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(Pre-)Multisymplectic Manifolds

Definition |

Given a differentiable manifold .#, a differential form Q € 27 (.#) is 1-nondegenerate
if, for every p € # and Y € X(.#), it follows that (Y)Q|, =0 < Y|, =0.

Definition

If Q € 27(A) is closed and 1-nondegenerate, then Q is a multisymplectic form and
(A, Q) is a multisymplectic manifold.

Definition

If Q € 2"(A) is closed and 1-degenerate, then € is a pre-multisymplectic form and
(A, Q) is a pre-multisymplectic manifold.
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Setting for field theories

@ Spacetime:

M with coordinates x* and Lorentzian metric g, where = {0,1,...,m—1}, i.e.

dim(M) =m

e Configuration bundle:

7 E— M:(x*,y*) — x* where A= {1,2,...,n}, i.e. dim(E) = m+ n.

o Local sections and fields:
¢:M— E:xtis (x*,yA(x))
The y*(x) are the fields of the field theory under investigation.

@ (pre)multisymplectic phase spaces:

M
77 . H .
S S

FL
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The Extended Multimomentum Bundle M=

Definition
Mm = N3’ T*E is called the extended multimomentum bundle, the bundle of m-forms
on E vanishing by the action of two 7-vertical vector fields.

@ M has natural coordinates (X“,yA,pj,p) and the p/; are called the multimomenta

o dim(Mm)=m+n+mn+1
M comes equipped with the following canonical Cartan forms:

© = phdy* Ad™ 'x, +pd™x , Q=-dO = —dp; Ady* Ad" 'x, —dpAdx.

Q € 2™ (M) is, in general, multisymplectic.
Note: d" 'x, = i(8,)d"x = mewz.wmdx“2 Ao AdxEm
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The Multimomentum Bundle J17*

Definition

The quotient bundle J'7* := M7 /AT(*E), where AT(*E) denotes the bundle of
m-semibasic m-forms on E is called the multimomentum bundle.

e J'7* has natural coordinates (x*, y*, p&)

@ M is a fiber bundle over J'7* with projection map
o Mm — St (xM, yR, ply, p) = (X, A, ph)

Definition

Sections h: J'7* — M : (x*, y*, ph) — (x“,yA7 ph,p=—H(x",y", pi)) are called
Hamiltonian sections and 2(x", y®, p4) € C>°(J'x*) is called the De Donder—Weyl
Hamiltonian.

@ The De Donder-Weyl Hamitonian formulation of classical field theories takes place
on Jir*
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Note that both M and J*7* are fiber bundles over E and M. So far:
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Regular Hamiltonian field theories

The Hamilton—Cartan forms on J*7* are obtained by pulling back the forms on M by
Hamiltonian sections:

O =h"@c Q"(U'7*),  Quw :=—-dO, =h"Qec Q" (J'7").
The local expressions for the Hamilton—Cartan forms are:
O = phdy* Ad" 'x, — #d"x , Qe = —dph Ady* Ad™ ' x, +d# Adx .

If the field theory under investigation is regular, then Q ;» is multisymplectic.
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Hamiltonian variational principle on J7*

The action is a functional on the set of sections I'(T) given as

(M, J'7*) = R:1p / 1 @ . Need to find critical (stationary) sections
M

s=0J M

for variations ¥s = ns o ¢ of ¥, where 75 is the flow of a 7-vertical vector field on E
compactly supported on M.
Critical sections are characterized in the following equivalent ways:

d
ds

@ 1 is an integral section of a class of integrable, locally decomposable, 7-transverse
multivector fields {Xs} C X"(J'7*) which satisfy

(X))o =0 , for every Xoe € {Xse} .
@ The section ) satisfies the Hamilton—-De Donder—Weyl equations:

a(yA oY) 0H

oxk  Oph

Opacy) _ _0H

°Y Oxt — OyA

0.
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Multivector field solutions

@ Locally decomposable:

m—1 m—1 8 a a
x”:/\x#:/\( v or 2, ) € X" (")

A b OxH " oyA 5PZ

@ We choose a representative of the class {X«} which is a normalized, 7-transverse,
multivector field:
i(Xop)d™x =1.

@ Integral sections satisfy:

D} =0,y (x) , Hia=8.pi(x)
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Singular Hamiltonian field theories

Singular Hamiltonian field theories come with the following:

e primary constraint submanifold P, C J'm* which is a 7-transverse embedded
submanifold jo : Po < J'm*

@ P, specified by some primary constraint equations o;(y*, py)=0
@ restricted projection maps 7. : Po — E and 7o : Po — M
@ Restricted Hamiltonian sections ho = ho j5: Po — Mm
Then, the Hamilton—Cartan forms are obtained using the restricted Hamiltonian sections:

0% =hi0 e N"(P) , Q% =-dO% =hiQec Q" (P,),

and now Q. is pre-multisymplectic.
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De Donder—Weyl Hamiltonian constraint analysis

The variational problem is formulated similarly as before, except now we need a
constraint analysis...
@ Looking now for critical sections of decomposable 7,-transverse m-multivector field
on P, which satisfies the field equations: i(X5,)Q%, =0

o The field equations may give compatibility constraints ¢°(y*, pi) = 0 which gives
the compatibility constraint submanifold C — P, — S

@ Impose tangency (stability) of multivector field solution iterativley to all constraint
submanifolds

p1 = L(Xor)p" =0

P2 = L(X5)p1 =0
G

or = L(X5¢)pr—1 =0

f—1

11/28



First jet bundle

Definition

Consider a section ¢ : M — E : x* > (x*, y*(x)) of the bundle

7 E— M: (x* y*) = x*. Given a point x € M, two sections qb,&; of 7 are (1st-order)
equivalent at x if ¢(x) = ¢(x) and 9,.d|x = 0. P|x (i.e. Txp = Tx). The corresponding
equivalence classes are called the 1-jets of ¢ at x, denoted ji¢. Then, the first-order jet
bundle J'7 of 7 is defined as J'm = {jid : x € M, ¢ € T(n)}.
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Lagrangian field theory

@ The first-order-jet bundle J'7 has natural coordinates (x“,yA7y;‘) and hence

dim(S'7) = dim(S'7*) = m+ n+ mn

o y"ojte = yA(x) (fields), v/ o j'¢ = Dy (x)

o Z(x.yhyl) € C=(U'n), Ex = S5y

o Legendre transform .Z.% : J'w — Jin*

— %€ C®(Jir)

FLph = % ., FLH =Eyp
I
e Extended Legendre transform ZZ . r'n— Mr*
FL pp=5%5% , FZLp=-Eg
i
Mm
7 . H .
S S
FL
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The Cartan forms are defined by pulling back from M

Oy = ﬁze_% A" 'x, — Exd™x . Qu=7Z Q=-dOy



Singular field theories

o Q. is degenerate and hence pre-multisymplectic

@ The multi-Hessian is degenerate:
oA

ayfoyb

py . uv A
Hig = nullvectors: H,z V), =

@ Given primary constraints (¢; = 0), the null vectors are given as
(V)u T L (3% )

o Im(FL)=P, C J'r*

@ )o:Po=JSnt | FYLo Sr—oP, , FL=30FLs

o A function f € C>(J'x) is .F.Z-projectable if

L(T)f =0

where,
= (Wi
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Lagrangian constraints

The variational problem is formulated similarly as before, except now we need a
constraint analysis...
o Looking now for critical sections of decomposable 7*-transverse m-multivector field
on J'm which satisfies the field equations: i(X%)Q% =0
@ The field equations may give compatibility constraints goc(yA,y:‘) = 0 which gives
the compatibility constraint submanifold C < J'x
@ Impose SOPDE condition on Xg,; this may produce SOPDE constraints
@ Impose tangency (stability) of multivector field solution iterativley to all constraint
submanifolds

p1=L(XZ)p =0

S1

2= L(XZ)p1 =0
S1
pr=LXZ)pr-1 = 0

f—1
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Lifted group actions on E

Consider spacetime diffeomorphisms

by M—->M
generated (infinitesimally) by
3]
— r_=
gM - g(X) 8X“

so that
xt = xt 4 4 (x) .
The lift of this group action to configuration manifold is a diffeomorphism:
b E— E
satisfies
byom=modge

as shown below:

dr
E E
s s
by
M M
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Generating vector field and field variations

®¢ is generated (infinitesimally) by m-projectable vector field:

0 0
&e = *f(X)“ﬁ *fA(X:Y)aT/A .

Field variations:
Sy (x) = L(Em)y (x) = —€"0uy" + &

For guage transformations £* = 0 so,

and are generated on E by
0
A
fE = —€ (X’y)ayA :

We think of these as a special case...
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Given a point v = (x*,y*, y) € J'm:

S (y)=TPeoqyo T¢,\_,,1

Then, the flow of ® 1, () is generated (infinitesimally) by
0 A 0 A Ay o, 80 O
— e 9 o _ _ o |\ 9
XE - €(X) axﬂ 5 (X).y)ayA (aIJE Yv 8#5 + .yu 8yB 8}’;@4
(well-known).
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Recall Mz = AJT*E. Given a point y = (x*,y*) and a point p = (y,¢) € M so that
CeNTE

Ouir = (Pe(y). (9£1);¢)

This is generated (infinitesimally) by
Ze——er 9 _ Ai_(aé“ og” . 0° u) 0 +<8§ gt )

OxH Pa+ 6X“

OxH dyA 8x"p T o P oyA"B G_pﬁ op

LIVE

Mr M M

.

E —— E

L
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The canonical lift ®;1,.. to J'z* is the diffeomorphism & . : J'7* — J'7* induced by
Prfr - M — Mm; that is

b «00=00Pprn .

This is generated (infinitesimally) by

0 A 0 ot ,  0g” o¢? g
— _ s R e By ) .
Ye=—¢ &gy (ax” AT axe PA T 9yAPE ) Bp

OxH

M

la Jl
¢J17r*

Jlﬂ.* - > Jlﬂ*
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The canonical lift ®p, to P, is the diffeomorphism ®p, : P, — P, induced by
Prin : M — Mm; that is

¢p 000=0'00¢M7r o

o

This is generated infinitesimally by
YE = Yelp,
The analogous commuting diagraim is:

D rtr
M

ST




Lagrangian lifts and Hamiltonian lifts are .#_.Z-related

We were forced to start on J'7 and then project to J'7* by calculating

FL X
via
Id 0 0
0 Id 0

P Py P
Oxroyl  OyA0yE  OyloyB

Now we can go directly to Mz and J*7* (or P, C J*7*). In fact, we have proven

FLXe = Ye

when L(X¢)L = 0, as one would expect.
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P 2=Q
DN Qe = Qv
¢, Qe =Qg
©h, Q% = 5%

KU

L(Z)Q =0

L(Ye)Qwe =0
L(Xg)Qg =0
L(YE)Q5% =0



Thank you!
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