?

● From top to bottom: design coordination to design the desired
behavior.

● from bottom to top: global behavior of local interaction rules



Limitations for the coordination of robotic swarms

Robotic networks

Limitations

● Computational / memory: precision with respect to the physical
system. Global tasks hard to compute/store.

● Physical modeling: Heterogeneous robots, multiple scales, unknown
dynamics.

● Comunication: decentralized, asynchronous.

● Sensorial: Noise, partial (e.g., lack of information on the position)



Modeling control systems based on data

Lack of safety guarantees

▸ The parametric modeling is very time-consuming or even unfeasible.

▸ Limited to the number of parameters to estimate.

▸ The modern control methods based on data-driven approaches as
neural networks, in general, does not present safety guarantees.

▸ There is a need to construct algorithms based on data guaranteeing
the security of the system.



Data-driven control with GPR: Summary

There are no data-driven control laws for complex, multi-agent
cooperative systems with safety guarantees.

Research line founded by Leonardo Fellowship for researhers and cultural
creators of the BBA Foundation. Project: “Safety guarantees with
data-driven control for cooperative systems.”



Decentralized and almost-decentralized coordination
strategies

▸ Decentralized formation control strategies

T. Beckers, S. Hirche, L. Colombo. Safe Online Learning-based
Formation Control of Multi-Agent Systems with Gaussian
Processes. Proceedings of the 60th. Conference on Decision and
Control, 2021.

▸ Flocking control (almost-decentralized)

T. Beckers, G. Pappas, L. Colombo. Learning rigidity-based
flocking control using Gaussian Processes with probabilistic
stability guarantees. Proceedings of the 61st Conference on
Decision and Control, 7254-7259, 2022.



Definitions from Graph Theory

Consider n ≥ 2 autonomous agents whose positions are denoted
by pi ∈ Rd, d = {2,3} and p ∈ Rdn denotes the stacked vector of agents’
positions. The neighbor relationships between agents are described by an
undirected graph G = (N ,E) with the ordered edge set E ⊆ N ×N .

The set of neighbors for i ∈ N , denoted by Ni, is defined
by Ni ∶= {j ∈ N ∶ (i, j) ∈ E}.

Agents can sense the relative positions of its nearest neighbors, in
particular, agents can measure its Euclidean distance from other agents
in the subset Ni ⊆ N . We define the elements of the incidence
matrix B ∈ R∣N ∣×∣E∣ that establish the neighbors’ relationships for G by

Bi,k =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

+1 if i = E tail
k

−1 if i = Ehead
k

0 otherwise

, (1)

where E tail
k and Ehead

k denote the tail and head nodes, respectively, of the
edge Ek, i.e., Ek = (E tail

k ,Ehead
k ).



Definitions from Graph Theory

The stacked vector of relative positions between neighboring agents,
denoted by z ∈ Rd∣N ∣, is given by

z = BTp,

where B ∶= B ⊗ Id ∈ Rd∣N ∣×d∣E∣ with Id being the (d × d) identity matrix,
and ⊗ the Kronecker product.

Note that zk ∈ Rd and zk+∣E∣ ∈ Rd in z correspond to pi − pj and pj − pi
for the edge Ek. We can also define pij ∶= pi − pj to reduce unnecessary
verbosity.

In addition, we denote by D(z) ∶= diag(z1, . . . ,z∣E∣) ∈ Rd∣E∣×∣E∣

Mehran Mesbahi and Magnus Egerstedt. Graph theoretic methods in
multiagent networks. Princeton University Press, 2010.



Formation control: Rigid frameworks

Framework: A framework is given by a pair (G,p) where G = (N ,E) is
an undirected graph, with p ∈ Rd the vector of positions.

Distance: f ∶ Rd∣N ∣ → R∣E∣, f(p) = (∥pi − pj∥2)
(i,j)∈E

=D⊺(z)z.

(G,p) is rigid if it is not possible to smoothly vary one of the vertexes
without moving the other nodes and keep the distance given by f .

L. Asimow and B. Roth. The rigidity of graphs. Transactions of the
American Mathematical Society, Vol. 245, pp. 279-289, 1978.

L. Asimow and B. Roth. The rigidity of graphs, II.
Journal of Mathematical Analysis and Applications. 68(1), 1979.

Rigidity matrix: R(z) = 1
2
(∂f/∂p)(p) =D(z)⊺B ∈ R∣E∣×d∣N ∣.



Infinitesimally and minimally rigid frameworks

● error distance for the edge Ek: ek = ∥pi − pj∥2 − d2
k = ∥zk∥2 − d2

k, with
dk the desired distance between neighboring agents over Ek.

● A framework (G,p) is infinitesimally rigid in Rd if p is a regular value of
f(p) and (G,p) is rigid in Rd. In particular, (G,p) is infinitesimally rigid
in R2 if rank R(z) = 2∣N ∣ − 3 (respectivelly, rank R(z) = 3∣N ∣ − 6 in R3).

● (G,p) is minimally rigid if it has exactlly 2∣N ∣ − 3 nodes in R2 or
3∣N ∣ − 6 nodes in R3. This means that if we remove one of the nodes in
a minimally rigid framework (G,p), then it is not rigid anymore.

● Therefore, the only allowed movements of the agents in a minimally
rigid framework, while they are in the desired formation, are those which
are defined by rotations and translations of the desired formation

S = {z ∈ Rd∣N ∣∣ ∣∣zk ∣∣ = dk}, k ∈ {1, . . . , ∣E∣}.

● The rigidity matrix R(z) has full-row rank if the framework (G,p) is
infinitesimally and minimally rigid.



Formation control problem



Rigidity-based formation control

Consider the following control system in Rd, d = {2,3}
⎧⎪⎪⎨⎪⎪⎩

ṗ = v
v̇ = u.

where the control law is given by u(t) = −Kv −R⊺(z)e(z), z = BTp,
with K =K ⊗ Id and K the gain diagonal matrix with the i-th entry
being ki > 0. The closed loop system (double integrator formation
stabilizer system) is given by

⎧⎪⎪⎨⎪⎪⎩

ṗ = v
v̇ = −Kv −R⊺(z)e(z).

To reach the desired formation, for each node Ek in an infinitesimally and
minimally rigid framework consider the artificial potential for each node
Ek, Vk ∶ Rd → R, given by Vk(zk) = 1

4
(∣∣zk ∣∣2 − d2

k)2. Denoting by

V0 =
1

4

∣E∣

∑
k=1

(∣∣zk ∣∣2 − d2
k)2, with V0 ∶ Rd∣N ∣ → R, then

ṗ = v, v̇ = −Kv −∇pV0.



Distance-based formation control as a physical system

The double integrator formation stabilizer system is given by the forced
Euler-Lagrange equations for the Lagrangian L subject to the external
force F ,

L(p, ṗ) = 1

2

∣N ∣

∑
i=1

⎛
⎝
∣∣ṗi∣∣2 −

1

4

∣E∣

∑
k=1

(∣∣zk ∣∣2 − d2
k)2⎞

⎠
, F (p, ṗ) = −κ

∣N ∣

∑
i=1

ṗi

Agent i can be influenced by a non-conservative external force Fi. For
instance, Fi can describe a virtual linear damping among two agents (i.e.,
Fi = −κq̇i).



Stability for rigidity-based formation control

In order to control the velocity of the agents, we consider the potential
function V1 ∶ Rd∣N ∣ → R defined as

V1(v) =
1

2

∣N ∣

∑
i=1

∣∣vi∣∣2. (2)

By considering V0 + V1 as energy function of the networked control
system with double integrator dynamics, one can show the local
asymptotic convergence of the formation to the shape given by

S = {z ∈ Rd∣N ∣∣ ∣∣zk ∣∣ = dk}, k ∈ {1, . . . , ∣E∣}.

with velocity zero for all the agents if the framework (G,p) is rigid and
local exponential stability for infinitesimally and minimally rigid
frameworks.



Data-driven control for multiagent systems

Consider the double-integrator formation stabilization system with
partially unknown dynamics

⎧⎪⎪⎨⎪⎪⎩

ṗi = vi,
v̇i = ui + fi(pi,vi),

Problem: Design a decentralized control law u(t) ∈ Rd∣N ∣ for each agent
to achieve the desired rigid formation (infinitesimally and minimally).

Approach: Use GPR to learn the unknown dynamics and to provide an
online learning to the agents to reach a desired rigid formation as well as
an upper bound for the estimations between the real estimation and the
learned (i.e., the prediction of the mean in the GP) and the real dynamics.



Online learning
▸ Consider the estimations f̂i ∶ R2d → Rd which can include existing

prior knowledge about the unknown dynamics fi, e.g., using
off-the-shelf modeling or classical system identification.

K.L. Aström and P. Eykhoff. System identification—a survey. Automatica
7(2), 123-162, 1971.

▸ We employ a GP model for the learning of the unknown dynamics
ρ∶R2d∣N ∣ → Rd∣N ∣, ρi(pi,vi) = fi(pi,vi) − f̂i(pi,vi).

▸ Each agent collects m(t) ∈ N training data based on their own
dynamics, and giving rise to the training data set
Di,m(t) = {q{j}i ,y

{j}
i }m(t)j=1 , qi = [p⊺i ,v⊺i ]⊺.

▸ The output data is given by yi = v̇i − f̂i(pi,vi) −ui.

▸ The number of training data m(t) in the training data set can
change over time t: Permits online learning.

▸ Let Dm(t) = {Di,m(t), . . . ,D∣N ∣,m(t)} the set containing all the
training data. Assume there are only finitely many switches of m(t)
over time and there exists a time T ∈ R≥0 where Dm(T ) = Dm(t),
∀t ≥ T,∀i ∈ {1, . . . , ∣N ∣}.



Bounded model error

We assume that the continuous kernel k be chosen in such a way that
the functions ρi, i ∈ {1, . . . , d∣N ∣} have a bounded reproducing kernel
Hilbert Space norm on a compact set Ω ⊂ R2d∣N ∣, i.e. ∥ρi∥k < ∞
The model error is probabilistically bounded by

P{∥µ(ρ ∣ q,Dm) − ρ(q)∥ ≤ ∥β⊺Σ
1
2 (ρ ∣ q,Dm)∥} ≥ δ

with q ∈ Ω ⊂ R2d∣N ∣ compact, with δ ∈ (0,1),β,γ ∈ Rd and denoting by
m the number of entries in the data set Dm,

βj =
√

2 ∥ρj∥2
k + 300γj ln3 ( m + 1

1 − δ1/(d∣N ∣)
)

The variable γj ∈ R is the maximum information gain

γj = max
q{1},...,q{m+1}∈Ω

1

2
log ∣I + σ−2

j K (x,x′)∣ , x,x′ ∈ {q{1}, . . . ,q{m+1}} .

N. Srinivas, A. Krause, S.M. Kakade, and M.W. Seeger. Information-theoretic
regret bounds for Gaussian process optimization in the bandit setting.
IEEE Transactions on Information Theory, 58(5), 2012.



Stability of Hamiltonian systems

Consider the following one-parameter family of systems with double
integrator formation stabilization dynamics Hλ given by

[ṗ
v̇
] = [ −λId∣N ∣ (1 − λ)Id∣N ∣

(λ − 1)Id∣N ∣ −KId∣N ∣
] [∇pV∇vV

] , V = 1

4

∣E∣

∑
k=1

(∣∣zk ∣∣2 − d2
k)2

where λ ∈ [0,1]. The system continuously interpolates all convex
combinations between a dissipative system for λ = 0 and a gradient
system for λ = 1.

F. Dörfler and F. Bullo. On the critical coupling for kuramoto oscillators.
SIAM Journal on Applied Dynamical Systems. 10(3),1070–1099, 2011.

The family Hλ has two important properties summarized in the following

▸ For all λ ∈ [0,1], the equilibrium set of Hλ is given by the set of the critical
points of the potential function V , and is independent of λ.

▸ For any equilibrium of Hλ for all λ ∈ [0,1], the numbers of the stable, neutral,
and unstable eigenvalues of the Jacobian of Hλ are the same and independent
of λ.



Safe decentralized and online data-driven control law

Theorem
The control law

u(t) = −Kv −R⊺(z)e(z) − f̂(p,v) −µ(ρ∣q,Dm)

guarantees that the error in the convergence to the desired shape for all
the agents, is uniformly ultimately bounded in probability by

P{∣∣Ee,v(t)∣∣ ≤
√

2 max
q∈Ω

∆̄m(T )(q),∀t ≥ Tδ} ≥ δ

on Ω with Tδ ∈ R≥0 and where Ee,v ∶= (e,v) denotes the stacked vector
of relative positions errors and velocities for the formation stabilization,
where ∆̄m(q) ∶ Ω→ R≥0 defines an upper bound of the model error.

● Our result introduces the learning-based control law with guaranteed boundedness of
the error for the formation stabilization with certain probability and specify explicitly
the upper bound.

● The individual control law ui(t) of each agent depends on the distance to its
neighbors and the data set based on its own dynamics only.



Idea of the proof (part 1)
▸ Consider the squared distance error for the edge Ek, that is, ek = ∣∣zk ∣∣

2 − d2
k and

the stacked vector of squared distance errors denoted by e = [e1, . . . ,e∣E∣]
⊺

.

Note that ėk = 2zTk żk.

▸ Denoting by Eλe,v the stacked vector of errors Ee,v for any λ ∈ [0,1], which

includes our system for λ = 1, we know that Eλe,v and Ee,v share the same
stability properties. So, we will study the system for λ = 0.5, without loss of
generality, that is,

ṗ = −
1

2
BD(z)e +

1

2
v; ż = −

1

2
B
T
BD(z)e +

1

2
B
T
v

ė = −D(z)TB
T
BD(z)e +D(z)TB

T
v; v̇ = −

1

2
BD(z)e −Kv.

▸ Consider the Lyapunov candidate function with control law u(t) given before,

V (e,v) =
1

2
∣∣e∣∣2 + ∣∣v∣∣2.

▸ Note that V is positive definite and radially unbounded.

▸ The time derivative of V along the closed-loop system is given by

V̇ = −e⊺R(z)R(z)⊺e − v⊺Kv + v⊺(ρ(q) −µ(ρ∣q,Dm)).



Idea of the proof (part 2)
▸ Denote by λmin and κmin the minimum eigenvalues of R(z)R⊺(z) and K,

respectively.

▸ Since S is infinitesimally and minimally rigid then the rigidity matrix is full rank.
Therefore λmin > 0. Note also that, by definition κmin > 0.

▸ By the model error bound, it follows that

P{V̇ ≤ −λmin∣∣e∣∣
2
− κmin∣∣v∣∣

2
+ ∣∣v∣∣∆̄m(q)} ≥ δ,

▸ here ∆̄m(q) ∶ Ω→ R≥0 is a bounded function such that

∥β⊺Σ
1
2 (ρ ∣ q,Dm)∥ ≤ ∆̄m(q), which exists because the kernel function is

continuous and therefore it is bounded on a compact set Ω ⊂ R2d∣N ∣, and then
the variance Σ(ρ ∣ q,Dm) is bounded.

▸ Then, V̇ is negative with probability δ for all Ee,v with

∣∣Ee,v ∣∣ > max
q∈Ω

√
2∆̄m(q), where the maximum exists since ∆̄m(q) is bounded in

Ω.

▸ Finally, using Assumption 1 we define T ∈ R≥0 such that Dm(T ) = Dm(t) for all
t ≥ T . Then, V is uniformly ultimately bounded in probability by
P{∣∣Ev,e∣∣ ≤ b, ∀t ≥ Tδ ∈ R≥0} ≥ δ with bound b = max

q∈Ω

√
2∆̄m(T )(q).



Numerical Example

We consider n = 4 agents in a 2-dimensional space such that the position
of each agent i ∈ N is denoted by pi = [xi, yi]⊺. The neighbor’s relations
and desired shape are depicted in the Figure. The graph defines a
framework which is infinitesimally and minimally rigid.
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Figure: Neighbor’s relations and desired shape

The double integrator dynamics of agent 1 and agent 3 are affected by
an arbitrarily chosen unknown dynamics

f1(p1,v1) = [200 sin(0.05p1,y),200 cos(0.05p1,x)]⊺

f3(p3,v3) = [50 exp(−0.1(p3,y − 600)2),100]⊺. (3)



Numerical Example

The gain matrix K of the proposed control law is set to K = 2I2d∣N ∣.

The GP models to predict f1,f3 are equipped with a squared exponential
kernel. No prior model knowledge is assumed, i.e., f̂1 = 0, f̂3 = 0. At
starting time t = 0, the data set Dm is empty.

A training point is added to Dm every 0.2 seconds and the GP models
are updated every 0.4 seconds until a simulation time of 2.6 seconds.

During each update of the GP model, the hyperparameters are optimized
by means of the likelihood function. We arbitrarily choose the following
initial position p(0) = [450,450,510,610,590,590,650,550]⊺.



Numerical Example

The figure visualizes the trajectories of the agents for i) the standard
control law without GP model (top) and ii) the proposed control law with
GP model (bottom).

The initial position of each agent is denoted by a triangle whereas the
position after the simulation time of 6sec. is denoted by a square. The
standard control approach fails to reach the desired formation.



Numerical Example

The evolution of the Lyapunov function in the Figure highlights the
superior of the proposed control law as it allows the Lyapunov function to
converge to a tight set around zero.

Note that the evolution of the Lyapunov function is not always
decreasing but bounded in a neighborhood around zero. The size of the
set shrinks with improved accuracy of the GP model.



Numerical Example

The online learning process for agent 1 and 3 is depicted inThe figure.
The solid line shows the unknown dynamics over time whereas the
dashed line is given by the GP prediction.

The jumps of the prediction occur due to the model update every 0.4
seconds. After 2 seconds, the GP model can accurately mimic the
unknown dynamics.



Flocking control: Problem setting

Goal
Design a distributed control law to converge to a desired formation and
to a consensus velocity according to Reynolds’s flocking model in the
presence of external disturbances.

C. W. Reynolds. Flocks, herds and schools: A distributed behavioral
mode. Proceedings of the 14th annual conference on Computer
graphics and interactive techniques, 1987, pp. 25-34.
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presence of external disturbances.

C. W. Reynolds. Flocks, herds and schools: A distributed behavioral
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Elements from Graph Theory

Flocking control can be achieved by means of the Laplacian matrix
associated with an undirected graph G = (N ,V).

The Laplacian matrix L is the matrix whose entries are given by lij = −1
for i ≠ j, if there is an edge between agents j and i, else lij = 0.
Moreover, lii = − ∑

j∈Ni

lij . In the case of G being an undirected graph, it

follows that L = BBT .



Modeling flocking control of double integrator agents

Consider the set N consisting of n ≥ 2 free autonomous agents evolving
on Rd, d = {2,3}, under a double integrator dynamics, that is

⎧⎪⎪⎨⎪⎪⎩

q̇ = v
v̇ = u.

According to the Reynolds flocking model, the motion of every agent in
the flock is defined by the three rules of alignment, cohesion and
separation.

● Cohesion and separation might be achieved by using artificial potential
fields.

● We are interested on shape control with flocking motion, that is,
agents reach a desired formation shape and they also move along the 2D
plane or 3D space by achieving a consensus on their velocities.

● To exponentially achieve this collective behaviour, and provide their
convergence rates, we make the following assumption

Assumption: (G,q) is an infinitesimally and minimally rigid framework
with G undirected, static and connected.



Nominal control law

To reach a desired shape, for each edge Ek = (i, j) in the infinitesimally
and minimally rigid framework we introduce the artificial potential
functions Vk ∶ Rd → R, given by Vk(zk) = 1

4
(∣∣zk ∣∣2 − d2

k)2, to provide a
measure for the interaction between agents and their nearest neighbors.

In these potentials, zk denotes the relative position between agents for
the edge Ek, and dk denotes the desired length for the edge Ek.

The acceleration of agent i is determined by

ui(t) = −lij ∑
j∈Ni

(vi − vj)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
alignment

− ∑
j∈Ni

∇qiVk,

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
cohesion + separation

that is, for L = L⊗ Id, then

u(t) = −Lv −RT (z)e(z).



Exponential convergence of nominal control

The closed loop system, called double integrator flocking stabilization
system is given by

⎧⎪⎪⎪⎨⎪⎪⎪⎩

q̇i = vi
v̇i = −lij ∑

j∈Ni

(vi − vj) − ∑
j∈Ni

∇qiVk. (4)

Therefore, we can define the artificial potential function V0 ∶ Rd∣N ∣ → R
for the overall networked control system as V0(z) = ∑∣E∣k=1 Vk(∣∣zk ∣∣).

In order to control the velocity of the agents, we introduce the
disagreement vector δ ∈ Rd∣N ∣. Consider the potential function

V1 ∶ Rd∣N ∣ → R defined as V1(δ) = 1
2 ∑

∣N ∣

i=1 ∣∣δk ∣∣2, δk = δi − δj , where

δ = [δT1 , . . . ,δT∣N ∣]T is the velocity disagreement vector where each

component δi is given by δi = vi − v̄ with v̄(t) ∶= 1

∣N ∣

∣N ∣

∑
i=1

vi(t) ∈ Rd

denoting the average velocity of the agents.

Note that ˙̄v(t) = 0 and hence δ̇i = v̇i, since v̄ is constant.



Exponential convergence of nominal control

By considering the semi-definite function V ∶= V0 + V1 as energy function
for the double integrator flocking stabilization system, one can show local
exponential convergence of the agents to desired shapes with flocking
motion behaviour with our graph assumptions.

Deghat, M and Anderson, B.D.O and Lin, Z. Combined flocking and
distance-based shape control of multi-agent formations. IEEE
Transactions on Automatic Control, 61, 1824–1837, 2016.



Agents with partially unkown dynamics

Next, consider each agent i ∈ {1, . . . , ∣N ∣} disturbed by an additive
unknown dynamics given by

⎧⎪⎪⎨⎪⎪⎩

q̇i = vi,
v̇i = ui + fi(qi,vi),

(5)

where fi ∶ R2d → Rd is a state-dependent unknown function.

Then, (5) can be written as

⎧⎪⎪⎨⎪⎪⎩

q̇ = v,
v̇ = u + ρ(q) + f̂(q,v),

(6)

with the stacked vector of estimating functions
f̂(q,v) = [f̂1(q1,v1)⊺, . . . , f̂∣N ∣(q∣N ∣,v∣N ∣)⊺]⊺ and the unknown

dynamics ρ∶R2d∣N ∣ → Rd∣N ∣ with elements defined by
ρi(pi) = fi(qi,vi) − f̂i(qi,vi), where pi = [q⊺i ,v⊺i ]⊺.

In the next step, we employ a GP model for the learning of the unknown
dynamics ρ.



General assumptions for learning-based control

Each agent collects m(t) ∈ N training points based on its own dynamics
such that data sets

Di,m(t) = {p{j}i ,y
{j}
i }m(t)j=1 (7)

are created. The output data yi ∈ Rd are given by
yi = v̇i − f̂i(qi,vi) −ui. The number of training points m(t) of the data
sets Di,m(t), i ∈ {1, . . . , ∣N ∣} with m∶R≥0 → N can change over time t,
i.e., it allows online learning. Let Dm(t) = {Di,m(t), . . . ,D∣N ∣,m(t)} be a
set that contains all training set. We introduce the following assumption
on the data collection.

Assumption: There are only finitely many switches of m(t) over time and
there exists a time T ∈ R≥0 where
Dm(T ) = Dm(t),∀t ≥ T,∀i ∈ {1, . . . , ∣N ∣}.

Assumption: The continuous kernel k is chosen in such a way the
functions ρi, i ∈ {1, . . . , d∣N ∣} have a bounded reproducing kernel Hilbert
Space (RKHS) norm on a compact set
Ω ⊂ R2d∣N ∣, i.e. ∥ρi∥k < ∞ for all i ∈ {1, . . . , d∣N ∣}.



Model error

Consider the system (6) and a GP model satisfying the previous
assumptions. Then the model error is probabilistically bounded by

P {∥µ(ρ ∣ p,Dm) − ρ(p)∥ ≤ ∥β⊺Σ
1
2 (ρ ∣ p,Dm)∥} ≥ ε

for p ∈ Ω ⊂ R2d∣N ∣ compact, with ε ∈ (0,1),β,γ ∈ Rd, and denoting by m
the number of entries in the data set Dm,

βj =
√

2 ∥ρj∥2
k + 300γj ln3 ( m + 1

1 − ε1/(d∣N ∣) ). (8)

The variable γj ∈ R is the maximum information gain

γj = max
p{1},...,p{m+1}∈Ω

1

2
log ∣I + σ−2

j K (x,x′)∣ (9)

x,x′ ∈ {p{1}, . . . ,p{m+1}} . (10)



Online learning for stable flocking control

Consider the potential function V ∶ R2d∣N ∣ → R, V = V0 + V1 as described
before.

In the absence of unknown disturbances, V allows to write the
closed-loop system formation as

⎧⎪⎪⎨⎪⎪⎩

q̇ = ∇vV
v̇ = −∇vV −∇qV.

(11)

Local exponential convergence to the set

S = {(q∗,δ∗) ∈ R2d∣N ∣∣∇qV (q∗) = 0,δ∗ = 0} (12)

for the system (11), has been shown in

Deghat, M and Anderson, B.D.O and Lin, Z. Combined flocking and
distance-based shape control of multi-agent formations. IEEE
Transactions on Automatic Control, 61, 1824–1837, 2016.

Next, we design a distributed data-driven control law by using GP’s, such
that, by learning and update the learning of the unknown disturbances,
exponentially stabilizes the partially unknown motion of the agents to a
desired formation shape with flocking motion.



Online learning for stable flocking control

Consider the one-parameter family of systems with double integrator
flocking stabilization dynamics Hλ given by

[ṗ
v̇
] = [ −λId∣N ∣ (1 − λ)Id∣N ∣

(λ − 1)Id∣N ∣ −LId∣N ∣
] [∇pV∇vV

] , (13)

where λ ∈ [0,1]. Equation (13) continuously interpolates all convex
combinations between the dissipative system (11) for λ = 0 and a
gradient system for λ = 1. The family Hλ has two important properties
summarized in the following Lemma.

Lemma
(I) For all λ ∈ [0,1], the equilibrium set of Hλ is given by the set of the
critical points of the potential function V , and is independent of λ.
(II) For any equilibrium of Hλ for all λ ∈ [0,1], the numbers of the
stable, neutral, and unstable eigenvalues of the Jacobian of Hλ are the
same and independent of λ.



Online learning for stable flocking control

Denote by Ee,δ ∶= (e,δ) the stacked vector of relative positions errors and
velocities disagreement vector for stabilization to desired formation
shapes with flocking motion.

The control law

u(t) = −Lv −R⊺(e)e(z) − f̂(q,v) −µ(ρ∣p,Dm) (14)

guarantees that the solution trajectories converge locally exponentially
fast to the equilibrium set S and are ultimately uniformly bounded in
probability on Ω with Tε ∈ R≥0 by

P{∣∣Ee,δ(t)∣∣ ≤
√

2 max
p∈Ω

∆̄m(T )(p),∀t ≥ Tε} ≥ ε, (15)

where ∆̄m(p) ∶ Ω→ R≥0 defines an upper bound of the model error.

T. Beckers, G. Pappas, L. Colombo. Learning rigidity-based flocking
control using Gaussian Processes with probabilistic stability
guarantees. Proceedings of the 61st Conference on Decision and
Control, 7254-7259, 2022.



Simulation results

We consider 4 agents forming a shape as depicted in the Figure

Figure: Neighbor’s relations and desired shape

Consider the perturbations over agents 1 and 3 given by
f1(v1) = [300 sin(0.2v1,y),300 cos(0.2v1,x),10]⊺,
f3(v3) = [300 sin(0.2v3,y),−200,300 sin(0.2v3,y)]⊺. Initial positions are
q1(0) = (100,0,0), q2(0) = (0,0,200), q3(0) = (0,−300,0),
q4(0) = (100,0,−300).



Simulation results

Note the significant deterioration of the motion when the classical control
law has to deal with the unknown forces, as observed in the Figure

Figure: Nominal control with unknown perturbations



Simulation results

The learning control law has been implemented using a square
exponential kernel. At t = 0, the training set Dm(0) is empty and a new
data point is added every 0.02 seconds, until the final amount of 500
data points is reached at t = 10 seconds.

Figure: The proposed learning-based control law can compensate the unknown
perturbations.



Simulation results

The evolution of the Lyapunov function highlights the superiority of the
proposed control law as it allows the Lyapunov function to converge to a
tight set around zero. Note that the evolution of the Lyapunov function
is not always decreasing but bounded in a neighborhood around zero.
The size of the set shrinks with improved accuracy of the GP model.

Figure: Normalized Lyapunov function with the standard control law (dashed)
and the proposed, learning-based control law (solid) which converges to a tight
set around zero.



Control Systems on Lie groups

A Lie group is a differentiable manifold G with group stucture, where the
multiplication (g, h) ↦ gh for g, h ∈ G and the inversion, g ↦ g−1, are
differentiable maps. Denote by e the identity element of G and by
g ∶= TeG its Lie algebra.

We are interested on systems on Lie groups since they model a big
quantity of mechanical systems. That is, these systems have as
configuration space a Lie group.

An important opeation between elements of the Lie group G are left and
right translations of elements on G. The left translation of an element
g ∈ G is given by Lg(h) = gh for h ∈ G. The right translation of an
element of g ∈ G is given by Rg(h) = hg for h ∈ G.
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Agents with nonlinear dynamics
The special euclidean group in the space

Let SE(3) be the special euclidean group in the space. Any g ∈ SE(3) is

represented as g = (R q
0 1

) where R is the orientation in SO(3), the

special orthogonal group in the space, and q is the position in R3.

The group operation is matrix multiplication. Therefore, in this
representation SE(3) is a subgroup of the general linear group
GL(3,R). The Lie algebra of SE(3) is denoted by se(3) and any
ξ ∈ se(3) is represented as

ξ = (Ω̂ v
0 0

) ,

where Ω =
⎛
⎜
⎝

ω1

ω2

ω3

⎞
⎟
⎠
, Ω̂ =

⎛
⎜
⎝

0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎞
⎟
⎠
, v =

⎛
⎜
⎝

v1

v2

v3

⎞
⎟
⎠
.

With this notation, an element of se(3) will be sometimes denoted as
ξ = (Ω̂, v) for Ω̂ ∈ so(3), and v ∈ R3, where so(3) denotes the set of 3 × 3
skew-symmetric matrices.



Agents with nonlinear dynamics
Basics on Lie group actions

Let G be a finite dimensional Lie group with identity element e ∈ G. A
left-action of G on a manifold Q is a smooth mapping Φ ∶ G ×Q→ Q
such that Φ(e, q) = q for all q ∈ Q, Φ(g,Φ(h, q)) = Φ(gh, q) for all
g, h ∈ G, q ∈ Q and for every g ∈ G, Φg ∶ Q→ Q defined by
Φg(q) ∶= Φ(g, q) is a diffeomorphism.

Let g be the Lie algebra associated to G, that is, g = TeG. Let
Φ ∶ G ×G→ G be the left group action in the first argument defined as
Φ(g, h) = Lg(h) = gh for all g, h ∈ G. The infinitesimal generator
corresponding to ξ ∈ g is ξQ ∈ X(TQ) which is defined as
ξQ(q) = d

dt
∣t=0Φ(exp(tξ), q), where exp denotes the exponential map.

The Lie bracket on g is denoted by [⋅, ⋅]. The adjoint map, adξ ∶ g→ g for
ξ ∈ g is defined as adξη ∶= [ξ, η] for η ∈ g.

Let I ∶ g→ g∗ be an isomorphism from the Lie algebra to its dual. The
inverse is denoted by I♯ ∶ g∗ → g. The isomorphism I induces the inner
product ⟪⋅, ⋅⟫I ∶ g × g→ R given by ⟪ξ1, ξ2⟫I = ⟨I(ξ1), ξ2⟩g, for ξ1, ξ2 ∈ g
and where ⟨⋅, ⋅⟩g ∶ g∗ × g→ R denotes the natural pairing between
elements of g∗ and g.



Agents with nonlinear dynamics
Euler-Poincaré equations

The adjoint map ad(η̂,v) ∶ se(3) → se(3) is defined as

ad(η̂,v)(ξ̂, v̄) = (η × ξ, η × v̄ − ξ × v),

for (η̂, v), (ξ̂, v̄) ∈ se(3). The dual of the adjoint map is
ad∗
(η̂,v) ∶ se(3)∗ → se(3)∗ defined as ⟨ad∗

(η̂,v)α,β⟩ = ⟨α,ad(η̂,v)β⟩ for

α,β ∈ se(3)∗, that is

ad∗
(ξ,α)(µ,β) = (µ × ξ − α × β,−ξ × β),

for (ξ,α) ∈ se(3) and (µ,β) ∈ se(3)∗.

Next, consider a multi-agent system with s agents. Each agent is
modeled as a fully actuated mechanical system on SE(3). This means
we have 6 actuators on each agent denoted by ui, with i = 1, . . . , s. The
dynamics of agent i is given by the Euler-Poincaré equations

ξi = TgiLg−1i
ġi, (16)

ξ̇i = ui + I♯ad∗ξi(Iξi).
for i = 1, . . . , s and I ∶ se(3) → se(3)∗ is an isomorphism from the Lie
algebra se(3) to its dual se(3)∗ with inverse map denoted by I♯.



Underactuated vehicles

We assume a single underactuated rigid body with position p ∈ R3 and
orientation matrix R ∈ SO(3). The body-fixed angular velocity is denoted
by ω ∈ R3. The vehicle has mass m ∈ R>0 and rotational inertia tensor
J ∈ R3×3. The state space of the vehicle is S = SE(3) ×R6 with
s = ((R,p), (ω, ṗ)) ∈ S denoting the state of the system.
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Underactuated vehicles

The vehicle is actuated with torques τ ∈ R3 and a force u ∈ R, which is
applied in a body-fixed direction defined by a unit vector e ∈ R3. We can
model the system as

mp̈ = Reu + f(p, ṗ), Ṙ = Rω̌
ω̇ = J−1(Jω ×ω + τ + fω(s)),

(17)

where the map (̌⋅)∶R3 → so(3) is given by

ω̌ =
⎡⎢⎢⎢⎢⎢⎣

0 −ω3 −ω2

ω3 0 −ω1

−ω2 ω1 0

⎤⎥⎥⎥⎥⎥⎦
, (18)

with the components of the angular velocity ω = [ω1, ω2, ω3]⊺. The
functions f ∶R6 → R3 and fω ∶S → R3 are state-depended disturbances
and/or unmodeled dynamics. It is assumed that the full state s can be
measured.



Underactuated vehicles

The general objective is to track a trajectory specified by the functions
(Rd,pd)∶ [0, T ] → SE(3). For simplicity, we focus here on position
tracking only. The extension to rotation tracking is straightforward and
will be discussed in the next lecture.

T. Beckers, L. Colombo, G. Pappas, S. Hirche. Online learning-based
trajectory tracking for underactuated vehicles with uncertain
dynamics. IEEE Control System Letters, 2021.

T. Beckers, L. Colombo, S. Hirche. Safe trajectory tracking for
underactuated vehicles with partially unknown dynamics. Journal of
Geometric Mechanics 14 (4), 491-505, 2022.



Equivalent system

In preparation for the learning and control step, we transform the system
dynamics (17) in an equivalent form. For the unknown dynamics f and

fω, we use the estimates f̂ ∶R6 → R3 and f̂ω ∶S → R3, respectively, of an
oracle. The estimation error is moved to ρ(x) = f(x) − f̂(x) and

ρω(s) = fω(s) − f̂ω(s), where x = [p⊺, ṗ⊺]⊺ ∈ R6, s ∈ S. With the
system matrix A ∈ R6×6 and input matrix B ∈ R6×3 given by

A = [0 I3
0 0

] , B = [ 0
1
m
I3

] , (19)

and I3 ∈ R3×3 as identity matrix, we can rewrite (17) as

ẋ = Ax +B(g(R,u) + f̂(x) + ρ(x))
Ṙ = Rω̌
ω̇ = J−1(Jω ×ω + τ + f̂ω(s) + ρω(s)),

(20)

where g∶SO(3) ×R→ R3 is a virtual control input with g(R,u) ∶= Reu.
As consequence, (20) is equivalent to (17) without loss of generality.



Control Archichecture

Figure: Control archichecture.



Learning

For the learning of the unknown dynamics of (17), we consider an oracle
which predicts the values of f ,fω for a given state s. For this purpose,
the oracle collects N(n)∶N→ N training points of the system (17) to
create a data set

Dn(t) = {s{i},y{i}}N(n)i=1 . (21)

The output data y ∈ R6 are given by
y = [(mp̈ −Reu)⊺, (J(ω̇ −ω ×ω) − τ )⊺]⊺ such that the first three
components of y correspond to f and the remaining to fω. The data set
Dn(t) with n∶R≥0 → N can change over time t, such that at time t1 ∈ R≥0

the data set Dn(t1) with N(n(t1)) training points exists.



Learning

Assumption 1: Consider an oracle with the predictions f̂n ∈ C2 and
f̂ω,n ∈ C0 based on the data set Dn for:dataset. Let

SX ⊂ (SE(3) × (X ⊂ R6)) be a compact set where the derivatives of f̂n
are bounded on X . There exists a bounded function ρ̄n∶SX → R≥0 such
that, if ∣∣ ⋅ ∣∣ denotes the Euclidean norm, the prediction error is bounded
by

P

⎧⎪⎪⎨⎪⎪⎩
∥[ f(x) − f̂n(x)
fω(s) − f̂ω,n(s)

]∥ ≤ ρ̄n(s)
⎫⎪⎪⎬⎪⎪⎭
≥ δ (22)

with probability δ ∈ (0,1] for all x ∈ X ,s ∈ SX .

Assumption 2: The number of data sets Dn is finite and there are only
finitely many switches of n(t) over time, such that there exists a time
T ∈ R≥0 where n(t) = nend,∀t ≥ T
Assumption 3: The kernel k is selected such that f ,fω have a bounded
reproducing kernel Hilbert space (RKHS) norm on X and SX ,
respectively, i.e. ∥fi∥k < ∞, ∥fω,i∥k < ∞ for all i = 1,2,3.



Model error

Consider the unknown functions f ,fω and a GP model satisfying as:rkhs.
The model error is bounded by

P

⎧⎪⎪⎨⎪⎪⎩

XXXXXXXXXXX
µ

⎛
⎝
[ f̂n(x)
f̂ω,n(s)

]
RRRRRRRRRRR
s,Dn

⎞
⎠
− [f(x)
fω(s)

]
XXXXXXXXXXX

≤
XXXXXXXXXXX
βn

⊺
Σ

1
2
⎛
⎝
[ f̂n(x)
f̂ω,n(s)

]
RRRRRRRRRRR
s,Dn

⎞
⎠

XXXXXXXXXXX

⎫⎪⎪⎬⎪⎪⎭
≥ δ

for x ∈ X ,s ∈ SX , δ ∈ (0,1) with βn ∈ R6 as before

With Assumption 3 and the fact, that universals kernels exist which
generate bounded predictions with bounded derivatives, GP models can
be used as oracle to fulfill Assumption 1. In this case, the prediction error

bound is given by ρ̄n(s) ∶= ∥βn⊺Σ
1
2 ([f̂n(x)⊺, f̂ω,n(s)⊺]⊺∣s,Dn)∥.



Tracking control

For the tracking control, we consider a given desired trajectory
xd(t)∶Rt≥0 → X ,xd ∈ C4. The tracking error is denoted by
z0(t) = x(t) −xd(t).

Before we propose the main theorem about the safe learning-based
tracking control law, the feedback gain matrix Gn is introduced. As part
of the controller, Gn penalizes the position tracking error and the result
is fed back to both inputs, the force control u and the torque control τ
of the system.

The feedback gain matrix is allowed to be adapted with any update of
the oracle based on a new data set Dn to lower the feedback gains when
the oracle’s accuracy is improved.

Property: The matrix Gn ∈ R3×6 is chosen such that there exist a
symmetric positive definite matrix Pn ∈ R6×6 and a positive definite
matrix Qn ∈ R6×6 which satisfy the Lyapunov equation

Pn(A −BGn) + (A −BGn)
⊺

Pn = −Qn (23)

for each switch of n(t).



Backstepping control

Backstepping method is a control theory approach used for controlling
and stabilizing nonlinear dynamical systems.

This approach is achieved by recursively stabilizing the system origin in
which the control process ends when the final external control is
evaluated. Moreover, the backstepping method is a typical strategy for
achieving control laws by defining virtually error variables and a Lyapunov
function for each subsystem of the original system of ordinary differential
equations to assure system stability.



Tracking control

Consider the underactuated rigid-body system given by (17) with unknown
dynamics f ,fω and the existence of an oracle satisfying Assumptions 2 and 3.
Let Gz1 ,Gz2 ∈ R

3×3 be positive definite symmetric matrices. The control law

τ = J(e×(R⊺gd̈ − ω̌
2eu − 2ω̌eu̇)u−1)−Jω×ω−f̂ω(s),

ü = e⊺(R⊺gd̈ − ω̌
2eu − 2ω̌eu̇), (24)

with the desired virtual control input derivative

gd̈ =mp
(4)
d −Gn (∂

˙̂x

∂x
˙̂x − ẍd) −BPn( ˙̂x − ẋd) −Gz2B

⊺Pnz0 −
∂

∂x
[∂f̂n
∂x

˙̂x] ˙̂x

− (Gz1 +Gz2)(ġ −mp
(3)
d +Gn( ˙̂x − ẋd) +

∂f̂n
∂x

˙̂x) (25)

− (Gz2Gz1 + I3) (g −mp̈d +Gnz0 + f̂n(x))
˙̂x = Ax +B (g(R,u) + f̂n(x)) (26)

guarantees that the tracking error is uniformly ultimately bounded by

P{∥z0(t)∥ ≤ max
s∈SX

ρ̄nend(s)bnend ,∀t ≥ T} ≥ δ (27)

with bnend = (max{eig(Pnend),1}/min{eig(Pnend),1})
1/2, and time constant

T ∈ R≥0 on SX .



Tracking control

● The control law does not depend on any state derivatives, which are
typically noisy in measurements. The derivatives, i.e. the translational
and angular accelerations, are only necessary for the training of the
oracle, which can often deal with noisy data. For instance, GP models
can handle additive Gaussian noise on the output.

● We prove the stability of the closed-loop with the proposed control law
with multiple Lyapunov function, where the n-th function is active when
the oracle predicts based on the corresponding training set Dn. Note that
due to a finite number of switching events, the switching between stable
systems can not lead to an unbounded trajectory.

● The torque control law of (24) has a singularity at u = 0 as without
control force u no tracking control is possible in general. To overcome
the singularity, a reasonable trajectory planning can be performed, or the
control torques are set to zero at this point. In practice, this leads to
chattering that can be alleviated by a slight modification of the control
law to remove the singularity.

● The proof shows that the bound of the tracking error depends on the
prediction error ρ̄n of the oracle.



Numerical Example 1

To demonstrate the application relevance of our proposed approach, we
consider the task of an quadcopter to explore a terrain with unknown
thermals.

The dynamics of the vehicle is described with mass m = 1 kilogram,
inertia J = I3kg/m2 and the direction e = [0,0,1]⊺ of the force input u.

The data of the thermals is taken from publicly available paragliding data.

The thermals are assumed to act on the quadcopter as a disturbance in
the direction of x3, i.e., the altitude, as well as an angular momentum in
the direction of ω1. A GP model is then used as oracle to predict f(x)
and fω(s) based on the collected data set with the squared exponential
kernel.



Numerical Example 1

Figure: Visualization of the normalized magnitude of the thermal updraft acting
on the quadcopter and the recorded training data points (red crosses).



Numerical Example 1

The prior knowledge about the existing gravity in f(x) is considered as
estimate in the mean function of the GP with m3(s) = −10.

First, we start with the collection of training data for the GP model. For
this purpose, the control inputs for the aerial vehicle are generated by a
controller but without an oracle, i.e. f̂(x) = f̂ω(s) = 0,∀x ∈ R6,s ∈ S.

The feedback gain matrix is set to

G =
⎡⎢⎢⎢⎢⎢⎣

10 0 0 10 0 0
0 10 0 0 10 0
0 0 20 0 0 10

⎤⎥⎥⎥⎥⎥⎦
(28)

and Gz1 = Gz2 = 2I3.

The desired trajectory is given by xd,1(t) = sin(t), xd,2(t) = cos(t) − 1,
xd,3(t) = t/10.

Every 0.1 second a training point has been recorded. Each training point
consists of the actual state s and y.



Numerical Example 1

Since the training points depend on the typically noisy measurement of
the accelerations p̈ and ω̇, a Gaussian distributed noise N(0,0.082I3) is
added to the measurement. After the simulation time of 15 seconds, the
data set D consists of 150 training points. Based on this data set, a GP
model is trained and the hyperparameters are optimized by means of the
likelihood function.

Figure: Tracking error of the quadcopter with control law u without learning
(blue) and with our proposed learning-based approach (red).



Numerical Example 1

Figure: Lyapunov function (solid) converges to a tight set around zero (dashed
line) and stays inside this set with high probability as guaranteed by Theorem.



Numerical Example 1

Figure: Ground truth (dashed) of the unknown dynamics and estimates of the
GP (solid). Top: Unknown dynamics acting on the x3-position of the
quadcopter. Bottom: Unknown dynamics acting on the first component of the
angular acceleration ω̇ of the quadcopter.



Numerical Example 2

The dynamics of the quadrocopter are described by (17) with mass m = 1
kilogram, inertia J = diag(2,2,1)kg/m2 and the direction e = [0,0,1]⊺ of
the force input u. As unknown dynamics f and fω, we consider an
arbitrarily chosen wind field and the gravity force given by

f(x) = [0,0,2 sin(x1) + exp(−5x2
2) − 9.81]⊺ (29)

fω(s) = [2 exp(−x2
1 − x2

2) + ω1 cos(x2)2,0,0]⊺. (30)

The posterior mean µ(y∣s,Dn) of a GP model is used as oracle to
predict the z-component of f(x) and the x-component of fω(s) with
the squared exponential kernel.

The prior knowledge about the existing gravity in f(x) is considered as
estimate in the mean function of the GP with m3(s) = −10. At starting
time t = 0, the data set Dn is empty such that the prediction is solely
based on the mean function.



Numerical Example 2

The initial position of the quadrocopter is p(0) = [0.1,−0.1,0]⊺ whereas
the desired trajectory starts at pd(0) = [0,0,0]⊺ due to an assumed
position measurement error. We employ an online learning approach
which collects a new data point every 0.1 seconds such that the total
number of data points is N = 5n.

The GP model is updated every second until t = 12 seconds, where the
last 10 collected training points are appended to the set Dn and the
hyperparameters are optimized by means of the likelihood function.



Numerical Example 2

Figure: A segment of the desired (dashed) and actual trajectory (solid). Every
0.1 seconds a training point (cross) is recorded. Every 0.5 seconds the oracle is
updated based on all collected training points N . The additional training data
allows to refine the model such that the tracking error is decreasing.



Numerical Example 2

Figure: Top: Lyapunov function converges to a tight set around zero. The
jumps occur when the oracle is updated. Bottom: Norm of the feedback gain
matrix is decreasing due to improved accuracy of the oracle.



Numerical Example 2

Figure: Actual trajectory converges to desired trajectory


