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Abstract

Bell non-locality is a fundamental concept in quantum mechanics that reveals the non-classical
correlations between entangled quantum systems, which cannot be explained by any local hidden
variable theory. This phenomenon is not just of theoretical interest but also plays a critical role in
the practical certification of quantum devices. Specifically, Bell non-locality provides a powerful
tool for certifying the operation of quantum devices in a device-independent manner, meaning
that the certification does not rely on trusting the internal workings of the devices but rather on
the statistical properties of the measurement outcomes.

This thesis comprises a collection of three papers that explore Bell non-locality and its most
direct application, the certification of quantum devices. The first part of the thesis offers a brief
introduction to these topics, while the second part presents each of the three studies.

The first of these studies presents a standard approach to both topics by constructing a
family of Bell inequalities and characterising their optimal realisation. This includes subjecting
the measurements of one of the parties to a device-independent certification protocol and self-
testing the optimal shared state.

In the second study, we introduce a variation of the random access code (RAC) protocol,
termed biased RACs. We then develop a semi-device-independent certification protocol for the
decoding measurements that covers all cases of 2-bit encoding and some cases of 3-bit encoding.

Finally, the last study explores the use of general Machine Learning and data science tech-
niques in the simplest Bell scenario and its variant for the correlation space, framing the problem
as a classification task to distinguish non-signalling behaviours between quantum and not quan-
tum. While Machine Learning models do not outperform existing methods, our exploration of
behaviour classification techniques has led to the development of new variants of the see-saw
and NPA algorithms, allowing us to explore non-exposed points on the boundary of the CHSH
quantum set.



Streszczenie

Nielokalność Bella jest fundamentalną koncepcją w mechanice kwantowej, która ujawnia nieklasy-
czne korelacje między splątanymi układami kwantowymi, których nie można wyjaśnić żadną
lokalną teorią zmiennych ukrytych. Zjawisko to nie jest tylko przedmiotem zainteresowania teo-
retycznego, ale odgrywa również kluczową rolę w praktycznej certyfikacji urządzeń kwantowych.
W szczególności nielokalność Bella zapewnia potężne narzędzie do certyfikacji działania urządzeń
kwantowych w sposób niezależny od urządzenia, co oznacza, że certyfikacja nie polega na zau-
faniu do wewnętrznych działań urządzeń, ale raczej na statystycznych właściwościach wyników
pomiaru.

Niniejsza rozprawa składa się z trzech artykułów, które badają nielokalność Bella i jej naj-
bardziej bezpośrednie zastosowanie, certyfikację urządzeń kwantowych. Pierwsza część rozprawy
zawiera krótkie wprowadzenie do tych tematów, podczas gdy druga część przedstawia każde z
trzech badań.

Pierwsze z badań omawia standardowe podejście do obu tematów poprzez skonstruowanie
rodziny nierówności Bella i scharakteryzowanie ich optymalnej realizacji. Obejmuje to poddanie
pomiarów jednej ze stron niezależnemu od urządzenia protokołowi certyfikacji i samodzielne
testowanie optymalnego współdzielonego stanu.

W drugim badaniu wprowadzamy odmianę protokołu kodu losowego dostępu (RAC), określaną
jako stronnicze RAC. Następnie opracowujemy półniezależny od urządzenia protokół certyfikacji
dla pomiarów dekodowania, który obejmuje wszystkie przypadki kodowania 2-bitowego i niektóre
przypadki kodowania 3-bitowego.

Ostatnie badanie przedstawia zastosowanie ogólnych technik uczenia maszynowego i nauki
o danych w najprostszym scenariuszu Bella i jego wariancie dla przestrzeni korelacji, ujmując
problem jako zadanie klasyfikacyjne w celu odróżnienia zachowań niesygnalizacyjnych między
kwantowymi i niekwantowymi. Podczas gdy modele uczenia maszynowego nie przewyższają
istniejących metod, nasze badanie technik klasyfikacji zachowań doprowadziło do opracowania
nowych wariantów algorytmów huśtawki i NPA, co pozwala nam badać nieeksponowane punkty
na granicy zbioru kwantowego CHSH.
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Preface

The objective of this thesis is to introduce the concepts used in each of the works that make up
this collection of papers, namely

1. Optimality of any pair of incompatible rank-one projective measurements for some non-
trivial Bell inequality, published in Physical Review A in September 2022;

2. Biased random access codes, published in Physical Review A in October 2023; and

3. Machine Learning meets the CHSH scenario, to be published.

In summary, each of these works can be categorised either into the field of Bell non-locality
(papers 1 and 3) or certification of quantum devices (1 and 2). To the end of logically organising
the content, we have divided the introduction into two chapters. In the first chapter, we discuss
the concepts that are common to all three works. We start by the historical introduction to the
phenomenon of Bell non-locality, passing to the explanation of Bell’s seminal theorem in Sec. 1.1,
and applications in Sec. 1.2, culminating with a geometrical interpretation of Bell non-locality
provided in Sec. 1.3.

In Chapter 2, we introduce the concepts specific to each study, beginning with the idea of
self-testing, essential for the understanding of the first paper. We then proceed to explore the
SDP techniques employed in both the second and third papers, specifically examining the NPA
hierarchy and the see-saw optimisation. The chapter concludes with an introduction to the
quantum random access code protocol, a quantum device distinct from standard Bell scenarios
and the main focus of the third paper.

In Chapter 3, each work is presented, followed by a short note on the author’s contributions.
We end our considerations in the Concluding Remarks section.



CHAPTER 1

General introduction

To better understand the topic of Bell non-locality, it is worth initiating with a short historical
introduction to the subject. Our starting point will be the thought experiment proposed in
Ref. [1] which is a simplification of that presented in the seminal paper by Einstein, Podolsky
and Rosen (EPR) in 1935 [2]. In both cases, the objective is to show that the result of the
experiment is inconsistent with the concept of local-realism, which leads the authors to conclude
that quantum theory was incomplete.

To put it into perspective, in addition to encompassing local causality, i.e., no effect can
propagate faster than the speed of light, the concept of local-realism includes the idea that the
properties of a given physical system are well-defined prior and independently of any measurement
outcome. In other words, the argument presented by EPR seeks to address the problem in
quantum mechanics that, although the wave function evolves deterministically according to the
Schrödinger equation, the measurement process does not. It is in this context that the so-called
EPR paradox arises.

In a simplified version of it, we consider an entangled state |ψ−⟩ composed of two parts, in
which each part consists of a two-level system:

|ψ−⟩ = 1√
2

(
|01⟩ − |10⟩

)
, (1.1)

where |0⟩ represents the ground state and |1⟩ represents the excited state. When the parts are
separated from each other, a measurement is carried out on one side, collapsing the joint state
into either |01⟩ or |10⟩. As a result, one part effectively steers the marginal state of the opposite
part, regardless of how far apart the system has been split.

Although this effect may seem obvious at first glance, after all the state was initially an-
ticorrelated, the paradox only appears when the experiment is analysed from a non-realistic
perspective. That is, assuming a classical system, the result would not be surprising at all, as
the measurement effect can always be traced back to the initial preparation. On the other hand,
in quantum mechanics, the indeterminacy of the state before measurement does not allow the
same conclusion, leaving no room for any explanation that avoids the violation of local causality.

6



1.1. Bell’s theorem 7

In Refs. [1, 2], the authors continue to argue that, in the absence of local-realism, quantum
mechanics does not provide a complete description of physical reality. This limitation leads
to the proposal of incorporating mechanisms beyond quantum theory, commonly referred to as
hidden variables, which aim to recover realism and subsequently restore local-causality within
the theory. In fact, a few propositions were made in this direction, being the most notable of
them the pilot wave theory, introduced by de Broglie, in 1927 [3], and later continued by Bohm
[4, 5]. In a nutshell, this theory presupposes the existence of an element denoted pilot wave
that would serve as a kind of guide for particle motion. In this context, the hidden variables
consist of the positions of such particles moving on the pilot guide and are not available for
empirical verification due to experimental constraints. The pilot wave, in turn, assumes the role
of the wave function, and is described by the Schrödinger equation, making the predictions of
this theory consistent with the standard Copenhagen interpretation. However, despite recovering
realism, this interpretation failed to produce a local theory, since its pilot wave is still instantly
affected in its entirety by local measurements. That is, as soon as the shape of the pilot wave
is disturbed locally, the trajectories of the particles carried therein are immediately modified,
breaking local causality. In conclusion, the pilot wave showed that it was possible to complete
quantum mechanics, but it did not end the debate as it featured non-local causality in the same
way as criticised by EPR.

Nonetheless, in the following years, this theory would still play an important role in the
development of quantum mechanics. During the 1930s, the debate concerning the completeness
of quantum mechanics revolved around two main pillars, namely the aforementioned EPR ar-
gument and von Neumann’s impossibility theorem [6]. To put it briefly, von Neumann argued
that any theory incorporating hidden variables would inherently conflict with quantum mechan-
ics, reinforcing the already predominant Copenhagen interpretation. Although the pilot wave
theory was introduced before von Neumann’s result, de Broglie, its original proposer, ended up
abandoning it [7]. This effectively diminished the impact of the EPR argument at that time,
reducing it to a mere criticism rather than a substantial counterpoint to the more widely ac-
cepted Copenhagen interpretation. However, in 1952, Bohm independently came up with the
same theoretical framework proposed by de Broglie, which shed light on the idea that von Neu-
mann’s impossibility theorem did not completely forbid the use of hidden variables. Although
this fact had already been observed in 1935 by Grete Hermann [8], it gained notoriety through
Bell in the 1960s, who not only highlighted the inconsistencies in von Neumann’s argument but
also proposed his most famous theorem [9].

In the following, we present this seminal concept for the simplest Bell scenario, also known
as CHSH scenario, as a reference to Clause, Horne, Shimony and Holt [10]. For this, we begin
by deriving the locality condition on the probabilities describing the scenario, concluding with
the introduction of the CHSH inequality as demonstrated by Bell in Ref. [11].

1.1 Bell’s theorem

Similar to von Neumann’s result, Bell’s theorem is a no-go theorem about the existence of hidden
variables in quantum mechanics. It comes from a reinterpretation of the thought experiment
proposed by EPR, deriving an inequality that, when violated, implies that the correlations
observed between the parts cannot be locally explained. The most fundamental aspect of the
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theorem is that the proposed inequalities depend on the probabilities of the experiment, thus
allowing them to be verified experimentally.

The core of the argument in Bell’s theorem revolves around the causal structure behind
the scenario, and is best summarised by the so-called Reichenbach’s common cause principle
[12]. In short, this principle states that, given two statistically dependent events A and B, the
dependence can either be attributed to a direct cause (A causes B or vice versa) or to a third
event C, which acts as a cause common to A and B. In the latter case, when conditioned on the
common cause, A and B are independent, that is,

p(A,B |C) = p(A |C) p(B |C). (1.2)

Analogously, in Bell’s theorem we start from a bipartite scenario in which the parts, Alice
and Bob, share a bipartite state |ψ−⟩ on which they are allowed to perform one of two dichotomic
measurements per round. The experimenters’ choice of measurements are encoded by variables
x, y ∈ {0, 1}, respectively, whereas their outcomes are designated by a, b ∈ {±1}. After a
sufficient number of rounds, if any causal dependence between Alice and Bob’s measurements is
observed, the following relation holds

p(a, b |x, y) ̸= p(a |x) p(b | y). (1.3)

Then, by employing Reichenbach’s principle, we assume that in each run of the experiment the
parts are moved far enough apart so that the measurement events are space-like separated, thus
ruling out the possibility of a direct cause. In this way, any causal relation must be the result of
a common cause, here encoded by a hidden variable λ:

p(a, b |x, y, λ) = p(a |x, λ) p(b | y, λ). (1.4)

In terms of the probabilities accessible to the observers, we now use Bayes’ rule to write

p(a, b |x, y) =
∑

λ

p(a, b, λ |x, y) =
∑

λ

p(a, b |x, y, λ) p(λ |x, y).

Next, assuming the experimenters’ free choice, translated here as the statistical independence
between x and y and the hidden variable, that is, p(λ |x, y) = p(λ)1, we get,

p(a, b |x, y) =
∑

λ

p(a |x, λ) p(b | y, λ) p(λ), (1.5)

a relation known as locality condition. In practice, Eq. (1.5) tells us that when the observed
correlation results from a common cause, the joint probabilities must admit a decomposition in
terms of the probability distribution of λ. However, although this distribution is in principle
inaccessible, this decomposition effectively poses a restriction to the observed probabilities.

To make this restriction evident, consider the observables Ax and By associated to the choices

1In other words, one can assume that, since the λ lives in the common past of Alice and Bob, there is no
statistical dependence between the choice of measurements and the hidden variable, as λ precedes x and y. The
denial of this assumption leads to an interpretation of quantum mechanics known as superdeterminism. For
details, check Ref. [13].
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x and y of Alice and Bob. Then, define the expected value related to the joint distribution

⟨AxBy⟩ :=
∑

a,b=±1

ab p(a, b |x, y), (1.6)

and the expected values associated to marginal distributions conditioned on λ,

⟨Ax,λ⟩ :=
∑

a=±1

a p(a |x, λ) and ⟨By,λ⟩ :=
∑

b=±1

b p(b | y, λ). (1.7)

In the latter case, as the distributions are bounded, one can write

| ⟨Ax,λ⟩ | ≤ 1 and | ⟨By,λ⟩ | ≤ 1. (1.8)

Then, by combining Eqs. (1.6) and (1.7) with Eq. (1.5), we write

⟨A1B0⟩ − ⟨A1B1⟩ =
∑

λ

[
⟨A1,λ⟩ ⟨B0,λ⟩ − ⟨A1,λ⟩ ⟨B1,λ⟩

]
p(λ)

=
∑

λ

[
⟨A1,λ⟩ ⟨B0,λ⟩

(
1± ⟨A0,λ⟩ ⟨B1,λ⟩

)]
p(λ) (1.9)

−
∑

λ

[
⟨A1,λ⟩ ⟨B1,λ⟩

(
1± ⟨A0,λ⟩ ⟨B0,λ⟩

)]
p(λ).

By using Eq. (1.8), we can bound it to

| ⟨A1B0⟩ − ⟨A1B1⟩ | ≤
∑

λ

[(
1± ⟨A0,λ⟩ ⟨B1,λ⟩

)
+
(
1± ⟨A0,λ⟩ ⟨B0,λ⟩

)]
p(λ)

≤ 2±
[
⟨A0B1⟩+ ⟨A0B0⟩

]
,

or, in its best known form,

| ⟨A0B0⟩+ ⟨A0B1⟩+ ⟨A1B0⟩ − ⟨A1B1⟩ | ≤ 2. (1.10)

The pair of inequalities in Eq. (1.10) is better known by the acronym CHSH and was first
introduced as the local constraint of the homonymous scenario [10]. These inequalities are not
unique, but they are part of an orbit that totals eight CHSH inequalities. The remaining elements
can be obtained by cyclically permuting the signs, which is a consequence of being able to relabel
the measurement choices and exchange Alice for Bob, thus keeping the scenario unchanged.

Now, to conclude the theorem, it remains to show a quantum realisation that violates one of
such inequalities. To do so, consider the singlet state in Eq. (1.1), and the observables

A0 = σz, A1 = σx, B0 = −σx + σz√
2

and B1 =
σx − σz√

2
, (1.11)

where σx and σz correspond to the x and z Pauli matrices, respectively. By evaluating the
above realisation, the value of 2

√
2 is obtained, exceeding the upper bound in Eq. (1.10) and

demonstrating the incompatibility of local hidden variable models with quantum mechanics.

After the publication of Bell’s original paper in 1964, the next natural step was to seek for
experimental evidence to support the theorem. In this sense, the first tests which successfully
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demonstrated violation of a Bell inequality appeared in the following years. In 1972, Freedman
and Clauser were the first to violate a variant of the CHSH inequality [14]. However, some
loopholes were pointed out in their experiment, most notably what would later become known
as the locality and detection loopholes. Briefly, the locality loophole concerns the experimental
requirement that the measurement process be subject only to causal influences local to each
part. The detection loophole raises the possibility that, in a test using pairs of photons, for
instance, given a low detection efficiency, the successful detections could result in a sample
which is not representative of the realisation, producing a fake violation. To overcome these
issues, the first test that managed to bypass the locality loophole was due to Alain Aspect in a
series of experiments carried out in the early 1980s [15, 16, 17]. In 1998, the results of Aspect
were improved by a team in Innsbruck led by Anton Zeilinger [18], in which they enforced an
actual space-like separation between the parts. The detection loophole was addressed shortly
after, in 2001 [19], and the first so-called loophole-free tests appeared in 2015, resulting from
three independent experiments [20, 21, 22] that simultaneously closed the locality and detection
loopholes. For the experimental efforts in the search of a Bell inequality violation, John Clauser,
Alain Aspect and Anton Zeilinger were awarded the 2022 Physics Nobel Prize.

Apart from the experimental breakthroughs mentioned above, it is also worth commenting
on some important theoretical advances that have not yet been considered before we conclude
this section. The first of them concerns the value of 2

√
2 obtained through the realisation

in Eq. (1.11). This is known to be the maximum value by which a quantum realisation can
violate the CHSH inequality, a result demonstrated by Tsirelson in 1980 [23]. However, although
quantum realisations cannot be arbitrarily non-local, a more general and strict characterisation
of the quantum set is lacking. For the specific case where the marginal distributions of the
outcomes are uniform for both parts, an analytical description is known and was also obtained
first by Tsirelson [24]. The same result was achieved later and independently by Landau [25],
Uffink [26] and Masanes [27], a reason why this description is known as TLM condition. Unlike
the CHSH inequality, the TLM condition is not linear and can be written as

|arcsin ⟨A0B0⟩+ arcsin ⟨A0B1⟩+ arcsin ⟨A1B0⟩ − arcsin ⟨A1B1⟩| ≤ π. (1.12)

As before, they also consist of an orbit containing eight elements which can be obtained by the
cyclic permutation of signs.

For more general cases than the CHSH scenario, besides the numerical approaches that will
be discussed in the next chapter, there are two results that apply to the quantum realisations
of any Bell scenario. First and foremost, entanglement is necessary to produce non-locality.
The verification of this statement is straightforward, as if we consider a separable state ρAB =∑

i pi ρ
i
A ⊗ ρiB, the distributions arising from it can be factorised as in Eq. (1.5), i.e.,

p(a, b |x, y) = tr
(
ρAB Ax ⊗By

)

= tr
[(∑

i

pi ρ
i
A ⊗ ρiB

)
Ax ⊗By

]

=
∑

i

pi tr
(
ρiAAx

)
tr
(
ρiBBy

)
.

Secondly, measurement incompatibility is also required to produce non-local behaviour. The
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demonstration of this result is due to Arthur Fine [28], and shows that the statistics describing a
Bell scenario are local if and only if there is a joint probability distribution for the results of all
measurements carried out by one part. Then, if the observables describing these measurements
are joint measurable, such a distribution must exist, and, as a consequence, the observed statistics
decompose as in Eq. (1.5), being necessarily local.

Lastly, it is important to note that the results discussed so far represent the early development
of Bell non-locality, during a time when its study was primarily driven by its fundamental signifi-
cance to quantum mechanics. At the beginning of the 90s, this paradigm would be changed with
more application-driven results, in particular with Artur Ekert’s celebrated work [29], regarded
as one of the founding articles of quantum cryptography. In essence, Ekert’s idea is based on
the observation that in a non-local model, the randomness in the measurement outcomes can be
used to devise a cryptographic key distribution protocol, secured by the violation of the CHSH
inequality. This idea is the basis of device-independent cryptography, in which the violation of
a given Bell inequality ensures the production of secure cryptographic keys, without relying on
physical assumptions of the devices. In what follows, we further discuss the device-independent
paradigm that emerged from Ekert’s pioneering work.

1.2 Device-independence and certification

Quantum cryptography originates from the idea of exploiting the properties of quantum mechan-
ics to ensure secure communication against external actors. The BB84 protocol, introduced in
1984 by Bennet and Brassard [30], is considered, along with Ekert’s work, as one of the founda-
tional results in the field. However, while the security of BB84 depends on the ability of the parts
to implement measurements on complementary bases, the protocol proposed by Ekert introduces
the concept that would later become known as device-independence, which we explore below. In
a nutshell, Ekert’s protocol relies on the secrecy of a bit string key shared by the parts aiming
to establish a secure communication channel. The encryption (decryption) algorithm can be
thought of as a publicly known function which receives a pair of inputs – message and key – and
returns an encrypted (decrypted) message. For this reason, the effort in creating this channel is
resumed to the generation and distribution of the key, which is the final goal of the protocol.

That said, Ekert’s key distribution scheme can be described as a bipartite Bell scenario in
which the parts share a singlet state, as in Eq. (1.1). Subsequently, each part conducts one of
three possible measurements, given by,

A0 = σz, A1 =
1√
2
(σz + σx) and A2 = σx, (1.13)

for Alice, and

B0 =
1√
2
(σz + σx), B1 = σx and B2 =

1√
2
(σx − σz), (1.14)

for Bob. Notice that if the observables corresponding to A1 and B1 are excluded, the remain-
ing set of measurements matches exactly with the one in Eq. (1.11), with a sign flip at B0.
Hence, after a sufficiently long series of executions, when Alice and Bob publicly disclose their



12 Chapter 1. General introduction

measurement choices, they can verify the value of

SCHSH = ⟨A0B0⟩ − ⟨A0B2⟩+ ⟨A2B0⟩+ ⟨A2B2⟩ .

If SCHSH is not violated, it indicates to both parts that their state is not as entangled as |ψ−⟩ or
that their measurement devices do not match those in Eqs. (1.13) and (1.14). Consequently, they
conclude that either the devices are not reliable or the protocol has been influenced by a third
part. In contrast, when maximal violation occurs, the outcomes obtained when both parts chose
the same measurement bases (A1, B0 and A2, B1) are perfectly anticorrelated, and are then
used to create the key. In the more realistic case where the violation is not maximal, an alleged
eavesdropper could have access to a fraction of the key, and the parts would need to further resort
to post-processing protocols such as information reconciliation and privacy amplification before
completing the key distribution scheme. In other words, Ekert’s approach only requires the
devices to be pre-tested. Even if such devices are not ideally implemented, the CHSH violation
ensures that an eavesdropper cannot gain complete access to the key.

Although the first work that can be said to be device-independent is attributed to Ekert, this
aspect would only be fully recognised later. The first time this term was actually employed was in
Ref. [31]2, referring to a protocol that builds its trust based on the violation of a Bell inequality,
thus dismissing any pre-defined physical assumptions on the devices (e.g. dimensionality). In
other words, the idea of device-independence is closely related to that of certification, which in
turn is often used as the act of validating a quantum process. It is important to note, however,
that certification has a broader meaning and is used to designate validation protocols based on
weaker assumptions than those typically used by a device-independent scheme.

In the next chapter, we provide a brief introduction to another device-independent protocol
known as self-testing [33, 34]. Briefly, the idea of self-testing refers to the device-independent
scheme in which the device’s statistics allows the certification of its underlying state and mea-
surements. This idea is one of the central points of the first paper referred to in this thesis, which
mixes self-testing with other certification techniques to produce the main result. But before we
go any further, we finish this chapter with a fundamental concept which is recurrently used
in Bell non-locality, which concerns the interpretation of this phenomenon in the geometrical
context of polytope theory.

1.3 Geometrical structures in Bell non-locality

Recent works on Bell non-locality frequently use a geometric interpretation, independently at-
tributed to Froissart in 1981 [35], and subsequently to Garg and Mermin [36], and Pitowsky [37,
38, 39]. This section does not explore the details of these studies; instead, it offers a brief intro-
duction to the geometric concepts that have emerged from them. To do so, we use the notation
introduced by Tsirelson in Ref. [40] and resort again to the CHSH scenario as our starting point.

Defining a Bell scenario involves specifying the number of parts involved in the experiment,
the number of measurements per part, and the outcomes for each measurement. Not all Bell
scenarios are uniform; each part may have a different number of measurements, and each mea-
surement may have a distinct set of outcomes. In this context, the CHSH scenario is the simplest,

2In Ref. [32], the author explains the historical appearance of the term in his App. B.
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as it is composed by two parts, Alice and Bob, who each have access to two dichotomic mea-
surements. Within this setup, a behaviour, alternatively denoted as correlation, is characterised
by a tuple of 16 probabilities p(a, b |x, y), with a, b, x, y ∈ {0, 1}, organised as,

p :=
[
p(00|00), ..., p(11|00), ..., ..., p(00|11), ..., p(11|11)

]
. (1.15)

If written in this way, the behaviour of a given CHSH experiment can be thought of as a point
belonging to a region of R16 delimited by,

p(a, b |x, y) ≥ 0, ∀ a, b, x, y, (1.16a)

and
∑

a,b

p(a, b |x, y) = 1, ∀ x, y, (1.16b)

which is denoted as the CHSH probability space. Although the inputs of every such behaviours
are guaranteed to be probability distributions, they do not necessarily correspond to an actual
physical implementation of the scenario. For this, we resort to correlation sets that are more
restrictive than the probability space.

The first of these sets is called non-signalling and is often abbreviated as NS. It incorporates
the behaviours in which the marginal distributions are locally constrained, i.e., p(a |x, y) ≡
p(a |x) and p(b |x, y) ≡ p(b | y), thus ensuring no direct causal dependence between parts. In
terms of the joint probabilities p(a, b |x, y), these constraints are written as

∑

b

p(a, b |x, y) =
∑

b

p(a, b |x, y′), ∀ a, x, y, y′ ∈ {0, 1}, with y ̸= y′,

∑

a

p(a, b |x, y) =
∑

a

p(a, b |x′, y), ∀ b, x, x′, y ∈ {0, 1}, with x ̸= x′,
(1.17)

and are named non-signalling conditions. Due to Eqs. (1.16b) and the additional non-signalling
conditions, the non-signalling set effectively belongs to an 8-dimensional subspace of the original
probability space. A few important properties of the non-signalling set are that it is convex,
implying that the convex combination of two or more behaviours in NS remains non-signalling,
and it is bounded by the 16 inequalities shown in Eq. (1.16a). In addition, as the convex hull of
these inequalities defines the boundaries of NS, the non-signalling set forms a polytope, i.e., it can
be generated by the intersection of a finite number of half-spaces. Equally important, is that non-
signalling behaviours admit a parametrisation alternative to that in Eq. (1.15), written in terms
of its marginals and correlators: [⟨Ax⟩ , ⟨By⟩ , ⟨AxBy⟩]x,y. These parameters are respectively
defined as:

⟨Ax⟩ =
∑

a

a p(a |x), ⟨By⟩ =
∑

b

b p(b | y) and ⟨AxBy⟩ =
∑

a,b

ab p(a, b |x, y), (1.18)

where outcomes a and b are labelled as ±1.
When considering behaviours that admit a local decomposition as in Eq. (1.5), we end up

with a more restrictive set than NS which is named local set and indicated as L. Like the
non-signalling set, the local set is convex and bounded, also forming a polytope. It is important
to note that, in both cases, the inequalities in Eqs. (1.16a) and Eq. (1.10) serve as the facets of
these polytopes. For the non-signalling set, these facets are represented by the 16 non-negativity
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inequalities in Eq. (1.16a), whereas for the local set, they also include the eight CHSH inequalities
described as in Eq. (1.10).

Another restriction to NS is the so-called quantum correlations set, also indicated as Q. It
is composed of behaviours the entries of which admit the following realisation:

p(a, b |x, y) = tr
(
ρABMa|x ⊗Nb|y

)
, (1.19)

where ρAB is a state acting in the joint Hilbert space HA ⊗ HB of Alice and Bob, and Ma|x and
Nb|y are operators acting on HA and HB, respectively. The sets {Ma|x}a and {Nb|y}b are also
referred to as POVMs (positive operator valued measures), and each of its elements, denominated
effects, are positive semi-definite operators summing to identity. Each effect Ma|x is associated to
the outcome a of the x-th measurement of Alice, as well as Nb|y is associated to b-th outcome of
Bob’s measurement choice y. Together with NS and L, the quantum set obeys a strict inclusion
relation in the CHSH scenario, given by L ⊂ Q ⊂ NS. Nevertheless, unlike the first two sets, Q
does not form a polytope; it is also a bounded convex set, but it cannot be finitely generated.

It is important to note that the formulation of quantum correlations presented in Eq. (1.19) is
not unique, and is commonly referred to as the tensor product paradigm. For finite-dimensional
Hilbert spaces, it is equivalent to define quantum correlations as those generated by measurements
acting on a single, larger Hilbert space, where [Ma|x, Nb|y] = 0, ∀ a, b, x, y. This alternative
definition is known in the literature as the commuting paradigm. For infinite-dimensional Hilbert
spaces, it is known that the commuting paradigm is more comprehensive than the tensor product
[40], and the question related to the equivalence of both definitions was conjectured in a problem
known as Tsirelson’s problem [41]. In 2020, the question was resolved as negative in Ref. [42].
Here, as we only use finite-dimensional Hilbert spaces, we stick to the tensor product formulation
unless otherwise noticed.

1.3.1 CHSH correlation space

One last topic worth mentioning within the geometrical structures in non-locality is the region of
the CHSH scenario obtained by considering non-signalling behaviours satisfying ⟨Ax⟩ = ⟨By⟩ = 0,
∀ x, y. This region is known as correlation space, and it is reasonably better understood than the
entire scenario3. All three sets L, Q and NS have an analytical description of their boundaries
in this region, and are limited by the 4-cube given by | ⟨AxBy⟩ | ≤ 1, ∀ x, y. In addition, as in
the entire CHSH scenario, the local set is further constrained by the eight CHSH inequalities,
while Q is delimited by the eight variants of the TLM conditions in Eq. (1.12). It is important
to note that for the entire CHSH space, as well as for any other non-locality scenario, there is no
known analytical description of the quantum boundary, which makes the TLM inequalities the
only case in which the boundary of the quantum set is known analytically.

3See Ref. [43] for a comprehensive review about the correlation space.



CHAPTER 2

Specific concepts

This chapter is dedicated to presenting the specific concepts contained in the works that make
up this thesis that have not yet been addressed in the text. The content is divided into three
sections, each of which relates to one of the papers referred in the Preface.

In Sec. 2.1, we provide a brief summary of the results contained in the first paper, followed by
the introduction of the concept of self-testing, necessary for deducing Theorem 2 of that work.
Similarly, Sec. 2.2 covers the SDP techniques employed to generate the data used by the Machine
Learning models in the article Machine Learning Meets the CHSH Scenario. We conclude this
chapter in Sec. 2.3, where we discuss the quantum random access codes protocol and a novel
variant, named after the work Biased random access codes.

It is important to note that the main goal of this chapter is not to provide a summary of each
article, but rather to address the conceptual gaps they may leave. While certain concepts are
thoroughly introduced in the texts, like the preliminary section on Machine Learning in the last
paper, other concepts assume the reader’s prior knowledge. This chapter is focused on covering
those latter topics.

2.1 Optimality of any pair of incompatible rank-one projective measurements
for some non-trivial Bell inequality

In the article sharing the same title as this section, here denoted as Ref. [44], we study the
bipartite Bell scenario that was introduced previously, in Ref. [45], characterised by an integer
d ≥ 2. Here, we have two important distinctions when compared to our previous example, the
CHSH scenario. Firstly, this scenario is not uniform (see Fig. 2.1a), meaning that the two parts,
Alice and Bob, do not have access to the same number of measurements and outcomes. For a
fixed d, Alice chooses among d2 measurements, labelled by a two-character string x := x1x2,
where x1, x2 ∈ {1, ..., d}. In contrast, Bob has only two measurement choices, represented by
y ∈ {1, 2}. Alice’s measurements outcomes are then given by a ∈ {1, 2, ⊥}, whereas Bob’s
outcomes are represented by b ∈ {1, ..., d}.

Secondly, the inequality investigated in Ref. [44] is not a facet Bell inequality, but it is tailored

15
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Alice

x = x1x2 ∈ [d]2

a ∈ {1, 2, ⊥}

*ρAB
Bob

y ∈ {1, 2}

b ∈ [d]

(a) (b)

Fig. 2.1: (a) The Bell scenario investigated in Ref. [44], for a given d ≥ 2. Each box represents one of
the parts sharing a state ρAB , with the upper arrows designating the measurement choices and the lower
arrows representing the alphabet of outcomes. The variables belong to the following sets: b, x1, x2 ∈
{1, ..., d}, y ∈ {1, 2} and a ∈ {1, 2, ⊥}. (b) A 2D representation of a facet (dashed line) vs. non-
facet (continuous line) Bell inequality. The non-facet inequality is tilted such that it is optimised by the
correlation point p.

to a specific pair of measurements. By definition, a facet, or tight Bell inequality, is a facet of the
local polytope which is not shared by NS, defining the boundaries of the local set that admit
quantum violation. While non-facet inequalities do not provide necessary and sufficient criteria
for non-locality, they are useful in certification tasks as they can be tailored to be optimised by
a specific correlation point, as illustrated in Fig. 2.1b. In other words, the inequality in Ref. [44]
is constructed in a way that it is maximally violated by a realisation that implements a given
pair of measurements.

To write these measurements analytically, we start with the rank-one projective pair arising
from the orthonormal bases {|ej⟩}Dj=1 and {|fk⟩}Dk=1 in CD, and denote Ojk := | ⟨ej |fk⟩ | as
the overlap between the elements of each basis. If the bases have any common vectors, the
measurements {|ej⟩⟨ej |}j and {|fk⟩⟨fk|}k share at least a one-dimensional subspace in CD where
they are compatible. In our construction, we truncate the original Hilbert space to Cd, with
d < D, ensuring that all bases elements are distinct, and the condition Ojk < 1 is satisfied. Notice
that, since we are in the rank-one projective paradigm, if the measurements are incompatible,
we are guaranteed that d ≥ 2. In this way, we assume that this procedure has already been
implemented, and we are given a pair of orthonormal bases {|ej⟩}dj=1 and {|fk⟩}dk=1 with overlaps
satisfying Ojk < 1 and d ≥ 2.

The inequality in the scenario of Fig. 2.1a is then split into two components and can be
thought of as a game where Bob tries to guess Alice’s character xy depending on the value of his
input y. We define the first of these components as the correlation score, given by

Cd :=
∑

x1,x2

∑

y

λx[ p(a = y, b = xy |x, y)− p(a = ȳ, b = xy |x, y)] (2.1)

where λx :=
√

1−Ox1x2 , and ȳ means that the value of y is flipped from 1 to 2 or vice versa.
Note that the only rounds producing a contribution different of zero in Cd correspond to the cases
where b = xy and a ̸=⊥. In those cases, Cd increases when Alice outputs a = y and decreases
when a = ȳ. Conversely, when Alice produces a =⊥, the value of Cd remains unchanged,
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motivating the introduction of an additional term and giving rise to the final score:

Fd := Cd −
1

2

∑

x1x2

λ2x[ p(a = 1 |x) + p(a = 2 |x)]. (2.2)

This additional term can be thought of as a penalty, which balances the cases where a ∈ {1, 2},
when Alice plays the game, and a =⊥, when Alice does not play the game.

After defining the final score in Eq. (2.2), Ref. [44] proceeds to demonstrate some results
related to its optimal realisability. The first of them corresponds to the bound

Fd ≤ d− 1, (2.3)

which is obtained by using the Cauchy-Schwarz inequality. This result is followed by the introduc-
tion of an optimal realisation that saturates this bound, in which Bob’s measurement operators
are given by Px1 = |ex1⟩⟨ex1 |, for y = 1, and Qx2 = |fx2⟩⟨fx2 |, for y = 21. Then, two certification
statements are derived. The first leverages the saturation condition of Cauchy-Schwarz to certify
the measurements {Px1}x1 and {Qx2}x2 , while the second consists of a self-testing statement for
the optimal state, which is a maximally entangled pair in Cd ⊗ Cd given by:

|Φ+
d ⟩ =

1√
d

d∑

i=1

|i, i⟩. (2.4)

Lastly, the main result in Ref. [44] establishes that if Ox1x2 ≤ 1 and d ≥ 2, the bound given
in Eq. (2.3) cannot be locally achieved. This implies that, for all incompatible pairs {Px1}x1

and {Qx2}x2 , there exists a functional Fd maximised by these measurements that cannot be
maximised by any local realisation.

While the methodology for most of these results is outlined in the content of Ref. [44], the
approach to the self-testing statement is presented without any prior introduction. Therefore, in
the next subsection, we provide a concise summary of the self-testing protocol applied for states.

2.1.1 Self-testing

As already mentioned before, self-testing refers to the device-independent scheme in which certain
correlations in a Bell experiment determine its underlying state and measurements. The earliest
results in this direction were obtained in Refs. [46, 47], stating that the CHSH maximal value
of 2

√
2 can only be obtained by a maximally entangled pair of two qubits. The concept was

then formalised in 2004 by Mayers and Yao [34], and applies only to the extremal points of
the quantum set. However, since achieving these points in real-world scenarios is challenging, a
robust to noise version of this protocol was developed later in 2006 [48]. Here, we present the
weak definition of the self-testing scheme for the case of bipartite pure states, as performed in
Theorem 2.2 of Ref. [44]. A review with more comprehensive definitions can be found in Ref. [49].

We start by assuming that a certain correlation p is observed, the entries of which are given by
joint probabilities p(a, b |x, y), for all a, b, x and y. From this point, a few standard assumptions

1The subscripts x1 and x2 are used instead of b, since we only get a non-zero contribution to Cd when b = xy.
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are made, specifically that there exists a realisation such that

p(a, b |x, y) = tr
(
ρABMa|x ⊗Nb|y

)
, (2.5)

where ρAB is the state acting on the joint Hilbert space HA ⊗ HB, and the operators Ma|x
and Nb|y are the POVM effects acting on the Hilbert spaces HA and HB of Alice and Bob,
respectively. These operators are known as the physical realization of p, where ρAB represents
the physical state, and {Ma|x} and {Nb|y} denote the physical measurements. Furthermore, it
is assumed that the runs of the experiment are independent and identically distributed, so the
physical realisation is valid for every round and p characterises the behaviour of the devices.

Now, suppose we are interested in self-testing a pure state |Φ⟩AB, with its density matrix
represented by ΦAB := |Φ⟩⟨Φ|AB. This state, denoted as reference, cannot be uniquely identified
due to two properties: Firstly, any realisation in Eq. (2.5) is invariant under local unitaries.
That is, given unitaries U and V acting on HA and HB, respectively, the realisation obtained
by the state U ⊗ V ρAB U

† ⊗ V † and measurement operators UMa|xU
† and V Nb|yV

† yield the
same statistics as Eq. (2.5). Secondly, if an ancillary state σA′B′ is coupled to ρAB, the operators
Ma|x ⊗ 1A′ and Nb|y ⊗ 1B′ are also capable to reproduce the probabilities in Eq. (2.5).

Then, to incorporate these degeneracies in the realisation of p, we resort to the concept of
local isometry. An isometry is a transformation between metric spaces that preserves the distance
among its elements. Therefore, an isometry which acts locally in the Hilbert space of Alice must
be a unitary operator, thus preserving the inner product, and, to account for additional degrees
of freedom, it must increase the dimension of the input space. In other words, if VA is a local
isometry, then VA : HA → HA ⊗ Cd′ , where d′ is the ancillary dimension. Similarly, we define a
local isometry on HB as the unitary VB : HB → HB ⊗ Cd′ . In this way, we say that p self-test
the reference state |Φ⟩AB, if, for any physical state ρAB compatible with p,

(VA ⊗ VB) ρAB (V †
A ⊗ V †

B) = ΦAB ⊗ ρ′, (2.6)

where ρ′ is the uncharacterised part of ρAB.
In the Theorem 2.2 of Ref. [44], we self-test the state |Φ+

d ⟩ in Eq. (2.4) by explicitly con-
structing isometries VA and VB. This is done for cases where the overlap matrix Ox1x2 has at
least one row (or column) the elements of which are all strictly positive. Additionally, we provide
an example of a matrix O that fails to meet this condition. In this case, a state distinct from
|Φ+

d ⟩ is found, which, along with the optimal measurements {Px1}x1 and {Qx2}x2 , achieves the
maximum violation of Fd.

The following subsection presents a brief discussion of two numerical methods commonly used
in conjunction to determine maximum values of a given Bell inequality. Both tools rely on a
convex optimisation technique called semidefinite programming and were featured in the article
Machine Learning Meets the CHSH Scenario, here referred to as Ref. [50].

2.2 Semidefinite programming techniques

In Ref. [50], we explore many distinct Machine Learning (ML) classification models to address the
membership problem of non-signalling correlations in the quantum set. Specifically, we leverage
ML techniques to decide whether a given non-signalling correlation can be classified as quantum
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or not. The key idea of this work is to use the correlation space of the CHSH scenario as a
reference for examining the complete scenario. As explained in Sec. 1.3.1, the correlation space
in CHSH consists of the non-signalling region where ⟨Ax⟩ = ⟨By⟩ = 0, ∀ x, y, and the boundary
of the quantum set is analytically described by the TLM conditions. Therefore, the available
analytical description offers a solid foundation for the models and enables us to estimate the
limits of the ML techniques when extending our methods to the entire quantum set.

While much of the methodology in Ref. [50] is outlined in its Preliminaries and Data genera-
tion sections, the labelling of the correlation points is carried out by two complementary methods
widely used in the study of non-locality, known as the NPA hierarchy and see-saw optimisation.
Specifically, the NPA hierarchy is used to derive upper bounds for the violation of Bell inequali-
ties, whereas the see-saw method is efficient in obtaining optimal quantum realisations, thereby
establishing reliable lower bounds for the inequality values. In both instances, the methods are
based on a class of convex optimisation problems referred to as semidefinite programming (SDP).
Considering the importance of these two methods, we provide here a brief introduction to the
concept of SDPs, followed by an explanation of the NPA hierarchy and see-saw techniques.

A semidefinite program is an optimisation problem in which the objective function is opti-
mised within the intersection of the positive semidefinite cone of matrices in the problem space.
Every SDP can be generically formulated as

min
X

tr AX

s.t. µi(X) = Bi, i = 1, ..., n

νj(X) ⪯ Cj , j = 1, ..., m

X ⪰ 0,

(2.7)

where A, Bi and Cj are given square matrices, generally complex, and µi and νj are maps which
are linear on X, the square matrix to be optimised. The symbols ⪰ and ⪯ denote positive and
negative semidefinite, respectively. As in every convex optimisation problem, a dual problem
can be formulated from the primal in Eq. (2.7). When the primal or dual problem are strictly
feasible2, they are said to satisfy a property known as strong duality, which guarantees that the
optimal value of both primal and dual problems are necessarily equal.

There are several efficient algorithms available for solving SDPs, with the solver MOSEK [51]
being particularly notable. Additionally, Python libraries such as CVXPY [52, 53] and PICOS
[54] provide a collection of solvers and offer a simplified interface for problem formulation. Here,
we do not explore any specific strategy for solving SDPs; instead, we move on to the description
of the aforementioned methods based on SDPs, starting with the NPA hierarchy.

2.2.1 NPA hierarchy

Originally introduced in 2007 by Navascués, Pironio and Acín [55], the NPA optimisation is an
SDP hierarchy based on a similar method developed previously by Lasserre, in 2001 [56]. Its
central idea relies on the fact that there are necessary, though not sufficient, conditions that
can be tested via an SDP to verify whether a given correlation belongs to the quantum set.

2For the primal problem in Eq. (2.7), we say that it is strictly feasible when there exists a matrix X ′ such that
X ′ ≻ 0 and νj(X

′) ≺ Cj , for all j. For the dual problem, the definition of strict feasibility is analogous for its
dual variables.
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The main advantage of this method is that, in addition to providing outer approximations to
the quantum set, the SDP can be recast hierarchically to obey increasingly tighter conditions.
In this way, each level n of the hierarchy defines a set of correlations, indicated as Qn, which
satisfies Qn ⊇ Qn+1 and converges to the quantum set in the limit n → ∞ [57, 58]. It is worth
noting that, for the formulation of the hierarchy, it is considered the commuting paradigm, where
the measurement operators belonging to different parts act in a single Hilbert space and obey
commutation relations. In this way, exceptionally here, we adopt this paradigm in the description
of the problem.

Suppose that a quantum correlation p is obtained in a bipartite scenario by a realisation
consisting of a pure state |ψ⟩ and projective measurements {Ma|x}a and {Nb|y}b of Alice and
Bob, respectively. As we do not wish to impose any constraints on the dimension of the Hilbert
space, the state can be assumed to be pure and the measurements, projective, without any loss
of generality. Therefore, if the projectors Ma|x and Nb|y correspond to the realisation p, the
following properties are necessarily satisfied:

Ma|xMa′|x = δa′aMa|x,

Nb|yNb′|y = δb′bNb|y,∑
aMa|x =

∑
bNb|y = 1,

M †
a|x =Ma|x, N †

b|y = Nb|y,

and [Ma|x, Nb|y] = 0.

(2.8)

In parallel, by defining the set of vectors V1 := {Ma|x|ψ⟩, Nb|y|ψ⟩}a,b,x,y, we write the Gram
matrix Γ1 associated to this set, which is positive semidefinite by construction. This matrix is
referred to as the moment matrix, and it has the property that some of its entries correspond to
the probabilities in the correlation p, whereas some others have no physical meaning.

Now, notice that if p is a quantum correlation, then Γ1 necessarily exists. Moreover, given a
behaviour p ∈ NS, the problem of verifying the existence of a moment matrix can be formulated
as an SDP, since the non-physical entries of Γ1 are restricted by linear relations which can be
derived from Eqs. (2.8). Although the solution to this optimisation problem does not fully resolve
the quantum set, it defines the set Q1 of which Q is a subset. A hierarchical structure can then
be derived by defining the set V2 formed by products of at most two operators Ma|x and Nb|y
acting on |ψ⟩:

V2 := V1 ∪ {Ma|xMa′|x′ |ψ⟩, Nb|yNb′|y′ |ψ⟩, Ma|xNb|y|ψ⟩}a,a′,b,b′,x,x′,y,y′ .

As before, the existence of a second-order moment matrix Γ2 associated to V2 can be checked via
an SDP for a given correlation. In the affirmative case, since Γ1 is a block of Γ2, the existence
of a first-order moment matrix is also confirmed. The generalisation to higher orders is then
straightforward; if Qn defines the set of correlations for which a moment matrix Γn exists, then
Qn ⊇ Qn+1.

In the literature, the NPA hierarchy is widely used in the study of non-locality in two primary
ways. The first, discussed in the above paragraphs, involves checking whether a given non-
signalling correlation belongs to one of the supersets Qn. In Ref. [50], this application is used
to generate labels for correlations uniformly distributed in the non-signalling set of the CHSH
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scenario. This approach is particularly effective in the CHSH correlation space, as the hierarchy
converges to the quantum set already at level one. Another key application is determining upper
bounds for Bell expressions, which can be framed as an NPA optimisation due to their linearity
in the probabilities of the correlation vector. In Ref. [50], we propose a variation of this second
method where the optimisation is conducted within a direction in the probability space rather
than a Bell expression. The benefit of this approach is that, as the optimisation is constrained
to a given direction, it enables the exploration of specific points on the boundary of the NPA
supersets.

2.2.2 See-saw optimisation

The so-called see-saw optimisation refers to an iterative SDP technique used to obtain interior
approximations for the optimal value of Bell expressions. It was introduced in 2007 by Liang
and Doherty [59] and is based on a similar method proposed by Werner and Wolf in 2001 [60], in
which the optimisation is performed explicitly. The main intuition behind the see-saw method is
that although finding the optimal state and measurements for a given Bell expression is difficult,
the problem becomes significantly easier when either the state or the measurements are fixed,
allowing the problem to be tackled using SDPs.

The main difference from this technique to the aforementioned NPA hierarchy is that here
the optimisation is constrained to a certain Hilbert space dimension. For instance, suppose that,
in a given bipartite scenario, we want to maximise a Bell expression defined by the functional

G =
∑

a,b,x,y=0

αab|xyMa|x ⊗Nb|y, (2.9)

where αab|xy are real coefficients, andMa|x and Nb|y represent the measurement operators of Alice
and Bob, respectively. That is, we are essentially interested to find the set of state and observables
that maximise the value of tr (Gρ). However, as this objective function is not linear, we can fix
the state and measurements alternately and divide the procedure into simpler optimisation steps.

In the initial step, all measurements are fixed to a randomly chosen set of operators {M̃a|x}a,x
and {Ñb|y}b,y, which act on Hilbert spaces of a specified dimension. Under these conditions, the
state ρ∗ that maximises tr (Gρ) can be explicitly determined, as it corresponds to the eigenvector
associated with the largest eigenvalue of the operator G with these fixed measurements. The
optimisation then continues by fixing ρ∗ and optimising each measurement in turn3. For Alice’s
measurement choice x = 0, this can be performed via an SDP that maximises the terms of G
involving the operators Ma|0, i.e.,

max
{Ma|0}

∑
a,b,y αab|0y tr (ρ∗Ma|0 ⊗ Ñb|y)

s.t.
∑

aMa|0 = 1 and Ma|0 ⪰ 0.

(2.10)

Note that each of these steps incrementally increases the value of the objective function. Then,
after the state and measurements have been optimised once, the procedure can be repeated at
the discretion of a pre-established stopping condition, like minimal changes in the function value

3Alternatively, due to invariance under local unitary transformations, one might retain one of the randomly
chosen initial measurements for each part, for instance x, y = 0, and optimise the remaining measurements only.
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after a certain number of iterations. By doing so, the procedure converges to a local maximum,
which can be further improved by resetting the initial random realisation multiple times or by
increasing the dimension of the local Hilbert spaces.

In Ref. [50], we employed a novel approach similar to the one used for the NPA hierarchy,
where see-saw optimisation is carried out towards a specific direction within the probability space.
The advantage of this technique is that, in the CHSH scenario, it is known that local dimension
16 suffices to reproduce any quantum correlation [61], allowing the method to explore previously
uncharted regions at the boundary of the CHSH quantum set. However, the downside is that
this directional constraint makes the optimisation computationally intensive, thus reducing its
practical usability. In the work explored in the next section, here referred to as Ref. [62], the
see-saw technique is also used as the main optimisation tool, but it is tailored to a protocol
distinct from non-locality scenarios known as random access code.

2.3 Quantum random access codes

While the earliest protocols for certification of quantum devices emerged in the context of Bell
non-locality, their application was extended beyond Bell scenarios in the last years. Many addi-
tional schemes have been developed for different quantum devices, such as those involving EPR
steering [63], contextuality [64], and prepare-and-measure scenarios [65], to name some recent
examples. In Ref. [62], we present a few certification statements for a variation of the quantum
random access code (QRAC) protocol, which we briefly introduce here. A QRAC is a communi-
cation task that allows a sender to encode a classical message consisting of multiple characters
into a quantum state, such that a receiver can recover any of the characters with a probability
of success higher than a classical code. Initially introduced by Stephen Wiesner as conjugate
coding [66] in quantum communication complexity, QRACs were later rediscovered by Ambainis
et al. [67, 68] in their investigation of quantum finite automata.

A typical QRAC can be understood as the quantum implementation of a classical protocol
denoted simply as RAC, which involves the canonical parts Alice and Bob. In a RAC, Alice is
given a n-character string x = x0x1 ... xn−1, in which each character is chosen from an alphabet of
cardinality d, and is asked to encode x into a single character µ. The integers n, and d completely
define the RAC scenario, which is denoted by nd 7→ 1. The message µ and an input y are then
sent to Bob, who is asked to recover the character xy of x, as illustrated in Fig. 2.2. Hence,
the encoding process can be interpreted as a map where Alice takes the string x and outputs
the message µ, while the decoding process involves n maps that, upon receiving µ, produce a
character b. Whenever b = xy the protocol is considered successful. The figure of merit commonly
used to evaluate the performance of the protocol is the average success probability P̄ , given by

P̄ =
1

ndn

∑

x,y

p(b = xy |x, y), (2.11)

where p(b = xy |x, y) denotes the probability of a successful decoding when the character xy
must be recovered from x. The factor 1

ndn reflects the assumption that the inputs x and y are
selected at random by both parts.

Thus, a QRAC consists of a quantum realisation of this protocol, which involves a set of
preparations ρx and measurement operators {M b

y}b such that p(b = xy|x, y) = tr (ρxM
xy
y ), i.e.,
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Fig. 2.2: Representation of a nd → 1 RAC scenario. The integers µ, b and xi, where i ∈ {0, 1, ..., n− 1}
belong to the set {0, 1, ..., d− 1}. In the figure example, the protocol is successful if x2 = 1.

Alice encodes x in the state of a quantum system, and Bob decodes it via quantum measurements.
In any QRAC scenario, the average success probability is always at least as high as that of its
classical counterpart. Take the 22 → 1 scenario as an example: the optimal classical strategy
for maximising P̄ requires Alice to always send one of her characters, enabling Bob to guess
the other character when required, resulting in an average success of 3

4 . On the other hand,
the QRAC implementation can exceed this by implementing a pair of decoding measurements
constructed from mutually unbiased bases [69], which ensures an average success probability of
1
2 + 1

2
√
2
≈ 0.854.

In the literature, many variations of the RAC protocol have been developed, such as sharing
a state between the parties to create entanglement-assisted RACs [70], increasing the size of the
message µ [67, 68, 71], or recovering more than one character [72]. In Ref. [62], we propose to
study yet another variation of the RAC protocol, which we name biased RACs, in which the
distributions of x and y are not necessarily uniform. In this case, figure of merit is given by

F =
∑

x,y

αxy p(b = xy |x, y), (2.12)

where αxy denotes the components of an n+1-order tensor, satisfying αxy > 0 and
∑

x,y αxy = 1.
The motivation for this approach comes from biased [73] and tilted [74] Bell inequalities, where
modifying a given inequality affects its optimal value and changes the classical and quantum
strategies that achieve it. The analogous idea, when applied to the RAC protocol, enables the
certification of a more extensive class of measurements for certain scenarios.

The methodology adopted in Ref. [62] involved tackling the problem of optimising biased
RACs through both numerical and analytical approaches. Analytically, our focus was on finding
upper bounds for a few biased RAC scenarios, while numerically, we aimed to optimise the
functional in Eq. (2.12) using a see-saw algorithm adapted to fit the RAC protocol. We show
that attaining these upper bounds certifies a set of rank-one projective measurements for the
biased scenario where n = 2 and 3 bits are encoded. This study also led to the development of
a Python package [75] that allows users to easily set up a biased RAC scenario using its tensor
αxy. The package can then either find its optimal classical value by conducting an enhanced
search over classical strategies, or obtain lower bounds for its optimal quantum value through
see-saw optimisation.



CHAPTER 3

Set of papers

3.1 Comments on “Optimality of any pair of incompatible rank-one projective
measurements for some nontrivial Bell inequality ”

As indicated by the title, this paper constructs a family of non-trivial Bell inequalities, meaning
that its maximum value achieved by quantum theory is strictly higher than that obtained through
local theories. In addition, these inequalities are optimised by a realisation that includes a pair
of rank-one, projective measurements. The objective of this study is to explore how the incom-
patibility of these set of measurements relates to the non-locality they may generate regarding
the proposed inequalities. The main result is then outlined in Corollary 2, where it is shown
that each pair of such incompatible rank-one projective measurements is capable of maximising
a non-trivial Bell inequality.

The student contributed to the development of the analytical results, including Theorem 1
and Lemma 1, and also proposed the main ideas behind Theorem 3 and Lemma 2. For these last
two results, optimisation was required to determine the reported bounds, which were obtained
from a code developed by him using the Python library scipy.optimize. In addition, the student
was responsible for writing the appendices and the bulk of the main text.
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Bell nonlocality represents one of the most striking departures of quantum mechanics from classical physics.
It shows that correlations between spacelike separated systems allowed by quantum mechanics are stronger than
those present in any classical theory. In a recent work [A. Tavakoli, M. Farkas, D. Rosset, J.-D. Bancal, and
J. Kaniewski, Sci. Adv. 7, eabc3847 (2021)], a family of Bell functionals tailored to mutually unbiased bases
(MUBs) was proposed. For these functionals, the maximal quantum violation is achieved if the two measure-
ments performed by one of the parties are constructed out of MUBs of a fixed dimension. Here, we generalize
this construction to an arbitrary incompatible pair of rank-one projective measurements. By constructing a new
family of Bell functionals, we show that for any such pair there exists a Bell inequality that is maximally violated
by this pair. Moreover, when investigating the robustness of these violations to noise, we demonstrate that the
realization which is most robust to noise is not generated by MUBs.

DOI: 10.1103/PhysRevA.106.032219

I. INTRODUCTION

The discovery of Bell nonlocality lies among the most
fundamental results of 20th-century physics. While the the-
oretical description was proposed by Bell in 1964 [1], the
first experimental demonstration was performed by Freedman
and Clauser [2], followed by the seminal work of Aspect
et al. [3–5]. In 2015, three independent groups performed the
Bell experiment in a loophole-free manner [6–8], meaning
that they managed to eliminate several issues that could falsify
the conclusions of the experiment.

In a nutshell, Bell nonlocality states that correlations
between spatially separated parties allowed by quantum
theory are stronger than those allowed by local-realistic
theories [1,9]. It is easy to see that entanglement [10] and in-
compatibility of measurements [11] constitute two necessary
resources to generate nonlocal correlations [12]. Conversely,
conditions sufficient to generate nonlocality are known only
for a restricted class of states or measurements. For a bi-
partite Bell scenario, all pure entangled states can generate
nonlocality, a statement referred to as Gisin’s theorem [13].
A result of similar generality for incompatibility of measure-
ments was obtained in Ref. [14], in which it is proved that
every incompatible pair of projective measurements enables
the violation of a Bell inequality. Here, we continue the study
of how useful a pair of measurements is for the purpose of
generating nonlocality. However, our focus is not merely on
observing a Bell violation, but on producing the maximal
violation allowed by quantum mechanics.

In this paper, we focus on pairs of rank-one projective mea-
surements and generalize a framework originally presented in

*gpereira@fuw.edu.pl
†jkaniewski@fuw.edu.pl

Ref. [15] in which a family of bipartite Bell functionals is
tailored to mutually unbiased bases (MUBs) [16,17]. In other
words, in Ref. [15] the maximum value obtainable by any
quantum realization of the functionals—here referred to as
quantum value and denoted by βQ—can be achieved if one of
the parties implements a pair of rank-one projective measure-
ments with uniform overlaps. Here, we study the same Bell
scenario (shown in Fig. 1) as in Ref. [15], parametrized by an
integer d � 2. However, our new functionals are tailored to a
more general pair of rank-one projective measurements. More
specifically, the measurement operators are constructed out of
a pair of orthonormal bases {|e j〉}d

j=1 and {| fk〉}d
k=1 on Cd and

we denote the resulting overlap matrix by

Ojk := |〈e j | fk〉|. (1)

The only assumption we make is that these measurements are
incompatible since this is a necessary condition for nonlocal-
ity.

The family of Bell functionals introduced in this paper
is designed so that both the quantum value and a realiza-
tion that achieves it can be written down explicitly. We also
demonstrate that our functionals are nontrivial, meaning that
the maximum value achievable by any classical realization—
referred to as local value and denoted by βL—is strictly
smaller than the quantum value. This result is obtained by
deriving a nontrivial certification statement for the measure-
ments performed by one of the parties. Finally, for a wide class
of functionals, we obtain a device-independent certification of
the maximally entangled state of local dimension d .

To make our paper relevant for experiments, we investigate
the robustness to noise of the proposed optimal realizations.
In the standard model of noise, in which the state is replaced
by an isotropic state, it can be shown that the bigger the gap
between βQ and βL, the more robust to noise the optimal
realization is. For even d , we found that the largest gap is
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FIG. 1. A Bell scenario parametrized by d � 2. The inputs and
outputs belong to the following sets: b, x1, x2 ∈ {1, . . . , d}, y ∈
{1, 2}, and a ∈ {1, 2, ⊥}.

achieved if and only if the original measurements correspond
to a direct sum of qubit MUBs, i.e., all the nonzero elements
of the matrix O must be equal to 1/

√
2. This contradicts our

initial guess that the most noise-robust realization (in a fixed
dimension) would correspond to the one generated by MUBs.
For odd d , we could not determine the largest possible gap, but
we have derived an upper bound on βQ − βL which is valid for
all d � 3. Furthermore, we show analytically that for every
odd d there exist measurements that give rise to a realization
that is more robust to noise than the realization obtained from
MUBs.

II. A FAMILY OF BELL FUNCTIONALS

Our goal is to show that every pair of incompatible
rank-one projective measurements is optimal for some Bell
functional. To achieve this, it is convenient to first apply a
simple preprocessing, which simply discards the subspace in
which the measurements are compatible (which is not useful
for the purpose of generating nonlocality). Then, we introduce
a bipartite Bell scenario parametrized by an integer d and
construct a family of functionals the quantum value of which
can be computed analytically. Lastly, we present a realization
that saturates the quantum value.

Consider a pair of orthonormal bases on Cd ′
, which we

denote by {|e j〉}d ′
j=1 and {| fk〉}d ′

k=1, and let O′
jk := |〈e j | fk〉|

be the overlap matrix. If the two bases share a vector this
results in a one-dimensional subspace of Cd ′

in which the
measurements are compatible. We remove all such subspaces
by truncating the original Hilbert space appropriately, which
leads to a pair of rank-one projective measurements acting on
Cd for some d � d ′ (since we assume that the original mea-
surements are incompatible, we are guaranteed that d � 2).
For these new measurements, the overlap matrix is guaranteed
to satisfy Ojk < 1. Moreover, these new measurements can
be implemented by performing the original measurements
on a quantum state with appropriately chosen local support.
From now, we will assume that this process has already
been performed and we will restrict our attention to measure-
ments acting on effective dimension d , and overlaps satisfying
Ojk < 1.

Now, consider a bipartite Bell scenario characterized by an
integer d � 2, the parties of which are named Alice and Bob.

For each d , Alice is given a two-character string denoted by
x := x1x2, for x1, x2 ∈ {1, . . . , d} and outputs a ∈ {1, 2, ⊥}.
Bob has two possible inputs labeled by y ∈ {1, 2} and outputs
b ∈ {1, . . . , d} (see Fig. 1). We are given a pair of orthonor-
mal bases {|e j〉}d

j=1 and {| fk〉}d
k=1 the overlap matrix of which

is given by Ojk := |〈e j | fk〉| and satisfies Ojk < 1. We define
the correlation score Cd as

Cd :=
d∑

x1,x2=1

2∑
y=1

λx[p(a = y, b = xy|x, y)

− p(a = ȳ, b = xy|x, y)], (2)

where λx :=
√

1 − O2
x1x2

and the notation ȳ means that the

value of y is flipped from 1 to 2 or vice versa. Note that
the weights λx depend on the overlap matrix and, as we will
later see, this ensures that the functional is tailored to the
orthonormal bases {|e j〉}d

j=1 and {| fk〉}d
k=1. The only terms that

produce a nonzero contribution to Cd correspond to the cases
when b = xy and a �=⊥. In those cases, the score is increased
(decreased) if Alice outputs a = y (a = ȳ). In order to balance
the cases where a ∈ {1, 2} (Alice plays the game) and a =⊥
(Alice does not play the game), a penalty is introduced,1

giving rise to our final score:

Fd := Cd − 1

2

d∑
x1,x2=1

λ2
x [p(a = 1|x) + p(a = 2|x)]. (3)

It turns out that the quantum value of Fd does not depend on
the overlap matrix O, as shown in the lemma below.

Lemma 1. For d � 2, the quantum value of Fd is d − 1.
The proof of Lemma 1 consists of finding an upper bound

on the value of Fd and demonstrating that it can be satu-
rated. Proving the upper bound relies on many elementary
steps, which we present in Appendix A 1. For our purposes,
it suffices to show how to construct a quantum realization that
saturates the quantum value of Fd .

We choose the measurements of Bob corresponding to
inputs y = 1 and 2 to be Px1 = |ex1〉〈ex1 | and Qx2 = | fx2〉〈 fx2 |,
respectively.2 For the measurements of Alice, it is more
convenient to work with Hermitian observables rather than
measurement operators. For every input x of Alice, we express
the three measurement operators A(1)

x , A(2)
x , and A(⊥)

x in a
compact manner by defining the observable Ax as

Ax := (+1) × A(1)
x + (−1) × A(2)

x + 0 × A(⊥)
x

= A(1)
x − A(2)

x . (4)

It is easy to see that if the measurement is projective, then the
spectrum of Ax belongs to the set {±1, 0}. In addition, any
Hermitian operator the spectrum of which is contained in this
set can be interpreted as an observable arising from a projec-
tive measurement, so the two representations are equivalent.

1In the end of Appendix A 1 there is a clarification of why this
penalty is necessary.

2We use x1 (x2) as the subscript for P (Q) because we only get a
nonzero contribution to the functional when b = xy.
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Then, let us choose Ax as

Ax = 1

λx
(Px1 − Qx2 )T, (5)

where (·)T denotes the transposition in the computational ba-
sis. Because Px1 and Qx2 are rank one, the difference Px1 − Qx2

is a rank-two operator. With a simple calculation, it is pos-
sible to check that the spectrum of Px1 − Qx2 is contained

in {±λx, 0}. Thus, since Ox1x2 < 1 and λx =
√

1 − O2
x1x2

, we

have λx > 0, and the normalizing factor ensures the spectrum
of Ax is contained in {±1, 0}.3

Finally, we pick the shared state as the maximally entan-
gled state belonging to Cd ⊗ Cd :

|�+
d 〉 = 1√

d

d∑
k=1

|k, k〉. (6)

Then, let us quickly verify that the resulting realization indeed
achieves the quantum value of Fd . Evaluating Cd given in
Eq. (2) leads to

Cd =
∑

x

λx〈�+
d |Ax ⊗ (

Px1 − Qx2

)|�+
d 〉, (7)

where the summation over y has already been performed to
give Ax ⊗ (Px1 − Qx2 ). Plugging in Eq. (5) and exploiting the
fact that for any linear operator L we have L ⊗ 1|�+

d 〉 = 1⊗
LT|�+

d 〉 leads to

Cd =
∑

x

〈�+
d |1⊗ (

Px1 − Qx2

)2|�+
d 〉. (8)

Proceeding similarly for Fd , we get

Fd = Cd − 1

2

∑
x

λ2
x 〈�+

d |(A(1)
x + A(2)

x ) ⊗ 1|�+
d 〉. (9)

Since the measurement operators of Alice are projective, the
term in parentheses can be identified as A(1)

x + A(2)
x = A2

x and

Fd = Cd − 1

2

∑
x

λ2
x 〈�+

d |A2
x ⊗ 1|�+

d 〉

= 1

2

∑
x

〈�+
d |1⊗ (

Px1 − Qx2

)2|�+
d 〉. (10)

Finally, since Px1 and Qx2 are projectors, we can evaluate the
sum: ∑

x

(
Px1 − Qx2

)2 = 2(d − 1)1, (11)

which leads to Fd = d − 1 for the desired realization.

III. CHARACTERIZING THE OPTIMAL REALIZATION

Having computed the quantum value of Fd , it would be
natural to determine its local value and show that our function-
als are indeed nontrivial. However, since βL does not have a
closed-form expression, let us postpone it to the next section.
Fortunately, it turns out that proving βQ > βL is possible by

3Recall that taking the transposition does not affect the spectrum.

characterizing the realizations that achieve βQ. Therefore, to
demonstrate that Fd is nontrivial, we continue our analysis
with the device-independent certification of the measurements
and the state.

Theorem 1. For any d � 2 and overlap matrix satisfying
Ox1x2 < 1, under the assumption that Bob’s marginal state
is full rank, for any quantum realization which achieves the
quantum value of Fd , the following hold.

(1) Bob’s measurement operators denoted by Px1 and Qx2

associated with inputs y = 1 and 2, respectively, must satisfy

O2
x1x2

Px1 = Px1 Qx2 Px1 and

O2
x1x2

Qx2 = Qx2 Px1 Qx2 ∀ x1, x2. (12)

(2) If O has a row (or column) the entries of which are
all nonzeros, then there exist local isometries VA : HA →
Cd ⊗ HA and VB : HB → Cd ⊗ HB that, when acting on the
unknown state ρAB, yield

(VA ⊗ VB)ρAB(V †
A ⊗ V †

B ) = �+
d ⊗ ρaux, (13)

where �+
d is the density matrix of |�+

d 〉 and ρaux corresponds
to the uncharacterized part of ρAB.

Sketch of the proof. Here we present a sketch just for the
first part (see Appendix B for a complete proof). To prove an
upper bound on the quantum value of Fd the Cauchy–Schwarz
inequality is used several times. Saturating these inequalities
allows us to deduce that for all x = x1x2 the action of Alice’s
and Bob’s operators on ρAB satisfies the following relation:

λxAx ⊗ 1 ρAB = 1⊗ (
Px1 − Qx2

)
ρAB. (14)

Since our goal is to certify Bob’s measurements, we can as-
sume that Alice’s measurements are projective, which implies
that A3

x = Ax. Combining this identity with Eq. (14) yields a
polynomial equation in terms of operators Px1 and Qx2 and the
marginal state on Bob’s side ρB. Assuming that ρB is full rank
allows us to remove the state dependence. Finally, by exam-
ining Eq. (11), we conclude that saturating the quantum value
on a state having full-rank ρB requires Bob’s measurements to
be projective. This leads to the desired Eqs. (12). �

Equations (12) are derived purely from the fact that we
observe the quantum value of Fd . To prove that the functional
Fd is nontrivial, it suffices to argue that these relations cannot
be satisfied by any deterministic strategy.

Theorem 2. For any d � 2 and overlap matrix satisfying
Ox1x2 < 1, the quantum value is strictly bigger than the local
value.

Proof. A deterministic strategy can always be written as
a quantum strategy where the local Hilbert spaces are one
dimensional. If Bob outputs b = u for y = 1 and b = v

for y = 2, the associated projectors correspond to Px1 = δx1u

and Qx2 = δx2v . If this strategy saturates the quantum value,
Eqs. (12) would imply that O2

x1x2
δx1u = δx1uδx2vδx1u, for

all x1, x2. However, choosing x1 = u and x2 = v leads to
Ouv = 1, which is a contradiction. �

At this point, we can see why the assumption Ox1x2 < 1
was necessary. It is straightforward to check that Fd can
be defined for any overlap matrix, the quantum value is al-
ways equal to d − 1, and the conclusion given in Eqs. (12)
holds. However, without the assumption that Ox1x2 < 1, the
measurement certification statement is no longer sufficient
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to deduce that the functional is nontrivial. In fact, in Ap-
pendix C 2, we show that whenever Ox1x2 = 1 for some x,
then there exists a deterministic strategy achieving βQ, i.e.,
βL = βQ.

As explained at the beginning, every pair of incompatible
rank-one projective measurements can be preprocessed to give
measurements the overlap matrix of which satisfies Ox1x2 < 1
and, hence, gives rise to a nontrivial functional. Therefore, we
obtain the following corollary.

Corollary 1. Every pair of incompatible rank-one projec-
tive measurements on a finite-dimensional Hilbert space is
capable of producing nonlocal correlations and is optimal for
some nontrivial Bell inequality.

IV. ROBUSTNESS AGAINST NOISE

To investigate how robust to noise the realizations pre-
sented above are, consider a specific noise model in which the
measurements are kept unchanged while the state is replaced
by the isotropic state

ρν = ν�+
d + (1 − ν)

1⊗ 1

d2
, (15)

where ν ∈ [0, 1] is the visibility. A simple calculation shows
that performing the optimal measurements on the isotropic
state gives the value of (d − 1)(2ν − 1). We can use this
result to compare the noise robustness of different functionals
Fd . More specifically, we are interested in discovering which
functional enables a violation for the smallest ν. To address
this question, we first need to compute the local value.

For a fixed overlap matrix O, calculating the local value
reduces to analyzing the deterministic strategies for Fd . If we
choose the strategy of Bob in which he outputs b = u if y = 1
and b = v if y = 2, the value becomes

Fd =
∑

x

λx
(
δx1u − δx2v

)
Ax − 1

2

∑
x

λ2
xA2

x, (16)

where Ax ∈ {±1, 0} describes the deterministic strategy of
Alice. Let us now show that the optimal strategy of Alice
can be explicitly determined. The sum can be split into three
distinct cases: R± = {x ∈ [d]2|(δx1u − δx2v ) = ±1} and R0 =
[d]2 \ (R+ ∪ R−). For the R0 terms, the optimal strategy of
Alice is clearly not to play the game (this would lead to a
negative contribution), so the optimal choice is Ax = 0.

For the R± terms the optimal choice is Ax = δx1u − δx2v ,
which is better than Ax = −(δx1u − δx2v ) (because λx > 0) and
better than Ax = 0 (because λx − 1

2λ2
x > 0). Plugging in the

optimal strategy of Alice into Eq. (16) leads to the following
auxiliary function:

s(u, v) :=
∑
x∈R±

(
λx − 1

2
λ2

x

)
, (17)

where the dependence on u and v is hidden inside the defini-
tions of R±. Then, βL can be written as

βL(O) = max
u, v

[s(u, v)]. (18)

The choice of coefficients of our functionals, made at the
beginning, ensures that the quantum value does not depend
on the overlap matrix. It is a convenient choice because all the

dependence of O is contained in the local value. It is easy
to see that in the noise model presented above, the largest
robustness corresponds to the lowest local value. Searching
for highly robust functionals leads to the following theorem.

Theorem 3. For d � 2 and any overlap matrix, βL(O) �
d + √

2 − 5/2.
Sketch of the proof (See Appendix C 2 for details). Pri-

marily, note that a lower bound for any strategy s(u, v) is
also a lower bound for βL(O). Because we can always relabel
the measurements outputs, we assume, for simplicity, that
O11 is the largest element of O, i.e., O11 � Ouv , ∀ u, v ∈
{1, . . . , d}. Then, we lower bound βL(O) using the first strat-
egy:

βL(O) = max
u, v

[s(u, v)] � s(1, 1). (19)

Next, as s(1, 1) depends only on overlaps squared, we define a
new variable tx1x2 := O2

x1x2
. This makes some terms in s(1, 1)

strictly concave in tx1x2 , which allows us to obtain a lower
bound that depends only on t11. Minimizing that function
concludes the proof. �

Although Theorem 3 provides a lower bound on βL(O), it
does not say whether this bound is achievable. Fortunately,
by demanding the saturation of the strictly concave terms of
s(1, 1), we extract this information.

Lemma 2. For even d � 2, the lower bound of Theorem 3 is
achievable and every O that saturates it corresponds to a direct
sum of qubit MUBs; i.e., up to permutations, it can be written
as

O =
d/2⊕
i=1

1√
2

J2, (20)

where J2 is the 2×2 matrix of ones. For odd d � 3, the
lower bound of Theorem 3 cannot be achieved by any overlap
matrix.

The complete proof of Lemma 2 can be found in Ap-
pendix C 3. Let us briefly comment on the difference between
even and odd d . Our proof of Theorem 3 is based solely on the
fact that the rows and columns of O are normalized. However,
from Eq. (1), we know that O should be obtained by taking
the entrywise absolute value of a unitary matrix, which, in
general, is more restrictive than just imposing the normaliza-
tion condition. For even d , there exists a valid overlap matrix
which saturates the lower bound obtained in Theorem 3, but
for odd d this is not the case. For a more detailed explanation,
see Appendix C 4.

V. DISCUSSION

In this paper, we have demonstrated how to tailor a Bell
functional to a specific pair of incompatible rank-one pro-
jective measurements. More specifically, we have shown that
for every such pair there exists a nontrivial Bell functional
for which this pair is optimal. We have also proved that for
these functionals a certain degree of certification is possible.
If the quantum value of Fd is achieved, the measurements of
Bob must satisfy some simple polynomial relations and, under
some additional mild conditions, a maximally entangled state
can be extracted.
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We have also investigated how robust to noise these func-
tionals are, as quantified by the difference βQ − βL. For even
d , the largest robustness to noise arises when the measure-
ments are chosen as direct sums of qubit MUBs. For odd d ,
we have a conjecture for d = 3, but no analytical proof of
optimality. It is worth pointing out, however, that for d � 3
the optimal noise robustness is not achieved by d-dimensional
MUBs.

There are several open questions arising from this paper.
An aspect that should be clarified is the precise conditions
under which state certification is possible. We have shown that
if the overlap matrix contains a non-null row or column, then
a maximally entangled state can be extracted. On the other
extreme, there are overlap matrices that decompose as a direct
sum for which, as proved in Appendix B 3, state certification
is not possible. Hence, the question about state certification
is open for intermediate cases. Another question concerns the
optimal noise robustness for odd dimensions. Our candidate
for d = 3 exhibits a mathematically elegant structure and it
would be interesting to see if the same happens for larger
dimensions.

Lastly, it is known that all pure entangled states can gener-
ate nonlocality, and we have demonstrated that incompatible
pairs of rank-one projective measurements also do so. By
assembling these results, is it possible to achieve necessary
and sufficient conditions for, at least, some limited class of
states and measurements?
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APPENDIX A: THE QUANTUM VALUE OF Fd

In this Appendix, we provide a complete proof of Lemma
1. In the main text, we specified a quantum realization for
the functional Fd which achieves the value d − 1. Here, in
the first part of this Appendix, we provide a matching upper
bound, which shows that the quantum value of Fd equals
d − 1. In the second part, we present a natural extension of
our functional to a set of N > 2 rank-one projective measure-
ments.

1. Proof of Lemma 1

At this point, we are only interested in deriving an upper
bound; hence, we could, without loss of generality, restrict
ourselves to realizations where the state is pure and mea-
surements are projective. However, we will later reuse this
argument to derive some certification statements, so we do not
want to introduce unnecessary assumptions. As we are not in-
terested in characterizing the measurements of Alice, we will
assume that they are projective, but we make no assumptions
about the measurements of Bob and the shared state. Thus, let
us represent the state by ρAB, an arbitrary density matrix, and
reuse the symbols Ax, Px1 , and Qx2 to denote the observables
of Alice and the two measurements of Bob, respectively.

We start again by using the Born rule to rewrite Cd as

Cd =
∑

x

λx tr
{[

Ax ⊗ (
Px1 − Qx2

)]
ρAB

}
. (A1)

Taking the absolute value of every term in the summation
leads to

Cd �
∑

x

∣∣λx tr
{[

Ax ⊗ (
Px1 − Qx2

)]
ρAB

}∣∣. (A2)

In the next step, we apply the Cauchy-Schwarz inequality.
For the Hilbert-Schmidt inner product, the Cauchy-Schwarz
inequality reads |tr(X †Y )| �

√
tr(X †X )

√
tr(Y †Y ), where X

and Y are arbitrary operators acting in a given Hilbert space.
Therefore, taking X = (Ax ⊗ 1)ρ1/2

AB and Y = [1⊗ (Px1 −
Qx2 )]ρ1/2

AB , where ρ
1/2
AB is the positive semidefinite square root

of ρAB, we can apply the Cauchy-Schwarz inequality to all of
the terms of Cd , leading to

Cd �
∑

x

λx

√
tr
[(

A2
x ⊗ 1

)
ρAB

]√
tr
[(
1⊗ (

Px1 − Qx2

)2)
ρAB

]
.

(A3)

The second application of Cauchy-Schwarz, now for the stan-
dard inner product of real vectors, leads to

Cd�
√∑

x

λ2
x tr

[(
A2

x ⊗ 1
)
ρAB

]√∑
x

tr
[(
1⊗ (

Px1−Qx2

)2)
ρAB

]
.

(A4)

Let us now compute a universal upper bound on the second
factor. For any measurement operators Px1 and Qx2 , it is true
that P2

x1
� Px1 and Q2

x2
� Qx2 (recall that for Hermitian opera-

tors X and Y the inequality X � Y is equivalent to X − Y � 0).
Thus,∑
x1,x2

(
Px1 − Qx2

)2 =
∑
x1,x2

(
P2

x1
+ Q2

x2
− {

Px1 , Qx2

})
�

∑
x1,x2

(
Px1+ Qx2 −

{
Px1 , Qx2

})= 2(d − 1)1.

(A5)

Therefore, the second factor is upper bounded by
√

2(d − 1).
Using the assumption that the measurement operators of Alice
are projective, we can rewrite the observable as A2

x = A(1)
x +

A(2)
x . Therefore,

Cd �
√

2(d − 1)
∑

x

λ2
x tr

[((
A(1)

x + A(2)
x

) ⊗ 1
)
ρAB

]
. (A6)

Finally, if we define

γ :=
∑

x

λ2
x tr

[((
A(1)

x + A(2)
x

) ⊗ 1
)
ρAB

]
, (A7)

it is easy to see that Fd is upper bounded by

Fd �
√

2(d − 1)γ − 1
2 γ . (A8)

The last step is to maximize the right-hand side of Eq. (A8)
over γ = [0, d (d − 1)] [it is easy to verify that the maximal
value of γ equals

∑
x λ2

x = d (d − 1)]. Using elementary cal-
culus we conclude that the right-hand side is maximized only
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FIG. 2. A Bell scenario extended to a set of N > 2 projec-
tive measurements. Now, Alice is given a string with N digits
x1, x2, . . . , xN ranging from 1 to d and an ordered pair ( j, k), such
that j ∈ [N] − {N} and k ∈ [N] − {1}. Similarly, Alice’s output now
ranges from 1 to N and includes ⊥. Bob takes an input y ∈ [N] and
produces output b ∈ [d].

when γ = 2(d − 1), which leads to the final bound:

Fd � d − 1. (A9)

At this point, the reader can better appreciate why we
needed to introduce a penalty in Eq. (3). In Eq. (A8), γ is
maximized over the interval [0, d (d − 1)]. Then, the maximal
γ can be found at 2(d − 1), giving us the quantum value
above. Now, note that if our functional had no penalty, it
would be written as Fd = Cd and the maximization of Cd in
terms of γ would produce

Cd �
√

2(d − 1)γ . (A10)

In this case, γ is maximal at d (d − 1), in the edge of the
interval, so Cd is upper bounded by

√
2d (d − 1). On the

other hand, by comparing Eqs. (8) and (11), we obtain that

the realization produced by the maximally entangled state is
simply Cd = 2(d − 1). In a nutshell, introducing the penalty
over the outputs a = 1 and 2 makes the realization by the
maximally entangled state the same as the upper bound for
Fd so that this state turns out to be optimal.

In addition, note that, without penalty, Alice never outputs
a =⊥. Then, the inclusion of a third output is justified. It
allows Alice to play the game and be penalized or not to play
the game and keep the value of the realization unchanged.
Adding a third output also guarantees that the spectrum of
Ax is proportional to the spectrum of Px1 − Qx2 , since spec
(Px1 − Qx2 ) ∈ {±λx, 0}.

2. An extension to N > 2 rank-one projective measurements

The original functionals tailored to MUBs in Ref. [15] have
recently been extended to N > 2 bases [18] and it turns out
that an analogous extension can be constructed for non-MUB
measurements. In this subsection, we present this generaliza-
tion.

Suppose a bipartite Bell scenario (see Fig. 2) in which
Alice is given a string x = ( j, k) x1x2 . . . xN , in which xi ∈
[d], for i = 1, . . . , N , and ( j, k) is an ordered pair such
that j ∈ [N] − {N}, k ∈ [N] − {1}, and j < k. Similarly to the
previous case, Alice now outputs a ∈ {1, 2, . . . , N, ⊥}. On
the other hand, the outputs of Bob are kept unchanged, while
the possible inputs are y ∈ [N].

Now, consider N d-dimensional orthonormal bases
{|e(1)

x1
〉}d

x1=1, {|e(2)
x2

〉}d
x2=1, . . . , {|e(N )

xN
〉}d

xN =1, where d � 2, and
define

λ( j,k)
x :=

√
1 − ∣∣〈e( j)

x j

∣∣e(k)
xk

〉∣∣2. (A11)

For a fixed pair ( j, k), consider the following functional:

F ( j,k)
d :=

d∑
x j ,xk=1

λ( j,k)
x

( ∑
y∈{ j,k}

[p(y, xy|x, y) − p(ȳ, xy|x, y)] − 1

2
λ( j,k)

x [p(a = j|x) + p(a = k|x)]

)
, (A12)

where ȳ flips the value of y from j to k and vice versa. Then,
Fd can be generalized by considering

FN
d =

N∑
j<k

F ( j,k)
d . (A13)

If written so, Eq. (A13) is clearly upper bounded by

FN
d � 1

2 N (N − 1)(d − 1), (A14)

as we can simply use Eq. (A9) to sum the
(N

2

)
terms of

Eq. (A13).
This upper bound can be saturated if the N orthonormal

bases {|e(i)
xi

〉}d
xi=1 in dimension d are such that λ

( j,k)
x > 0, for

all j, k, x and i = 1, 2, . . . , N . In this case, we can mirror
the optimal realization proposed in the main text by taking the
same state as in Eq. (6), Pxi = |e(i)

xi
〉〈e(i)

xi
| when Bob is given

y = i and

A( j,k)
x = 1

λ
( j,k)
x

(
Pxj − Qxk

)T
. (A15)

Moreover, according to Theorem 2 the functional in Eq. (A13)
is nontrivial, if, for the N orthonormal bases, the condition
λ

( j,k)
x > 0, ∀ j, k, x is satisfied.

Lastly, an interesting problem can be posed if, instead of
providing N orthonormal bases, we specify λ

( j,k)
x and try to

recover the bases. In this case, it is not clear if this problem has
a solution for any N or arrangements of λ

( j,k)
x . For instance, if

we consider

∣∣〈e( j)
x j

∣∣e(k)
xk

〉∣∣2 = 1
d ∀ j, k ∈ [N] and x j, xk ∈ [d], (A16)

we fix the values of λ
( j,k)
x to be uniform. The resulting func-

tionals are the same as the ones derived in Ref. [18] up to
a factor of

√
1 − 1/d . The numerical results of Ref. [18]

confirm what is already known in the literature: there is no
more than d + 1 MUBs in dimension d and Zauner’s conjec-
ture [19] holds.
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APPENDIX B: CERTIFICATION

In what follows, we present the proof of Theorem 1. First,
we demonstrate the device-independent certification of the
measurements of Bob, based solely on the condition that βQ is
saturated. Recall that, as in Appendix A 1, for the certification
of the measurements of Bob, we can assume that the mea-
surements of Alice are projective since we are not interested
in their characterization. Next, we construct an isometry ca-
pable of extracting a maximally entangled state of dimension
d . Lastly, we discuss some exceptional cases in which state
certification cannot be achieved.

1. Bob’s measurements (proof of the first part of Theorem 1)

If Eq. (A9) is saturated, all of the inequalities used in
Appendix A 1 should be tight. This enables us to get some
information about the state and measurements capable of
achieving the quantum value.

The first step we must consider is going from Eq. (A1) to
Eq. (A2), where the terms of Cd are bounded by the absolute
value:

Cd =
∑

x

λx tr
[(

Ax ⊗ (
Px1 − Qx2

))
ρAB

]
�

∑
x

∣∣λx tr
[(

Ax ⊗ (
Px1 − Qx2

))
ρAB

]∣∣. (B1)

If the above inequality is tight, the argument of the absolute
value must be non-negative. Since, by construction, λx > 0,
we conclude that tr[Ax ⊗ (Px1 − Qx2 )ρAB] � 0.

The saturation condition of the Cauchy-Schwarz inequality
in Eq. (A3), in turn, implies that

λx Ax ⊗ 1 ρ
1/2
AB = μx1⊗ (

Px1 − Qx2

)
ρ

1/2
AB , ∀ x = x1x2, (B2)

where μx ∈ C is the proportionality constant. Right multiply-
ing it by ρ

1/2
AB and left multiplying by 1⊗ (Px1 − Qx2 ) leads

to

λx Ax ⊗ (
Px1 − Qx2

)
ρAB = μx1⊗ (

Px1 − Qx2

)2
ρAB. (B3)

If we trace both sides of this equation and use the fact that
tr[Ax ⊗ (Px1 − Qx2 )ρAB] � 0 (deduced above), we conclude
that μx is real and non-negative.

The saturation condition of Eq. (A4) implies that

λ2
x A2

x ⊗ 1 ρAB = η 1⊗ (
Px1 − Qx2

)2
ρAB ∀ x = x1 x2,

(B4)

where η is independent of x since the Cauchy-Schwarz in
Eq. (A4) is applied to the entire summation. Now, let us
multiply Eq. (B2) by its Hermitian conjugate and take the
trace:

λ2
x tr

[
A2

x ⊗ 1 ρAB
] = μ2

x tr
[
1⊗ (

Px1 − Qx2

)2
ρAB

]
. (B5)

Comparing Eqs. (B5) and (B4) we conclude that μx = √
η,

for all x. So, let us drop the index of μx and use just μ from
now on.

The last but not less important saturation condition is
implicit in Eq. (A5) where we upper bound the following

quantity:∑
x

tr
[(
1⊗ (

P2
x1

+ Q2
x2

− {
Px1 , Qx2

}))
ρAB

]
�

∑
x

tr
[(
1⊗ (

Px1 + Qx2 − {
Px1 , Qx2

}))
ρAB

]
. (B6)

After a short algebraic manipulation, we get

tr

[(
1⊗

∑
x1

(
Px1 − P2

x1

))
ρAB

]

+ tr

[(
1⊗

∑
x2

(
Qx2 − Q2

x2

))
ρAB

]
� 0. (B7)

If we trace over Alice’s subsystem, the term-by-term satura-
tion of the above inequality implies

tr
[(

Px1 − P2
x1

)
ρB

] = 0, ∀ x1

tr
[(

Qx2 − Q2
x2

)
ρB

] = 0, ∀ x2.
(B8)

Since both Px1 − P2
x1

(or Qx2 − Q2
x2

) and ρB are positive
semidefinite operators and their product has a null trace, they
must be orthogonal: (

Px1 − P2
x1

)
ρB = 0,(

Qx2 − Q2
x2

)
ρB = 0.

(B9)

Assuming that Bob’s marginal state is full rank, it is possible
to eliminate ρB out of Eqs. (B9) by right multiplying it by ρ−1

B .
This way, we conclude that the saturation of Eq. (A5) implies
that both measurements of Bob are projective. We can use this
fact to sum Eq. (B5) over x to obtain∑

x

λ2
x tr

[
A2

x ⊗ 1 ρAB
] = μ2

∑
x

tr
[
1⊗ (

Px1 − Qx2

)2]
. (B10)

Note that, if we assume the measurements of Alice to be
projective, the right-hand side of the above equation can be
identified as γ , in Eq. (A7). On the other hand, the left-hand
side can be summed to 2μ2(d − 1). The only value of γ which
allows for the quantum value in Eq. (A8) is 2(d − 1), so we
conclude that μ = 1.

Having obtained the value of the proportionality constants,
let us right multiply Eq. (B2) by ρ

1/2
AB and use μ = 1 to rewrite

the following relation:

λxAx ⊗ 1 ρAB = 1⊗ (
Px1 − Qx2

)
ρAB. (B11)

Again, assuming that the measurements of Alice are projec-
tive, we can use Eq. (4) to write A3

x = Ax. Combining it with
Eq. (B11), we get

1

λx
1⊗ (

Px1 − Qx2

)
ρAB = 1

λ3
x

1⊗ (
Px1 − Qx2

)3
ρAB. (B12)

Since we have eliminated Alice’s observable out of the
equation, we can derive a relation involving only Bob’s mea-
surement operators by tracing out Alice’s subsystem and right
multiplying by the inverse of Bob’s marginal state:

λ2
x

(
Px1 − Qx2

) = (
Px1 − Qx2

)3
. (B13)
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After some algebraic manipulation,

O2
x1x2

(
Px1 − Qx2

) = Px1 Qx2 Px1 − Qx2 Px1 Qx2 . (B14)

Now, if we sum over x1,∑
x1

O2
x1x2

Px1 −
∑

x1

O2
x1x2

Qx2 =
∑

x1

(
Px1 Qx2 Px1 − Qx2 Px1 Qx2

)
(B15)∑

x1

O2
x1x2

Px1 − Qx2 =
∑

x1

(
Px1 Qx2 Px1

) − Q2
x2
. (B16)

Because Qx2 = Q2
x2

,∑
x1

O2
x1x2

Px1 =
∑

x1

(
Px1 Qx2 Px1

)
. (B17)

Finally, since the Px1 projectors are orthogonal, this equality
must hold term by term:

O2
x1x2

Px1 = Px1 Qx2 Px1 . (B18)

The summation over x2 gives us the complementary equation:

O2
x1x2

Qx2 = Qx2 Px1 Qx2 . (B19)

Lastly, let us show that these two equations are complete,
i.e., if for some finite-dimensional measurements Eqs. (B18)
and (B19) hold, then it is possible to construct a realiza-
tion that achieves the quantum value of Fd . This means
that the conditions derived are, at least for finite-dimensional
measurements, necessary and sufficient, and no tighter char-
acterization can be obtained.

Consider an incompatible pair of measurements {Px1}d
x1=1

and {Qx2}d
x2=1 acting on a D-dimensional Hilbert space, with

D < ∞, satisfying Eqs. (B18) and (B19), for some set of
overlaps 0 < Ox1x2 < 1. Then, both Px1 and Qx2 are projectors
and have equal traces, for all x1, x2 ∈ {1, . . . , d}. The pro-
jectivity can be demonstrated by simply summing Eqs. (B18)
and (B19) over x1 and x2 to get Px1 = P2

x1
and Qx2 = Q2

x2
,

respectively. Showing that tr(Px1 ) = tr(Qx2 ) relies on demon-
strating that the projectors are isomorphic. Defining Wx1x2 =

1
Ox1x2

Px1 Qx2 we can see that, for Ox1x2 > 0,

Wx1x2W
†

x1x2
= Px1 and W †

x1x2
Wx1x2 = Qx2 . (B20)

For a finite-dimensional Hilbert space this implies that
tr(Px1 ) = tr(Qx2 ) = n, for some fixed n ∈ N. Because the di-
mension of the Hilbert space is finite, we rewrite D as simply

D = tr1 =
d∑
x1

trPx1 = dn. (B21)

Then, we construct a Hermitian operator Bx1x2 = Px1 − Qx2 .
By computing an explicit expression for B3

x1x2
, one can show

that it satisfies a relation analogous to Eq. (B13):

B3
x1x2

= λ2
xBx1x2 ∀ x1, x2 ∈ {1, . . . , d}. (B22)

Clearly, the spectrum of Bx1x2 belongs to {0,±λx}. Because
the trace of Bx1x2 is null, the multiplicity of its non-null eigen-
values must be the same. So, let us calculate

tr(B2
x1x2

) = tr
(
Px1 + Qx2 − {

Px1 , Qx2

})
= 2n − tr

({
Px1 , Qx2

})
= 2n − 2tr

(
Px1 Qx2 Px1

) = 2nλ2
x, (B23)

where we have used that tr(Px1 Qx2 ) = tr(Px1 Qx2 Px1 ). Thus,
both +λx and −λx must have multiplicity n.

Now, let us define a realization of Fd in which the measure-
ments of Bob are represented by Px1 and Qx2 , the observables
of Alice are given by Ax = 1/λxBT

x1x2
, and the state is the D-

dimensional maximally entangled state |�+
D〉. Like in Eq. (5),

the spectrum of Ax also belongs to {0, ±1}. Then, evaluating
the correlation score gives

Cd =
∑

x

λx〈�+
D |Ax ⊗ Bx1x2 |�+

D〉 =
∑

x

〈�+
D |1⊗ B2

x1x2
|�+

D〉

= 1

D

∑
x

tr
(
B2

x1x2

) = 1

dn

∑
x

2n
(
1 − O2

x1x2

) = 2(d − 1),

(B24)

where we used the fact that the local state of Bob is 1/D. For
the final score, we obtain

Fd = Cd − 1

2

∑
x

λ2
x〈�+

D |A2
x ⊗ 1|�+

D〉

= Cd − 1

2

∑
x

〈�+
D |1⊗ B2

x1x2
|�+

D〉

= Cd − 1

2D

∑
x

tr
(
B2

x1x2

) = d − 1, (B25)

as desired.

2. The state (proof of the second part of Theorem 1)

Here, we present the argument for the certification of the
state. We show that, if the overlap matrix O has at least
one column or row the entries of which are nonzero, then
for any realization that saturates the quantum value of Fd

we can construct local isometries VA : HA → Cd ⊗ HA and
VB : HB → Cd ⊗ HB such that

(VA ⊗ VB)ρAB(V †
A ⊗ V †

B ) = �+
d ⊗ ρaux, (B26)

where ρAB ∈ L(HA ⊗ HB) is the shared state, �+
d is the d-

dimensional maximally entangled state, and ρaux corresponds
to the uncharacterized part of ρAB. In particular, note that the
isometries depend on the measurement operators of Bob, as
explained below.

Let us start by defining the isometry on Bob’s side. To do
this, we need to assume that the jth column of O is nonzero,
i.e., Oi, j �= 0, for all i. Then, we introduce the isometry VB :=
SR, where R : HB → Cd ⊗ HB and S : Cd ⊗ HB → Cd ⊗
HB are defined by

R :=
∑

i

|i〉 ⊗ Pi, (B27)

S :=
∑

k

|k〉〈k| ⊗ Uk . (B28)

Uk is a unitary operator defined as

Uk :=
∑

i

1

Oi, jOi+k, j
PiQjPi+k . (B29)

Note that the subscripts in both Pi+k and Oi+k, j are taken as
sum modulo d , where the result is in the set {1, . . . , d}. Then,
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the action of Uk produces a cyclic shift on {Pi}d
i=1:

UkPiU
†
k = Pi−k . (B30)

Finally, VB is rewritten as

VB =
∑

i

|i〉 ⊗ UiPi = 1

Od, j

∑
i

1

Oi, j
|i〉 ⊗ Pd QjPi. (B31)

For Alice’s side, let us first define a pair of operators acting
in HA analogously to the action of Px1 and Qx2 on Bob’s side:

P̃x1 := 1

d

(
1+

∑
x2

λxAx

)
,

Q̃x2 := 1

d

(
1−

∑
x1

λxAx

)
.

∀ x = x1x2 (B32)

If written as in the above equation, P̃x1 and Q̃x2 satisfy(
P̃x1 ⊗ 1

)
ρAB = (

1⊗ Px1

)
ρAB,(

Q̃x2 ⊗ 1
)
ρAB = (

1⊗ Qx2

)
ρAB, (B33)

for all ρAB, {Px1}d
x1=1 and {Qx2}d

x2=1 that saturate the quantum
value. The new operators P̃x1 and Q̃x2 satisfy similar algebraic
relations as their counterparts on Bob’s side. By taking the
partial trace over Bob’s marginal state, we can easily verify
from Eqs. (B33) that

P̃x1ρA = P̃2
x1
ρA,

Q̃x2ρA = Q̃2
x2
ρA. (B34)

Also, an analogous version of Eqs. (B18) and (B19) must be
satisfied by P̃x1 and Q̃x2 :(

P̃x1 ⊗ 1
)
ρAB = (

1⊗ Px1

)
ρAB = 1

O2
x1,x2

(
1⊗ Px1 Qx2 Px1

)
ρAB

= 1

O2
x1,x2

(
P̃x1 Q̃x2 P̃x1 ⊗ 1

)
ρAB, (B35)

which leads to

O2
x1,x2

P̃x1 = P̃x1 Q̃x2 P̃x1 ,

O2
x1,x2

Q̃x1 = Q̃x2 P̃x1 Q̃x2 . (B36)

Lastly, defining R̃, S̃, and Ũk analogously to Eqs. (B27), (B28),
and (B29), respectively, by replacing Px1 → P̃x1 and Qx2 →
Q̃x2 , we get a similar expression for VA:

VA :=
∑

i

|i〉 ⊗ ŨiP̃i. (B37)

Now, let us evaluate the action of V on the state. Defining
ρout := (VA ⊗ VB)ρAB(V †

A ⊗ V †
B ) gives

ρout =
∑
i,i′

∑
j, j′

|i, i′〉〈 j, j′| ⊗ (ŨiP̃i ⊗Ui′Pi′ )ρAB(P̃jŨ
†
j ⊗ Pj′U

†
j′ )

(B38)

and because of Eqs. (B33)

(ŨiP̃i ⊗ Ui′Pi′ )ρAB(P̃jŨ
†
j ⊗ Pj′U

†
j′ )

= (Ũi ⊗ Ui′Pi′ )(P̃i ⊗ 1)ρAB(P̃j ⊗ 1)(Ũ †
j ⊗ Pj′U

†
j′ )

= (Ũi ⊗ Ui′Pi′ )(1⊗ Pi )ρAB(1⊗ Pj )(Ũ
†
j ⊗ Pj′U

†
j′ )

= δi,i′δ j, j′ (Ũi ⊗ UiPi )ρAB(Ũ †
j ⊗ PjU

†
j ). (B39)

Thus, ρout turns out to be

ρout =
∑
i, j

|i, i〉〈 j, j| ⊗ (Ũi ⊗ UiPi )ρAB(Ũ †
j ⊗ PjU

†
j ). (B40)

Using Eqs. (B33) it is possible to show that

(Ũk ⊗ 1)ρAB = (1⊗ U †
k )ρAB, (B41)

and

ρout =
∑
i, j

|i, i〉〈 j, j| ⊗ (1⊗ UiPiU
†
i )ρAB(1⊗ UjPjU

†
j )

= �+
d ⊗ d (1⊗ Pd )ρAB(1⊗ Pd ). (B42)

Finally, as ρout must constitute a normalized state, we must
have

tr[(1⊗ Pd )ρAB] = 1

d
. (B43)

Equation (B42) leads us to two conclusions. First, it is pos-
sible to certify the shared state whenever O is a matrix
possessing at least one column filled with nonzero elements,
as in Eq. (B29). Second, as Pd is arbitrarily labeled, the max-
imal violation also implies that the marginal distribution of
{Px1}d

x1=1 is uniform. In fact, replacing Uk in Eq. (B28) by Uk+l ,
where l ∈ {1, . . . , d}, leads to

tr[(1⊗ Px1 )ρAB] = 1

d
∀ x1 ∈ [1, . . . , d ]. (B44)

In addition, note that Pi and Qj in Eqs. (B27) and (B29) can
be interchanged. If one does so, the state certification can be
made whenever O has at least one nonzero row, and, in this
case, the marginal distribution of {Qx2}d

x2=1 is guaranteed to be
uniform:

tr[(1⊗ Qx2 )ρAB] = 1

d
∀ x2 ∈ [1, . . . , d ]. (B45)

3. Exceptional cases for state certification

The presented method for certification works for a wide
class of overlap matrices, but it still requires that O must have
at least one column or row the entries of which are nonzero.
This case does not include, for instance, overlap matrices as
in Eq. (20). In this section, let us provide an example of a state
different than |�+

d 〉 that also achieves βQ for such cases.
To introduce it, suppose a realization of F4 character-

ized by Px1 = |x1〉〈x1| and Qx2 = | fx2〉〈 fx2 |, where x1, x2 =
1, . . . , 4, and

| f1〉 = 1√
2

(|1〉 + |2〉), | f2〉 = 1√
2

(|1〉 − |2〉),

| f3〉 = 1√
2

(|3〉 + |4〉), and | f4〉 = 1√
2

(|3〉 − |4〉). (B46)

If considered so, the overlap matrix is given by

O =

⎡
⎢⎢⎣

1/
√

2 1/
√

2 0 0
1/

√
2 1/

√
2 0 0

0 0 1/
√

2 1/
√

2
0 0 1/

√
2 1/

√
2

⎤
⎥⎥⎦, (B47)
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that is, it has the form of Eq. (20), for d = 4. In the same way
as before, the observables of Alice are defined as in Eq. (5).
On the other hand, the state is given by

ρAB =
2∑

k=1

(1⊗ 
k )�+
4 (1⊗ 
k ) (B48)

where �+
4 is the four-dimensional maximally entangled state

and


1 = |1〉〈1| + |2〉〈2|,

2 = |3〉〈3| + |4〉〈4|. (B49)

If written in this way, it is easy to see that


1Px1
1 =
{

Px1 if x1 = 1, 2,

0 if x1 = 3, 4 and


2Px1
2 =
{

0 if x1 = 1, 2,

Px1 if x1 = 3, 4,
(B50)

which can be generalized to both measurements of Bob and
expressed in short as

2∑
k=1


kPx1
k = Px1 and
2∑

k=1


kQx2
k = Qx2 . (B51)

Now, note that this realization not only saturates the quan-
tum value of F4, but preserves the same statistics that would
be produced by substituting the four-dimensional maximally
entangled state. To check it, suppose an arbitrary observable
� of Alice, then

tr
[(

� ⊗ Px1

)
�+

4

] =
∑

k

tr
[
(1⊗ 
k )

(
� ⊗ Px1

)
(1⊗ 
k )�+

4

]

= tr

[
(� ⊗ Px1 )

∑
k

(1⊗ 
k )�+
4 (1⊗ 
k )

]

= tr[(� ⊗ Px1 )ρAB], (B52)

where we just used Eq. (B51) for Px1 and the cyclicity of the
trace.

To verify that there is a clear difference between ρAB and
�+

4 , consider an isometry V := VA ⊗ VB such that the action
of VA is defined as

VA|1〉A = |1〉A|1〉A′ ,

VA|2〉A = |1〉A|2〉A′ ,

VA|3〉A = |2〉A|1〉A′ ,

VA|4〉A = |2〉A|2〉A′ , (B53)

where |·〉A denotes the marginal state of Alice, and |·〉A′ de-
notes the marginal state of an ancillary subsystem of Alice.
The action of VB is defined in the same way for the marginal
state of Bob and its ancillary subsystem. Then, by applying
such an isometry to ρAB one gets

V ρABV † = 1
2 (|1〉〈1|A⊗|1〉〈1|B+|2〉〈2|A ⊗ |2〉〈2|B) ⊗ (�+

2 )A′B′,

(B54)

where (�+
2 )A′B′ is the two-dimensional maximally entangled

state between subsystems A′ and B′. In other words, one can

show that, up to local isometries, ρAB is equivalent to a per-
fectly correlated classical random bit combined with a single
copy of (�+

2 )A′B′ .
One can extend this simple example to the case where

the matrix of overlaps has a block-diagonal structure with K
blocks of dimension dk , where k = 1, . . . , K . In this case,
consider the state

ρAB =
K∑

k=1

(1⊗ 
k )�+
d (1⊗ 
k ), (B55)

where 
k projects into the dk-dimensional subspace of the kth
block of O. Using a proper definition of V , one can show that

V ρABV † =
K∑

k=1

pk|k〉〈k|A ⊗ |k〉〈k|B ⊗ (
�+

dk

)
A′B′ , (B56)

where pk = dk/d and (�+
dk

)A′B′ is the dk-dimensional max-
imally entangled state between subsystems A′ and B′. That
is, it is possible to show that, up to local isometries, ρAB is
equivalent to a convex combination of maximally entangled
states of various dimensions, where the classical registers tell
Alice and Bob which state they share.

APPENDIX C: THE LOCAL VALUE OF Fd

In this Appendix, we proceed as follows: first, we obtain
a universal lower bound for the local value. This constitutes
a proof for Theorem 3. Next, we verify the existence of a
d-dimensional overlap matrix that achieves this lower bound
only for the even d cases. For odd d , we show that there is no
such matrix.

1. Preliminaries for Theorem 3

Before starting with the demonstration of Theorem 3, some
short auxiliary results are required. This section develops the
solutions to two minimization problems arising while in the
demonstration.

a. The constrained probability simplex

In the proof of Theorem 3, we are required to minimize
a concave function over a polytope. In this subsection, let us
characterize the extremal points of this polytope. We start by
representing the convex set by variables {ti}n

i=1 such that ti �
0,

∑
i ti = 1 and ti � τ for a fixed τ ∈ (0, 1). The first two

constraints simply give us the probability simplex. The last
one can be interpreted as hyperplanes that cut off the vertices
of this simplex. Therefore, we refer to the resulting set as the
constrained probability simplex.

Let the n-tuple t = (t1, t2, . . . , tn) represent a point inside
of the probability simplex. Its extremal points are given by the
deterministic distributions, i.e., the permutations of

t = (1, 0, 0, . . . , 0). (C1)

Naturally, if we require that ti � τ , these vertices no longer
belong to the set. Then, let us show that the new extremal
points of the constrained probability simplex are given by

032219-10



OPTIMALITY OF ANY PAIR OF INCOMPATIBLE … PHYSICAL REVIEW A 106, 032219 (2022)

permutations of

t =
(

τ, τ, . . . , τ︸ ︷︷ ︸
×� 1

τ �
, 1 −

⌊
1

τ

⌋
× τ, 0, 0, . . . , 0

)
. (C2)

To see that there are no other extremal points, one can
wonder how many coordinates are admitted to take a value
other than zero or τ . Let us suppose that t j and t j+1 are two
coordinates satisfying this condition, that is, 0 < t j, t j+1 < τ .
An arbitrary point tarb with components t j and t j+1 must be,
up to permutations,

tarb = (τ, τ, . . . , τ, t j, t j+1, 0, 0, . . . , 0). (C3)

If tarb is not extremal, it is possible to decompose it into a
convex sum. Changing this distribution for a quantity ε, we
get

t+ = (τ, τ, . . . , τ, t j + ε, t j+1 − ε, 0, 0, . . . , 0) (C4)

or, in the inverse way,

t− = (τ, τ, . . . , τ, t j − ε, t j+1 + ε, 0, 0, . . . , 0). (C5)

Note that, for a small enough ε, t− and t+ are still valid points.
However, tarb = 1/2(t+ + t−), so tarb is not extremal. Thus,
any extremal point must have zero or one coordinate in the
open interval 0 < ti < τ . The first case appears only when 1/τ

is an integer. Otherwise, we find ourselves in the second case.
In either case, the extremal points must have the form of the
vector t given in Eq. (C2), up to permutations.

Having shown that all the extremal points have the form
given above, let us argue that all those points are in fact
extremal. To do so, it suffices to show that no single point from
t can be written as a convex combination of the remaining
points. More specifically, suppose that t j , with j = 1, . . . , J ,
are points of the form of t, in Eq. (C2). Then, let us show

that those points, in particular t1, cannot be decomposed into
a convex sum of t j , for j �= 1. Without loss of generality,
assume that, for some strictly positive weights w j , where∑

j w j = 1, t1 can be written as a convex sum:

t1 =
∑
j∈J

w jt j, (C6)

where J is the set of indices j for which w j > 0. Then,
suppose that the first component of t1 is [t1]1 = τ , so

[t1]1 =
∑
j∈J

w j[t j]1 = τ. (C7)

By hypothesis, [t j]1 � τ , for all j, and

[t1]1 =
∑
j∈J

w j[t j]1 � τ
∑
j∈J

w j = τ. (C8)

In other words, Eq. (C8) is saturated, so [t j] = τ , for all j ∈
J . We can repeat this same argument to all of the components
of t1 equal to τ , leading to the same conclusion. In addition,
using that the components of t j are non-negative, a similar
argument can be used to show that if [t1]k = 0, then [t j]k = 0,
for all j ∈ J . The last component of t1 equals 1 − � 1

τ
� × τ ,

which is fixed by normalization, and so are those of t j , for
all j ∈ J . Therefore, t1 cannot be decomposed into a convex
sum of t j , for j �= 1. As t1 is an arbitrary point among all of
the t j points, for all j, then all of the points of the form of t,
in Eq. (C2), are extremal.

b. Minimization of a specific function

In the proof of Theorem 3, we are required to find the
minimum value of the following function:

s(τ ) := 2

⌊
1 − τ

τ

⌋(√
1 − τ − 1

) + 2

√
τ

(
1 +

⌊
1 − τ

τ

⌋)
− τ − 2 (C9)

over τ ∈ (0, 1]. To do so, let us first show that s(τ ) is continuous. By looking at the function in Eq. (C9), it can be noted that the
possible discontinuous points are those at which (1 − τ )/τ is an integer. So, let us evaluate the sided limits of s(τ ) at points of
the form of τ = 1/n, where n is a positive integer:

lim
ε→0+

s(1/n − ε) = 2(n − 1)
(√

1 − 1/n − 1
) − 1/n (C10)

and

lim
ε→0+

s(1/n + ε) = 2(n − 2)(
√

1 − 1/n − 1) + 2
(√

1 − 1/n − 1
) − 1/n

= 2(n − 1)(
√

1 − 1/n − 1) − 1/n. (C11)

Since the sided limits coincide, s(τ ) is continuous with respect
to τ .

Now, note that, inside of the interval τ ∈ [ 1
n+1 , 1

n ], s(τ ) can
be written as

s(τ ) = 2(n − 1)(
√

1 − τ − 1) + 2
√

nτ − τ − 2. (C12)

If we treat n as a fixed parameter, it is easy to see that s(τ )
is a concave function of τ (a linear combination of concave

terms with non-negative coefficients is concave). Moreover,
for a single-variable concave function defined over a closed
and bounded interval, the points that minimize this function
are at the edges of the interval. In this case, we are looking
for points of the form τ = 1/n. Therefore, to minimize s(τ ),
we can discard the points in the interior and focus only at the
edges.
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Then, let us define a function g(n) the domain of which is
the set of positive integers:

g(n) := s

(
τ = 1

n

)
= 2(n − 1)

(√
1 − 1

n
− 1

)
− 1

n
. (C13)

For a moment, assume that n is a continuous variable. This
way, g(n) can be minimized just by evaluating its derivative:

dg

dn
= 2

(√
1 − 1

n
− 1

)
+ n − 1

n2
√

1 − 1/n
+ 1

n2
. (C14)

Setting dg
dn = 0 after some algebraic manipulation leads to

n∗2 − n∗ − 1 = 0 ⇒ n∗ = 1 + √
5

2
≈ 1.62, (C15)

which provides a single positive root for n∗. Moreover, the
second derivative, d2g

dn2 , is positive at n = n∗ and so n∗ is indeed
a minimum of g(n). However, g(n) is only defined for positive
integers, and we have to restrict the analysis to this set. Since
n∗ is the only critical point of g(n) and dg

dn is positive for
n > n∗ and negative for n < n∗, it suffices to check the closest
integers of n∗, i.e., n = 1 and 2.

Then, returning to s(τ ), as s(τ = 1) = −1 and s(τ =
1/2) = √

2 − 5/2, s(τ ) is minimized at τ = 1/2.

2. The analysis of the local value in Eq. (18)

In this section, let us show some properties that can be
extracted from the expression of the local value in Eq. (18).
First, suppose that Oi j = 1, for some i, j ∈ {1, . . . , d}. Note
that this assumption leads to Oi,x2 = δx2, j and Ox1, j = δx1,i, as
the rows and columns of O are normalized. Next, Eq. (17)
evaluated for the strategy s(i, j) of Bob leads to

s(i, j) =
d∑

x1 �=i

[√
1 − O2

x1, j − 1

2

(
1 − O2

x1, j

)]

+
d∑

x2 �= j

[√
1 − O2

i,x2
− 1

2

(
1 − O2

i,x2

)] = d − 1.

(C16)

Note that this is the largest value that can be achieved by any
strategy, as the quantum value is also d − 1. Therefore, in this
case, this must be the optimal strategy of Bob, and βL(O) =
d − 1. This is the reason why the assumption Ox1x2 < 1 is
required for most of our analysis. If one desires to trivialize the
Bell inequalities presented in this paper, it suffices to construct
Fd out of a matrix with a single overlap equal to 1.

Now, let us show that βL(O) can be lower bounded by
a clever choice of the strategies of Bob. This constitutes a
proof for Theorem 3. Without loss of generality, let us start
by identifying the largest element of O as O11. We can always
do so, as it is always possible to relabel the outputs. Then,
let us lower bound βL by restricting the set of strategies from
u, v ∈ {1, . . . , d} to u, v ∈ {1}:

βL(O) = max
u,v

[s(u, v)] � max
u,v∈{1}

[s(u, v)] = s(1, 1). (C17)

In other words, we choose to bound βL by the strategy related
to the largest element of O, which we defined to be O11. This

particular choice circumvents the maximization and reduces
the problem of lower bounding βL to the calculation of a
single strategy. Recall that, from Eq. (17), we are summing
over the interval R± = {x ∈ [d]2|(δx1u − δx2v ) = ±1}, which
means that the sum is performed over row u and column v,
but it excludes the term (u, v), as (δuu − δvv ) is, obviously,
zero. Then, by making this choice, we are lower bounding βL

by the strategy that excludes the largest term of O in the sum.
The strategy s(1, 1), in turn, is given by

s(1, 1) =
d∑

x1 �=1

[√
1 − O2

x1,1
− 1

2

(
1 − O2

x1,1

)]

+
d∑

x2 �=1

[√
1 − O2

1,x2
− 1

2

(
1 − O2

1,x2

)]
. (C18)

Defining tx1x2 := O2
x1x2

and using the normalization of rows
and columns of O, we get

s(1, 1) =
d∑

x1 �=1

√
1 − tx1,1 +

d∑
x2 �=1

√
1 − t1,x2 − d − t11 + 2.

(C19)

To continue, let us define an auxiliary function, h, such that

h(t21, t31, . . . , td,1) :=
d∑

x1=2

√
1 − tx1,1, (C20)

i.e., it corresponds to the first term of Eq. (C19). Note that h is
a Schur-concave function with respect to the d − 1 variables
(t21, t31, . . . , td,1). This is of particular importance because
any Schur-concave function, when minimized over a compact
set, achieves its minimum on some extremal point of this set.
Thus, we can use this fact to minimize both functions.

Then, let us express the d − 1 variables of h as a vector,
t := (t21, t31, . . . , td,1). For the elements of t, we have

tx1,1 � 0,
∑
x1 �=1

tx1,1 = 1 − t11 and tx1,1 � t11. (C21)

The last condition comes from the fact that O11 (and, by
consequence, t11) is the largest element. The solution to the
minimization of h(t) is presented in Sec. C where the extremal
points text of the set in Eqs. (C21) are given by permutations
of

text =
(

t11, . . . , t11︸ ︷︷ ︸
×� 1−t11

t11
�

, 1 − t11 −
⌊

1 − t11

t11

⌋
× t11, 0, . . . , 0

)
.

(C22)

An identical solution is obtained for the minimization of the
second term of Eq. (C19), so s(1, 1) can be lower bounded by

s(1, 1) � 2

⌊
1 − t11

t11

⌋(√
1 − t11 − 1

)

+ 2

√
t11

(
1 +

⌊
1 − t11

t11

⌋)
− t11 + d − 2. (C23)

Now, we have a single-variable function, which can be easily
minimized. This is precisely the function analyzed in Sec. V
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and the minimum is proven to occur at t11 = 1/2. Thus,

s(1, 1) � d +
√

2 − 5
2 , (C24)

which implies that βL(O) � d + √
2 − 5/2, for any d-

dimensional O, with d � 2.

3. Proof of Lemma 2

In this section, we investigate the overlap matrices that
saturate the lower bound on βL. Let us start with the following
lemma.

Lemma 3. If a d×d matrix O∗ is such that βL(O∗) = d +√
2 − 5/2, then a 2×2 MUB block can be separated from the

remainder.
Proof. Assume that O∗ is a d×d matrix such that

βL(O∗) = d + √
2 − 5/2. From the argument developed in

the last section, we start by assigning 1/2 to t11, or, in this case,
assuming that O∗

11 = 1/
√

2. Because of the strict concavity of
h(t) in Eq. (C20), Eq. (C23) is tight if and only if the vector
that minimizes h(t) is given by permutations of

text =
(

1

2
, 0, . . . , 0

)
; (C25)

that is, to saturate the lower bound, we take O∗
12 = O∗

21 =
1/

√
2. Besides that, we must also guarantee that the overlap

matrix corresponds to a valid unitary. Recall that, from Eq. (1),
the overlaps are taken as the absolute value of the inner prod-
uct between bases {ex1}d

x1=1 and { fx2}d
x2=1. In other words, the

elements of O are the absolute value of the elements of some
unitary. It is easy to see that this implies that O∗

22 = 1/
√

2, so
that the partial form of O∗ is given by

O∗ =

⎡
⎢⎢⎢⎢⎣

1/
√

2 1/
√

2 0 . . . 0
1/

√
2 1/

√
2 0 . . . 0

0 0
...

... Orest

0 0

⎤
⎥⎥⎥⎥⎦, (C26)

where Orest represents the uncharacterized elements of O∗. �
Now, to continue with the proof of Lemma 2, we have

to obtain some characterization of βL(Orest ). In fact, we will
show that

βL(Orest ) = (d − 2) +
√

2 + 5

2
, (C27)

which coincides with the lower bound for dimension d − 2.
Because Orest is a square matrix of dimension d − 2, The-

orem 3 already implies that βL(Orest ) is lower bounded by
(d − 2) + √

2 + 5/2. On the other hand, the upper bound is a
consequence of Lemma 3. Because βL(O∗) = d + √

2 − 5/2,
all strategies of O∗ must be upper bounded by this same
amount. In particular, note that for each strategy labeled by
outputs inside of the Orest block, in Eq. (C26), there are four
zero terms, contributing in total with +2. Then, when consid-
ering only Orest, we have βL(Orest ) � (d − 2) + √

2 + 5/2.
Thus, for dimension d − 2, the block Orest also fulfils the

assumptions of Lemma 3, so we can also extract a 2×2 MUB
block from it. Naturally, the indefinite iteration of the above

argument will lead us to two cases: either d is even and

O∗ =

⎡
⎢⎢⎢⎢⎢⎣

1/
√

2 1/
√

2 . . . 0 0
1/

√
2 1/

√
2 . . . 0 0

...
...

. . .
...

...

0 0 . . . 1/
√

2 1/
√

2
0 0 . . . 1/

√
2 1/

√
2

⎤
⎥⎥⎥⎥⎥⎦ (C28)

or d is odd and

O∗ =

⎡
⎢⎢⎢⎢⎣

1/
√

2 1/
√

2 0 . . . 0
1/

√
2 1/

√
2 0 . . . 0

0 0
...

...
. . .

0 0 1

⎤
⎥⎥⎥⎥⎦, (C29)

where the last block corresponds to the element O∗
d,d = 1.

However, while Eq. (C28) is a correct form of O∗ in the even
case, for odd d , this is not true. First, it turns out that the matrix
in Eq. (C29) has one overlap equal to 1, which we discarded
from our analysis. Second, we know, from Appendix C 2, that
this leads to βL(O∗) = d − 1, which contradicts the initial
statement of Lemma 3, that βL(O∗) = d + √

2 − 5/2. Thus,
for the odd d case, there is no O∗ that saturates the lower
bound in Theorem 3.

4. Some considerations for the odd d case

Finally, let us quickly explain why the lower bound derived
in Theorem 3 is not tight for odd d . Consider the entrywise
squared version of O, which we refer to as T . If written so,
T assumes the form of a unistochastic matrix; i.e., if Ux1x2

are the elements of a unitary U , for x1, x2 ∈ {1, . . . , d}, then
Tx1x2 = |Ux1x2 |2. A unistochastic matrix is also a particular case
of a bistochastic matrix—a non-negative matrix the columns
and rows of which add up to one. For 2×2 arrays, it happens
that the bistochastic and the unistochastic sets of matrices
coincide, but for larger dimensions the unistochastic set is a
proper subset of the bistochastic set.

It is clear that our original intention was to minimize βL(O)
over the set of overlap matrices. However, the proof of Theo-
rem 3 relies only on the fact that T is bistochastic and, in fact,
the derived lower bound corresponds exactly to the lowest
value achievable by a bistochastic matrix. For even d , among
the optimal bistochastic matrices, there exist some which are
also unistochastic and, hence, the resulting bound is tight.

For odd d , however, if we try to simultaneously saturate the
bound and enforce unistochasticity, we reach a contradiction,
as shown in the previous section. On the other hand, the lower
bound can be saturated by a bistochastic matrix, e.g.,

T ∗ =

⎡
⎢⎢⎢⎢⎣

1/2 0 0 . . . 0 1/2
1/2 1/2 0 . . . 0 0
0 1/2 1/2 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . 1/2 1/2

⎤
⎥⎥⎥⎥⎦, (C30)

which is valid for all d � 2. However, none of the
optimal bistochastic matrices for odd d happen to be
unistochastic.

Now, let us focus on the case d = 3. An aspect that makes
the optimization over the set of unistochastic matrices for
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d = 3 difficult is the fact that this set is not convex, but only
star convex. Also, the unistochastic and bistochastic sets are
both centered at 1

3 J3, where J3 is the 3×3 matrix of ones [20].
A proper notion of center can be acquired if one considers
a uniformly weighted convex combination of the extremal
points of the permutation matrices. The permutation matrices
are the only extremal points of the bistochastic set, and they
are also extremal for the unistochastic set.

We have numerically implemented a function that calcu-
lates the local value for a given overlap matrix. By performing
a local search over a large number of random starting points
we have reached the conjecture that the smallest value of βL

for d = 3 is achieved for

Oconj =
⎡
⎣1/3 2/3 2/3

2/3 1/3 2/3
2/3 2/3 1/3

⎤
⎦. (C31)

To see why this conjecture is reasonable, consider the en-
trywise squared version of Oconj, which we refer to as
Tconj. An analytic condition derived in Ref. [21] allows
us to check that Tconj is not only unistochastic, but also
lies at the boundary of the unistochastic set. Furthermore,
consider a permutation of the three-dimensional matrix in
Eq. (C30):

T ∗
3 =

⎡
⎣ 0 1/2 1/2

1/2 0 1/2
1/2 1/2 0

⎤
⎦. (C32)

Then,

Tconj = 1
3

(
1
3 J3

) + 2
3 T ∗

3 . (C33)

That is, if one considers the line segment connecting the center
of the unistochastic set and the optimal bistochastic matrix,
Tconj can be found at the intersection of this segment with the
boundary of the unistochastic set.

Lastly, let us show that Oconj provides a smaller local value
than MUBs. By calculating βL(Oconj), we get

βL(Oconj) = 1
9 [6(

√
8 +

√
5) − 13] ≈ 1.9319. (C34)

For d-dimensional MUBs, we obtain

βL

(
1√
d

Jd

)
= 2(d − 1)

√
d − 1

d
− (d − 1)2

d
. (C35)

If evaluated for d = 3, then βL(J3/
√

3) = 1.9327, which is
slightly bigger than βL(Oconj). In fact, Oconj allows us to con-
struct counterexamples for all odd dimensions. For odd d � 3,
consider the following matrix:

O⊕
d =

(�d/2�−1⊕
i=1

1√
2

J2

)
⊕ Oconj. (C36)

The local value obtained for O⊕
d is given by

βL(O⊕
d ) = d − 3 + 1

9 [6(
√

8 +
√

5) − 13] ≈ d − 1.0681.

(C37)

If one takes the derivative of βL(Jd/
√

d ) − βL(O⊕
d ), by a

simple analytic argument it is possible to conclude that this
derivative is positive for all odd d � 3. Because βL(Jd/

√
d ) −

βL(O⊕
d ) is positive for d = 3, then it must also be positive for

all odd d � 3. Therefore, this shows that for all odd d � 3,
the realization of Fd that is most robust to noise does not
correspond to MUBs in dimension d .
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3.2 Comments on “Biased random access codes”

In Biased random access codes, we describe a variation of the RAC protocol, named accordingly,
in which both the string to be encoded and the character to be recovered are not uniformly
distributed. This bias in the input distribution significantly affects the encoding and decoding
strategies that optimise the protocol’s performance in both quantum and classical settings. We
then tackle the problem of optimising these biased RACs using both numerical and analytical
methods. For the numerical approach, we present the RAC-tools Python package, which imple-
ments algorithms that compute the exact classical value and lower bounds for the quantum value
of any biased RAC. Analytically, we derive upper bounds for the optimal performance based on
projective measurements, specifically for RACs where the encoded strings consist of either two
characters from a d-length alphabet or n bits.

The student’s key contribution to the project was developing the numerical analysis for the
scenarios studied, including the creation and documentation of the Python package RAC-tools.
Additionally, the student contributed to the analytical portion of the research, with a particular
focus on the proposition of Lemma 1. In terms of manuscript preparation, the main contributions
involved writing Secs. II and III of the main text, developing Appendices A, B, and D, creating
all figures and plots, and providing input on the remaining parts of the text.
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Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland

(Received 28 March 2023; accepted 25 September 2023; published 13 October 2023)

A random access code (RAC) is a communication task in which the sender encodes a random message into
a shorter one to be decoded by the receiver so that a randomly chosen character of the original message is
recovered with some probability. Both the message and the character to be recovered are assumed to be uniformly
distributed. In this paper, we extend this protocol by allowing more general distributions of these inputs, which
alters the encoding and decoding strategies optimizing the protocol performance, with either classical or quantum
resources. We approach the problem of optimizing the performance of these biased RACs with both numerical
and analytical tools. On the numerical front, we present algorithms that allow a numerical evaluation of the
optimal performance over both classical and quantum strategies and provide a Python package designed to
implement them, called RAC-tools. We then use this numerical tool to investigate single-parameter families of
biased RACs in the n2 �→ 1 and 2d �→ 1 scenarios. For RACs in the n2 �→ 1 scenario, we derive a general upper
bound for the cases in which the inputs are not correlated, which coincides with the quantum value for n = 2
and in some cases for n = 3. Moreover, it is shown that attaining this upper bound self-tests pairs or triples
of rank-1 projective measurements, respectively. An analogous upper bound is derived for the value of RACs
in the 2d �→ 1 scenario, which is shown to be always attainable using mutually unbiased measurements if the
distribution of input strings is unbiased.

DOI: 10.1103/PhysRevA.108.042608

I. INTRODUCTION

In the past decades several instances have been found in
which quantum resources provide an advantage in the per-
formance of a given task. Quantum computing algorithms
[1–5], such as Shor’s factorization algorithm [6], are just
one example of the power of quantum resources: Spatially
separated parties can use entanglement [7] in a shared quan-
tum state, for instance, to improve their performance in a
nonlocal game [8–10], to quantum teleport [11–14] the state
of a third system held by one of them, or to densely en-
code classical information to be sent via a quantum channel
[15–17]. Quantum devices have also shown to be powerful
resources for certain communication tasks in which a quantum
state is prepared by one party and sent to another one, who
performs a measurement to extract information. Such tasks
are known as prepare-and-measure experiments, and they find
application in quantum information processing protocols like
quantum key distribution (QKD) [18–22], randomness certifi-
cation [23–26], and quantum random access codes [27–30].
A random access code (RAC) is a communication task in
which a string of characters, chosen at random from a given
alphabet, is encoded into a shorter string in such a way that
any of the characters in the original string can be recovered,
with some probability, by means of a decoding strategy. Both
the string to be encoded and the character to be recovered are
uniformly distributed, with the encoding party not knowing in

*gpereira@fuw.edu.pl
†nicolas.gigena@fuw.edu.pl
‡jkaniewski@fuw.edu.pl

advance which character should be retrieved by the decoding
procedure. In that sense, the RAC can be understood as a form
of nondeterministic data compression.

The implementation of the RAC protocol and its variations
have been the subject of intense research, finding applications
in cryptography [31,32], self-testing of measurements [33,34],
foundational aspects of no-signaling correlations [35], and
quantum communication complexity [36,37]. In this work,
we introduce a generalization of the RAC protocol in which
neither the string to be encoded nor the character to be re-
covered are uniformly distributed. Biasing the distribution of
inputs has a nontrivial effect on the encoding and decoding
strategies optimizing the performance of the protocol in both
quantum and classical realizations. We approach here the
problem of finding the optimal performance of such biased
RACS, and the strategies attaining it, with both numerical
and analytical techniques. In the numerical front we present
the RAC-tools Python package, built to implement algorithms
providing the exact classical value and lower bounds to the
quantum value of an arbitrary biased RAC. On the analytical
side, we derive upper bounds for the optimal performance
over projective measurements of RACs in which the charac-
ter strings to be encoded consist either of two characters to
be chosen from length d alphabet or of n characters to be
chosen from a length 2 alphabet. In the cases in which these
upper bounds are attainable, we study the optimal quantum
strategies achieving the optimal performance, paying special
attention to the dependence of the optimal measurements on
the biasing parameters and the regions in parameter space in
which quantum strategies provide an advantage over classical
ones. These analytical results are then compared with those
produced by the numerical package.

2469-9926/2023/108(4)/042608(22) 042608-1 ©2023 American Physical Society
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FIG. 1. The nm d�→ 1 RAC. Alice encodes her input x =
x0 x1 . . . xn−1 into a message μ which is sent to Bob. Based on
the message μ and his input y, Bob tries to guess the yth charac-
ter of Alice. Each character xi of x ranges from 0 to m − 1, for
i = 0, 1, . . . , n − 1.

II. BIASED RACS

A RAC scenario, as depicted in Fig. 1, involves two parties,
Alice and Bob. A RAC scenario is parameterized by integers
n, m, d , which we assume to be equal to or larger than 2. Alice
is given an n-character string x ∈ S = {0, . . . , m − 1}×n and
asked to encode it into a single character μ ∈ {0, . . . , d − 1},
which she will later send to Bob. Bob, on the other hand, is
asked to decode Alice’s message in order to retrieve the value
of the yth character xy in the original string. In order to do
so Bob evaluates the image b ∈ {0, . . . , m − 1} of μ under a
previously chosen decoding function, represented in the fig-
ure by Bob’s box. We consider the task successful when Bob
correctly guesses xy from his decoding function, i.e., when
b = xy. We denote a scenario like the one described above by
nm d�→ 1 RAC, where we allow the message and the characters
in the string to belong to alphabets with different cardinalities,
m �= d . Whenever m = d , however, we will use the notation
nd �→ 1, since it is the usual notation in the literature.

The figure of merit that is commonly used to study a
RAC is the average success probability P̄, which is simply
an average of the winning probabilities over all combinations
of x and y:

P̄ = 1

nmn

∑
x,y

p(b = xy | x, y), (1)

where p(b = xy | x, y) denotes the probability of a successful
decoding when string x is encoded and character xy is to
be recovered, and the factor 1

nmn reflects the assumption that
both x and y are uniformly distributed. The optimal pairs of
encoding-decoding strategies implemented by Alice and Bob
will therefore be those maximizing P̄. Note that the trivial
strategy of outputting a fixed (or random) value of b achieves
average success probability of 1

m , so we will be interested only
in strategies that outperform this value.

In this work we study a more general class of RACs in
which the distribution of Alice’s and Bob’s inputs, x and y,
respectively, is not necessarily uniform. We refer to these
as biased RACs, or b-RACs. In fact, let us start with the
most general real linear functional, i.e., a tensor αxyb of order
(n + 2), which attributes a specific weight to each combination
of inputs x and y and output b. The value of this functional on

a probability distribution p(b | x, y) equals

F =
∑
x,y,b

αxyb p(b | x, y). (2)

Since the probability distribution is normalized an additive
shift in the coefficients of the tensor results in an additive
shift in the value. Thus, we can focus on tensors which are
non-negative. Similarly, by normalizing the coefficients we
can, without loss of generality, consider tensors satisfying∑

x,y,b αxyb = 1. Now, we would like to focus our attention on
functionals that to some extent resemble the standard random
access code, where the winning condition reads b = xy. In this
spirit, we will consider only tensors whose coefficients vanish
whenever b �= xy. Due to non-negativity and normalization
such linear functionals can be interpreted as probability dis-
tributions over x and y, and let us denote them by αxy. Then
the value of the functional equals

F =
∑
x,y

αxy p(b = xy | x, y), (3)

and it should be clear that this is precisely the same as the
original RAC except that the distribution of inputs might be
nonuniform (in the RAC we have αxy = 1

nmn ). Hence, biasing
the input distribution of a RAC is analogous to biasing or
tilting functionals in a Bell nonlocality scenario [38–40], as
the consequence of adopting bias is to modify the functional
in Eq. (1) and, in turn, the optimal realization. An interesting
aspect of this generalization is that the inputs of Alice and Bob
are not necessarily independent. To the best of our knowledge
such scenarios were first analyzed in Ref. [41]. An alternative
direction would be to change the goal of the decoding function
from recovering a given character to a more general function
of the input string, a generalization that has recently been
explored in Ref. [42], but we do not consider such scenarios
in this work.

As is the case with Bell scenarios, b-RACs can be funda-
mentally interpreted as an experiment in which a particular
behavior of the involved devices, specified by the conditional
probabilities {p(b = xy|x, y)}, determines a certain value for
the previously specified figure of merit F in Eq. (3). In the
case of b-RACs the behavior is determined by the encoding
and decoding strategies implemented by Alice and Bob. So
far we have focused on classical strategies in which, upon
receiving her input x, Alice computes its image μ under an
encoding function E : {0, . . . , m − 1}×n �→ {0, . . . , d − 1}
and sends it to Bob. Bob takes μ as the argument of his
yth decoding function Dy : {0, . . . , d − 1} �→ {0, . . . , m − 1}
producing b = Dy(μ). The strategies we just described are
deterministic, i.e., the probability of Bob’s output being b is
given by

p(b | x, y) =
{

1 if b = Dy(E (x))
0 otherwise , ∀ x, y, b. (4)

Clearly, if Alice and Bob decide to employ some nondeter-
ministic strategy (even if we allow them to share classical
randomness), the corresponding behavior {p(b = xy|x, y)}
will belong to the convex hull of classical deterministic
behaviors. It follows then that the b-RAC functional in
Eq. (3) attains its maximum FC for one of these deterministic
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strategies, which can be found through an exhaustive search,
as is the case for the local value of Bell functionals. It should
nonetheless be noted that in a bipartite scenario with n mea-
surement settings per party and m measurements per setting
the number of deterministic strategies scales as m2n, whereas
in the nm d�→ 1 b-RAC scenario this number grows double
exponentially, according to dmn × mdn. Therefore, computing
the classical value through exhaustive search becomes infea-
sible even for small values of n, d , and m. The following
lemma provides a simpler and more efficient approach to the
computation of the classical value.

Lemma 1. (a) For a nm d�→ 1 b-RAC and a fixed encod-
ing function E (x) = μ, the optimal decoding functions are
D∗

y (μ) = b, where b is the character that maximizes the sum∑
x∈S

αx,y,b δμ,E (x). (5)

(b) For a nm d�→ 1 b-RAC and fixed decoding functions {Dy}y,
the optimal encoding function is given by E∗(x) = μ, where
μ is the character that maximizes the sum

n−1∑
y=0

αx,y,Dy (μ). (6)

It follows from Lemma 1, which is proved in Appendix A,
that we can reduce the exhaustive search to a search either
over encoding functions only, statement (a), or over decoding
functions only, statement (b). In the first case, the complex-
ity of the problem reduces from dmn × mdn to dmn × nmd ,
whereas in the second it reduces to d × mn(d+1). A similar
treatment is usually implemented in Bell scenarios, where
optimal measurement (response function in the classical case)
can be computed if the remaining components are fixed.

A. Quantum value of a biased RAC

As an information processing task, the RAC can be gen-
eralized to quantum strategies. A quantum strategy involves
quantum devices, which transforms the b-RAC scenario into
a particular case of a prepare-and-measure experiment [43].
Such scenarios are often encountered in many new quantum
technologies such as quantum communication [44] and quan-
tum cryptography [45]. In a quantum strategy Alice, upon
receiving a string x, encodes it no longer in a classical charac-
ter μ, but in a qudit density operator ρx over a d-dimensional
Hilbert space H that she then sends to Bob. Once Bob receives
Alice’s preparation and his input y, he performs a decoding
measurement described by operators {Mb

y }m
b=1, producing out-

put b. From Born’s rule it follows then that the probability of
a successful decoding is p(b = xy|x, y) = tr(ρxM

xy
y ), and the

ensuing value of the figure of merit in Eq. (3) reads

F =
∑
x,y

αxytr
(
ρxM

xy
y
)
. (7)

The optimal quantum encoding-decoding strategies will be
those for which the functional in Eq. (7) attains its maximum
value, which we will denote by FQ to distinguish it from the
optimal value over the set of classical behaviors, which we
will denote from now on by F . The optimization problem

over both preparations ρx and measurements {Mxy
y } involved

in the determination of FQ is in general hard, but it can be
approached numerically by means of a see-saw algorithm, as
we will describe below. This method, which relies on the fact
that for fixed preparations optimal measurements can be found
efficiently and vice versa, is a known numerical technique
for obtaining lower bounds for the quantum value of Bell
inequalities [46,47].

In a nutshell, the see-saw algorithm consists in the repeated
implementation of a two-step optimization procedure, since
we need to optimize the b-RAC functional over preparations
and over measurements. We start with a set of randomly
chosen measurements, for which we can find the optimal
preparations by noting that the functional F can be written as1

F =
∑
x,y,b

αxybtr
(
ρxMb

y

) =
∑

x

tr

⎛
⎝ρx

∑
y,b

αxybMb
y

⎞
⎠, (8)

becoming thus apparent that the density matrix ρx maximizing
the trace is given by a state associated with the largest
eigenvalue of the positive semidefinite operator

∑
y,b αxybMb

y .
This means that if we are interested in computing the quantum
value we can without loss of generality assume ρx to be a pure
state. Once the preparations are determined the algorithm
proceeds to the second step, which is finding the ensuing
optimal measurements for these preparations. In order to do
so it is convenient to again rewrite the functional F as

F = tr

⎛
⎝∑

x,y,b

Mb
y αxybρx

⎞
⎠ = tr

⎛
⎝∑

y,b

Mb
y �y,b

⎞
⎠, (9)

where

�y,b :=
∑

x

αxybρx (10)

is a subnormalized density matrix. It is then easily seen that
the optimization over measurements takes the form of a
semidefinite program (SDP)

max
{My

b}
tr

(∑
b

Mb
y �y,b

)

s.t. Mb
y � 0, ∀ b

and
∑

b

Mb
y = 1,

(11)

the solution of which, for all n measurements, completes the
second step in the optimization procedure and one iteration in
the see-saw algorithm, with the newly found measurements
becoming the starting point of the next iteration. Note that the
problem in Eq. (11) is one of minimum-error discrimination
[48] of the states �y,b, i.e., the optimal measurements {Mb

y }m
b=1

are those minimizing the error in the discrimination of �y,b,
∀ b.

Before closing this section some remarks are in order. First,
it should be noted that while the iterative procedure described

1We relax here the RAC condition b = xy to highlight the fact that
the argument holds as it is for more general functionals.

042608-3



PEREIRA ALVES, GIGENA, AND KANIEWSKI PHYSICAL REVIEW A 108, 042608 (2023)

above will always converge in value to some maximum of
F , there is no guarantee this is a global maximum. This
will highly depend on the starting point, which is chosen at
random. Second, it is worth noting that the see-saw procedure
described above can be also implemented to find the opti-
mal performance over classical strategies: Since advantage of
quantum strategies is rooted in the possibility of performing
incompatible measurements, restricting all measurement op-
erators to be diagonal in the computational basis will reduce
the optimization procedure to a maximization over classical
strategies. This restriction is easily imposed by just initializing
the algorithm with random diagonal matrices as seeds for
measurements, which ensures that all the states and measure-
ments arising during the see-saw procedure will be diagonal
in the same basis. Note, however, that, unlike the exhaustive
search previously discussed, this is a completely heuristic
method.

As a final observation, note that in the first step of the
see-saw procedure, when the decoding strategy is fixed, the
optimal value is given by

max
{ρx}

F =
∑

x

λmax

⎛
⎝∑

y,b

αxybMb
y

⎞
⎠, (12)

where λmax(O) denotes the largest eigenvalue of operator O.
That is, finding the optimal preparations {ρx} for a fixed set
of measurements is an eigenvalue problem, which can be
solved analytically, and therefore the we are left to look only
for the optimal measurements. In spite of this simplification,
finding the quantum value remains a hard problem in general.
Nonetheless, as we will see later, there are cases in which it
can be approached analytically.

III. THE RAC-TOOLS PYTHON PACKAGE

In this section we introduce a Python package [49] that
implements the numerical methods described in the previous
section. Our goal was to construct a tool that allows the user
to easily determine basic properties of a b-RAC, such as its
classical and quantum value. This tool requires some standard
Python packages like numpy and scipy, as well as the cvxpy
package to solve SDPs. Among the different solvers that can
be used with cvxpy, we have found MOSEK [50,51] to be the
most reliable. It is also available at no cost for academic use.
Throughout this section, we provide a succinct description
of how the package works, which is further elaborated in
Appendix B.

The RAC-tools package is written to implement both
the exhaustive search and see-saw algorithms, which were
discussed in Sec. II. For the exhaustive search method,
users can invoke the perform_search function, while the
perform_seesaw function is employed for the see-saw op-
timization. Since our main focus is on biased RACs, an
essential part of the package deals with the specification of
the biasing tensor αxyb, as defined by the functional in Eq. (2).
Note that using this definition instead of the one in (3) allows
the user to define functionals in a class larger than that of RAC
functionals, which corresponds to the condition b = xy. The
desired biasing tensor can be written explicitly and passed to
both perform_search and perform_seesaw in the form of

a Python dictionary. Alternatively, the user can opt for any
of the built-in biasing tensors provided by the package via
the generate_bias function and input only a reduced set of
parameters.

Before entering into the more technical details of
perform_search and perform_seesaw, let us provide an
example to better illustrate how generate_bias works. Con-
sider a 22 �→ 1 RAC in which the Alice’s input x is uniformly
distributed, but Bob is asked to retrieve the first character of
x with probability w ∈ [0, 1]. The bias tensor defining this
b-RAC is given by

αxy =
{

1
4w if y = 0,
1
4 (1 − w) otherwise,

(13)

where the factor 1
4 results from x being uniformly distributed.

We can compute its classical and quantum value by passing
to perform_search and perform_seesaw, respectively, the
string bias=‘‘Y_ONE’’ and the float weight=w. While
the variable weight encodes the amount of bias desired, the
variable bias encodes the type of bias that the user wants
to compute. For example, if the user passes weight=0.75
as an argument, generate_bias builds a biasing tensor with
components

αxy =
{

3
16 if y = 0,
1

16 otherwise.
(14)

In a similar manner to that demonstrated in the above ex-
ample, we can also consider biases that exclusively affect
Alice’s input x, or alternatively affect both x and y simul-
taneously. RAC-tools includes several built-in bias families,
including the one shown above, which we describe in more
detail in Appendix B 1. Moving forward, we proceed now
to the description of the operational details of the functions
perform_search and perform_seesaw.

A. The perform_search function

The main use of the function perform_search is to com-
pute the optimal classical performance of an nm d�→1 b-RAC.
This function takes as argument the integers n, d , and m, en-
coded by the analogous Python parameters n, d, and m, as well
as the bias tensor αxyb. The latter can be entered via the Python
dictionary bias_tensor or as the aforementioned reduced
set of parameters bias and weight, for one of the built-in
bias families. While these parameters fix a particular b-RAC
scenario, the variable method defines the searching approach
that should be employed by perform_search. When setting
method=1 and method=2, the corresponding implementa-
tions correspond to the approaches described in statements
(a) and (b) of Lemma 1, respectively. On the other hand,
method=0 implements a purely exhaustive search, where nei-
ther the encoding nor decoding functions are fixed. It is worth
noting that the value of m is set by default to be the same as
that of d , and therefore there is no need to declare it when
studying nd �→ 1 b-RACs.

When perform_search finishes the execution, it gener-
ates a report like the one in Fig. 2, for the case of the 22 �→ 1
RAC. As can be seen in the figure, the report provides not
only the optimal value of the functional but also an encoding-
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FIG. 2. Report produced by the function perform_search for
the unbiased 22 �→ 1 RAC. In addition to the summary of the com-
putation, the user is provided with the first strategy found attaining
the optimal value and the number of such equivalent strategies.
For the encoding function E (x), the result is shown in a tuple
organized in ascending order of x, [E (00 . . . 0), E (00 . . . 1), . . . ,
E ((m − 1) . . . (m − 1))]. The decoding functions Dy(μ) follow a
similar pattern: each row corresponds to a distinct input y, and the
result is organized in ascending order of μ.

decoding pair attaining this value, along with information
about computing time and total number of encoding-decoding
functions. This report can be disabled by setting the vari-
able verbose=False, in which case perform_search still
returns the information displayed in the report, but in the
form of a dictionary, allowing the user to manipulate this
information. A more detailed description of this function is
given in Appendix B 2.

B. The perform_seesaw function

This function implements the see-saw algorithm as de-
scribed in Sec. II. As mentioned before, the algorithm always
converges to a maximum of the functional described in
Eq. (7). However, it is not guaranteed that this maximum rep-
resents the global maximum due to the random initialization
of the algorithm. Hence, in addition to providing the integers
n, d , and m, along with the tensor αxyb that specifies the
scenario, the user is required to enter the number of random
initializations through the parameter seeds when invoking
the function. It should be noted that since increasing the num-
ber of initializations increases the computation time, deciding
which is the best value for seeds is a problem on its own; In
Appendix B 3 we provide, as a guide, Table II, which contains
the number of seeds used for generating the numerical results
presented in this work.

In addition, as noted in the description of the see-saw
algorithm, it can also be used to compute the classical value

of a b-RAC by restricting the measurements and preparations
to be diagonal in the computational basis. This condition can
be passed to the perform_seesaw function via the extra vari-
able diagonal. If diagonal=True, the function initializes
the see-saw algorithm with random diagonal measurements
and the retrieved value corresponds to an estimation of the
classical value. The default value of this variable is False.

After finishing the computation, perform_seesaw prints a
report including a short analysis of the measurement operators
attaining the optimal value found, such as whether the opera-
tors are projective or if they are mutually unbiased. Moreover,
the report informs also about the computation time and the
number of random starting points used by the code. A detailed
description about this data can be found in Appendix B 3.
Figure 3 shows an example of the report printed by the func-
tion in the case of the 22 �→ 1 RAC. As before, this report can
be disabled by setting the variable verbose=False, in which
case the information displayed in it is returned in the form of
a Python dictionary.

IV. ANALYTICAL RESULTS FOR THE n2 �→ 1 RAC

As discussed in Sec. II, whether classical or quantum the
strategies maximizing the b-RAC functional are in general
hard to find analytically. An exception is provided by some
RACs whose output is a single bit since, as we will see below,
this greatly simplifies the solution of the corresponding opti-
mization problems. Since we are interested in the advantage
provided by quantum strategies, let us start by discussing the
optimal classical performance.

A. Classical

We are now interested in finding the optimal encoding-
decoding strategies for general biased n2 �→ 1 RAC. The case
of unbiased RACs has been already studied in Ref. [30], and
as we show below, the authors’ analysis can be extended to
the general case with slight modifications.

A salient feature of the optimal classical encoding-
decoding strategies for b-RACs is that in some cases they
ignore part of the input. Excluding part of the input in the
search for the optimal encoding and decoding strategies re-
duces the complexity of the problem, since it involves fewer
bits; thus the optimal value is easier to compute if the subset
of bits to be ignored is known beforehand. Unfortunately this
knowledge does not seem to be available in advance, and in
order to find the set of bits ignored by the best strategy we
need to compare the values for all possible options, which
makes the evaluation computationally hard. We will return to
this issue when discussing optimal quantum strategies.

The following lemma shows how to find the optimal clas-
sical strategies under the assumption that no bit is ignored. If
the actual optimal strategy for a given b-RAC does ignore part
of the input string x, the result applies to the set of bits taken
into account by the strategy.

Lemma 2. The optimal non-bit-ignoring strategies for the
n2 �→ 1 b-RAC comprise a weighted majority encoding func-
tion and identity map for decoding.

Proof. We already know from Lemma 1 how to find the
optimal decoding function for a given fixed encoding, and
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FIG. 3. Report produced by the function perform_seesaw for
the unbiased 22 �→ 1 RAC. In the first part of the report, the function
produces a small summary of the computation, displaying informa-
tion such as the number of random starting points, average time per
starting point, etc. The subsequent part presents the optimal value
found along with a short analysis of the measurements attaining this
value. The notation M[y] refers to the yth measurement, while M[y,
b] refers to the operator yielding output b. In this way the item
Measurement operator ranks presents the computed ranks for the
operators of the yth measurement, arranged in ascending order of
b. Similarly, the item Measurement operator projectiveness indicates
whether the identified operators can be considered projective or not.
The numerical value presented in the second column serves as a
measure for projectiveness, with a value approaching zero indicat-
ing that this operator is close of being projective. Last, the item
Mutual unbiasedness of measurements analyzes the possibility of
constructing each pair of measurements out of mutually unbiased
bases. Analogous to the previous item, the second column provides
a measure of proximity for a given pair. Further technical details re-
garding the perform_seesaw function can be found in Appendix B.

the optimal encoding function for a fixed decoding. In the
particular case of the n2 �→ 1 b-RAC, given a fixed encod-
ing E : {0, 1}×n �→ 0, 1 mapping input x into a bit μ, i.e.,
E (x) = μ, it implies that the optimal decoding function for
the yth must satisfy

Dy(μ) =
{

0 if
∑

x αx|yδxy0 � ∑
x αx|yδxy1,

1 otherwise,
(15)

where αx|y = αxy/ry, with ry = ∑
x αxy, can be interpreted as

the probability of string x being Alice’s input given that the
yth bit is to be recovered by Bob.

Because both Dy(μ) and its argument μ are bits there are
only four possible decoding functions: two constant maps
Dy(μ) = 0, 1, the identity map Dy(μ) = μ, and a flip of the
input Dy(μ) = 1 − μ. Now suppose the optimal decoding in
Eq. (15) corresponds to one of the constant functions, e.g.,
Dy(μ) ≡ 0. This implies

∑
x αx|yδxy0 � ∑

x αx|yδxy1 for both
μ = 0, 1. Because

∑
x αx|yδxy0 +∑

x αx|yδxy1 = 1, it follows
from the previous relation that

∑
x αx|yδxy1 � 1

2 , meaning that
xy = 0 is a more probable event in the inputs than xy = 1. We
can interpret this result as “ignoring the encoding” being the
best decoding strategy Bob can implement for that particular
bit, in which case it makes no sense for Alice to consider it
in the encoding to begin. On the other hand, it is not hard
to see that if an encoding strategy ignores the yth bit, the
ensuing optimal decoding is a constant function mapping the
input to a constant value, which is the most frequent for xy. By
identifying constant decoding functions with parts of the input
x that are ignored by the optimal strategy, we are left with only
two possible decoding maps for those bits that are taken into
account. This two maps are actually equivalent since it is easy
to check that if Dy(μ) = 1 − μ is optimal for the encoding
E , then Dy(μ) = μ is optimal for the encoding E ′ = E ◦ ¬y,
where ¬y : S �→ S is the function flipping the yth bit of a given
string in S. It follows then that the optimal decoding strategy
can always be chosen to be the identity map.

Now we can move on to discuss the optimal encoding func-
tion. We have seen that whenever Dy is a constant function
the optimal encoding ignores the yth bit, so we can focus here
on the case where the identity map is the optimal decoding
function. In that case, it follows from the second statement in
Lemma 1 that the optimal encoding strategy should satisfy

F =
∑

μ,y,x∈Sμ

αxyδxyμ =
∑

μ,x∈Sμ

αx

∑
y

ry|xδxyμ, (16)

where ry|x := αxy/αx, with αx := ∑
y αxy. We can think of this

condition as determining which value (0 or 1) has the greater
weight in the string x, that is, the optimal strategy corresponds
to a weighted majority encoding. �

Note that both Eqs. (15) and (16) are easily obtained by
application of statements (a) and (b) of Lemma 1, which
may raise the question of why this solution does not extend
straightforwardly to the general case, where Bob can output
more than two possible values. The key feature of the argu-
ment above is, as we have shown, that the reduced number of
possible decoding functions allows us to state that for every
bit there are only two options: either the bit is ignored by the
strategy, or it is decoded using the identity map. Whenever
d > 2 or m > 2 this is no longer true, as there exist decoding
functions which are neither constant nor permutations.

B. Quantum

Having found a procedure to determine the optimal clas-
sical strategies, we can now move on to explore the optimal
quantum strategies and the cases in which these can provide
an advantage. As explained at the end of Sec. II A, for a
fixed decoding strategy {Mb

y } the optimal encoding of input
x is determined by the largest eigenvalue of the operators∑

xy αxyM
xy
y . Although simplified, this problem is still hard,
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since search of the optimal measurements {Mb
y } is to be carried

over the set of all possible measurement operators. The fol-
lowing lemma, which applies to any RAC with two outcomes,
greatly simplifies this search, by restricting it to the subclass
of projective measurements.

Lemma 3. The value FQ of the n2 �→ 1 b-RAC can always
be reached by a decoding strategy consisting only of projec-
tive measurements.

Proof. Let {M0
k , M1

k } be the measurement operators over
the Hilbert space H describing Bob’s decoding map for the kth
bit. It follows from the completeness relation M0

k + M1
k = 1

that the objective function in SDP (11) can be written as

Fk = tr
[
�k,1 + (�k,0 − �k,1)M0

k

]
= tr

[
�k,0 − (�k,0 − �k,1)M1

k

]
= 1

2 + 1
2 tr(�k,0 − �k,1)Mk, (17)

where in the last line we have taken the average of the ex-
pressions in the first two and have written Mk = M0

k − M1
k .

Hermiticity of (�k,0 − �k,1) implies that we can find orthogo-
nal subspaces H+ and H−, such that H = H+ ⊕ H−, spanned
by its eigenvectors associated with non-negative and negative
eigenvalues, respectively. If X± denotes the projectors onto
these subspaces, it is then apparent that the optimal value for
Fk is attained for Mk = X+ − X−, from which it follows that
M0

k and M1
k can be chosen to be projectors. �

It is worth noting that either M0
k or M1

k in the proof above
could equal the identity operator. In such a case one of the
measurement operators would be a projector over the entire
Hilbert space H, which corresponds to a decoding strategy in
which Bob always guesses 0 (or 1) for the kth bit regardless
of Alice’s encoding, i.e., a constant decoding map. As already
seen in the discussion of optimal classical strategies, if a
constant decoding function is optimal for a given bit, we can
find an optimal encoding that ignores that bit. Indeed, assume
without loss of generality that the optimal kth decoding strat-
egy requires M0

k = 1. Because the optimal preparations ρx are
eigenstates associated with the largest eigenvalue of the oper-
ators

∑
y αxyM

xy
y , which we now can write as (1 − xk )αxk +

λmax(
∑

y �=k αxyM
xy
y ), the quantum value of the b-RAC value

can be expressed as

FQ = fk +
∑

x

λmax

⎛
⎝∑

y �=k

αxyM
xy
y

⎞
⎠,

fk =
∑

x

(1 − xk )αxk, (18)

where fk is the contribution to the value of the trivial decoding
of the kth bit, and the second term in FQ is the quantum value
of b-RAC with input strings of n − 1 bits. It follows then
that the optimal preparations are eigenstates of the operators∑

y �=k αxyM
xy
y , meaning that the encoding strategy ignores the

kth bit as stated above.
The argument above is easily generalized to the case in

which the optimal strategy ignores any number of bits. It
should be noted here, as we did in discussing classical strate-
gies in Lemma 2, that the knowledge of the bits that should be
ignored by the optimal strategy makes easier the evaluation of

FQ. However, such information does not seem to be available
in advance and can be obtained only by comparing the values
of all possible bit-ignoring strategies, making the evaluation
of FQ computationally hard. If we denote by s a given subset
of In = {0, 1, . . . , n − 1}, we can write the value associated
with an encoding-decoding strategy ignoring the bits in s as

F s
Q =

∑
k∈s

fk + F s
Q, (19)

where fk is again given by Eq. (18) and

F s
Q = max

{Mxy
y }

∑
x

λmax

(∑
y/∈s

αxyM
xy
y

)
(20)

is the contribution from the bits that are not ignored by the
encoding-decoding strategy. With this notation we can for-
mally write the quantum value as

FQ = max
s

F s
Q. (21)

It follows from this discussion that finding the b-RAC op-
timal value over quantum strategies reduces to solving, for
all s ⊂ In, the optimization problem in the second term in
Eq. (19), i.e., finding the optimal strategies involving all bits of
the input strings. In what follows, we explore the cases where
an analytical solution to this problem is available.

1. Qubit strategies

Let us now consider d = m = 2 and focus on optimal
strategies involving all the bits in the input string x. The
decoding strategies in this scenario involve two-outcome mea-
surements on qubits, which we can always write as convex
combinations of rank-1 projective and trivial measurements,
i.e., M

xy
y ∈ {0,1}. Since trivial measurements are associated

with bit-dropping strategies, which are assumed here to be
suboptimal, it follows that the quantum value can be attained
only with rank-1 projective measurements. By restricting the
decoding strategies to rank-1 projective measurements we can
express the b-RAC value as

F =
∑

x

trρx

⎛
⎝∑

y

αxyM
xy
y

⎞
⎠

= 1

2
+
∑

x

trρx

⎛
⎝∑

y

αxy(−1)xy my · σ

⎞
⎠

� 1

2
+
∑

x

∣∣∣∣∣
∑

y

αxy(−1)xy my

∣∣∣∣∣, (22)

where in the second line we have expanded the projectors
M

xy
y in the Pauli basis, M

xy
y = 1

2 1 + (−1)xy my · σ, my ∈ R3,
|my| = 1

2 , and in the third line we used that the value of
the trace is upper bounded by the largest eigenvalue of the
traceless operator in the argument, an upper bound that is
attained when ρx is an eigenstate associated with this eigen-
value. It follows from this result that the quantum value of the
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n2 �→ 1 b-RAC is given by

FQ = 1

2
+ max

{my}

∑
x

αx

∣∣∣∣∣
∑

y

ry|x(−1)xy my

∣∣∣∣∣, (23)

with αx = ∑
y αxy and ry|x = αxy/αx. Note that, as suggested

in Ref. [30] for the case of unbiased RACs, the value FQ can
be thought of as the (weighted) average distance traveled by a
random walker in R3 (up to some scaling and shift). Moreover,
it can be checked by direct calculation that if the vectors my

are constrained to be parallel, FQ reduces to the optimal RAC
value over classical strategies.

While the optimization problem in Eq. (22) is in general
hard to solve for arbitrary bias tensors, it greatly simplifies
if we restrict ourselves to the subclass of factorizable bi-
ases. Consider a bias such that αxy = αxry, where

∑
y ry =∑

x αx = 1 because of normalization. This means that the
inputs x and y are independent random variables. It is easy to
see in this case that, in the sum over input strings in Eq. (23),
the term associated with the string x has the same value as that
associated with string x̃ if the latter can be obtained from x by
flipping all of its bits. Taking this into account we can rewrite
FQ as the sum over only half of the input strings

FQ = 1

2
+ max

{my}

∑
x

px

∣∣∣∣∣
∑

y

ry(−1)xy my

∣∣∣∣∣
= 1

2
+ max

{G}

∑
x

px

√
trG vxvT

x , (24)

with px = αx + αx̃, vx an n-dimensional tuple with com-
ponents (vx)y = (−1)xy ry and G the Gram matrix of the
measurement vectors my, i.e., Gi j = 〈mi, m j〉. We can now
think of the sum over x in Eq. (24) as a scalar product between
two 2n−1-dimensional tuples, one with components px and
the other with components

√
trG vxvT

x . Using the Cauchy-
Schwarz inequality we can upper bound FQ by

FQ � 1

2
+
√∑

x

p2
x max

G

√
trG

∑
x

vxvT
x

= 1

2
+

√
2n−3

√∑
x

p2
x

√∑
y

r2
y , (25)

where in the last line we used that (
∑

x vxvT
x )i j = 2n−1r2

i δi j ,
as can be checked by direct calculation. It is easy to check
that this expression reduces, for αxy = 1

n2n , to the upper bound
FQ � 1

2 + (2
√

n)−1 previously derived in Ref. [30]. It is also
worth remarking that the upper bound we just derived depends
on px rather than directly on αx, and this feature holds for the
value associated with any quantum or classical strategy, since
it is a consequence of the independence of inputs x and y.

The bound in Eq. (25) was obtained via the Cauchy-
Schwarz inequality between two tuples with components αx
and

√
trG vxvT

x , respectively, which are all real and non-
negative. Thus, in order to saturate the bound following 2n−1

conditions (one per input string) must be satisfied

px√
trGvxvT

x

= 1√
2n−3

√∑
x′ p2

x′∑
y r2

y

, (26)

where as before we have written px = αx + αx̃. Note that the
quantity on the right-hand side is a constant characterizing the
particular b-RAC under study. Since projectivity of measure-
ments implies the norms of the vectors my is maximal, |my| =
1
2 , we can use that trGvxvT

x = 1
4

∑
i j (−1)xi+x j rir j cos(θi j ) to

rewrite Eq. (26) as a condition to be satisfied by the angles θi j

between vectors,

∑
i< j

(−1)xi+x j rir j cos(θi j ) = 1

2

⎛
⎝∑

y

r2
y

⎞
⎠( 2n−1 p2

x∑
x′ p2

x′
− 1

)
.

(27)

Now fix a pair of indices (i, j), with j �= i, and define Si j as
the subset of input strings satisfying xi = x j . Then summing
over the strings in Si j in Eq. (27) we arrive at

cos(θi j ) = 1

2rir j

( ∑
y r2

y∑
x′ p2

x′

)⎛⎝∑
x∈Si j

p2
x −

∑
x/∈Si j

p2
x

⎞
⎠. (28)

If instead of the vectors {my} we parametrize the set of opti-
mal measurements by the cosine of the angles between them,
then Eq. (28) shows how to construct the optimal decoding
strategy from the biasing parameters when the upper bound
(25) is attained. On the other hand, we can use the relation
to quickly discard the possibility of the bound being attained:
If for a given b-RAC the cosines generated by Eq. (28) are
inconsistent, then the upper bound cannot be attained. Consis-
tency here turns out to be equivalent to (1) cos(θi j ) ∈ [−1, 1]
and (2) the matrix with elements

G̃i j =
{

1
4 if i = j
1
4 cos (θi j ) if i �= j

(29)

being positive semidefinite.
It turns out that in the 22 �→ 1 scenario whenever quantum

strategies can provide some advantage over their classical
counterpart, this upper bound is actually attainable, as shown
in the following lemma.

Lemma 4. The quantum value of a 22 �→ 1 b-RAC with
biasing strategy αxy = αxry is

FQ = max

⎧⎨
⎩FC,

1

2
+ 1√

2

√∑
x

p2
x

√∑
y

r2
y

⎫⎬
⎭, (30)

where FC = 1
2 + max{ 1

2 p00 + 1
2 p01(r0 − r1), 1

2 p00(r0 − r1) +
1
2 p01}, with px = αx + αx̃, is the optimal performance over
classical strategies.

Proof. Since n = 2 the sum over y in Eq. (24) has only
two terms. This means, since vectors my have maximal norm,
that there is only one parameter to optimize over, which is the
angle θ between m0 and m1. Looking for critical values, we
find that the b-RAC functional can attain a maximal value only
for θ satisfying sin(θ ) = 0 or

cos(θ ) =
(

r2
0 + r2

1

2r0r1

)(
p2

00 − p2
01

p2
00 + p2

01

)
, (31)

which is just the condition in Eq. (28), implying that FQ is then
given by Eq. (25). On the other hand, if θ equals 0 or π , then
FQ reads 1

2 + 1
2 p00 + 1

2 p01(r0 − r1) and 1
2 + 1

2 p00(r0 − r1),
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respectively. These two quantities can be checked to corre-
spond to the two options present in the expression for the
classical value. �

Lemma 4 shows not only that the upper bound given in
Eq. (25) can be attained, but that it will be attained with any
bias for which quantum strategies provide any advantage over
classical strategies, thus providing a complete solution to the
22 �→ 1 b-RAC value problem. Moreover, it follows from the
proof that attaining the upper bound in Eq. (25) self-tests
the angle θ between the Bloch vectors defining the optimal
measurements. Unfortunately such a simple result does not
hold for a larger number of bits, with solutions becoming more
complex already in the case of 3-bit input strings. For this
particular case, nonetheless, the upper bound in Eq. (25) still
can be attained for many biasing tensors, as we show in the
following lemma, which extends the proof of Lemma 4.

Lemma 5. The quantum value FQ of a 32 �→ 1 b-RAC is
given by

FQ = 1

2
+
√∑

x

p2
x

√∑
y

r2
y , (32)

whenever there exists an optimal decoding strategy for which
the Bloch vectors {my} are linearly independent.

Proof. If the vectors are linearly independent, then the
ensuing Gram matrix G is full rank. As we did in Eq. (24), we
can write the optimal performance in terms of the elements
of Gi, j = 〈mi, m j〉 = 1

4 cos (θi j ) and in doing so parametrize
FQ by the angles θi j , which are all independent. As a conse-
quence, a critical point will satisfy ∂θi j FQ = ∂Gi j FQ sin θi j = 0,
which implies ∂Gi j FQ = 0 because of the independence of the
measurement operators. A direct calculation shows then that
a critical point {θi j} should be such that the following relation
is satisfied ∀ i, j:∑

x

px√
trGvxvT

x

(−1)xi+x j = 0. (33)

This equation can be rewritten as a matrix equation A · b = 0
with

bx = px√
trGvxvT

x

, (34)

and A ∈ R3×4 a matrix with entries A(i, j),x = (−1)xi+x j . It is
straightforward to check that the null space of A is Null(A) =
span{(1, 1, 1, 1)}, implying that in a critical point the quotient

px√
trGvxvT

x

takes the same value for all strings x, and that this

value is

√ ∑
x p2

x
2n−3

∑
y r2

y
, thus proving that the only critical point in

FQ satisfies condition (26) and FQ is given by the upper bound
in Eq. (25). �

The above lemma shows that the cosines built up from
the biasing parameters via the condition in Eq. (28) will
indeed provide the optimal measurements if, in addition to
being consistent, the matrix G̃ of Eq. (29) is full rank. More-
over, it is clear that attaining the upper bound in Eq. (25)
self-tests the angles satisfying Eq. (28) since the optimal
performance is achieved only by satysfing these relations.
We can give a geometric interpretation to these conditions
by noting that positive semidefiniteness of G̃ is ensured if

its determinant is non-negative. We can write this last con-
dition as 1 −∑

i< j cos2(θi j ) + 2
∏

i< j cos(θi j ) � 0, which is
the equation of an “inflated tetrahedron” centered at the origin.
Note that this origin corresponds to cos(θi j ) = 0 ∀i �= j, i.e.,
the angles associated with mutually unbiased measurements,
which are in turn the optimal decoding strategy for the case of
unbiased input strings x, as can be easily checked in Eq. (28).
Therefore, we have that the upper bound in Eq. (25) becomes
the quantum value whenever the optimal measurements, as
described by the three cosines {cos(θi j ) = 4 〈mi, m j〉}, live
inside the inflated tetrahedron.

The geometrical picture introduced above turns out to be
very helpful in understanding how different measurements
become optimal as the bias tensor αxy departs from αxy = 1

323 ,
which is the unbiased case. In what follows we study the so-
lution when the bias tensor corresponds to one of the built-in
biasing functions described in Sec. III. A similar analysis for
other of these built-in biases can be found in Appendix C.

2. The X_ONE and Y_ALL bias family

We can have a better understanding about how different
decoding strategies become optimal for different biases by
analyzing a few examples. Consider the case of an input string
bias of the form

αx =
{
w if x = 000
1−w

7 otherwise
, 0 � w � 1 (35)

in combination with an arbitrary distribution {ry} for the
requested bit. A numerical analysis suggests that for all mem-
bers of the family the optimal quantum strategy involves all
three bits in the input string, in which case the optimal per-
formance is given by Eq. (23). In what follows then we will
restrict our attention to those strategies.

The optimal decoding strategy for w in the vicinity of 1
8 is

expected to be determined by Eq. (28). We find, for a bias of
this form, that the upper bound in Eq. (25) is attainable if the
biasing coefficients are such that the three cosines

cos[θi j (w)] =
∑

y r2
y

2rir j
h(w), (36)

where

h(w) = 32w2 + 20w − 3

48w2 − 12w + 13
(37)

is an increasing function for w ∈ [0, 1], and h( 1
8 ) = 0, are

found to be consistent. Note that from Eq. (36) it fol-
lows that the optimal strategy (cos[θ01(w)], cos[θ02(w)],
cos[θ12(w)]) ∈ R3 continuously departs from the center of the
tetrahedron as w increases, in a direction that is specified by
both the sign of h(w) and the fixed but otherwise arbitrary
choice of the {ry} bias. In what follows we will focus on
the case of h(w) � 0, i.e., w ∈ [1/8, 1], since it is enough to
understand the behavior of the solutions in the entire interval.

For uniform {ry} we see that the cosines in Eq. (36) are the
same ∀i, j and consistent for 1

8 � w � 5/12, increasing from
0 to 1 as w ∈ [1/8, 1] increases. Within this region, quantum
strategies have an advantage over the classical ones except for
w = 5/12, in which case the two values coincide, FQ = FC .
The optimal decoding strategy moves from the center of the
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inflated tetrahedron described above to its (1, 1, 1) vertex as
w increases within [ 1

8 , 5
12 ]. For biasing parameter w > 5

12 the
cosines determined by Eq. (36) stop being consistent and
the optimal strategy is expected to remain in the vertex of
the tetrahedron, as follows from Lemma 5 and the symmetry
of the solution. The optimal performance resulting from this
analysis is shown in Fig. 4, in comparison with the numer-
ical value obtained with the see-saw procedure described in
Sec. II A.

Now let {ry} be biased such that r0 > r1 = r2. In this
situation the condition in Eq. (36) implies cos[θ01(w)] =
cos[θ02(w)] < cos[θ12(w)]. As in the previous case the point

in R3 representing the optimal strategy moves away from the
coordinate origin as w increases, but now towards a point
located on the edge of the tetrahedron connecting the (1, 1, 1)
and (−1,−1, 1) vertices, and reaching it for a given value

wc of the biasing parameter satisfying h(wc) = 2r2
1

r2
0 +2r2

1
. For

larger values of w, FQ is no longer given by Eq. (25), but
numerics suggest that the optimal solution remains on the
edge of the tetrahedron, i.e., cos[θ12(w)] = 1 for w > wc,
moving towards the (1, 1, 1) vertex as w increases. We can
find the ensuing value FQ by imposing m1 = m2 in the first
line of Eq. (24), which leads to

FQ(w > wc) = 1

2
+ r0

2
(p010 + p001) + max

{m0,m1}
{p000|r0m0 + 2r1m1| + p100|r0m0 − 2r1m1|}

� 1

2
+ r0

2
(p010 + p001) + 1√

2

√
r2

0 + 4r2
1

√
p2

000 + p2
100

(38)

with the upper bound in the second line being attained for cos[θ01] = cos[θ02] = copt, where

copt =
(

r2
0 + 4r2

1

4r0r1

)(
p2

000 − p2
100

p2
000 + p2

100

)
(39)

follows from Eq. (31). As already discussed, FQ coincides with this upper bound when the cosines produced by Eq. (39) as long
as −1 < copt < 1, becoming equal to the optimal classical value otherwise. The piecewise-defined optimal performance,

FQ =
⎧⎨
⎩

1
2 +√∑

x p2
x

√∑
y r2

y if w � wc

1
2 + r0

2 (p010 + p001) + 1√
2

√
r2

0 + 4r2
1

√
p2

000 + p2
100 if w � wc,

(40)

results from this analysis and is depicted in Fig. 5, together
with the results obtained from the numerical package and
the upper bound value in Eq. (25), for the case r0 = 1

2
and r1 = r2 = 1

4 .
For any other bias in {ry}, the solution will have a similar

behavior as a function of w, departing from the origin as the
parameter increases but reaching the boundary of the inflated
tetrahedron somewhere over one of the curved faces at a
given critical value wc of the biasing parameter. For w > wc

the optimal measurements are no longer independent and the
solution remains on the boundary, moving towards the vertex
as w approaches 1 (in the limit w �→ 1 only the contribution
from x = 000 string is relevant, and therefore all the angles
between measurements tend to zero). Finally, note that if we
choose an analogous bias in which the weight w in Eq. (35) is
assigned to a string different from 000, we will reach a similar
conclusion except that some of the cosines in Eq. (36) might
become negative, and for w �→ 1 the optimal solution might
converge to a different vertex of the tetrahedron.

V. ANALYTICAL RESULTS FOR THE 2d �→ 1 RAC

After analyzing the quantum value of different b-RACs in
the qubit setting, here we explore the strategies attaining the
quantum value of the 2d �→ 1 b-RAC. In this scenario, if we
consider a factorizable bias tensor αxy = αxry and a quantum
realization {ρx0x1 , Mx0

0 , Mx1
1 }, the b-RAC value is given by

F =
∑
x0x1

αx0x1 tr
[
ρx0x1

(
r0Mx0

0 + r1Mx1
1

)]
, (41)

with xi ∈ {0, . . . , d − 1}, and where ρx0x1 and M
xy
y are opera-

tors over a d-dimensional Hilbert space.
For the particular case of αx0x1 = 1

d2 and ry = 1
2 it is known

that the quantum value can be attained only with rank-1 pro-
jective measurement operators [34]. On the other hand, the
results produced by the RAC-tools package for 2d �→ 1 b-
RACs with d � 6 (see Appendix D) suggest that optimizing
over projective measurements might already be enough to find
the quantum value. In the following, we will then restrict
ourselves to finding the optimal quantum strategies using
projective measurements. As we will see in the following
lemma, it is possible in this scenario to derive an upper bound
analogous to Eq. (25) found for the n2 �→ 1 b-RAC.

Lemma 6. The optimal value over projective measure-
ments, FP, of the 2d �→ 1 b-RAC defined by the bias tensor
αxy = αxry satisfies

FP � 1

2
+ 1

2

√
d2 − 4d (d − 1)r0r1

√∑
x0x1

α2
x0x1

. (42)

Proof. We begin by noting that r0Mx0
0 + r1Mx1

1 is positive
semidefinite, and as a consequence the value of the functional
in Eq. (41) is upper bounded by

FP �
∑
x0x1

αx0x1λx0x1 , (43)

where λx0x1 denotes the largest eigenvalue of r0Mx0
0 + r1Mx1

1 .
Because the measurements are assumed to be projective, by
Jordan’s Lemma there is a basis in which the operators Mx0

0
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FIG. 4. Top: Optimal performance of the 32 �→ 1 RAC, with
X_ONE bias, over classical (red squares) and quantum (blue dots)
encoding-decoding strategies. For w ∈ [1/8, 5/12) the quantum
value is given by the upper bound in Eq. (25) (solid line) and is
strictly larger than its classical counterpart. For larger values of
the biasing parameter the two values coincide. Bottom: Angles θi j

between the Bloch vectors defining the measurement operators in
the optimal decoding strategy. As expected from the symmetry of
the bias tensor, the three angles coincide and have positive values
in the quantum advantage region w ∈ [1/8, 5/12), vanishing for
w � 5/12.

and Mx1
1 are jointly block-diagonal, with blocks of dimension

1 or 2. The restriction of these projectors to the kth Jordan
block, Pk and Qk , respectively, are rank-1 projectors regardless
of the block dimension. The angle between the pure states on
which they project, defined by cos2 (θk ) = trPkQk , is one of
the principal angles between Mx0

0 and Mx1
1 . The principal angle

defines the coefficients of Pk and Qk when the block is two-
dimensional, which are given by

Pk = 1

2

[
1 + cos (θk ) sin (θk )

sin (θk ) 1 − cos (θk )

]
, (44a)

Qk = 1

2

[
1 + cos (θk ) − sin (θk )
− sin (θk ) 1 − cos (θk )

]
. (44b)

It follows then that we can write

r0Mx0
0 + r1Mx1

1 =
∑

k

r0Pk + r1Qk, (45)

FIG. 5. Top: Optimal performance of the 32 �→ 1 RAC with
X_ONE bias and r0 = 0.5, r1 = r2 = 0.25. As a result of the bias
in the requested bit, one of the conditions in Eq. (36) is saturated
before the other two, giving rise to a region in which the optimal
quantum performance (blue dots) is strictly larger than the optimal
classical value (red squares) but nonetheless strictly smaller than
the upper bound in Eq. (25) (solid line). This region is found to
be w > 1

12 (7
√

3 − 9). Bottom: Angles θi j parametrizing the optimal
decoding strategy. Because of the asymmetry in the bias, one of the
angles, θ12 (orange diamonds), is different from the other two (green
triangles) and decreases faster as a function of the biasing parameter
w, vanishing exactly at w = 1

12 (7
√

3 − 9).

implying that λx0x1 is the largest eigenvalues of one of
the blocks r0Pk + r1Qk . If the corresponding block is two-
dimensional, a direct calculation shows it is given by

λx0x1 = 1
2

[
1 + max

k

√
1 − 4r0r1 sin2(θk )

]
� 1

2

[
1 +

√
1 + 4r0r1

(
trMx0

0 Mx1
1 − 1

)]
(46)

where, in the last line, we used that cos2 (θk ) = trPkQk and
that trPkQk � trMx0

0 Mx1
1 ∀ k. If the block is one-dimensional,

then it is easy to see that λx0x1 ∈ {0, r0, r1, 1}, in which case
the upper bound in Eq. (46) also holds. Combining this upper
bound with the Cauchy-Schwarz inequality we arrive at

FP � 1

2
+ 1

2

√
d2 − 4d (d − 1)r0r1

√∑
x0x1

α2
x0x1

, (47)
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where we have used the completeness relation satisfied by the
measurement operators to write

∑
x0x1

trMx0
0 Mx1

1 = d . �
As follows from the the proof given above, attaining the

upper bound of Lemma 6 is possible if there exist projectors
M

xy
y such that the upper bound in Eq. (46) is saturated and

condition √
1 + 4r0r1

(
trMx0

0 Mx1
1 − 1

) ∝ αx0x1 (48)

is satisfied, where the proportionality constant is easily found
to be

C =
√

d2 − 4r0r1d (d − 1)∑
x0x1

α2
x0x1

. (49)

Now note that the measurement operators satisfy trMxy
y =

rank(Mxy
y ), since we are considering projective measurements.

Then, squaring equation Eq. (48) and summing over either x0

or x1 we arrive at

rank
(
M

xy
y
) = 1

4r0r1

⎡
⎣d (4r0r1 − 1) + C2

∑
x1−y

α2
x0x1

⎤
⎦. (50)

It is then easy to check that for αx0x1 = 1
d2 Eq. (50) implies that

the upper bound in Eq. (42) can be attained only with rank-
1 measurement operators. In fact, by virtue of Eq. (48) we
have that the optimal measurements are mutually unbiased,
thus recovering the solution reported in [34] for the case r0 =
r1 = 1

2 , and extending it to arbitrary biases on Bob’s input.
Figure 6 shows the agreement of the optimal value provided
by the numerical package and the upper bound in Lemma 6
for the cases d = 3, d = 4, and d = 5.

The upper bound in Eq. (42) can also be attained for more
general b-RACs. Indeed, since for any pair of rank-1 projec-
tive measurements it holds that trMx0

0 Mx1
1 = |Ux0x1 |2, with U a

d × d unitary matrix, it follows from the condition in Eq. (48)
that the upper bound in Eq. (42) will be attainable with rank-1
projectors if there exists a unistochastic matrix B satisfying

Bx0x1 = 1 + 1

4r0r1

(
C2α2

x0x1
− 1

)
. (51)

Last, it is worth remarking that for some particular biases the
optimal measurement operators may satisfy rank(Mxy

y ) �= 1,
as suggested by Eq. (50). Actually, as follows from the discus-
sion above, for any pair of projective measurements saturating
inequality Eq. (46) we can find b-RAC such that its optimal
value is attained by these measurements. By summing over x0

and x1 in Eq. (48) we find that the entries of the bias tensor
specifying this b-RAC are given by

αx0x1 =
√

1 + 4r0r1
(
trMx0

0 Mx1
1 − 1

)
∑

x0x1

√
1 + 4r0r1

(
trMx0

0 Mx1
1 − 1

) . (52)

It should be noted that the b-RACs defined in this way are
not necessarily interesting from the perspective of studying
the advantages of quantum resources, since there is no guaran-
tee regarding the distance of the upper bound to the classical
value; e.g., if the measurements we have chosen commute,
then the upper bound will coincide with the classical value.

FIG. 6. Top: Optimal performance over quantum (blue dots) and
classical strategies (red squares) of the 25 �→ 1 b-RAC defined by
the bias tensor αxy = 1

d2 ry corresponding to the Y_ONE family, as
computed by the RAC-tools package. The numerical results for the
quantum value are compared with the upper bound in Eq. (42)
(solid line). Bottom: Numerical results for the quantum value of the
2d �→ 1 b-RAC for d = 3 (blue dots), d = 4 (purple squares), and
d = 5 (cyan diamonds).

This procedure can be used to build b-RACs tailored to spe-
cific pairs of projective measurements, in which the operators’
rank is not restricted to 1.

VI. CONCLUSIONS

In this work, we have presented b-RACS as a generaliza-
tion of the RAC protocol in which the distribution of inputs
to the parties is not necessarily uniform. Introducing a bias
on these distributions has a profound impact on both the
optimal value of the RAC functional and encoding-decoding
strategies achieving it, and also on the capacity of quantum
devices to provide an advantage in the protocol performance.
Understanding how to optimize the performance of a given
biased RAC is therefore a step in improving our understanding
of the advantages of quantum resources.

The problem of optimizing the performance of an arbitrary
b-RAC can be approached numerically with the aid of the al-
gorithms we have presented here, which can be implemented
by means of the RAC-tools Python package we produced for
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that purpose. The package allows the user to define arbitrary
biases in the input distribution, and compute the classical and
quantum value of the ensuing RAC functional, along with the
encoding and decoding strategies attaining these values. We
have used the package to study the b-RAC performance for
different biases in the n2 �→ 1 and 2d �→ 1 scenarios, focused
in the case of uncorrelated inputs. For these examples we
also provide analytical results for the quantum value and the
measurements attaining it, showing how these are determined
by the chosen input bias.

In the n2 �→ 1 scenario, we have found that both classical
and quantum optimal strategies may actually ignore part of the
input strings. For quantum strategies it is first observed that
optimal decoding can always be done with projective mea-
surements. This allows the derivation of a simple upper bound
which coincides with the quantum value for 22 �→ 1 b-RACS
and, in some cases, for 32 �→ 1 b-RACs. Moreover, it is shown
that attaining this upper bound self-tests the angles between
the optimal measurement operators and, in particular, for the
case of uniformly distributed input strings the optimal b-RAC
performance certifies that the measurements correspond to
MUBs. The argument in the derivation of this upper bound can
be extended to the 2d �→ 1 scenario, providing thus an upper
bound to the optimal performance achievable with projective
measurements. This bound is shown to be always attainable
using mutually unbiased measurements if the distribution of
input strings is unbiased, regardless of the bias on the distri-
bution of requested characters. For more general biases the
upper bound will in general not be attainable, but we have
shown that there are several instances in which this value
is achievable. It is still not clear at the time of writing if,
as suggested by our numerical results, the optimal b-RAC
performance in this scenario is attainable only with projective
measurements. In that case the upper bound we derived would
coincide with the quantum value, and it would be worth to
investigate the possibility of extending the self-testing results
previously derived for the unbiased RAC in this scenario.

We have focused the discussion of analytical results in this
work, almost completely, on the case of biased RACs in which
the inputs of both parties are uncorrelated, since introducing
correlations between them departs from the original spirit of
the RAC protocol. Nevertheless, investigating how correla-
tions in the inputs affect the performance of the protocol is
an interesting next step for which the numerical tools we have
developed are applicable.
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APPENDIX A: PROOF OF LEMMA 1

Proof. For statement (a), assume that a particular encoding
function E (x) = μ is fixed. If so, the performance of F in
Eq. (2) for an arbitrary set of decoding functions {Dy}n−1

y=0 is

given by

F =
∑
x,y

αx,y,Dy (E (x)) =
∑
x,y,μ

αx,y,Dy (μ) δμ,E (x), (A1)

where we used Eq. (4) to compute the statistics. Then the max-
imization of F over the set of decoding functions is equivalent
to the maximization of the image of Dy(μ):

max
{Dy}y

F =
∑
μ,y

max
Dy (μ)

{∑
x

αx,y,Dy (μ) δμ,E (x)

}
, (A2)

which yields, for some y and μ, D∗
y (μ) = b, where b is the

optimal image of Dy(μ).
Now, for statement (b), we proceed similarly by assuming

that the decoding functions Dy(μ) are fixed for all y. Then the
value assumed by F for an arbitrary encoding function E (x)
is written as

F =
∑
x,y

αx,y,Dy (E (x)). (A3)

Analogous to statement (a), the maximization of F over the
encoding function is equivalent to maximize the image of
E (x):

max
E

F =
∑

x

max
E (x)

{∑
y

αx,y,Dy (E (x))

}
, (A4)

which produces E∗(x) = μ, where μ is the optimal image for
E (x). �

As explained in the main text, this lemma is useful in re-
ducing the inherent complexity associated with the exhaustive
search algorithm. To provide further clarity, we can maximize
Eqs. (A2) and (A4) with respect to the encoding and decoding
functions, respectively. This additional maximization yields
the classical value of F for both case, as follows:

FC = max
E

{∑
x,y

αx,y,D∗
y (E (x))

}
, (A5a)

FC = max
{Dy}n−1

y=0

{∑
x,y

αx,y,Dy (E∗(x))

}
. (A5b)

That is, Eqs. (A5a) and (A5b) introduce a two-step maxi-
mization method that yields the precise classical value. For
Eq. (A5a), we first optimize over the decoding functions and
then over the encoding functions. Conversely, for Eq. (A5b),
we follow the reverse order. This simple modification avoids
the maximization over all combinations of E and {Dy}n−1

y=0.
Furthermore, since the RAC protocol is asymmetrical with
respect to Alice and Bob, the difference between Eqs. (A5a)
and (A5b) relies only on the computational complexity for
each case.

APPENDIX B: RAC-TOOLS USER GUIDE

In the main text, we introduced the functions that make up
the RAC-tools package. In this Appendix, we provide a more
detailed description of these functions and their features.
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1. The generate_bias function

Since our interest in this work is to study the quantum
and classical value of biased RACs, the main feature of the
RAC-tools package is that it allows the user to introduce bias
in the RAC functional, which will be optimized by either the
perform_search or perform_seesaw functions. One way
of doing this is by building a custom bias tensor and passing
it as an argument to either of these functions as a Python
dictionary. However, as constructing a bias tensor requires
some effort, we provide a functionality that allows the user
to choose from several simple and natural families of bias
tensors. Each of these families takes one or more parameters,
and it is particularly interesting to study the behavior of RACs
as we vary the parameter. An example of such a construction
was given at the beginning of Sec. III. In what follows we
describe in detail the built-in bias options that the user can
access via the generate_bias function.

The goal of generate_bias, in short, is to construct a
properly normalized bias tensor using only a few previously
specified parameters. This function is not intended to be called
by the user, who should in turn specify the parameters defin-
ing the desired bias tensor as arguments of the optimization
functions. In order to do so, the value of two variables, bias
and weight, must be specified. The variable bias is a string
determining the structure of the bias to be generated, whereas
the variable weight is a real-valued parameter (or a vector
of parameters) that determines the actual weights given to
different terms in the objective function.

As an example, we can consider a general version of the
Y_ONE bias family already introduced in the main text. This
is a family of bias tensors in which the input strings x are
distributed uniformly, but there is bias in Bob’s input, as one
of the characters of x, e.g., xk , is requested more (or less)
frequently than the others. If we call w the parameter defining
how often Bob is asked to recover xk , then the bias tensor takes
the form

αxy =
{

1
mn w if y = 0,

1
mn

(1−w)
n−1 otherwise.

(B1)

In order to build this bias tensor via the generate_bias
function, we need to pass as arguments of either
perform_search or perform_seesaw the following
string and float: bias=‘‘Y_ONE’’ and weight=w. By
symmetry, the Y_ONE family considers only biasing the
first character against the rest, as biasing other values of y
produces analogous results. It is possible, nevertheless, to
introduce a bias on the frequency with which any of the
characters xy is requested from Bob. This can be done by
setting bias=‘‘Y_ALL’’ and weight=List, where List is
a list (or a tuple) of floats of length n adding up to one. In this
case, the bias tensor obtained from generate_bias takes the
form

αxy = 1

mn
wy, (B2)

where wy is the weight corresponding to the yth character in
the input string x and the factor 1

mn results from the input
strings x being uniformly distributed.

For introducing biases in the distribution of input strings,
the package offers several one-parameter families, which we
enumerate below:

(1) X_ONE. Analogous to the Y_ONE family, it biases the
input x = 0×n against the mn − 1 remaining strings. The user
is allowed to define the weight w that will be given to this first
input, which will be used to generate a bias tensor of the form
αxy = αx

1
n , where

αx =
{
w if x = 0×n,
1−w
mn−1 otherwise. (B3)

(2) X_DIAG. This family of biases gives a special weight
to input strings of the form x = i×n, where i = 0, . . . , m − 1.
Since there are m of these strings, in terms of the parameter
w controlled by the user, the distribution of input strings takes
the form

αx =
{

w
m if x = i×n,
1−w

mn−m otherwise.
(B4)

(3) X_CHESS. In this case, the input strings are split into
two classes depending on whether

∑
j x j is odd or even. Since

the parity of the total number of strings is the same as that of
m, when the latter is even, half of the strings go into each of
the classes defined above. In that case, in terms of the weight
w chosen by the user, the ensuing distribution of input strings
is given by

αx =
{

2w
mn if

∑
j x j is even,

2(1−w)
mn otherwise.

(B5)

On the other hand, if m is odd, the number of strings satisfying∑
j x j odd is mn−1

2 . In that case, the distribution of input strings
reads

αx =
{

2w
mn−1 if

∑
j x j is odd,

2(1−w)
mn+1 otherwise.

(B6)

For n = 2, we can think of the elements of αx as the entries of
a matrix, in which case the biased elements are arranged in a
pattern that resembles a chess board.

(4) X_PLANE. As before, the idea of this type of bias is to
split the set of strings into two classes defined by the condition
x0 = 0. This corresponds to biasing just the first bit of the
input string. Since there are mn−1 strings satisfying x0 = 0,
in terms of the parameter w, the ensuing distribution of input
strings reads

αx =
{

w
mn−1 if x0 = 0,

1−w
mn−mn−1 otherwise.

(B7)

All the biases introduced so far depend only on x or only
on y. In the next step, we could take one bias of each kind
and combine them, which would lead to a product distribution
over x and y. However, as mentioned in the introduction,
there is no reason why we should restrict ourselves to product
distributions. If we go back to the linear functional given in
Eq. (2), it is natural to consider the case where the coeffi-
cients of the functional depend only on b, i.e., the answer
that Bob is expected to give. In Appendix C we discuss such
scenarios and refer to them as B_ONE and B_ALL biases. In
our usual language such cases correspond to nonfactorizable
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FIG. 7. Report produced by the perform_search function for
the unbiased 22 �→ 1 RAC. The first part of the report provides the
user with information about the computation, whereas the second
part provides the user with the RAC classical value and a realization
attaining it. In this example, the value is found through an exhaustive
search of the best value over both encoding and decoding maps.

distributions of inputs x and y. The first bias of this kind,
bias=‘‘B_ONE’’, corresponds to biasing the first outcome
of Bob, b = 0, against the remaining d − 1 outputs

αxy =
{

1
n

1
mn−1 w if xy = 0,

1
n

1
mn−1

(1−w)
m−1 otherwise,

(B8)

where 1
n

1
mn−1 is the normalization factor. If a more gen-

eral bias of the outputs is required, then the user can enter
bias=‘‘B_ALL’’ as an option, in which case they should
input as weight a Python list (or tuple). The generate_bias
function will then output a bias tensor of the form

αxy = 1

n

1

mn−1
wxy , (B9)

where wxy is the weight on the character xy – and consequently
on the bth output of Bob since b = xy.

2. The perform_search function

The goal of perform_search is to exactly compute the
best classical performance of a given nm d�→ 1 RAC. The
function can perform this computation either via a complete
exhaustive search or by means of the less expensive ap-
proach that follows from Eqs. (A5a) and (A5b). To operate
perform_search it is enough to specify in its argument the
three integers defining the scenario, n, d , and m, and the
search method. The latter can be introduced by declaring
either method=0 for a pure exhaustive search, method=1 for
a search over encoding maps as in Eq. (A5a), or method=2
for a search over decoding maps as in Eq. (A5b), which is the

default method. Furthermore, the value of m is set by default
to coincide with that of d , so that users are not expected to
declare it unless they require these numbers to be different.

An example of how this function operates can be seen
in Fig. 7, in which the user desires to estimate the classical
value of the 22 �→ 1 unbiased RAC. The function is called
passing as arguments n=2, d=2, and method=0, and once
the procedure is finished the report in Fig. 7 is printed. The
Summary of computation section of the report informs the
user the total time of computation as well as the total number
of encoding and decoding functions analyzed for the chosen
search method. For the case of method=0, this latter infor-
mation corresponds to the total number of combinations of
encoding and decoding functions, i.e., dmn × mdn. In addition,
the average time taken to iterate over each function (or combi-
nation of encoding and decoding functions, if method=0) is
displayed at Average time per function.

In the second part of the report, the user can see the
computed classical value and the number of functions that
achieve this value. Also, the report provides the user with a
particular pair of encoding and decoding strategies attaining
the optimal value. For the encoding function E (x), the result
is displayed in a tuple that is organized in ascending order of x,
i.e., [E (00 . . . 0), E (00 . . . 1), . . . , E ((m − 1) . . . (m − 1))].
For the decoding functions Dy(μ), each row corresponds to
a distinct input y and it is organized in ascending order of μ.
As it is expected from Lemma 2, the optimal strategy reported
in Fig. 7 consists of a majority encoding function and identity
map for decoding.

Before closing, we would like to recall that the exhaustive
search method will necessarily require more computation time
than that required by either of the two approaches following
from Lemma 1, since in the first case the search is performed
over both encoding and decoding maps. Table I presents a
comparison in terms of computation time for all of the three
methods. The table shows that the method in Eq. (A5b) is the
best in terms of computation time for most part of the cases,
except for a few cases in which d is the largest integer and
n = 2. In those cases, the method in Eq. (A5a) is equivalent
or better.

3. The perform_seesaw function

This function implements the see-saw algorithm described
in Sec. II A, and its goal is to provide lower bounds to the
quantum value of a given nm d�→ 1 b-RAC. As is the case
with perform_search, the perform_seesaw function takes
as argument the integers defining the scenario, n, d , and m
and the bias tensor, either as a dictionary or via one of the
aforementioned built-in options. The user is also asked to pass
as an argument the number of starting points for the algorithm
by means of the variable seeds. Moreover, it is possible to use
this function to compute a lower bound to the classical value,
by means of the variable diagonal. If diagonal=True, the
function initializes the see-saw algorithm with random diag-
onal measurements, and the optimization is then restricted to
operators which are diagonal in the computational basis. By
default, diagonal=False, and the algorithm optimizes the
functional value over POVM measurements.
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TABLE I. Cases which can be executed in less than one hour for method=0. Computation time comparison with method=1 and
method=2. For the construction of this table, an octa-core CPU was used (4×3.2 GHz and 4×2.064 GHz). The first column contains the
executable cases for a given nm d�→1 RAC. The second column contains the classical value computed for each unbiased case. The other columns
contain the time taken to execute each procedure. Cases are sorted in ascending order by computation time for method=0.

nm d�→ 1 Classical value Time (method=0) Time (method=1) Time (method=2)

22 2�→ 1 3/4 1.8 ms 0.32 ms 0.28 ms

22 3�→ 1 7/8 26 ms 2 ms 1.2 ms

32 2�→ 1 3/4 0.14 s 11 ms 2.4 ms

22 4�→ 1 1 0.18 s 7.8 ms 6.5 ms

23 2�→ 1 5/9 0.22 s 21 ms 2.6 ms

22 5�→ 1 1 1.4 s 19 ms 28 ms

22 6�→ 1 1 12 s 40 ms 82 ms

32 3�→ 1 19/24 21 s 0.16 s 23 ms

23 3�→ 1 2/3 1 min 4 s 0.42 s 27 ms

22 7�→ 1 1 1 min 29 s 61 ms 0.25 s

24 2�→ 1 7/16 2 min 20 s 2.2 s 12 ms

42 2�→ 1 11/16 5 min 18 s 2.4 s 21 ms

22 8�→ 1 1 11 min 6 s 0.1 s 1 s

32 4�→ 1 5/6 33 min 16 s 1.5 s 0.12 s

When called, perform_seesaw runs the see-saw algo-
rithm as many times as the number of seeds specified by
the user, generating a lower bound to the quantum value per
starting point. The best value is therefore the largest among all
these lower bounds, implying that the chances of the function
providing the actual quantum value of the b-RAC increase
with the number of seeds, as well as the computation time.
In Table II, we provide the number of seeds used to generate
the numerical results presented in the main text and later in
Appendix C.

TABLE II. Number of seeds used for the numerical results pre-
sented in the figures. The first column contains the executable cases
for a given nd �→ 1 RAC followed by the bias family in the second
column. The third column contains the number of seeds used fol-
lowed by a link to the respective figure. For the cases where the
realization varies smoothly according to the weight, only a few
seeds are needed. This is the case of all bias families explored in
this work expect for X_PLANE, in which there is a critical point for
weight in which the realization starts to ignore a bit.

nd �→ 1 Bias Seeds Figure

32 �→ 1 X_ONE 3 Fig. 4
32 �→ 1 X_ONE with r0 = 0.5 3 Fig. 5

and r1 = r2 = 0.25
23 �→ 1 Y_ONE 3 Fig. 6
24 �→ 1 Y_ONE 3 Fig. 6
25 �→ 1 Y_ONE 3 Fig. 6
42 �→ 1 Y_ONE 3 Fig. 9
22 �→ 1 X_CHESS 3 Fig. 10
22 �→ 1 X_PLANE 10 Fig. 11
32 �→ 1 X_PLANE 10 Fig. 12

Because the see-saw algorithm is iterative, convergence
criteria must be adopted to decide whether the optimal value
for a given seed has been attained after a particular number of
steps. In the perform_seesaw implementation of this algo-
rithm, we impose two convergence criteria, and the procedure
is finished whenever the two are satisfied. The first criterion
is related to the convergence of the F value. It is satisfied
whenever the difference between two consecutive evaluations
of F is smaller than a value that can be set by the user
via the variable prob_bound. The default value of this vari-
able is set to 10−9. The second stopping criterion considers
the convergence of the measurements, and it focuses on the
distance between the optimal measurement operators in two
consecutive iterations of the algorithm. More precisely, we
will say that the measurements converged if the condition

max
y,b

∣∣∣∣Mb
y − Nb

y

∣∣∣∣ < t (B10)

is satisfied, where || · || denotes the Frobenius norm, Nb
y and

Mb
y denote two consecutive measurement operators associated

with the same value of the yth character of the input x, and t is
a threshold that can be defined by the user via the variable
meas_bound, which as a default takes the value 10−7. For
the evaluation of the condition in Eq. (B10), we use the func-
tion norm, from numpy.linalg, to implement the Frobenius
norm.

The value of both prob_bound and meas_bound can be
passed as an argument to perform_seesaw. In addition to the
convergence criteria, we have imposed a limit to the number
of iterations to be executed by the algorithm, so that if after
200 iterations either the value or the measurements fail to
converge, the calculation stops. In this case, the message max-
imum number of iterations reached is displayed as a warning.
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FIG. 8. Report produced by the function perform_seesaw. In
the first part of the report, the function produces a summary of the
computation, displaying information such as the number of random
starting points, etc. In the second part, it displays the largest optimal
value found among all seeds and an analysis of the optimal measure-
ments obtained by this seed.

This limit can be modified by entering a different value to the
variable max_iterations in the argument of the function.

An example of the operation of perform_seesaw can
be seen in Fig. 8, in which the user wants to estimate the
quantum value of the 22 �→ 1 unbiased RAC. As in the case
of perform_search, the user passes as arguments n = 2 and
d = 2 to define the scenario, but now instead of choosing
a search method the user introduces the number of starting
points to be used by passing seeds=5. After finishing the
procedure the function prints a report divided into two parts.
In the Summary of the computation, it presents the number
of random starting points, the average processing time, and
the average number of iterations among all starting points.
In addition, it shows how many starting points produced an
optimal value that is close to the largest value obtained. The
interval to consider two values produced by different starting
points as close is the accuracy of the solver MOSEK, which
is set to 10−13. This informs the user how frequent it is to
obtain such an estimation; if this number is much smaller than
seeds, this indicates that the user should increase the number
of starting points in case of a new execution.

In the second part, the estimation of the optimal value
is reported, followed by information about the set of mea-
surements attaining such value. Note that the reported value
in Fig. 8 matches the one found by Ref. [30]. Next, the

report displays the rank of the optimal measurement opera-
tors, which is computed using the function matrix_rank of
numpy.linalg. In addition, the user can check whether the
measurement operators are projective. The number shown in
the second column of Measurement operator projectiveness
corresponds to the quantity∣∣∣∣(Mb

y

)2 − Mb
y

∣∣∣∣. (B11)

For both of these checks, rank and projectiveness, we preset a
tolerance of 10−7.

Last, in the case where at least two measurements are
rank-one and projective, the function also computes whether
each pair of measurements can be constructed out of mutually
unbiased bases (MUBs). For a pair of rank-one projective
measurements, let us say {Pa}m−1

a=0 and {Qb}m−1
b=0 , where a

and b denote the ath and the bth outcome, it is enough
[52, Appendix B] to check if

Pa = m PaQbPa and

Qb = m QbPaQb ∀a, b ∈ {0, 1, . . . , m − 1}. (B12)

In this case, the number displayed in the second column of
Mutual unbiasedness of measurements represents the quantity

max
a,b

{||m PaQbPa − Pa||, ||m QbPaQb − Qb||}. (B13)

For the cases in which the amount in Eq. (B13) is lower
than MUB_BOUND=5e-6, the function prints MUB. Otherwise,
it simply displays Not MUB.

APPENDIX C: ANALYSIS FOR OTHER BUILT-IN
FAMILIES OF BIAS

In the main text, we have used the analytical results derived
for the 2n �→ 1 scenario to study the quantum value of the b-
RACs determined by the X_ONE bias family introduced above.
Here, we offer a similar analysis for the b-RAC families
determined by others of these built-in biases in the 2n �→ 1
scenario.

1. The Y_ONE bias family

We start by looking at the case where the bias is only on
the requested bit y, i.e., αx = 1

2n , which leads to px = 1
2n−1 ∀x.

From px being constant follows, for n = 2 and n = 3, that
cos (θi j ) = 0 ∀ i �= j in Eq. (28), i.e., the optimal measure-
ments are mutually unbiased. The quantum value is therefore
given by the upper bound in Eq. (25),

FQ = 1

2
+ 1

2

√∑
y

r2
y . (C1)

For n = 4, the upper bound is not attainable when ry = 1
4 ,

as it would require the four vectors {my} to be mutually
orthogonal. For weak biases (ry ≈ 1

4 ) satisfying the conditions
in Eq. (28), it would still require these vectors to be linearly
independent, and therefore the upper bound is still not attain-
able. However, if we consider a stronger bias such that the
weight on one of the bits becomes negligible, we would expect
the bound in Eq. (25) to be attainable again. We can realize
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FIG. 9. Optimal performance of the 42 �→ 1 b-RAC, with Y_ONE

bias, over classical (red squares) and quantum (blue dots) encoding-
decoding strategies.

such situation by defining

ry =
{
w if y = 0
1−w

3 otherwise
, 0 � w � 1. (C2)

Clearly in this case w = 0 ⇒ r0 = 0, and the value of the first
bit is never requested from Bob to be decoded. Thus, there are
only three Bloch vectors representing measurements that can
be chosen to be orthogonal to each other, so that the bound in
Eq. (25) is attained.

This is indeed the case, as is shown in Fig. 9, which depicts
the results provided by the numerical package for the optimal
performance of this 42 �→ 1 b-RAC over both, quantum and
classical encoding-decoding strategies. As can be seen in this
plot, the numerical quantum values (blue dots) lie very close
to upper bound (solid line), coinciding with it only at the
extremal values (w = 0, 1) and exhibiting the largest differ-
ence at w = 1

4 . An inspection of the optimal measurements
extracted from the numerical solutions shows that the angles
θi j parametrizing the measurements naturally divide into two
sets, 
0 = {θ0i} and 
0̄ = {θi j}, with i �= j = 1, 2, 3, and the
angles in one of them being all π

2 . As explained above, for
r0 = 0, the optimal solution involves only the vectors mi,
i = 1, 2, 3, which can be chosen to be mutually orthogonal.
For small values of r0, we would then expect these three
vectors to remain orthogonal (or close to orthogonal), since
they contribute the most to the functional value, and m0 to

be some linear combination of them. The solution provided
by the numerical search shows that this intuition is correct
since for w ∈ [0,w0], with w0 ≈ 0.27415, we find {mi} to be
an orthogonal set, with m0 being aligned with any of them,
meaning that the angles in 
0̄ are all π

2 . This solution has also
been found by the authors of Ref. [30] in a numerical search
for the case of w = 1

4 .
On the other hand, if w = r0 = 1, only the first bit is to

be retrieved by Bob, which can be done with probability 1
with a classical strategy. For w ≈ 1 therefore we would expect
m0 to lie orthogonal to the subspace spanned by {mi}, which
is therefore bound to have dimension 2. This is indeed the
case, as shown by our numerical results: For w ∈ [w0, 1] the
optimal value is numerically attained with a decoding strategy
in which m0 is orthogonal to all the mi’s, which therefore span
a plane in R3, implying that the angles in 
0 are all π

2 , while
the angles in 
0̄ can be chosen to be 
0̄ = {π

3 }. It follows then
that the mi are uniformly distributed in the plane orthogonal
to m0.

2. The X_CHESS bias family

Let us now consider a different distribution αx for the input
strings, given by

αx =
{

w
2n if

∑
i xi odd

1−w
2n otherwise

, 0 � w � 1 (C3)

and an arbitrary distribution {ry} for the requested bit. As we
will show now, this bias has no net effect on the b-RAC value
when the number of bits is odd. Indeed, note first that there
are 2n input bit strings, half of which are such that

∑
i xi is

even. Now if x̃ is the string obtained from x by flipping all
of its bits, then the sum of bits has the same parity in both
strings if n is even, whereas if n is odd this parity is different.
As a result, it follows from Eq. (C3) that for odd n we have
px = αx + αx̃ = 1

2n−1 and the functional value becomes

FQ = 1

2
+ 1

2n−1
max
{my}

∑
x

∣∣∣∣∣
∑

y

ry(−1)xy my

∣∣∣∣∣, (C4)

which is the same as that of the unbiased case. We can illus-
trate this feature by analyzing the n = 2 and n = 3 cases. A
direct calculation shows that for n = 2 the value is given by

FQ = 1

2
+ max

{m0,m1}
1 − w

2
|r0m0 + r1m1| + w

2
|r0m0 − r1m1|

� 1

2
+ max

{
1 − w

4
+ w

4
(r0 − r1),

w

4
+ 1 − w

4
(r0 − r1),

1

2
√

2

√
w2 + (1 − w2)

√
r2

0 + r2
1

}
, (C5)

where, in the second line, we used Lemma 4. In Fig. 10, we
show this value as a function of the biasing parameter w,
compared with the numerical results for the optimal value
over both quantum and classical strategies for the case of
r0 = r1 = 1

2 . As is easy to check from Eq. (C5), the optimal
performance for quantum strategies is better than that over

the classical ones for w ∈ (0, 1), becoming equal only for
w = 0 (1) in which case only the strings 00 and 11 (01 and
10) are given to Alice for encoding.

In the case n = 3, as explained above, the value of both
classical and quantum strategies becomes insensitive to vari-
ations of the biasing parameter w, coinciding with that of the
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FIG. 10. Top: Optimal performance of the 22 �→ 1 b-RAC with
X_CHESS bias, in combination with r0 = r1 = 1

2 , over quantum
strategies (blue dots) and their classical counterpart (red squares).
The numerical results for the quantum value are seen to agree with
the theoretical prediction (solid line) extracted from Lemma 4. Bot-
tom: Angle between the Bloch vectors defining the optimal decoding
strategy, as a function of the biasing parameter w. It is seen that
these vectors are aligned only for the extremal values of w, meaning
that the quantum value is strictly greater than the classical one for
w ∈ (0, 1).

unbiased RAC, which is given by

FQ = 1

2
+ 1

2

√∑
y

r2
y , (C6)

as follows from the previous discussion. It is perhaps surpris-
ing that even though in the extreme cases of w ∈ {0, 1} we are
left with only four out of the original eight strings, the RAC
task does not get any easier. This could serve as an indication
that some subsets of strings are as difficult to compress as
the set of all strings (regardless of whether the compression
is classical or quantum).

3. The X_PLANE bias family

So far, we have been introducing biases in the distribution
of input strings by setting αxy = αxry, where αx is interpreted
as the probability for input x to be encoded. As a result, when
considering the individual random variables corresponding
to the characters in the input strings, they will, in general,

exhibit correlations. We can consider the case in which the
input string characters are independently biased by defining
αx = ∏

i αxi , where αxi denotes the probability of the ith char-
acter in the string being xi. In particular, for the case of two-bit
input strings the bias tensor is given by αx0x1y = 1

2αx0αx1 .
Now let αx1=0 = αx1=1 = 1/2, and keep αx0 arbitrary.

It then follows that p00 = α00 + α11 = 1
2 , and p01 = α01 +

α10 = 1
2 , implying that the bias has no net effect on the

value of strategies that do not drop bits, as can be checked
directly from Eq. (24). Consequently, the optimal value of this
22 �→ 1 b-RAC among quantum, non-bit-dropping strategies,
is FQ = 1

2 (1 + 1√
2

). We should note, however, that for extreme
biases, the first character of the input string is either always 0
or always 1. In a situation as such there is no reason to include
the first bit in the strategy, since the best performance can
be obtained with a constant decoding function. Because this
bit dropping could become optimal as a strategy for biases
below the extremal value, in order to compute the quantum
value we should compare FQ with the best value attained by a
bit-dropping strategy, which is easily found to be

F1
Q =

{
1
2

(
1 + αx0=0

)
if αx0=0 > αx0=1,

1
2

(
1 + αx0=1

)
otherwise,

(C7)

where the symbol F1
Q, as defined in Eq. (19), denotes that the

strategy attaining this value does not encode one of the bits
of the input string. Note that F1

Q coincides with the classical
value for this RAC, since by ignoring a bit we are left with
only one to consider in the encoding strategy. It follows from
Eq. (C7) that dropping the first bit becomes optimal whenever
F1

Q > 1
2 (1 + 1√

2
), which occurs for αx0 > 1√

2
if αx0 > αx1 . In

that case, the quantum value is therefore given by

FQ =
{

1
2

(
1 + 1√

2

)
if αx0 � 1√

2
α,

1
2

(
1 + αx0

)
otherwise.

(C8)

Figure 11 depicts the numerical results provided by the RAC-
tools package, which agree with the analytical value provided
above.

A completely analogous analysis can be carried for the
n = 3 case for αx0x1x2 = 1

4αx0 . As was the case for n = 2, in
the vicinity of the uniform distribution we expect the optimal
strategy to include all three bits in the input string, in which
case a direct calculation shows that the bias has no effect on
the quantum value, which is given by FQ = 1

2 (1 + 1√
3

). As
before we expect the optimal strategy to ignore the first bit
when its value is strongly biased towards 0 or 1. If we take
αx0=0 � αx0=1, a direct calculation shows that the maximum
value attained by a strategy ignoring the first bit is given by

F1
Q = 1

3

[
αx0=0 + 1 + 1√

2

]
, (C9)

which becomes larger than FQ for αx0 > 1
2 (1 + √

3 − √
2).

The quantum value of this b-RAC is therefore given by the
following piecewise function

FQ =
{

1
2

(
1 + 1√

3

)
if αx0 � 1

2 (1 + √
3 − √

2),
1
3

[
αx0=0 + 1 + 1√

2

]
otherwise.

(C10)
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FIG. 11. Optimal performance of the 22 �→ 1 b-RAC defined
by the bias tensor αxy = 1

4 αx0 . For αx0 � 1√
2
, the optimal strategy

encodes both bits in the input string, and the quantum value (blue
dots) is FQ = FQ = 1

2 + (2
√

2)−1 since the bias has no effect on the
functional value. For αx0 > 1√

2
, the best strategy does not encode the

first bit, which reduces the value of the functional to the maximum
attainable with classical strategies (red squares). For the region in
which both bits are encoded, the angles representing the optimal
measurements, as obtained by the RAC-tools package, are all π

2 .

Figure 12 depicts the results on the quantum and classical
value of this b-RAC produced by the RAC-tools package, in
full agreement with the analytical results provided above.

FIG. 12. Optimal performance of the 32 �→ 1 b-RAC defined by
the bias tensor αx0x1x2 = 1

4 αx0 . As observed in the n = 2 case, there is
a threshold value, αx0 = 1

2 (1 + √
3 − √

2), above which the optimal
quantum strategy ignores the first bit. Below the threshold the quan-
tum value (blue dots) is FQ = FQ = 1

2 (1 + 1√
3

), which coincides
with the value of the unbiased RAC. For stronger biases, it becomes
convenient to ignore the first bit, in which case the quantum value
can be written as a shifted and rescaled version of the unbiased
22 �→ 1 RAC. As a result, unlike in the n = 2 case, the optimal value
above the threshold does not coincide with the classical value (red
squares). Similarly to the scenario illustrated in Fig. 11, in the region
where there are no ignored bits, the obtained optimal measurements
are mutually orthogonal. When x0 is ignored, measurement 0 be-
comes proportional to identity, while measurements 1 and 2 remain
orthogonal.

FIG. 13. Top: Numerical quantum value (blue dots) of the of
the biased RAC defined by αxy = wxy

4 , as a function of parameter
w0, compared to the corresponding classical value (red squares)
and the value in Eq. (C14) (solid line). Quantum strategies provide
an advantage for w0 � 1+√

5
4 . Bottom: Angle θ between the Bloch

vectors parametrizing the optimal measurements. For w0 within the
region of quantum advantage, θ is given by Eq. (C13), becoming 0
outside of it, where FQ = FC .

4. The B_ONE bias family

As described above, the elements of a bias tensor in this
family take the form αxy = 1

n
1

mn−1 wxy . In the particular case
of n = 2 and d = m = 2, which is addressed in Ref. [41], we
have

αxy = wxy

4
, (C11)

and a direct calculation using Eq. (23) shows that, for this bias
tensor, the b-RAC functional reads

F � 1

2
+ 1

4

⎡
⎣∣∣∣∣cos

(
θ

2

)∣∣∣∣+
√

1 − 4μ cos2

(
θ

2

)⎤⎦ (C12)

with μ = w0w1 and θ the angle between the Bloch vectors m0

and m1 characterizing the measurement operators. A search
for critical points in Eq. (C12) shows that there are only two,
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satisfying either sin(θ ) = 0 or

cos

(
θ

2

)
= 1√

4μ + 16μ2
. (C13)

Whenever θ satisfies Eq. (C13) the ensuing value of the func-
tional reads

FQ = 1

2
+ 1

8
√

1 + 4μ2

(
1√
2

+ 4
√

μ

)
, (C14)

as previously reported in [41]. As observed in the previous
cases the condition sin(θ ) = 0 corresponds to commuting
measurement operators, implying that in this case the value
coincides with the classical value. The region in which this
is the case is easily found to be w0 ∈ [0, 3−√

5
4 ] ∪ [ 1+√

5
4 , 1].

In Fig. 13, both the quantum and classical values found by
the RAC-tools package are depicted and compared with FQ

in Eq. (C14).

APPENDIX D: RANDOM BIASES FOR THE 2d �→ 1 RAC

In this Appendix, we provide numerical evidence to sup-
port the claim that optimizing over projective measurements
should be enough to find the quantum value of 2d �→ 1
b-RACs. Briefly, we tried to find counter-examples of such
b-RACs in which the optimal realization is achieved by non-
projective measurements. In order to do that, we exhaustively
evaluated the perform_search function for 2d �→ 1 b-RACs
with d � 6. We considered two kinds of biases: fully random
biases and random factorizable biases. For the first case, we
simply made up a bias tensor αxy the entries of which are
uniformly distributed within the region αxy � 0, for all x, y,
and

∑
xy αxy = 1. For the second case, we considered bias ten-

sors such that αxy = αxry, where both αx and ry are uniformly
distributed over the inputs x and y, respectively.

TABLE III. Samples with random biases for 2d �→ 1 RACs. This
table consists of a compilation of numerical results produced by
the RAC-tools package. The first column specify the integer d used
for a given 2d �→ 1 RAC. The second column specifies one of the
two kinds of biases used to generate this data set. The third column
specifies how many of such samples we considered for each case. In
the two last columns, we show how often we retrieve a realization the
measurements of which are all projective (fourth column) or not all
projective (fifth column). The number of seeds used for each sample
was 3.

d Bias No. samples No. P No. NP

2 Full random 10 000 10 000 0
2 Factorizable random 10 000 10 000 0
3 Full random 10 000 10 000 0
3 Factorizable random 10 000 9999 1
4 Full random 5000 5000 0
4 Factorizable random 5000 4996 4
5 Full random 2500 2500 0
5 Factorizable random 2500 2500 0
6 Full random 1000 1000 0
6 Factorizable random 1000 1000 0

The numerical results of this computation can be found in
Table III. Apart from some pathological examples, all of the
obtained realizations make use of projective measurements.
This was the case for the vast majority of the computed
samples except for five cases of random factorizable biases
(four cases for d = 4 and one case for d = 3) in which the
random draw of ry was almost deterministic. For these cases,
since the weight in one of the measurements is almost zero,
the classical and quantum values are numerically very close
and due to insufficient numerical precision the optimization
terminates with a nonprojective quantum strategy.
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62 Chapter 3. Set of papers

3.3 Comments on “Machine Learning meets the CHSH scenario”

In this work, we investigate a variety of Machine Learning (ML) models to address the member-
ship problem of quantum correlations within the CHSH non-signalling set. We approached this
problem by framing it as a classification task and initially concentrated on the CHSH correlation
space, where we created a toy model for our study. Given that the boundaries of the quantum
set in this region are analytically known, the toy model served as an effective benchmark for
assessing the accuracy of different ML models. We experimented with both simple models, like
Naive Bayes and Decision Trees, as well as more sophisticated ones, such as Gaussian Processes
and Dense Neural Networks. Among the models tested, Support Vector Machines and Neural
Networks were the most reliable, showing good efficiency and accuracy. We then expanded these
successful models to encompass the entire CHSH scenario, where a comprehensive analytical
description of the quantum set boundaries is not available. The results indicated that, while
achieving good average performance is relatively easy, training a model to handle more complex
cases, such as correctly classifying points near the boundary between sets, is quite challenging.

The student’s contributions to this project include the development of data generation and
classification techniques, with the steered see-saw algorithm being particularly noteworthy, as
well as the creation of Support Vector Machine models for the 4D and 8D variants of the CHSH
scenario. The student also significantly contributed to the writing of the text, which includes
Secs. I, II, and III, parts of Sec. IV, and Appendix A, in addition to creating figures and plots.
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In this work, we perform a comprehensive study of the machine learning (ML) methods for the
purpose of characterising the quantum set of correlations. As our main focus is on assessing the
usefulness and effectiveness of the ML approach, we focus exclusively on the CHSH scenario, both
the 4-dimensional variant, for which an analytical solution is known, and the 8-dimensional variant,
for which no analytical solution is known, but numerical approaches are relatively well understood.
We consider a wide selection of approaches, ranging from simple data science models to dense neural
networks. The two classes of models that perform well are support vector machines and dense neural
networks, and they are the main focus of this work. We conclude that while it is relatively easy to
achieve good performance on average, it is hard to train a model that performs well on the "hard"
cases, i.e., points in the vicinity of the boundary of the quantum set. Sadly, these are precisely the
cases which are interesting from the academic point of view. In order to improve performance on
hard cases one must, especially for the 8-dimensional problem, resort to a tailored choice of training
data, which means that we are implicitly feeding our intuition and biases into the model. We feel
that this is an important and often overlooked aspect of applying ML models to academic problems,
where data generation or data selection is performed according to some implicit subjective criteria.
In this way, it is possible to unconsciously steer our model, so that it exhibits features that we are
interested in seeing. Hence, special care must be taken while determining whether ML methods can
be considered objective and unbiased in the context of academic problems.

I. INTRODUCTION

Proposed in 1964 [1], Bell non-locality [2] establishes that
the predictions of quantum mechanics are inconsistent
with local hidden-variables (LHV) models, constituting
a fundamental aspect of quantum correlations in spa-
tially separated systems. The so-called Clauser-Horne-
Shimony-Holt (CHSH) scenario [3] is the simplest sce-
nario in which the correlations observed by two parties
can be verified as not admitting a local-realistic expla-
nation, assuming that the shared quantum state is en-
tangled and that the pair of dichotomic measurements
implemented by each party is incompatible [4]. Such
correlations are identifiable through the violation of Bell
inequalities, and assessing the extent of these violations
has always been a question of broad interest. Tsirelson
was one of the first to look into the topic, deriving, in
1980 [5], an upper bound for the violation of the CHSH
inequality, a limit that would later come to be known
as Tsirelson’s bound. In the same direction, Tsirelson
himself, in 1987 [6], followed by others [7–9], obtained
a tighter characterisation in the form of a nonlinear in-
equality restricting the set of quantum correlations, cur-
rently known as the TLM inequality. The latter, even
if satisfied by any quantum correlation, is sufficient only
when the local outcomes of Alice and Bob have uniform
distributions.

Exploiting the fact that the set of quantum correla-
tions is convex, two complementary heuristic approaches

∗ gpereira@fuw.edu.pl
† nicolas.gigena@fisica.unlp.edu.ar
‡ jkaniewski@fuw.edu.pl

are often used to find maximum values of a given Bell
inequality. On the one hand, outer approximations to
the quantum set can be obtained through the NPA hi-
erarchy [10] of semi-definite programs (SDPs), which is
guaranteed to converge to the quantum set. In the CHSH
scenario with uniformly distributed outcomes, the TLM
inequalities can be recovered at the first level of this hi-
erarchy, but it is currently unknown if it converges to the
quantum set at a finite level in any other scenario. On
the other hand, the see-saw optimisation [11] provides
an inner approximation that can also be cast as an SDP
[12]. In this latter procedure, from a random initialisa-
tion, state and measurements are optimised separately
and iteratively, so that after a certain number of itera-
tions the objective function converges to a local maxi-
mum. Unlike the NPA approach, the see-saw optimisa-
tion depends on the quantum state dimension, and due
to its non-deterministic initialisation, the yielded output
is also non-deterministic. Both techniques, NPA and see-
saw, when applied to a given Bell functional, often con-
verge to the same value [2], making this combination a
valuable tool for exploring the boundary of the set of
quantum correlations.

While the approaches mentioned above were specifi-
cally designed for the problem of quantum correlations,
machine learning (ML) methods are based on the idea
that by providing a sufficient amount of data, it is possi-
ble to approach a given problem without relying on any
prior intuition. In fact, with the emergence of such tools,
many areas of physics [13] and, more specifically, quan-
tum information [14, 15], have benefited from their ap-
plication in addressing problems without analytical solu-
tions or even those the computation of which is costly.
With Bell non-locality, the use of ML was no different,
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and advances in quantifying non-locality in Bell scenar-
ios [16], networks [17], or even to assist the solution of
feasibility SDPs [18] were made, to mention a few.

Building upon the foundational work in non-locality
and the advances in ML, this work aims to use ML tech-
niques, specifically support vector machines (SVMs) and
neural networks (NNs), to delve deeper into the explo-
ration of the quantum set. Differently from previous
methodologies that applied varied methods to specific
problems, here we concentrate on the simplest Bell sce-
nario, assessing distinct models to identify the most ef-
fective approaches. Our methodology involves using the
subspace of the CHSH scenario where the TLM inequal-
ities hold as a benchmark for exploring the entire quan-
tum set, framing the task as a classification problem. As
previously pointed out, this region of the quantum set
has an analytical description, allowing us to develop a
model to be compared with the results already known.
By doing so, we aim to achieve an understanding of the
models’ efficacy in this confined scenario, subsequently
extrapolating the trained models to the entire quantum
set. This strategy does not only ensure a solid founda-
tion for the models, thanks to the available analytical
description, but also allows us to estimate the limits of
our techniques in unexplored regions of the quantum set.
In essence, we aim to find out which ML methods work
best for quantum correlations, what kind of accuracy can
be expected, and how expensive they are compared to the
currently used methods.

This work is organized as follows. In Sec. II, we pro-
vide a preliminary introduction to the main concepts and
notations regarding Bell non-locality, as well as present
the basic notions of machine learning. Sec. III discusses
the data generation methods for correlations only and
also for the entire scenario. We conclude this section by
commenting on a novel technique to close the gap be-
tween NPA and see-saw for non-exposed points in the
boundary of the quantum set. Sec. IV discusses the ML
models utilized, and the results obtained for both SVMs
and NNs. We close our considerations in Sec. V.

II. PRELIMINARIES

Contrary to what is known for the set of non-signalling
(NS) and local (L) correlations, which in every single-
sourced Bell scenario are polytopes, the set of quantum
correlations (Q) has a more complex shape. Character-
ising its boundary is difficult, and a partial solution is
known only in the CHSH scenario. In this section, we in-
troduce the established concepts and notations regarding
the CHSH scenario, followed by basics of ML.

A. Correlation sets in the CHSH scenario

The CHSH scenario consists of a bipartite setup where
the two parties, Alice and Bob, share a state in which

they are allowed to perform two dichotomic measure-
ments. We label Alice’s and Bob’s measurements by
x, y ∈ {0, 1}, whereas their respective outcomes by a, b ∈
{±1}. Given the measurements x and y, the probability
of obtaining outcomes a and b, respectively, is written
as p(a, b |x, y). The 16-tuple of all joint probabilities is
named correlation or behaviour, which we can think of
as a point in R16. Because of normalisation and non-
signalling constraints, the non-signalling polytope lives in
an 8-dimensional subspace of R16, thus making it possible
to represent it with a lower dimensional parametrisation.
One of the most widely used is that in terms of marginals
and correlators {⟨Ax⟩ , ⟨By⟩ , ⟨AxBy⟩}x,y, related to the
probabilities via the following expressions:

⟨AxBy⟩ :=
∑

a,b∈{±1}
ab p(a, b |x, y),

⟨Ax⟩ :=
∑

a∈{±1}
a pA(a |x) and

⟨By⟩ :=
∑

b∈{±1}
b pB(b | y),

(1)

where pA(·) and pB(·) denote the marginal distributions
of p(a, b|x, y) over a and b, respectively. In this case, the
set of non-signalling behaviours is represented by a sub-
set of the hypercube in R8 defined by the coordinates
⟨Ax⟩ , ⟨By⟩ , ⟨AxBy⟩ ∈ [−1, 1]. Of particular interest for
us is the subspace satisfying ⟨Ax⟩ = ⟨By⟩ = 0, i.e., the re-
striction of the set of behaviours to the correlation space,
since for this subset the TLM inequalities and the posi-
tivity facets fully describe the boundary of the quantum
set.

Quantum behaviours are those for which a bipartite
state ρAB and local measurement operators {Ma|x, Nb|y}
exist such that

p(a, b |x, y) = tr
(
ρAB Ma|x ⊗Nb|y

)
, ∀ a, b, x, y. (2)

We can directly compute the correlators as the expected
values of the observables, defined by Ax =M1|x −M−1|x
and By = N1|y −N−1|y, that is,

⟨AxBy⟩ = tr
(
ρAB Ax ⊗By

)
. (3)

We refer to the triple {Ax, By, ρAB} as a realisation and
Q is defined as the set of behaviours for which such a
realisation exists.

As already mentioned, the boundary of Q restricted to
the correlation space admits an analytical description in
terms of the TLM inequalities, the elements of which can
be obtained by cyclically permuting the signs of

|arcsin ⟨A0B0⟩+ arcsin ⟨A0B1⟩
+ arcsin ⟨A1B0⟩ − arcsin ⟨A1B1⟩| ≤ π. (4)

This characterisation allows to randomly generate a set
of correctly labelled behaviours that can be used to train
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an ML model. Unfortunately, a similar description of the
boundary for the entire quantum set is lacking, which
prevents a straightforward classification of behaviours as
quantum or not quantum. Nonetheless, before address-
ing the topic of data classification, which is discussed in
detail in Sec. III, let us briefly introduce the fundamental
concepts and notation of the field of ML.

B. Machine learning in a nutshell

Machine Learning is an interdisciplinary field at the in-
tersection of computer science and statistics that is ded-
icated to developing methods that allow computers to
learn and make decisions based on data [19]. A funda-
mental aspect of ML is its ability to build predictive mod-
els that can analyse data and identify patterns or trends.
Such ability is advantageous in applications where tra-
ditional analysis methods fail to provide reliable predic-
tions.

Conventionally, ML models are split into three cate-
gories, namely supervised learning, unsupervised learn-
ing, and reinforcement learning. For the purposes of this
work, we will concentrate on supervised learning, i.e., a
technique which is characterised by the use of labelled
datasets to train the models [20]. These datasets con-
sist of input-output pairs, where the model is provided
with input data, often referred to as features, along with
the correct labels, allowing it to learn how to predict the
output from the input.

There are two main types of tasks in supervised learn-
ing, which basically differ in the nature of the output:
regression tasks deal with continuous output, e.g., pre-
dicting house prices, stock market trends, or tempera-
ture forecasts, while classification tasks deal with pre-
dicting discrete outputs, typically categories or classes.
Our work presents the quantum correlation problem as a
classification task in which the features are given by the
CHSH behaviour, as in Eq. (1), and the labels consist of
a binary class dividing each feature as being quantum or
not quantum.

From an operational point of view, constructing an ML
model typically involves a few elementary steps, namely
data preprocessing, model selection, training and testing.
In our particular context, this paradigm shifts slightly as
we do not use pre-existing data but rather generate it
ourselves, a process detailed in the subsequent section.
Following data preprocessing, further steps involve se-
lecting and training a given ML model. The choice of
model depends on the nature of the task (e.g., regression,
classification), the characteristics of the data and the ex-
pected difficulty of the task. Common models in super-
vised learning include linear regression, logistic regres-
sion, support vector machines, and decision trees, among
others. More complex problems may require advanced
techniques such as neural networks.

Once the data and model are fixed, the subsequent
step is to divide the dataset into training and testing

sets. This division is critical for evaluating the model’s
performance on unseen data, which is a proxy for how
it will perform in real-world scenarios. A common prac-
tice is to allocate a larger portion of the data for training
(e.g., 70-80%) and a smaller portion for testing (e.g., 20-
30%). Here, due to the nature of the chosen models, we
also include a validation set, splitting the generated data
into validation, training and testing sets, following a 15-
70-15 proportion, respectively. After the data is split, the
training process involves using the validation set to tune
the hyperparameters of the model. This process is iter-
atively performed to find the optimal parameter values
that minimise a predefined loss function, which quantifies
the difference between the predicted and actual values.1
The split between training and validation is crucial as
it ensures that the evaluation obtained through the test
set consists of a realistic estimate of the model’s perfor-
mance, which brings us to the last step of model devel-
opment.

The assessment of the model involves using evaluation
metrics applied to the test set, which may vary based on
the type of task. For instance, accuracy, precision, recall,
and the F1 score are commonly used for classification
tasks, while mean squared error or mean absolute error
are used for regression tasks. The evaluation phase not
only provides insights into the model’s performance but
also helps in diagnosing issues such as overfitting, where
the model performs well on the training data but poorly
on previously unseen examples.

Although the description of the model development
process may appear linear based on the sequence of out-
lined steps, in reality it rarely follows this path exactly.
This divergence is evident in our approach, where some
steps are skipped or modified. For this reason, we empha-
sise that the last paragraphs are not intended to describe
our model construction specifically, but to provide a ba-
sic understanding of ML to a non-specialised audience.
In the following, we introduce the two classes of models
employed in this work, namely support vector machines
and dense neural networks, as well as discuss why we
consider this choice suitable for the problem of quantum
correlations.

1. Support vector machines

Support vector machines are a class of supervised
learning models used primarily for classification, but also
for regression tasks [21]. Initially, they were designed to
solve linearly separable problems [22], where the data can
be split by a flat boundary, that is, a straight line, a plane

1 It should be noted that the term “training” referred here is what
in statistics is referred to as “fitting”, i.e., the optimisation of
parameters in statistical models (like linear regression). ML’s
“training” not only mirrors this aspect but also includes the fea-
ture of boosting model performance through data exposure.
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or a hyperplane, depending on the dimension of the fea-
tures. In this sense, the goal of the SVM algorithm is to
find the optimal hyperplane separating classes, which is
defined as the one maximally distant from data points of
either class. It follows then that the model’s performance
strictly depends on the data points closest to this optimal
hyperplane, denoted as support vectors, which preserves
the method’s efficiency as it scales to higher dimensions.

The real breakthrough in the utility of SVMs came
with the realisation that they could also be adapted
to solve non-linear problems through the kernel trick
[23, 24]. This approach involves applying a kernel func-
tion to map the original non-linearly separable data into a
higher-dimensional space, where it becomes linearly sepa-
rable. Common kernel functions include the polynomial,
radial basis function (RBF), and sigmoid kernels. By us-
ing this trick, SVMs can efficiently classify data that is
non-linearly separable in its original feature space, which
makes it a natural candidate for the problem tackled in
this work. In other words, SVMs not only exhibit good
scalability, which is desirable for Bell scenarios where the
dimensionality of correlations is typically high, but they
also handle the non-linear aspects of the boundary of the
quantum set. This contrasts with linear ML models such
as Bayesian or logistic regression, which generally fail in
such contexts.

2. Neural networks

Inspired by the neural architecture of the human brain,
neural networks [25] are a sophisticated class of ML mod-
els consisting of interconnected nodes, also known as neu-
rons, which collectively process and interpret data inputs.
The advantage of such models lies in their versatility to
learn and adapt to a wide variety of tasks, ranging from
image recognition to natural language processing.

In this work, we focus on one of the simplest types
of neural networks denominated as multi-layer percep-
trons (MLPs) [26], a type of feedforward neural network.
The “feedforward” aspect refers to the unidirectional flow
of data, i.e., the data supplied to a given neuron does
not return to previous neurons, which guarantees a non-
cyclical flow of information with no loops or backward
connections. This architecture is particularly beneficial
for tasks where the current output depends solely on the
current input, with no dependence on the context pro-
vided by previous inputs.

In this sense, MLPs exemplify this feedforward struc-
ture, featuring layers of interconnected neurons divided
into an input layer, one or more hidden layers and an
output layer, as illustrated in FIG. 1. Each layer in an
MLP is structured in a way which is commonly referred
to as dense, where every neuron in a given layer is con-
nected to all neurons in the next layer through a set of
adjustable weights. During its operation, each neuron
first computes a weighted sum of its inputs and then ap-
plies an activation function. The activation function is
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FIG. 1. A typical MLP diagram showing two hidden layers.
The initial layer consists of three neurons xj in which the
inputs ij are passed, for j = 1, 2, 3. Each input neuron is
connected to the k-th neuron h

(1)
k in the first hidden layer

through the set of weights w
(0)
jk , for k = 1, 2, 3, 4. Similarly,

the neurons in the first hidden layer are connected to h
(2)
l

through the weights w(1)
kl , for l = 1, 2, 3, 4. The second hidden

layer ends up in the output layer via w
(2)
lm , where m = 1, 2.

At the end of the process, y1 and y2 yield output o1 and o2,
respectively.

crucial as it introduces non-linearity in the model, which
allows the network to capture complex patterns from the
data. Common activation functions include the sigmoid,
hyperbolic tangent, and ReLU (Rectified Linear Unit)
[27, 28].

The learning ability of MLPs relies on their method
of iteratively refining weights during training. At this
stage, the network undergoes a process denoted as for-
ward pass, where each training example is fed through
the network from the input to the output layer, gener-
ating a prediction. Then, the loss calculation phase as-
sesses the accuracy of these predictions comparing them
to the true values with a loss function, which quanti-
fies the error in the previous step. The network then
computes the gradient of the loss function with respect
to each weight in a process known as backward pass or
backpropagation. In the last step, an optimisation al-
gorithm, often gradient descent, adjusts the weights to
minimise the loss function. Completing all of these steps
for all training examples constitutes one epoch, marking
a full cycle through the training data. After multiple
epochs, the resulting model should be able to yield re-
fined predictions through the output layer, where neurons
are configured to match the specific outputs needed. For
classification tasks, the number of neurons in this layer
typically corresponds to the number of classes the model
should predict, whereas, for regression, a single neuron
produces a continuous value. In other words, the goal of
the output layer is to transform the outputs of the last
hidden layer into a format suitable for the problem.
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In summary, MLPs are versatile tools, being well-
suited for a wide range of problems, including the one
addressed in this work. Additionally, Ref. [29] points
out that if all activation functions are convex and non-
decreasing, and all weights are non-negative, the output
is guaranteed to be a convex function of the inputs. Such
an observation can be applied to MLPs by simply con-
straining the weights to be non-negative, since most acti-
vation functions are already convex and non-decreasing.
Here, we use this idea to exploit the convexity of our
problem and ensure that the MLP model produces a
convex output. Nonetheless, before we enter into the
specifics of fitting the model, as discussed in Sec. IV, let
us shift our focus to the process of data generation.

III. DATA GENERATION

Model and data are the two main components of a typi-
cal ML problem. Distinct models have different compu-
tational capabilities and requirements, but most are gen-
erally adaptable for various purposes. Naturally, some
models will perform better than others, in terms of accu-
racy and efficiency, given a particular dataset. For this
reason, part of the challenge in the search for an ML
solution consists of deciding which tool is better suited
for the data at hand, which is usually a constraint deter-
mined by the problem. However, in the scenario consid-
ered here, there is no data available in advance, leaving
the only alternative to generate it by ourselves. As this is
not a trivial task, especially in distinguishing behaviours
between quantum and not quantum, the following sub-
sections are devoted to this discussion, presenting a few
different ways to sample and classify non-signalling be-
haviours.

But before we go any further, let us point out that
producing training data may seem counterintuitive here,
as we need to classify behaviours first and this is also the
task we want our model to perform. Nonetheless, it is still
worth to look for an ML model for two reasons. Firstly,
an ML model would effectively combine the strengths of
the methods we use to generate data, such as see-saw
and NPA, consolidating them into a single, unified ap-
proach. Secondly, once trained, the resulting model has
the potential to be more efficient in terms of computa-
tion time and memory than the original methods. This
makes exploring the development of a well-trained ML
model from a relatively small set of classified examples
highly worthwhile.

A. Uniform sampling

In our first approach to generate data, we create a uni-
form sample within the NS polytope. This is achieved
using an algorithm called hit-and-run, which employs a
random walk starting from an interior point, as imple-
mented in Ref. [30]. The hit-and-run method enables

the generation of uniformly distributed points across any
convex bounded shape where the boundaries are known
analytically. The sample is produced by inputting the
hyperplane representation of NS and a starting point,
which we chose to be its geometric centre, corresponding
to the origin of the coordinate system in both 4 and 8-
dimensional variants of the CHSH scenario. For the cor-
relation space, the hyperplane representation of NS is
given by the facets of a cube in dimension 4, whereas the
same representation for the entire scenario is expressed
by the non-signalling facets, i.e,

(−1)a+b+1 ⟨AxBy⟩+ (−1)a ⟨Ax⟩+ (−1)b ⟨By⟩ ≤ 1,

∀ a, b, x, y, (5)

where, here, the outcomes are labelled as a, b ∈ {0, 1}.
Once the sample is generated, the classification of

points as quantum or not quantum is straightforward
for correlations only, as the first level of NPA is enough
to solve the membership problem. Nonetheless, for the
entire CHSH scenario there is no analogous method al-
lowing to easily classify correlations points, and the best
alternative is to approximate Q with the superset Qn

defined by the n-th level of NPA. The drawback is that
the SDP associated with the membership of a given level
becomes costly as n increases, creating a compromise be-
tween the quantity of resources to be used and the qual-
ity of the approach. In FIG. 2, this question is addressed
with the comparison between the relative volumes of the
first NPA supersets, showing an advantage in terms of
computation time to level 1 + AB. Although NPA con-
verges when n → ∞, the quality of the approximation
for large n does not improve drastically when compared
to previous levels. Furthermore, the execution time in-
creases in a way that makes the computation infeasible
for datasets larger than 105 points, even for level n = 5.
In this way, we aim to create datasets for training ML
models to decide whether a given behaviour belongs to
Q1+AB or not, which, in good approximation, would tell
us if it belongs to Q.

Also, it is worth noting that the volumes spanned by
Q and NS in the CHSH scenario are almost the same,
making the volume ratio close to one2. A consequence of
this feature is that a model that trivially predicts every
point to be local can be considered good if accuracy with
respect to a uniformly distributed sample is taken as a
figure of merit to evaluate performance. Moreover, it is
likely that an unbiased loss function would prioritise the
larger class in the problem. Here we consider three ways
in which this data imbalance can be handled. First, we
use balanced loss functions, like the balanced binary cross
entropy, for binary classification, and balanced figures of
merit for further evaluation of the models. Secondly, we

2 For the correlation space, this number is known, and it is ap-
proximately 0.925 [31, 32].
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FIG. 2. Relative volumes of Qn vs. average computation time
t̄. This plot was produced by computing the volume ratios of
Qn with respect to NS using a simple Monte Carlo method.
Briefly, a sample of points uniformly distributed in NS is
generated, and the membership is solved for each point. Note
that here, the volumes of Qn are considered regarding the
8-simplex violating one of the CHSH facets, i.e., the sample
produced is composed only of non-local points. For each NPA
level, an initial sample of 10 000 points is created and classi-
fied, a procedure repeated 50 times. The average CPU time
t̄ per point is shown in the x-axis. It is possible to observe
that levels higher than 1 + AB provide a small improvement
towards the actual volume of Q at the cost of a significant
increase in CPU time. The CPU clock speed used is 2.9 GHz
(base) and 3.9 GHz (boost).

generate a balanced sample for the two classes, which
would make a model that trivially predicts all points as
belonging to one class perform badly in terms of accu-
racy. Lastly, we introduce a technique that samples the
training data only near the boundary between classes. In-
tuitively, this seems a smart way to proceed, since focus-
ing the training data near the boundary naturally leads
to a more difficult problem, as points far away from the
boundary are easier to predict. Consequently, achieving
greater accuracy in such a model would imply a decision
boundary that resembles the true boundary more accu-
rately. To describe this idea in more detail, we move on
to the next subsection.

B. Sampling near the quantum boundary

Briefly speaking, the idea behind this method is to find
a correlation point on the boundary of Q, and, from this
point, generate a pair of training points belonging to each
of the classes. For the correlation space, since Q1 = Q,
the procedure is straightforward and is implemented with
the first level of NPA. To do so, we begin with the origin
in R4 as the starting point, and draw a random unit
direction u in the 4-sphere. Then, by solving the SDP,

max λ

s.t. λu ∈ Q1,
(6)

we can find a solution λ∗ which produces a point pb =
λ∗u in the boundary of Q1. The training points are then
created from pb by considering the pair

p± = (1± ϵ)pb, (7)

where ϵ is a fixed offset. This ensures that the training
set is balanced by construction, since the classification
is done according to the offset sign, i.e., p− is always
quantum, while p+ is not. Also, through direct numer-
ical verification, it is possible to check that the classifi-
cation in Eq. (7) compared to the analytical TLM con-
ditions results in correctly classified samples for offsets
greater than 10−10, which is sufficient for our numerical
purposes.

As for the entire quantum set, the procedure is anal-
ogous, beginning by choosing a direction in R8. Since
there is no known finite level of NPA that corresponds to
the actual quantum set, Q1+AB replaces Q1 in Eq. (6).
With the method detailed in the following subsection, we
show in Appendix A that this approximation generates
training points that are mostly correctly classified when
ϵ ≥ 10−3.

It is also worth mentioning that, while proximity of the
training data to the NPA superset is ensured for small
ϵ in Eq. (7), the actual distance of the training points
may vary depending on u. Additionally, since u will be
generally tilted with respect to the direction normal to
the boundary in the vicinity of pb, the density of train-
ing points will vary from one region to another. In an
attempt to mitigate these issues, we initially devised two
variations to the method described in Eqs. (6) and (7) for
the correlation space models. The first of them involved
performing a second SDP to compute the distance be-
tween p± and Q1, thereby ensuring a uniform distance
for all training points to the set. The second variation in-
volved pre-selecting the directions u to guarantee a uni-
form distribution of points pb on the hyper-surface of
Q1. Nonetheless, although the training data produced
by these variations differed slightly, their effects on the
final ML models were negligible and boiled down to fluc-
tuations in the values of the figures of merit. As a result,
we decided to retain only the simplest model, which is
outlined in Eqs. (6) and (7).

C. Steered see-saw

Similarly to the see-saw optimisation, the following
method also consists of an iterative SDP technique. But
here, instead of maximising a given linear functional, we
compute the distance of a point pb, on the boundary of
one of the NPA supersets, to the set of points admitting
a quantum realisation of local dimension d, denoted as
Qd×d. That is, the central idea essentially mirrors the
task of computing the distance between a point and a
convex set. However, while Qd×d is not always convex
[33], the procedure is divided so that each step is cast as
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a convex problem.
In the first of these steps, we randomly select observ-

ables Ãx and B̃y, for x, y ∈ {0, 1}, acting in a Hilbert
space of local dimension d, to write

min
ρ

||q− pb||

s.t. q ∈ Qd×d.
(8)

Here, the symbol || · || denotes the 2-norm, and q rep-
resents a correlation computed out of the averages over
Ãx, B̃y and the variable state ρ. By using the solution
ρ̃ obtained from Eq. (8), we then perform an analogous
optimisation for the observables of each part alternately.
After completing all steps, the resulting distance is com-
pared to a previously defined bound, set at 10−7. If the
distance is smaller than this threshold, the process con-
cludes; otherwise, it iterates for a given number of seeds.
That is, this procedure essentially acts as a classification
test: pb belongs to Q when the distance falls below the
threshold, but no conclusion is drawn if it does not.

When compared to the standard see-saw, the approach
outlined here has a couple of advantages. The first is
that the optimisation is not carried out in relation to a
particular Bell functional, but to a direction in the co-
ordinate system, allowing to explore non-exposed points
on the boundary of Q. Second, even though the mem-
bership test may be inconclusive, for a sufficiently large
dimension and number of seeds, it can be interpreted as
negative, since Qd′×d′ = Q, for d′ ≥ 16 [34]. On the other
hand, the feasibility of this procedure for applications in-
volving a sufficiently large dataset is far from practical.
TABLE I presents a CPU time comparison for the meth-
ods discussed in this section to produce a sample of the
same size. Clearly, the steered see-saw has a significantly

TABLE I. CPU time for each sampling method in the 8-
dimensional CHSH space. The first column specifies the
method utilised, while the second column shows the total
CPU time to classify an initial sample of 104 points. The first
and second rows show the case of a uniformly distributed
sample when the classes are unbalanced and balanced, re-
spectively. The sampling strategy is similar for both meth-
ods, with the difference that the balanced sample accumulates
non-local points until the size of each class reaches half of the
desired sample size. The two last rows show the time taken
for the methods discussed in Secs. III B and C, respectively.
It is worth noting that the steered see-saw consists of a clas-
sification test in Q, while the other methods use Q1+AB as
reference. For more details regarding the classification with
steered see-saw, see Appendix A.

method total CPU time

uniform sampling (unbalanced) 6 min 52 s
uniform sampling (balanced) 43 min 27 s
sampling near the boundary 3 min 23 s

steered see-saw ≳ 158 days

larger cost than the previous methods. While the other
procedures may typically require a couple of SDPs to
solve the membership problem, the latter method sub-
jects a single point to a series of SDPs, in addition to
the need to iterate over d. The result is that, though
we can use the steered see-saw in the small correlation
space, producing a training set with this method for the
entire 8-dimensional space of the CHSH scenario is com-
putationally challenging.

Nonetheless, despite the fact that we cannot directly
use this approach for our ML task, it can still be applied
for some other questions. In Appendix A, we assess the
quality of the approximation made in Sec. III B when
using Q1+AB as the reference set for classification. In
short, we draw a sample of 104 unit directions in R8 and
use Eq. (6) to determine an optimal λ for Q1+AB . The
results are then compared with the steered see-saw us-
ing d = 6 and 50 seeds. The outcome is that for around
99.46% of the directions starting from the origin in R8,
the points produced via Eq. (7) are correctly classified
when ϵ ≥ 10−3, showing that resolving Q from Q1+AB

numerically is difficult. Given that ML models are intrin-
sically probabilistic, this implies that even if a training
sample using Q as a reference is produced, the results
obtained with such a dataset would be no different from
those produced by using Q1+AB as a reference.

IV. FITTING THE MODEL

In this section, we discuss the training details of the cho-
sen ML models, as well as present a performance analysis
based on the evaluation metrics available for each. In the
first part, we show the results of the fitting in the corre-
lation space, subsequently moving to the entire scenario
in the second part. Each subsection is divided according
to one of the two models considered, namely SVMs and
NNs.

It is worth to note that aside from the aforementioned
models, we have also experimented with other types of
models which can be found in Python’s Scikit-learn li-
brary [35], such as Gaussian Processes, Naive Bayes, and
Decision Trees. However, we have decided to discontinue
some of the original approaches due to distinct reasons.
On the one hand, Decision Trees were found to lack sta-
bility, with slight variations in training data leading to
drastic model changes, making it difficult to be repro-
duced. Moreover, they were sensitive to the choice of
coordinate system, i.e., given that the correlations allow
for arbitrary choices of coordinates, we cannot predict in
advance which coordinate system will lead to the most
effective tree structure. In contrast, Naive Bayes and
Gaussian Processes demonstrated to be more reliable but
were discarded due to Naive Bayes’ inferior accuracy and
the extensive training time required by Gaussian Pro-
cesses. Unlike SVMs, which are powered by the C++
library LIBSVM [36] in Scikit-learn, Gaussian Processes
are fully implemented in Python. While this implemen-
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tation offers great flexibility and ease of use, it may not
achieve the same performance as systems optimised in
lower-level languages, especially for large-scale problems.
Therefore, it clearly became apparent that SVMs and
NNs are the most promising directions, which we cover
in the following.

A. Benchmark in the correlation space

Our initial interest in this particular subset comes from
the fact that here the boundary of Q is known to be given
by the TLM inequalities, also coinciding with the bound-
ary of the first NPA superset Q1. In what follows, we ex-
plore the performance of SVMs in producing a decision
boundary that approximates that of Q, i.e., in solving the
problem of classifying non-signalling points as quantum
vs. not quantum.

1. SVMs on correlations only

As mentioned above, in the development of the models
discussed here, the Scikit-learn library was used as the
main modelling tool, employing the RBF kernel among
the available kernel options. Based on the datasets ap-
pearing in the three first rows of TABLE I, we developed
three distinct SVM models, which we refer to as unbal-
anced, balanced, and offset models, respectively. In each
case, a sample of 104 points was created following the
standard split of 70% for the training set and 15% for
the test and validation sets each. In all three models, the
adjustment of the SVM hyperparameters was performed
through a grid search in the hyperparameter space, se-
lecting those values that maximise accuracy in each val-
idation set. For the offset model, in addition to the hy-
perparameter search, it was also necessary to define the
offset parameter ϵ used to produce the sample. In this
case, we started tentatively with ϵ = 10−2, obtaining the
accuracies shown in TABLE II.

Initially, we considered the accuracy measures relative
to three reference sets: the training and testing sets of
each model, to assess generalisation within the same data

TABLE II. Accuracies for the correlation SVM models. The
second and third columns contain the accuracies computed
using the testing and training sets as a reference, respectively.
The last column shows the accuracies when the models are
tested using the unbalanced test set, i.e., when the test set is
taken as a sample of points uniformly distributed within the
correlation space of NS.

model test acc. train acc. unbalanced acc.

unbalanced 0.9926 0.9934 —
balanced 0.9840 0.9901 0.9796

offset (ϵ = 10−2) 0.9307 0.9961 0.9800

type, and the unbalanced test set, to determine general-
isation across the entire NS polytope. Despite the good
performance of the three models, the small variations ob-
served in TABLE II make it difficult to evaluate the in-
fluence of each dataset and, specifically, the effect of ϵ on
the quality of the predictions nearby the boundary. To
address this issue, we included an additional accuracy
measure, denoted here as spread test, which also involves
sampling the reference set near the boundary of Q.

To generate this reference set, we adopted a different
sampling method from that discussed in Sec. III B. To put
it briefly, the distinction lies in how the initial boundary
points are collected; rather than being sampled in a ran-
dom unit direction, they are uniformly distributed along
the hyper-surface defined by the boundary of Q1. This
is achieved by creating a uniformly distributed sample
within a shell of very small thickness that encloses Q1.
The directions of each point in this sample are then used
by the method in Sec. III B to find approximations on the
boundary of Q1. Lastly, each boundary point is shifted
as [1+N (0, σ)]pb, where N (0, σ) is a normal distribution
centred at zero and with standard deviation σ. Labels
are assigned by directly checking the sign of N (0, σ).

The spread test results are detailed in TABLE III. The
offset model exhibits good performance at σ = 10−2, de-
creasing at σ = 10−3, whereas the balanced and unbal-
anced models consistently perform poorly, given that 0.5
can be achieved with a model that guesses the labels ran-
domly. Additionally, this test serves to highlight how the
ϵ value influences prediction accuracy near the bound-
ary. More specifically, with an offset at ϵ = 10−3, the
accuracies listed in TABLE IV were observed. Although
this smaller ϵ leads to a mild overfitting, as shown by
the gap between training and testing accuracies, it im-
proves the resolution at the boundary without disturbing
the model’s ability to predict other regions. FIG. 3 illus-
trates the agreement across the unbalanced, balanced,
and offset (with ϵ = 10−3) models in two correlation
slices, where the decision boundary aligns closely with
the analytical boundary shown by the dashed line.

To conclude, it remains to be mentioned that although
the smaller offset leads to a better resolution at the
boundary, it cannot be further improved. That is, in our
experiments, as ϵ diminishes further, finding a good fit-
ting becomes increasingly hard. The gap between train-

TABLE III. Accuracies produced for the spread test. Columns
two and three present the values obtained when the test cor-
responds to boundary points shifted by a normal distribution
N (0, σ) with σ = 10−2 and 10−3, respectively. The smaller
the spread of the distribution, the closer the test points are
to the boundary of the set.

model spread acc. (σ = 10−2) (σ = 10−3)

unbalanced 0.5430 0.5030
balanced 0.5426 0.5027

offset (ϵ = 10−2) 0.8318 0.5920
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FIG. 3. Correlation slices for the unbalanced (right), balanced (centre) and offset (left) SVM models with ϵ = 10−3. The
upper and lower slices were introduced in Refs. [37] and [38], respectively. The green dots depict the quantum class, while gray
represent the points classified as outside Q. The dashed line depicts the true boundary given by the TLM condition. In each
plot, 2× 104 points were generated and classified; the accuracies are indicated in the lower corner for each slice.

TABLE IV. Accuracies for the offset SVM model with ϵ =
10−3. Column one contains a summary of all accuracies ap-
pearing in TABLES II and III, and column two displays their
values. Compared to ϵ = 10−2, although performance was
reduced for the training and test sets, the values for the un-
balanced sample improved, as well as for the spread test.

acc. measure value

test acc. 0.7353
train acc. 0.8128

unbalanced acc. 0.9912
spread acc. (σ = 10−2) 0.8923
spread acc. (σ = 10−3) 0.6586

ing and testing accuracies increases while the perfor-
mance on uniformly distributed data declines, suggest-
ing that there is a limit to how much the offset value can
be reduced while maintaining the ability to accurately
classify correlation points.

2. NNs on correlations only

Apart from the SVM models mentioned above, we also
approached the problem with the implementation of a
feedforward neural network. This model was also exe-
cuted in Python, using TensorFlow [39] and Keras [40].
We considered here the same datasets as in the previous
discussion for SVMs. For each of them we configured a
network with 64 neurons in the input layer, 16, and 4,
respectively, for the first and second hidden layers, and
two neurons in the output layer, corresponding to each
class in our problem. The chosen activation function is
ReLu for all neurons except for the last one, for which we
chose Softmax. Note that, since we are dealing with two
classes, we could instead use a single neuron in the last
layer activated with a Sigmoid function, which is mathe-
matically equivalent in terms of activation. We observed,
however, that the first option results in more accurate
models. We complemented this basic architecture with
an extra feature: Since the boundary between classes is
known to be convex, we enforced this constraint on the
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decision boundary by forcing the neuron weights to be
non-negative, as suggested in Ref. [29]. Nonetheless, we
observed the impact of this constraint to be negligible in
terms of model performance or training time. The archi-
tecture we chose for our network is the result of a trial
and error approach, in which we looked for the simplest
network that can provide a good model, as measured by
our figures of merit.

Regarding the training of the network, a common
choice of loss function for classification problems is the
Binary Cross Entropy (BCE) function. We have found,
however, that a variation of it known as Focal Loss results
in models with a better performance. The Focal Loss
function is defined in [41] as FL(p) = −α(1− p)γ log(p),
where parameter α is introduced to compensate class im-
balances, and the focusing parameter γ diminishes the
weight of easy-to-classify behaviours on the loss function,
so that the training is carried mostly on hard examples,
which lie near the boundary between classes. We observe
that a suitable choice of the value of these hyperparam-
eters (α = 10−2, γ = 2) results in a noticeable improve-
ment in terms of accuracy for the models trained with
data uniformly sampled inside NS.

In terms of evaluation, on the other hand, we decided
to introduce a custom metric which is a balanced version
of the Binary Accuracy metric, as a figure of merit to
assess the performance of the trained model. The reason
for the introduction of this custom metric is that it is ex-
pected to be better suited for assessing model accuracy in
the presence of unbalanced datasets. We observed indeed
that this metric can resolve better the differences between
trained models, despite their relatively small magnitude
(≈ 1 − 10%). We trained the neural network using the
same training sets that gave rise to the unbalanced, bal-
anced and offset (with ϵ = 10−3) models described pre-
viously, with each set split into training, validation and
test. In order to maximise the performance of the final
model, we trained up to 10 models with different random
initial values for the neuron weights, out of which we kept
the model with higher accuracy. The results of the neu-
ral network training are shown in TABLE V, in which,
as before, we show the accuracy values obtained for the
test, train and unbalanced test sets. To further illus-
trate the model performance, we have considered a pair
of slices of the CHSH correlation spaces and computed
the model accuracy within these slices, which are shown
in FIG. 4. To avoid repeating similar plots, in FIG. 4
we only present the results for unbalanced model; for the
remaining models we simply show the plot accuracy in
TABLE VI obtained for both slices.

We can see that the models trained with unbalanced
and balanced data attain good scores for the training,
validation and test sets, with a small difference in favour
of the unbalanced data set. Good scores are also observed
when assessing the model in the slices we have chosen.
These results, however, are not observed for the offset
model, for which the score is barely above one half. Inter-
estingly, as shown in TABLE V, the performance of these

FIG. 4. Performance of the neural network model trained
with the unbalanced dataset on two slices of the correlation
space. The slice on top is defined by two orthogonal PR
boxes, whereas the one on the bottom is defined by the rela-
tion ⟨A0B0⟩ = ⟨A0B1⟩ = ⟨A1B0⟩. The panels depict a set of
2× 104 points on each slice, classified by the NN.

models on the slices is above 0.8 whereas when evaluated
on the unbalanced set we find 0.80535, although it should
be noted that the latter accuracies can significantly vary
depending on the seed values of the weights. We inter-
pret these differences in the results of model evaluation
as a reflection of the difference in the amount of easy to
classify points across training sets. Nonetheless, we still
observe, contrary to our prior intuition, that the train-
ing sets consisting of examples near the boundary result
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TABLE V. Accuracies obtained for the unbalanced, balanced
and offset NN models. For all datasets, we trained the neu-
ral network using as function loss the Binary Cross Entropy
(BCE) and a balanced version of it.

model test acc. train acc. unbalanced acc.

unbalanced 0.99836 0.99581 0.99836
balanced 0.98501 0.99505 0.98306

offset (ϵ = 10−3) 0.50252 0.50328 0.80535

TABLE VI. Slice accuracies for all presented SVM and NN
models in the correlation space. Slice 1 refers to the accuracy
obtained in the upper slice (as in FIGs. 3 and 4) defined by
the two orthogonal PR boxes. Slice 2 refers to the lower slice
as presented for the first time in Ref. [38]. For each slice, the
same sample of size 2 × 104 was generated and classified by
the respective model, as specified in the first columns.

model slice 1 slice 2

SVM

unbalanced 0.9852 0.9838
balanced 0.9689 0.9712

offset (ϵ = 10−2) 0.9256 0.9212
offset (ϵ = 10−3) 0.9804 0.9792

NN
unbalanced 0.9822 0.9803
balanced 0.9972 0.9929

offset (ϵ = 10−3) 0.8846 0.8477

in models that are significantly outperformed by those
trained with uniformly distributed examples. In order to
explore these differences in more depth, we implemented
variations to the sampling method described in Sec. III B.
These variations consisted of randomly distributing the
examples created near the boundary, following either a
uniform or a normal distribution. No appreciable differ-
ence in the obtained results was observed, which suggests
that the sampling method is suboptimal for training of
neural network models.

B. The entire CHSH space

Here, unlike the previous subsection, the models did
not follow a similar thread of development that could
be universally applied. Initially, our approach involved
expanding the feature dimension across the complete
CHSH space, transitioning from the classification pre-
viously based on level 1 of the NPA hierarchy to level
1 + AB. Similar to the correlation models, a dataset
comprising 104 points was generated and classified. This
dataset was then used to feed the models, which per-
formed poorly both in terms of accuracy metrics and
slices. To overcome these issues, different strategies were
implemented for each case, starting with the SVM mod-
els described below.

1. SVMs on the entire CHSH space

Our approach here leverages the local constraints
within the CHSH scenario to tailor our datasets to the
non-local region of the NS polytope. This is done firstly
by increasing the feature dimension in our earlier data
generation methods to cover the whole CHSH space, and
then excluding local points. For balanced and unbal-
anced models, this adaptation is straightforward, as we
simply change the polytope from which the points are
drawn using the hit-and-run technique. For this pur-
pose, we employ the 8-simplex defined by the eight local
vertices which saturate the inequality

⟨A0B0⟩+ ⟨A0B1⟩+ ⟨A1B0⟩ − ⟨A1B1⟩ ≤ 2, (9)

and the box pPR = [0, 0, 0, 0, 1, 1, 1,−1] which attains
the geometrical bound in Eq. (9). Given the one-to-one
correspondence between PR boxes and local facets in the
CHSH scenario, the NS polytope can be partitioned be-
tween the local set and eight disjoint and identical sim-
plexes, which can be mapped to each other by relabelling
settings, outcomes, and exchanging parts. Hence, for any
non-signalling correlation, we can classify it as quantum
if it meets any local constraint, and otherwise, the model
trained on the simplex is applied. In addition, since
the local polytope occupies about 94.12% of the total
NS volume [32], each simplex constitutes approximately
0.74% of the non-signalling volume, thus decreasing the
redundancy in the model trained within this region. As
for the offset model, such adaptation is made by filter-
ing a set of random unit directions in R8, leaving only
those intersecting with the facet in Eq. (9). As before,
this leads to a reduction in the model’s training region,
since in terms of the total solid angle comprised by the
8-sphere, the percentage of selected directions is approx-
imately 0.21%3.

We then proceed with model development by generat-
ing samples containing 4×104 points based on the previ-
ously used data types: unbalanced, balanced, and offset,
with ϵ values of 10−2 and 10−3 for the offset data. Sim-
ilar to the correlation space, here we also employed the
RBF kernel of Scikit-learn and maintained a 70-15-15 ra-
tio for training, testing, and validation sets, respectively.
The resulting models can be divided into two cases. For
the offset data, developing a model that consistently per-
formed well across all accuracy measures proved challeng-
ing, as shown in TABLE VII. Unlike its correlation space
analogues, the reduction of the offset value here did not
enhance performance measures; instead, it caused more
significant overfitting in the model with ϵ = 10−3 com-
pared to the one with ϵ = 10−2. In contrast, increasing

3 To the best of our knowledge, this value has not been previously
reported in the literature. An estimate can easily be obtained by
following the procedure outlined in the sentence preceding this
note.
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FIG. 5. Two-dimensional slices of the entire CHSH scenario. The plots on the upper row correspond to the results for the SVM
models trained with balanced data. The lower row depicts the results obtained for NNs using unbalanced data. The plots on
the left and in the centre of the image correspond to the same correlation slices shown in FIGs. 3 and 4. The right panels
depict the slice introduced in FIG. 3 of Ref. [38], where we draw the boundary of the quantum set using level 3 of NPA.

TABLE VII. Accuracy measures for the SVM models in the entire CHSH space. The first column depicts the type of data used
to train a given model, while the remaining columns present the values of the same accuracy measures used in the correlation
models.

model test acc. train acc. unbalanced acc. spread acc. (σ = 10−2) spread acc. (σ = 10−3)

unbalanced 0.9527 0.9527 — 0.5182 0.5013
balanced 0.9610 0.9637 0.9153 0.5547 0.5009

offset (ϵ = 10−2) 0.6417 0.7617 0.8266 0.6733 0.5157
offset (ϵ = 10−3) 0.2893 0.6462 0.7959 0.7600 0.5335

the feature dimension for the balanced and unbalanced
models did not have a significant effect on the final model
quality. Although their performance is still poor at points
near the set boundary, as shown by the spread accuracy
in TABLE VII, they show reasonable predictive capacity
in other regions, as illustrated by the slices in the upper
row of FIG. 5. The two first slices replicate the perfor-
mance of the correlation models, which is extended to
other regions of the representation space, as depicted in
the rightmost plot.

2. NNs on the entire CHSH space

In the previous section, we have found that the train-
ing data sampled near the boundary is not well suited
for neural network models. Consequently, for the 8-
dimensional CHSH set, we consider only models trained
with unbalanced data. We started by retraining the net-
work we built for the benchmark on training sets of dif-
ferent sizes, starting with 104 points. We first observe
that the performance of the training model improves
with the size of the dataset, up to a size of ∼ 5 × 104
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points. While in terms of global accuracy the results
of the training seem as good as those obtained in the
4-dimensional correlation space, with differences within
∼ 10−2, we find that the differences in accuracy on the
slices studied above is about 5 times larger. Interest-
ingly, changes in the architecture of the network which
increase the amount of resources like, for instance, dou-
bling the amount of neurons in the input layer and/or
adding extra hidden layers, do not seem to appreciably
improve the performance of the trained models. It is not
clear to us at the moment whether there is a combination
of network architecture and hyperparameter values that
may result in a better performing model, or if further
improvement requires significantly larger training sets,
which would represent an important practical limitation
for these neural network models.

The global accuracy of the best model we could train
in the conditions described above is 0.9967, and in the
lower row of figure of FIG. 5 we show the performance of
this model on the slices of the set previously introduced.

V. DISCUSSION

Using machine learning methods to solve problems in
quantum physics is a relatively new phenomenon. Our
goal was to conduct a comprehensive study of how
these methods perform on a relatively simple and well-
understood example. More specifically, we have chosen
the problem of characterising the quantum set in the
CHSH scenario, and we have explored various data sci-
ence and machine learning models. It quickly became
apparent that support vector machines and neural net-
works are the most promising candidates.

A key difference between the way ML is typically used
and the way it is used in physics research is the source of
data. In a research setting we are responsible for gener-
ating the data ourselves and one must be careful about
how this is done exactly. In our case, uniform sampling
leads to a highly imbalanced dataset. To fix this problem,
we can either employ rejection sampling (which might be
quite inefficient) or try to find a “smart” way of perform-
ing non-uniform sampling. However, one must be careful,
because the latter might implicitly introduce some bias
in the data resulting from our subjective opinion on what
it means to be “smart”.4

Another observation that we made is that standard ML
models are designed to perform well “on average”. How-
ever, in physics research the usual focus is on analysing
some specific phenomenon, e.g. determining the quan-
tum value of a Bell functional or analysing a specific

boundary region. Indeed, in research one almost ex-
clusively cares about the “hard” cases, so average per-
formance is not that relevant. For such tasks, the ML
models do not seem to be a great fit.

Overall, both the SVMs and NNs exhibit reasonable
performance, however, at some point adding more re-
sources (e.g. adding more data or increasing model com-
plexity) leads to diminishing returns. The slices we
plotted for the 4-dimensional set look quite good, but
one can see some imperfections. For the slices of the
8-dimensional set, the imperfections are clearly visible.
Note that the input dimension of 4 or 8 is very low for
ML methods. Nevertheless, generating a data sample
that is representative for the 8-dimensional correlation
space is highly non-trivial.

Finally, we would like to make a comment on the ap-
proach of forcing the neural networks to be convex by re-
stricting the coefficients to be negative. Convexity is not
a concept that often appears in real-world data.5 Hence,
we were excited to be able to apply this trick to data
where convexity is indeed relevant. However, this did not
lead to a visible improvement, which might suggest that
combining ML approaches with concepts from abstract
mathematics is not always fruitful.

Overall, we have found that constructing an ML model
that performs reasonably well on a relatively simple prob-
lem is easy. However, boosting its performance further
is not that straightforward and at some point one has to
start being smart about how the data is generated and
how the model is chosen. At this point, however, there is
a risk of injecting our own biases into the data without
even realising it. Constructing models for larger prob-
lems is also challenging due to the sheer amount of data
required to represent a high-dimensional space.

We believe that our findings will contribute to a better
understanding of the types of problems where ML can
provide an advantage over currently existing methods.
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Appendix A: Q1+AB vs. Q6×6

In this appendix, we leverage the approaches described in
Secs. III B and C to numerically compare the level 1+AB
of NPA with the set of quantum realisations with local
dimension 6, referred to as Q1+AB and Q6×6, respec-
tively. The choice of a local dimension of 6 is based on
its computational feasibility within the steered see-saw
algorithm and the fact that, for d ≥ 4, L ∈ Qd×d [34].
This allows us to limit our focus to directions pointing
towards one of the CHSH facets, since the boundaries of
the two analysed sets coincide in other directions.

We then begin with a sample of 104 directions obtained
by intersecting random directions with the local facet
defined in Eq. (9). For each of the selected directions, we
compute a pair of points: one on the boundary of Q1+AB ,
using the approach outlined in Eq. (6), and an interior
estimate within Q6×6, using the steered see-saw with 50
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random initializations or until the problem value is lower
than 10−7. The distances between each corresponding
pair are then calculated and analysed. Among the total
directions considered, 9220 showed a distance of less than
10−2, with 6793 of these falling below 10−3. For 5903
directions, the gap was smaller than the initially defined
threshold of 10−7. The plot in FIG. 6 illustrates the
distribution of distances for the pairs that are at least
10−3 apart. As a result, considering that the simplex
comprised by the facet in Eq. (9) covers only 0.21% of
the total solid angle measured at R8 from its origin, we
observe that the method described in Sec. III B correctly
classifies points for about 99.87% of the total directions
when ϵ = 10−2 and 99.46% when ϵ = 10−3.

It is worth noting that, since steered see-saw does not
guarantee obtaining a point on the boundary of Q6×6, the
quality of the estimate depends on the number of random
initialisations used. For this reason, in an attempt to ob-
tain a more realistic number for the quantity of seeds
required, we carried out the test that can be summarised
by the data in TABLE VIII. In summary, we produce
a sample of again 104 points uniformly distributed in
the simplex defined by the local facet of Eq. (9) and the
PR box corresponding to this facet. Then, we eliminate
points that did not belong to the superset Q4 of NPA
and classified the remaining points with steered see-saw
using initially 5 seeds and a given local dimension. As
before, if the problem value obtained is smaller than the
threshold of 10−7 for a given dimension, the evaluated
point is considered as belonging to Qd×d. Initially, our
idea was to compute the volume resulting from the in-
tersection of the simplex with the sets Qd×d, for d ≤ 16.
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FIG. 6. The distribution of distances for the directions where
the result was greater than 10−3. Each bin has a length of
also 10−3. In the optimisation presented in Eq. (8), the min-
imised quantity is the distance between the variable encoded
in the correlation q and the target point pb = λ∗u, with the
direction u not included in the problem constraints. Conse-
quently, the interior estimate of pb does not necessarily align
with u, though the angle between the two points relative to
the polytope’s centre decreases proportionally with the gap
between them.

However, this quickly proved to be more challenging than
anticipated. As the dimension increased throughout the
computation rounds, the process became unfeasible for
d = 10. Nonetheless, during the following rounds, by de-
creasing the local dimension and increasing the number
of seeds, we were able to classify most of the remaining
points.

The data presented allows for two general conclusions.
Firstly, the number of seeds used in the computation de-
scribed at the beginning of this appendix is suboptimal,
indicating that the superset Q1+AB is an even better
approximation of Q for developing an ML classification
model. Secondly, numerically distinguishing between sets
of quantum realisations with fixed local dimension for
d ≥ 10 is difficult. This is because it is not only com-
putationally expensive but also due to the small volume
difference between these sets in higher dimensions.

TABLE VIII. Classification of a sample of 104 points uni-
formly distributed in the simplex comprised over the local
facet defined in Eq. (9) and the box pPR = [0, 0, 0, 0, 1, 1,
1,−1]. After removing points not belonging to the level 4 of
NPA, the remaining 8563 points were classified in 17 rounds,
varying the local dimension and the number of seeds. The sec-
ond column shows the local dimension used, the third column
shows the number of random initialisations, and the fourth
column shows the number of points for which the quantum
realisation found had a distance less than 10−7 from the tar-
get point. The last column indicates the total computation
time per round, formatted as days:hours:mins. Note that in
the 8th round, with d = 9, the computation time increased
such that further increases in dimension became prohibitive.
In subsequent rounds, the local dimension was reduced to
d = 6 and 8, and the number of seeds was increased. The
total CPU time was 158 days, 1 hour, and 26 minutes, with
only 54 points remaining unclassified.

round # local d No. seeds No. ∈ Qd×d CPU time

1 2 5 2271 01:07:30
2 3 5 2597 02:22:38
3 4 5 2097 01:07:45
4 5 5 496 01:12:32
5 6 5 390 03:10:23
6 7 5 171 04:12:04
7 8 5 94 06:07:27
8 9 5 56 17:11:05
9 6 50 158 11:03:25
10 8 50 37 16:20:39
11 6 100 77 12:11:57
12 6 150 24 11:04:53
13 6 200 14 11:05:17
14 6 250 9 12:06:02
15 6 300 9 14:20:05
16 6 350 7 14:04:17
17 6 400 2 15:01:20



Concluding remarks

Bell non-locality and certification of quantum devices are two interconnected fields that gained
significant attention, particularly after the early 90s, with the initial development of quantum
cryptography protocols. In this thesis, we aim to contribute to both areas, either through the
development of certification protocols, as presented in Refs. [44] and [62], or by exploring Bell
scenarios, as investigated in Refs. [44] and [50].

In Ref. [44], we present two general certification statements, with the first addressing a pair
of rank-one projective measurements with d outcomes, and the other involving a maximally
entangled state acting in a Hilbert space with local dimension d. While similar findings have
been reported in the literature1, the notable result of this work is the proof that, for rank-one
projective measurements, incompatibility results in the violation of a Bell inequality. Although a
similarly general result for projective measurements was obtained in Ref. [79], our study extends
this by showing that when the measurements are rank-one, we can construct an inequality that
is optimised by those measurements.

As for Ref. [62], we introduce a new variation of the random access code protocol, which
we refer to as biased RACs. This approach has advantages from a certification perspective,
as it does not require space-like separation for experimental implementation and enables the
characterisation of a broad class of measurements. Nevertheless, such certification protocols must
consider stronger assumptions, such as ensuring that one of the parts is trustworthy and that the
system size is constrained. For this biased protocol, we successfully certified the measurements
in all cases where a 2-bit string is encoded, as well as in some instances involving a 3-bit string.

Lastly, in Ref. [50], we perform an in-depth study of machine learning methods in the simplest
non-locality scenario. We specifically chose to investigate the problem of characterising the
CHSH quantum set, applying a range of data science and machine learning methods. Our
study concludes that, although achieving good performance on average is fairly straightforward,
training a model to accurately resolve the boundary of the quantum set is challenging. Conversely,
we successfully created new methods for classifying quantum behaviours, particularly the steered
see-saw and NPA techniques, which enable the exploration of unexposed points on the boundary
of the quantum set.

1See Refs. [76, 77] for the certification of a wide range of d-outcome measurements, and Ref. [78] for the
certification of a multipartite state in any local dimension.
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