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ABSTRACT A new geometric structure inspired by multisymplectic and contact geometries, called multicontact structure, has been
developed recently to describe non-conservative and action-dependent classical field theories [1]. We review the main features of this
formulation, showing how it is applied to study some classical theories in theoretical physics which are modified in order to include
action-dependence; namely: the modified Klein-Gordon equation and the action-dependent bosonic string.

MULTICONTACT LAGRANGIAN AND HAMILTONIAN FORMALISMS
MULTIVECTOR FIELDS

Let M be a manifold with dim M = n. The m-multivector fields on M are the contravariant skew-symmetric tensor fields of order m
in M. The set of m-multivector fields in M is denoted X" (M).
A multivector field X € X™(M) is locally decomposable if, for every p € M, there exists an open neighbourhood U, C M such that

for some Xj, ..

The contraction of a locally decomposable multivector field X € X™(M) and a differentiable form Q € QX(M) is

c(X)Qly, = (XA AXn) Q= 0(Xm) .o ( X)), ifk=m (X)Qfy, =0, ifk<m

Let x: M — M be a fiber bundle with local coordinates (x*, z') on M (x* are coordinates on M and z' are coordinates on the fibers).
A multivector field X € X™(M) is x-transverse if « (X) (v*3)|, # 0, forp € M and g € Q™(M). If M is an orientable manifold with volume
form w € QM(M), then X € X"(M) is k-transverse if, and only if, . (X) (v*w) # 0. This condition can be fixed by taking ¢ (X) (x*w) = 1.

If X € X™(M) is locally decomposable and x-transverse, a section ¢(x*) = (x*, z/(x")) of « is an integral section of X if 8—2 = F'.
Then, X is integrable if, for p € M, there exist x € M and an integral section ) of X such that p = ¥(x).

OXH a
MULTICONTACT LAGRANGIAN FORMALISM

For the Lagrangian formulation of non-conservative first-order field theories, the configuration bundle of a (first-order) Lagrangian field
theoryis 7: E — M (dim M = m, dim E = n+ m), where M is an orientable manifold with volume form w € Q™(M), which usually
represent space-time. The theory is developed on the bundle

T P=Jaxy N (T*M) - M,
where J! is the the first-order jet bundle of = and A™~1(T*M) is the bundle of (m —

Natural coordinates in P are (x*,y', ¥}, s") (u=1,....m,i=1,...

A Lagrangian density on P as a m-form £ € Q™(P), whose expression is L(x",y’, y!. g“) =
0<L

1)-forms on M, which can be identified with R".
n; dimP = nm+ n+2m)), such that w = dx' A --- Adx™ = d™x.
L(x",y' y!,s")d"x, where L € €<(P) is

the Lagrangian function associated with £. A Lagrangian L is regular if the matrix ( ) is regular everywhere; then ©, is a

ay}oyy
variational multicontact form on P and (P, ©,,w) is a multicontact Lagrangian system Otherwise, L is a singular Lagrangian [1, 2].
The Lagrangian m-form associated with L is:
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The local function E, = — L is the energy Lagrangian function associated with L. Then, the Lagrangian (m + 1)-formis
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S dx” is the so-called dissipation form.

A section v : M — P of the projection 7 is a holonomic section on P if it is locally expressed as ¥(x") = (x*, y'(x"), yi(x"), s"(x")).

Then X € X™(P) is a holonomic m-multivector field (a SOPDE) if it is 7-transverse, integrable, and has holonomic integral sections.
The (pre)multicontact Lagrangian equations can be derived from the generalized Herglotz Principle [3] and, for holonomic multivector
fields, they can be stated as:

where og, =

t(Xp)0,=0 , (Xp)Qe=0 , (X)) (TTw)=1. (2)
In a natural chart of coordinates of P, a holonomic m-multivector field X, € X™(P) verifying the condition ¢ (X) (7*w) = 1 is

m
X, = /\ (i +yui + (Xg) 8' +(Xc),, (‘38 ) and equations (2) lead to

_yoxe TRy "oy,
- oL 9L L 9L 2L oL oL
X )W =L - (X ) — XY — ==
(Xe)i = Loy (‘9xu8y’ 8y/8yuy a 83”8le( )y 8y£8y[6( i st 8yu 3)
For the holonomic integral sections (x”) = (x“ '(x") oy’ (x") s“(x”)) of X we have that y’ = oy’ (XY, = W _ Py’
el J = Y ) . Y= Gxn = 530 T Gxnoxe’
(Xc), = X’ and these equations transform into the Herglotz—Euler— Lagrange field equations:
ost 0 /0L oL 0oL oL
axr Loy OXxH (8yL 7 ¢) - (8y" - 83M8y[) °Y - (4)

For regular Lagrangians, these equations always have solution. When L is not regular, the field equations could have no solutions
everywhere on P. Hence, the final objective is, applying a constraint algorithm, to find the maximal submanifold Sy of P (if it exists)
where there are holonomic Lagrangian multivector fields X, which are tangent solutions to the Lagrangian field equations on &.

MULTICONTACT HAMILTONIAN FORMALISM
Consider the bundle
7P =Jd"r xy N TM) = M,
which is identified with J'*7 x R™; where J'*r is the restricted multimomentum bundle. Natural coordinates on P* are (x*, y', p/, s).
If (P,©,,w) is a Lagrangian system, with £ = Lw, the Legendre map associated with £ is the map FL: P — P* locally given by
OL
ay,
The Lagrangian L is regular if, and only if, 7L is a local diffeomorphism, and L is hyperregular when F L is a global diffeomorphism.

In the hyperregular case (for the singular case and examples, see [2]), FL(P) = P*, The form ©, € Q™(P) projects to P* by FL giving
the Hamiltonian m-form ©, € Q™(P*), ©, = FL*©4, whose local expression is

Oy = —pidy’ Ad™ 'x, + Hd™x +ds" Ad™ 'x, , (5)

FLX =x" | FLY' =y | FLpl = FL*S" = st

where H = pﬁ(]—“ﬁ‘1)*y,f; — (FL YL € €>(P*) is the Hamiltonian function. Then, ©y, is a variational multicontact form and (P*, 94, w)
is the multicontact Hamiltonian system associated with (P, ©,,w). Then, we define the Hamiltonian (m + 1)-form

oH ds”) A d7x

Qy = dOy + 0o, A Oy = d(—pidy’ Ad™ X, + Hd"x) + <% Py — g

OH . Y s . = —
where oy = Sar dx" is the dissipation form in this formalism. We have that Q, = FL Q.
The multicontact Hamilton—de Donder—Weyl equations for T-transverse and locally decomposable multivector fields are stated as:

t(Xn) Oy =0 , (Xp)Q =0 , (Xy)(Tw)=1. (6)
In natural coordinates, if Xy, = /ni (i—F(X ) 0 + (X)) 0 + (Xn), 0 ) e X™(P*) is a solution to the equations (6), then
; H — ] OxXM H ay H ,u/apy H Ho g q ’
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If (x”) = (x*, y'(x"), p'(x"), s"(x")) is an integral section of X;;, equations (6) lead to the Herglotz—Hamilton—de Donder— Weyl
equations for 1 : |

ost o , OH oy' OH op;  (OH , 0H
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These equations are compatible in P*. As FL is a diffeomorphism, the solutions to the Lagrangian field equations for (P, ©,,w) are in
one-to-one correspondence to those of the Hamilton-de Donder-Weyl field equations for (P*, O, w).

APPLICATION TO PHYSICAL THEORIES

The modified Klein—Gordon equation and the Telegrapher’s equation

The Klein—Gordon equation in the Minkowski space-time R* (with the metric signature 9w =(—1,1,1,1))is
(O+m?)¢ = 8,0"6 + M =0,

. . . , . 0 .
where ¢ is a scalar field, m? is a constant, I denotes de D “Alembert operator in R*, and 0, = -—, 0" = g"0,. It derives from the

OXH
Lagrangian Ly = 1 PO — 1m2q52, which can be modified to include a more generic potential, Ly = % 90" — V().
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LAGRANGIAN FORMALISM

Consider the bundle 7: P = J'm xy A" 1(T*R*) — R*, with coordinates (
variable, and the volume form is w = dx% A - -- A dx3

X" y,y.,,8") (un=0,...,3), where y denotes the field
= d*x on R*. Consider the contactified Lagrangian L € €>(P):

1 1

S YY" = MY st

L(X'uaya y,u7 S'u) — LO(Xluaya yM) + fyﬂslu —

where v = (v,) € R*is a constant vector, and y* = 9"y. It is a quadratic hyperregular Lagrangian.
Using the Hodge star operator, * , the Lagrangian multicontact 4-form (1) is:

1 1
O, = yl'dy A xdx, + E d*x + ds" A xdx, = y'dy A xdx, + (Eyuy” + émzy2 — %s“) d*x + ds* A *dX, .

Then Q; = dO, + oo, A O, Where og, = —v,dx".

For holonomic multivector fields X, = /\ (% + yM% + ng + Gzaisy) e X*(P), the Lagrangian equations (3) are

0

Gi=L , mPy+F!=~yy". (9)

. . . oy oyt 0%y .
VY — n v v Wl vV
For the integral holonomic sections (x") (x , Y(xY), —axﬂ(x ), s"(x )) of X, bearing in mind that — AX - Bx X equations (4) read,
os 0%y dy 0y
oxr Lo 8XM0X“ Y = Wiz 0X,, =7 oxn el

where the last equation is the Klein—-Gordon equation with additional first-order terms.
For simplicity, we have considered the Minkowski metric and ~, constants. However, a similar procedure can be performed for a
generic metric g,, = g,.(x”) and functions v, = ~,(x"), thus obtaining,

0s" _ ?y

0s" _ G Oy _ 0¥
OXH L 0x,0X xi

my + OXH OXV =7 OxH

THE TELEGRAPHER'S EQUATION: As an interesting application of this modified Klein—Gordon equation, we can derive from it the
so-called telegrapher’s equation which describes the current and voltage on a uniform electrical transmission line:

oV ol ol

where V is the voltage, I is the current, R is the resistance, L is the inductance, C is the capacitance, and G is the conductance. This
system can be uncoupled, obtaining the system

02V 02V oV 0?1 0?1 ol
2 = LCW (LG + RC)W + RGV | 2 Lcﬁ + (LG + RC)a + RGI .
Both equations above can be written as 5
Dy+va—};+m2y=0, (11)

where O is the d’Alembert operator in 1+1 dimensions, and v and m? are adequate constants. Taking Y, = (—=7,0,0,0) in (10), w
obtain the telegrapher’s equation (11). In this way, we can see the telegrapher’s equation as a modified Klein—Gordon equation.

HAMILTONIAN FORMALISM
The adapted coordinates of fiber bundle 7: P* = J'*r xy A"~ 1(T*R*) — R? are (x*, y, p*, s*). The Legendre map FL: P — P*is

FL(XV, y,y,,8") = (x" y,p' s"),

with p* = y,. It is a diffeomorphism since the Lagrangian function is hyperregular. The contact Hamiltonian m-form (5) is,
1 1
Oy = p'dy A xdx, + Hd*x 4+ ds" A xdx, = p'dy A xdx, + (Ep“pﬂ + émz y? — %s“) d*x +ds" A *dx,

and then Qy = dOy + oo, A Oy, Where og, = —v,dx*.

Equations (7) for 7-transverse 4-multivector fields Xy = /\ (i + f 0 + F”i + G — 0
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and using the Legendre map, these equations transform into (9) along with the holonomy condition. Thus, the Lagrangian and
Hamiltonian formalisms are equivalent.

For the integral sections ¥ (x") = (x*, y(x"), p*(x"), s*(x")) of X4, the Herglotz—Hamilton—De Donder—Weyl equations (8) read
ost 1 1 ay op*
Oxh EPMPM - Emzyz +7.8" Oxh =Pu OxE —my + VP -

and, combining the last two equations above, we obtain the equation (10).

Action-dependent bosonic string theory

Spacetime is a (d + 1)-dimensional manifold M, with local coordinates x* (u = 1,.. ., d) and a metric G, (signature (— +---+)). The
string worldsheet is a 2-dimensional manifold ¥, with local coordinates ¢’ (i = 0, 1) and the volume form w = d®s. The fields x*(c) are

scalar fields on ¥ given by the embedding maps ¥ — M : 02 — x*(c). The configuration bundleis7: E =¥ x M — ¥. On J'r we also
u

have a 2-form g = %g,:,'dO'i A do’/, whose pullback by jet prolongations of sections ¢ € I'(x), j'¢ = (o’, x"(o), a—x.(a)> gives the induced

o’
1 : : Ox* ox”
: 1\ % —
metricon &, (j ¢)'g = h = éh,-jda’ A do’, where hj = GW@ 57
LAGRANGIAN FORMALISM

The bundle 7: P ~ J'7 x R? — ¥ has adapted coordinates (o

" x*, x!', s'). Consider the contactified Lagrangian function

L(o", x", xI', 8" = Lo(o’, x*, x!') 4 8 = —T\/— det(G,x['x!) &0 + yi8' € €>(P) ,

where Ly is the standard Nambu—Goto Lagrangian, T is a constant called the string tension, and v =
This is a regular Lagrangian since the following Hessian matrix is regular everywhere,
0?L N
S5 — TV 4e0[ G — GuGuxix (/0" + ¢¥g" ~ 0" |
i 27

The Lagrangian multicontact 2-form (1) is

(v.) € R? is a constant vector.

L . ) . .
Or = (‘)ax“ oi— Eg ANdP0 +ds' Ad'oj= —T\/—det g G @'x/dx" Ad'oj — (T\/— det g + 7,-5’) d?c +ds' Ad'o; |
i
where d'g; =« (8(2 ) d°c. Then, as usual, Q; = dO, + o, A O, Where co, = —v;do’.
For a holonomic 2-multivector field X, = /\ (% + x,’“‘a% + F,jbaiﬂ + f/é;) € X2(/P) the Lagrangian equations (3) are
o

fl— L

/

i\ v d i\ v 0 i\ v
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1

) oG, o -
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OXH
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For the holonomic integral sections (o) = (aa, xH (o), ) of X &, these equations become the Herglotz—Euler—Lagrange equations:

HAMILTONIAN FORMALISM
The bundle 7: P* ~ J™r x R? — ¥ has adapted coordinates (o', x*, p/,, s'). The Legendre map FL : P — P*is

FL'o' =o' | FLX'=x" | FLP,=-T\/—detg G.g¢'x' , FL'S'=5",

and is a diffeomorphism, since L is regular. Then, the 2-form g can be translated to P* by the push-forward of the Legendre map.
Introducing N’ = G“”pﬂp,’,, the contact Hamiltonian 2—form can be written as

. . 1 .
Oy = p,dx* ANd'oj — HAd%0 = pldx" Adloj + (7\/— det I + 7,-8’) d°c

and then Qy = dOy + 0o, A Oy, Where og,, = —7;do’.

- . . 0 0 0 0 . .
For 7-transverse 2-multivector fields Xy = /\ <@ + Ff'— | A F/M 8,0’ +f asl) € X2(P*), equations (7) are
0s' \/—detTl y v/ —det Tl
i =T (1 - MiG*p,p.) +is' = = (1 —N;NY) + s’
v —detTl . v —detll_ 0G™ :
F'=— T ;G"p, . Fi, = 5T ;i axi P P + iP) -
- - j j i o OX o op j_ 09 - -
For the integral sections (o) = (o', x(o), p;,(c), s'(0)) of Xy, for which F;" = ST Fi, = o7 and f = et the field equations
become the Herglotz—Hamilton—De Donder—Weyl equations:
0s'  \/—detT iy v —det T
i =T (1 -MiG*p,p.) +is' = = (1 —N;NY) + 8,
ox* v —det 1 L 8,% v—detll_ 090G ; i
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