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1. Abstract
This poster introduces k-contact geometry, it relates it to the so-called k-symplectic ge-
ometry, and extends to the k-contact case some properties known in contact geometry. In
general, k-contact geometry is mainly used to study field theories, but we here develop a
new approach to study systems of ordinary differential equations.
Then, we use our results to analyse a particular type of systems of first-order differen-
tial equations, the so-called Lie systems, whose properties are determined by a finite-
dimensional Lie algebra of vector fields of Hamiltonian vector fields relative to a k-contact
structure. The obtained systems, the hereafter called k-contact Lie systems, are analysed
and applied to analyse physical and mathematical problems.

2. Fundamentals on k-contact geometry
From now on {e1, . . . , ek} stands for a basis of Rk.

Definition 1. A k-contact form on a manifold M is a vector valued one-form on M given
by η = η1 ⊗ e1 + · · ·+ ηk ⊗ ek, where η1, . . . , ηk ∈ Ω1(M) such that

(1) TM ⊃ DC =
⋂k

α=1 ker η
α =: kerη is a regular distribution of corank k,

(2) TM ⊃ DR =
⋂k

α=1 ker dη
α =: ker dη is a regular distribution of rank k,

(3) DC ∩ DR = {0}.

A pair (M,η) given by a manifold M and a k-contact form η ∈ Ω1(M,Rk) is called a
k-contact manifold. If, in addition, dimM = n + nk + k and M is endowed with an
integrable subdistribution V of DC with rankV = nk, we say that (M,η,V) is polarized
k-contact manifold. We call the distribution V a polarization.

We call CC the contact codistribution, DC the contact distribution, DR the Reeb distribu-
tion and CR the Reeb codistribution. Note that D stands for “distribution" and C means
“codistribution”. Meanwhile, C and R represent “contact” and “Reeb”, respectively. This
helps to recall the terminology. Let us study k-contact manifolds.

Definition 2. Given a k-contact manifold (M,η), its Reeb k-vector field is the unique
k-vector field on M , let us say R =

∑k
α=1 Rα ⊗ eα, such that

ιRα
ηβ = δβα, ιRα

dηβ = 0, α, β = 1, . . . , k.

Theorem 3 (Darboux theorem for k-contact manifolds). Let (M,η,V) be a polarized k-
contact manifold. Then, around every point of M , there exists a local chart of coordinates
(U ; qi, pαi , s

α), with 1 ≤ α ≤ k, 1 ≤ i ≤ n, called Darboux coordinates, such that

ηα|U = dsα − pαi dq
i , DR|U =

〈
Rα =

∂

∂sα

〉
, V|U =

〈
∂

∂pαi

〉
.

Example 1. A jet space J1(E, π,M), rkE = n, dimM = m, with local adapted coordi-
nates (xi, yj , yji ), i = 1, . . . ,m, j = 1, . . . , n, induces an n-contact manifold

θj = dyj −
m∑
i=1

yji dx
i, dθj =

m∑
α=1

dxα ∧ dyjα.

Distributions spanned by joint kernels of above forms and their derivatives are, respectively:

DC =

〈
∂xi +

n∑
α=1

yαi∂yα , ∂yj
i

〉
, DR =

〈
∂yj

〉
.

Example 2. Consider R6 with linear global coordinates {x, y, p, q, z, t}. Then,

η1 = dz − 1

2
(ydx− xdy) , η2 = dt− pdx− qdy

define a 2-contact form on M given by η = η1 ⊗ e1 + η2 ⊗ e2. Let us show that η is a
two-contact form on M by verifying the conditions in Definition 1. Firstly η1∧η2 ̸= 0 and
DC = kerη is a distribution of rank 2. Moreover,

dη1 = dx ∧ dy , dη2 = dx ∧ dp+ dy ∧ dq =⇒ DR =

〈
∂

∂z
,
∂

∂t

〉
,

and DR has rank two. Moreover DR ∩ DC = 0, which is the third condition in Definition
1. The Reeb vector fields are

R1 =
∂

∂z
, R2 =

∂

∂t
.

Noteworthy, the coordinates (x, y, p, q, z, t) are not Darboux coordinates.

3. On k-contact geometry and k-symplectic manifolds
As shown next, it is possible to relate a k-contact form with a k-symplectic form (i.e. a
closed non-degenerate form ω ∈ Ω2(Rl

× ×M,Rk) for different values of l. Although this
method works for analysing k-contact forms, it may not be useful to study related notions,
as k-contact Hamiltonian vector fields to be described next.

Theorem 4. Let (M,η) be a k-contact manifold. Then, (M̃ = M × Rk
×, ω =∑

α d(zαηα)⊗ eα), with a coordinate zα on each copy of R× = R \ {0}, is a k-symplectic
manifold. Conversely, if (M × Rk

×, ω =
∑

α(z
αdηα + dzα ∧ ηα) ⊗ eα) is a k-symplectic

manifold, then ker dη ∩ kerη = 0. If ker dη has rank k, then (M,η) is a k-contact
manifold.

It turns out that last requirement is necessary to ensure k-contact structure on M . Without
it, it is impossible to prove that ker dη and kerη have constant rank.
It is worth that an analogue of Theorem 4 can be enunciated to extend a k-contact form on
M to a k-symplectic manifold in R× ×M , but this relation suggests a notion of k-contact
Hamiltonian vector field that is too restrictive for applications.

4. η-Hamiltonian vector fields
Definition 5. Let (M,η) be a k-contact manifold with Reeb vector fields R1, . . . , Rk. A
vector field X ∈ X(M) is η-Hamiltonian if

ιXdηα = dhα − (Rαh
α)ηα , ιXηα = −hα , α = 1, . . . , k (1)

for some vector-valued function h =
∑

α hα ⊗ eα ∈ C∞(M,Rk). We denote by Xη(M)
the set of all the η-Hamiltonian vector fields. A vector-valued function h =

∑
α hα⊗ eα ∈

C∞(M,Rk) is η-Hamiltonian if it induces an η-Hamiltonian vector field as above. We
denote by C∞

η (M) the set of all η-Hamiltonian functions.

Proposition 6. Let X be an η-Hamiltonian vector field on M with η-Hamiltonian func-
tion h. Then,

X̃ =
∑
α

zαRαh
α ∂

∂zα
+X

is an ω-Hamiltonian vector field on M̃ (following the notations of Theorem 4) with ω-
Hamiltonian function h̃ =

∑
α zαhα ⊗ eα, i.e. ιX̃ω = dh̃.

Proposition 7. Let η be a k-contact form on a manifold M . Then, every X ∈ Xη(M)
is associated to a unique f ∈ C∞

η (M). Conversely, every f ∈ C∞
η (M) induces a unique

X ∈ Xη(M). Moreover, C∞
η (M) is a real vector space.

Proposition 8. Let Xf be the Hamiltonian vector field of f ∈ C∞(M,Rk) relative to a k-
contact manifold (M,η). Then, LXf

η = −
∑

α(Rαf
α)ηα⊗eα; Xff = −

∑
α(Rαf

α)fα⊗
eα.

Theorem 9. Let (M,η) be a k-contact manifold. Them, C∞
η (M) is a Lie algebra relative

to the Lie bracket given by

{
∑

α fα ⊗ eα,
∑

α gα ⊗ eα} =
∑

α{fα, gα}η ⊗ eα, α = 1, . . . , k,

where {fα, gα}η = Xfg
α+gαRαf

α, with f =
∑

α fα⊗eα and g =
∑

α gα⊗eα. Moreover,
the mapping f ∈ C∞

η (M) 7→ Xf ∈ Xη(M) is a Lie algebra isomorphism.

5. k-Contact Lie systems
Definition 10. A k-contact Lie system is a triple (M,η, X), where η is a k-contact
form on M and X is a t-dependent vector field on M of the form X =

∑r
α=1 bα(t)Xα,

where V = ⟨X1, . . . , Xr⟩ is an r-dimensional real Lie algebra of η-Hamiltonian vector fields
relative to η. A k-contact Lie system is called conservative if the Hamiltonian functions
associated to the vector fields in V are first integrals of all the Reeb vector fields of (M,η).

Definition 11. A k-contact Hamiltonian structure is a triple (M,η,h : R × M → R),
where η is a k-contact form on M and h is a t-dependent function on M taking values in Rk

so that so that {ht}t∈R are contained in a finite-dimensional Lie algebra of η-Hamiltonian
functions. A k-contact Lie system admits a k-contact Hamiltonian structure if Xt is the
Hamiltonian vector field of ht : x ∈ M 7→ h(t, x) ∈ Rk for every t ∈ R.

Proposition 12. Every k-contact Lie system admits a unique k-contact Hamiltonian
structure and vice versa.

Note that given a k-contact Lie system, with k-contact Hamiltonian structure given by
h =

∑
α hα ⊗ eα : R×M → R, if

dxi

dt
= Xi

h(x)
∂

∂xi
, i = 1, . . . , n,

one has that
dg

dt
= {hα

t , g}η − gRαh
α
t , α = 1, . . . , k ∀t ∈ R .

In other words, if one of the Rαh
α
t vanishes for every t, then a Casimir of the abstract Lie

algebra ⟨h1, . . . ,hr⟩ gives rise to constants of motion of the k-contact Lie system.

(Riccati equation) Consider the system of Riccati equations on R4 of the form

dxi

dt
= a0(t) + a1(t)xi + a2(t)x

2
i , i = 1, 2, 3, 4 .

There are three vector fields

X0 =

4∑
i=1

∂

∂xi
X1 =

4∑
i=1

xi
∂

xi
, X2 =

4∑
i=1

x2
i

∂

∂xi
.

The vector fields X0, X1, X2 span a distribution of rank three almost everywhere and
there exist functions h0, h1, h2 such that dh0 ∧ dh1 ∧ dh2 ̸= 0 and X0 = h1∂h2 − h2∂h1 ,
X1 = h2∂h1 − h1∂h2 , when one has a non-constant function h3 that is a first integral of
X0, X1, X2. Then, X3 = ∂h3 commutes with X0, X1, X2 and X0 ∧ . . . ∧ X3 ̸= 0. The
vector fields X0, X1, X2, X3 are the fundamental vector fields of a locally transitive Lie
group action of GL(2,R) on R4, which is locally diffeomorphic to GL(2,R). It can be
proved that there exists a Lie algebra of Lie symmetries Y0, . . . , Y3 isomorphic to gl(2,R),
i.e. [Yi, Xj ] = 0 for i, j = 1, . . . , 4 with Y0 ∧ . . . ∧ Y3 ̸= 0. Let Υ0, . . . ,Υ3 be their dual
forms. Then,

dΥ1 = 2Υ0 ∧Υ2 , dΥ3 = 0 .

Hence, Υ = Υ1 ⊗ e1 + Υ3 ⊗ e2 define a two-contact form that is invariant relative to
X0, . . . , X3. This implies that

0 = LXi
Υj = ιXi

dΥj + dιXi
Υj = 0, i = 1, 2, 3, j = 1, 3.

Define hj
i = −ιXiΥ

j . Since Y1 = R1, Y3 = R3, one has that Rkh
j
i = −RkιXiΥ

j = 0 and
X0, . . . , X3 are locally Hamiltonian relative to Υ. The above method can be generalised
to construct k-contact Lie systems and study η-Hamiltonian vector fields.

6. Applications
(Control system) Let us consider the system of differential equations

dx

dt
=

5∑
α=1

bα(t)Xα , (2)

where b1(t), . . . , b5(t) are arbitrary t-dependent functions and

X1 =
∂

∂x1
, X2 =

∂

∂x2
+ x1

∂

∂x3
+ x2

1

∂

∂x4
+ 2x1x2

∂

∂x5
,

X3 =
∂

∂x3
+ 2x1

∂

∂x4
+ 2x2

∂

∂x5
, X4 =

∂

∂x4
, X5 =

∂

∂x5
.

The above vector fields span a nilpotent Lie algebra V of vector fields whose non-vanishing
commutation relations read [X1, X2] = X3 , [X1, X3] = 2X4 , [X2, X3] = 2X5. This makes
(2) into a Lie system.
Let us consider the Lie algebra of symmetries of V , i.e. [Yi, Xj ] = 0 for i, j = 1, . . . , 5,
given by the vector fields

Y1 =
∂

∂x1
+ x2

∂

∂x3
+ 2x3

∂

∂x4
+ x2

2

∂

∂x5
, Y2 =

∂

∂x2
+ 2x3

∂

∂x5
, Yk =

∂

∂xk
, k = 3, 4, 5.

Since Y1 ∧ . . . ∧ Y5 ̸= 0, the vector fields Y1, . . . , Y5 admit the corresponding dual forms
given by

Υ1 = dx1 , Υ2 = dx2 , Υ3 = −x2dx1 + dx3 ,

Υ4 = −2x3dx1 + dx4 , Υ5 = −x2
2dx1 − 2x3dx2 + dx5 ,

with

dΥ1 = 0 , dΥ2 = 0 , dΥ3 = Υ1 ∧Υ2 , dΥ4 = 2Υ1 ∧Υ3 , dΥ5 = 2Υ2 ∧Υ3 .

We will show that (Υ4,Υ5,dΥ4,dΥ5) give rise to 2-contact structure. Indeed, joint kernel
of both one-forms and their derivatives are distributions DC = ⟨Y1, Y2, Y3⟩, DR = ⟨Y4, Y5⟩,
respectively. Clearly DC ∩ DR = {0}, therefore we constructed a 2-contact structure. By
verifying the conditions (1) for X1, . . . , X5, we obtain their η-Hamiltonians

h1 = 2x3 ⊗ e4 + x2
2 ⊗ e5, h2 = −x2

1 ⊗ e4 + (2x3 − 2x1x2)⊗ e5,

h3 = −2x1 ⊗ e4 − 2x2 ⊗ e5, h4 = −1⊗ e4, h5 = −1⊗ e5.

(Schwarz equation) The Schwarz derivative is particularly related to the t-dependent
complex differential equation given by

dz

dt
= v ,

dv

dt
= a ,

da

dt
=

3

2

a2

v
+ 2b(t)v , z, v, a ∈ C , (3)

for a certain complex t-dependent function b(t). Note that (3) is a differential equation on
O = {(z, v, a) ∈ T2C : v ̸= 0}. In real coordinates

v1 = Re(z) , v2 = Im(z) , v3 = Re(v) , v4 = Im(v) , v5 = Re(a) , v6 = Im(a) ,

system (3) is associated with the t-dependent vector field

X = X1 + 2bR(t)X2 + 2bI(t)X3 ,

where bR(t) = Re(b(t)), bI(t) = Im(b(t)), and

X1 =
4∑

α=1

vα+2
∂

∂vα
+

3

2

2v4v5v6 + (v25 − v26)v3
v23 + v24

∂

∂v5
+

3

2

2v3v5v6 − v4(v
2
5 − v26)

v23 + v24

∂

∂v6
,

X2 = v3
∂

∂v5
+ v4

∂

∂v6
, X3 = −v4

∂

∂v5
+ v3

∂

∂v6
,

X4 = −v3
∂

∂v3
− v4

∂

∂v4
− 2v5

∂

∂v5
− 2v6

∂

∂v6
, X5 = v4

∂

∂v3
− v3

∂

∂v4
+ 2v6

∂

∂v5
− 2v5

∂

∂v6
,

X6 =
4∑

α=1

(−1)αvα+2
∂

∂vα
− 3

2

2v3v5v6 − v4(v
2
5 − v26)

2(v23 + v24)

∂

∂v5
+

3

2

2v4v5v6 + v3(v
2
5 − v26)

2(v23 + v24)

∂

∂v6

span the Lie algebra isomorphic to sl2(C) = C⊗ sl2 as a real vector space. Following the
procedure as in previous example, we obtain dual forms η1, . . . , η6 to symmetries Y1, . . . , Y6

of X1, . . . , X6, fulfilling

dη1 = −η5 ∧ η6 − η1 ∧ η4, dη2 = −η3 ∧ η5 − η4 ∧ η2, dη3 = −η4 ∧ η3 − η5 ∧ η2 ,

dη4 = −η1 ∧ η2 − η3 ∧ η6, dη5 = −η1 ∧ η3 − η6 ∧ η2, dη6 = −η1 ∧ η5 − η6 ∧ η4 .

It can be shown, similarly as before, that (η4, η5,dη4,dη5) give rise to the 2-contact struc-
ture, with DC = ⟨Y1, Y2, Y3, Y6⟩, DR = ⟨Y4, Y5⟩.

7. Conclusions and outlook
Lie systems have appear in many mathematical studies, like in the investigation of folia-
tions, generalised distributions, Lie group actions, finite-dimensional Lie algebras, and in
physics. Here, Lie systems are analysed throughout k-contact geometry, which leads to
interesting k-contact and k-symplectic geometric results applicable in some physical and
mathematical problems. The results so far encourage further development of this approach
and searches for another examples.

Bibliography
[1] J. Gaset, X. Gràcia, M. C. Munñoz-Lecanda, X. Rivas, and N. Román-Roy. A contact geometry

framework for field theories with dissipation. Ann. Phys., 414:168092, 2020.

[2] J. de Lucas and X. Rivas. Contact Lie systems: theory and applications. J. Phys. A: Math. Theor.,
56(33):335203, 2023.


