k-contact Lie systems

Tomasz Sobczak (work in progress in collaboration with Javier de Lucas and Xavier Rivas)

Department of Mathematical Methods in Physics, University of Warsaw, Poland

1. Abstract	4. η -Hamiltonian vector fields	6. Applications
This poster introduces k-contact geometry, it relates it to the so-called k-symplectic geometry, and extends to the k-contact case some properties known in contact geometry. In general, k-contact geometry is mainly used to study field theories, but we here develop a new approach to study systems of ordinary differential equations. Then, we use our results to analyse a particular type of systems of first-order differential equations, the so-called <i>Lie systems</i> , whose properties are determined by a finite-dimensional Lie algebra of vector fields of Hamiltonian vector fields relative to a k-contact structure. The obtained systems, the hereafter called k-contact Lie systems, are analysed and applied to analyse physical and mathematical problems.	Definition 5. Let (M, η) be a k-contact manifold with Reeb vector fields R_1, \ldots, R_k . A vector field $X \in \mathfrak{X}(M)$ is η -Hamiltonian if $\iota_X d\eta^{\alpha} = dh^{\alpha} - (R_{\alpha}h^{\alpha})\eta^{\alpha}, \iota_X \eta^{\alpha} = -h^{\alpha}, \alpha = 1, \ldots, k$ (1) for some vector-valued function $h = \sum_{\alpha} h^{\alpha} \otimes e_{\alpha} \in \mathscr{C}^{\infty}(M, \mathbb{R}^k)$. We denote by $\mathfrak{X}_{\eta}(M)$ the set of all the η -Hamiltonian vector fields. A vector-valued function $h = \sum_{\alpha} h^{\alpha} \otimes e_{\alpha} \in \mathscr{C}^{\infty}(M, \mathbb{R}^k)$ is η -Hamiltonian if it induces an η -Hamiltonian vector field as above. We denote by $\mathscr{C}^{\infty}_{\eta}(M)$ the set of all η -Hamiltonian functions.	(Control system) Let us consider the system of differential equations $\frac{\mathrm{d}x}{\mathrm{d}t} = \sum_{\alpha=1}^{5} b_{\alpha}(t) X_{\alpha}, \qquad (2)$ where $b_1(t), \dots, b_5(t)$ are arbitrary t-dependent functions and $X_1 = \frac{\partial}{\partial x_1}, X_2 = \frac{\partial}{\partial x_2} + x_1 \frac{\partial}{\partial x_3} + x_1^2 \frac{\partial}{\partial x_4} + 2x_1 x_2 \frac{\partial}{\partial x_5},$
2. Fundamentals on k-contact geometry	Proposition 6. Let X be an η -Hamiltonian vector field on M with η -Hamiltonian func- tion h . Then, $\widetilde{X} = \sum z^{\alpha} R_{\alpha} h^{\alpha} \frac{\partial}{\partial z} + X$	$X_3 = \frac{\partial}{\partial x_3} + 2x_1 \frac{\partial}{\partial x_4} + 2x_2 \frac{\partial}{\partial x_5}, \qquad X_4 = \frac{\partial}{\partial x_4}, \qquad X_5 = \frac{\partial}{\partial x_5}.$ The above vector fields span a nilpotent Lie algebra V of vector fields whose non-vanishing

From now on $\{e_1, \ldots, e_k\}$ stands for a basis of \mathbb{R}^n .

Definition 1. A *k*-contact form on a manifold M is a vector valued one-form on M given by $\boldsymbol{\eta} = \eta^1 \otimes e_1 + \cdots + \eta^k \otimes e_k$, where $\eta^1, \ldots, \eta^k \in \Omega^1(M)$ such that

(1) $TM \supset \mathcal{D}^{C} = \bigcap_{\alpha=1}^{k} \ker \eta^{\alpha} =: \ker \eta$ is a regular distribution of corank k,

(2) $TM \supset \mathcal{D}^{R} = \bigcap_{\alpha=1}^{k} \ker d\eta^{\alpha} =: \ker d\eta$ is a regular distribution of rank k, (3) $\mathcal{D}^{C} \cap \mathcal{D}^{R} = \{0\}.$

A pair (M, η) given by a manifold M and a k-contact form $\eta \in \Omega^1(M, \mathbb{R}^k)$ is called a k-contact manifold. If, in addition, dim M = n + nk + k and M is endowed with an integrable subdistribution \mathcal{V} of $\mathcal{D}^{\mathbb{C}}$ with rank $\mathcal{V} = nk$, we say that (M, η, \mathcal{V}) is polarized k-contact manifold. We call the distribution \mathcal{V} a polarization.

We call \mathcal{C}^{C} the contact codistribution, \mathcal{D}^{C} the contact distribution, \mathcal{D}^{R} the Reeb distribution and \mathcal{C}^{R} the Reeb codistribution. Note that \mathcal{D} stands for "distribution" and \mathcal{C} means "codistribution". Meanwhile, C and R represent "contact" and "Reeb", respectively. This helps to recall the terminology. Let us study k-contact manifolds.

Definition 2. Given a k-contact manifold (M, η) , its Reeb k-vector field is the unique k-vector field on M, let us say $\mathbf{R} = \sum_{\alpha=1}^{k} R_{\alpha} \otimes e_{\alpha}$, such that

 $\iota_{R_{\alpha}}\eta^{\beta} = \delta_{\alpha}^{\beta}, \qquad \iota_{R_{\alpha}} \mathrm{d}\eta^{\beta} = 0, \qquad \alpha, \beta = 1, \dots, k.$

Theorem 3 (Darboux theorem for k-contact manifolds). Let (M, η, \mathcal{V}) be a polarized kcontact manifold. Then, around every point of M, there exists a local chart of coordinates $(U; q^i, p_i^{\alpha}, s^{\alpha})$, with $1 \leq \alpha \leq k, 1 \leq i \leq n$, called **Darboux coordinates**, such that is an $\boldsymbol{\omega}$ -Hamiltonian vector field on \widetilde{M} (following the notations of Theorem 4) with $\boldsymbol{\omega}$ -Hamiltonian function $\widetilde{\boldsymbol{h}} = \sum_{\alpha} z^{\alpha} h^{\alpha} \otimes e_{\alpha}$, i.e. $\iota_{\widetilde{X}} \boldsymbol{\omega} = \mathrm{d} \widetilde{\boldsymbol{h}}$.

Proposition 7. Let η be a k-contact form on a manifold M. Then, every $X \in \mathfrak{X}_{\eta}(M)$ is associated to a unique $\mathbf{f} \in \mathscr{C}^{\infty}_{\eta}(M)$. Conversely, every $\mathbf{f} \in \mathscr{C}^{\infty}_{\eta}(M)$ induces a unique $X \in \mathfrak{X}_{\eta}(M)$. Moreover, $\mathscr{C}^{\infty}_{\eta}(M)$ is a real vector space.

Proposition 8. Let $X_{\mathbf{f}}$ be the Hamiltonian vector field of $\mathbf{f} \in \mathscr{C}^{\infty}(M, \mathbb{R}^k)$ relative to a kcontact manifold $(M, \boldsymbol{\eta})$. Then, $\mathscr{L}_{X_{\mathbf{f}}} \boldsymbol{\eta} = -\sum_{\alpha} (R_{\alpha} f^{\alpha}) \eta^{\alpha} \otimes e_{\alpha}$; $X_{\mathbf{f}} \mathbf{f} = -\sum_{\alpha} (R_{\alpha} f^{\alpha}) f^{\alpha} \otimes e_{\alpha}$.

Theorem 9. Let (M, η) be a k-contact manifold. Them, $\mathscr{C}^{\infty}_{\eta}(M)$ is a Lie algebra relative to the Lie bracket given by

 $\left\{\sum_{\alpha} f^{\alpha} \otimes e_{\alpha}, \sum_{\alpha} g^{\alpha} \otimes e_{\alpha}\right\} = \sum_{\alpha} \{f^{\alpha}, g^{\alpha}\}_{\eta} \otimes e_{\alpha}, \quad \alpha = 1, \dots, k,$

where $\{f^{\alpha}, g^{\alpha}\}_{\eta} = X_{f}g^{\alpha} + g^{\alpha}R_{\alpha}f^{\alpha}$, with $f = \sum_{\alpha} f^{\alpha} \otimes e_{\alpha}$ and $g = \sum_{\alpha} g^{\alpha} \otimes e_{\alpha}$. Moreover, the mapping $f \in \mathscr{C}^{\infty}_{\eta}(M) \mapsto X_{f} \in \mathfrak{X}_{\eta}(M)$ is a Lie algebra isomorphism.

5. k-Contact Lie systems

Definition 10. A *k*-contact Lie system is a triple (M, η, X) , where η is a *k*-contact form on M and X is a *t*-dependent vector field on M of the form $X = \sum_{\alpha=1}^{r} b_{\alpha}(t)X_{\alpha}$, where $V = \langle X_1, \ldots, X_r \rangle$ is an *r*-dimensional real Lie algebra of η -Hamiltonian vector fields relative to η . A *k*-contact Lie system is called conservative if the Hamiltonian functions associated to the vector fields in V are first integrals of all the Reeb vector fields of (M, η)

commutation relations read $[X_1, X_2] = X_3$, $[X_1, X_3] = 2X_4$, $[X_2, X_3] = 2X_5$. This makes (2) into a Lie system.

Let us consider the Lie algebra of symmetries of V, i.e. $[Y_i, X_j] = 0$ for i, j = 1, ..., 5, given by the vector fields

 $Y_1 = \frac{\partial}{\partial x_1} + x_2 \frac{\partial}{\partial x_3} + 2x_3 \frac{\partial}{\partial x_4} + x_2^2 \frac{\partial}{\partial x_5}, \quad Y_2 = \frac{\partial}{\partial x_2} + 2x_3 \frac{\partial}{\partial x_5}, \quad Y_k = \frac{\partial}{\partial x_k}, \quad k = 3, 4, 5.$

Since $Y_1 \wedge \ldots \wedge Y_5 \neq 0$, the vector fields Y_1, \ldots, Y_5 admit the corresponding dual forms given by

$$\begin{split} &\Upsilon_1 = dx_1 \,, \qquad \Upsilon_2 = dx_2 \,, \qquad \Upsilon_3 = -x_2 dx_1 + dx_3 \,, \\ &\Upsilon_4 = -2x_3 dx_1 + dx_4 \,, \qquad \Upsilon_5 = -x_2^2 dx_1 - 2x_3 dx_2 + dx_5 \,, \end{split}$$

with

 $d\Upsilon_1 = 0, \quad d\Upsilon_2 = 0, \quad d\Upsilon_3 = \Upsilon_1 \wedge \Upsilon_2, \quad d\Upsilon_4 = 2\Upsilon_1 \wedge \Upsilon_3, \quad d\Upsilon_5 = 2\Upsilon_2 \wedge \Upsilon_3.$

We will show that $(\Upsilon_4, \Upsilon_5, d\Upsilon_4, d\Upsilon_5)$ give rise to 2-contact structure. Indeed, joint kernel of both one-forms and their derivatives are distributions $\mathcal{D}^C = \langle Y_1, Y_2, Y_3 \rangle$, $\mathcal{D}^R = \langle Y_4, Y_5 \rangle$, respectively. Clearly $\mathcal{D}^C \cap \mathcal{D}^R = \{0\}$, therefore we constructed a 2-contact structure. By verifying the conditions (1) for X_1, \ldots, X_5 , we obtain their η -Hamiltonians

 $m{h}_1 = 2x_3 \otimes e_4 + x_2^2 \otimes e_5, \qquad m{h}_2 = -x_1^2 \otimes e_4 + (2x_3 - 2x_1x_2) \otimes e_5, \ m{h}_3 = -2x_1 \otimes e_4 - 2x_2 \otimes e_5, \qquad m{h}_4 = -1 \otimes e_4, \qquad m{h}_5 = -1 \otimes e_5.$

and \mathcal{D}^{R} has rank two. Moreover $\mathcal{D}^{R} \cap \mathcal{D}^{C} = 0$, which is the third condition in Definition 1. The Reeb vector fields are

 $R_1 = \frac{\partial}{\partial z}, \quad R_2 = \frac{\partial}{\partial t}.$

Noteworthy, the coordinates (x, y, p, q, z, t) are not Darboux coordinates.

3. On *k*-contact geometry and *k*-symplectic manifolds

As shown next, it is possible to relate a k-contact form with a k-symplectic form (i.e. a closed non-degenerate form $\omega \in \Omega^2(\mathbb{R}^l_{\times} \times M, \mathbb{R}^k)$ for different values of l. Although this method works for analysing k-contact forms, it may not be useful to study related notions, as k-contact Hamiltonian vector fields to be described next.

Theorem 4. Let (M, η) be a k-contact manifold. Then, $(\widetilde{M} = M \times \mathbb{R}^k_{\times}, \omega = \sum_{\alpha} d(z^{\alpha}\eta^{\alpha}) \otimes e_{\alpha})$, with a coordinate z^{α} on each copy of $\mathbb{R}_{\times} = \mathbb{R} \setminus \{0\}$, is a k-symplectic manifold. Conversely, if $(M \times \mathbb{R}^k_{\times}, \omega = \sum_{\alpha} (z^{\alpha} d\eta^{\alpha} + dz^{\alpha} \wedge \eta^{\alpha}) \otimes e_{\alpha})$ is a k-symplectic manifold, then ker $d\eta \cap \ker \eta = 0$. If ker $d\eta$ has rank k, then (M, η) is a k-contact manifold.

It turns out that last requirement is necessary to ensure k-contact structure on M. Without it, it is impossible to prove that ker $d\eta$ and ker η have constant rank. It is worth that an analogue of Theorem 4 can be enunciated to extend a k-contact form on M to a k-symplectic manifold in $\mathbb{R}_{\times} \times M$, but this relation suggests a notion of k-contact Hamiltonian vector field that is too restrictive for applications. There are three vector fields

The vector fields X_0, X_1, X_2 span a distribution of rank three almost everywhere and there exist functions h^0, h^1, h^2 such that $dh^0 \wedge dh^1 \wedge dh^2 \neq 0$ and $X_0 = h^1 \partial_{h^2} - h^2 \partial_{h^1}$, $X_1 = h^2 \partial_{h^1} - h^1 \partial_{h^2}$, when one has a non-constant function h^3 that is a first integral of X_0, X_1, X_2 . Then, $X_3 = \partial_{h^3}$ commutes with X_0, X_1, X_2 and $X_0 \wedge \ldots \wedge X_3 \neq 0$. The vector fields X_0, X_1, X_2, X_3 are the fundamental vector fields of a locally transitive Lie group action of $GL(2, \mathbb{R})$ on \mathbb{R}^4 , which is locally diffeomorphic to $GL(2, \mathbb{R})$. It can be proved that there exists a Lie algebra of Lie symmetries Y_0, \ldots, Y_3 isomorphic to $\mathfrak{gl}(2, \mathbb{R})$, i.e. $[Y_i, X_j] = 0$ for $i, j = 1, \ldots, 4$ with $Y_0 \wedge \ldots \wedge Y_3 \neq 0$. Let $\Upsilon_0, \ldots, \Upsilon_3$ be their dual forms. Then,

 $\mathrm{d}\Upsilon_1 = 2\Upsilon_0 \wedge \Upsilon_2 \,, \qquad \mathrm{d}\Upsilon_3 = 0 \,.$

Hence, $\Upsilon = \Upsilon_1 \otimes e_1 + \Upsilon_3 \otimes e_2$ define a two-contact form that is invariant relative to X_0, \ldots, X_3 . This implies that

 $0 = \mathscr{L}_{X_i} \Upsilon^j = \iota_{X_i} \mathrm{d} \Upsilon^j + \mathrm{d} \iota_{X_i} \Upsilon^j = 0, \qquad i = 1, 2, 3, \ j = 1, 3.$

Define $h_i^j = -\iota_{X_i} \Upsilon^j$. Since $Y_1 = R_1, Y_3 = R_3$, one has that $R_k h_i^j = -R_k \iota_{X_i} \Upsilon^j = 0$ and X_0, \ldots, X_3 are locally Hamiltonian relative to Υ . The above method can be generalised to construct k-contact Lie systems and study η -Hamiltonian vector fields.

span the Lie algebra isomorphic to $\mathfrak{sl}_2(\mathbb{C}) = \mathbb{C} \otimes \mathfrak{sl}_2$ as a real vector space. Following the procedure as in previous example, we obtain dual forms η_1, \ldots, η_6 to symmetries Y_1, \ldots, Y_6 of X_1, \ldots, X_6 , fulfilling

 $d\eta_1 = -\eta_5 \wedge \eta_6 - \eta_1 \wedge \eta_4, \quad d\eta_2 = -\eta_3 \wedge \eta_5 - \eta_4 \wedge \eta_2, \quad d\eta_3 = -\eta_4 \wedge \eta_3 - \eta_5 \wedge \eta_2, \\ d\eta_4 = -\eta_1 \wedge \eta_2 - \eta_3 \wedge \eta_6, \quad d\eta_5 = -\eta_1 \wedge \eta_3 - \eta_6 \wedge \eta_2, \quad d\eta_6 = -\eta_1 \wedge \eta_5 - \eta_6 \wedge \eta_4.$

It can be shown, similarly as before, that $(\eta_4, \eta_5, d\eta_4, d\eta_5)$ give rise to the 2-contact structure, with $\mathcal{D}^C = \langle Y_1, Y_2, Y_3, Y_6 \rangle$, $\mathcal{D}^R = \langle Y_4, Y_5 \rangle$.

7. Conclusions and outlook

Lie systems have appear in many mathematical studies, like in the investigation of foliations, generalised distributions, Lie group actions, finite-dimensional Lie algebras, and in physics. Here, Lie systems are analysed throughout k-contact geometry, which leads to interesting k-contact and k-symplectic geometric results applicable in some physical and mathematical problems. The results so far encourage further development of this approach and searches for another examples.

Bibliography

- [1] J. Gaset, X. Gràcia, M. C. Munñoz-Lecanda, X. Rivas, and N. Román-Roy. A contact geometry framework for field theories with dissipation. Ann. Phys., **414**:168092, 2020.
- [2] J. de Lucas and X. Rivas. Contact Lie systems: theory and applications. J. Phys. A: Math. Theor., 56(33):335203, 2023.