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Introduction

Dynamics: can be expressed by rigid bodies’ motion.
Control approaches based on feedback linearization and backstepping methods,
depend on exact models of the systems and external disturbances to guarantee
stability and precise tracking.
An accurate model of typical uncertainties is hard to obtain by using first
principles-based techniques. This uncertainty is commonly compound by:
• Impact of air/water flow on aerial/underwater vehicles.
• Interaction with unstructured and a-priori unknown environments.
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Why GPs?

Increase of feedback gains
to eliminate unknown dynamics Unfavorable

Saturation of actuators

Large errors in presence
of noise

Learning-based oracles: GP

Data-driven modelling tools used in control, machine learning and system
identification. The models are highly flexible and can reproduce a large class of
different dynamics.
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What is a GP?
• A Stochastic process describes systems randomly changing over time. This

process can lead to different paths or realizations of the process.
• Each realization defines a position d for every possible timestep t, that is, it

corresponds to a function f(t) = d. A stochastic process can be seen as
random distribution over functions

Figure: Different realizations of a Brownian motion
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What is a GP?

Gaussian Processes are distributions over functions f(x), where the distribution
is defined by a mean function m(x) and the positive definite covariance function
k(x, x

′
), with x the function values of the domain f(x) and (x, x

′
) all possible

pairs in the domain.

f(x) ∼ GP(m(x), k(x, x
′
))

where, for any finite subset C = {x1, . . . , xn} of the domain x, the marginal
distribution is a multivariate Gaussian distribution

f(x) ∼ N (m(X), k(X,X))

with mean vector µ = m(X) and covariance matrix Σ = k(X,X).
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Why GPs?

GP models
Prediction + measure of the uncertainty of the model

Benefits
• Bias-variance trade-off.
• Strong connection to Bayesian Statistics.

Uses
• Predictive control of models.
• Sliding mode control.
• Tracking of mechanical systems.
• Backtepping control for underactuated vehicles.
• Learn and mitigate unknown dynamics in UAVs models.

The measure of the uncertainty allows us to provide performance and safety
guarantees.
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Objective

Objective: Employ learning-based approaches based on GP models to learn the
uncertainties of our aerial vehicle equipped with manipulator arms (UAM)
• Guarantee the probabilistic boundedness of the tracking error to the

reconfigured attitude and positions with high probability.
• Simulation tests for the validation of learning-based controllers.
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Dynamics of an aerial robot with manipulator arms

Consider the Lie group of rotations in the space SO(3)

SO(3) = {R ∈ GL(3,R)|R⊤R = Id, det(R) = 1}

where Id denotes the (3× 3)-identity matrix.
Its Lie algebra is denoted by so(3), which is the set of 3× 3 skew-symmetric
matrices which have the form

ω̂i(t) =

 0 −ω3
i (t) ω2

i (t)
ω3
i (t) 0 −ω1

i (t)
−ω2

i (t) ω1
i (t) 0

 ≃ ωi

where ωi = (ω1
i , ω

2
i , ω

3
i ) ∈ R3 and where ·̂ : R3 → so(3) denotes the isomorphism

between vectors on R3 with skew-symmetric matrices.
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Dynamics of an aerial robot with manipulator arms

We consider a multirotor UAV, consisting on n+ 1 interconnected rigid bodies.
The configuration of the ith-body is denoted by gi ∈ SE(3)

gi =

(
Ri xi

0 1

)
where Ri is the orientation in SO(3) and xi is the position in R3 of its center of
mass. The group operation is the matrix multiplication.
The inverse of the matrix is given by

g−1
i =

(
RT

i −RT
i xi

0 1

)
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Dynamics of an aerial robot with manipulator arms

The Lie algebra of SE(3) is denoted by se(3) and any ξ ∈ se(3) is given by

ξ =

(
ω̂ v
0 0

)
where ωi ∈ so(3) ≃ R3 and vi ∈ R3 are the angular and linear (body) velocities.
The pose inertia tensor for each body is given by

Ii =
(
Ji 0
0 miI3

)
where Ji is the rotational inertia matrix, mi the mass of ith body, and I3 the
3× 3 identity matrix.
Each body is subject to a potential energy V : SE(3) → R.
We assume that the 0th-body is subject to forces from the propellers that
result in body-fixed torque τ ∈ R3 and lift force u > 0 aligned with the vertical
axis e = (0, 0, 1) ∈ R3.
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Dynamics of an aerial robot with manipulator arms

The system has n joints described by the
parameter r ∈ M , M ⊂ Rn.
The relative transformation between
the base body 0th and the ith is given
by

gi = g0g0i(r)

All torques are controlled using the
torque inputs τr ∈ Rm.
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Dynamics of an aerial robot with manipulator arms
The Lagrangian of the system is given by

L(q0, ξ0) =
1

2
ξT0 M0(r)ξ0 −

n∑
i=0

mia
T
g xi

where q0 = (R0, x0, r) and ξ0 = (ω0, v0, ṙ), and where the positions x1, . . . , xn

are functions of q0, and ag denotes the gravitational acceleration.
Using the adjoint notation Ai := Adg−1

0i
(r) and jacobian Ji = g−1

0i (r)∂rg0i(r),
the mass matrix M0 is defined as

M0(r) =


I0 +

n∑
i=1

AT
i IiAi

n∑
i=1

AT
i IiJi

n∑
i=1

JT
i IiAi

n∑
i=1

JT
i IiJi


that can be rewritten in terms of J, C,Mωṙ,Mvṙ,Mṙṙ as

M0(r) =

 J CT

C mI3
Mωṙ

Mvṙ

MT
ωṙ MT

vṙ Mṙṙ

 , where m =

n∑
i=0

mi.

Omayra Yago Nieto XVIII International Young Workshop 12 / 34



Dynamics of an aerial robot with manipulator arms

The equations of motion in coordinates q̄ = (q, ξ) = (R, x, r, ω, v, ṙ) are given
by

Ṙ =Rω,

mẍ =mag +Reu,[
ω
ṙ

]
=M̄−1(r)

[
µ
ν

]
[

µ̇
ν̇

]
=

[
µ× ω

1
2 ξ̄

T∂M̄(r)ξ̄

]
+

[
τ − CTeu/m
τr −MT

vṙeu/m

]
,

where ξ̄ = (ω, ṙ), the mass matrix M̄(r) is given by

M̄ =

[
J− CTC/m Mωṙ − CTMvṙ/m

MT
ωṙ −MT

vṙC/m Mṙṙ −MT
vṙMvṙ/m

]
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Dynamics of an aerial robot with manipulator arms

We consider the system subject to unknown dynamics
fx
uk,f

ω
uk,f

ṙ
uk : SE(3)× se(3) → se(3)∗.

The dynamics of the system are

Ṙ =Rω,

mẍ =mag +Reu+ fx
uk(q0, ξ0),[

ω
ṙ

]
=M̄−1(r)

[
µ
ν

]
[

µ̇
ν̇

]
=

[
µ× ω

1
2 ξ̄

T∂M̄(r)ξ̄

]
+

[
τ − CTeu/m
τr −MT

vṙeu/m

]
+

[
fω
uk(q0, ξ0)

f ṙ
uk(q0, ξ0)

]
.
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Learning for the compensation of unknown dynamics using
GPs

We consider an oracle (in our case a GP model) that predicts fx
uk,f

ω
uk,f

ṙ
uk for a

given state q̄ = (R, x, r, ω, v, ṙ).
We are going to work with a training data set D = {q̄{i}, y{i}}Ni=1 such that

y =

 (mẍ−mag −Reu)⊤

(µ̇− µ× ω + C⊤eu/m− τ)⊤

(ν̇ − 1
2 ξ̄

⊤∂M̄(r)ξ̄ +M⊤
vṙeu/m− τr)

⊤

 =

fx
uk

fω
uk

f ṙ
uk


The estimates of the oracle based on the data set D are denoted by f̂

x

uk, f̂
ω

uk, f̂
ṙ

uk

Omayra Yago Nieto XVIII International Young Workshop 15 / 34



Learning for the compensation of unknown dynamics using
GPs

Consider an oracle with the predictions f̂
x

uk, f̂
ω

uk, f̂
ṙ

uk ∈ C0 based on the data set
D. Let SX ⊂ (SE(3)× (X ⊂ R6)) be a compact set where the derivatives of
f̂
x

uk, f̂
ω

uk, f̂
ṙ

uk are bounded on X .
There exists a bounded function ρ̄ : SX → R≥0 such that the prediction error is
given by

P
{∥∥∥∥∥∥∥
f

x
uk(q̄)− f̂

x

uk(q̄)

fω
uk(q̄)− f̂

ω

uk(q̄)

f ṙ
uk(q̄)− f̂

ṙ
uk(q̄)


∥∥∥∥∥∥∥ ≤ ρ̄(q̄)

}
≥ δ

with probability δ ∈ (0, 1] for all q̄ = (q, ξ) ∈ S.
This ensures that there exists an (probabilistic) upper bound for the error between
the prediction f̂

x

uk, f̂
ω

uk, f̂
ṙ

uk and the actual fx
uk,f

ω
uk,f

ṙ
uk on a compact set.
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Learning for the compensation of unknown dynamics using
GPs

• Prediction: Input matrix X = [q̄1, q̄2, . . . , q̄N ]. Output matrix
Y ⊤ = [y1, y2, . . . , yN ], where y might be corrupted by additive Gaussian
noise with N (0, σ2I6), σ ∈ R≥0.
The prediction of the output y∗ ∈ R6 at a new test point q̄∗ ∈ SX is given by

µi(y
∗|q̄∗,D) = mi(q̄

∗)

+ k(q̄∗, X)⊤K−1
(
Y:,i − [mi(X:,1), . . . ,mi(X:,N )]⊤

)
vari(y∗|q̄∗,D) = k(q̄∗, q̄∗)− k(q̄∗, X)⊤K−1k(q̄∗, X).

Kernel: k : SX × SX → R, correlation of two states (q̄, q̄
′
).

Mean function: mi : SX → R to include prior knowledge.
Gram matrix: Kj′ ,j = k(X:,j′ , X:,j) + δ(j, j

′
)σ2 for all

j, j
′ ∈ {1, . . . , N} where

δ(j, j
′
) =

{
1 if j = j

′

0 otherwise
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Learning for the compensation of unknown dynamics using
GPs

• Prediction: Input matrix X = [q̄1, q̄2, . . . , q̄N ]. Output matrix
Y ⊤ = [y1, y2, . . . , yN ], where y might be corrupted by additive Gaussian
noise with N (0, σ2I6), σ ∈ R≥0.
The prediction of the output y∗ ∈ R6 at a new test point q̄∗ ∈ SX is given by

µi(y
∗|q̄∗,D) = mi(q̄

∗)

+ k(q̄∗, X)⊤K−1
(
Y:,i − [mi(X:,1), . . . ,mi(X:,N )]⊤

)
vari(y∗|q̄∗,D) = k(q̄∗, q̄∗)− k(q̄∗, X)⊤K−1k(q̄∗, X).

Covariance between q̄∗ and input training data X:
k : SX × SN

X → RN , such that kj = k(q̄∗, X:,j) for all j ∈ {1, . . . , N}
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Learning for the compensation of unknown dynamics using
GPs

The kernel k is selected such that fx
uk,f

ω
uk,f

ṙ
uk have a bounded reproducing

kernel Hilbert space (RKHS) norm on SX .

The model error is bounded by

P
{∥∥∥∥∥µ

(f̂
x

uk(q̄)

f̂
ω

uk(q̄)

f̂
ṙ

uk(q̄)

 ∣∣∣∣∣q̄,D
)

−

fx
uk(q̄)

fω
uk(q̄)

f ṙ
uk(q̄)

∥∥∥∥∥ ≤

∥∥∥∥∥β⊤Σ
1
2

(f̂
x

uk(q̄)

f̂
ω

uk(q̄)

f̂
ṙ

uk(q̄)

 ∣∣∣∣∣q̄,D
)∥∥∥∥∥
}

≥ δ

T.Beckers, LJ.Colombo, S.Hirche, GJ.Pappas Online learning-based
trajectory tracking for underactuated vehicles with uncertain dynamics. IEEE
Control Systems Letters 6, 2090-2095, 2022.
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Design of controllers of a system with partially unknown
dynamics

• We want to prove the stability of the closed-loop with a control law using
a Lyapunov function.

• The data-driven control law with safety guarantees is based on the error
terms and modified error terms.

ex = x− xd, eu = u− ud,

eω = ω −RTRdωd, eR = RT
d R− I.

ẽu̇ = ėu +
1

ku
eTRT ėx ∈ R

ẽω = eω +
1

kR
(RT

d Reud)×RT ėx ∈ R3.

M.Kobilarov (2013). Trajectory control of a class of articulated aerial
robots. IEEE International Conference on Unmanned Aircraft Systems
(ICUAS).
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Design of controllers of a system with partially unknown
dynamics

Let the Lyapunov function be

V =
kx
2
||ex||2 +

kR
2
||eR||2 +

kr
2
||er||2 +

ku
2
e2u +

m

2
||ėx||2 +

1

2
ẽ2u̇

+
1

2

[
ẽω
ėr

]
M̄(r)

[
ẽω
ėr

]
.

Denote by ξ = [e⊤x , e
⊤
R, e

⊤
r , e

⊤
u , ẽ

⊤
u̇ , ẽω

⊤]⊤, and observe that

Λ1||ξ||2 ≤ V ≤ Λ2||ξ||2,

where Λ1 = 1
2min{1, kx, kR, kr, ku,m, λmin},

Λ2 = 1
2max{1, kx, kR, kr, ku,m, λmax}, and λ1, λ2 are the minimum and

maximum eigenvalues of M̄(r).
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Design of controllers of a system with partially unknown
dynamics
Considering the control inputs (u, τ , τ r)

ü = −kueu − kuẽu̇ + üd −
1

ku

(
ë⊤uRe+ ė⊤x R(ω × e)

)
− µ (fx

uk|q̄,D) ,[
τ
τ r

]
=

[
−kRR

⊤RdeR − kωẽω − µ× ω + C⊤eu/m

−krer − kṙėr − 1
2 ξ̄

⊤
∂M̄(r)ξ̄ +M⊤

vṙeu/m

]
+ ḃ+

1

2
Ṁ(r)

[
ẽω
ėr

]
−

[
µ (fω

uk|q̄,D)

µ
(
f ṙ
uk|q̄,D

)]
where

b = M(r)

[
R⊤Rd

(
ωd − 1

kr
Bϑ

(
R⊤

d R
)
eud ×R⊤ėx

)
ṙd,

]
we have

V̇ = −kv||ėx||2 − ku̇ (ẽu̇)
2 − ẽu̇µ (fx

uk|q̄,D)− kω||ẽω||2

− ẽ⊤ωµ (fω
uk|q̄,D)− kṙ||ėr||2 − ė⊤r µ

(
f ṙ
uk|q̄,D

)
.
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Design of controllers of a system with partially unknown
dynamics
Theorem
Consider the system

Ṙ =Rω,

mẍ =mag +Reu+ fx
uk(q0, ξ0),[

ω
ṙ

]
=M̄−1(r)

[
µ
ν

]
[

µ̇
ν̇

]
=

[
µ× ω

1
2
ξ̄T ∂M̄(r)ξ̄

]
+

[
τ − CTeu/m
τr −MT

vṙeu/m

]
+

[
fω

uk(q0, ξ0)
f ṙ

uk(q0, ξ0)

]
.

and a GP model trained with the data set D = {q̄{i}, y{i}}Ni=1. The control law
guarantees that the tracking error ξ is uniformly ultimately bounded in probability
by

P

{
||ξ(t)|| ≤

√
Λ2

Λ1
max
q∈SX

ρ̄(q̄), ∀t ≥ T

}
≥ δ

for all q̄ ∈ SX , δ ∈ (0, 1), with T ∈ R≥0, and renders the tracking error
exponentially stable.
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Design of controllers of a system with partially unknown
dynamics
Sketch of the theorem

We have seen that

V̇ = −kv||ėx||2 − ku̇ (ẽu̇)
2 − ẽu̇µ (fx

uk|q̄,D)− kω||ẽω||2

− ẽ⊤ωµ (fω
uk|q̄,D)− kṙ||ėr||2 − ė⊤r µ

(
f ṙ
uk|q̄,D

)
.

Considering that the model error is bounded by

P
{∥∥∥∥∥µ

(f̂
x

uk(q̄)

f̂
ω

uk(q̄)

f̂
ṙ

uk(q̄)

 ∣∣∣∣∣q̄,D
)

−

fx
uk(q̄)

fω
uk(q̄)

f ṙ
uk(q̄)

∥∥∥∥∥ ≤

∥∥∥∥∥β⊤Σ
1
2

(f̂
x

uk(q̄)

f̂
ω

uk(q̄)

f̂
ṙ

uk(q̄)

 ∣∣∣∣∣q̄,D
)∥∥∥∥∥
}

≥ δ

the evolution of the Lyapunov function V can be upper bounded by

P{V̇ ≤ −min{kv, ku̇, kω, kr}||ξ||2 − (|ẽu̇|+ ||ẽω||+ ||ėr||) ρ̄(q̄)} ≥ δ

for all q̄ on SX , δ ∈ (0, 1).
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Design of controllers of a system with partially unknown
dynamics
Sketch of the theorem

V̇ is negative with probability δ, for all ξ such that

||ξ|| > max
q̄∈SX

ρ̄(q̄)
1

min{kv, ku̇, kω, kr}

The Lyapunov function V is lower and upper bounded by

α1(||ξ||) ≤ V ≤ α2(||ξ||)

where α1(r) = Λ1r
2 and α2(r) = Λ2r

2

Finally, we can compute the maximum tracking error b̄ ∈ R≥0, such that

P{||ξ|| ≤ b̄} ≥ δ, by b̄ =

√
Λ2

Λ1
max
q̄∈SX

ρ̄(q̄)
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Simulations
Numerical example of the position tracking of a UAM

Hexarotor with a robotic arm

The prescribed trajectory orders the vehicle to
execute a controlled takeoff, and the maintenance
of a stable hovering position within the xy-axis

Objective: to achieve a positional stability in the
lateral plane while effecting a precise vertical
ascent of 1 meter along z−direction.

The simulation environment to construct the data set consists on the control
allocation for the fault tollerant control of the hexarotor, where the robotic arm is
used to stabilize the motion after the failure of a rotor.

C.Pose, J.Giribet and I.Mas. Adaptive center-of-mass relocation for aerial
manipulator fault tolerance. IEEE Robotics and Automation Letters, 7(2),
5583-5590, 2022.
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Simulations
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Simulations
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Simulations

Figure: Disturbances considered in the vehicle

https://youtu.be/bHrvn5kpgns
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Simulations
The use of GP process for disturbance estimation

• We use a GP model for the compensation of the unknown dynamics.
• Data set constructed using data related to velocities and positions.
• Squared Exponential kernel. To estimate the parameters of this kernel, the

basis function coefficients and the noise standard deviation we have use the
fitting model fitrgp included in RegressionGP model.

To compare the improvement in system performance with the inclusion of the GP
for disturbance estimation, two simulations have been done with identical
condictions, except for the incorporation of the GP for disturbance estimation.

The disturbances have been introduced into the forces acting on the vehicle.
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Simulations

Figure: UAV’s position when disturbances affect the vehicle, causing displacement of the
center of mass from its desired position in the xy-plane
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Simulations

Figure: UAV’s position incorporating the estimation provided by the GP into the control
action
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Conclusions

Conclusions
• We have used learning-based approaches based on GP to provide a new

control law that learns the uncertainties of the UAM.
• We have guaranteed the probabilistic boundedness of the tracking error.
• Using simulations, we have proved that, using GP, the impact of the

disturbances on the system can be mitigated.
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Safe online learning-based control for an aerial robot with
manipulator arms

Thanks for your attention!
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