

Hamiltonian and Lagrangian perspectives on integrable systems

Mats Vermeeren

m.vermeeren@lboro.ac.uk
www.matsvermeeren.xyz

Warsaw

February 2024

Contents

Hamiltonian theory of integrable systems: Liouville-Arnold theorem

2 Lagrangian multiform theory / Pluri-Lagrangian systems: 1-forms

3 More general Lagrangian multiforms

- Integrable PDEs
- Discrete integrable systems
- Semi-discrete integrable systems

Introduction

Kepler problem: (super)integrable

2 gravitating centres: integrable

Central force problem: integrable

3 gravitating centres: nonintegrable

Integrable systems

Most nonlinear differential equations are impossible to solve explicitly. Integrable systems are the exception. They have some underlying structure which helps. Often, this structure consists of a number of symmetries:

An equation is integrable if has sufficiently many symmetries.

Each symmetry, in it infinitesimal form, defines a differential equation. Hence:

An equation is integrable if it is part of a sufficiently large family of compatible equations.

A common interpretation of "compatible" is given in terms of Hamiltonian mechanics.

Hamiltonian mechanics

Hamilton function

$$H: T^*Q \cong \mathbb{R}^{2N} \to \mathbb{R}: (q,p) \mapsto H(q,p)$$

Dynamics given by canonical equations

$$\dot{q}_i = rac{\partial H}{\partial p_i}, \qquad \dot{p}_i = -rac{\partial H}{\partial q_i}$$

Flow consists of symplectic maps and preserves H.

Poisson bracket of two functions on T^*Q :

$$\{f,g\} = \sum_{i=1}^{N} \left(\frac{\partial f}{\partial p_i} \frac{\partial g}{\partial q_i} - \frac{\partial f}{\partial q_i} \frac{\partial g}{\partial p_i} \right)$$

Dynamics of a Hamiltonian system:

$$\dot{q}_i = \{H, q_i\}, \qquad \dot{p}_i = \{H, p_i\}, \qquad \frac{\mathrm{d}}{\mathrm{d}t}f(q, p) = \{H, f\}$$

In particular: f is conserved if and only if $\{H, f\} = 0$.

Mats Vermeeren

Liouville integrability

A Hamiltonian system with Hamilton function $H: T^*Q \cong \mathbb{R}^{2N} \to \mathbb{R}$ is Liouville integrable if there exist N functionally independent Hamilton functions $H = H_1, H_2, \ldots H_N$ such that $\{H_i, H_j\} = 0$.

- ▶ Each H_i defines its own flow $\phi_{H_i}^t$: N dynamical systems
- Each H_i is a conserved quantity for all flows.
- The dynamics is confined to a leaf of the foliation $\{H_i = \text{const}\}$.
- Liouville-Arnold theorem: if this foliation is compact, its leaves are tori.

The proof I gave of the Liouville-Arnold theorem loosely follows the book: [VI Arnold. Mathematical Methods of Classical Mechanics. Springer 1989.]

Contents

I) Hamiltonian theory of integrable systems: Liouville-Arnold theorem

2 Lagrangian multiform theory / Pluri-Lagrangian systems: 1-forms

3 More general Lagrangian multiforms

- Integrable PDEs
- Discrete integrable systems
- Semi-discrete integrable systems

Variational principle in multi-time

A simultaneous solution is a function

 $q: \mathbb{R}^N o Q$ (multi-time to configuration space)

such that $\frac{\partial q}{\partial t_1}$ generates the dynamical system and $\frac{\partial q}{\partial t_i}$ its symmetries.

Pluri-Lagrangian principle

Combine the L_i into a 1-form

$$\mathcal{L}[q] = \sum_{i=1}^{N} L_i[q] \,\mathrm{d}t_i.$$

Look for dynamical variables $q(t_1,\ldots,t_N)$ such that the action

$$\mathcal{I}_S = \int_S \mathcal{L}[q]$$

is critical w.r.t. variations of q, simultaneously over every curve S in multi-time \mathbb{R}^N

Mats Vermeeren

5/24

Multi-time Euler-Lagrange equations

 q_I : mixed partial derivative of q defined by a string $I = t_{i_1} \dots t_{i_k}$. If I is empty then $q_I = q$. Denote by $\frac{\delta_i}{\delta q_i}$ the variational derivative in the direction of t_i wrt q_i :

$$\frac{\delta_i f}{\delta q_I} = \sum_{\alpha=0}^{\infty} (-1)^{\alpha} \frac{\mathrm{d}^{\alpha}}{\mathrm{d}t_i^{\alpha}} \frac{\partial f}{\partial q_{lt_i^{\alpha}}} \qquad = \frac{\partial f}{\partial q_I} - \frac{\mathrm{d}}{\mathrm{d}t_i} \frac{\partial f}{\partial q_{lt_i}} + \frac{\mathrm{d}^2}{\mathrm{d}t_i^2} \frac{\partial f}{\partial q_{lt_i^2}} - \dots$$

 $\delta:I:$

Consider
$$\mathcal{L}[q] = \sum_{i} L_i[q] dt_i$$
 with $L_i[q] = L_i(q, q_{t_i}, q_{t_it_j}, \ldots)$.

Multi-time Euler-Lagrange equations / Multi-time EL eqns

Usual Euler-Lagrange equations:

Additional conditions:

$$\frac{\delta_{I}L_{I}}{\delta q_{I}} = 0 \qquad \forall I \not\supseteq t_{i},$$
$$\frac{\delta_{i}L_{i}}{\delta q_{It_{i}}} = \frac{\delta_{j}L_{j}}{\delta q_{It_{j}}} \qquad \forall I,$$

t_i,

Derivation of the multi-time Euler-Lagrange equations

Consider a Lagrangian one-form
$$\mathcal{L} = \sum_i L_i[q] \, \mathrm{d} t_i.$$

Lemma

If the action $\int_{S} \mathcal{L}$ is critical on all stepped curves S in \mathbb{R}^{N} , then it is critical on all smooth curves.

Variations are local, so it is sufficient to look at an L-shaped curve $S = S_i \cup S_j$.

Derivation of the multi-time Euler-Lagrange equations On one of the straight pieces, S_i ($i \neq 1$), we get

$$\delta \int_{S_i} L_i \, \mathrm{d}t_i = \int_{S_i} \sum_{I} \frac{\partial L_i}{\partial q_I} \delta q_I \, \mathrm{d}t_i$$

$$= \int_{S_i} \sum_{I \not\supseteq t_i} \sum_{\alpha=0}^{\infty} \frac{\partial L_i}{\partial q_{It_i^{\alpha}}} \delta q_{It_i^{\alpha}} \, \mathrm{d}t_i$$

$$S_i$$

Integration by parts (wrt t_i only) yields

$$\delta \int_{S_i} L_i \, \mathrm{d}t_i = \int_{S_i} \sum_{I \not\ni t_i} \frac{\delta_i L_i}{\delta q_I} \delta q_I \mathrm{d}t_i + \sum_I \frac{\partial L_i}{\partial q_{It_i}} \delta q_I \bigg|_C$$

Since p is an interior point of the curve, we cannot set $\delta q(C) = 0!$

Multi-time Euler-Lagrange equations

$$\frac{\delta_i L_i}{\delta q_I} = 0 \quad \forall I \not\ni t_i, \quad \text{and} \quad \frac{\delta_i L_i}{\delta q_{lt_i}} = \frac{\delta_j L_j}{\delta q_{lt_j}}$$

Mats Vermeeren

Newtonian system with symmetries

Consider
$$\mathcal{L} = \sum_i L_i \, \mathrm{d} t_i$$
 with
 $L_1 = rac{1}{2} |q_1|^2 - V_i(q)$
 $L_i = q_1 \cdot q_i - H_i(q, q_1)$

Multi-time Euler-Lagrange equations

$$\frac{\delta_{1}L_{1}}{\delta q} = 0 \quad \Rightarrow \quad \frac{\partial L_{1}}{\partial q} - \frac{\mathrm{d}}{\mathrm{d}t_{1}}\frac{\partial L_{1}}{\partial q_{1}} = 0 \qquad \Rightarrow \quad q_{11} = -V'(q)$$

$$\frac{\delta_{i}L_{i}}{\delta q} = 0 \quad \Rightarrow \quad \frac{\partial L_{i}}{\partial q} - \frac{\mathrm{d}}{\mathrm{d}t_{i}}\frac{\partial L_{i}}{\partial q_{i}} = 0 \qquad \Rightarrow \quad q_{1i} = -\frac{\partial H_{i}}{\partial q}$$

$$\frac{\delta_{i}L_{i}}{\delta q_{1}} = 0 \quad \Rightarrow \quad \frac{\partial L_{i}}{\partial q_{1}} = 0, \qquad \Rightarrow \quad q_{i} = \frac{\partial H_{i}}{\partial q_{1}}$$

$$\frac{\delta_{i}L_{i}}{\delta q_{i}} = \frac{\delta_{j}L_{j}}{\delta q_{j}} \quad \Rightarrow \quad \frac{\partial L_{i}}{\partial q_{t_{i}}} = \frac{\partial L_{j}}{\partial q_{t_{j}}} \qquad \text{trivially satisfied}$$

Exterior derivative of $\mathcal L$

As before, consider $L_i = q_1 \cdot q_i - H_i(q, q_1)$ Multi-time Euler-Lagrange equations:

$$q_i = rac{\partial H_i}{\partial q_1}$$
 and $q_{1i} = -rac{\partial H_i}{\partial q}$

Coefficient of $\mathrm{d}\mathcal{L}$

$$\frac{\mathrm{d}L_j}{\mathrm{d}t_i} - \frac{\mathrm{d}L_i}{\mathrm{d}t_j} = \left(q_{1i} + \frac{\partial H_i}{\partial q}\right) \left(q_j - \frac{\partial H_j}{\partial q_i}\right) - \left(q_{1j} + \frac{\partial H_j}{\partial q}\right) \left(q_i - \frac{\partial H_i}{\partial q_i}\right) - \left\{H_i, H_j\right\}$$

Observation: $\mathrm{d}\mathcal{L}$ has a "double zero" on solutions.

 $d\mathcal{L} = 0^2$ is key to the Lagrangian multiform approach.

Relation between $\mathrm{d}\mathcal{L},$ double zeroes, and Poisson brackets is emphasised in:

Caudrelier, Dell'Atti, Singh. Lagrangian multiforms on coadjoint orbits for finite-dimensional integrable systems arXiv:2307.07339

Mats Vermeeren

Contents

1 Hamiltonian theory of integrable systems: Liouville-Arnold theorem

Lagrangian multiform theory / Pluri-Lagrangian systems: 1-forms

One general Lagrangian multiforms

- Integrable PDEs
- Discrete integrable systems
- Semi-discrete integrable systems

Hamiltonian PDEs

 ∞ -dimensional phase space, so geometric aspects are much more subtle. We can still consider Poisson brackets. For example, for PDEs in two variables (x and t) of KdV-type:

$$\left\{\int F(q,q_x,q_{xx},\ldots)\,\mathrm{d}x,\int G(q,q_x,q_{xx},\ldots)\,\mathrm{d}x\right\}=\int \frac{\delta F}{\delta q}\frac{\partial}{\partial x}\frac{\delta G}{\delta q}\,\mathrm{d}x$$

Then a Hamiltonian H induces dynamics by

$$\frac{\mathrm{d}}{\mathrm{d}t}\int F\,\mathrm{d}x = \left\{\int H\,\mathrm{d}x, \int F\,\mathrm{d}x\right\}.$$

Integrable if we have an infinite hierarchy H_2, H_3, \ldots such that

$$\left\{\int H_i\,\mathrm{d}x,\int H_j\,\mathrm{d}x\right\}=0.$$

This implies that the flows commute: q is a function of $t_1 = x, t_2, t_3, \ldots$

Side note: often we have a bi-Hamiltonian structure: two "compatible" Poisson brackets, giving rise to a recursion that generates the hierarchy.

Lagrangian 2-forms

Pluri-Lagrangian principle Given a 2-form $\mathcal{L}[q] = \sum_{i,j} L_{ij}[q] dt_i \wedge dt_j,$ find a field $q : \mathbb{R}^N \to \mathbb{R}$, such that $\int_S \mathcal{L}[q]$ is critical on all smooth surfaces S in multi-time \mathbb{R}^N , w.r.t. variations of q.

Multi-time Euler-Lagrange equations

for
$$\mathcal{L}[q] = \sum_{i,j} L_{ij}[q] \,\mathrm{d} t_i \wedge \mathrm{d} t_j$$

$$\frac{\delta_{ij}L_{ij}}{\delta q_{I}} = 0 \qquad \forall I \not\ni t_{i}, t_{j}, \\
\frac{\delta_{ij}L_{ij}}{\delta q_{lt_{j}}} = \frac{\delta_{ik}L_{ik}}{\delta q_{lt_{k}}} \qquad \forall I \not\ni t_{i}, \\
\frac{\delta_{ij}L_{ij}}{\delta q_{lt_{i}t_{j}}} + \frac{\delta_{jk}L_{jk}}{\delta q_{lt_{j}t_{k}}} + \frac{\delta_{ki}L_{ki}}{\delta q_{lt_{k}t_{i}}} = 0 \qquad \forall I.$$

Where

$$\frac{\delta_{ij}L_{ij}}{\delta q_{I}} = \sum_{\alpha=0}^{\infty} \sum_{\beta=0}^{\infty} (-1)^{\alpha+\beta} \frac{\mathrm{d}^{\alpha}}{\mathrm{d}t_{i}^{\alpha}} \frac{\mathrm{d}^{\beta}}{\mathrm{d}t_{j}^{\beta}} \frac{\partial L_{ij}}{\partial q_{It_{i}^{\alpha}t_{j}^{\beta}}}$$

Example: Potential KdV hierarchy

$$egin{aligned} q_{t_2} &= q_{xxx} + 3q_x^2, \ q_{t_3} &= q_{xxxx} + 10q_xq_{xxx} + 5q_{xx}^2 + 10q_x^3, \end{aligned}$$

where we identify $t_1 = x$.

The differentiated equations $q_{xt_2} = \frac{d}{dx}(q_{xxx} + 3q_x^2)$ and $q_{xt_3} = \frac{d}{dx}(\cdots)$ are Lagrangian with

$$L_{12} = \frac{1}{2}q_{x}q_{t_{2}} - \frac{1}{2}q_{x}q_{xxx} - q_{x}^{3},$$

$$L_{13} = \frac{1}{2}q_{x}q_{t_{3}} - \frac{1}{2}q_{xxx}^{2} + 5q_{x}q_{xx}^{2} - \frac{5}{2}q_{x}^{4}$$

A suitable coefficient L_{23} of

 $\mathcal{L} = L_{12} \operatorname{d} t_1 \wedge \operatorname{d} t_2 + L_{13} \operatorname{d} t_1 \wedge \operatorname{d} t_3 + L_{23} \operatorname{d} t_2 \wedge \operatorname{d} t_3$

can be found (nontrivial task!).

Example: Potential KdV hierarchy

• The equations
$$\frac{\delta_{12}L_{12}}{\delta q} = 0$$
 and $\frac{\delta_{13}L_{13}}{\delta q} = 0$ yield
 $q_{xt_2} = \frac{\mathrm{d}}{\mathrm{d}x} \left(q_{xxx} + 3q_x^2 \right),$
 $q_{xt_3} = \frac{\mathrm{d}}{\mathrm{d}x} \left(q_{xxxx} + 10q_xq_{xxx} + 5q_{xx}^2 + 10q_x^3 \right).$

► The equations
$$\frac{\delta_{12}L_{12}}{\delta q_x} = \frac{\delta_{32}L_{32}}{\delta q_{t_3}}$$
 and $\frac{\delta_{13}L_{13}}{\delta q_x} = \frac{\delta_{23}L_{23}}{\delta q_{t_2}}$ yield
 $q_{t_2} = q_{xxx} + 3q_x^2,$
 $q_{t_3} = q_{xxxx} + 10q_xq_{xxx} + 5q_{xx}^2 + 10q_x^3,$

the evolutionary equations!

► All other multi-time EL equations are corollaries of these.

Discretisation of Hamiltonian systems

 $\begin{array}{rcl} {\sf Hamiltonian} \ {\sf ODE} & \rightarrow & {\sf symplectic} \ {\sf map} \end{array}$

 $\begin{array}{rcl} \mbox{Hamiltonian PDE} & \rightarrow & \mbox{partial difference equation:} \\ & & \mbox{multisymplectic lattice equation?} \end{array}$

Quad equations

 $\mathcal{Q}(U, U_1, U_2, U_{12}, \lambda_1, \lambda_2) = 0$

Subscripts of U denote lattice shifts.

- λ_1, λ_2 are parameters.
- Invariant under symmetries of the square, affine in each of U, U₁, U₂, U₁₂.

Discrete analogue of commuting flows:

Consistency around the cube

The three ways of calculating U_{123} , using

 $\mathcal{Q}(U, U_i, U_j, U_{ij}, \lambda_i, \lambda_j) = 0,$

and its shifts, give the same result.

Example: lattice potential KdV:

$$(U - U_{12})(U_1 - U_2) - \lambda_1 + \lambda_2 = 0$$

Variational principle for quad equations

For some discrete 2-form

$$\mathcal{L}(\Box_{ij}) = \mathcal{L}(U, U_i, U_j, U_{ij}, \lambda_i, \lambda_j),$$

the action $\sum_{\Box \in \Gamma} \mathcal{L}(\Box)$ is critical on all 2-surfaces Γ in \mathbb{Z}^N simultaneously.

The discrete and continuous variational principles are the same.

Semi-discrete systems

Consider particles on a line: 1 discrete dimension, many continuous times

Denote $q_1 = q_{t_1} = \frac{dq}{dt_1}$, $q_{11} = q_{t_1t_1} = \frac{d^2q}{dt_1^2}$, etc.

Toda lattice: exponential nearest-neighbour interaction

$$q_{11}=\exp(ar{q}-q)-\exp(q-ar{q}).$$

Part of a hierarchy. First symmetry:

$$q_2=q_1^2+\exp(ar q-q)+\exp(q-{ar q})$$

Semi-discrete geometry

Consider the case with only 1 discrete direction: $\mathbb{Z} \times \mathbb{R}^N$

A semi-discrete surface is a collection of surfaces and curves in \mathbb{R}^N , each at a specified point in $\mathbb Z$

Intuition: curves where the surface jumps to a different value of $\ensuremath{\mathbb{Z}}$

Semi-discrete geometry

- Consider (scalar) functions q of Z × ℝ^N.
 Superscript to emphasise lattice position: q^[k] = q(k, t₁,..., t_N)
- Semi-discrete 2-form L[q] is part 1-form and part 2-form: components L_{0j} are integrated over curves, components L_{ij} integrated over surfaces.
- We have semi-discrete versions of the exterior derivative, the boundary, and Stokes theorem

Variational principle

Look for $q(k, t_1, \ldots, t_N)$ such that the action

is critical w.r.t. variations of q, simultaneously over every semi-discrete surface S.

 $\int \mathcal{L}[q]$

Mats Vermeeren

Toda lattice

Lagrangians ("0" for discrete direction)

$$egin{split} L_{01} &= rac{1}{2} q_1^2 - \exp(ar{q} - q) \ L_{02} &= q_1 q_2 - rac{1}{3} q_1^3 - (q_1 + ar{q}_1) \exp(ar{q} - q) \ L_{12} &= -rac{1}{4} \left(q_2 - q_{11} - q_1^2
ight)^2 \end{split}$$

Euler-Lagrange equations:

$$\begin{aligned} \frac{\delta_{01}L_{01}}{\delta q} &= 0 & \to & q_{11} = \exp(\bar{q} - q) - \exp(q - \underline{q}) \\ \frac{\delta_{02}L_{02}}{\delta q_1} &= 0 & \to & q_2 = q_1^2 + \exp(\bar{q} - q) + \exp(q - \underline{q}) \\ \frac{\delta_{12}L_{12}}{\delta q} &= 0 & \to & \frac{1}{2}q_{22} - q_{11}q_2 - 2q_{12}q_1 - \frac{1}{2}q_{1111} + 3q_1^2q_{11} = 0 \end{aligned}$$

Lagrangian formalism produces a non-trivial PDE at a single lattice site.

Mats Vermeeren

Contents

1 Hamiltonian theory of integrable systems: Liouville-Arnold theorem

2 Lagrangian multiform theory / Pluri-Lagrangian systems: 1-forms

3 More general Lagrangian multiforms

- Integrable PDEs
- Discrete integrable systems
- Semi-discrete integrable systems

Summary

The Hamiltonian theory of (Liouville-)integrable systems is powerful for ODEs, with some generalisations to PDEs.

Lagrangian multiform (or pluri-Lagrangian) theory applies to ODEs and PDEs, discrete, semi-discrete and continuous.

Much work to do:

- Multiforms as a tool for constructing solutions?
- Full development of semi-discrete case?
- Semi-discrete multiforms in geometric numerical integration?
- Applications to gauge theory?
- Application to quantum integrable systems, path integrals, ...?

Selected references

- Hamiltonian ODEs: Arnold. Mathematical Methods of Classical Mechanics. Springer 1989.
- Hamiltonian PDEs: Faddeev, Takhtajan. Hamiltonian Methods in the Theory of Solitons. Springer, 1987.
- Broader study of symmetries: Olver. Applications of Lie Groups to Differential Equations. Springer, 1986.
- First Lagrangian multiform paper (discrete 2-forms): Lobb, Nijhoff. Lagrangian multiforms and multidimensional consistency. J Phys A, 2009.
- Discrete and continuous 1-forms: Suris. Variational formulation of commuting Hamiltonian flows: multi-time Lagrangian 1-forms. J Geom Mech, 2013
- Continuous 2-forms: Suris, V. On the Lagrangian structure of integrable hierarchies. In: Advances in Discrete Differential Geometry, Springer, 2016.
- Connections between Hamiltonian and Lagrangian perspectives: V. Hamiltonian structures for integrable hierarchies of Lagrangian PDEs. OCNMP, 2021.
- Semi-discrete Lagrangian multiforms: Sleigh, V. Semi-discrete Lagrangian 2-forms and the Toda hierarchy J Phys A, 2022.