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Introduction



Reduction

General procedure in mechanics by which symmetries of a mechanical

system allow to remove ignorable degrees of freedom and reduce the

problem to a smaller one.

Paradigmatic case: planetary motion.

Finally, the procedure by which the unreduced dynamics is recovered

from the reduced dynamics is called reconstruction.
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Marsden-Weinstein reduction

Theorem (Marsden, Weinstein)

Let (P, ω) be a symplectic manifold on which a Lie group G acts

symplectically and let J : P → g∗ be an Ad∗-equivariant momentum

mapping for this action. Assume µ ∈ g∗ is a regular value of J and that

the isotropy group Gµ = StabG (µ) acts freely and properly on J−1(µ).

Then Pµ = J−1(µ)/Gµ has a unique symplectic form ωµ with the

property

π∗
µωµ = ι∗µω

where πµ : J−1(µ)→ Pµ is the canonical projection and

ιµ : J−1(µ) ↪→ P the inclusion.
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Marsden-Weinstein reduction and Hamiltonian dynamics

Theorem

Under the assumptions of the previous theorem, let H : P → R be

invariant under the action of G. Then the flow ϕH of XH leaves J−1(µ)

invariant and commutes with the action of Gµ on J−1(µ), so it induces

caninocally a flow ϕHµ on Pµ satisfying πµ ◦ ϕH = ϕHµ ◦ πµ. This flow

is Hamiltonian on Pµ with Hamiltonian the unique Hµ satisfying

Hµ ◦ πµ = H ◦ ιµ. This Hamiltonian is called the reduced Hamiltonian.
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Hamiltonian systems



General setting

Configuration space Finite-dimensional smooth manifold Q which

models the set of possible positions of a mechanical

system.

Phase space Cotangent bundle T∗Q equipped with the canonical

symplectic structure ω.

Symmetry group Finite-dimensional Lie group G acting on Q by

diffeomorphisms. Its lifted action to T∗Q is symplectic.

This induces a momentum mapping J : T∗Q → g which is

Ad∗-equivariant, i.e., such that the following diagram commutes

T∗Q T∗Q

g∗ g∗

J J

(ϕg−1 )
∗

Ad∗
g−1
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Reduction and embedding

With sufficiently nice assumptions, pick µ ∈ g∗ and

• Apply Marsden-Weinstein reduction to obtain ((T∗Q)µ, ωµ).

• Form the principal bundle ρµ : Q → Q/Gµ = Qµ.

Our goal is to realize (T∗Q)µ as a symplectically embedded subbundle of

T∗(Qµ) with a suitable symplectic structure. This symplectic structure

can be constructed using a connection γ in the principal bundle ρµ, call it

Ωµ.
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Embedding theorem

Theorem (Marsden)

There exists a symplectic embedding j : ((T∗Q)µ, ωµ) ↪→ (T∗Qµ,Ωµ)

whose image is a vector subbundle with base Qµ. This embedding is

onto if and only if g = gµ.

Idea of proof.

Consider Jµ : T ∗Q → g∗µ, pq 7→ J(pq)|gµ
.

J−1(µ) J−1
µ (µ) J−1

µ (0)

J−1(µ)/Gµ J−1
µ (µ)/Gµ J−1

µ (0)/Gµ ' T∗Qµ

[pq] [pq] [pq − 〈µ, γq(•)〉]

ρµ ρµ ρ0

tµ

tµ

Trivial cases: G abeilan, µ = 0.
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What about the Hamiltonian dynamics?

If H : T∗Q → R, it may be reduced to Hµ : (T∗Q)µ → R and

H̃µ : J−1
µ (µ)/Gµ → R, with flows behaving appropriately.

When translated to T∗Qµ via tµ, we get a Hamiltonian

H0 = H̃µ ◦ t−1
µ : T∗Qµ → R for which

j ◦ ϕHµ

t = ϕH0
t ◦ j

In conclusion, not only is (T∗Q)µ symplectically embedded in T∗Qµ, but

also the Hamiltonian dynamics in (T∗Q)µ comes from a Hamiltonian

dynamics in T∗Qµ.
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Brief comment about Lagrangian

systems



Hyperregular Lagrangian systems

If instead we have a hyperregular Lagrangian L : TQ → R, a similar

approach leads to a similar diagram:

J−1(µ) J−1
µ (µ) J−1

µ (0)

J−1(µ)/Gµ J−1
µ (µ)/Gµ J−1

µ (0)/Gµ ' TQµ

ρµ ρµ ρ0

tµ

tµ

In this case, we can explore further questions about the nature of the

dynamics in TQµ.
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Questions?
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