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ABSTRACT A new geometric structure inspired by multisymplectic and contact geometries, called multicontact structure, has been
developed recently to describe non-conservative and action-dependent classical field theories [1]. We review the main features of this
formulation, showing how it is applied to study some classical theories in theoretical physics which are modified in order to include
action-dependence; namely: the modified Klein-Gordon equation and the action-dependent bosonic string.

MULTICONTACT LAGRANGIAN AND HAMILTONIAN FORMALISMS
MULTIVECTOR FIELDS

Let M be a manifold with dimM = n. The m-multivector fields on M are the contravariant skew-symmetric tensor fields of order m
in M. The set of m-multivector fields in M is denoted Xm(M).
A multivector field X ∈ Xm(M) is locally decomposable if, for every p ∈ M, there exists an open neighbourhood Up ⊂ M such that

X|Up
= X1 ∧ · · · ∧ Xm , for some X1, ...Xm ∈ X(Up) .

The contraction of a locally decomposable multivector field X ∈ Xm(M) and a differentiable form Ω ∈ Ωk(M) is

ι (X) Ω|Up
= ι (X1 ∧ · · · ∧ Xm) Ω = ι (Xm) . . . ι (X1) Ω , if k ≥ m ; ι(X) Ω|Up

= 0, if k < m

Let κ : M → M be a fiber bundle with local coordinates (xµ, z I) on M (xµ are coordinates on M and z I are coordinates on the fibers).
A multivector field X ∈ Xm(M) is κ-transverse if ι (X) (κ∗β)|p ̸= 0, for p ∈ M and β ∈ Ωm(M). If M is an orientable manifold with volume
form ω ∈ Ωm(M), then X ∈ Xm(M) is κ-transverse if, and only if, ι (X) (κ∗ω) ̸= 0. This condition can be fixed by taking ι (X) (κ∗ω) = 1.

If X ∈ Xm(M) is locally decomposable and κ-transverse, a section ψ(xµ) = (xµ, z I(xν)) of κ is an integral section of X if
∂z I

∂xµ
= F i

µ.
Then, X is integrable if, for p ∈ M, there exist x ∈ M and an integral section ψ of X such that p = ψ(x).

MULTICONTACT LAGRANGIAN FORMALISM

For the Lagrangian formulation of non-conservative first-order field theories, the configuration bundle of a (first-order) Lagrangian field
theory is π : E → M (dimM = m, dimE = n + m), where M is an orientable manifold with volume form ω ∈ Ωm(M), which usually
represent space-time. The theory is developed on the bundle

τ : P = J1π ×M Λm−1(T∗M) → M ,

where J1 is the the first-order jet bundle of π and Λm−1(T∗M) is the bundle of (m − 1)-forms on M, which can be identified with Rm.
Natural coordinates in P are (xµ, y i , y i

µ, sµ) (µ = 1, . . . ,m, i = 1, . . . ,n; dimP = nm + n + 2m)), such that ω = dx1 ∧ · · · ∧ dxm ≡ dmx .
A Lagrangian density on P as a m-form L ∈ Ωm(P), whose expression is L(xµ, y i , y i

µ, sµ) = L(xµ, y i , y i
µ, sµ) dmx , where L ∈ C ∞(P) is

the Lagrangian function associated with L. A Lagrangian L is regular if the matrix
( ∂2L

∂y i
µ∂y j

ν

)
is regular everywhere; then ΘL is a

variational multicontact form on P and (P ,ΘL, ω) is a multicontact Lagrangian system. Otherwise, L is a singular Lagrangian [1, 2].
The Lagrangian m-form associated with L is:

ΘL = − ∂L
∂y i

µ

dy i ∧ dm−1xµ +
( ∂L
∂y i

µ

y i
µ − L

)
dmx + dsµ ∧ dm−1xµ (where dm−1xµ = ι

(
∂

∂xµ

)
dmx = (−1)µ−1dx1 ∧ . . . ∧ d̂xµ ∧ . . . ∧ dxm) . (1)

The local function EL =
∂L
∂y i

µ

y i
µ − L is the energy Lagrangian function associated with L. Then, the Lagrangian (m + 1)-form is

ΩL := dΘL + σΘL ∧ ΘL = d
(
− ∂L
∂y i

µ

dy i ∧ dm−1xµ +
( ∂L
∂y i

µ

y i
µ − L

)
dmx

)
−
( ∂L
∂sµ

∂L
∂y i

µ

dy i − ∂L
∂sµ

dsµ
)
∧ dmx ,

where σΘL = − ∂L
∂sµ

dxµ is the so-called dissipation form.

A section ψ : M → P of the projection τ is a holonomic section on P if it is locally expressed as ψ(xµ) =
(
xµ, y i(xν), y i

µ(xν), sµ(xν)
)
.

Then X ∈ Xm(P) is a holonomic m-multivector field (a SOPDE) if it is τ -transverse, integrable, and has holonomic integral sections.
The (pre)multicontact Lagrangian equations can be derived from the generalized Herglotz Principle [3] and, for holonomic multivector
fields, they can be stated as:

ι (XL) ΘL = 0 , ι (XL) ΩL = 0 , ι (XL) (τ
∗ω) = 1 . (2)

In a natural chart of coordinates of P, a holonomic m-multivector field XL ∈ Xm(P) verifying the condition ι (X) (τ ∗ω) = 1 is

XL =
m∧
µ=1

( ∂

∂xµ
+ y i

µ

∂

∂y i + (XL)
i
µν

∂

∂y i
ν

+ (XL)
ν
µ

∂

∂sν
)

, and equations (2) lead to

(XL)
µ
µ = L ;

∂L
∂y i −

∂2L
∂xµ∂y i

µ

− ∂2L
∂y j∂y i

µ

y j
µ −

∂2L
∂sν∂y i

µ

(XL)
ν
µ −

∂2L

∂y j
ν∂y i

µ

(XL)
j
µν = − ∂L

∂sµ
∂L
∂y i

µ

. (3)

For the holonomic integral sections ψ(xν) =
(

xµ, y i(xν),
∂y i

∂xµ
(xν), sµ(xν)

)
of XL we have that y i

µ =
∂y i

∂xµ
, (XL)

j
µν =

∂y j
µ

∂xν
=

∂2y i

∂xµ∂xν
,

(XL)
ν
µ =

∂sµ

∂xν
, and these equations transform into the Herglotz–Euler– Lagrange field equations:

∂sµ

∂xµ
= L ◦ψ ;

∂

∂xµ
( ∂L
∂y i

µ

◦ψ
)
=

( ∂L
∂y i +

∂L
∂sµ

∂L
∂y i

µ

)
◦ψ . (4)

For regular Lagrangians, these equations always have solution. When L is not regular, the field equations could have no solutions
everywhere on P. Hence, the final objective is, applying a constraint algorithm, to find the maximal submanifold Sf of P (if it exists)
where there are holonomic Lagrangian multivector fields XL which are tangent solutions to the Lagrangian field equations on Sf .

MULTICONTACT HAMILTONIAN FORMALISM

Consider the bundle
τ̃ : P∗ := J1∗π ×M Λm−1(T∗M) → M ,

which is identified with J1∗π × Rm; where J1∗π is the restricted multimomentum bundle. Natural coordinates on P∗ are (xµ, y i ,pµi , s
µ).

If (P ,ΘL, ω) is a Lagrangian system, with L = Lω, the Legendre map associated with L is the map FL : P → P∗ locally given by

FL∗xν = xν , FL∗y i = y i , FL∗pνi =
∂L

∂y i
ν

, FL ∗sµ = sµ .

The Lagrangian L is regular if, and only if, FL is a local diffeomorphism, and L is hyperregular when FL is a global diffeomorphism.
In the hyperregular case (for the singular case and examples, see [2]), FL(P) = P∗, The form ΘL ∈ Ωm(P) projects to P∗ by FL giving
the Hamiltonian m-form ΘH ∈ Ωm(P∗), ΘL = FL∗ΘH, whose local expression is

ΘH = −pµi dy i ∧ dm−1xµ + H dmx + dsµ ∧ dm−1xµ , (5)

where H = pµi (FL−1)∗y i
µ − (FL−1)∗L ∈ C ∞(P∗) is the Hamiltonian function. Then, ΘH is a variational multicontact form and (P∗,ΘH, ω)

is the multicontact Hamiltonian system associated with (P ,ΘL, ω). Then, we define the Hamiltonian (m + 1)-form

ΩH := dΘH + σΘH ∧ ΘH = d(−pµi dy i ∧ dm−1xµ + H dmx) +
(∂H
∂sµ

pµi dy i − ∂H
∂sµ

dsµ
)
∧ dmx ,

where σH =
∂H
∂sµ

dxµ is the dissipation form in this formalism. We have that ΩL = FL∗ΩH.
The multicontact Hamilton–de Donder–Weyl equations for τ̃ -transverse and locally decomposable multivector fields are stated as:

ι (XH) ΘH = 0 , ι (XH) ΩH = 0 , ι (XH) (τ̃
∗ω) = 1 . (6)

In natural coordinates, if XH =
m∧
µ=1

( ∂

∂xµ
+ (XH)

i
µ

∂

∂y i + (XH)
ν
µi
∂

∂pνi
+ (XH)

ν
µ

∂

∂sν
)
∈ Xm(P∗) is a solution to the equations (6), then

(XH)
µ
µ = pµi

∂H
∂pµi

− H , (XH)
i
µ =

∂H
∂pµi

, (XH)
µ
µi = −

(
∂H
∂y i + pµi

∂H
∂sµ

)
, (7)

If ψ(xν) = (xµ, y i(xν),pµi (x
ν), sµ(xν)) is an integral section of XH, equations (6) lead to the Herglotz–Hamilton–de Donder– Weyl

equations for ψ:
∂sµ

∂xµ
=

(
pµi

∂H
∂pµi

− H
)
◦ψ ,

∂y i

∂xµ
=
∂H
∂pµi

◦ψ ,
∂pµi
∂xµ

= −
(∂H
∂y i + pµi

∂H
∂sµ

)
◦ψ . (8)

These equations are compatible in P∗. As FL is a diffeomorphism, the solutions to the Lagrangian field equations for (P ,ΘL, ω) are in
one-to-one correspondence to those of the Hamilton-de Donder-Weyl field equations for (P∗,ΘH, ω).

APPLICATION TO PHYSICAL THEORIES

The modified Klein–Gordon equation and the Telegrapher’s equation

The Klein–Gordon equation in the Minkowski space-time R4 (with the metric signature gµν ≡ (−1,1,1,1)) is

(□ + m2)ϕ ≡ ∂µ∂
µϕ + m2ϕ = 0 ,

where ϕ is a scalar field, m2 is a constant, □ denotes de D´Alembert operator in R4, and ∂µ ≡
∂

∂xµ
, ∂µ ≡ gµν∂ν. It derives from the

Lagrangian L0 =
1
2
∂µϕ ∂

µϕ− 1
2

m2ϕ2, which can be modified to include a more generic potential, L̃0 =
1
2
∂µϕ ∂

µϕ− V (ϕ).

LAGRANGIAN FORMALISM

Consider the bundle τ : P = J1π ×M Λm−1(T∗R4) → R4, with coordinates (xµ, y , yµ, sµ) (µ = 0, . . . ,3), where y denotes the field
variable, and the volume form is ω = dx0 ∧ · · · ∧ dx3 ≡ d4x on R4. Consider the contactified Lagrangian L ∈ C ∞(P):

L(xµ, y , yµ, sµ) = L0(xµ, y , yµ) + γµsµ =
1
2

yµyµ −
1
2

m2y2 + γµsµ ,

where γ ≡ (γµ) ∈ R4 is a constant vector, and yµ = ∂µy . It is a quadratic hyperregular Lagrangian.
Using the Hodge star operator, ∗ , the Lagrangian multicontact 4-form (1) is:

ΘL = yµdy ∧ ∗dxµ + ELd4x + dsµ ∧ ∗dxµ = yµdy ∧ ∗dxµ +
(1

2
yµyµ +

1
2

m2y2 − γµsµ
)

d4x + dsµ ∧ ∗dxµ .

Then ΩL = dΘL + σΘL ∧ ΘL, where σΘL = −γµdxµ.

For holonomic multivector fields XL =
∧
µ

( ∂

∂xµ
+ yµ

∂

∂y
+ Fµν

∂

∂yν
+ Gν

µ

∂

∂sν
)
∈ X4(P), the Lagrangian equations (3) are

Gµ
µ = L , m2y + F µ

µ = γµyµ . (9)

For the integral holonomic sections ψ(xν) =
(

xµ, y(xν),
∂y
∂xµ

(xν), sµ(xν)
)

of XL, bearing in mind that
∂yµ

∂xµ
=

∂2y
∂xµ∂xµ

, equations (4) read,

∂sµ

∂xµ
= L ,

∂2y
∂xµ∂xµ

+ m2y = γµ
∂y
∂xµ

= γµ
∂y
∂xµ

. (10)

where the last equation is the Klein–Gordon equation with additional first-order terms.
For simplicity, we have considered the Minkowski metric and γµ constants. However, a similar procedure can be performed for a
generic metric gµν = gµν(xν) and functions γµ = γµ(xν), thus obtaining,

∂sµ

∂xµ
= L ,

∂2y
∂xµ∂xµ

+ m2y +
∂gµν
∂xµ

∂y
∂xν

= γµ
∂y
∂xµ

.

THE TELEGRAPHER’S EQUATION: As an interesting application of this modified Klein–Gordon equation, we can derive from it the
so-called telegrapher’s equation which describes the current and voltage on a uniform electrical transmission line:

∂V
∂x

= −L
∂I
∂t

− RI ,
∂I
∂x

= −C
∂V
∂t

− GV ,

where V is the voltage, I is the current, R is the resistance, L is the inductance, C is the capacitance, and G is the conductance. This
system can be uncoupled, obtaining the system

∂2V
∂x2 = LC

∂2V
∂t2 + (LG + RC)

∂V
∂t

+ RGV ,
∂2I
∂x2 = LC

∂2I
∂t2 + (LG + RC)

∂I
∂t

+ RGI .

Both equations above can be written as

□y + γ
∂y
∂t

+ m2y = 0 , (11)

where □ is the d’Alembert operator in 1+1 dimensions, and γ and m2 are adequate constants. Taking γµ = (−γ, 0,0,0) in (10), we
obtain the telegrapher’s equation (11). In this way, we can see the telegrapher’s equation as a modified Klein–Gordon equation.

HAMILTONIAN FORMALISM

The adapted coordinates of fiber bundle τ̃ : P∗ = J1∗π ×M Λm−1(T∗R4) → R2 are (xµ, y ,pµ, sµ). The Legendre map FL : P → P∗ is

FL(xµ, y , yµ, sµ) = (xµ, y ,pµ, sµ) ,

with pµ = yµ. It is a diffeomorphism since the Lagrangian function is hyperregular. The contact Hamiltonian m-form (5) is,

ΘH = pµdy ∧ ∗dxµ + H d4x + dsµ ∧ ∗dxµ = pµdy ∧ ∗dxµ +
(1

2
pµpµ +

1
2

m2y2 − γµsµ
)

d4x + dsµ ∧ ∗dxµ

and then ΩH = dΘH + σΘH ∧ ΘH, where σΘH = −γµdxµ.

Equations (7) for τ̃ -transverse 4-multivector fields XH =
∧
µ

( ∂

∂xµ
+ fµ

∂

∂y
+ F ν

µ

∂

∂pν
+ Gν

µ

∂

∂sν
)
∈ X4(P∗) are

Gµ
µ =

1
2

pµpµ −
1
2

m2y2 + γµsµ , fµ = pµ , F µ
µ = −m2y + γµpµ .

and using the Legendre map, these equations transform into (9) along with the holonomy condition. Thus, the Lagrangian and
Hamiltonian formalisms are equivalent.
For the integral sections ψ(xν) = (xµ, y(xν),pµ(xν), sµ(xν)) of XH, the Herglotz–Hamilton–De Donder–Weyl equations (8) read

∂sµ

∂xµ
=

1
2

pµpµ −
1
2

m2y2 + γµsµ ,
∂y
∂xµ

= pµ ,
∂pµ

∂xµ
= −m2y + γµpµ .

and, combining the last two equations above, we obtain the equation (10).

Action-dependent bosonic string theory

Spacetime is a (d + 1)-dimensional manifold M, with local coordinates xµ (µ = 1, . . . ,d) and a metric Gµν (signature (− + · · ·+)). The
string worldsheet is a 2-dimensional manifold Σ, with local coordinates σi (i = 0,1) and the volume form ω = d2σ. The fields xµ(σ) are
scalar fields on Σ given by the embedding maps Σ → M : σa 7→ xµ(σ). The configuration bundle is π : E = Σ×M → Σ. On J1π we also

have a 2-form g =
1
2

gijdσi ∧ dσj , whose pullback by jet prolongations of sections ϕ ∈ Γ(π), j1ϕ =
(
σi , xµ(σ),

∂xµ

∂σi (σ)
)

gives the induced

metric on Σ, (j1ϕ)∗g = h ≡ 1
2

hijdσi ∧ dσj , where hij = Gµν
∂xµ

∂σi
∂xν

∂σj .

LAGRANGIAN FORMALISM

The bundle τ : P ≃ J1π × R2 → Σ has adapted coordinates (σi , xµ, xµi , s
i). Consider the contactified Lagrangian function

L(σi , xµ, xµi , s
i) = L0(σ

i , xµ, xµi ) + γisi = −T
√
− det(Gµνx

µ
i xνj ) d2σ + γisi ∈ C ∞(P) ,

where L0 is the standard Nambu–Goto Lagrangian, T is a constant called the string tension, and γ ≡ (γµ) ∈ R2 is a constant vector.
This is a regular Lagrangian since the following Hessian matrix is regular everywhere,

∂2L
∂xµi ∂xνj

= −T
√
− detg

[
Gµνg ji − GµαGρνxαk xρℓ

(
g jigkℓ + gkjg iℓ − gkig jℓ) ] .

The Lagrangian multicontact 2-form (1) is

ΘL =
∂L
∂xµi

dxµ ∧ d1σi − EL ∧ d2σ + dsi ∧ d1σi = −T
√
− detg Gµνg jixνj dxµ ∧ d1σi −

(
T
√

− detg + γisi
)

d2σ + dsi ∧ d1σi ,

where d1σi = ι

(
∂

∂σi

)
d2σ. Then, as usual, ΩL = dΘL + σΘL ∧ ΘL, where σΘL = −γidσi .

For a holonomic 2-multivector field XL =
∧

i

( ∂

∂σi + xµi
∂

∂xµ
+ F µ

ij
∂

∂xµj
+ f j

i
∂

∂sj

)
∈ X2(P) the Lagrangian equations (3) are

f i
i = L ; T

√
− detg Gµνg jixνj γi = xρi

[
∂

∂xρ
(√

− detg Gµνg jixνj
)
− ∂

∂xµ
(√

− detg Gρνg jixνj
)]

+
√
− detg

[
Gµνg ji − GµαGβνxαk xβℓ

(
g jigkℓ + gkjg iℓ − gkig jℓ)]F ν

ij

+

[
1
2

√
− detg g jixαi xβj

∂Gαβ

∂xµ
+

∂

∂σi

(√
− detg Gµνg jixνj

)]
.

For the holonomic integral sections ψ(σ) =
(
σa, xµ(σ),

∂xµ

∂σa

)
of XL , these equations become the Herglotz–Euler–Lagrange equations:

∂si

∂σi = L ; T
√
− detg Gµνg jiγi

∂xν

∂σj =
∂xρ

∂σi

[
∂

∂xρ

(√
− detg Gµνg ji∂xν

∂σj

)
− ∂

∂xµ

(√
− detg Gρνg ji∂xν

∂σj

)]
+
√
− detg

[
Gµνg ji − GµαGβν

(
g jigkℓ + gkjg iℓ − gkig jℓ) ∂xα

∂σk
∂xβ

∂σℓ

]
∂2xν

∂σi∂σj

+

[
1
2

√
− detg g ji∂Gαβ

∂xµ
∂xα

∂σi
∂xβ

∂σj +
∂

∂σi

(√
− detg Gµνg ji∂xν

∂σj

)]
.

HAMILTONIAN FORMALISM

The bundle τ : P∗ ≃ J1∗π × R2 → Σ has adapted coordinates (σi , xµ,pi
µ, si). The Legendre map FL : P → P∗ is

FL∗σi = σi , FL∗xµ = xµ , FL∗pi
µ = −T

√
− detg Gµνg jixνj , FL ∗sµ = sµ ,

and is a diffeomorphism, since L is regular. Then, the 2-form g can be translated to P∗ by the push-forward of the Legendre map.
Introducing Πij ≡ Gµνpi

µp
j
ν, the contact Hamiltonian 2–form can be written as

ΘH = pi
µdxµ ∧ d1σi − H ∧ d2σ = pi

µdxµ ∧ d1σi +

(
1
T
√
− det Π + γisi

)
d2σ ,

and then ΩH = dΘH + σΘH ∧ ΘH, where σΘH = −γi dσi .

For τ̃ -transverse 2-multivector fields XH =
∧

i

( ∂

∂σi + F µ
i
∂

∂xµ
+ F j

iµ
∂

∂pi
µ

+ f j
i
∂

∂sj

)
∈ X2(P∗), equations (7) are

∂si

∂σi =

√
− det Π

T
(
1 − ΠjiGµνpi

µp
j
ν

)
+ γisi =

√
− det Π

T
(
1 − ΠjiΠ

ij) + γisi ,

F µ
i = −

√
− det Π

T
ΠjiGµνpj

ν , F i
iµ =

√
− det Π

2T
Πji
∂Gρα

∂xµ
pi
ρp

j
α + γipi

µ .

For the integral sections ψ(σ) = (σi , xµ(σ),pi
µ(σ), si(σ)) of XH, for which F µ

i =
∂xµ

∂σi , F j
iµ =

∂pj
µ

∂σi , and f j
i =

∂sj

∂σi , the field equations
become the Herglotz–Hamilton–De Donder–Weyl equations:

∂si

∂σi =

√
− det Π

T
(
1 − ΠjiGµνpi

µp
j
ν

)
+ γisi =

√
− det Π

T
(
1 − ΠjiΠ

ij) + γisi ,

∂xµ

∂σi = −
√
− det Π

T
ΠjiGµνpj

ν ,
∂pi

µ

∂σi =

√
− det Π

2T
Πji
∂Gρα

∂xµ
pi
ρp

j
α + γipi

µ .
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