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Introduction

Kepler problem: (super)integrable Central force problem: integrable

2 gravitating centres: integrable 3 gravitating centres: nonintegrable
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Integrable systems

Most nonlinear di�erential equations are impossible to solve explicitly.

Integrable systems are the exception. They have some underlying structure
which helps. Often, this structure consists of a number of symmetries:

An equation is integrable if has su�ciently many symmetries.

Each symmetry, in it in�nitesimal form, de�nes a di�erential equation.
Hence:

An equation is integrable if it is part of a su�ciently large family of
compatible equations.

A common interpretation of �compatible� is given in terms of Hamiltonian
mechanics.
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Hamiltonian mechanics

Hamilton function

H : T ∗Q ∼= R2N → R : (q, p) 7→ H(q, p)

Dynamics given by canonical equations

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi

Flow consists of symplectic maps and preserves H.

Poisson bracket of two functions on T ∗Q:

{f , g} =
N∑
i=1

(
∂f

∂pi

∂g

∂qi
− ∂f

∂qi

∂g

∂pi

)
Dynamics of a Hamiltonian system:

q̇i = {H, qi}, ṗi = {H, pi},
d

dt
f (q, p) = {H, f }

In particular: f is conserved if and only if {H, f } = 0.
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Liouville integrability

A Hamiltonian system with Hamilton function H : T ∗Q ∼= R2N → R is
Liouville integrable if there exist N functionally independent Hamilton
functions H = H1,H2, . . .HN such that {Hi ,Hj} = 0.

▶ Each Hi de�nes its own �ow ϕt
Hi
: N dynamical systems

▶ Each Hi is a conserved quantity for all �ows.

▶ The dynamics is con�ned to a leaf of the foliation {Hi = const}.
▶ Liouville-Arnold theorem: if this foliation is compact, its leaves are tori.

The proof I gave of the Liouville-Arnold theorem loosely follows the book:
[VI Arnold. Mathematical Methods of Classical Mechanics. Springer 1989.]
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Variational principle in multi-time

A simultaneous solution is a function

q : RN → Q (multi-time to con�guration space)

such that ∂q
∂t1

generates the dynamical system and ∂q
∂ti

its symmetries.

Pluri-Lagrangian principle

Combine the Li into a 1-form

L[q] =
N∑
i=1

Li [q] dti .

Look for dynamical variables q(t1, . . . , tN)
such that the action

IS =

∫
S
L[q]

is critical w.r.t. variations of q, simultaneously
over every curve S in multi-time RN

t1

t2

IS =
∫
L1 dt1

IS =
∫
L2 dt2
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Multi-time Euler-Lagrange equations

qI : mixed partial derivative of q de�ned by a string I = ti1 . . . tik .

If I is empty then qI = q.

Denote by
δi
δqI

the variational derivative in the direction of ti wrt qI :

δi f

δqI
=

∞∑
α=0

(−1)α
d
α

dtαi

∂f

∂qItαi
=

∂f

∂qI
− d

dti

∂f

∂qIti
+

d
2

dt2i

∂f

∂qIt2i
− . . .

Consider L[q] =
∑
i

Li [q] dti with Li [q] = Li (q, qti , qti tj , . . .).

Multi-time Euler-Lagrange equations / Multi-time EL eqns

Usual Euler-Lagrange equations:
δiLi
δqI

= 0 ∀I ̸∋ ti ,

Additional conditions:
δiLi
δqIti

=
δjLj
δqItj

∀I ,
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Derivation of the multi-time Euler-Lagrange equations

Consider a Lagrangian one-form L =
∑
i

Li [q] dti .

Lemma

If the action
∫
S L is critical on all stepped curves S

in RN , then it is critical on all smooth curves.

Variations are local, so it is su�cient to look at an
L-shaped curve S = Si ∪ Sj .

ti

tj

Si

Sj

C
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Derivation of the multi-time Euler-Lagrange equations

On one of the straight pieces, Si (i ̸= 1), we get

δ

∫
Si

Li dti =

∫
Si

∑
I

∂Li
∂qI

δqI dti

=

∫
Si

∑
I ̸∋ti

∞∑
α=0

∂Li
∂qItαi

δqItαi dti

Integration by parts (wrt ti only) yields
ti

tj

Si

Sj

C

δ

∫
Si

Li dti =

∫
Si

∑
I ̸∋ti

δiLi
δqI

δqIdti +
∑
I

∂Li
∂qIti

δqI

∣∣∣∣
C

Since p is an interior point of the curve, we cannot set δq(C ) = 0!

Multi-time Euler-Lagrange equations

δiLi
δqI

= 0 ∀I ̸∋ ti , and
δiLi
δqIti

=
δjLj
δqItj
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Newtonian system with symmetries

Consider L =
∑

i Li dti with

L1 =
1

2
|q1|2 − Vi (q)

Li = q1 · qi − Hi (q, q1)

Multi-time Euler-Lagrange equations

δ1L1
δq

= 0 ⇒ ∂L1
∂q

− d

dt1

∂L1
∂q1

= 0 ⇒ q11 = −V ′(q)

δiLi
δq

= 0 ⇒ ∂Li
∂q

− d

dti

∂Li
∂qi

= 0 ⇒ q1i = −∂Hi

∂q

δiLi
δq1

= 0 ⇒ ∂Li
∂q1

= 0, ⇒ qi =
∂Hi

∂q1

δiLi
δqi

=
δjLj
δqj

⇒ ∂Li
∂qti

=
∂Lj
∂qtj

trivially satis�ed
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Exterior derivative of L
As before, consider Li = q1 · qi − Hi (q, q1)

Multi-time Euler-Lagrange equations:

qi =
∂Hi

∂q1
and q1i = −∂Hi

∂q

Coe�cient of dL

dLj
dti

− dLi
dtj

=

(
q1i +

∂Hi

∂q

)(
qj −

∂Hj

∂qi

)
−
(
q1j +

∂Hj

∂q

)(
qi −

∂Hi

∂qi

)
−�����{Hi ,Hj}

Observation: dL has a �double zero� on solutions.

dL = 02 is key to the Lagrangian multiform approach.

Relation between dL, double zeroes, and Poisson brackets is emphasised in:

Caudrelier, Dell'Atti, Singh. Lagrangian multiforms on coadjoint orbits for
�nite-dimensional integrable systems arXiv:2307.07339
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Hamiltonian PDEs

∞-dimensional phase space, so geometric aspects are much more subtle.

We can still consider Poisson brackets. For example, for PDEs in two
variables (x and t) of KdV-type:{∫

F (q, qx , qxx , . . .) dx ,

∫
G (q, qx , qxx , . . .) dx

}
=

∫
δF

δq

∂

∂x

δG

δq
dx

Then a Hamiltonian H induces dynamics by

d

dt

∫
F dx =

{∫
H dx ,

∫
F dx

}
.

Integrable if we have an in�nite hierarchy H2,H3, . . . such that{∫
Hi dx ,

∫
Hj dx

}
= 0.

This implies that the �ows commute: q is a function of t1 = x , t2, t3, . . .

Side note: often we have a bi-Hamiltonian structure: two �compatible�
Poisson brackets, giving rise to a recursion that generates the hierarchy.
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Lagrangian 2-forms

Pluri-Lagrangian principle

Given a 2-form
L[q] =

∑
i ,j Lij [q] dti ∧ dtj ,

�nd a �eld q : RN → R, such that

∫
S
L[q] is critical on all smooth surfaces

S in multi-time RN , w.r.t. variations of q.
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Multi-time Euler-Lagrange equations

for L[q] =
∑
i ,j

Lij [q] dti ∧ dtj

δijLij
δqI

= 0 ∀I ̸∋ ti , tj ,

δijLij
δqItj

=
δikLik
δqItk

∀I ̸∋ ti ,

δijLij
δqIti tj

+
δjkLjk
δqItj tk

+
δkiLki
δqItk ti

= 0 ∀I .

Where
δijLij
δqI

=
∞∑
α=0

∞∑
β=0

(−1)α+β d
α

dtαi

d
β

dtβj

∂Lij
∂q

Itαi tβj
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Example: Potential KdV hierarchy

qt2 = qxxx + 3q2x ,

qt3 = qxxxxx + 10qxqxxx + 5q2xx + 10q3x ,

where we identify t1 = x .

The di�erentiated equations qxt2 =
d

dx

(
qxxx + 3q2x

)
and qxt3 =

d

dx (· · · ) are
Lagrangian with

L12 =
1

2
qxqt2 −

1

2
qxqxxx − q3x ,

L13 =
1

2
qxqt3 −

1

2
q2xxx + 5qxq

2

xx −
5

2
q4x .

A suitable coe�cient L23 of

L = L12 dt1 ∧ dt2 + L13 dt1 ∧ dt3 + L23 dt2 ∧ dt3

can be found (nontrivial task!).
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Example: Potential KdV hierarchy

▶ The equations
δ12L12
δq

= 0 and
δ13L13
δq

= 0 yield

qxt2 =
d

dx

(
qxxx + 3q2x

)
,

qxt3 =
d

dx

(
qxxxxx + 10qxqxxx + 5q2xx + 10q3x

)
.

▶ The equations
δ12L12
δqx

=
δ32L32
δqt3

and
δ13L13
δqx

=
δ23L23
δqt2

yield

qt2 = qxxx + 3q2x ,

qt3 = qxxxxx + 10qxqxxx + 5q2xx + 10q3x ,

the evolutionary equations!

▶ All other multi-time EL equations are corollaries of these.
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Discretisation of Hamiltonian systems

Hamiltonian ODE → symplectic map

Liouville integrable
system

→ commuting symplectic maps?
or
symplectic map with conserved quantities?

Hamiltonian PDE → partial di�erence equation:
multisymplectic lattice equation?

Integrable
Hamiltonian PDE

→ ?
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Quad equations

Q(U,U1,U2,U12, λ1, λ2) = 0

▶ Subscripts of U denote lattice shifts.
▶ λ1, λ2 are parameters.
▶ Invariant under symmetries of the

square, a�ne in each of U,U1,U2,U12.

Discrete analogue of commuting �ows:

Consistency around the cube

The three ways of calculating U123, using

Q(U,Ui ,Uj ,Uij , λi , λj) = 0,

and its shifts, give the same result.

Example: lattice potential KdV:

(U − U12)(U1 − U2)− λ1 + λ2 = 0

U1

U12U2

U

λ1

λ2

U1

U13

U3

U

U12

U123U23

U2

λ1

λ2

λ3

U1

U13

U3

U

U12

U123U23

U2

λ1

λ2

λ3

U1

U13

U3

U

U12

U123U23

U2

λ1

λ2

λ3
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Variational principle for quad equations

For some discrete 2-form

L(□ij) = L(U,Ui ,Uj ,Uij , λi , λj),

the action
∑
□∈Γ

L(□) is critical on all 2-surfaces Γ in ZN simultaneously.

The discrete and continuous variational principles are the same.
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Semi-discrete systems

Consider particles on a line: 1 discrete dimension, many continuous times

· · · q q q̄ · · ·

Denote q1 = qt1 =
dq
dt1

, q11 = qt1t1 =
d2q
dt21

, etc.

Toda lattice: exponential nearest-neighbour interaction

q11 = exp(q̄ − q)− exp(q − q).

Part of a hierarchy. First symmetry:

q2 = q21 + exp(q̄ − q) + exp(q − q)
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Semi-discrete geometry

Consider the case with only 1 discrete direction: Z× RN

A semi-discrete surface is a collection of surfaces and curves in RN , each at
a speci�ed point in Z

Intuition: curves where the surface jumps to a di�erent value of Z
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Semi-discrete geometry

▶ Consider (scalar) functions q of Z× RN .

Superscript to emphasise lattice position: q[k] = q(k , t1, . . . , tN)

▶ Semi-discrete 2-form L[q] is part 1-form and part 2-form:

components L0j are integrated over curves,

components Lij integrated over surfaces.

▶ We have semi-discrete versions of the exterior derivative, the
boundary, and Stokes theorem

Variational principle

Look for q(k, t1, . . . , tN) such that the action∫
S
L[q]

is critical w.r.t. variations of q, simultaneously over every semi-discrete
surface S .
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Toda lattice

Lagrangians (�0� for discrete direction)

L01 =
1

2
q21 − exp(q̄ − q)

L02 = q1q2 −
1

3
q31 − (q1 + q̄1) exp(q̄ − q)

L12 = −1

4

(
q2 − q11 − q21

)2
Euler-Lagrange equations:

δ01L01
δq

= 0 → q11 = exp(q̄ − q)− exp(q − q)

δ02L02
δq1

= 0 → q2 = q21 + exp(q̄ − q) + exp(q − q)

δ12L12
δq

= 0 → 1

2
q22 − q11q2 − 2q12q1 −

1

2
q1111 + 3q21q11 = 0

Lagrangian formalism produces a non-trivial PDE at a single lattice site.

Mats Vermeeren February 2024 22 / 24



Contents

1 Hamiltonian theory of integrable systems: Liouville-Arnold theorem

2 Lagrangian multiform theory / Pluri-Lagrangian systems: 1-forms

3 More general Lagrangian multiforms

Integrable PDEs

Discrete integrable systems

Semi-discrete integrable systems

4 Summary



Summary

The Hamiltonian theory of (Liouville-)integrable systems is powerful for
ODEs, with some generalisations to PDEs.

Lagrangian multiform (or pluri-Lagrangian) theory applies to ODEs and
PDEs, discrete, semi-discrete and continuous.

Much work to do:

▶ Multiforms as a tool for constructing solutions?

▶ Full development of semi-discrete case?

▶ Semi-discrete multiforms in geometric numerical integration?

▶ Applications to gauge theory?

▶ Application to quantum integrable systems, path integrals, . . . ?
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