ABSTRACT A new geometric structure inspired by multisymplectic and contact geometries, called multicontact structure, has been developed recently to describe non-conservative and action-dependent classical field theories [1]. We review the main features of this action-dependence; namely: the modified Klein-Gordon equation and the action-dependent bosonic string

Multicontact Lagrangian and Hamiltonian formalisms Multivector fields
Let \mathcal{M} be a manifold with $\operatorname{dim} \mathcal{M}=n$. The m-multivector fields on \mathcal{M} are the contravariant skew-symmetric tensor fields of order m in \mathcal{M}. The set of m-multivector fields in \mathcal{M} is denoted $\mathfrak{X}^{m}(\mathcal{M})$.
A multivector field $\mathbf{X} \in \mathfrak{X}^{m}(\mathcal{M})$ is locally decomposable if, for every $\mathrm{p} \in \mathcal{M}$, there exists an open neighbourhood $U_{\mathrm{p}} \subset \mathcal{M}$ such that $\mathbf{x}_{U_{\mathrm{p}}}=X_{1} \wedge \ldots \wedge X_{m} \quad, \quad$ for some $X_{1}, \ldots X_{m} \in \mathcal{X}\left(U_{\mathrm{p}}\right)$
The contraction of a locally decomposable multivector field $\mathbf{X} \in \mathfrak{X}^{m}(\mathcal{M})$ and a differentiable form $\Omega \in \Omega^{k}(\mathcal{M})$ is

$$
\left.\iota(\mathbf{X}) \Omega\right|_{U_{p}}=\iota\left(X_{1} \wedge \cdots \wedge X_{m}\right) \Omega=\iota\left(X_{m}\right) \cdots \iota\left(X_{1}\right) \Omega, \quad \text { if } k \geq m ;\left.\quad \iota(\mathbf{X}) \Omega\right|_{U_{p}}=0, \quad \text { if } k<m
$$

Let $\kappa: \mathcal{M} \rightarrow M$ be a fiber bundle with local coordinates (x^{μ}, z^{\prime}) on $\mathcal{M}\left(x^{\mu}\right.$ are coordinates on M and z^{\prime} are coordinates on the fibers). A multivector field $\mathbf{X} \in \mathfrak{X}^{m}(\mathcal{M})$ is κ-transverse if $\left.\iota(\mathbf{X})\left(\kappa^{*} \beta\right)\right|_{\mathrm{p}} \neq 0$, for $\mathrm{p} \in \mathcal{M}$ and $\beta \in \Omega^{m}(M)$. If M is an orientable manifold with volume form $\omega \in \Omega^{m}(M)$, then $\mathbf{X} \in \mathfrak{X}^{m}(\mathcal{M})$ is κ-transverse if, and only if, $\iota(\mathbf{X})\left(\kappa^{*} \omega\right) \neq 0$. This condition can be fixed by taking $\iota(\mathbf{X})\left(\kappa^{*} \omega\right)=1$.
If $\mathbf{X} \in \mathfrak{X}^{m}(\mathcal{M})$ is locally decomposable and κ-transverse, a section $\psi\left(x^{\mu}\right)=\left(x^{\mu}, z^{\prime}\left(x^{\nu}\right)\right)$ of κ is an integral section of \mathbf{X} if $\frac{\partial z^{\prime}}{\partial x^{\mu}}=F_{\mu}^{i}$. Then, \mathbf{X} is integrable if, for $\mathrm{p} \in \mathcal{M}$, there exist $\boldsymbol{x} \in M$ and an integral section ψ of \mathbf{X} such that $\mathbf{p}=\psi(x)$.
Multicontact Lagrangian formalism
For the Lagrangian formulation of non-conservative first-order field theories, the configuration bundle of a (first-order) Lagrangian field theory is $\pi: E \rightarrow M$ ($\operatorname{dim} M=m, \operatorname{dim} E=n+m$), where M is an orientable manifold with volume form $\omega \in \Omega^{m}(M)$, which usually represent space-time. The theory is developed on the bundle

$: \mathcal{P}=J^{1} \pi \times_{M} \Lambda^{m-1}\left(\mathrm{~T}^{*} M\right) \rightarrow M$

where J^{1} is the the first-order jet bundle of π and $\Lambda^{m-1}\left(\mathbb{T}^{*} M\right)$ is the bundle of $(m-1)$-forms on M, which can be identified with \mathbb{R}^{m}. Natural coordinates in \mathcal{P} are $\left.\left(x^{\mu}, y^{i}, y^{i}, s^{\mu}\right)(\mu=1, \ldots, m, i=1, \ldots, n ; \operatorname{dim} \mathcal{P}=n m+n+2 m)\right)$, such that $\omega=\mathrm{d} x^{1} \wedge \cdots \wedge \mathrm{~d} x^{m} \equiv \mathrm{~d}^{m} \chi$. A Lagrangian density on \mathcal{P} as a m-form $\mathcal{L} \in \Omega^{m}(\mathcal{P})$, whose expression is $\mathcal{L}\left(x^{\mu}, y^{i}, y_{\mu}^{i}, s^{\mu}\right)=L\left(x^{\mu}, y^{i}, y_{\mu}^{i}, s^{\mu}\right) \mathrm{d}^{m} x$, where $L \in \mathscr{C}{ }^{\infty}(\mathcal{P})$ is the Lagrangian function associated with \mathcal{L}. A Lagrangian L is regular if the matrix $\left(\frac{\partial^{2} L}{\partial y_{\mu}^{i} \partial y_{\nu}^{j}}\right)$ is regular everywhere; then $\Theta_{\mathcal{L}}$ is a variational multicontact form on \mathcal{P} and $\left(\mathcal{P}, \Theta_{\mathcal{L}}, \omega\right)$ is a multicontact Lagrangian system. Otherwise, L is a singular Lagrangian [1, 2] The Lagrangian m-form associated with \mathcal{L} is:
$\Theta_{\mathcal{L}}=-\frac{\partial L}{\partial y_{\mu}^{i}} \mathrm{~d}^{i} \wedge \mathrm{~d}^{m-1} x_{\mu}+\left(\frac{\partial L}{\partial y_{\mu}^{i}} y_{\mu}^{i}-L\right) \mathrm{d}^{m} x+\mathrm{d}^{\mu} \wedge \mathrm{d}^{m-1} x_{\mu} \quad\left(\right.$ where $\left.\mathrm{d}^{m-1} x_{\mu}=\iota\left(\frac{\partial}{\partial x^{\mu}}\right) \mathrm{d}^{m} x=(-1)^{\mu-1} \mathrm{~d} x^{1} \wedge \ldots \wedge \widehat{\mathrm{~d} x^{\mu}} \wedge \ldots \wedge \mathrm{d} x^{m}\right)$. (1) The local function $E_{\mathcal{L}}=\frac{\partial L}{\partial y_{\mu}^{\prime}} y_{\mu}^{i}-L$ is the energy Lagrangian function associated with L. Then, the Lagrangian $(m+1)$-form is $\bar{\Omega}_{\mathcal{L}}:=\mathrm{d} \Theta_{\mathcal{L}}+\sigma_{\theta_{\mathcal{L}}} \wedge \Theta_{\mathcal{L}}=\mathrm{d}\left(-\frac{\partial L}{\partial y_{\mu}^{i}} \mathrm{~d} y^{i} \wedge \mathrm{~d}^{m-1} x_{\mu}+\left(\frac{\partial L}{\partial y_{\mu}^{j}} y_{\mu}^{i}-L\right) \mathrm{d}^{m} x\right)-\left(\frac{\partial L}{\partial \boldsymbol{s}^{\mu}} \frac{\partial L}{\partial y_{\mu}^{j}} \mathrm{~d} y^{i}-\frac{\partial L}{\partial \boldsymbol{s}^{\mu}} \mathrm{d} s^{\mu}\right) \wedge \mathrm{d}^{m} x$

A section $\psi: M \rightarrow \mathcal{P}$ of the projection τ is a holonomic section on \mathcal{P} if it is locally expressed as $\psi\left(x^{\mu}\right)=\left(x^{\mu}, y^{i}\left(x^{\nu}\right), y_{\mu}^{i}\left(x^{\nu}\right), s^{\mu}\left(x^{\nu}\right)\right)$.
Then $\mathbf{X} \in \mathfrak{X}^{m}(\mathcal{P})$ is a holonomic m-multivector field (a sopDE) if it is τ-transverse, integrable, and has holonomic integral sections. Then $\mathbf{X} \in \mathfrak{X}^{m}(\mathcal{P})$ is a holonomic m-multivector field (a sopDE) if it is τ-transverse, integrable, and has holonomic integral sections The (pre)multicontact Lagrangian equations can be derived from the generalized Herglotz Principle [3] and, for holonomic multivector fields, they can be stated as:

$$
\iota\left(\mathbf{X}_{\mathcal{L}}\right) \Theta_{\mathcal{L}}=0 \quad, \quad \iota\left(\mathbf{X}_{\mathcal{L}}\right) \bar{\Omega}_{\mathcal{L}}=0 \quad, \quad \iota\left(\mathbf{X}_{\mathcal{L}}\right)\left(\tau^{*} \omega\right)=1
$$

In a natural chart of coordinates of \mathcal{P}, a holonomic m-multivector field $\mathbf{X}_{\mathcal{L}} \in \mathfrak{X}^{m}(\mathcal{P})$ verifying the condition $\iota(\mathbf{X})\left(\tau^{*} \omega\right)=1$ is
$\mathbf{x}_{\mathcal{L}}=\bigwedge_{\mu=1}^{m}\left(\frac{\partial}{\partial \boldsymbol{x}^{\mu}}+y_{\mu}^{i} \frac{\partial}{\partial y^{i}}+\left(X_{\mathcal{L}}\right)_{\mu \nu}^{i} \frac{\partial}{\partial y_{\nu}^{i}}+\left(X_{\mathcal{L}}\right)_{\mu}^{\nu} \frac{\partial}{\partial s^{\nu}}\right)$, and equations (2) lead to

$$
\begin{equation*}
\left(X_{\mathcal{L}}\right)_{\mu}^{\mu}=L ; \quad \frac{\partial L}{\partial y^{i}}-\frac{\partial^{2} L}{\partial x^{\mu} \partial y_{\mu}^{i}}-\frac{\partial^{2} L}{\partial y^{j} \partial y_{\mu}^{i}} y_{\mu}^{j}-\frac{\partial^{2} L}{\partial s^{\nu} \partial y_{\mu}^{i}}\left(X_{\mathcal{L}}\right)_{\mu}^{\nu}-\frac{\partial^{2} L}{\partial y_{\nu}^{j} \partial y_{\mu}^{i}}\left(X_{\mathcal{L}}\right)_{\mu \nu}^{j}=-\frac{\partial L}{\partial \boldsymbol{s}^{\mu}} \frac{\partial L}{\partial y_{\mu}^{i}} \tag{3}
\end{equation*}
$$

For the holonomic integral sections $\psi\left(x^{\nu}\right)=\left(x^{\mu}, y^{i}\left(x^{\nu}\right), \frac{\partial y^{i}}{\partial x^{\mu}}\left(x^{\nu}\right), s^{\mu}\left(x^{\nu}\right)\right)$ of $\mathbf{X}_{\mathcal{L}}$ we have that $y_{\mu}^{i}=\frac{\partial y^{i}}{\partial x^{\mu}},\left(X_{\mathcal{L}}\right)_{\mu \nu}^{j}=\frac{\partial y_{\mu}^{j}}{\partial x^{\nu}}=\frac{\partial^{2} y^{i}}{\partial x^{\mu} \partial x^{\nu}}$ $\left(X_{\mathcal{L}}\right)_{\mu}^{\nu}=\frac{\partial s^{\mu}}{\partial x^{\nu}}$, and these equations transform into the Herglotz-Euler-Lagrange field equations:

$$
\frac{\partial \boldsymbol{s}^{\mu}}{\partial \boldsymbol{x}^{\mu}}=L \circ \boldsymbol{\psi} \quad ; \quad \frac{\partial}{\partial \boldsymbol{x}^{\mu}}\left(\frac{\partial L}{\partial y_{\mu}^{i}} \circ \boldsymbol{\psi}\right)=\left(\frac{\partial L}{\partial \boldsymbol{y}^{i}}+\frac{\partial L}{\partial \boldsymbol{s}^{\mu}} \frac{\partial L}{\partial y_{\mu}^{i}}\right) \circ \boldsymbol{\psi}
$$

For regular Lagrangians, these equations always have solution. When L is not regular, the field equations could have no solutions everywhere on \mathcal{P}. Hence, the final objective is, applying a constraint algorithm, to find the maximal submanifold $\mathcal{S}+$ of \mathcal{P} (if it exists) where there are holonomic Lagrangian multivector fields $\mathbf{X}_{\mathcal{L}}$ which are tangent solutions to the Lagrangian field equations on \mathcal{S}_{f}. Multicontact Hamiltonian formalism

Consider the bundle

$\widetilde{\tau}: \mathcal{P}^{*}:=J^{*} \pi \times_{M} \Lambda^{m-1}\left(\mathrm{~T}^{*} M\right) \rightarrow M$
which is identified with $J^{* *} \pi \times \mathbb{R}^{m}$; where $J^{\prime *} \pi$ is the restricted multimomentum bundle. Natural coordinates on \mathcal{P}^{*} are $\left(x^{\mu}, y^{\prime}, p_{i}^{\mu}, s^{u}\right)$. If $\left(\mathcal{P}, \Theta_{\mathcal{L}}, \omega\right)$ is a Lagrangian system, with $\mathcal{L}=L \omega$, the Legendre map associated with \mathcal{L} is the map $\mathcal{F}: \mathcal{P} \rightarrow \mathcal{P}^{*}$ locally given by

$$
\mathcal{F} \mathcal{L}^{*} x^{\nu}=x^{\nu} \quad, \quad \mathcal{F} \mathcal{L}^{*} y^{i}=y^{i} \quad, \quad \mathcal{F} \mathcal{L}^{*} p_{i}^{\nu}=\frac{\partial \mathrm{L}}{\partial y_{\nu}^{i}}, \quad \mathcal{F} \mathcal{L}^{*} s^{\mu}=s^{\mu} .
$$

The Lagrangian L is regular if, and only if, $\mathcal{F \mathcal { L }}$ is a local diffeomorphism, and L is hyperregular when $\mathcal{F \mathcal { L }}$ is a global diffeomorphism. The Lagrangian \mathcal{L} is regular if, and only if, $\mathcal{F L}$ is a local diffeomorphism, and \mathcal{L} is hyperregular when $\mathcal{F L} \mathcal{L}$ is a global diffeomorphism.
In the hyperregular case (for the singular case and examples, see $[2]$), $\mathcal{F}(\mathcal{P})=\mathcal{P}^{*}$, The form $\Theta_{\mathcal{L}} \in \Omega^{m}(\mathcal{P})$ projects to \mathcal{P}^{*} by $\mathcal{F} \mathcal{L}$ giving the Hamiltonian m-form $\Theta_{\mathcal{H}} \in \Omega^{m}\left(\mathcal{P}^{*}\right), \Theta_{\mathcal{L}}=\mathcal{F} \mathcal{L}^{*} \Theta_{\mathcal{H}}$, whose local expression is

$$
\Theta_{\mathcal{H}}=-p_{i}^{\prime \prime} \mathrm{d} y^{i} \wedge \mathrm{~d}^{m-1} x_{\mu}+H \mathrm{~d}^{m} x+\mathrm{d}^{\mu} \wedge \mathrm{d}^{m-1} x_{\mu},
$$

where $H=p_{i}^{\mu}\left(\mathcal{F} \mathcal{L}^{-1}\right)^{*} y_{\mu}^{i}-\left(\mathcal{F} \mathcal{L}^{-1}\right)^{*} L \in \mathscr{C}^{\infty}\left(\mathcal{P}^{*}\right)$ is the Hamiltonian function. Then, $\Theta_{\mathcal{H}}$ is a variational multicontact form and $\left(\mathcal{P}^{*}, \Theta_{\mathcal{H}}, \omega\right)$
is the multicontact Hamiltonian system associated with $\left(\mathcal{P}, \Theta_{\mathcal{C}} \omega\right)$. Then, we define the Hamittonian $(m+1)$-form is the multicontact Hamiltonian system associated with $\left(\mathcal{P}, \Theta_{\mathcal{L}}, \omega\right)$. Then, we define the Hamiltonian ($m+1$)-form

$$
\bar{\Omega}_{\mathcal{H}}:=\mathrm{d} \Theta_{\mathcal{H}}+\sigma_{\Theta_{\mathcal{H}}} \wedge \Theta_{\mathcal{H}}=\mathrm{d}\left(-p_{i}^{\mu} \mathrm{d} y^{i} \wedge \mathrm{~d}^{m-1} x_{\mu}+H \mathrm{~d}^{m} x\right)+\left(\frac{\partial H}{\partial s^{\mu}} p_{i}^{\mu} \mathrm{d} y^{i}-\frac{\partial H}{\partial s^{\mu}} \mathrm{d} s^{\mu}\right) \wedge \mathrm{d}^{m} x,
$$

where $\sigma_{\mathcal{H}}=\frac{\partial H}{\partial \mathcal{S H}^{\mu}} \mathrm{d} x^{\mu}$ is the dissipation form in this formalism. We have that $\bar{\Omega}_{\mathcal{L}}=\mathcal{F} \mathcal{L}^{*} \bar{\Omega}_{\mathcal{H}}$.
The multicontact Hamilton-de Donder-Weyl equations for $\tilde{\tau}$-transverse and locally decomposable multivector fields are stated as $\iota\left(\mathbf{X}_{\mathcal{H}}\right) \Theta_{\mathcal{H}}=0, \quad \iota\left(\mathbf{X}_{\mathcal{H}}\right) \bar{\Omega}_{\mathcal{H}}=0, \quad \iota\left(\mathbf{X}_{\mathcal{H}}\right)\left(\tilde{\tau}^{*} \omega\right)=1$
In natural coordinates, if $\mathbf{X}_{\mathcal{H}}=\bigwedge_{\mu=1}^{m}\left(\frac{\partial}{\partial \boldsymbol{X}^{\mu}}+\left(X_{\mathcal{H}}\right)_{\mu}^{i} \frac{\partial}{\partial y^{i}}+\left(X_{\mathcal{H}}\right)_{\mu i}^{\nu} \frac{\partial}{\partial p_{i}^{j}}+\left(X_{\mathcal{H}}\right)_{\mu}^{\nu} \frac{\partial}{\partial \boldsymbol{s}^{\nu}}\right) \in \mathfrak{X}^{m}\left(\mathcal{P}^{*}\right)$ is a solution to the equations (6), then

$$
\begin{equation*}
\left(X_{\mathcal{H}}\right)_{\mu}^{\mu}=p_{i}^{\mu} \frac{\partial H}{\partial p_{i}^{\mu}}-H \quad, \quad\left(X_{\mathcal{H}}\right)_{\mu}^{i}=\frac{\partial H}{\partial p_{i}^{\mu}} \quad, \quad\left(X_{\mathcal{H}}\right)_{\mu i}^{\mu}=-\left(\frac{\partial H}{\partial y^{i}}+p_{i}^{\mu} \frac{\partial H}{\partial \boldsymbol{s}^{\mu}}\right) \tag{7}
\end{equation*}
$$

(6)

If $\psi\left(x^{\nu}\right)=\left(x^{\mu}, y^{i}\left(x^{\nu}\right), p_{i}^{\mu}\left(x^{\nu}\right), s^{\mu}\left(x^{\nu}\right)\right)$ is an integral section of $\mathbf{X}_{\mathcal{H}}$, equations (6) lead to the Herglotz-Hamilton-de Donder- Weyl
equations for ψ :

$$
\frac{\partial \boldsymbol{s}^{\mu}}{\partial \boldsymbol{x}^{\mu}}=\left(p_{i}^{\mu} \frac{\partial H}{\partial p_{i}^{\mu}}-H\right) \circ \boldsymbol{\psi} \quad, \quad \frac{\partial y^{i}}{\partial \boldsymbol{x}^{\mu}}=\frac{\partial H}{\partial p_{i}^{\mu}} \circ \boldsymbol{\psi} \quad, \quad \frac{\partial p_{i}^{\mu}}{\partial x^{\mu}}=-\left(\frac{\partial H}{\partial \boldsymbol{y}^{i}}+p_{i}^{\mu} \frac{\partial H}{\partial \boldsymbol{s}^{\mu}}\right) \circ \boldsymbol{\psi}
$$

These equations are compatible in \mathcal{P}^{*}. As $\mathcal{F} \mathcal{L}$ is a diffeomorphism, the solutions to the Lagrangian field equations for $\left(\mathcal{P}, \Theta_{\mathcal{L}}, \omega\right)$ are in one-to-one correspondence to those of the Hamilton-de Donder-Weyl field equations for $\left(\mathcal{P}^{*}, \Theta_{\mathcal{H}}, \omega\right)$
Application to physical theories

The modified Klein-Gordon equation and the Telegrapher's equation

The Klein-Gordon equation in the Minkowski space-time \mathbb{R}^{4} (with the metric signature $g_{\mu \nu} \equiv(-1,1,1,1)$) is

$$
\left(\square+m^{2}\right) \phi \equiv \partial_{\mu} \partial^{\mu} \phi+m^{2} \phi=0
$$

where ϕ is a scalar field, m^{2} is a constant, \square denotes de D^{\prime} Alembert operator in \mathbb{R}^{4}, and $\partial_{\mu} \equiv \frac{\partial}{\partial x^{\mu}}, \partial^{\mu} \equiv g^{\mu \nu} \partial_{\nu}$. It derives from the
Lagrangian $L_{0}=\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-\frac{1}{2} m^{2} \phi^{2}$, which can be modified to include a more generic potential, $\tilde{L}_{0}=\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-V(\phi)$. LAGRANGIAN FORMALISM
Consider the bundle $\tau: \mathcal{P}=J^{1} \pi \times{ }_{M} \Lambda^{m-1}\left(\mathbb{T}^{*} \mathbb{R}^{4}\right) \rightarrow \mathbb{R}^{4}$, with coordinates $\left(x^{\mu}, y, y_{\mu}, s^{\mu}\right)(\mu=0, \ldots, 3)$, where y denotes the field variable, and the volume form is $\omega=\mathrm{d} x^{0} \wedge \cdots \wedge \mathrm{~d} x^{3} \equiv \mathrm{~d}^{4} x$ on \mathbb{R}^{4}. Consider the contactified Lagrangian $L \in \mathscr{C}^{\infty}(\mathcal{P})$:

$$
L\left(x^{\mu}, y, y_{\mu}, s^{\mu}\right)=L_{0}\left(x^{\mu}, y, y_{\mu}\right)+\gamma_{\mu} s^{\mu}=\frac{1}{2} y_{\mu} y^{\mu}-\frac{1}{2} m^{2} y^{2}+\gamma_{\mu} s^{\mu}
$$

where $\gamma \equiv\left(\gamma_{\mu}\right) \in \mathbb{R}^{4}$ is a constant vector, and $y^{\mu}=\partial^{\mu} y$. It is a quadratic hyperregular Lagrangian.
Using the Hodge star operator, * , the Lagrangian multicontact 4-form (1) is

$$
\Theta_{\mathcal{L}}=y^{\mu} \mathrm{d} y \wedge * \mathrm{~d} x_{\mu}+E_{\mathcal{L}} \mathrm{d}^{4} x+\mathrm{d} s^{\mu} \wedge * \mathrm{~d} x_{\mu}=y^{\mu} \mathrm{d} y \wedge * \mathrm{~d} x_{\mu}+\left(\frac{1}{2} y_{\mu} y^{\mu}+\frac{1}{2} m^{2} y^{2}-\gamma_{\mu} s^{\mu}\right) \mathrm{d}^{4} x+\mathrm{d} s^{\mu} \wedge * \mathrm{~d} x_{\mu}
$$

Then $\bar{\Omega}_{\mathcal{L}}=\mathrm{d} \Theta_{\mathcal{L}}+\sigma_{\theta_{\mathcal{L}}} \wedge \Theta_{\mathcal{L}}$, where $\sigma_{\theta_{\mathcal{E}}}=-\gamma_{\mu} \mathrm{d} x^{\mu}$.
For holonomic multivector fields $\mathbf{X}_{\mathcal{L}}=\bigwedge\left(\frac{\partial}{\partial x^{\mu}}+y_{\mu} \frac{\partial}{\partial y}+F_{\mu \nu} \frac{\partial}{\partial y_{\nu}}+G_{\mu}^{\mu} \frac{\partial}{\partial s^{\nu}}\right) \in \mathfrak{X}^{4}(\mathcal{P})$, the Lagrangian equations (3) are
$G_{\mu}^{\mu}=L, \quad m^{2} y+F_{\mu}^{\mu}=\gamma_{\mu} y^{\mu}$.

For the integral holonomic sections $\psi\left(x^{\nu}\right)=\left(x^{\mu}, y\left(x^{\nu}\right), \frac{\partial y}{\partial x^{\mu}}\left(x^{\nu}\right), s^{\mu}\left(x^{\nu}\right)\right)$ of $\mathbf{X}_{\mathcal{C}}$, bearing in mind that $\frac{\partial y^{\mu}}{\partial x^{\mu}}=\frac{\partial^{2} y}{\partial x_{\mu} \partial x^{\mu}}$, equations (4) read

$$
\begin{equation*}
\frac{\partial s^{\mu}}{\partial x^{\mu}}=L \quad, \quad \frac{\partial^{2} y}{\partial x_{\mu} \partial x^{\mu}}+m^{2} y=\gamma_{\mu} \frac{\partial y}{\partial x_{\mu}}=\gamma^{\mu} \frac{\partial y}{\partial x^{\mu}} \tag{10}
\end{equation*}
$$

where the last equation is the Klein-Gordon equation with additional first-order terms.
For simplicity, we have considered the Minkowski metric and γ_{μ} constants. However, a similar procedure can be performed for a generic metric $g_{\mu \nu}=g_{\mu \nu}\left(x^{\nu}\right)$ and functions $\gamma_{\mu}=\gamma_{\mu}\left(x^{\nu}\right)$, thus obtaining,

$$
\frac{\partial s^{\mu}}{\partial x^{\mu}}=L \quad, \quad \frac{\partial^{2} y}{\partial x_{\mu} \partial x^{\mu}}+m^{2} y+\frac{\partial g_{\mu \mu}}{\partial x^{\mu}} \frac{\partial y}{\partial x^{\mu}}=\gamma^{\mu} \frac{\partial y}{\partial x^{\mu}}
$$

HE TELEGRAPHER'S EQUATION: As an interesting application of this modified Klein-Gordon equation, we can derive from it the so-called telegrapher's equation which describes the current and voltage on a uniform electrical transmission line:

$$
\frac{\partial V}{\partial x}=-L \frac{\partial I}{\partial t}-R I \quad, \quad \frac{\partial I}{\partial x}=-C \frac{\partial V}{\partial t}-G V,
$$

where V is the voltage, I is the current, R is the resistance, L is the inductance, C is the capacitance, and G is the conductance. This system can be uncoupled, obtaining the system

$$
\frac{\partial^{2} V}{\partial x^{2}}=L C \frac{\partial^{2} V}{\partial t^{2}}+(L G+R C) \frac{\partial V}{\partial t}+R G V \quad, \quad \frac{\partial^{2} I}{\partial x^{2}}=L C \frac{\partial^{2} I}{\partial t^{2}}+(L G+R C) \frac{\partial I}{\partial t}+R G I .
$$

Both equations above can be written as $\quad \square y+\gamma \frac{\partial y}{\partial t}+m^{2} y=0$
where \square is the d'Alembert operator in $1+1$ dimensions, and γ and m^{2} are adequate constants. Taking $\gamma_{\mu}=(-\gamma, 0,0,0)$ in (10), we obtain the telegrapher's equation (11). In this way, we can see the telegrapher's equation as a modified Klein-Gordon equation. Hamiltonian Formalism
The adapted coordinates of fiber bundle $\widetilde{\tau}: \mathcal{P}^{*}=J^{1 *} \pi \times_{M} \Lambda^{m-1}\left(\mathbb{T}^{*} \mathbb{R}^{4}\right) \rightarrow \mathbb{R}^{2}$ are $\left(x^{\mu}, y, p^{\mu}, s^{\mu}\right)$. The Legendre map $\mathcal{F}: \mathcal{P} \rightarrow \mathcal{P}^{*}$ is $\mathcal{F} \mathcal{L}\left(x^{\mu}, y, y_{\mu}, s^{\mu}\right)=\left(x^{\mu}, y, p^{\mu}, s^{\mu}\right)$
with $p^{\mu}=y_{\mu}$. It is a diffeomorphism since the Lagrangian function is hyperregular. The contact Hamiltonian m-form (5) is

$$
\Theta_{\mathcal{H}}=p^{\mu} \mathrm{d} y \wedge * \mathrm{~d} x_{\mu}+H \mathrm{~d}^{4} x+\mathrm{d} s^{\mu} \wedge * \mathrm{~d} x_{\mu}=p^{\mu} \mathrm{d} y \wedge * \mathrm{~d} x_{\mu}+\left(\frac{1}{2} p^{\mu} p_{\mu}+\frac{1}{2} m^{2} y^{2}-\gamma_{\mu} s^{\mu}\right) \mathrm{d}^{4} x+\mathrm{d} s^{\mu} \wedge * \mathrm{~d} x_{\mu}
$$

and then $\bar{\Omega}_{\mathcal{H}}=\mathrm{d} \Theta_{\mathcal{H}}+\sigma_{\Theta_{\mathcal{H}}} \wedge \Theta_{\mathcal{H}}$, where $\sigma_{\Theta_{\mathcal{H}}}=-\gamma_{\mu} \mathrm{d} \mathrm{X}^{\wedge}$.
and then $\Omega_{\mathcal{H}}=\mathrm{d} \Theta_{\mathcal{H}}+\sigma_{\Theta_{\mathcal{H}}} \wedge \Theta_{\mathcal{H}}$, where $\sigma_{\Theta_{H}}=-\gamma_{\mu} \mathrm{d} \mathbf{X}^{\mu}$.
Equations (7) for $\tilde{\tau}$-transverse 4 -multivector fields $\mathbf{X}_{\mathcal{H}}=\bigwedge\left(\frac{\partial}{\partial X^{\mu}}+f_{\mu} \frac{\partial}{\partial y}+F_{\mu}^{\nu} \frac{\partial}{\partial p^{\nu}}+G_{\mu}^{\prime} \partial \frac{\partial}{\partial s^{\nu}}\right) \in \mathfrak{X}^{4}\left(\mathcal{P}^{*}\right)$ are

$$
G_{\mu}^{\mu}=\frac{1}{2} p^{\mu} p_{\mu}-\frac{1}{2} m^{2} y^{2}+\gamma_{\mu} s^{\mu} \quad, \quad f_{\mu}=p_{\mu} \quad, \quad F_{\mu}^{\mu}=-m^{2} y+\gamma_{\mu} p^{\mu}
$$

and using the Legendre map, these equations transform into (9) along with the holonomy condition. Thus, the Lagrangian and Hamiltonian formalisms are equivalent.
For the integral sections $\psi\left(x^{\nu}\right)=\left(x^{\mu}, y\left(x^{\nu}\right), p^{\mu}\left(x^{\nu}\right), s^{\mu}\left(x^{\nu}\right)\right)$ of $\mathbf{X}_{\mathcal{H}}$, the Herglotz-Hamilton-De Donder-Weyl equations (8) read

$$
\frac{\partial s^{\mu}}{\partial x^{\mu}}=\frac{1}{2} p^{\mu} p_{\mu}-\frac{1}{2} m^{2} y^{2}+\gamma_{\mu} s^{\mu} \quad, \quad \frac{\partial y}{\partial x^{\mu}}=p_{\mu} \quad, \quad \frac{\partial p^{\mu}}{\partial x^{\mu}}=-m^{2} y+\gamma_{\mu} p^{\mu}
$$

and, combining the last two equations above, we obtain the equation (10).

Action-dependent bosonic string theory

Spacetime is a $(d+1)$-dimensional manifold M, with local coordinates $x^{\mu}(\mu=1, \ldots, d)$ and a metric $G_{\mu \nu}$ (signature $(-+\cdots+)$). The string worldsheet is a 2-dimensional manifold Σ, with local coordinates $\sigma^{\prime}(i=0,1)$ and the volume form $\omega=\mathrm{d}^{2} \sigma$. The fields $x^{\mu}(\sigma)$ are scalar fields on Σ given by the embedding maps $\Sigma \rightarrow M: \sigma^{a} \mapsto x^{\mu}(\sigma)$. The configuration bundle is $\pi: E=\sum \underset{\partial x^{\mu}}{ } \rightarrow \underset{\text {. On }}{ } J^{1} \pi$ we also have a 2 -form $g=\frac{1}{2} g_{j j} \mathrm{~d} \sigma^{i} \wedge \mathrm{~d} \sigma^{j}$, whose pullback by jet prolongations of sections $\phi \in \Gamma(\pi), j^{1} \phi=\left(\sigma^{i}, x^{\mu}(\sigma), \frac{\partial x^{\mu}}{\partial \sigma^{i}}(\sigma)\right)$ gives the induced metric on $\Sigma,\left(j^{1} \phi\right)^{*} g=h \equiv \frac{1}{2} h_{j j} \mathrm{~d} \sigma^{i} \wedge \mathrm{~d} \sigma^{j}$, where $h_{i j}=G_{\mu \nu} \frac{\partial x^{\mu}}{\partial \sigma^{i}} \frac{\partial x^{\nu}}{\partial \sigma^{j}}$.
-AGRANGIAN FORMALISN
The bundle $\tau: \mathcal{P} \simeq J^{\dagger} \pi \times \mathbb{R}^{2} \rightarrow \Sigma$ has adapted coordinates ($\sigma^{i}, x^{\mu}, x_{i}^{\mu}, s^{i}$). Consider the contactified Lagrangian function

$$
L\left(\sigma^{i}, x^{\mu}, x_{i}^{\mu}, s^{i}\right)=L_{0}\left(\sigma^{i}, x^{\mu}, x_{i}^{\mu}\right)+\gamma_{i} s^{i}=-T \sqrt{-\operatorname{det}\left(G_{\mu \nu} x_{i}^{\mu} x_{j}^{\prime}\right)} \mathrm{d}^{2} \sigma+\gamma_{i} \boldsymbol{S}^{i} \in \mathscr{C}^{\infty}(\mathcal{P}),
$$

where L_{0} is the standard Nambu-Goto Lagrangian, T is a constant called the string tension, and $\gamma \equiv\left(\gamma_{\mu}\right) \in \mathbb{R}^{2}$ is a constant vector. This is a regular Lagrangian since the following Hessian matrix is regular everywhere,

$$
\frac{\partial^{2} L}{\partial x_{i}^{\mu} \partial x_{j}^{\mu}}=-T \sqrt{-\operatorname{det} g}\left[G_{\mu \nu} g^{i i}-G_{\mu \alpha} G_{\rho \mu} x_{k}^{\alpha} x_{l}^{\rho}\left(g^{i i} g^{k \ell}+g^{k j} g^{i \ell}-g^{k i} g^{j \ell}\right)\right]
$$

The Lagrangian multicontact 2 -form (1) is

$$
\Theta_{\mathcal{L}}=\frac{\partial L}{\partial x_{i}^{\mu}} \mathrm{d} x^{\mu} \wedge \mathrm{d}^{1} \sigma_{i}-E_{\mathcal{L}} \wedge \mathrm{d}^{2} \sigma+\mathrm{ds}^{i} \wedge \mathrm{~d}^{1} \sigma_{i}=-T \sqrt{-\operatorname{det} g} G_{\mu \mu} g^{i} x_{j}^{\chi^{\mu} \mathrm{d} x^{\mu} \wedge \mathrm{d}^{1} \sigma_{i}-\left(T \sqrt{-\operatorname{det} g}+\gamma_{i} s^{i}\right) \mathrm{d}^{2} \sigma+\mathrm{ds}^{i} \wedge \mathrm{~d}^{1} \sigma_{i} .}
$$

where $\mathrm{d}^{1} \sigma_{i}=\iota\left(\frac{\partial}{\partial \sigma^{i}}\right) \mathrm{d}^{2} \sigma$. Then, as usual, $\bar{\Omega}_{\mathcal{L}}=\mathrm{d} \Theta_{\mathcal{L}}+\sigma_{\Theta_{\mathcal{L}}} \wedge \Theta_{\mathcal{L}}$, where $\sigma_{\theta_{\mathcal{L}}}=-\gamma_{\mathrm{i}} \mathrm{d} \sigma^{i}$.
For a holonomic 2-multivector field $\mathbf{X}_{\mathcal{L}}=\bigwedge_{i}\left(\frac{\partial}{\partial \sigma^{i}}+x_{i}^{\mu} \frac{\partial}{\partial \mathbf{x}^{\mu}}+F_{i j}^{\mu} \frac{\partial}{\partial x_{j}^{\mu}}+f_{i}^{j} \frac{\partial}{\partial \boldsymbol{s}^{i}}\right) \in \mathfrak{X}^{2}(\mathcal{P})$ the Lagrangian equations (3) are

$$
\begin{aligned}
& f_{i}^{i}=L \quad ; \quad T \sqrt{-\operatorname{det} g} G_{\mu} g^{i} x_{j}^{\mu} \gamma_{i}=x_{i}^{\rho}\left[\frac{\partial}{\partial x^{j}}\left(\sqrt{-\operatorname{det} g} G_{\mu \mu} g^{i} x_{j}^{\mu}\right)-\frac{\partial}{\partial x^{\mu}}\left(\sqrt{-\operatorname{det} g} G_{\mu} g^{i} x_{j}^{\mu}\right)\right] \\
& +\sqrt{-\operatorname{det} g}\left[G_{\mu} g^{i}-G_{\mu \mu} G_{\beta \nu} x_{k}^{i} x_{l}^{\beta}\left(g^{i} g^{k t}+g^{k i} g^{i \epsilon}-g^{k i} g^{i \theta}\right)\right] F_{i} \\
& +\left[\frac{1}{2} \sqrt{-\operatorname{det} g} g^{i} x_{i}^{\alpha} x_{j}^{\beta} \frac{\partial G_{a \beta}}{\partial x^{n}}+\frac{\partial}{\partial \sigma^{i}}\left(\sqrt{-\operatorname{det} g} G_{\mu \mu} g^{i} x_{j}^{u}\right)\right]
\end{aligned}
$$

For the holonomic integral sections $\psi(\sigma)=\left(\sigma^{a}, x^{\mu}(\sigma), \frac{\partial x^{\mu}}{\partial \sigma^{a}}\right)$ of $\mathbf{X}_{\mathscr{L}}$, these equations become the Herglotz-Euler-Lagrange equations

$$
\begin{gathered}
\frac{\partial s^{i}}{\partial \sigma^{i}}=L \quad ; \quad T \sqrt{-\operatorname{det} g} G_{\mu \nu} g^{i} \gamma_{i} \frac{\partial x^{\nu}}{\partial \sigma^{j}}=\frac{\partial x^{\rho}}{\partial \sigma^{i}}\left[\frac{\partial}{\partial x^{\rho}}\left(\sqrt{-\operatorname{det} g} G_{\mu \nu} g^{i} \frac{\partial x^{\nu}}{\partial \sigma^{j}}\right)-\frac{\partial}{\partial x^{\mu}}\left(\sqrt{-\operatorname{det} g} G_{\mu \nu} g^{i} \frac{\partial x^{\nu}}{\frac{\sigma^{j}}{j}}\right)\right] \\
+\sqrt{-\operatorname{det} g}\left[G_{\mu \nu} g^{i}-G_{\mu \alpha} G_{\beta \nu}\left(g^{i} g^{k \ell}+g^{k j} g^{i \ell}-g^{k i} g^{j \ell}\right) \frac{\partial x^{\alpha}}{\partial x^{\beta}} \frac{\partial x^{\beta}}{\partial \sigma^{\ell}}\right] \frac{\partial^{2} x^{\nu}}{\partial \sigma^{i} \partial \sigma^{j}} \\
\\
+\left[\frac{1}{2} \sqrt{-\operatorname{det} g} g^{j i} \frac{\partial G_{\alpha \beta}}{\partial x^{\mu}} \frac{\partial \sigma^{\alpha}}{\partial \sigma^{i}} \frac{\partial x^{\beta}}{\partial \sigma^{j}}+\frac{\partial}{\partial \sigma^{i}}\left(\sqrt{-\operatorname{det} g} G_{\mu \mu} g^{i j} \frac{\partial x^{\nu}}{\partial \sigma^{j}}\right)\right] .
\end{gathered}
$$

Hamiltonian formalism
The bundle $\tau: \mathcal{P}^{*} \simeq J^{1 *} \pi \times \mathbb{R}^{2} \rightarrow \Sigma$ has adapted coordinates ($\sigma^{i}, x^{\mu}, p_{\mu}^{i}, s^{i}$). The Legendre map $\mathcal{F}: \mathcal{P} \rightarrow \mathcal{P}^{*}$ is

$$
\mathcal{F} \mathcal{L}^{*} \sigma^{i}=\sigma^{i} \quad, \quad \mathcal{F} \mathcal{L}^{*} x^{\mu}=x^{\mu} \quad, \quad \mathcal{F} \mathcal{L}^{*} p_{\mu}^{i}=-T \sqrt{-\operatorname{det} g} G_{\mu \nu} g^{i} x_{j}^{\nu} \quad, \quad \mathcal{F} \mathcal{L}^{*} s^{\mu}=s^{\mu},
$$

and is a diffeomorphism, since L is regular. Then, the 2 -form g can be translated to \mathcal{P}^{*} by the push-forward of the Legendre map. Introducing $\Pi^{j j} \equiv G^{\mu \nu} p_{\mu}^{i} p_{\nu}^{j}$, the contact Hamiltonian 2-form can be written as

$$
\Theta_{\mathcal{H}}=p_{\mu}^{i} \mathrm{~d}^{\mu} \wedge \mathrm{d}^{1} \sigma_{i}-H \wedge \mathrm{~d}^{2} \sigma=p_{\mu}^{i} \mathrm{~d} \mathrm{X}^{\mu} \wedge \mathrm{d}^{1} \sigma_{i}+\left(\frac{1}{\bar{T}} \sqrt{-\operatorname{det} \Pi}+\gamma_{i} \boldsymbol{s}^{i}\right) \mathrm{d}^{2} \sigma
$$

and then $\bar{\Omega}_{\mathcal{H}}=\mathrm{d} \Theta_{\mathcal{H}}+\sigma_{\Theta_{\mathcal{H}}} \wedge \Theta_{\mathcal{H}}$, where $\sigma_{\Theta_{\mathcal{H}}}=-\gamma_{i} \mathrm{~d} \sigma^{i}$.
For $\widetilde{\tau}$-transverse 2-multivector fields $\mathbf{X}_{\mathcal{H}}=\bigwedge_{i}\left(\frac{\partial}{\partial \sigma^{i}}+F_{i}^{\mu} \frac{\partial}{\partial \chi^{\mu}}+F_{i \mu}^{j} \frac{\partial}{\partial p_{\mu}^{j}}+f_{i}^{j} \frac{\partial}{\partial s^{j}}\right) \in \mathfrak{X}^{2}\left(\mathcal{P}^{*}\right)$, equations (7) are

$$
\begin{aligned}
& \frac{\partial s^{i}}{\partial \sigma^{i}}=\frac{\sqrt{-\operatorname{det} \Pi}}{T}\left(1-\Pi_{j i} G^{\mu \nu} p_{\mu}^{i} p_{\nu}^{j}\right)+\gamma_{i} i^{i}=\frac{\sqrt{-\operatorname{det} \Pi}}{T}\left(1-\Pi_{j i} \Pi^{j j}\right)+\gamma_{i} s^{i}, \\
& F_{i}^{\mu}=-\frac{\sqrt{-\operatorname{det} \Pi}}{T} \Pi_{j i} G^{\mu \nu} p_{\nu}^{j} \quad, \quad F_{i \mu}^{i}=\frac{\sqrt{-\operatorname{det} \Pi}}{2 T} \Pi_{j i} \frac{\partial G^{\rho \alpha}}{\partial x^{\mu}} p_{\rho}^{i} p_{\alpha}^{j}+\gamma_{i} p_{\mu}^{i}
\end{aligned}
$$

For the integral sections $\psi(\sigma)=\left(\sigma^{i}, x^{\mu}(\sigma), p_{\mu}^{i}(\sigma), s^{i}(\sigma)\right)$ of $\mathbf{X}_{\mathcal{H}}$, for which $F_{i}^{\mu}=\frac{\partial x^{\mu}}{\partial \sigma^{i}}, F_{i \mu}^{j}=\frac{\partial p_{\mu}^{j}}{\partial \sigma^{i}}$, and $f_{i}^{j}=\frac{\partial s^{j}}{\partial \sigma^{i}}$, the field equations become the Herglotz-Hamilton-De Donder-Weyl equations:

$$
\begin{aligned}
& \frac{\partial s^{i}}{\partial \sigma^{i}}=\frac{\sqrt{-\operatorname{det} \Pi}}{T}\left(1-\Pi_{j} G^{\mu \nu} p_{\mu}^{i} p_{\nu}^{j}\right)+\gamma_{i} s^{i}=\frac{\sqrt{-\operatorname{det} \Pi}}{T}\left(1-\Pi_{j j} \Pi^{j j}\right)+\gamma_{i} s^{i}, \\
& \frac{\partial x^{\mu}}{\partial \sigma^{i}}=-\frac{\sqrt{-\operatorname{det} \Pi}}{T} \Pi_{j j} G^{\mu \nu} p_{\nu}^{j}, \quad \frac{\partial p_{\mu}^{i}}{\partial \sigma^{i}}=\frac{\sqrt{-\operatorname{det} \Pi}}{2 T} \Pi_{j i} \frac{\partial G^{\rho \alpha}}{\partial x^{\mu}} p_{\rho}^{i} p_{\alpha}^{j}+\gamma_{i} p_{\mu}^{i} .
\end{aligned}
$$

Acknowledgments

Spanish Ministry of Science and Innovation, grants PID2021-125515NB-C22, and RED2022-134301-T of AEI, Ministry of Research and Universities of the atalan Government, project 2021 SGR 00603 Geometry of Manifolds and Applications, GEOMVAP, and "Severo Ochoa Programme for Centres of Excellence in R\&D" (CEX2019-000904-S).
References
M. de León, J. Gaset, M.C. Muñoz-Lecanda, X. Rivas, and N. Roman-Roy, "Multicontact formulation for non-conservative field theories, J. Phys. A: Matt M. de León, J. Gaset, M.C. Muñoz-Lecanda, X. Rivas, and N. Román-Roy, "A contact formulation of non-conservative and action-dependent field theories

