A Review on Reduction and Reconstruction of Dynamics in Symplectic Geometry

XVIII International Young Researchers Workshop in Geometry,
Dynamics and Field Theory, University of Warsaw

Samuel Luque Astorga
February 21, 2024
Universidad Complutense de Madrid - ICMAT

Table of contents

1. Introduction
2. Hamiltonian systems
3. Brief comment about Lagrangian systems

Introduction

Reduction

General procedure in mechanics by which symmetries of a mechanical system allow to remove ignorable degrees of freedom and reduce the problem to a smaller one.

Reduction

General procedure in mechanics by which symmetries of a mechanical system allow to remove ignorable degrees of freedom and reduce the problem to a smaller one.

Paradigmatic case: planetary motion.

Reduction

General procedure in mechanics by which symmetries of a mechanical system allow to remove ignorable degrees of freedom and reduce the problem to a smaller one.

Paradigmatic case: planetary motion.
Finally, the procedure by which the unreduced dynamics is recovered from the reduced dynamics is called reconstruction.

Marsden-Weinstein reduction

Theorem (Marsden, Weinstein)

Let (P, ω) be a symplectic manifold on which a Lie group G acts symplectically and let $J: P \rightarrow \mathfrak{g}^{*}$ be an Ad^{*}-equivariant momentum mapping for this action. Assume $\mu \in \mathfrak{g}^{*}$ is a regular value of J and that the isotropy group $G_{\mu}=\operatorname{Stab}_{G}(\mu)$ acts freely and properly on $J^{-1}(\mu)$. Then $P_{\mu}=J^{-1}(\mu) / G_{\mu}$ has a unique symplectic form ω_{μ} with the property

$$
\pi_{\mu}^{*} \omega_{\mu}=\iota_{\mu}^{*} \omega
$$

where $\pi_{\mu}: J^{-1}(\mu) \rightarrow P_{\mu}$ is the canonical projection and $\iota_{\mu}: J^{-1}(\mu) \hookrightarrow P$ the inclusion.

Marsden-Weinstein reduction and Hamiltonian dynamics

> Theorem
> Under the assumptions of the previous theorem, let $H: P \rightarrow \mathbb{R}$ be invariant under the action of G. Then the flow φ^{H} of X_{H} leaves $J^{-1}(\mu)$ invariant and commutes with the action of G_{μ} on $J^{-1}(\mu)$, so it induces caninocally a flow $\varphi^{H_{\mu}}$ on P_{μ} satisfying $\pi_{\mu} \circ \varphi^{H}=\varphi^{H_{\mu}} \circ \pi_{\mu}$. This flow is Hamiltonian on P_{μ} with Hamiltonian the unique H_{μ} satisfying $H_{\mu} \circ \pi_{\mu}=H \circ \iota_{\mu}$. This Hamiltonian is called the reduced Hamiltonian.

Hamiltonian systems

General setting

Configuration space Finite-dimensional smooth manifold Q which models the set of possible positions of a mechanical system.

General setting

Configuration space Finite-dimensional smooth manifold Q which models the set of possible positions of a mechanical system.
Phase space Cotangent bundle $T^{*} Q$ equipped with the canonical symplectic structure ω.

General setting

Configuration space Finite-dimensional smooth manifold Q which models the set of possible positions of a mechanical system.
Phase space Cotangent bundle $T^{*} Q$ equipped with the canonical symplectic structure ω.
Symmetry group Finite-dimensional Lie group G acting on Q by diffeomorphisms. Its lifted action to $T^{*} Q$ is symplectic.

General setting

Configuration space Finite-dimensional smooth manifold Q which models the set of possible positions of a mechanical system.
Phase space Cotangent bundle $T^{*} Q$ equipped with the canonical symplectic structure ω.
Symmetry group Finite-dimensional Lie group G acting on Q by diffeomorphisms. Its lifted action to $T^{*} Q$ is symplectic.

This induces a momentum mapping $J: \mathrm{T}^{*} Q \rightarrow \mathfrak{g}$ which is $A d^{*}$-equivariant, i.e., such that the following diagram commutes

Reduction and embedding

With sufficiently nice assumptions, pick $\mu \in \mathfrak{g}^{*}$ and

Reduction and embedding

With sufficiently nice assumptions, pick $\mu \in \mathfrak{g}^{*}$ and

- Apply Marsden-Weinstein reduction to obtain $\left(\left(T^{*} Q\right)_{\mu}, \omega_{\mu}\right)$.

Reduction and embedding

With sufficiently nice assumptions, pick $\mu \in \mathfrak{g}^{*}$ and

- Apply Marsden-Weinstein reduction to obtain $\left(\left(T^{*} Q\right)_{\mu}, \omega_{\mu}\right)$.
- Form the principal bundle $\rho_{\mu}: Q \rightarrow Q / G_{\mu}=Q_{\mu}$.

Reduction and embedding

With sufficiently nice assumptions, pick $\mu \in \mathfrak{g}^{*}$ and

- Apply Marsden-Weinstein reduction to obtain $\left(\left(T^{*} Q\right)_{\mu}, \omega_{\mu}\right)$.
- Form the principal bundle $\rho_{\mu}: Q \rightarrow Q / G_{\mu}=Q_{\mu}$.

Our goal is to realize $\left(T^{*} Q\right)_{\mu}$ as a symplectically embedded subbundle of $\mathrm{T}^{*}\left(Q_{\mu}\right)$ with a suitable symplectic structure. This symplectic structure can be constructed using a connection γ in the principal bundle ρ_{μ}, call it Ω_{μ}.

Embedding theorem

Theorem (Marsden)

There exists a symplectic embedding $j:\left(\left(\mathrm{T}^{*} Q\right)_{\mu}, \omega_{\mu}\right) \hookrightarrow\left(\mathrm{T}^{*} Q_{\mu}, \Omega_{\mu}\right)$ whose image is a vector subbundle with base Q_{μ}. This embedding is onto if and only if $\mathfrak{g}=\mathfrak{g}_{\mu}$.

Embedding theorem

Theorem (Marsden)

There exists a symplectic embedding $j:\left(\left(\mathrm{T}^{*} Q\right)_{\mu}, \omega_{\mu}\right) \hookrightarrow\left(\mathrm{T}^{*} Q_{\mu}, \Omega_{\mu}\right)$ whose image is a vector subbundle with base Q_{μ}. This embedding is onto if and only if $\mathfrak{g}=\mathfrak{g}_{\mu}$.

Idea of proof.

Consider $J_{\mu}: T^{*} Q \rightarrow \mathfrak{g}_{\mu}^{*},\left.p_{q} \mapsto J\left(p_{q}\right)\right|_{\mathfrak{g}_{\mu}}$.

$$
\begin{aligned}
& J^{-1}(\mu) \longleftrightarrow J_{\mu}^{-1}(\mu) \longrightarrow J_{\mu}^{-1}(0) \\
& \downarrow_{\rho_{\mu}} \quad \downarrow^{\bar{\rho}_{\mu}} \quad \downarrow^{\bar{\rho}_{0}} \\
& J^{-1}(\mu) / G_{\mu} \longrightarrow J_{\mu}^{-1}(\mu) / G_{\mu} \xrightarrow{\bar{\epsilon}_{\mu}} J_{\mu}^{-1}(0) / G_{\mu} \simeq \mathrm{T}^{*} Q_{\mu} \\
& {\left[p_{q}\right] \longmapsto\left[p_{q}\right] \longmapsto\left[p_{q}-\left\langle\mu, \gamma_{q}(\bullet)\right\rangle\right]}
\end{aligned}
$$

Embedding theorem

Theorem (Marsden)

There exists a symplectic embedding $j:\left(\left(\mathrm{T}^{*} Q\right)_{\mu}, \omega_{\mu}\right) \hookrightarrow\left(\mathrm{T}^{*} Q_{\mu}, \Omega_{\mu}\right)$ whose image is a vector subbundle with base Q_{μ}. This embedding is onto if and only if $\mathfrak{g}=\mathfrak{g}_{\mu}$.

Idea of proof.

Consider $J_{\mu}: T^{*} Q \rightarrow \mathfrak{g}_{\mu}^{*},\left.p_{q} \mapsto J\left(p_{q}\right)\right|_{\mathfrak{g}_{\mu}}$.

$$
\begin{aligned}
& J^{-1}(\mu) \longleftrightarrow J_{\mu}^{-1}(\mu) \longrightarrow J_{\mu}^{-1}(0) \\
& \downarrow_{\rho_{\mu}} \quad \downarrow^{\bar{\rho}_{\mu}} \quad \downarrow^{\bar{\rho}_{0}} \\
& J^{-1}(\mu) / G_{\mu} \longrightarrow J_{\mu}^{-1}(\mu) / G_{\mu} \xrightarrow{\bar{\epsilon}_{\mu}} J_{\mu}^{-1}(0) / G_{\mu} \simeq \mathrm{T}^{*} Q_{\mu} \\
& {\left[p_{q}\right] \longmapsto\left[p_{q}\right] \longmapsto\left[p_{q}-\left\langle\mu, \gamma_{q}(\bullet)\right\rangle\right]}
\end{aligned}
$$

Trivial cases: G abeilan, $\mu=0$.

What about the Hamiltonian dynamics?

If $H: T^{*} Q \rightarrow \mathbb{R}$, it may be reduced to $H_{\mu}:\left(\mathrm{T}^{*} Q\right)_{\mu} \rightarrow \mathbb{R}$ and $\tilde{H}_{\mu}: J_{\mu}^{-1}(\mu) / G_{\mu} \rightarrow \mathbb{R}$, with flows behaving appropriately.

What about the Hamiltonian dynamics?

If $H: \mathrm{T}^{*} Q \rightarrow \mathbb{R}$, it may be reduced to $H_{\mu}:\left(\mathrm{T}^{*} Q\right)_{\mu} \rightarrow \mathbb{R}$ and $\tilde{H}_{\mu}: J_{\mu}^{-1}(\mu) / G_{\mu} \rightarrow \mathbb{R}$, with flows behaving appropriately.
When translated to $\mathrm{T}^{*} Q_{\mu}$ via \bar{t}_{μ}, we get a Hamiltonian $H_{0}=\tilde{H}_{\mu} \circ \bar{t}_{\mu}^{-1}: \mathrm{T}^{*} Q_{\mu} \rightarrow \mathbb{R}$ for which

$$
j \circ \varphi_{t}^{H_{\mu}}=\varphi_{t}^{H_{0}} \circ j
$$

What about the Hamiltonian dynamics?

If $H: T^{*} Q \rightarrow \mathbb{R}$, it may be reduced to $H_{\mu}:\left(\mathrm{T}^{*} Q\right)_{\mu} \rightarrow \mathbb{R}$ and $\tilde{H}_{\mu}: J_{\mu}^{-1}(\mu) / G_{\mu} \rightarrow \mathbb{R}$, with flows behaving appropriately.
When translated to $\mathrm{T}^{*} Q_{\mu}$ via \bar{t}_{μ}, we get a Hamiltonian $H_{0}=\tilde{H}_{\mu} \circ \bar{t}_{\mu}^{-1}: \mathrm{T}^{*} Q_{\mu} \rightarrow \mathbb{R}$ for which

$$
j \circ \varphi_{t}^{H_{\mu}}=\varphi_{t}^{H_{0}} \circ j
$$

In conclusion, not only is $\left(\mathrm{T}^{*} Q\right)_{\mu}$ symplectically embedded in $\mathrm{T}^{*} Q_{\mu}$, but also the Hamiltonian dynamics in $\left(\mathrm{T}^{*} Q\right)_{\mu}$ comes from a Hamiltonian dynamics in $\mathrm{T}^{*} Q_{\mu}$.

Brief comment about Lagrangian systems

Hyperregular Lagrangian systems

If instead we have a hyperregular Lagrangian $L: \mathrm{T} Q \rightarrow \mathbb{R}$, a similar approach leads to a similar diagram:

Hyperregular Lagrangian systems

If instead we have a hyperregular Lagrangian $L: \mathrm{T} Q \rightarrow \mathbb{R}$, a similar approach leads to a similar diagram:

$$
\begin{array}{cc}
J^{-1}(\mu) & J_{\mu}^{-1}(\mu) \xrightarrow[t_{\mu}]{t_{\mu}} J_{\mu}^{-1}(0) \\
\stackrel{\rho}{\mu}^{\rho^{\prime}} & { }^{\bar{\rho}_{\mu}} \\
J^{-1}(\mu) / G_{\mu} & { }_{\mu}^{\bar{\rho}_{0}} \\
J_{\mu}^{-1}(\mu) / G_{\mu} & \bar{t}_{\mu} \\
J_{\mu}^{-1}(0) / G_{\mu} \simeq \mathrm{T} Q_{\mu}
\end{array}
$$

Hyperregular Lagrangian systems

If instead we have a hyperregular Lagrangian $L: \mathrm{T} Q \rightarrow \mathbb{R}$, a similar approach leads to a similar diagram:

$$
\begin{aligned}
& J^{-1}(\mu) \longleftrightarrow J_{\mu}^{-1}(\mu) \longrightarrow{ }_{\mu}^{t_{\mu}} J^{-1}(0)
\end{aligned}
$$

$$
\begin{aligned}
& J^{-1}(\mu) / G_{\mu} \longleftrightarrow J_{\mu}^{-1}(\mu) / G_{\mu} \xrightarrow{\bar{t}_{\mu}} J_{\mu}^{-1}(0) / G_{\mu} \simeq \mathrm{T} Q_{\mu}
\end{aligned}
$$

In this case, we can explore further questions about the nature of the dynamics in $\mathrm{T} Q_{\mu}$.

References

國 Marsden, J. E., Montgomery, R., Ratiu, T. (1990). Reduction, symmetry, and phases in mechanics. American Mathematical Society.
囯 Abraham, R., Marsden, J. E. (2008). Foundations of mechanics. American Mathematical Society.
De León, M., Rodrigues, P. R. (2011). Methods of differential geometry in analytical mechanics. Elsevier.

Questions?

