Coisotropic reduction in different phase spaces

XVIII International Young Researchers Workshop in Geometry, Dynamics and Field Theory

Rubén Izquierdo, Manuel De León Wednesday 21st February, 2024

UCM-ICMAT

Coisotropic reduction in non-dissipative mechanics

Coisotropic reduction in dissipative mechanics

Coisotropic reduction in non-dissipative mechanics

• If Q is the configuration space of a mechanical system, the phase space $M := T^*Q$ inherits a canonical symplectic structure (M, ω) ,

$$\omega:=\omega_Q=-d\lambda_Q=dq^i\wedge dp_i.$$

• The phase space $M := T^*Q \times \mathbb{R}$ inherits a canonical cosymplectic structure, (M, ω, θ) ,

$$\omega=\omega_Q=dq^i\wedge dp_i, \ \ \theta=dt.$$

• If Q is the configuration space of a mechanical system, the phase space $M := T^*Q$ inherits a canonical symplectic structure (M, ω) ,

$$\omega:=\omega_Q=-d\lambda_Q=dq^i\wedge dp_i.$$

• The phase space $M := T^*Q \times \mathbb{R}$ inherits a canonical cosymplectic structure, (M, ω, θ) ,

$$\omega = \omega_Q = dq^i \wedge dp_i, \ \ \theta = dt.$$

Symplectic and cosympelctic manifolds are Poisson manifolds with the bracket

$$\{f,g\} = \frac{\partial f}{\partial q^i} \frac{\partial g}{\partial p_i} - \frac{\partial f}{\partial p_i} \frac{\partial g}{\partial q^i}.$$

In each of these cases, the bracket is induced by the Poisson bivector

$$\Lambda = \frac{\partial}{\partial q^i} \wedge \frac{\partial}{\partial p_i}, \ \{f,g\} = \Lambda(df,dg).$$

We have an induced map

$$\sharp_{\Lambda}: T^*M \to TM, \quad \alpha \mapsto \iota_{\alpha}\Lambda.$$

Denote

$$\mathcal{H} := \operatorname{im} \sharp_{\Lambda} = \langle \frac{\partial}{\partial q^i}, \frac{\partial}{\partial p_i} \rangle.$$

Symplectic and cosympelctic manifolds are Poisson manifolds with the bracket

$$\{f,g\} = \frac{\partial f}{\partial q^i} \frac{\partial g}{\partial p_i} - \frac{\partial f}{\partial p_i} \frac{\partial g}{\partial q^i}.$$

In each of these cases, the bracket is induced by the Poisson bivector

$$\Lambda = \frac{\partial}{\partial q^i} \wedge \frac{\partial}{\partial p_i}, \ \{f,g\} = \Lambda(df,dg).$$

We have an induced map

$$\sharp_{\Lambda}: T^*M \to TM, \quad \alpha \mapsto \iota_{\alpha}\Lambda.$$

Denote

$$\mathcal{H} := \operatorname{im} \sharp_{\Lambda} = \langle \frac{\partial}{\partial q^i}, \frac{\partial}{\partial p_i} \rangle.$$

Symplectic and cosympelctic manifolds are Poisson manifolds with the bracket

$$\{f,g\} = \frac{\partial f}{\partial q^i} \frac{\partial g}{\partial p_i} - \frac{\partial f}{\partial p_i} \frac{\partial g}{\partial q^i}.$$

In each of these cases, the bracket is induced by the Poisson bivector

$$\Lambda = \frac{\partial}{\partial q^i} \wedge \frac{\partial}{\partial p_i}, \ \{f,g\} = \Lambda(df,dg).$$

We have an induced map

$$\sharp_{\Lambda}: T^*M \to TM, \quad \alpha \mapsto \iota_{\alpha}\Lambda.$$

Denote

$$\mathcal{H} := \operatorname{im} \sharp_{\Lambda} = \langle \frac{\partial}{\partial q^i}, \frac{\partial}{\partial p_i} \rangle.$$

Symplectic and cosympelctic manifolds are Poisson manifolds with the bracket

$$\{f,g\} = \frac{\partial f}{\partial q^i} \frac{\partial g}{\partial p_i} - \frac{\partial f}{\partial p_i} \frac{\partial g}{\partial q^i}.$$

In each of these cases, the bracket is induced by the Poisson bivector

$$\Lambda = \frac{\partial}{\partial q^i} \wedge \frac{\partial}{\partial p_i}, \ \{f,g\} = \Lambda(df,dg).$$

We have an induced map

$$\sharp_{\Lambda}: T^*M \to TM, \quad \alpha \mapsto \iota_{\alpha}\Lambda.$$

Denote

$$\mathcal{H} := \operatorname{im} \sharp_{\Lambda} = \langle \frac{\partial}{\partial q^i}, \frac{\partial}{\partial p_i} \rangle.$$

If $\Delta \subseteq T_x M$, we define the orthogonal as

 $\Delta^{\perp_{\Lambda}} := \sharp_{\Lambda}(\Delta^0),$

where $\Delta^0 \subseteq T_x^*M$ is the annihilator of Δ . We say that Δ is

• Coisotropic, if

 $\Delta^{\perp_{\Lambda}} \subseteq \Delta,$

• Lagrangian, if

 $\Delta^{\perp_{\Lambda}} = \Delta \cap \mathcal{H}.$

If $\Delta \subseteq T_x M$, we define the orthogonal as

 $\Delta^{\perp_{\Lambda}} := \sharp_{\Lambda}(\Delta^0),$

where $\Delta^0 \subseteq T^*_x M$ is the annihilator of Δ . We say that Δ is

• Coisotropic, if

 $\Delta^{\perp_{\Lambda}} \subseteq \Delta,$

• Lagrangian, if

 $\Delta^{\perp_{\Lambda}} = \Delta \cap \mathcal{H}.$

If $\Delta \subseteq T_x M$, we define the orthogonal as

 $\Delta^{\perp_{\Lambda}} := \sharp_{\Lambda}(\Delta^0),$

where $\Delta^0 \subseteq T^*_x M$ is the annihilator of Δ . We say that Δ is

• Coisotropic, if

$$\Delta^{\perp_{\Lambda}} \subseteq \Delta,$$

• Lagrangian, if

 $\Delta^{\perp_{\Lambda}} = \Delta \cap \mathcal{H}.$

If $\Delta \subseteq T_x M$, we define the orthogonal as

 $\Delta^{\perp_{\Lambda}} := \sharp_{\Lambda}(\Delta^0),$

where $\Delta^0 \subseteq T^*_x M$ is the annihilator of Δ . We say that Δ is

• Coisotropic, if

$$\Delta^{\perp_{\Lambda}} \subseteq \Delta,$$

• Lagrangian, if

$$\Delta^{\perp_{\Lambda}} = \Delta \cap \mathcal{H}.$$

Let (M, ω) be a symplectic manifold and $i : N \hookrightarrow M$ be a coisotropic submanifold.

Proposition $(TN)^{\perp_{\Lambda}} \subseteq TN$ is an involutive distribution.

Define \mathcal{F} to be the maximal foliation associated to $(TN)^{\perp_{\Lambda}}$. We will assume that N/\mathcal{F} admits a manifold structure such that the canonical projection $\pi: N \to N/\mathcal{F}$ is a summersion.

Theorem (Weinstein)

$$\pi^*\omega_N=i^*\omega.$$

Let (M,ω) be a symplectic manifold and $i:N \hookrightarrow M$ be a coisotropic submanifold.

Proposition

 $(TN)^{\perp_{\Lambda}} \subseteq TN$ is an involutive distribution.

Define \mathcal{F} to be the maximal foliation associated to $(TN)^{\perp_{\Lambda}}$. We will assume that N/\mathcal{F} admits a manifold structure such that the canonical projection $\pi: N \to N/\mathcal{F}$ is a summersion.

Theorem (Weinstein)

$$\pi^*\omega_N = i^*\omega.$$

Let (M,ω) be a symplectic manifold and $i:N \hookrightarrow M$ be a coisotropic submanifold.

Proposition

 $(TN)^{\perp_{\Lambda}} \subseteq TN$ is an involutive distribution.

Define \mathcal{F} to be the maximal foliation associated to $(TN)^{\perp_{\Lambda}}$. We will assume that N/\mathcal{F} admits a manifold structure such that the canonical projection $\pi: N \to N/\mathcal{F}$ is a summersion.

Theorem (Weinstein)

$$\pi^*\omega_N=i^*\omega.$$

Let (M,ω) be a symplectic manifold and $i:N \hookrightarrow M$ be a coisotropic submanifold.

Proposition

 $(TN)^{\perp_{\Lambda}} \subseteq TN$ is an involutive distribution.

Define \mathcal{F} to be the maximal foliation associated to $(TN)^{\perp_{\Lambda}}$. We will assume that N/\mathcal{F} admits a manifold structure such that the canonical projection $\pi: N \to N/\mathcal{F}$ is a summersion.

Theorem (Weinstein)

$$\pi^*\omega_N=i^*\omega.$$

Let (M, ω, θ) be a cosymplectic manifold and $i : N \hookrightarrow M$ be a coisotropic submanifold.

Proposition $(TN)^{\perp_A} \subseteq TN$ is an involutive distribution.

Suppose N/\mathcal{F} admits a manifold structure such that $\pi: N \to N/\mathcal{F}$ defines a summersion.

- If $TN \subseteq \mathcal{H}$, N/\mathcal{F} admits an unique symplectic structure compatible with the structure defined on M.
- If $\frac{\partial}{\partial t} \in TN$, N/\mathcal{F} admits an unique cosymplectic sturcture compatible with the one defined on M.

Let (M,ω,θ) be a cosymplectic manifold and $i:N \hookrightarrow M$ be a coisotropic submanifold.

Proposition

 $(TN)^{\perp_\Lambda} \subseteq TN$ is an involutive distribution.

Suppose N/\mathcal{F} admits a manifold structure such that $\pi:N\to N/\mathcal{F}$ defines a summersion.

- If $TN \subseteq \mathcal{H}, N/\mathcal{F}$ admits an unique symplectic structure compatible with the structure defined on M.
- If $\frac{\partial}{\partial t} \in TN$, N/\mathcal{F} admits an unique cosymplectic sturcture compatible with the one defined on M.

Let (M,ω,θ) be a cosymplectic manifold and $i:N \hookrightarrow M$ be a coisotropic submanifold.

Proposition

 $(TN)^{\perp_{\Lambda}} \subseteq TN$ is an involutive distribution.

Suppose N/\mathcal{F} admits a manifold structure such that $\pi:N\to N/\mathcal{F}$ defines a summersion.

- If $TN \subseteq \mathcal{H}, N/\mathcal{F}$ admits an unique symplectic structure compatible with the structure defined on M.
- If $\frac{\partial}{\partial t} \in TN$, N/\mathcal{F} admits an unique cosymplectic sturcture compatible with the one defined on M.

Let (M,ω,θ) be a cosymplectic manifold and $i:N \hookrightarrow M$ be a coisotropic submanifold.

Proposition

 $(TN)^{\perp_{\Lambda}} \subseteq TN$ is an involutive distribution.

Suppose N/\mathcal{F} admits a manifold structure such that $\pi:N\to N/\mathcal{F}$ defines a summersion.

- If $TN \subseteq \mathcal{H}$, N/\mathcal{F} admits an unique symplectic structure compatible with the structure defined on M.
- If $\frac{\partial}{\partial t} \in TN$, N/\mathcal{F} admits an unique cosymplectic sturcture compatible with the one defined on M.

Let (M,ω,θ) be a cosymplectic manifold and $i:N \hookrightarrow M$ be a coisotropic submanifold.

Proposition

 $(TN)^{\perp_{\Lambda}} \subseteq TN$ is an involutive distribution.

Suppose N/\mathcal{F} admits a manifold structure such that $\pi:N\to N/\mathcal{F}$ defines a summersion.

- If $TN \subseteq \mathcal{H}$, N/\mathcal{F} admits an unique symplectic structure compatible with the structure defined on M.
- If $\frac{\partial}{\partial t} \in TN$, N/\mathcal{F} admits an unique cosymplectic sturcture compatible with the one defined on M.

Coisotropic reduction in dissipative mechanics

- The phase space of an autonomous dissipative system is $T^*Q\times \mathbb{R},$ with its canonical contact structure

$$\eta = dz - p_i dq^i.$$

• If we want to study time-dependent dissipative mechanics, the phase space is $T^*Q \times \mathbb{R} \times \mathbb{R}$ endowed with its cocontact structure

$$\eta = dz - p_i dq^i; \ \theta = dt.$$

- The phase space of an autonomous dissipative system is $T^*Q\times \mathbb{R},$ with its canonical contact structure

$$\eta = dz - p_i dq^i.$$

• If we want to study time-dependent dissipative mechanics, the phase space is $T^*Q \times \mathbb{R} \times \mathbb{R}$ endowed with its cocontact structure

$$\eta=dz-p_idq^i; \ \theta=dt.$$

The Jacobi bracket

In both of these phase spaces there is a Jacobi bracket which is locally given by

$$\{f,g\} = \frac{\partial f}{\partial p_i} \frac{\partial g}{\partial q^i} - \frac{\partial f}{\partial q^i} \frac{\partial g}{\partial p_i} + p_i \left(\frac{\partial f}{\partial p_i} \frac{\partial g}{\partial z} - \frac{\partial g}{\partial p_i} \frac{\partial f}{\partial z}\right) + g \frac{\partial f}{\partial z} - f \frac{\partial g}{\partial z}.$$

This Jacobi bracket is defined through the Jacobi bivector and a vector field

$$\begin{split} \Lambda &= \frac{\partial}{\partial p_i} \wedge \frac{\partial}{\partial q^i} + p_i \frac{\partial}{\partial p_i} \wedge \frac{\partial}{\partial z}, \\ E &= -\frac{\partial}{\partial z}, \end{split}$$

as

$$\{f,g\} = \Lambda(df,dg) + fE(g) - gE(f).$$

In both of these phase spaces there is a Jacobi bracket which is locally given by

$$\{f,g\} = \frac{\partial f}{\partial p_i} \frac{\partial g}{\partial q^i} - \frac{\partial f}{\partial q^i} \frac{\partial g}{\partial p_i} + p_i \left(\frac{\partial f}{\partial p_i} \frac{\partial g}{\partial z} - \frac{\partial g}{\partial p_i} \frac{\partial f}{\partial z}\right) + g \frac{\partial f}{\partial z} - f \frac{\partial g}{\partial z}.$$

This Jacobi bracket is defined through the Jacobi bivector and a vector field

$$\begin{split} \Lambda &= \frac{\partial}{\partial p_i} \wedge \frac{\partial}{\partial q^i} + p_i \frac{\partial}{\partial p_i} \wedge \frac{\partial}{\partial z}, \\ E &= -\frac{\partial}{\partial z}, \end{split}$$

as

$$\{f,g\}=\Lambda(df,dg)+fE(g)-gE(f).$$

The orthogonal of a distribution $\Delta \subseteq TM$ is defined as

$$\Delta^{\perp_{\Lambda}} = \sharp_{\Lambda}(\Delta^0),$$

where

$$\sharp_{\Lambda}: T^*M \to TM; \ \alpha \mapsto \iota_{\alpha}\Lambda.$$

We say that Δ is

• Coisotropic, if

 $\Delta^{\perp_{\Lambda}} \subseteq \Delta,$

• Legendrian, if

$$\Delta^{\perp_{\Lambda}} = \Delta.$$

The orthogonal of a distribution $\Delta \subseteq TM$ is defined as

$$\Delta^{\perp_{\Lambda}} = \sharp_{\Lambda}(\Delta^0),$$

where

$$\sharp_{\Lambda}: T^*M \to TM; \ \alpha \mapsto \iota_{\alpha}\Lambda.$$

We say that Δ is

• Coisotropic, if

 $\Delta^{\perp_{\Lambda}} \subseteq \Delta,$

• Legendrian, if

$$\Delta^{\perp_{\Lambda}} = \Delta.$$

The orthogonal of a distribution $\Delta \subseteq TM$ is defined as

$$\Delta^{\perp_{\Lambda}} = \sharp_{\Lambda}(\Delta^0),$$

where

$$\sharp_{\Lambda}: T^*M \to TM; \ \alpha \mapsto \iota_{\alpha}\Lambda.$$

We say that Δ is

• Coisotropic, if

$$\Delta^{\perp_{\Lambda}} \subseteq \Delta,$$

• Legendrian, if

$$\Delta^{\perp_{\Lambda}} = \Delta.$$

The orthogonal of a distribution $\Delta \subseteq TM$ is defined as

$$\Delta^{\perp_{\Lambda}} = \sharp_{\Lambda}(\Delta^0),$$

where

$$\sharp_{\Lambda}: T^*M \to TM; \ \alpha \mapsto \iota_{\alpha}\Lambda.$$

We say that Δ is

• Coisotropic, if

$$\Delta^{\perp_{\Lambda}} \subseteq \Delta,$$

• Legendrian, if

$$\Delta^{\perp_{\Lambda}} = \Delta.$$

Proposition

If $N \hookrightarrow M$ is a coisotropic submanifold, then $(TN)^{\perp_{\Lambda}}$ is involutive and thus arises from a maximal foliation \mathcal{F} .

We assume that $\frac{\partial}{\partial z} \in TN$.

Theorem

If M is a contact manifold, N/F admitis an unique contact structure compatible with the one on M. If M is a cocontact manifold:

- If $\frac{\partial}{\partial t} \in TN, N/\mathcal{F}$ inherits an unique cocontact structure from M.
- If $TN \subseteq \operatorname{im} \sharp_{\Lambda} \oplus \langle \frac{\partial}{\partial z} \rangle$, N/\mathcal{F} inherits an unique contact structure from M.

Proposition

If $N \hookrightarrow M$ is a coisotropic submanifold, then $(TN)^{\perp_{\Lambda}}$ is involutive and thus arises from a maximal foliation \mathcal{F} .

We assume that $\frac{\partial}{\partial z} \in TN$.

Theorem

If M is a contact manifold, N/\mathcal{F} admitis an unique contact structure compatible with the one on M.

If *M* is a cocontact manifold:

- If $\frac{\partial}{\partial t} \in TN, N/\mathcal{F}$ inherits an unique cocontact structure from M.
- If $TN \subseteq \operatorname{im} \sharp_{\Lambda} \oplus \langle \frac{\partial}{\partial z} \rangle$, N/\mathcal{F} inherits an unique contact structure from M.

Proposition

If $N \hookrightarrow M$ is a coisotropic submanifold, then $(TN)^{\perp_{\Lambda}}$ is involutive and thus arises from a maximal foliation \mathcal{F} .

We assume that $\frac{\partial}{\partial z} \in TN$.

Theorem

If M is a contact manifold, N/\mathcal{F} admitis an unique contact structure compatible with the one on M. If M is a cocontact manifold:

- If $\frac{\partial}{\partial t} \in TN, N/\mathcal{F}$ inherits an unique cocontact structure from M.
- If $TN \subseteq \operatorname{im} \sharp_{\Lambda} \oplus \langle \frac{\partial}{\partial z} \rangle$, N/\mathcal{F} inherits an unique contact structure from M.

Proposition

If $N \hookrightarrow M$ is a coisotropic submanifold, then $(TN)^{\perp_{\Lambda}}$ is involutive and thus arises from a maximal foliation \mathcal{F} .

We assume that $\frac{\partial}{\partial z} \in TN$.

Theorem

If M is a contact manifold, N/\mathcal{F} admitis an unique contact structure compatible with the one on M. If M is a cocontact manifold:

- If $\frac{\partial}{\partial t} \in TN, N/\mathcal{F}$ inherits an unique cocontact structure from M.
- If $TN \subseteq \operatorname{im} \sharp_{\Lambda} \oplus \langle \frac{\partial}{\partial z} \rangle$, N/\mathcal{F} inherits an unique contact structure from M.

Proposition

If $N \hookrightarrow M$ is a coisotropic submanifold, then $(TN)^{\perp_{\Lambda}}$ is involutive and thus arises from a maximal foliation \mathcal{F} .

We assume that $\frac{\partial}{\partial z} \in TN$.

Theorem

If M is a contact manifold, N/\mathcal{F} admitis an unique contact structure compatible with the one on M. If M is a cocontact manifold:

- If $\frac{\partial}{\partial t} \in TN, N/\mathcal{F}$ inherits an unique cocontact structure from M.
- If $TN \subseteq \operatorname{im} \sharp_{\Lambda} \oplus \langle \frac{\partial}{\partial z} \rangle$, N/\mathcal{F} inherits an unique contact structure from M.

References

R. Abraham and J.E. Marsden.Foundations of mechanics.

Number 364. The Benjamin/Cummings Publishing Company, Reading, Massachusetts, 19788.

- Manuel de León and Rubén Izquierdo-López.
 A review on coisotropic reduction in symplectic, cosymplectic, contact and co-contact hamiltonian systems, 2023.
- Manuel de León and Manuel Lainz Valcázar. Contact hamiltonian systems.
 Journal of Mathematical Physics, 60(10), October

Journal of Mathematical Physics, 60(10), October 2019.