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Introduction

Inverse square force: G = — %

Small perturbation of in re force
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Kepler problem: (super)integrable
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2 gravitating centres: integrable

3 gravitating centres: nonintegrable
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Integrable systems

Most nonlinear differential equations are impossible to solve explicitly.

Integrable systems are the exception. They have some underlying structure
which helps. Often, this structure consists of a number of symmetries:

An equation is integrable if has sufficiently many symmetries.

Each symmetry, in it infinitesimal form, defines a differential equation.
Hence:

An equation is integrable if it is part of a sufficiently large family of
compatible equations.

A common interpretation of “compatible” is given in terms of Hamiltonian
mechanics.
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Hamiltonian mechanics
Hamilton function
H:T*"Q=R*N =R :(q,p) — H(q,p)

Dynamics given by canonical equations

_OH . OH
ql_ ) pl_ aq’

opi
Flow consists of symplectic maps and preserves H.

Poisson bracket of two functions on T*Q:
of 0g  Of Og
tf.61= Z <3p, dq;  0gq; 8p;>

Dynamics of a Hamiltonian system:

) . d
gi = {H, qi}, pi = {H,pi}, af(q,P):{/‘h f}

In particular: f is conserved if and only if {H,f} = 0.
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Liouville integrability

A Hamiltonian system with Hamilton function H: T*Q R2N S Ris
Liouville integrable if there exist N functionally independent Hamilton
functions H = Hy, Ho, ... Hy such that {H;, H;} = 0.

» Each H; defines its own flow gi)f_,i: N dynamical systems

» Each H; is a conserved quantity for all flows.

» The dynamics is confined to a leaf of the foliation {H; = const}.

» Liouville-Arnold theorem: if this foliation is compact, its leaves are tori.

The proof | gave of the Liouville-Arnold theorem loosely follows the book:
[VI Arnold. Mathematical Methods of Classical Mechanics. Springer 1989.]
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Variational principle in multi-time

A simultaneous solution is a function

qg:RN - Q (multi-time to configuration space)

such that g—g generates the dynamical system and g—g its symmetries.

Pluri-Lagrangian principle

Combine the L; into a 1-form
to

N
Llgl = Li[q]dt;.
i=1

3 -Isszzdtg
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Look for dynamical variables q(ti,...,ty) o
such that the action Rt
0 Ts=[Lidy
Is Z/ﬁ[q] Ll e Jhda
S "y
is critical w.r.t. variations of g, simultaneously | 't
over every curve S in multi-time RV
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Multi-time Euler-Lagrange equations

q;: mixed partial derivative of g defined by a string | = t;

R
If I is empty then g, = g.

Iy -

Denote by 5—' the variational derivative in the direction of t; wrt g;:

qi
5if < 4o of of d of &% of
L 1) _J 4 as B
dqn ;( ) dtf* Oqpe dq; dt;Oqp, + dt? Oqy,e

Consider L[q] = Z Li[q] dt; with Li[q] = Li(q; qt;, Gr;t;s - - -)-

1

Multi-time Euler-Lagrange equations / Multi-time EL eqns

: 0iL;
Usual Euler-Lagrange equations: —— =0

VI % t;,
qi Pt

sl il
Additional conditions: —— = L~ v,

q/t,' 5QItj
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Derivation of the multi-time Euler-Lagrange equations

Consider a Lagrangian one-form £ = Z Li[q] dt;.

1

Lemma

If the action fsﬁ is critical on all stepped curves S
in RV, then it is critical on all smooth curves. 7

Variations are local, so it is sufficient to look at an
L-shaped curve S = 5; U S;.
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Derivation of the multi-time Euler-Lagrange equations
On one of the straight pieces, S; (i # 1), we get

aL; . .
5/5iLidti:/5izl:8q/5qldtl
- [ X

i
i 1Ft; =0 i

tj

oL
dqpee dt;
0qpe t

Integration by parts (wrt t; only) yields

o;L;
5/ L,'dt,':/ S dt; +
s; s-Z oy Z

i1t

oL;
ey

8q/t,’ C

Since p is an interior point of the curve, we cannot set 6g(C) = 0!

Multi-time Euler-Lagrange equations

OiL; oiL;  0jL;
— =0 VIZt, and — =24
6q/ 3 6q/t,' 6q/tj
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Newtonian system with symmetries
Consider £ =", L;dt; with
L = 3laf* = Vi(q)
Li=aq-qi — Hi(q, q1)

Multi-time Euler-Lagrange equations

5(1521:0 = aanl—ddtlg::O = qu=-V(q)
oL L LALLM,
oq dq  dt; dq; 9q
o;L; 0 - oL; o, ~ = OH;
oqr g oq

L L oL oL

trivially satisfied

= == = = —
6qi  4gq; g, 0Oqy
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Exterior derivative of L

As before, consider L; = g1 - gi — Hi(q, 1)
Multi-time Euler-Lagrange equations:

_ OH;
- g

OH;
dq

qi and qui = —

Coefficient of dC

Al AL _ (o OHN (OHN (RN (oK,
dt; dtj =\ 91 aq qj aqi q1j aq qgi 8QI

— {Hi-Hj}

Observation: d£ has a “double zero” on solutions.

dL = 0? is key to the Lagrangian multiform approach.

Relation between d.£, double zeroes, and Poisson brackets is emphasised in:

Caudrelier, Dell’Atti, Singh. Lagrangian multiforms on coadjoint orbits for
finite-dimensional integrable systems arXiv:2307.07339
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Hamiltonian PDEs

oo-dimensional phase space, so geometric aspects are much more subtle.

We can still consider Poisson brackets. For example, for PDEs in two
variables (x and t) of KdV-type:

0F 0 6G
{/F(qa arQxx’---)an/G(q7CIx,QXX7---)dX} = — - —d

6q Ox 0q x

Then a Hamiltonian H induces dynamics by

i Fdx:{/de,/Fdx}.
dt

Integrable if we have an infinite hierarchy H, Hs, ... such that

{/H;dx,/dex} —0.

This implies that the flows commute: g is a function of t; = x, B, t3, ...

Side note: often we have a bi-Hamiltonian structure: two “compatible”

Poisson brackets, giving rise to a recursion that generates the hierarchy.
Mats Vermeeren February 2024 11/24



Lagrangian 2-forms

Pluri-Lagrangian principle
Given a 2-form
Llq] =3, Lilgldti Adt,

find a field g : RN — R, such that / L[q] is critical on all smooth surfaces
s

S in multi-time RV, w.r.t. variations of g.

Mats Vermeeren




Multi-time Euler-Lagrange equations
for L[q] =Y Lylqldt; Adt;
ij
8L
— =0 VI & t;, t;,
dq 7t
5ULU _ 5ikl-ik
5qltj 5qltk
5,'J'L,'j n 5jkl-jk I 5kiLki
6qlt,'tj 5QItjtk 5‘7/tkt,-

v ? ti,

=0 vI.

Where

d* df oL
567/ Z Z DT :

a=0 =0 dta dtB aq/ atﬂ

Mats Vermeeren




Example: Potential KdV hierarchy

Gt = Gooe + 30,

Gtz = Goooox + 10Gx e + 505, + 1043,
where we identify t; = x.

The differentiated equations gy, = C%((qxxx + 3q)2<) and gy, = G%((- -+ ) are
Lagrangian with

ZGxGt, — ~AxGxxx — Go

1 1
2 2
1 1 5

2 q>2<xx + 5quxx - 7qﬁ

qX qt3 - 2

2

A suitable coefficient L3 of
L=1Lrdty Adtr + Lizdty Adts + Lrsdtr Adts

can be found (nontrivial task!).

T ——



Example: Potential KdV hierarchy

d12L12 013L13

5q =0 and

» The equations

= 0 yield
d
Axt, = & (qxxx + 3%2() )

d
Qxt; = d7 (qxxxxx + 10gxgxx + 5q)2(x + 10q§) .

012L12 632132 013L13  da3loz .
and yield

» The equations = =
dqx e dqx dqt,

Qt, = Qxxx + 3CI§7
Qt; = Qxxxxx + 1quqxxx + 5q>2<x + ]-Oq)?:v

the evolutionary equations!

» All other multi-time EL equations are corollaries of these.
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Discretisation of Hamiltonian systems

Hamiltonian ODE ~ —  symplectic map

Liouville integrable — commuting symplectic maps?
system or
symplectic map with conserved quantities?

Hamiltonian PDE ~ —  partial difference equation:
multisymplectic lattice equation?

Integrable - 7
Hamiltonian PDE

T —



Quad equations

Q(U, U1, Uz, U2, M1, X2) = 0

A1

Uz
» Subscripts of U denote lattice shifts.
> )i, \> are parameters. o
» Invariant under symmetries of the
square, affine in each of U, Uy, Us, Uss. ”

Discrete analogue of commuting flows:

Consistency around the cube

The three ways of calculating Ujos, using
Q(U7 Uia Uja Ulja)‘H)\J) = 0’

and its shifts, give the same result.

Example: lattice potential KdV:
(U_U12)(U]__U2)—)\]_+>\2:0 U

LTy i)

Us
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Variational principle for quad equations

For some discrete 2-form
L£(Oy) = L(U, U;, Uj, Uy, Aiy Nj),

the action ZE(D) is critical on all 2-surfaces I in ZN simultaneously.

gy

The discrete and continuous variational principles are the same.

Mats Vermeeren




Semi-discrete systems

Consider particles on a line: 1 discrete dimension, many continuous times

q q q

— o ——0—0— 00—

d d?
Denote d1 = qy = Tg: a1 = qut = Té?: etc.

Toda lattice: exponential nearest-neighbour interaction

qu1 = exp(g — q) — exp(q — q).

Part of a hierarchy. First symmetry:

@ =qi +exp(3 — q) + exp(q — q)

T — Y



Semi-discrete geometry

Consider the case with only 1 discrete direction: Z x RN

A semi-discrete surface is a collection of surfaces and curves in RV, each at
a specified point in Z

Intuition: curves where the surface jumps to a different value of Z

‘x

February 2024 20 /24
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Semi-discrete geometry

» Consider (scalar) functions q of Z x RV,
Superscript to emphasise lattice position: gl = q(k, t1,..., ty)
» Semi-discrete 2-form L[q] is part 1-form and part 2-form:
components Lg; are integrated over curves,
components L;; integrated over surfaces.

» We have semi-discrete versions of the exterior derivative, the
boundary, and Stokes theorem

Variational principle
Look for q(k, t1, ..., ty) such that the action

o

is critical w.r.t. variations of g, simultaneously over every semi-discrete
surface S.

T —




Toda lattice

Lagrangians (“0” for discrete direction)

1 _
Loy = 547 — exp(G — q)

1 . )
Loy = q1Ga — §qf —(q1+ 1) exp(G — q)

1
L = ~1 (g2 — qu1 — Q%)z

Euler-Lagrange equations:

do1L ol

doaL
052q102 —0 5 @ = i +exp(d — q) + exp(q — q)

SiaL L .
12712 _ — “g22 — G11G2 — 2q12G1 — ~ 1111 + 3G5G11 = 0
oq 2 2

Lagrangian formalism produces a non-trivial PDE at a single lattice site.

Ry



Contents

e Summary



Summary

The Hamiltonian theory of (Liouville-)integrable systems is powerful for
ODEs, with some generalisations to PDEs.

Lagrangian multiform (or pluri-Lagrangian) theory applies to ODEs and
PDEs, discrete, semi-discrete and continuous.
Much work to do:

» Multiforms as a tool for constructing solutions?

» Full development of semi-discrete case?

» Semi-discrete multiforms in geometric numerical integration?

» Applications to gauge theory?

» Application to quantum integrable systems, path integrals, ... 7
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