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(Pre-)Multisymplectic Manifolds

Definition

Given a differentiable manifold M , a differential form Ω ∈ Ωm(M ) is 1-nondegenerate
if, for every p ∈ M and Y ∈ X(M ), it follows that (Y )Ω|p = 0 ⇐⇒ Y |p = 0.

Definition

If Ω ∈ Ωm(M ) is closed and 1-nondegenerate, then Ω is a multisymplectic form and
(M ,Ω) is a multisymplectic manifold.

Definition

If Ω ∈ Ωm(M ) is closed and 1-degenerate, then Ω is a pre-multisymplectic form and
(M ,Ω) is a pre-multisymplectic manifold.
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Setting for field theories

Spacetime:
M with coordinates xµ and Lorentzian metric gµν where µ = {0, 1, . . . ,m − 1}, i.e.
dim(M) = m

Configuration bundle:
π : E → M : (xµ, yA) 7→ xµ where A = {1, 2, . . . , n}, i.e. dim(E) = m + n.

Local sections and fields:
ϕ : M → E : xµ 7→ (xµ, yA(x))
The yA(x) are the fields of the field theory under investigation.

(pre)multisymplectic phase spaces:
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The Extended Multimomentum Bundle Mπ

Definition

Mπ ≡ Λm
2 T

∗E is called the extended multimomentum bundle, the bundle of m-forms
on E vanishing by the action of two π-vertical vector fields.

Mπ has natural coordinates (xµ, yA, pµ
A , p) and the pµ

A are called the multimomenta

dim(Mπ) = m + n +mn + 1

Mπ comes equipped with the following canonical Cartan forms:

Θ = pµ
Ady

A ∧ dm−1xµ + p dmx , Ω = −dΘ = −dpµ
A ∧ dyA ∧ dm−1xµ − dp ∧ dmx .

Ω ∈ Ωm+1(Mπ) is, in general, multisymplectic.

Note: dm−1xµ ≡ i(∂µ)d
mx =

1

(m − 1)!
ϵµµ2···µmdx

µ2 ∧ . . . ∧ dxµm
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The Multimomentum Bundle J1π∗

Definition

The quotient bundle J1π∗ := Mπ/Λm
1 (

∗E), where Λm
1 (

∗E) denotes the bundle of
π-semibasic m-forms on E is called the multimomentum bundle.

J1π∗ has natural coordinates (xµ, yA, pµ
A )

Mπ is a fiber bundle over J1π∗ with projection map
σ : Mπ → J1π∗ : (xµ, yA, pµ

A , p) 7→ (xµ, yA, pµ
A )

Definition

Sections h : J1π∗ → Mπ : (xµ, yA, pµ
A ) 7→

(
xµ, yA, pµ

A , p = −H (xν , yB , pν
B)
)
are called

Hamiltonian sections and H (xν , yB , pν
B) ∈ C∞(J1π∗) is called the De Donder–Weyl

Hamiltonian.

The De Donder–Weyl Hamitonian formulation of classical field theories takes place
on J1π∗
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Note that both Mπ and J1π∗ are fiber bundles over E and M. So far:
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Regular Hamiltonian field theories

The Hamilton–Cartan forms on J1π∗ are obtained by pulling back the forms on Mπ by
Hamiltonian sections:

ΘH := h∗Θ ∈ Ωm(J1π∗) , ΩH := −dΘH = h∗Ω ∈ Ωm+1(J1π∗) .

The local expressions for the Hamilton–Cartan forms are:

ΘH = pµ
Ady

A ∧ dm−1xµ − H dmx , ΩH = −dpµ
A ∧ dyA ∧ dm−1xµ + dH ∧ dmx .

If the field theory under investigation is regular, then ΩH is multisymplectic.
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Hamiltonian variational principle on J1π∗

The action is a functional on the set of sections Γ(τ) given as

Γ(M, J1π∗) → R : ψ 7→
∫
M

ψ∗ΘH . Need to find critical (stationary) sections

d

ds

∣∣∣∣
s=0

∫
M

ψ∗
s ΘH = 0 ,

for variations ψs = ηs ◦ ψ of ψ, where ηs is the flow of a τ -vertical vector field on E
compactly supported on M.
Critical sections are characterized in the following equivalent ways:

ψ is an integral section of a class of integrable, locally decomposable, τ̄ -transverse
multivector fields {XH } ⊂ Xm(J1π∗) which satisfy

i(XH )ΩH = 0 , for every XH ∈ {XH } .

The section ψ satisfies the Hamilton–De Donder–Weyl equations:

∂(yA ◦ ψ)
∂xµ

=
∂H

∂pµ
A

◦ ψ ,
∂(pµ

A ◦ ψ)
∂xµ

= −∂H

∂yA
◦ ψ .
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Multivector field solutions

Locally decomposable:

XH =
m−1∧
µ=0

Xµ =
m−1∧
µ=0

(
∂

∂xµ
+ DA

µ
∂

∂yA
+ Hν

µA
∂

∂pν
A

)
∈ Xm(J1π∗)

We choose a representative of the class {XL } which is a normalized, τ -transverse,
multivector field:

i(XH )dmx = 1 .

Integral sections satisfy:

DA
µ = ∂µy

A(x) , Hν
µA = ∂µp

ν
A(x) .
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Singular Hamiltonian field theories

Singular Hamiltonian field theories come with the following:

primary constraint submanifold P◦ ⊂ J1π∗ which is a τ -transverse embedded
submanifold ȷ◦ : P◦ ↪→ J1π∗

P◦ specified by some primary constraint equations φI (y
A, pµ

A ) = 0

restricted projection maps τ◦ : P◦ → E and τ◦ : P◦ → M

Restricted Hamiltonian sections h◦ = h ◦ ȷ◦ : P◦ → Mπ

Then, the Hamilton–Cartan forms are obtained using the restricted Hamiltonian sections:

Θ◦
H = h ∗

◦Θ ∈ Ωm(P◦) , Ω◦
H = −dΘ◦

H = h ∗
◦Ω ∈ Ωm+1(P◦) ,

and now Ω◦
H is pre-multisymplectic.
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De Donder–Weyl Hamiltonian constraint analysis

The variational problem is formulated similarly as before, except now we need a
constraint analysis...

Looking now for critical sections of decomposable τ◦-transverse m-multivector field
on P◦ which satisfies the field equations: i(X ◦

H )Ω◦
H = 0

The field equations may give compatibility constraints φc(yA, pµ
A ) = 0 which gives

the compatibility constraint submanifold C ↪→ P◦ ↪→ J1π∗

Impose tangency (stability) of multivector field solution iterativley to all constraint
submanifolds

φ1 ≡ L(X ◦
H )φc =

C
0

φ2 ≡ L(X ◦
H )φ1 =

C1

0

...

φf ≡ L(X ◦
H )φf−1 =

Cf−1

0
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First jet bundle

Definition

Consider a section ϕ : M → E : xµ 7→ (xµ, yA(x)) of the bundle

π : E → M : (xµ, yA) → xµ. Given a point x ∈ M, two sections ϕ, ϕ̃ of π are (1st-order)

equivalent at x if ϕ(x) = ϕ̃(x) and ∂µϕ|x = ∂µϕ̃|x (i.e. Txϕ = Tx ϕ̃). The corresponding
equivalence classes are called the 1-jets of ϕ at x , denoted j1xϕ. Then, the first-order jet
bundle J1π of π is defined as J1π = {j1xϕ : x ∈ M, ϕ ∈ Γ(π)}.
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Lagrangian field theory

The first-order-jet bundle J1π has natural coordinates (xµ, yA, yA
µ ) and hence

dim(J1π) = dim(J1π∗) = m + n +mn

yA ◦ j1ϕ = yA(x) (fields), yA
µ ◦ j1ϕ = ∂µy

A(x)

L (xµ, yA, yA
µ ) ∈ C∞(J1π), EL = ∂L

∂yAµ
yA
µ − L ∈ C∞(J1π)

Legendre transform FL : J1π → J1π∗

FL ∗pµ
A = ∂L

∂yAµ
, FL ∗H = EL

Extended Legendre transform F̃L : J1π → Mπ∗

F̃L
∗
pµ
A = ∂L

∂yAµ
, F̃L

∗
p = −EL

J1π

F̃L

FL

��
���

��*

- J1π∗

Mπ

?
σ

6
h
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j1ϕ
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Multisymplectic structure for regular Lagrangian theories

The Cartan forms are defined by pulling back from Mπ:

ΘL ≡ F̃L
∗
Θ =

∂L

∂yA
µ

dyA ∧ dm−1xµ − EL dmx , ΩL ≡ F̃L
∗
Ω = −dΘL
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Singular field theories

ΩL is degenerate and hence pre-multisymplectic

The multi-Hessian is degenerate:

Hµν
AB =

∂2L

∂yA
µ∂yB

ν

, nullvectors: Hµν
ABV

A
µ = 0

Given primary constraints (φi = 0), the null vectors are given as

(Vi )
A
µ = FL ∗

(
∂φi

∂p
µ
A

)
Im(FL ) = P◦ ⊂ J1π∗

ȷ◦ : P◦ ↪→ J1π∗ , FL ◦ : J1π → P◦ , FL = ȷ◦ ◦ FL ◦

A function f ∈ C∞(J1π) is FL -projectable if

L(Γi )f = 0

where,

Γi = (Vi )
A
µ
∂

∂yA
µ
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Full geometric setting for singular theories
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Lagrangian constraints

The variational problem is formulated similarly as before, except now we need a
constraint analysis...

Looking now for critical sections of decomposable π1-transverse m-multivector field
on J1π which satisfies the field equations: i(X ◦

L )Ω◦
L = 0

The field equations may give compatibility constraints φc(yA, yA
µ ) = 0 which gives

the compatibility constraint submanifold C ↪→ J1π

Impose sopde condition on X ◦
L ; this may produce sopde constraints

Impose tangency (stability) of multivector field solution iterativley to all constraint
submanifolds

φ1 ≡ L(X ◦
L )φc =

S1
0

φ2 ≡ L(X ◦
L )φ1 =

S1

0

...

φf ≡ L(X ◦
L )φf−1 =

Sf−1

0
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Geometric constraints

↪→

Sf

Sf

FL

J1∗πJ1π

FL 0

P0

↪→

↪→
↪→

S1

S1
· C1

↪→

·
·

·
·

·
Cf
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Lifted group actions on E

Consider spacetime diffeomorphisms

ΦM : M → M

generated (infinitesimally) by

ξM = −ξ(x)µ ∂

∂xµ

so that
xµ → xµ + ξµ(x) .

The lift of this group action to configuration manifold is a diffeomorphism:

ΦE : E → E

satisfies
ΦM ◦ π = π ◦ ΦE

as shown below:

M

E

?
π

-

-
ΦM

ΦE

M

E

?
π
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Generating vector field and field variations

ΦE is generated (infinitesimally) by π-projectable vector field:

ξE = −ξ(x)µ ∂

∂xµ
− ξA(x , y)

∂

∂yA
.

Field variations:
δyA(x) = L(ξM)yA(x) = −ξµ∂µyA + ξA

For guage transformations ξµ = 0 so,

δyA(x) = ξA

and are generated on E by

ξE = −ξA(x , y) ∂

∂yA
.

We think of these as a special case...

21 / 28



Lifting to Lagrangian phase space J1π

Given a point γ = (xµ, yA, yA
µ ) ∈ J1π:

Definition

ΦJ1π(γ) ≡ TΦE ◦ γ ◦ TΦ−1
M

Then, the flow of ΦJ1π(γ) is generated (infinitesimally) by

Xξ = −ξ(x)µ ∂

∂xµ
− ξA(x , y)

∂

∂yA
−

(
∂µξ

A − yA
ν ∂µξ

ν + yB
µ
∂ξA

∂yB

)
∂

∂yA
µ

(well-known).

E

J1π

M

?
π1

?
π

-

-

-

ΦE

ΦJ1π

ΦM

E

J1π

M

?
π1

?
π
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Lifting to Mπ

Recall Mπ ≡ Λm
2 T

∗E . Given a point y = (xµ, yA) and a point p = (y , ζ) ∈ Mπ so that
ζ ∈ Λm

2 T
∗
y E

Definition

ΦMπ ≡
(
ΦE (y), (Φ

−1
E )∗y ζ

)
This is generated (infinitesimally) by

Zξ = −ξµ ∂

∂xµ
− ξA

∂

∂yA
−

(
∂ξµ

∂xν
pν
A − ∂ξν

∂xν
pµ
A − ∂ξB

∂yA
pµ
B

)
∂

∂pµ
A

+

(
∂ξA

∂xµ
pµ
A +

∂ξµ

∂xµ
p

)
∂

∂p

E

Mπ

M

?

?
π

-

-

-

ΦE

ΦMπ

ΦM

E

Mπ

M

?

?
π
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Lifting to J1π∗

Definition

The canonical lift ΦJ1π∗ to J1π∗ is the diffeomorphism ΦJ1π∗ : J1π∗ → J1π∗ induced by
ΦMπ : Mπ → Mπ; that is

ΦJ1π∗ ◦ σ = σ ◦ ΦMπ .

This is generated (infinitesimally) by

Yξ = −ξµ ∂

∂xµ
− ξA

∂

∂yA
−

(
∂ξµ

∂xν
pν
A − ∂ξν

∂xν
pµ
A − ∂ξB

∂yA
pµ
B

)
∂

∂pµ
A

J1π∗

Mπ

E

?
σ

?
τ

-

-

-

ΦJ1π∗

ΦMπ

ΦE

J1π∗

Mπ

E

?
σ

?
τ
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Lifting to P◦ ⊂ J1π∗ for singular theories

Definition

The canonical lift ΦP◦ to P◦ is the diffeomorphism ΦP◦ : P◦ → P◦ induced by
ΦMπ : Mπ → Mπ; that is

ΦP◦ ◦ σ◦ = σ◦ ◦ ΦMπ .

This is generated infinitesimally by

Y ◦
ξ ≡ Yξ|P◦

The analogous commuting diagraim is:

P◦

Mπ

E

?
σ◦

?
τ

-

-

-

ΦP◦

ΦMπ

ΦE

P◦

Mπ

E

?
σ◦

?
τ
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Lagrangian lifts and Hamiltonian lifts are FL -related

We were forced to start on J1π and then project to J1π∗ by calculating

FL ∗Xξ

via 
Id 0 0
0 Id 0

∂2L

∂xµ∂yB
ν

∂2L

∂yA∂yB
ν

∂2L

∂yA
µ∂yB

ν


Now we can go directly to Mπ and J1π∗ (or P◦ ⊂ J1π∗). In fact, we have proven

FL ∗Xξ = Yξ

when L(Xξ)L = 0, as one would expect.
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Noether symmetries

Φ∗
MπΩ = Ω ⇔ L(Zξ)Ω = 0

Φ∗
J1π∗ΩH = ΩH ⇔ L(Yξ)ΩH = 0

Φ∗
J1πΩL = ΩL ⇔ L(Xξ)ΩL = 0

Φ∗
P◦Ω

◦
H = Ω◦

H ⇔ L(Y ◦
ξ )Ω

◦
H = 0
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Thank you!
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