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Abstract

This thesis delves into the fundamental quantum resources, say quantum coherence,
entanglement and purity, that are essential for the development and optimization of
quantum technologies. We study quantum speed limits, resource generation, and the
impact of these resources on quantum algorithms and noisy quantum circuits.

As in many quantum technologies, one has to convert a collection of states through
some unitary dynamics (in the lab), we introduce a novel notion of quantum speed
limits which concerns transforming a collection of quantum states simultaneously, such
as converting a basis into maximally coherent bases and basis permutation. The speed
limits are particularly important when there is a limitation to implement arbitrarily
many types of dynamic in the lab. We derive tight bounds for these transformations in
systems of lower dimensions and establish general bounds for multi-qubit and higher-
dimensional Hilbert spaces. Additionally, we present exact expressions for the speed
limit of basis permutations in Hilbert spaces of arbitrary dimension. Using the tools
we developed, we explore the minimal time needed to generate a specific amount of
coherence under unitary evolution and building on it, we define the concept of the
coherence-generating capacity of Hamiltonians, which measures the maximal rate at
which coherence can be generated by a quantum system. Using the relative entropy of
coherence as a figure of merit, we derive closed-form expressions for Hamiltonians and
quantum states that achieve this maximum under the constraint of a bounded Hilbert-
Schmidt norm for the Hilbert spaces of arbitrary dimension. These results provide
valuable insights for optimizing quantum coherence in various quantum tasks. For
the qubit systems, we find a complete characterization of the problem of coherence
generation rate by a given Hamiltonian.

We further examine the role of quantum coherence and entanglement in quantum
algorithms, focusing on the Bernstein-Vazirani algorithm and its probabilistic variant.
We find an analytic relation connecting the performance of the algorithm with the co-
herence of the initial state. Our analysis further reveals that excessive entanglement
can hinder optimal performance. In the context of quantum computation with mixed
states, we demonstrate that pseudo-pure states can achieve optimal performance of this
algorithm for a given level of purity.
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We further study the resources in restricted model of computations in which a uni-
tary is controlled by a single qubit and we show that the one clean qubit model can
provide computational advantages even with minimal entanglement, coherence, and
general quantum correlations. Motivated by the fact that the one clean qubit model
provides computational advantages while working with a register of qubits in the fully
mixed states, we then study if similar circuits could lead to some computational advan-
tages in the case each gate in the computer happens to be noisy. For this, we consider a
noise model inspired by superconducting cat qubits, which only introduces bit-flip after
each gate of computation, and we show that using the asymmetry (which technically is
called biasedness) of the noise (as only bit-flip errors are involved) and the coherence
of the control qubit, one can design a class of noisy circuits which are highly resilient
to the noise. However, we further show that this class of circuits is classically simula-
ble. Using the simulability of these circuits, we establish a novel way, to benchmark
the biasedness of the noise at the scale of the whole circuit. This benchmark protocol
is particularly important as having this noise model is crucial for the scalability of the
cat qubit circuits and it is not clear if they can maintain this property in large circuits
due to crosstalks and correlated errors. The protocol is sensitive to these effects and is
capable of validating the performance of circuits with up to 106 gates under realistic
noise models, extending beyond traditional Pauli noise models.

Together, these results pave the way and show new directions for a more rigorous
and comprehensive understanding of how various quantum resources can be quanti-
fied, optimized, and leveraged to enhance the performance and reliability of quantum
technologies.
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Streszczenie

Praca ta zagłębia się w tematykę podstawowych zasobów kwantowych, takich jak
spójność kwantowa, splątanie i czystość, które są niezbędne do rozwoju i optymalizacji
technologii kwantowych. Badamy kwantowe ograniczenia prędkości, generowanie za-
sobów oraz wpływ tych zasobów na algorytmy kwantowe i szumy w obwodach kwan-
towych.

Ponieważ w wielu technologiach kwantowych należy przekształcać zbiór stanów
poprzez dynamikę unitarną (w laboratorium), wprowadzamy nowę koncepcję kwan-
towych ograniczeń prędkości, która dotyczy jednoczesnych transformacji zbioru stanów
kwantowych, takich jak konwersja bazy na bazy maksymalnie spójne i permutacja
baz. Ograniczenia prędkości są szczególnie ważne, gdy istnieje przeszkoda w im-
plementacji dowolnie wielu typów dynamiki w laboratorium. Wyprowadzamy ścisłe
ograniczenia dla tych transformacji w systemach o niższych wymiarach i ustalamy
ogólne ograniczenia dla systemów wielokubitowych i przestrzeni Hilberta o wyższych
wymiarach. Dodatkowo, przedstawiamy analityczne wyrażenia na ograniczenia dla
permutacji baz w przestrzeniach Hilberta o dowolnym wymiarze. Korzystając z opra-
cowanych narzędzi, badamy minimalny czas potrzebny do wygenerowania określonej
ilości spójności poprzez ewolucję unitarną i na tej podstawie definiujemy pojęcie zdol-
ności generowania spójności przez hamiltoniany, które mierzy maksymalną szybkość,
z jaką spójność może być generowana przez system kwantowy. Używając względnej
entropii spójności jako kryterium, wyprowadzamy ścisłe wyrażenia na hamiltoniany
i stany kwantowe, które osiągają to maksimum pod warunkiem ograniczonej normy
Hilberta-Schmidta, dla przestrzeni Hilberta o dowolnym wymiarze. Te wyniki dostar-
czają cennych informacji na temat optymalizacji spójności kwantowej w różnych zada-
niach kwantowych. W systemach qubitowych znajdujemy pełne rozwiązanie problemu
szybkości generowania spójności przez dany Hamiltonian.

Dalsze badania dotyczą roli spójności kwantowej i splątania w algorytmach kwan-
towych, skupiając się na algorytmie Bernsteina-Vaziraniego i jego odmianie proba-
bilistycznej. Znajdujemy analityczną zależność łączącą wydajność algorytmu ze spójnoś-
cią stanu początkowego. Nasza analiza ujawnia również, że nadmierne splątanie może
obniżać optymalną wydajność. W kontekście obliczeń kwantowych z użyciem stanów
mieszanych, wykazujemy, że stany pseudoczyste mogą osiągnąć optymalną wydajność

v



vi

tego algorytmu dla pewnego poziomu czystości.

Kolejne rozważania dotyczą zasobów w szczególnym modelu obliczeń, w którym
bramka unitarna jest kontrolowana przez jeden qubit, i wykazujemy, że model jednego
czystego qubitu może zapewnić przewagę obliczeniową nawet przy minimalnym splą-
taniu, spójności i ogólnych korelacjach kwantowych. Motywowani faktem, że model
jednego czystego qubitu zapewnia przewagi obliczeniowe, gdy dostępna jest pewna
ilość qubitów znajdujących się w stanie w pełni mieszanym, badamy, czy podobne
obwody mogą prowadzić do przewag obliczeniowych w przypadku, gdy wszystkie
bramki w komputerze są zaszumione. W tym celu rozważamy model szumu inspirowany
nadprzewodzącymi qubitami w stanie kota Schrödingera, który wprowadza jedynie
błąd typu bit-flip po każdej bramce obliczeniowej, i wykazujemy, że dzięki asymetrii
szumu (również zwanej stronniczością) oraz spójności qubitu kontrolnego, można za-
projektować klasę zaszumionych obwodów wysoce odpornych na szum. Pokazujemy
jednak również, że ta klasa obwodów jest symulowalna klasycznie. Korzystając z
symulowalności tych obwodów, wprowadzamy nowy sposób ustalania punktu odniesienia
dla stronniczości szumu w skali całego obwodu. Taki protokół oceny jest szczególnie
ważny, ponieważ model szumu jest kluczowy dla skalowalności obwodów qubitów w
stanie kota Schrödingera i nie jest jasne, czy będą one w stanie utrzymać tę właści-
wość w dużych obwodach z powodu przesłuchu i skorelowanych błędów. Protokół jest
zdolny do wykrywania tych efektów i weryfikacji wydajności obwodów zawierających
do 106 bramek w realistycznych modelach szumu, wykraczających poza tradycyjne
modele szumów Pauliego.

Wspólnie, te wyniki wskazują ścieżki i wyznaczają nowe kierunki dla bardziej
ścisłego i kompleksowego zrozumienia, jak różne zasoby kwantowe mogą być kwanty-
fikowane, optymalizowane i wykorzystywane do poprawy wydajności i niezawodności
technologii kwantowych.
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Chapter 1

Introduction

Quantum resource theories offer a structured method for examining the properties of
quantum systems and their applications in quantum technologies [CG19]. Within this
framework, the resource theories of entanglement [HHHH09a] and coherence [SAP17,
WSR+21] are particularly notable examples.

The resource theory of entanglement studies the potential and limitations of agents
working in separate quantum labs who can only communicate through classical means [HHHH09a].
In this theory, two parties, Alice and Bob, restricted to local operations and classi-
cal communications (LOCC), cannot create entanglement from a product state like
|0⟩Alice ⊗ |0⟩Bob [CG19, Sha19, CLM+14]. This restriction shows that certain quantum
state transformations cannot be achieved through LOCC alone. However, suppose Al-
ice and Bob share a maximally entangled state. In that case, they can convert it into
any other state deterministically [CG19] which demonstrates that entanglement is a
valuable resource for state preparation [CG19, Sha19, CLM+14].

On the other hand, the resource theory of coherence investigates the difficulties
and possibilities for an agent constrained in their capacity to generate and maintain
quantum coherence [SAP17, WSR+21]. Additionally, the framework of quantum re-
source theories has been effectively utilized in the area of quantum thermodynam-
ics [HO13, NW18]. This application has facilitated a deeper comprehension of how
quantum systems can be controlled within the limits regarding the energy of the sys-
tems. In the following sections we aim to delve into a more rigorous discussion of
these resources.
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2 CHAPTER 1. INTRODUCTION

1.1 Quantum Resource Theories

A quantum resource theory (QRT) is a framework that outlines how one quantum state
can be transformed into another using a specific set of quantum operations under de-
fined conditions [CG19, Sha19, CLM+14]. Each quantum resource theory is built upon
two essential concepts: free states and free operations [CG19]. Free states are those
quantum states that can be easily created within a framework supported by physical
principles. Regarding free operations, these ideally represent quantum manipulations
that can be effortlessly carried out, founded on the physical principles underpinning
the resource theory. For example, in the realm of entanglement resource theory, the
combination of local operations and classical communication represents a set of free
operations that can be easily interpreted in physical terms [BDSW96]. One may con-
clude, any other state outside the set of free states would be considered a resourceful
state within the frame of our QRT. Hence, QRTs help one to identify and measure such
resources, like entanglement, which facilitate specific quantum operations and transfor-
mations. In the following, we will present the formal definition of a quantum resource
theory [CG19].

Definition 1.1. A quantum resource theory is defined by the pair (F,OF), where F rep-
resents a set of quantum states known as free states, and OF denotes a set of completely
positive and trace-preserving maps (CPTP), referred to as free operations, such that:

∀ Λ ∈ OF , ρ ∈ F: Λ(ρ) ∈ F. (1.1)

In other words, the free operations map any free state to another free state. Note that
this is also an important criterion for checking the consistency of the resource theory
of interest.

Various quantum resource theories have been developed, including those for asym-
metry, nonlocality, coherence, purity, and entanglement. For a comprehensive review
of these quantum resource theories, one can refer to [CG19]. In this dissertation,
we will focus on three key resource theories: purity, coherence, and entanglement.
These resource theories are particularly important in the context of quantum technolo-
gies, such as quantum computation, quantum error correction, and quantum control
[Wan23, DB07, MEKP16a, TV14]

In the framework of resource theory, quantifying the amount of the resource present
in any state is a useful aspect. This quantification should be grounded in practical and
meaningful tasks that highlight the utility of the resource [CG19]. For example, in the
context of entanglement theory, the primary objective often involves distilling singlet
states from a given quantum state. Singlet states are particularly valuable because
they can be used to generate any other entangled state [Sha19]. Thus, a natural and
meaningful way to measure entanglement is by assessing how many singlet states can
be distilled from the state which ensures that the quantification aligns with the practical
utility of entanglement.

2



3 1.2. QUANTUM RESOURCE THEORY OF PURITY

Moreover, a well-defined resource quantification method must satisfy certain crite-
ria to be meaningful: One expects that such a quantification must lead to zero for all the
free states of the QRT. Also, it must not increase under the free operations otherwise it
gives the possibility that the free operations do some valuable task for us and generate
more amount of resources.

Definition 1.2. A resource measure is a map M : L(H) −→ R+ (L(H) denotes the set
of linear operations on the Hilbert spaceH) such that:

• M(ρ) = 0 iff ρ ∈ F.

• (Monotonicity) ∀Λ ∈ OF we have M
(
Λ(ρ)

)
≤ M(ρ).

In certain resource theories, there are special classes of states from which it is pos-
sible to derive any other state using the permitted free operations [CG19]. For instance,
in the resource theory of bipartite entanglement, maximally entangled states are prime
examples of such a special state. These can be transformed into any other state de-
terministically by using local operations and classical communication (LOCC) alone
[CG19, Sha19]. These highly versatile states are referred to as maximally resource-
ful states [CG19]. In essence, maximally resourceful states are those that possess the
highest possible level of resource value within a given theory, enabling them to serve
for generating other states.

Definition 1.3. In the quantum resource theory (F,OF), a maximally resourceful state
(MRS) is a state that can be transformed to any other state by the usage of free opera-
tions [CG19].

It’s worth mentioning that not all resource theories include a MRS. For instance,
in the resource theory of multipartite entanglement with more than two parties (N >
2) there is not only one class of states that serves as an MRS for the entire system.
Instead, there are various classes, each with its own distinct maximally resourceful
states [OS06].

1.2 Quantum Resource Theory of Purity

A quantum state ρ is considered pure if and only if Tr(ρ2) = 1. However, to better
understand and quantify the concept of purity, it is useful to establish a hierarchical
structure within the space of quantum states. This hierarchy allows us to address the
question: ”To what extent is a quantum state pure?” . Resource theory of purity is
rather a simple framework in which we can talk about the purity of quantum state as a
resource [SKW+18].

3



4 CHAPTER 1. INTRODUCTION

Definition 1.4. The resource theory of purity is a quantum resource theory with the
pair (F p,Op

F) (the pair of free states and free operations) such that:

F p = {
I

d
}, (1.2)

Op
F = {Λ |Λ(I) = I} (1.3)

where I is the identity operator. We can see that the set of free operations in the
resource theory of purity coincides with the set of unital channels on our Hilbert space.

Within the resource theory of purity, the state conversion follows from the classical
theory of bistochastic maps [SKW+18].

Theorem 1.1. the state ρ can be converted to the state σ using unital operations iff
ρ ≻ σ (ρ majorizes σ) i.e. :

k∑
i=1

λ−i (ρ) ≥
k∑

i=1

λ−i (σ) (1.4)

for all k where λ−i (ρ) are the eigenvalues of ρ in the descending order.

The resource theory of purity admits a set of maximally resourceful states which
coincides with the set of all pure states. Hence, starting from a pure state we can
achieve any other state by unital channels [SKW+18]. Given n copy of the quantum
state ρ, we are interested to know how many pure state one can achieve using only the
unital channels. Considering the asymptotic limit of n, we have the following quantity
of interest which is called the purity of distillation [SKW+18]:

Pd(ρ) = sup {R | lim
n→∞

inf
Λ∈Op

F

||Λ(ρ⊗n) − |ψ⟩ ⟨ψ|⊗nR ||1 = 0}. (1.5)

where ||σ||1 ≡ 1
2 Tr(|σ|) is the trace norm. It can be proved that in the asymptotic case,

we have the following closed formula for the purity of distillation [SKW+18]:

Pd(ρ) = log(d) − S (ρ) (1.6)

where S (ρ) ≡ −Tr(ρ ln ρ) is the von Neumann entropy function. Using the convexity
property of S (ρ) one can show that Pd(ρ) is qualified for a purity monotone. Further-
more, due to the monotonicity of Pd and by the Eq. 1.6, we conclude the corollary
below [SKW+18].

Corollary 1.1. S (Λ(ρ)) ≥ S (ρ) iff Λ is a unital channel.

4



5 1.3. QUANTUM RESOURCE THEORY OF COHERENCE

1.3 Quantum Resource Theory of Coherence

The drive to explore the QRT of coherence originates from the concept of inevitable
decoherence, implying that incoherent states remain unaffected in the presence of de-
coherence. Coherence resource theory is inherently dependent on the choice of basis,
meaning that its framework varies according to the specific Hilbert space’s basis cho-
sen for analysis [SAP17]. This theory encompasses various approaches, each defined
by different sets of free states and free operations. For example, coherence resource
theories may differ based on whether they consider incoherent states or the states com-
muting with a Hamiltonian as free states[SAP17]. Similarly for free operations, vari-
ous sets of maps have been considered such as incoherent operations (IO) and maxi-
mally incoherent operations (MIO) [BCP14a, WY16, Abe06, YMG+16, CG16, GS08,
dVS16]. A shared characteristic among these groups is their incapacity to induce coher-
ence from incoherent states. We refer to [SAP17] for an in-depth review of coherence
resource theories. In the context of this thesis, we will focus on the following aspects
of coherence resource theory.

Definition 1.5. The resource theory of coherence with respect to the basis B = {|i⟩}d−1
i=0

is the pair (Fc,Oc
F) such that:

Fc = {ρ |∆(ρ) = ρ} (1.7)

and

Oc
F = {λ f | λ f (ρ) ∈ Fc, ∀ρ ∈ Fc} (1.8)

where ∆ is the dephasing channel in the basis B, defined as:

∆(ρ) ≡
d−1∑
i=0

|i⟩ ⟨i| ρ |i⟩ ⟨i| . (1.9)

In other words, in the resource theory defined above, the free states are those that
are diagonal (i.e. incoherent) in our basis of interest and the free operations are the
CPTP channels mapping each incoherent state to another incoherent one.

One can show that the QRT of coherence in the Hilbert space of dimension d,
admits a set of maximally coherent states which can be written as [SAP17]:

|ψMC⟩d =
1
√

d

d−1∑
i=0

eφi |i⟩ (1.10)

where φi are some phases.

In the following, we discuss several coherence monotones that we will use in the
next chapters.
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6 CHAPTER 1. INTRODUCTION

1. l1-norm of Coherence: is a coherence monotone defined as [SAP17]:

Cl1 (ρ) = min
σ∈Fc
|ρ − σ|l1 (1.11)

where |σ|l1 ≡
∑

i, j |σi j| denotes the l1-norm of σ and σi j are the components of σ in the
basis {|k⟩}|dk=1. It can be shown that Cl1 can be simplified as:

Cl1 =
∑
i, j

|ρi j| (1.12)

where ρi j are denoting the components of the density matrix ρ in the basis {|k⟩}|dk=1.

2. Robustness of Coherence: Another coherence monotone is the robustness of
coherence R(ρ) which for a given state ρ quantifies the minimal mixing required to
make ρ an incoherent state. Formally speaking we have [SAP17]:

R(ρ) = min
σ
{s ≥ 0 |

ρ + sσ
1 + s

∈ Fc}. (1.13)

It can be shown that the robustness of coherence coincides with the l1-norm of coher-
ence for pure states [SAP17].

3. Distillable Coherence: this quantity is defined by the task of distilling the max-
imally coherence single-qubit state |ψ2

MC⟩ as follow [SAP17]:

Cd(ρ) = sup {R | lim
n→∞

inf
Λ∈Op

F

||Λ(ρ⊗n) − |ψ2
MC⟩ ⟨ψ

2
MC |
⊗nR
||1 = 0}. (1.14)

Surprisingly, Cd(ρ) can be expressed in a closed form as below [SAP17]:

Cd(ρ) = S (∆(ρ)) − S (ρ). (1.15)

4. Distance Based Coherence: A distance-based approach to quantifying coher-
ence, as described by [BCP14b], defines the coherence of a quantum state ρ as:

CD(ρ) = inf
σ∈Fc

D(ρ, σ), (1.16)

Here, the function D represents a chosen distance metric, and the infimum is calculated
over the set of all incoherent states Fc. One can ascertain that the distance based
quantifier of coherence is a convex function [BCP14b]. The practical meaning of this
quantifier depends on the interpretation of the specific distance metric on the space of
density matrices.

4. Relative Entropy of Coherence: The relative entropy of coherence for a state ρ
is defined as [BCP14a]:

Cr(ρ) = min
σ∈I

S (ρ||σ) = S (∆[ρ]) − S (ρ), (1.17)

with the quantum relative entropy S (ρ||σ) = Tr[ρ log ρ] − Tr[ρ logσ]. As we see, the
relative entropy of coherence for the state ρ coincides with the distallable coherence of
ρ.
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7 1.4. QUANTUM RESOURCE THEORY OF ENTANGLEMENT

1.4 Quantum Resource Theory of Entanglement

The resource theory of bipartite entanglement deals with scenarios where two spatially
separated parties can only perform local quantum operations and communicate with
each other classically [Sha19, CLM+14]. The operations permitted in this context are
collectively referred to as local operations and classical communication (LOCC). Local
operations involve quantum manipulations that each party can carry out independently
on their subsystem [Sha19, CLM+14]. Classical communication allows the parties
to exchange information through classical means, enabling them to coordinate their
actions but not perform quantum operations remotely [Sha19, CLM+14].

A precise definition of LOCC operations, which we will adopt, is provided as fol-
lows [Sha19, CLM+14].

Definition 1.6. A one-round LOCC protocol, denoted as LOCC1, is a quantum op-
eration represented by an instrument Ex, where the individual maps Ex are trace-non-
increasing completely positive maps (CPMs) that remain local for all measurement
outcomes x. In other words, each Ex decomposes into a tensor product

⊗
j(Ex j), and

there exists a site j = K such that only at K the map EK
x is not trace-preserving. This

implies that the instrument can be executed by the party at site K applying the local
instrument {EK

x } and sharing the classical result x with all other parties, who then each
perform (based on x) trace-preserving (deterministic) local quantum operations T j

x .

Note that LOCCr are defined recursively as those operations that can be realized
by following up an operation LOCCr−1 with a LOCC1 operation. One can prove that
the set of LOCC is a convex set [Sha19, CLM+14]. We refer to the thesis [CLM+14]
for a detailed study of the set of LOCC operations. Another important element of
the entanglement theory is the set of separable operations which is defined as follows
[Sha19, CLM+14].

Definition 1.7. In quantum information theory, a quantum state ρ is called separable
if it can be written as a mixture of product states. More precisely,

a quantum state ρ on a composite Hilbert spaceHA ⊗ HB is said to be separable if
there exists a probability distribution {pi} and a set of pure product states {|ψi⟩A ⊗ |φi⟩B}

such that:

ρ =
∑

i

pi (|ψi⟩A⟨ψi| ⊗ |φi⟩B⟨φi|) , (1.18)

We have the Horodecki criterion regarding the separability of multipartite quantum
states [CLM+14].

Theorem 1.2. Any separable state is positive under partial transposition. The pure
state |ψ⟩ is separable if and only if it is positive under partial transposition.

7



8 CHAPTER 1. INTRODUCTION

Now we are prepared to introduce the resource theory of entanglement [Sha19,
CLM+14].

Definition 1.8. The resource theory of multipartite entanglement with N number of
parties is the pair (SEP, LOCC) where SEP denotes the convex set of separable states.

It has been proved that the resource theory of bipartite entanglement for the parties
A and B with their Hilbert space’s dimension dA and dB respectively, does admit a set
of maximally entangled state as follow [CLM+14]:

|ψME⟩ =
1
√

d

d∑
i

eiφi |ii⟩ (1.19)

where d = min{dA, dB} and {|i⟩}di=1 is a set of d orthogonal states. Moreover, regarding
the state transformation in bipartite entanglement resource theory, we have the follow-
ing theorem.

Theorem 1.3. The bipartite pure state |ψ⟩AB can be transformed to the state |φ⟩AB by
LOCC if and only if |ψ⟩AB⟨ψ| ≻ |φ⟩AB⟨φ|.

In the following, we also discuss some of the important and useful entanglement
monotones.

1. Geometric Measure of Entanglement: For a pure n-partite state ψ = |ψ⟩⟨ψ|, the
multipartite geometric entanglement is defined as [Shi95, WG03, BL01, BNO02]

Eg(ψ) = 1 − max
φ∈SEP

|⟨φ|ψ⟩|2, (1.20)

For mixed states, the geometric entanglement is defined as [WG03]

Eg(ρ) = min
{pi,|ψi⟩}

∑
i

piEg(ψi), (1.21)

where the minimum is taken over all pure state decompositions of ρ such that
∑

i piψi =

ρ. As has been shown in [SKB10], Eg can also be expressed as

Eg(ρ) = 1 − max
σ∈SEP

F(ρ, σ) (1.22)

with the fidelity function F(ρ, σ) = (Tr
√
√
ρσ
√
ρ)2. The geometric entanglement is

zero for all separable states, and positive whenever the state is entangled. Moreover,
Eg does not increase under LOCC [WG03].

2. Robustness of Entanglement: Another entanglement monotone is the robust-
ness of entanglement Re(ρ) which for a given state ρ quantifies the minimal mixing
required to make the state a separable state. Formally speaking we have [Sha19,
CLM+14]:

Re(ρ) = min
σ
{s ≥ 0 |

ρ + sσ
1 + s

∈ SEP}. (1.23)
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9 1.5. QUANTUM SPEED LIMITS

3. Entanglement of Formation: Consider Alice and Bob possess m copies of the
state ρAB in which A(B) denotes the part of the system in the Alice’s (Bob’s) hand.
Through a LOCC protocol, they aim to convert these m copies into n singlets |Ψ−⟩ =
|01⟩−|10⟩
√

2
. This process is called entanglement distillation. Note that the process may

result in some error, but the error should approach zero as m → ∞. The distillable
entanglement of ρAB is the highest possible value of n/m as m goes to infinity. The
reverse process is called the entanglement dilution and the entanglement cost of ρAB is
defined as the smallest ratio n/m when n approaches infinity. We have the following
theorem in this regard [Sha19].

Theorem 1.4. The distillable entanglement and the entanglement cost of a bipartite
state |ψAB⟩ are both equal to S (ρA) in which ρA = TrB (|ψ⟩ ⟨ψ|AB).

Now, the entanglement of formation for the state ρAB, which is an entanglement
monotone, is defined as

E f (ρAB) = min
∑

i

piS (|ψi⟩AB) (1.24)

and the minimum is taken over all decompositions {pi, |ψi⟩AB}. This quantity is also
convex [Sha19].

4. Distance Based Entanglement: A distance-based approach to quantifying en-
tanglement, as described by [PV05], defines the entanglement of a quantum state ρ
as:

CD(ρ) = inf
σ∈SEP

D(ρ, σ), (1.25)

Here, the function D represents a chosen distance metric, and the infimum is calculated
over the set of all separable states SEP. One can ascertain that the distance based
quantifier of entanglement is a convex function. The practical meaning of this quantifier
depends on the interpretation of the specific distance metric on the space of density
matrices.

In the next section we will have a brief review of quantum speed limits for the state
transformations in quantum systems.

1.5 Quantum Speed Limits

In the canonical quantization formalism of quantum mechanics, we attribute to the
observables position x and momentum p, the corresponding operators x̂ and p̂ respec-
tively, with the following commutation relation [DC17]:

[x̂, p̂] = iℏ. (1.26)

9
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Due to this commutation relation, one can see that for any state in the position-momentum
Hilbert space, we must have [DC17]:

∆x∆p ≥ ℏ (1.27)

which reflects the fact that the position and momentum of the corresponding particle
cannot be measured simultaneously. Continuing this argument, one might conduct the
following rough calculations:

∆t ≈
∆x
v

(1.28)

and

∆E ≈
∂E
∂p
∆p = v∆p (1.29)

in which v is the velocity of the particle. These calculations lead us to the following
uncertainty relation [DC17]:

∆t∆E ≥ ℏ. (1.30)

However, the interpretation of the recent relation is not very clear. Mandelstam and
Tamm realized that this relation expresses a bound on the speed of an evolution by
Hamiltonian Ĥ with ∆Ĥ = ∆E [DC17]. They also, for the first time, proposed the
notion of speed limit in a quantum evolution [DC17].

The standard approach for determining quantum speed limits is to consider a quan-
tum state |ψ⟩ that evolves unitarily as U = e−iHt, transitioning into another state |φ⟩.
The goal is to find the minimal required time for the transition |ψ⟩ → |φ⟩, taking into
account the energy scale of the Hamiltonian H. In recent years, more generalized con-
cepts of quantum speed limit has been studied. The focus has expanded beyond unitary
transitions between quantum states to include quantum speed limits for open system
dynamics [dCEPH13, FSS19, TM21, TLM19, TSM+22]. Studies have also examined
the speed limits for the evolution of observables in the Heisenberg picture [MP21].

In the following, we review some of the important fundamental bounds for the
speed of evolution in quantum systems.

1. Mandelstam-Tamm Bound: The initial developments in this direction were fo-
cused on orthogonal states and are referred to as the Mandelstam-Tamm bound [MT45].
Considering a constrained variance of the the Hamiltonian Ĥ as (∆Eψ)2 = ⟨H2⟩ψ−⟨H⟩

2
ψ

with respect to the pure state |ψ⟩, the time duration of transforming |ψ⟩ to an orthogonal
state is bounded below by:

T⊥ ≥
π

2∆Eψ
, (1.31)

However, this lower bound can be made arbitrarily small even if the mean energy Eψ =

⟨H⟩ψ−E0 is bounded. To fix this issue Margolous and Levitin suggested another bound
dependent on Eψ [ML98].

10



11 1.5. QUANTUM SPEED LIMITS

2. Margolous-Levitin Bound: Considering a constrained mean energy as Eψ =

⟨H⟩ψ−E0 with respect ot the pure state |ψ⟩, Margolus and Levitin derived the following
bound for the transformation of |ψ⟩ to an orthogonal state [ML98],

T⊥ ≥
π

2Eψ
, (1.32)

with the mean energy Eψ = ⟨H⟩ψ − E0, and E0 is the ground state energy.

It is important to note that the speed limits given in equations (1.31) and (1.32) dif-
fer only in the choice of the energy scale. Comparing these bounds arises the apparent
paradox that there exist two independent minimal time of orthogonalization of the pure
state |ψ⟩. The following theorem fixes this issue [LT09].

Theorem 1.5. the unified bound

T⊥ ≥
π

2min{∆Eψ, Eψ}
(1.33)

is tight.

3. Generalized Bound: Generalized quantum speed limits have been presented for
transitions between mixed states ρ→ σ [LT09, PCC+16, CPBM18, SCMdC18] where

T (ρ→ σ) ≥
arccos F(ρ, σ)
min{∆Eρ, Eρ}.

(1.34)

4. Geometric Bounds: The bounds we have mentioned so far, are regarding the
unitary evolution of the system. However, there is a generalized geometric QSL that
encompasses the minimal time of transformation given by any evolution [PCC+16]:

L f (ρ0, ρτ) ≤ l f
γ(ρ0, ρτ) (1.35)

where L f (ρ0, ρτ) is the geodesic distance between ρ0 and ρτ with respect to the metric
g f and

l f
γ(ρ0, ρτ) =

∫
γ

ds =
∫ τ

0
dt

(
ds
dt

)
(1.36)

is the length of the path γ from ρ0 to ρτ with respect to the metric g f . If we parametrize
the state ρ(t) by the parameters {λµ}, we then can generally write:

l f
γ(ρ0, ρτ) =

∫ τ

0
dt

√√ r∑
µ,ν=1

gµν
dλµ

dt
dλν

dt
(1.37)

However, the bound is in a very general form and it is expressed in terms of integral
equations. Therefore it may be difficult to compute it for a given transformation.

In the next section, we present a brief introduction to the certification of quantum
devices for the purpose of designing a class of quantum circuits in chapter 6, taking
advantage of quantum resources to benchmark a specific class of noises.

11
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1.6 Certifying and Benchmarking Quantum Devices

As quantum technologies advance, ensuring the reliability and performance of quan-
tum devices becomes crucial. Certification involves verifying that these devices op-
erate correctly and meet certain standards. This process is essential for both practical
applications and the advancement of quantum research. Certifying quantum devices
ensures that they function as intended and can be trusted in sensitive applications, such
as quantum computing, quantum communication, and quantum sensing [EHW+20].

1.6.1 Certification and Benchmarking Methods

Quantum devices manipulate quantum states through operations that must be precisely
controlled. Certification requires verifying that these states and operations adhere to
theoretical expectations [EHW+20]. A quantum state is represented by a vector in a
Hilbert space, and quantum operations are represented by unitary or non-unitary trans-
formations on these vectors. Quantum tomography is a technique used to reconstruct
the quantum state of a system based on measurement data. It provides a complete
description of the quantum state but can be resource-intensive, especially for large
systems. Fidelity measures quantify how close a quantum state or operation is to the
desired state or operation. High fidelity indicates that the device performs accurately.
For instance, the function F(ρ, σ) (which has been defined previously after the equa-
tion 1.22) is a measure of fidelity between the two quantum states ρ and σ is. This
measure is crucial for assessing the quality of quantum gates and circuits. We have two
important ways of benchmarking the quantum devices.

1. Randomized Benchmarking: Randomized benchmarking is a method to assess
the average error rate of quantum gates by applying sequences of random gate oper-
ations and comparing the output to the expected result. It provides a scalable way
to evaluate device performance by averaging out specific errors and focusing on the
overall error rate of the gates [KLR+08].

2. Cross-Entropy Benchmarking: Used primarily in the context of quantum com-
puting, cross-entropy benchmarking involves running a quantum circuit on both a quan-
tum device and a classical simulator, and then comparing the probability distributions
of the outputs. This method is particularly useful for evaluating quantum processors de-
signed to perform complex computations that are hard to simulate classically [BIS+18].

We also introduce another measure called the diamond norm [Wil11] which is use-
ful in the context of quantum benchmark.

Diamond Norm: Let H be a Hilbert space and Φ : L(H) → L(H) is a quantum
channel on L(H). The diamond norm of Φ, denoted by ||Φ||⋄ is defined as below:

||Φ||⋄ = max
ρ∈L(H⊗H)

||IH ⊗ Φ(ρ)||1 (1.38)

12
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where IH is the identity channel on L(H).

The diamond norm can be used to quantify the performance for distinguishing two
quantum channels in a single-shot scenario. If an agent is randomly given one of the
two quantum channels Φ1 and Φ2 with the probabilities p and 1 − p respectively and
is allowed to apply it on only one state, then the maximal probability of success in
discriminating the channels is given by [Wil11]

psuccess =
1
2
+

1
2
||pφ1 + (1 − p)Φ2||⋄. (1.39)

1.6.2 Challenges

As quantum systems grow, the complexity of certification increases exponentially.
Techniques like quantum tomography become impractical for large systems due to the
sheer number of measurements required. For example, the number of measurements
needed for full-state tomography scales exponentially with the number of qubits, mak-
ing it unfeasible for systems with more than a few qubits [CPF+10].

Furthermore, Quantum devices are susceptible to various types of noise and errors,
which can complicate the certification process. Isolating and identifying these errors is
a major challenge. Errors can arise from imperfect gate operations, decoherence, and
environmental interactions, all of which need to be accounted for during certification
[Pre18].

1.6.3 Recent Advances

Self-testing is an approach where the device’s outputs are used to certify its perfor-
mance, reducing the need for external references. This method leverages the concept
of device independence, where the correctness of the device is inferred from the cor-
relations in its outputs, assuming minimal assumptions about the internal workings of
the device [MV21].

Machine learning algorithms are being explored to analyze measurement data and
identify errors more efficiently. These techniques can potentially automate parts of the
certification process. For example, neural networks can be trained to recognize patterns
in the measurement data that indicate specific types of errors, thus streamlining the
error identification process [DPM+23].

New protocols are being developed to certify large-scale quantum devices without
exhaustive measurements. These protocols leverage statistical methods and innovative
experimental designs. For instance, compressed sensing techniques can be used to
reconstruct high-dimensional quantum states from a smaller number of measurements
by exploiting the sparsity of the state in a certain basis [FGLE12].

13



14 CHAPTER 1. INTRODUCTION

While challenges remain, ongoing research and innovative approaches are paving
the way for reliable and scalable certification methods. As quantum devices become
more sophisticated, robust certification will be vital to harnessing the full potential of
quantum technology. The development of efficient, scalable, and accurate certifica-
tion techniques will play a pivotal role in the advancement and commercialization of
quantum technologies.
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Chapter 2

Quantum Speed Limits for
Change of Basis and Resource
Generation

In the pursuit of quantum advantages, such as faster computation, researchers have
encountered a fundamental limitation imposed by nature. This limitation arises from
the minimum time required for the unitary evolution of an initial quantum state to
reach a final quantum state. The existence of this minimal time was first discussed
in [MT45, ML98]. In a geometric perspective [JK10, Zwi12, PCC+16, CPBM18], the
quantum speed limit is related to the shortest path length between the initial and fi-
nal quantum states, quantified using an appropriate distance measure as discussed in
the previous chapter. This approach offers valuable insights into the fundamental con-
straints of quantum processes and has been the focus of recent investigations [DC17].
The conventional approach to quantum speed limits involves considering a quantum
state |ψ⟩ that undergoes a unitary evolution U = e−iHt to transform into another state
|φ⟩. The objective is to find the optimal evolution time for the transition |ψ⟩ → |φ⟩
concerning the energy scale of the Hamiltonian H. For instance. in the early works by
Mandelstam and Tamm [MT45] and Margolus and Levitin [ML98], the focus was on
the speed limit for unitary transitions between two pure quantum states. However, in
more recent years, researchers have developed more generalized versions of the speed
limit. Indeed, the study of quantum speed limits has expanded beyond unitary tran-
sitions between quantum states. Researchers have explored quantum speed limits for
open system dynamics [dCEPH13, FSS19, TM21, TLM19, TSM+22], as well as speed
limits for the evolution of observables in the Heisenberg picture [MP21]. Additionally,
there has been an investigation into speed limits for systems with a bounded energy
spectrum [NAS22]. In a recent work [dC21], a theoretical approach has been intro-
duced to measure quantum speed limits in an ultracold gas. Indeed, the exploration of
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speed limits extends to various aspects of generating quantum resources. For instance,
studies have been conducted to determine optimal rates for generating quantum en-
tanglement [HHHH09b], quantum coherence [SAP17, MDP22], and quantum discord
[MBC+12, Str15]. A recent study [BDLR21] utilized the concept of a speed limit to
distinguish unitary channels by leveraging the characteristics of the diamond norm.

Earlier approaches to the concept of speed limits have primarily dealt with the
transformation of one quantum state to another. In this chapter, we propose a new per-
spective by constructing a novel and well-defined notion of speed limit within the space
of quantum state bases instead of focusing on the space of the states themselves. Ad-
ditionally, we establish theorems and bounds for the minimal time needed to transform
one basis into another.

2.1 Notion of Speed Limit for Change of Basis

In the previous studies, the focus was on the speed limit for transforming one quan-
tum state into another. However, many quantum technological applications involve
transformations of an entire collections of states. A prominent example is quantum
computation, where operations like changing the basis are common, such as apply-
ing the Hadamard gate. The Hadamard gate transforms the computational qubit basis
|0⟩ , |1⟩ into the |+⟩ , |−⟩ basis and |±⟩ = (|0⟩ ± |1⟩)/

√
2. These collective transforma-

tions are crucial for performing various quantum algorithms and tasks. In this chapter,
we aim to address the fundamental speed limits that apply to basis transformations.
Specifically, we investigate bounds on the time required to transform an ordered set
of quantum states to another ordered set of quantum states [NMB+24]. Our analysis
considers the minimization of this transformation time over all possible Hamiltonians
governing the dynamics of the quantum system [NMB+24]. Following the spirit of the
Margolus-Levitin bound (1.32), our objective is to derive quantum speed limits in the
form of [NMB+24]:

T (|ψ j⟩ → |φ j⟩) ≥
g
E
. (2.1)

Here {|ψ j⟩}, {|φ j⟩} are two ordered sets of orthonormal basis states, with j = 1, ..., d,
where d is the dimension of the Hilbert space, and g can in general depend on the
overlap of the two bases {|ψ j⟩} and {|φ j⟩} i.e. |⟨φi|ψi⟩|. In Eq. (2.1), the term E refers
to a notion of energy that is determined by the Hamiltonian. It should be noted that
E must not depend on individual states (like Eψ), as this would not make sense when
discussing the simultaneous transition involving an entire set of basis states [NMB+24].
Additionally, it’s essential to recognize that the concept of a speed limit, whether in
classical or quantum context, becomes irrelevant without imposing energy constraints.
With access to unlimited energy, state transformations could theoretically be completed
in any arbitrarily small time span [NMB+24].

Since E represents some notion of energy, we expect it to satisfy the following
properties [NMB+24]:
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17 2.1. NOTION OF SPEED LIMIT FOR CHANGE OF BASIS

1. E is independent on the particular choice of basis {|ψ j⟩}.

2. E is additive for non-interactive Hamiltonians of the form HAB = HA ⊗ IB + IA ⊗
HB:

EAB = EA + EB, (2.2)

where EA and EB represent the values of the function E associated with HA and
HB, respectively.

Considering the introduced concepts, we present the following general theorem
concerning the transformation of two arbitrary bases [NMB+24].

Theorem 2.1. If we have a speed limit of the form

T (|ψ j⟩ → |φ j⟩) ≥
g
E

(2.3)

for two complete orthonormal bases {|ψ j⟩} and {|φ j⟩}, we can immediately establish a
speed limit for transforming {|φ j⟩} to any basis that can be obtained from {|φ j⟩} via the
unitary transformation V =

∑
j eiα j |ψ j⟩⟨ψ j| as follows:

T (|ψ j⟩ → V |φ j⟩) ≥
g
E

(2.4)

where α j are some phases. Additionally, the speed limit (2.4) is tight whenever Eq. (2.3)
is tight.

Proof. [NMB+24] To prove this theorem, let’s consider a Hamiltonian H such that

e−iHt |ψ j⟩ = |φ j⟩ . (2.5)

In this case, the Hamiltonian H′ = VHV† achieves the transformation e−iH′t |ψ j⟩ =

e−iα j V |φ j⟩. Indeed, this can be seen by using the expression e−iH′t = Ve−iHtV† and
substituting into e−iHt |ψ j⟩ = |φ j⟩ (we get e−iH′t |ψ j⟩ = Ve−iHtV† |ψ j⟩ = e−iα j V |φ j⟩).
Since H and H′ have the same value of the function E which is unitary invariant and
g is only a function of the overlap |⟨ψi|φi⟩|, the speed limit (2.3) for the transformation
e−iHt |ψ j⟩ = |φ j⟩ implies the speed limit (2.4) for any unitary V that is diagonal in the
{|ψ j⟩} basis as |⟨ψ j|Vφ j⟩| = |⟨ψ j|φ j⟩|. Moreover, the speed limit (2.4) is tight for all
diagonal unitaries V whenever Eq. (2.3) is tight for the same reason. □

A natural selection for E that meets the requirements (i) and (ii) is [NMB+24]:

E =
1
d

∑
j

⟨ψ j|H|ψ j⟩ − E0, (2.6)

The choice of E is naturally analogous to the mean energy of Hamiltonian with respect
to the evolving state, i.e. Eψ, in the Margolus-Levitin bound (1.32), as both incorporate
the concept of a mean, though they represent different quantities [NMB+24]. From
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this point forward, we regard E as the quantity defined by Eq. 2.6 and refer to it as the
”mean energy” of the corresponding Hamiltonian. It is also worth to note that the mean
energy (2.6) is equivalent to E = Tr[H/d] − E0 [NMB+24].

In the following, we will soon explore interesting cases involving speed limits,
focusing on the transformation of a basis to an unbiased one as well as the permu-
tation of bases. In addition to examining the speed limits for basis change, we also
investigate the maximum coherence that can be generated within a given time frame
using a Hamiltonian with mean energy E. Specifically, we examine the maximum
coherence that can be established within a certain time. These findings are of great
significance in the resource theory of quantum coherence [BCP14b, WY16, SAP17].
They become even more relevant as recent studies suggest that quantum coherence is
better suited than entanglement to characterize the efficiency of certain quantum algo-
rithms [MEKP16b, ATE+22a, NKG+22].

2.2 Speed Limits for Pure States

Consider a Hamiltonian H of dimension d with eigenvalues Ei and corresponding
eigenstates |Ei⟩. Without compromising the generality, let us assume that the eigen-
values are arranged in the ascending order, such that Emax = Ed−1 and Emin = E0.

Let’s consider an initial state |ψ⟩ that evolves over a time interval 0 ≤ t ≤ π/Egap,
where Egap = Emax − Emin represents the energy gap of the Hamiltonian.

In the following our focus is to determine the smallest possible overlap between the
initial state |ψ⟩ and the state |ψt⟩ evolved in time, given by |ψt⟩ = e−iHt |ψ⟩.

Fmin = min
|ψ⟩
|⟨ψ|e−iHt |ψ⟩|, (2.7)

minimized over all initial states |ψ⟩ [NMB+24].

Theorem 2.2. For a given Hamiltonian H and within the range of evolution time 0 ≤
t ≤ π/Egap, we have the following:

Fmin = |⟨ψmin|e−iHt |ψmin⟩| =
1
2
|e−iEgapt + 1| (2.8)

with |ψmin⟩ =
1
√

2
(|E0⟩ + |Ed−1⟩).

Proof. [NMB+24] By expressing the initial state in the eigenbasis of the Hamilto-
nian as |ψ⟩ =

∑
j c j |E j⟩ with complex coefficients c j, we can represent the overlap

|⟨ψ|e−iHt |ψ⟩| as:
|⟨ψ|e−iHt |ψ⟩| = |

∑
j

|c j|
2e−iE jt |. (2.9)

18
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Considering that the coefficients c j satisfy the normalization condition
∑

j |c j|
2 = 1, we

can express our figure of merit in the following manner:

Fmin = min
|ψ⟩
|⟨ψ|e−iHt |ψ⟩| = min

{p j}
|
∑

j

p je−iE jt |. (2.10)

Here, the minimum value on the right-hand side is determined by considering all po-
tential probability distributions p j. Emphasizing that Egapt ≤ π, it is straightforward to
see that the minimum is realized by employing the following specific choice of p j:

p j =

 1
2 for j = 0 and j = d − 1,
0 for 0 < j < d − 1.

(2.11)

This implies that the optimal state |ψmin⟩ for achieving the minimum overlap |⟨ψ|e−iHt |ψ⟩|
can be selected as:

|ψmin⟩ =
1
√

2
(|E0⟩ + |Ed−1⟩), (2.12)

as claimed. Lastly, we can straightforwardly confirm that:

|⟨ψmin|e−iHt |ψmin⟩| =
1
2
|e−iEgapt + 1| (2.13)

which concludes the proof of the theorem. □

Interestingly, Fmin is independent of the specific structure of the Hamiltonian, rely-
ing solely on the energy gap between its largest and smallest eigenvalues, Egap.

Next, we will apply this result to establish a bound on the evolution time between
pure states [NMB+24].

Theorem 2.3. The evolution time required to transform a pure state |ψ0⟩ into another
state |ψ1⟩ through unitary evolution U = e−iHt is constrained by the following bound:

T (|ψ0⟩ → |ψ1⟩) ≥
1

Egap
arccos(2|⟨ψ0|ψ1⟩|

2 − 1). (2.14)

Proof. [NMB+24] If the states |ψ0⟩ and |ψ1⟩ satisfy the condition |ψ1⟩ = e−iHt |ψ0⟩ for
0 ≤ t ≤ π/Egap, then according to the theorem 2.2, we have:

|⟨ψ0|ψ1⟩|
2 ≥

1
4
|e−iEgapt + 1|2. (2.15)

This inequality can be equivalently rewritten as:

t ≥
1

Egap
arccos(2|⟨ψ0|ψ1⟩|

2 − 1). (2.16)

Alternatively, if |ψ0⟩ and |ψ1⟩ satisfy |ψ1⟩ = e−iHt |ψ0⟩ with t > π/Egap, the inequality
in Eq. (2.14) is trivially fulfilled, as arccos(x) ≤ π/2 for all non-negative x. Thus, the
theorem is proven. □
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Considering that Egap is bounded by dE, we readily deduce the subsequent theorem
[NMB+24].

Theorem 2.4. The lower bound for the time required to transform a pure state |ψ0⟩ into
another state |ψ1⟩ through unitary evolution U = e−iHt can be expressed as follows:

T (|ψ0⟩ → |ψ1⟩) ≥
1

dE
arccos(2|⟨ψ0|ψ1⟩|

2 − 1). (2.17)

Furthermore, it is important to note that for any pair of pure states |ψ0⟩ and |ψ1⟩,
there exists a Hamiltonian H that achieves the equality in the expression given by
Eq. (2.17) [NMB+24]. To illustrate this point, it’s worth noting that the inequality
expressed in Eq.(2.17) is tight when d = 2, as also evidenced by Eq.(2.33) [NMB+24].
Now, consider a Hamiltonian denoted as H = |φ⟩⟨φ| which attains the lower bound for
the case of d = 2. It’s noteworthy that under this circumstance, the mean energy eval-
uates to E = 1/2 [NMB+24]. Consequently, this implies that the chosen Hamiltonian
achieves the transformation |ψ0⟩ → |ψ1⟩ within a time interval of [NMB+24]

t = arccos(2|⟨ψ0|ψ1⟩|
2 − 1), (2.18)

which is the shortest possible time for E = 1/2. In the case of d > 2, we can employ the
same Hamiltonian H = |φ⟩⟨φ| to achieve the transformation within the same minimal
time as specified in Eq.(2.18) [NMB+24]. For this scenario, the mean energy becomes
E = 1/d, thereby fully saturating Eq.(2.17) [NMB+24].

2.3 Speed Limits for Unbiased Bases

In the following, we will derive the speed limits for transforming the computational
basis {|n⟩} into an unbiased basis {|n+⟩}, where |⟨n|n+⟩|2 = 1/d. Basis change refers
to the simultaneous conversion of all vectors in the initial basis to their corresponding
vectors in the target basis, as illustrated in Figure 2.1. For two arbitrary mutually
unbiased bases, we establish the following lemma [NMB+24].

Lemma 2.1. Suppose we have a unitary operator U = e−iHt that performs the transfor-
mation from the basis {|n⟩} to a maximally coherent basis {|n+⟩} of dimension d. Then
we have:

−
√

d ≤
∑

i

cos(Eit) ≤
√

d. (2.19)

where Ei are the eigenvalues of the Hamiltonian.

Proof. [NMB+24] Any unitary operator that accomplishes the desired transformation
must take the form:

U =
d−1∑
n=0

eiφn |n+⟩⟨n| (2.20)
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𝑡𝑚𝑖𝑛

𝑒−𝑖𝐻𝑡𝑚𝑖𝑛

  0 ,   1 ,   2 , …

  0+ ,   1+ ,   2+ , …

Figure 2.1: [NMB+24] Generating an unbiased basis {|n+⟩} is achieved by evolving
the computational basis {|n⟩} through a unitary process e−iHtmin . During this evolution,
every vector in the computational basis transitions to its corresponding vector in the
unbiased basis within a consistent time frame tmin. It’s important to highlight that tmin
is the same for all transformations |n⟩ → |n+⟩
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with some phases φn. We also have:

Tr[U + U†] =
d−1∑
n=0

(eiφn ⟨n|n+⟩ + e−iφn ⟨n+|n⟩). (2.21)

Noting that ⟨n|n+⟩ = eiγn/
√

d with some phases γn, we obtain the inequality:

−2
√

d ≤ Tr[U + U†] ≤ 2
√

d. (2.22)

Alternatively, if we recall that U = e−iHt with a corresponding Hamiltonian H, we can
rewrite the inequality as follows:

Tr[U + U†] = 2
∑

i

cos(Eit), (2.23)

where Ei are the eigenvalues of the Hamiltonian. In summary, in order for a unitary
transformation U = e−iHt to achieve the transformation |n⟩ → |n+⟩, it is necessary that
the following condition holds:

−
√

d ≤
∑

i

cos(Eit) ≤
√

d. (2.24)

□

2.3.1 Systems with the Hilbert Space of Dimension 2, 3 and 4

The bound for single-qubit systems in the case of transformation to an unbiased basis
is given by:

Tunbiased ≥
π

4E
, (2.25)

and it is tight for any unbiased qubit basis [NMB+24]. We will see the proof in the
following [NMB+24].

The general form of a single-qubit Hamiltonian is given by:

H = E+ |E+⟩⟨E+| + E− |E−⟩⟨E−| , (2.26)

where the eigenvalues E± and eigenstates |E±⟩ can be parametrized as [NMB+24]:

E± = G ± E, , , , , , |E±⟩⟨E±| =
1
2

(I ± n · σ). (2.27)

Here, G and E ≥ 0 are real numbers, n = (nx, ny, nz) is a normalized vector, and
σ = (σx, σy, σz) contains the three Pauli operators. The Hamiltonian (2.26) can be
rewritten in an equivalent form [NMB+24]:

H = (En · σ +GI). (2.28)

With these tools at our disposal, we can now introduce a bound for the evolution
time between any two single-qubit states [NMB+24].
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Theorem 2.5. The transformation time for converting a single-qubit state ρ0 into the
state ρ1 using unitary evolution U = e−iHt is subject to the following bound:

T (ρ0 → ρ1) ≥
1

2E
arccos(

r0 · r1

|r0||r1|
), (2.29)

where ri is the Bloch vector of the state ρi.

Proof. [NMB+24] It is important to observe that the unitary transformation U(t) =
e−iHt = e−iGte−iEtn·σ can be understood as a rotation by an angle 2Et around the axis n
of the Bloch sphere. The smallest value of Et is attained when selecting the rotation
axis n to be perpendicular to both Bloch vectors r0 and r1.

n =
r0 × r1

|r0 × r1|
, (2.30)

Et =
1
2

arccos(
r0 · r1

|r0||r1|
). (2.31)

This completes the proof. □

Noting that Tr[ρiρ j] = (1 + ri · r j)/2 we can reformulate Eq. (2.29) as follows
[NMB+24]:

T (ρ0 → ρ1) ≥
1

2E
arccos(

2Tr[ρ0ρ1] − 1√
(2Tr[ρ2

0] − 1)(2Tr[ρ2
1] − 1)

). (2.32)

The proof of Theorem 2.5 demonstrates that this bound is optimal, meaning that for
any pair of single qubit-states ρ0 and ρ1, there exists a Hamiltonian with a mean energy
E that reaches the limit specified in Eq. (2.32) [NMB+24]. For pure qubit states, we
obtain the tight bound:

T (|ψ0⟩ → |ψ1⟩) ≥
1

2E
arccos(2|⟨ψ0|ψ1⟩|

2 − 1). (2.33)

For single-qubit systems, whenever a unitary transformation converts |0⟩ into |+⟩ =
(|0⟩ + |1⟩)/

√
2, it will also convert |1⟩ into |−⟩ = (|0⟩ − |1⟩)/

√
2. Hence, for the tran-

sition from the computational basis {|0⟩ , |1⟩} to an unbiased qubit basis, we obtain
[NMB+24]:

Tunbiased ≥
π

4E
, (2.34)

as claimed.

As the dimension of the system increases (d > 2), one can intuitively expect that
the evolution time needed to transform into an unbiased basis will also increase in
comparison to the qubit setting. To further validate this intuition [NMB+24], let’s
consider a two-qubit system AB, and assume HA and HB are qubit Hamiltonians that
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efficiently transform the computational basis {|0⟩ , |1⟩} to the unbiased basis {|+⟩ , |−⟩}
within minimal times π/(4EA) and π/(4EB), respectively. If we set EA = EB, the
Hamiltonian HAB = HA ⊗ IB + IA ⊗ HB achieves the transformation

{|00⟩ , |01⟩ , |10⟩ , |11⟩} → {|++⟩ , |+−⟩ , |−+⟩ , |−−⟩} (2.35)

within time π/(4EA) = π/(2E), where E = 2EA is the mean energy of the total Hamilto-
nian HAB. Based on this argument [NMB+24], we observe that for a two-qubit system
with d = 4, achieving an unbiased basis requires a time interval of π/(2E), which is
longer compared to the single-qubit setup.

However, as we proceed, we will discover that this intuition is not correct [NMB+24].
To explore this further, we will first shift our focus to qutrit systems [NMB+24].

Lemma 2.2. A general unbiased qutrit basis can be achieved through a diagonal uni-
tary transformation:

V =
∑

j

eiα j | j⟩⟨ j| (2.36)

from one of the following two bases (denoted by {|n+⟩} and {|ñ+⟩}, respectively):

|0+⟩ =
1
√

3
(|0⟩ + ei 2

3 π |1⟩ + ei 4
3 π |2⟩), (2.37a)

|1+⟩ =
1
√

3
(|0⟩ + |1⟩ + |2⟩), (2.37b)

|2+⟩ =
1
√

3
(|0⟩ + e−i 2

3 π |1⟩ + e−i 4
3 π |2⟩), (2.37c)

and

|0̃+⟩ =
1
√

3
(|0⟩ + e−i 2

3 π |1⟩ + e−i 4
3 π |2⟩), (2.38a)

|1̃+⟩ =
1
√

3
(|0⟩ + |1⟩ + |2⟩), (2.38b)

|2̃+⟩ =
1
√

3
(|0⟩ + ei 2

3 π |1⟩ + ei 4
3 π |2⟩). (2.38c)

It is worth noting that these two class of basis states are odd permutations of each
other.

Proof. [NMB+24] An arbitrary unbiased basis (with respect to the computational ba-
sis) for a qutrit can be expressed, up to an overall phase for each basis element, as
follows:

|0+⟩ =
1
√

3
(|0⟩ + eiα0,1 |1⟩ + eiα0,2 |2⟩), (2.39a)

|1+⟩ =
1
√

3
(|0⟩ + eiα1,1 |1⟩ + eiα1,2 |2⟩), (2.39b)

|2+⟩ =
1
√

3
(|0⟩ + eiα2,1 |1⟩ + eiα2,2 |2⟩), (2.39c)
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where the phases αi, j need to fulfill the condition

1 + ei(αk,1−αl,1) + ei(αk,2−αl,2) = 3δk,l. (2.40)

This condition specifies that the form of the basis can be either:

|0+⟩ =
1
√

3
(|0⟩ + ei(α0,1+

2
3 π) |1⟩ + ei(α0,2+

4
3 π) |2⟩), (2.41a)

|1+⟩ =
1
√

3
(|0⟩ + eiα0,1 |1⟩ + eiα0,2 |2⟩), (2.41b)

|2+⟩ =
1
√

3
(|0⟩ + ei(α0,1−

2
3 π) |1⟩ + ei(α0,2−

4
3 π) |2⟩), (2.41c)

or

|0+⟩ =
1
√

3
(|0⟩ + ei(α0,1−

2
3 π) |1⟩ + ei(α0,2−

4
3 π) |2⟩), (2.42a)

|1+⟩ =
1
√

3
(|0⟩ + eiα0,1 |1⟩ + eiα0,2 |2⟩), (2.42b)

|2+⟩ =
1
√

3
(|0⟩ + ei(α0,1+

2
3 π) |1⟩ + ei(α0,2+

4
3 π) |2⟩). (2.42c)

If we now introduce the unbiased bases

|0+⟩ =
1
√

3
(|0⟩ + ei 2

3 π |1⟩ + ei 4
3 π |2⟩), (2.43a)

|1+⟩ =
1
√

3
(|0⟩ + |1⟩ + |2⟩), (2.43b)

|2+⟩ =
1
√

3
(|0⟩ + e−i 2

3 π |1⟩ + e−i 4
3 π |2⟩), (2.43c)

and

|0̃+⟩ =
1
√

3
(|0⟩ + e−i 2

3 π |1⟩ + e−i 4
3 π |2⟩), (2.44a)

|1̃+⟩ =
1
√

3
(|0⟩ + |1⟩ + |2⟩), (2.44b)

|2̃+⟩ =
1
√

3
(|0⟩ + ei 2

3 π |1⟩ + ei 4
3 π |2⟩), (2.44c)

We observe that any basis of the form (2.41) or (2.42) can be obtained from the
basis (2.43) or (2.44), respectively, by applying the diagonal unitary V = |0⟩⟨0| +
eiα0,1 |1⟩⟨1| + eiα0,2 |2⟩⟨2|. □

As a consequence, speed limits for the transitions |n⟩ → |n+⟩ and |n⟩ → |ñ+⟩ will
also apply to general unbiased qutrit bases |n⟩ → V |n+⟩ and |n⟩ → V |ñ+⟩ according
to Theorem 2.1, where V is a diagonal unitary in the initial basis [NMB+24]. Now, we
have the result stated below [NMB+24].
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Theorem 2.6. The time required to convert a qutrit basis to an unbiased basis is
bounded below as follows:

Tunbiased ≥
2π
9E

. (2.45)

Proof. [NMB+24] Our aim is to establish that for any unitary transformation U = e−iHt

resulting in the transition |n⟩ → |n+⟩, the inequality holds:

Et ≥
2
9
π. (2.46)

Given that Ei are in increasing order, we can observe that E ≥ E2−E0
3 . Hence, to

demonstrate Eq. (2.46), it is sufficient to prove:

(E2 − E0)t ≥
2
3
π. (2.47)

To prove this, we will assume the opposite, i.e., that the transformation is possible with
a unitary that violates Eq. (2.47). Violation of Eq. (2.47) implies that

(E1 − E0)t ≤
π

3
or (E2 − E1)t ≤

π

3
. (2.48)

Let us consider the scenario where (E1 − E0)t ≤ π/3. Without loss of generality, we
can set E0t = −π/6, which leads to the following inequalities:

(|E1t)| ≤
π

6
, E2t <

π

2
. (2.49)

It follows that ∑
i

cos(Eit) > 2 cos(
π

6
), (2.50)

which is a contradiction to Eq. (2.19). For the remaining case (E2−E1)t ≤ π/3, we can
similarly choose E2t = π/6, which yields the following inequalities:

|E1t| ≤
π

6
, E0t > −

π

2
. (2.51)

Also in this case we obtain the inequality (2.50), in contradiction to Eq. (2.19). The
proof of the bound (2.46) is now complete. Additionally, since the methods presented
above apply to any qutrit basis that is unbiased with respect to the computational basis,
this completes the proof of Theorem 2.6. □

After establishing a speed limit for basis change, a natural question arises: Is this
bound tight? In other words, do there exist Hamiltonians H with mean energy E that
saturate the bound (2.45) for any unbiased basis? To answer this question, we refer
back to the definitions of the unbiased bases {|n+⟩} and {|ñ+⟩} in Eqs.(2.37) and(2.38).
The following proposition addresses this matter [NMB+24].
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Theorem 2.7. The speed limit (2.45) is tight for the basis {|n+⟩}, but not tight for basis
{|ñ+⟩}.

Proof. [NMB+24] By the Theorem 2.6, the transition into the bases (2.43) and (2.44)
can be described by the subsequent inequalities:

T ({|n⟩} → {|n+⟩}) ≥
2π
9E

, (2.52a)

T ({|n⟩} → {|ñ+⟩}) ≥
2π
9E

. (2.52b)

As can be checked by inspection, Eq. (2.52a) is saturated for the basis (2.43) by the
Hamiltonian H = |α⟩⟨α| with

|α⟩ =
1
√

3
(|0⟩ + e−i 2

3 π |1⟩ + |2⟩). (2.53)

We shall demonstrate the strictness of the inequality (2.52b) for the basis (2.44). In
other words, there does not exist an evolution e−iHt that does the transformation |n⟩)→
|ñ+⟩ within the time t = 2π/(9E). Let us assume, through a proof by contradiction, that
the bound is saturated for a certain unitary transformation denoted as U = e−iHt:

|ñ+⟩ = e−iHt |n⟩ , t =
2π
9E

. (2.54)

Given that the energies Ei are arranged in the descending order, and based on the rea-
soning presented in the proof of Theorem 2.6, it necessarily follows that:

E1 = E0, (E2 − E0)t =
2
3
π. (2.55)

Without loss of generality we can choose

E0t = E1t = −
π

6
, E2t =

π

2
. (2.56)

To summarize the presented arguments, there exists a unitary transformation U = e−iHt

that satisfies Eq. (2.54) and possesses the following eigenvalues:

λ0 = λ1 = ei π6 , λ2 = e−i π2 , (2.57)

Consequently, it follows that this unitary transformation fulfills the equation:

Tr[U + U†] = 2
√

3. (2.58)

Furthermore, the unitary transformation can also be expressed in the form:

U =
2∑

n=0

eiφn |ñ+⟩⟨n| , (2.59)
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Figure 2.2: [NMB+24] We conduct a numerical assessment of Equation (2.64) by
executing 106 samplings of unitaries in the form described by Equation (2.65), with
random phases ranging from 0 to 2π. Subsequently, we compute Et utilizing Equation
(2.6). The resulting plot illustrates the probability distribution as a function of Et. Our
numerical analysis yields a lower bound of Et ≥ 4

9π + ε, where ε ≤ 10−5 in good
agreement with the Equation (2.64).

where φn represents certain phases associated with each term. We find that

Tr[U + U†] =
2
√

3
(cosφ0 + cosφ1)

−
1
√

3
cosφ2 + sinφ2. (2.60)

Together with Eq. (2.58) we obtain

2
√

3
(cosφ0 + cosφ1) −

1
√

3
cosφ2 + sinφ2 = 2

√
3. (2.61)

This equation has a unique solution within the range 0 ≤ φi ≤ 2π, and it is given by:

φ0 = φ1 = 0, φ2 =
2
3
π. (2.62)

This implies that the eigenvalues of U must be

µ0 = µ1 = e−i π6 , µ2 = ei π2 , (2.63)

which is a contradiction to Eq. (2.57). This completes the proof of the proposition. □

The findings presented indicate the existence of two separate classes of unbiased
bases for qutrits [NMB+24]: Bases of the form {V |n+⟩} can be acquired from the com-
putational basis at time T = 2π/9E, whereas bases of the form {V |ñ+⟩} require an
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evolution time T > 2π/9E, where V is an arbitrary diagonal unitary in the basis {|n⟩}.
For the second class {V |ñ+⟩}, there is numerical evidence suggesting that a tight speed
limit is given by [NMB+24]:

T ({|n⟩} → {|ñ+⟩}) ≥
4π
9E

. (2.64)

To gain insight into this, consider that any unitary transformation enabling the transition
|n⟩ → |ñ+⟩ must exhibit the following structure:

U =
2∑

n=0

eiφn |ñ+⟩⟨n| (2.65)

with some phases φn. Consider λ j = e−iα j as the eigenvalues of U, where the phases α j

are arranged in ascending order, satisfying the condition −π ≤ α j ≤ π. Given a specific
collection of these phases α j, there exists a corresponding Hamiltonian that realizes the
unitary operator U = e−iHt with [NMB+24]:

E jt = α j or E jt = α j + 2π, (2.66)

where E j are the eigenvalues of H. Subsequently, the mean energy of the Hamiltonian
obtained through numerical analysis satisfies the following [NMB+24]:

Et =
1
3

∑
j

E jt − E0t. (2.67)

Utilizing these findings, we are able to assess the validity of Eq.(2.64) by conducting
numerical experiments. This involves randomly sampling phases within the range of
0 ≤ φn ≤ 2π and then calculating Et using Eq.(2.67) [NMB+24]. By selecting E jt as
specified in Eq. (2.66), we ensure that the numerical Hamiltonians obtained through
this procedure encompass those with the lowest possible value of Et [NMB+24]. In
Fig. 2.2, the numerical probabilities are depicted, representing the likelihood of attain-
ing specific values of Et over 106 samples. Notably, the minimum nonzero probability
of Et is observed to be approximately 1.4 [NMB+24]. Based on the numerical out-
comes, a lower limit for Et is suggested as follows [NMB+24]:

Et ≥
4
9
π + ε, (2.68)

Here, ε is constrained by numerical analysis, yielding an upper bound of ε ≤ 10−5,
which is notably consistent with the expression in Eq.(2.64). A Hamiltonian that satu-
rates the bound specified in Eq.(2.64) is described by H̃ = − |α̃⟩⟨α̃|, where [NMB+24]:

|α̃⟩ =
1
√

3
(|0⟩ + ei 2

3 π |1⟩ + |2⟩). (2.69)

A straightforward juxtaposition of Theorem 2.6 with the analogous qubit bound
(2.25) reveals that achieving an unbiased qutrit basis demands a shorter duration, in
comparison to realizing an unbiased qubit basis for the identical mean energy E [NMB+24].
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In the subsequent discussion, we will delineate the primary distinctions between
the qubit and qutrit scenarios.

When a single-qubit unitary transformation U = e−iHt is considered optimal for
rotating the basis {|0⟩ , |1⟩} into an unbiased basis, it follows that the unitary U2 =

e−2iHt rearranges the constituent elements of the basis {|0⟩ , |1⟩} [NMB+24]. However,
the situation differs when considering qutrits. Notably, it’s worth recognizing that an
optimal Hamiltonian for effecting the qutrit transition |n+⟩ = e−iHt |n⟩ takes the form of
H = |α⟩⟨α|. Regarding this Hamiltonian, it is possible to calculate the fidelity between
the initial state |0⟩ and the state that evolves in time as e−iHt |0⟩ [NMB+24]:

|⟨0|e−iHt |0⟩|2 =
1
9

[5 + 4 cos(t)]. (2.70)

It’s important to highlight that the right-hand side of Eq. (2.70) is always nonzero.
This implies that the evolution never causes the interchange of |0⟩ with any other basis
element, and analogous arguments can be applied to the states |1⟩ and |2⟩ [NMB+24].

In addition, when the basis {|0⟩ , |1⟩} are permuted by the single-qubit unitary U,
an interesting observation is that the operation

√
U invariably causes a rotation of the

{|0⟩ , |1⟩} basis into an unbiased one [NMB+24]. However, this scenario changes in the
qutrit context, as can be easily ascertained. A counterexample can be observed through
the permutation U =

∑2
n=0 |(n + 1) mod 3⟩⟨n|. We further obtain

√
U =

1
3

 2 −1 2
2 2 −1
−1 2 2

 , (2.71)

As a result,
√

U |n⟩ fails to represent a maximally coherent state for any 0 ≤ n ≤
2. Furthermore, a direct examination reveals that U1/3 similarly does not yield the
transformation of any |n⟩ state into a maximally coherent state [NMB+24].

Up to this point, our analysis has encompassed systems of dimensions 2 and 3.
Moving ahead, we will take a further stride by determining the minimum evolution
time required to establish an unbiased basis for two-qubit systems [NMB+24].

Theorem 2.8. The lower bound on the time required to establish an unbiased basis for
a two-qubit system is given by:

Tunbiased ≥
π

4E
. (2.72)

There exists a two-qubit Hamiltonian achieving this bound.

Notably, this constraint remains identical to the one observed in single-qubit sys-
tems, as indicated by Eq.(2.25). The specific Hamiltonian that reaches the limit out-
lined in Eq.(2.72) is formulated as follows [NMB+24]:

H = −σx ⊗ σz + σy ⊗ σy − σz ⊗ σx. (2.73)
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The eigenvalues associated with this Hamiltonian are 3, −1, −1, −1, consequently
yielding a mean energy of E = 1 for H.

Proof. [NMB+24] Let’s establish the theorem by contradiction, supposing the exis-
tence of a unitary operator U = e−iHt that transforms the set |n⟩ into a maximally
coherent basis, such that:

Et <
π

4
. (2.74)

We can make the assumption, without loss of generality, that E0 = 0, leading to the
conclusion that E = (E1 + E2 + E3)/4. Let’s proceed by defining αi = Eit. It’s
worth noting that π > αi ≥ 0. With reference to Eq. (2.74), we can deduce that
α3 < π − α1 − α2, leading to the following implication:

cos(α3) > cos(π − α1 − α2) = − cos(α1 + α2). (2.75)

It follows that

cos(α1) + cos(α2) + cos(α3) > cos(α1) + cos(α2) (2.76)
− cos(α1 + α2).

Let’s now delve into a more detailed examination of the right-hand side of Eq. (2.76),
introducing the following definition:

f (α) = cos(α1) + cos(α2) − cos(α1 + α2). (2.77)

Particularly, our aim is to demonstrate the validity of f (α) ≥ 1 in cases where:

αi ≥ 0, (2.78a)
α1 + α2 ≤ π. (2.78b)

To achieve this, we calculate the partial derivatives of f with respect to αi:

∂ f
∂α1
= sin(α1 + α2) − sin(α1), (2.79)

∂ f
∂α2
= sin(α1 + α2) − sin(α2). (2.80)

To identify local extrema of f , we equate ∂ f /∂αi to zero, resulting in sin(α1) = sin(α2).
This equation implies that either α1 = α2, or α1 = π − α2. When considering the
condition α1 = α2, we derive sin(2α2) = sin(α2), leading to the following solutions:

α1 = α2 = 0, (2.81a)

α1 = α2 =
π

3
. (2.81b)

Conversely, when examining the condition α1 = π − α2 along with ∂ f /∂αi = 0, we
arrive at sin(α1) = sin(α2) = 0, yielding the following solutions:

α1 = 0, α2 = π, (2.82a)
α1 = π, α2 = 0. (2.82b)
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To establish the inequality f (α) ≥ 1, we assess f (α) at the extrema given by (2.81)
and (2.82), as well as at the boundary of the region delineated by Eqs. (2.78). Upon
substituting the solutions (2.81), we deduce f (α) = 1 and f (α) = 3/2, correspondingly.
Furthermore, when we plug in the solutions (2.82), we find that f (α) = 1.

The task that remains is to establish that f (α) ≥ 1 at the boundary of the region de-
fined by Eqs. (2.78). When considering a particular value of α1 ∈ [0, π], this boundary
is realized either when α2 = 0 or α2 = π − α1.

Upon closer examination, it becomes evident that f (α) = 1 in both of these cases.
In summation, this analysis conclusively demonstrates that the inequality f (α) ≥ 1
remains valid throughout the region defined by (2.78).

Summing up the presented reasoning, we can deduce that Eq.(2.74) implies that
there exists a unitary transformation U = e−iHt that accomplishes the transformation
|n⟩ → |n+⟩ while satisfying

∑
i cos(Eit) > 2. This directly contradicts the assertion

made in Eq.(2.19). As a result, this concludes the proof of the lower bound (2.72). □

It’s worth noting that even though the Hamiltonian H accomplishes the transfor-
mation with the least possible time, its interactive nature might introduce practical
challenges and costs for its realization [NMB+24].

Taking t = π/4, we proceed to define the unitary operator U = e−itH . The exertion
of this unitary on the computational basis of two qubits unfolds as follows:

U(|0⟩ |0⟩) = eiπ/4 |+⟩ |+⟩ , (2.83a)

U(|0⟩ |1⟩) = eiπ/4 |−⟩ |+⟩ , (2.83b)

U(|1⟩ |0⟩) = eiπ/4 |+⟩ |−⟩ , (2.83c)

U(|1⟩ |1⟩) = eiπ/4 |−⟩ |−⟩ . (2.83d)

The Hamiltonian specified in Eq. (2.73) effectively facilitates the transformation of a
two-qubit basis into an unbiased over a duration of π/(4E).

The findings presented thus far underscore a noteworthy observation: the optimal
time required for a transformation onto an unbiased basis remains the same for both
single-qubit and two-qubit systems, standing at π/(4E) in both instances. However, in
the case of a qutrit system, this optimal time is further reduced to 2π/(9E) [NMB+24].

In the following sections, we investigate the speed limits pro regarding transfoma-
tion of a basis in the Hilbert space of arbitrary dimensions to an unbiased one.

2.3.2 Arbitrary Number of Qubits

We are about to broaden our analysis to encompass many-qubit systems. In doing so,
we will show a universal threshold applicable to n-qubit systems, enabling the estab-
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lishment of an unbiased basis within a finite duration [NMB+24].

Theorem 2.9. In the systems comprised of n qubits, the minimum time required to
establish an unbiased basis is constrained from above by:

Tunbiased ≤
π

2E
. (2.84)

Proof. [NMB+24] Consider the Hamiltonian Hn operating on n qubits:

Hn = V⊗n, (2.85)

where V denotes the Hadamard gate. Notably, the mean energy associated with Hn is
established at E = 1. Next, we introduce the unitary operator Un(t) = e−iHnt. Utilizing
the property H2

n = I, we deduce that:

Un(t) = cos(t)I − i sin(t)Hn. (2.86)

For t = π/2 we obtain
Un(π/2) = −iV⊗n. (2.87)

As a result of this unitary transformation, the computational basis of n qubits is con-
verted into an unbiased basis, thereby concluding the proof. □

Theorem 2.9 provides evidence that an unbiased basis for n qubits can be estab-
lished in a time frame of π/(2E). This was concretely demonstrated by presenting a
Hamiltonian that introduces interactions among all the qubits. In scenarios lacking
interactions, that is, when each qubit evolves independently, the optimal time for evo-
lution is determined as nπ/(4E) [NMB+24].

2.3.3 Systems with the Hilbert Space of Dimension 5 and 6

Upon contrasting the outcomes regarding the minimal transformation time Tunbiased re-
quired to transition a basis into an unbiased configuration within Hilbert spaces of
dimensions d = 2, d = 3, and d = 4, one might be inclined to perceive a potential pat-
tern. This pattern could suggest that for the subsequent prime number in the sequence,
namely d = 5, the minimal transformation time might experience a reduction. How-
ever, we are now poised to demonstrate that this intuitive pattern is in fact erroneous.
In the case of a dimension d = 5, we must have:

Tunbiased ≥
π

4E
(2.88)

where π
4 serves as the minimal time Tunbiased for d = 2 and d = 4 [NMB+24]. To sub-

stantiate this, let’s begin by supposing the existence of a Hamiltonian H characterized
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by the eigenenergies {Ei}
5
i=1 and the mean energy E, such that the unitary e−iHT can

achieve the basis transformation in the time interval:

T ≤
π

4E
. (2.89)

Then we must have
∑5

i=1 EiT ≡
∑5

i=1 αi ≤ π + π/4. For the sake of simplicity, let’s
consider without loss of generality that the minimum eigenenergy of H is Emin = 0. By
minimizing the function

f (α) =
5∑

j=1

cosαi, (2.90)

while considering the constraint 0 ≤
∑5

i=1 αi ≤ π + π/4, we determine that min f =
1 + 4 cos 5π

16 ≈ 3.22. This outcome contradicts the previously established result. This
is because, as per Eq. 2.19, the upper limit of the function f (α) for a Hamiltonian
that transforms a basis into an unbiased one within a Hilbert space of dimension 5 is√

5 ≈ 2.2, which is smaller than the calculated value of 3.22.

Moving forward, we are poised to establish a lower limit for the speed constraint
within a Hilbert space of dimension d = 6. Our objective is to demonstrate that the
minimal time required to transform the basis {|i⟩}5i=0 into an unbiased one through a
Hamiltonian with a constant mean energy E is constrained from below by:

T ≥
1

3E
arccos (−

√
6 − 4
2

). (2.91)

In order to establish this lower bound, let’s assume the existence of a Hamiltonian for
which

T <
1

3E
arccos (−

√
6 − 4
2

), (2.92)

which implies that:
∑5

i=0 EiT < 2 arccos (−
√

6−4
2 ). We define EiT = αi and without loss

of generality, let’s consider the minimum eigenenergy of the Hamiltonian as Emin =

E0 = 0. According to Eq. (2.19), it is necessary to satisfy −
√

6 ≤
∑

j cosα j ≤
√

6.
In the forthcoming analysis, we will demonstrate that the function f (α) =

∑
j cosα j

surpasses the value of
√

d within the region:

R = {
5∑

i=0

αi < 2 arccos (−

√
6 − 4
2

) ∧ αi > 0 ∀i}. (2.93)

Consequently, it would be evident that T cannot be reduced beyond 1
3E arccos (−

√
6−4
2 ).

We proceed to minimize the function f (α) =
∑5

i=0 cosαi within the closure of R. Ini-
tially, our objective is to identify all critical points situated within this region. Upon
differentiating the function f (α) and setting the resulting derivatives to zero, the critical
points emerge as αi = Kiπ, where Ki ≥ 0 and Ki are integers. Because cos (Kiπ) = ±1,
the minimum value of the function is attained among these critical points when we have
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the maximum number of−1 (within the region R, the presence of only one−1 is permis-
sible). Hence, the smallest value among these critical points is 4. Subsequently, we pro-
ceed to identify the minimum value along the boundaries

∑5
i=0 αi = 2 arccos (−

√
6−4
2 ).

Let’s make an assumption (without loss of generality) that we are considering the part
of these boundaries where x number of the αi values are zero. It’s important to ob-
serve that the range of values for x is bounded by 0 ≤ x ≤ 3, as exceeding this range
would result in the function f (α) exceeding

√
6. This outcome aligns with the proof

stipulated by Eq. (2.19). By employing the Lagrange multiplier method, we derive the
subsequent system of equations:

sinαi = k, ∀k, (2.94)

where k represents the Lagrange multiplier. Solving these equations reveals that αi

must adhere to the either of following structure:

αi =

λ + 2Kiπ

π − λ + 2K′iπ,
(2.95)

where 0 ≤ λ ≤ π
2 and Ki and K′i are non-negative integers (they must be non-negative

since αi are non-negative). Additionally, we can assume (without loss of generality)
that N instances of αi correspond to the second form in Eq. (2.95). Guided by the
boundary restriction within the enclosed region R, we arrive at:

(6 − x − N)λ + N(π − λ) + 2(
∑

i

Ki +
∑

j

K′j) = 2 arccos−

√
6 − 4
2

. (2.96)

Solving this equation for λ we obtain:

λ =
2 arccos (−

√
6−4
2 ) − (2K + N)π

6 − x − 2N
. (2.97)

where K =
∑

i Ki +
∑

j K′j. Eq. (2.97) implies that N < 6−x
2 otherwise λ > π/2 which

is a contradiction (to the initial assumption that 0 ≤ λ ≤ π
2 ). For critical points situated

on the boundary, the function f (α) has the form (6− x−2N) cos ( 2 arccos (−
√

6−4
2 )−(2K+N)π

6−x−2N ).
Given that N < 6−x

2 and 0 ≤ λ ≤ π
2 , its minimum value is achieved for any x and N

when K = 0. Consequently, the minimum of the function on the boundary must follow

the pattern (6− x−2N) cos ( 2 arccos (−
√

6−4
2 )−Nπ

6−x−2N ), which consistently exceeds or equals
√

6
for all 1 ≤ x ≤ 3 and N < 6−x

2 . As a result, the function f (α) attains a minimum value
over the region R that surpasses

√
6, contradicting the condition in Eq. (2.19). Hence,

the proof is concluded.

2.3.4 Hilbert Spaces with Arbitrary Dimension

In the subsequent discussion, we outline a comprehensive lower bound for the time
needed to establish an unbiased basis within a system with the Hilbert space of dimen-
sion d [NMB+24].
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Theorem 2.10. The minimal time required to establish an unbiased basis in a system
of dimension d is constrained from below by:

Tunbiased >
π(d − 1)

4Ed
. (2.98)

It becomes apparent that as the dimension of the Hilbert space becomes larger, the
lower bound converges towards π/4E [NMB+24].

Proof. [NMB+24] We introduce the notation Tlow =
d−1
dE

π
4 , where d ≥ 2. Let’s con-

sider that there exists a Hamiltonian and a unitary e−iHT completing the task of basis
transformation in a way that:

ET ≤
d − 1

d
π

4
. (2.99)

Without loss of the generality, let’s assume E0 = 0 and ensure E j ≥ 0 for all j. Fur-
thermore, we introduce the variables α j = E jT , leading to:∑

j

α j ≤ (d − 1)
π

4
. (2.100)

By Eq. (2.19) we must have −
√

d ≤
∑

j cosα j ≤
√

d. By minimizing the func-
tion f (α) =

∑
j cosα j, we can demonstrate that f (α) always surpasses

√
d within the

defined region (2.100). Consequently, it follows that T cannot fall below the threshold
of Tlow. Let’s begin by identifying the critical points of the function f (α) within the
interior of the region (excluding the boundary). To achieve this, we differentiate the
function with respect to αi, resulting in the following set of equations:

sinαi = 0 ∀i (2.101)

This shows that αi = Kiπ and Ki ≥ 0. For these particular values, cosαi can only
be either 1 or −1. As a result, the function’s minimum (among these critical points)
is attained when there is a maximal count of −1 values. Considering the constraint
(2.100), this means that ⌊ d−1

4 ⌋ of the αi variables should be equal to π, while the rest
are set to zero. Consequently, the minimum value is given by d − 2⌊ d−1

4 ⌋ if d−1
4 is not

an integer. If d−1
4 is an integer, the critical point will lie on the boundary of the region,

which we will delve into next.

Next, we proceed to identify the critical points on the boundary of the region
(2.100), which satisfies

∑
j α j = (d − 1) π4 and α j ≥ 0. In a more general context,

let’s assume that we are situated on a segment of the boundary where x of the {αi}
d−1
i=1

values are set to zero. Utilizing the Lagrange multipliers method, we arrive at the
following set of equations:

sinαi = k ∀i, (2.102)

where k is the Lagrange multiplier. The equations (2.102) reveal that either αi = λ +
2Kiπ or αi = π − λ + 2K

′

iπ, where 0 ≤ λ ≤ π
2 and Ki,K

′

i are non-negative integers (due
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to the requirement that αi ≥ 0). Considering the boundary segment where x of the αi

values are set to zero, and assuming that N of them follow the form αi = π − λ + 2K
′

iπ,
we are compelled to satisfy the equation (derived from

∑
j α j = (d − 1) π4 ):

(d − x − 2N)λ + (N +
∑

j

K′j +
∑

l

Kl)π = (d − 1)
π

4
. (2.103)

We introduce the notation K ≡
∑

j K′j +
∑

l Kl. Expressing λ in terms of K and N, we
derive:

λ =
(d − 1)/2 − 2(N + K)

d − x − 2N
π

2
(2.104)

In this case, the function takes on the form x + (d − x − 2N) cos λ. When we consider
the range N < d−x

2 , the function attains its minimum when λ is maximized, and this
occurs when K = 0, applicable for any values of x and N. If we shift our focus to the
interval N > d−x

2 , we have:

λ =
N − (d − 1)/4
N − (d − x)/2

π

2
+

K
N − (d − x)/2

π

2
. (2.105)

Given that x ≤
√

d (because if this were not the case, then
∑

j cosα j would exceed
√

d and the proof would be complete), it can be demonstrated that the first term in Eq.
(2.105) is greater than π/2. This is evident from the fact that the coefficient N−(d−1)/4

N−(d−x)/2
exceeds 1:

N −
d − 1

4
≥ N −

d −
√

d
2

≥ N −
d − x

2
→ (
√

d − 1)2 ≥ 0. (2.106)

Furthermore, the second term in Eq. (2.105) is positive. Consequently, in the case
where N > d−x

2 , the value of λwould exceed π
2 , which contradicts the initial assumption

λ ≤ π
2 . Furthermore, if we consider the scenario where N = d−x

2 , Eq. (2.105) leads to
the equation d + 1 + 2K = 2x, which presents a contradiction as x is a positive integer
and also satisfies the condition x ≤

√
d. Hence, we conclude that N < d−x

2 , and in this
case, the expression for λ takes the following form at the minimum of the function:

λ =
(d − 1)/4 − N
(d − x)/2 − N

π

2
. (2.107)

Furthermore, based on Eq. (2.106), we have d−1
4 ≤

d−x
2 , which implies 0 ≤ N ≤ d−1

4
due to the non-negativity of λ. Thus, we need to determine which value of N within
this domain minimizes the function. Our goal is to find the minimum of the following
function as we vary the parameter N within the specified domain:

x + (d − x − 2N) cos (
(d − 1)/4 − N
(d − x)/2 − N

π

2
). (2.108)

Upon differentiating this function with respect to N, it becomes evident that the deriva-
tive is monotonically decreasing within the valid domain of N, hence the value N0 =
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⌊(d − 1)/4⌋ achieves the minimum of f (α) with the value of x + (d − x − 2⌊(d −
1)/4⌋) cos ( (d−1)/4−⌊(d−1)/4⌋

(d−x)/2−⌊(d−1)/4⌋
π
2 ) which is always greater than

√
d for d ≥ 2:

√
d ≤ x(1 − cos (

(d − 1)/4 − N0

(d − x)/2 − N0

π

2
))

+
d + 1

2
cos (

1
d+1

2 −
√

d
2

π

2
)

≤ x + (d − x − 2⌊(d − 1)/4⌋) cos (
(d − 1)/4 − ⌊(d − 1)/4⌋
(d − x)/2 − ⌊(d − 1)/4⌋

π

2
) (2.109)

In deriving the second inequality, we have employed the conditions 1 ≤ x ≤
√

d
and d−1

4 − 1 ≤ ⌊ d−1
4 ⌋ ≤

d−1
4 . Consequently, it is evident that the minimum of the

function f (α) within the specified region (2.100) is consistently greater than
√

d. This
discrepancy contradicts the condition posed by Eq. (2.19), leading to the completion
of the proof.

□

By comparing the derived lower bound with the bound established in Theorem 2.9,
a notable pattern becomes apparent. As the number of qubits, denoted by n, approaches
infinity, it is clear that the minimal time T required for achieving an unbiased basis for
this n-qubit system conforms to the inequality π/4E ≤ T ≤ π/2E [NMB+24].

Note that from the proof, one can find the values of αi and determine the Hamilto-
nian which is responsible for the task of transformation. However, the obtained Hamil-
tonian may not saturate the bound for the speed limits. One interesting direction (to
find the saturable speed limits) would be checking how close the basis change by this
Hamiltonian would be to the desired transformation in different dimensions.

In the next section, we study the minimal time of transformation of a basis to a
permuted one.

2.4 Speed Limits for Basis Permutation

It would be instrumental to analyze the above findings concerning the speed limits
associated with permuting the basis {|n⟩} as:

U |n⟩ = |(n + 1) mod d⟩ (2.110)

for all 0 ≤ n ≤ d − 1. First, we state and establish a lemma regarding the eigenvalues
and eigenstates of the permutation unitary [NMB+24].

Lemma 2.3. The eigenvalues of the permutation unitary are λn = ei 2π
d n, where n is an

integer satisfying 0 ≤ n ≤ d − 1.
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Proof. [NMB+24] First, we will calculate the eigenvalues of the permutation unitary:

U |n⟩ = |(n + 1) mod d⟩ . (2.111)

Let |ψ⟩ =
∑

n an |n⟩ be an eigenstate of U, i.e.,

U |ψ⟩ = eiα |ψ⟩ . (2.112)

From Eq. (2.111) we obtain
an = eiαa(n+1) mod d, (2.113)

This indicates that the magnitudes of all coefficients an must be equal, specifically
satisfying the condition |an|

2 = 1/d. As a result, any eigenstate |ψ⟩ can be expressed in
the form:

|ψ⟩ =
1
√

d

d−1∑
j=0

eiφ j | j⟩ . (2.114)

This leads to the conclusion that U cannot have degenerate eigenvalues. To establish
this, let’s assume, for the sake of contradiction, that there exist two distinct eigenstates
|ψ1⟩ and |ψ2⟩ sharing the same eigenvalue. Consequently, any linear combination of
|ψ1⟩ and |ψ2⟩ would also be an eigenstate of U. Furthermore, through such a linear
combination, we could generate an eigenstate that does not adhere to the form (2.114),
leading to the sought contradiction.

Next, let us observe that any permutation unitary must satisfy the condition:

Ud = I. (2.115)

Furthermore, considering the non-degeneracy of U, we deduce that the eigenvalues of
U take the specific form λn = ei 2π

d n, where n is an integer satisfying 0 ≤ n ≤ d − 1. □

Now, we are prepared to state the following theorem regarding the minimal time
required for basis permutation [NMB+24].

Theorem 2.11. The lower bound for the time required to permute a basis is given by:

Tperm ≥
π(d − 1)

dE
. (2.116)

Proof. [NMB+24] As elaborated in the previous proof, the eigenvalues of the permu-
tation unitary (2.111) are of the form:

λ j = e−i 2π j
d , (2.117)

where integer j is in the range 0 ≤ j ≤ d − 1. This leads to the conclusion that for any
permutation unitary U = e−iHt, the following must hold:

t
∑

j

E j =
∑

j

2π j
d
= π(d − 1). (2.118)
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The proposition is fully established by noting that E can be expressed as the sum of E j

over d, leading to E =
∑

j E j/d.

□

Remarkably, for a given Hamiltonian H, there exist only two possibilities [NMB+24]:
Either the unitary operator U = e−iHt results in permutation with t = π(d−1)

dE , or the
Hamiltonian does not lead to a basis permutation. It’s important to emphasize that our
analysis is specifically applicable to permutations of the form given in Eq. (2.110).

We conclude this chapter by providing speed limits for coherence generation uti-
lizing our methods.

2.5 Speed of Evolution for Coherence Generation

Now, we will establish speed limits for generating quantum coherence through unitary
evolution. Our focus is on determining the maximum attainable coherence Cmax that
can be generated from a given state ρ within a predetermined time interval t:

Cmax(ρ, t) = max
H

C(e−iHtρeiHt), (2.119)

where the optimization is carried out over all possible Hamiltonians H with an mean
energy E = Tr[H]/d−E0 [NMB+24]. We utilize the ℓ1-norm of coherence as a measure
of quantum coherence [BCP14b, SAP17].

C(ρ) =
∑
i, j

|ρi j|, (2.120)

This can be efficiently estimated in experimental setups through the use of collective
measurements, as demonstrated in works such as [YHT+20, WSR+21].

Let’s begin our exploration in the single-qubit context. In this scenario, the unitary
operator U(t) = e−iHt can be understood as a rotation by an angle of 2Et around the axis
n of the Bloch sphere. For single-qubit states, the measure of coherence C corresponds
to the Euclidean distance from the incoherent axis. In this context, Cmax(ρ, t) repre-
sents the maximum distance from the incoherent axis, achieved by optimizing over all
possible rotations with a fixed angle of 2Et. The optimal axis of rotation, denoted as
n, is orthogonal to both the Bloch vector r and the incoherent axis. The expression for
the maximum coherence Cmax is as follows [NMB+24]:

Cmax(ρ, t) = |r| cos(arcsin
(
[
|rz|

|r|
] − 2Et)

)
. (2.121)

It’s important to note that Cmax cannot exceed the magnitude of the Bloch vector |r|,
and this maximum value is achieved for the time:

Tmc =
1

2E
arcsin

|rz|

|r|
, (2.122)

40
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at which the final state lies in the maximally coherent plane [NMB+24]. When the
initial state is pure, it can be represented using the parameterization:

|ψ⟩ = cos(θ/2) |0⟩ + eiφ sin(θ/2) |1⟩ , (2.123)

and the maximum attainable coherence within a time t is given by [NMB+24]:

Cmax(|ψ⟩ , t) = cos
(

arcsin([cos θ] − 2Et)
)
. (2.124)

Next, we extend our analysis to systems of arbitrary dimension d ≥ 2 and determine
the minimum time required to transform a pure state |ψ⟩ into a maximally coherent state
of the form:

|ψMC⟩d =
1
√

d

d−1∑
j=0

eiφ j | j⟩ (2.125)

with phases φ j. The subsequent theorem provides a limit for the evolution time T (|ψ⟩ →
|ψMC⟩d) [NMB+24].

Theorem 2.12. The duration required for transforming a state |ψ⟩ into a maximally
coherent state |ψMC⟩d through unitary evolution U = e−iHt is bounded by:

T (|ψ⟩ → |ψMC⟩d) ≥
1

dE
arccos[

2
d

∑
j

|⟨ψ| j⟩|2 − 1]. (2.126)

Proof. [NMB+24] The time required to evolve a pure state into a maximally coherent
state is bounded according to the result established in Lemma 2.4 as:

T (|ψ⟩ → |ψMC⟩d) ≥
1

dE
arccos(2|⟨ψ|ψMC⟩d |

2 − 1). (2.127)

Therefore, to derive a universally applicable bound, we must evaluate the maximum
overlap |⟨ψ|ψMC⟩d | across all states expressed in the form:

|ψMC⟩d =
1
√

d

d−1∑
j=0

eiφ j | j⟩ (2.128)

Expressing the initial state |ψ⟩ in the basis of incoherent states |i⟩, we have:

|ψ⟩ =

d−1∑
j=0

c jeiα j | j⟩ (2.129)

with c j ≥ 0, it becomes evident that the overlap |⟨ψ|ψMC⟩d |
2 is maximized when φ j =

α j. Thus we arrive at the expression:

max
|ψMC⟩d

|⟨ψ|ψMC⟩d |
2 =

1
d

(
∑

j

|⟨ψ| j⟩|)2. (2.130)
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Alternatively, this result can be derived following the approach in [RFWA18, RLS18],
where it is recognized that max|ψMC⟩d

|⟨ψ|ψMC⟩d |
2 corresponds to the maximum fidelity

between the stateΛ[|ψ⟩⟨ψ|] and the specific maximally coherent state |ψMC⟩d =
∑

j | j⟩ /
√

d,
achieved by optimizing over all incoherent operationsΛ. Using Eq. (2.130) in Eq. (2.127)
completes the proof.

□

2.6 Discussion

We have explored the maximum speeds for basis transformations using unitary evo-
lutions and have determined optimal time limits for these transformations in various
relevant scenarios.

For dimensions d ≤ 4, we identified the optimal time needed to convert the com-
putational basis into an unbiased, or maximally coherent, basis. Notably, the shortest
evolution times are the same for d = 2 and d = 4 when Hamiltonians with the same av-
erage energy E are considered. In the case of d = 3, achieving the speed limit requires
a specific basis ordering that is unbiased relative to the computational basis. Addition-
ally, we proved that an n-qubit Hadamard gate can be performed in a time of π/2E,
indicating that in multi-qubit systems, a maximally coherent basis can be reached in
a time that does not depend on the number of qubits. These results imply that inter-
active Hamiltonians can considerably shorten the evolution time compared to the time
required if each qubit were evolved separately. We also demonstrated that for d → ∞,
the minimum time to establish an unbiased basis is at least π/4E. Additionally, we
explored the speed limits associated with basis permutation.

We have also explored the limits on the speed for generating a given level of quan-
tum coherence and for transforming a pure state into a maximally coherent state. We
expect that these methods can be extended to find the minimal transformation times
for various bases and other quantum resources, including quantum entanglement and
imaginary states [HG18, WKR+21a, WKR+21b].

In the next chapter, we continue exploring the speed of coherence generation during
an evolution governing by a Hamiltonian.
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Chapter 3

Coherence Generation with
Hamiltonian

As discussed in the introduction, central to any quantum resource theory is the funda-
mental investigation into the possibility of state transformations. Typically, the scenario
involves having access to n copies of a specific initial state ρ, with the goal of convert-
ing them into m copies of a target state of interest σ. In this process, it’s envisaged that
there’s an error margin that decreases as the number of initial state copies, n, grows.
The success degree of this transformation is measured by the maximum achievable ra-
tio of m/n, indicating the transformation rate. In the context of the coherence resource
theory, the precise rate at which one quantum state can be transformed into another
has been established while we focus on the set of maximally incoherent operations
(MIO) [Abe06]. The highest attainable transformation rate within this framework is
delineated by the formula [WY16]:

R(ρ→ σ) =
Cr(ρ)
Cr(σ)

=
Cd(ρ)
Cd(σ)

, (3.1)

where Cr(.) and Cd(.) denote the relative entropy of coherence and distillable coherence
respectively as defined in 1.17 and 1.14.

Given the importance of quantum coherence in both quantum information science
and quantum technology [SAP17, WSR+21], it is imperative to delve into and grasp
the most effective approaches for its creation. An approach for generating quantum
coherence involves utilizing a fixed quantum channel denoted by Λ. This method can
effectively induce coherence from an initially incoherent state, provided that Λ does
not belong to the set of maximally incoherent operations (MIO). The endeavor to dis-
cover and enhance optimal approaches for generating coherence via stationary quan-
tum channels has attracted significant interest and has been thoroughly investigated in
numerous studies [BCP14a, MK15, DFW+18, TRS22, GDEP16].
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This chapter centers on investigating the most effective techniques for inducing co-
herence through dynamic processes, with a particular emphasis on unitary evolutions
Ut = e−itH . By utilizing the relative entropy of coherence as a figure of merit, we an-
alyze the highest possible rate of change of Cr within this framework, optimized over
all initial states ρ and all Hamiltonians H with a finite Hilbert-Schmidt norm [SNS24].
This quantity holds a distinct operational significance as described in Eq. (3.1), rep-
resenting the maximum achievable rate of coherence generation through Hamiltonians
with a bounded Hilbert-Schmidt norm. We characterize the most advantageous initial
states and Hamiltonians applicable to systems of any dimension d. Particularly, con-
cerning qubit systems, we offer the optimal input state for any specified Hamiltonian
[SNS24].

3.1 Coherence Generating Capacity of Hamiltonians

We establish the concept of the coherence generating capacity of a Hamiltonian H,
representing the maximal increase rate in coherence achievable by a unitary evolution
Ut = e−itH at time t = 0 [SNS24]:

Cgen(H) = max
ρ

Cr(e−iHtρeiHt)
dt

∣∣∣∣∣∣
t=0
. (3.2)

Similar concepts have been previously explored for the entanglement theory, particu-
larly concerning the generation of entanglement through non-local Hamiltonians [DVC+01,
Bra07].

We have the proposition 3.1 for an alternative expression for the coherence-generating
capacity. Let’s first state and prove the following lemma [SNS24].

Lemma 3.1. For any Hermitian matrix A and any positive matrix B, we have:

Tr
[
∆(A) log2 ∆(B)

]
= Tr

[
A log2 ∆(B)

]
(3.3)

Proof. [SNS24] Consider A as a Hermitian matrix and B as a positive matrix. Then,
we have:

Tr
[
A log2 ∆(B)

]
= Tr

A log2

∑
i

|i⟩⟨i| B |i⟩⟨i|

 =∑
i

Tr
[
A log2 (|i⟩⟨i| B |i⟩⟨i|)

]
=

∑
i, j

Tr
[
A | j⟩⟨ j| log2 (|i⟩⟨i| B |i⟩⟨i|) | j⟩⟨ j|

]
=

∑
i, j

Tr
[
| j⟩⟨ j| A | j⟩⟨ j| log2 (|i⟩⟨i| B |i⟩⟨i|)

]
= Tr

∑
j

| j⟩⟨ j| A | j⟩⟨ j| log2

∑
i

|i⟩⟨i| B |i⟩⟨i|




= Tr
[
∆(A) log2 ∆(B)

]
. (3.4)
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□

Therefore we have the following proposition [SNS24].

Proposition 3.1. For any Hamiltonian H the following expression holds:

Cgen(H) = max
ρ

iTr(H[ρ, log2 ∆(ρ)]). (3.5)

Proof. [SNS24] Note that ẋ represents the time derivative of the quantity x through the
chapter. let define the state ρt = e−iHtρeiHt and its time derivative as ρ̇t = dρt/dt. We
will demonstrate that the time derivative of the von Neumann entropy can be expressed
as [DKSW18, MDP22]

d
dt

S (ρt) = −Tr
[
ρ̇t log2 ρt

]
. (3.6)

To begin, we express the density matrix ρt in terms of its eigenbasis: ρt =
∑

i λi |ψi⟩⟨ψi|,
where the eigenvalues λi and the eigenstates |ψi⟩ depend on time. Consequently, we
have:

d
dt

(
ρt log2 ρt

)
=

∑
i

d
dt

(
λi

ln λi

ln 2

)
|ψi⟩⟨ψi| +

∑
i

(
λi log2 λi

) d
dt
|ψi⟩⟨ψi| (3.7)

=
∑

i

(
λ̇i

ln λi

ln 2
+

λ̇i

ln 2

)
|ψi⟩⟨ψi| +

∑
i

(
λi log2 λi

) [ ˙|ψi⟩⟨ψi| + |ψi⟩ ˙⟨ψi|
]
.

This implies that the von Neumann entropy’s derivative can be represented as

d
dt

S (ρt) = −Tr
[

d
dt

(
ρt log2 ρt

)]
= −

∑
i

(
λ̇i

ln λi

ln 2
+

λ̇i

ln 2

)
, (3.8)

regarding the fact that

Tr
[

˙|ψi⟩⟨ψi| + |ψi⟩ ˙⟨ψi|
]
= Tr

[
d
dt

(|ψi⟩⟨ψi|)
]
=

d
dt

Tr
[
|ψi⟩⟨ψi|

]
= 0. (3.9)

Noting that
∑

i λ̇i =
d
dt

∑
i λi = 0, we obtain

d
dt

S (ρt) = −
∑

i

λ̇i log2 λi. (3.10)

In the following step, we express ρ̇ log2 ρ as

ρ̇ log2 ρ =
∑
i, j

(
λ̇i |ψi⟩⟨ψi| + λi

d
dt
|ψi⟩⟨ψi|

)
log2 λ j |ψ j⟩⟨ψ j| , (3.11)
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which implies

Tr
[
ρ̇ log2 ρ

]
=

∑
i, j

(
λ̇i log2 λ jTr

[
|ψi⟩⟨ψi|ψ j⟩⟨ψ j|

]
+ λi log2 λ jTr

[
d
dt

(|ψi⟩⟨ψi|) |ψ j⟩⟨ψ j|

])
(3.12)

=
∑

i

λ̇i log2 λi +
∑
i, j

λi log2 λ jTr
[(

˙|ψi⟩⟨ψi| + |ψi⟩ ˙⟨ψi|
)
|ψ j⟩⟨ψ j|

]
=

∑
i

λ̇i log2 λi +
∑

i

λi log2 λi

(
⟨ψi|ψ̇i⟩ + ⟨ψ̇i|ψi⟩

)
=

∑
i

λ̇i log2 λi.

Therefore d
dt S (ρt) = −Tr

[
ρ̇t log2 ρt

]
.

Now, we obtain the time derivative of coherence as

dCr(ρt)
dt

=
dS (∆[ρt])

dt
= −Tr

[(
d
dt
∆(ρt)

)
log2 ∆(ρt)

]
= −Tr

[
∆(ρ̇t) log2 ∆(ρt)

]
, (3.13)

where it is taken into account that the time derivative commutes with dephasing, i.e.,

d
dt
∆(ρt) = ∆(ρ̇t). (3.14)

Using the von Neumann equation ρ̇t = −i[H, ρt] Eq. (3.13) can be expressed as

dCr(ρt)
dt

= iTr
[
∆([H, ρt]) log2 ∆(ρt)

]
. (3.15)

Using lemma 3.1 and choosing A = i∆([H, ρt]) and B = ρt we further obtain:

dCr(ρt)
dt

= iTr
[
[H, ρt] log2 ∆(ρt)

]
. (3.16)

At t = 0:
dCr(ρt)

dt

∣∣∣∣∣
t=0
= iTr[[H, ρ] log2 ∆(ρ)], (3.17)

where ρ = ρt=0. We can express this equation differently as

dCr(ρt)
dt

∣∣∣∣∣
t=0
= iTr(H[ρ, log2 ∆(ρ)]). (3.18)

The proof is completed by maximizing over all states ρ.

□

3.2 Connection to the Surprisal of a Probability Distri-
bution

Our aim here is to determine the maximum coherence-generating capacity across all
Hamiltonians satisfying the constraint ||H||2 ≤ 1, where ||M||2 =

√
Tr[M†M] denotes
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the Hilbert-Schmidt norm of a matrix M. This problem demonstrates a close connec-
tion to the variance of surprisal, which was investigated in [RW15] (a similar approach
was previously employed in [Bra07]).

Definition 3.1. For a probability distribution p = (p0, . . . , pd−1), the surprisal − log2 pi

represents the measure of surprise to obtain the outcome i.

The variance of surprisal is expressed as

f (p) =
∑

i

pi
(
− log2 pi

)2
−

∑
i

pi
(
− log2 pi

)2

. (3.19)

We have the following lemma [SNS24].

Lemma 3.2. Alternatively, f (p) can be expressed as:

f (ρ) =
1
2

∑
i, j

ρiiρ j j

(
log2 ρ j j − log2 ρii

)2
(3.20)

Proof. [SNS24] This can be directly deduced from the following chain of equalities:∑
i

ρii
(
− log2 ρii

)2
−

∑
i

ρii
(
− log2 ρii

)2

(3.21)

=
∑

i

ρii
(
log2 ρii

)2
−

∑
i

ρ2
ii
(
log2 ρii

)2
−

∑
i, j

ρiiρ j j log2 ρii log2 ρ j j (3.22)

=
∑

i

ρii (1 − ρii)
(
log2 ρii

)2
−

∑
i, j

ρiiρ j j log2 ρii log2 ρ j j

=
∑

i

ρii

∑
j,i

ρ j j

 (log2 ρii
)2
−

∑
i, j

ρiiρ j j log2 ρii log2 ρ j j

=
∑
i, j

ρiiρ j j
(
log2 ρii

)2
−

∑
i, j

ρiiρ j j log2 ρii log2 ρ j j

=
1
2

∑
i, j

ρiiρ j j
(
log2 ρii

)2
+

1
2

∑
i, j

ρiiρ j j

(
log2 ρ j j

)2
−

∑
i, j

ρiiρ j j log2 ρii log2 ρ j j

=
1
2

∑
i, j

ρiiρ j j

[(
log2 ρii

)2
+

(
log2 ρ j j

)2
− 2 log2 ρii log2 ρ j j

]
=

1
2

∑
i, j

ρiiρ j j
(
log2 ρii − log2 ρii

)2
=

1
2

∑
i, j

ρiiρ j j
(
log2 ρii − log2 ρii

)2 .

Here, we have used the fact that
∑

j,i ρ j j = 1 − ρii. □

In the theorem that follows, we will illustrate how the maximum capacity to in-
duce coherence in a system of dimension d is closely related to the highest variance of
surprisal, denoted by f [SNS24].
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Theorem 3.1. It holds that

max
||H||2≤1

Cgen(H) = max
p

√
2 f (p). (3.23)

Proof. [SNS24] Let’s define the following Hermitian matrix as

M = i[ρ, log2 ∆(ρ)], (3.24)

At time zero, the derivative of the relative entropy of coherence can be expressed as

dCr(ρt)
dt

∣∣∣∣∣
t=0
= Tr(HM). (3.25)

Now, we proceed with the maximization over all Hamiltonians H satisfying ||H||2 ≤ 1.
To accomplish this, we apply Holder’s inequality, leading to the following result:

dCr(ρt)
dt

∣∣∣∣∣
t=0
= Tr(HM) ≤ ||H||2||M||2. (3.26)

When considering a given M, this inequality achieves its maximum if H is selected as

H =
M
||M||2

. (3.27)

Upon maximizing across all Hamiltonians having bounded Hilbert-Schmidt norm, the
result is

max
||H||2≤1

dCr(ρt)
dt

∣∣∣∣∣
t=0
=

Tr[M2]
||M||2

= ||M||2 =
∥∥∥[ρ, log2 ∆(ρ)]

∥∥∥
2 . (3.28)

To finalize the theorem’s proof, we need to maximize
∥∥∥[ρ, log2 ∆(ρ)]

∥∥∥
2 over all states

ρ. If we denote the elements of ρ as ρi j, then we derive

[ρ, log2 ∆(ρ)] = ρ log2 ∆(ρ) −
[
log2 ∆(ρ)

]
ρ (3.29)

=
∑
i, j

(
ρi j log2 ρ j j − ρi j log2 ρii

)
|i⟩⟨ j|

=
∑
i, j

ρi j

(
log2 ρ j j − log2 ρii

)
|i⟩⟨ j| .

With this, we obtain the following:∥∥∥[ρ, log2 ∆(ρ)]
∥∥∥2

2 =
∑
i, j

|ρi j|
2
(
log2 ρ j j − log2 ρii

)2
. (3.30)

Because ρ is a density matrix, we have:

ρiiρ j j ≥ |ρi j|
2, (3.31)

which implies the inequality∥∥∥[ρ, log2 ∆(ρ)]
∥∥∥2

2 ≤
∑
i, j

ρiiρ j j

(
log2 ρ j j − log2 ρii

)2
. (3.32)
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Now, define the following function:

f (ρ) =
1
2

∑
i, j

ρiiρ j j

(
log2 ρ j j − log2 ρii

)2
. (3.33)

We notice that the right side of Equation (3.32) is equivalent to 2 f (ρ). It’s worth not-
ing that this function coincides with the variance of the surprisal function defined in
Equation (3.19) when we set pi = ρii.

Let’s now consider a pure state given by:

|ψ⟩ =

d−1∑
i=0

√
qi |i⟩ , (3.34)

where the probabilities qi are selected to maximize the variance of surprisal. Consider
now the density matrix σ = |ψ⟩⟨ψ|. Based on the aforementioned reasoning, it’s evident
thatσmaximizes the function f , indicating f (σ) = maxρ f (ρ). Furthermore, the matrix
elements of σ satisfy σiiσ j j = |σi j|

2, implying

2 f (σ) =
∑
i, j

σiiσ j j

(
log2 σ j j − log2 σii

)2
(3.35)

=
∑
i, j

|σi j|
2
(
log2 σ j j − log2 σii

)2

=
∥∥∥[σ, log2 ∆(σ)]

∥∥∥2
2 .

Taking into account the arguments outlined earlier, we have the following conclusion:

max
ρ

∥∥∥[ρ, log2 ∆(ρ)]
∥∥∥2

2 ≤ max
ρ

2 f (ρ) = 2 f (σ) (3.36)

=
∥∥∥[σ, log2 ∆(σ)]

∥∥∥2
2

≤ max
ρ

∥∥∥[ρ, log2 ∆(ρ)]
∥∥∥2

2 .

This proves that
max
ρ

∥∥∥[ρ, log2 ∆(ρ)]
∥∥∥2

2 = 2 f (σ), (3.37)

and the proof of the theorem is complete. □

In the next section, we find the optimal initial state and Hamiltonian for the coher-
ence generation rate.

3.3 Optimal Coherence Generation Rate

Following the proof presented in the previous section to establish the connection of the
maximal coherence generation rate with the surprisal of the probability distribution of
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the initial state, we provide an expression for the initial state and Hamiltonian to begin
with to optimally generate the coherence resource[SNS24]. For the initial state, we
have

|ψ⟩ =
√
γ |0⟩ +

√
1 − γ
d − 1

d−1∑
i=1

|i⟩ . (3.38)

The value for γ is selected within the interval (0,1) in a manner that the probability
distribution (γ, 1−γ

d−1 , . . . ,
1−γ
d−1 ) to maximize the variance of the surprisal as mentioned

in references [RW15, Bra07]. Also, the optimal Hamiltonian is described by Equa-
tion (3.27), along with [SNS24]:

M = i[ψ, log2 ∆(ψ)] = i
∑
k,l

ψkl
(
log2 ψll − log2 ψkk

)
|k⟩⟨l|

= i
√
γ

√
1 − γ
d − 1

(
log2

1 − γ
d − 1

− log2 γ

) d−1∑
l=1

|0⟩⟨l|

+ i
√
γ

√
1 − γ
d − 1

(
log2 γ − log2

1 − γ
d − 1

) d−1∑
k=1

|k⟩⟨0|

= iα (|0⟩⟨φ| − |φ⟩⟨0|) (3.39)

with a state |φ⟩ =
∑d−1

i=1 |i⟩ /
√

d − 1 and some α ∈ R. Therefore, one can select an
optimal Hamiltonian as

H =
i
√

2
(|0⟩⟨φ| − |φ⟩⟨0|) . (3.40)

In the next section, we study the problem for the case of a qubit.

3.4 Qubit Case

Let’s now direct our attention specifically to the single-qubit scenario. Here, we’ll
assess Cgen(H) for any given Hamiltonian H. Hereafter, we represent the components
of the density matrix as ρkl, while Hkl denotes the elements of H in a similar fashion.
Moreover, ρ01 = |ρ01|eiα and similarly H01 = |H01|eiβ. Using Eq. (3.29) we obtain
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[SNS24]

iTr
(
H[ρ, log2 ∆(ρ)]

)
= i

∑
k,l

Hlkρkl
(
log2 ρll − log2 ρkk

)
(3.41)

= i
[
H10ρ01

(
log2 ρ11 − log2 ρ00

)]
+ i

[
H01ρ10

(
log2 ρ00 − log2 ρ11

)]
= i

[
H10ρ01 − H01ρ10

]
log2

ρ11

ρ00

= i |H10| |ρ01|
[
ei(α−β) − e−i(α−β)

]
log2

ρ11

ρ00

= −2 |H10| |ρ01| sin(α − β) log2
ρ11

ρ00
.

Now, our objective is to optimize this expression across all values of α, |ρ01|, ρ00, and
ρ11, considering that ρ represents the density matrix of a single qubit. Maximizing with
respect to α is straightforward; an optimal selection is α = β − π/2. Hence, we obtain
[SNS24]:

Cgen(H) = max
ρi j

2 |H10| |ρ01| log2
ρ11

ρ00
. (3.42)

For any density matrix representing a qubit, it holds true that |ρ01| ≤
√
ρ00ρ11, where

equality occurs in the case of pure states. Utilizing this, we can conduct the maximiza-
tion concerning |ρ01|, resulting in [SNS24]:

Cgen(H) = max
ρi j

2 |H10|
√
ρ00ρ11 log2

ρ11

ρ00
. (3.43)

This also implies that an optimal state can be selected to be pure. In the final step, we
remind ourselves that ρ11 = 1 − ρ00, thus:

Cgen(H) = max
ρ00

2 |H10|
√
ρ00(1 − ρ00) log2

1 − ρ00

ρ00
. (3.44)

This maximization can be carried out numerically, yielding ρ00 ≈ 0.083 [SNS24].

Similar findings have been documented in entanglement theory previously. Specif-
ically, optimal entanglement generation concerning two-qubit Hamiltonians was ex-
plored in [DVC+01], where optimal states for entanglement generation without ancillas
were derived. Additionally, investigations into optimal entanglement generation with
Hamiltonians of bounded operator norm were conducted in [Bra07].

3.5 Discussion

In summary, our findings in this chapter delivers a detailed examination of how Hamil-
tonians generate quantum coherence, offering a method to measure the maximum rate
of coherence increase in quantum systems of any size, with Hamiltonians having lim-
ited Hilbert-Schmidt norms. Specifically, for qubit systems, we have fully resolved this
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issue for any Hamiltonian, pinpointing the states that maximize the rate of change in
the relative entropy of coherence.

This research opens several intriguing directions for future inquiry. One major
area of interest is the potential for enhancing coherence through specific Hamiltonians
in systems with dimensions larger than qubits. Although our approach offers a new
framework for addressing this issue, it remains uncertain whether this optimization
problem can be solved analytically or via semidefinite programming. Additionally,
exploring whether our methods can be applied to other quantum resource theories, such
as entanglement, is a compelling prospect. Given the similarities between coherence
and entanglement resource theories, there is significant potential for our techniques
to uncover optimal strategies for boosting entanglement in systems using particular
Hamiltonian classes.

Contribution: This chapter is based on the work in the paper Coherence Genera-
tion with Hamiltonian (of which I am the second author). I contributed to the results
of this work along with Dr. Manfredi Scalici. We found the results and established the
proofs thinking together and through joint discussions under the supervision of Prof.
Alexander Streltsov. However, the clean and final version of the results was written by
Dr. Manfredi Scalici.
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Chapter 4

Purity, Coherence and
Entanglement in the
Bernstein-Vazirani Algorithm

Quantum algorithms enable superior performance compared to classical counterparts
in various tasks, with Shor’s algorithm for efficient prime factorization on a quantum
computer being a prominent example [Sho94]. The key factor contributing to this
speedup is the superposition principle of quantum mechanics, allowing a quantum pro-
cessor to exist in multiple states simultaneously. Although such superposition can lead
to entanglement across different qubits, there are also quantum algorithms that leverage
individual qubits’ superpositions without entanglement to surpass classical algorithms.
The Bernstein-Vazirani algorithm serves as an example by enabling the determina-
tion of a bit string encoded in an oracle [BV97]. While the classical version requires
multiple calls to learn the bit string, a single query suffices in the quantum case. This
chapter provides a detailed analysis of the quantum resources involved in the Bernstein-
Vazirani algorithm, focusing on its probabilistic version, where the goal is to guess the
bit string after a single oracle call. It demonstrates that the algorithm’s performance
directly links to the amount of quantum coherence in the initial state [NKG+22]. Addi-
tionally, it reveals that an excessive degree of entanglement in the initial state hinders
the algorithm from achieving optimal performance [NKG+22]. The study also extends
to quantum computation with mixed states, demonstrating that pseudo pure states attain
optimal performance for a given purity in the Bernstein-Vazirani algorithm [NKG+22].
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4.1 Probabilistic Bernstein-Vazirani Algorithm

The objective of the Bernstein-Vazirani algorithm (BV algorithm) [BV97] is to deter-
mine a concealed N-bit string a = a1, . . . , aN , where each ai is either 0 or 1, and the
string is encoded using a linear function:

f (x) = a · x mod 2 =

 N∑
k=0

ak xk

 mod 2 (4.1)

on the N-bit string x = x1, . . . , xN . The specific objective is to identify the string a
using the fewest possible queries to the function f . In classical computing, the optimal
approach involves evaluating f for every input x in which one bit is set to 1, while the
remaining N − 1 bits are set to 0. This strategy results in a total of N queries to the
function f [BV97].

In the quantum domain, however, only a single call of the function is required to
acquire knowledge of the bit string a [BV97]. To achieve this, we employ the standard
assumption that the bit string x is encoded in an N-qubit quantum state, denoted as
|x⟩ = ⊗N

i=1 |xi⟩. Furthermore, we assume that the function is encoded in an oracle,
represented by a unitary operator Ua that acts on states of the form |i⟩ |x⟩, where i ∈ 0, 1,
as described below:

Ua(|i⟩ |x⟩) = |i ⊕ f (x)⟩ |x⟩ , (4.2)

and ⊕ denotes addition modulo 2. In the subsequent description, the first qubit is
referred to as the ”oracle register,” while the remaining N qubits are referred to as the
”system qubits.” When the oracle unitary Ua operates on the state |−⟩ |+⟩⊗N , where
|±⟩ = (|0⟩ ± |1⟩)/

√
2, the resulting state can be expressed as

∑
x(−1)a·x |−⟩ |x⟩ /2N . By

discarding the oracle register and applying a Hadamard gate to each qubit, the overall
state is transformed into |a⟩. Finally, the bit string a can be obtained by measuring each
qubit in the computational basis [BV97].

Thus far, we have observed that the Bernstein-Vazirani (BV) algorithm exhibits
optimal performance when the initial state is |−⟩ |+⟩⊗N . Now, let’s examine the algo-
rithm’s performance for general input states. In the general case, we cannot expect the
procedure to function optimally if the initial state differs from |−⟩ |+⟩⊗N . To assess the
performance in this broader scenario, we assume no prior knowledge regarding the bit
string a. In other words, each possible bit string is equally likely. Since there are 2N

potential bit strings, the probability of each bit string is 1/2N . To acquire information
about a, we permit the application of the oracle unitary Ua to a general quantum state
ρ and execute a general quantum measurement on the final state UaρU†a. This protocol
is referred to as the ”probabilistic Bernstein-Vazirani algorithm” [NKG+22].

The performance of the probabilistic BV algorithm can be quantified by the opti-
mal probability of correctly guessing the bit string a, which corresponds to the highest
probability of correctly identifying the oracle unitary Ua. This definition is analogous
to the notion of average guessing probability in channel discrimination tasks, as de-
scribed in the literature such as [BK15]. In channel discrimination, a set of quantum
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channels Λi is applied with probabilities pi, and the goal is to discriminate between
them by applying the channels to an initial quantum state ρ and performing a positive
operator-valued measure (POVM) Mi on the final state. The average probability of
correctly guessing the channel is given by

∑
i pi Tr[Λi(ρ)Mi]. Now, we define the per-

formance of the probabilistic BV algorithm as the maximum probability of successfully
guessing the bit string a over all possible POVM measurements [NKG+22]:

P(ρ) =
1

2N max
{Ma}

∑
a

Tr
[
UaρU†a Ma

]
. (4.3)

After establishing the performance definition of the BV algorithm for general input
states, let us now derive a closed expression for its performance when considering all
pure initial states. To do this, it is worth noting that any pure state of N + 1 qubits can
be expressed as follows:

|µ⟩ = a |+⟩ |φ′⟩ + b |−⟩ |φ⟩ , (4.4)

where |φ⟩ and |φ′⟩ are states of N qubits. In the following, cx denote the coefficients
of the state |φ⟩ in the computational basis, i.e., |φ⟩ =

∑
x cx |x⟩. We have the theorem

stated below [NKG+22].

Theorem 4.1. The performance of the probabilistic BV algorithm for a pure initial
state is given as

P(|µ⟩) =
1

2N

[
1 + |b|2R(|φ⟩⟨φ|)

+2|b|
∑
x,0

|cx|

(√
1 − |b|2

(
1 − |c2

0|

)
− |b||c0|

)]
. (4.5)

where R is the robustness of coherence in the computational basis.

Proof. [NKG+22] To prove the result stated in Theorem 4.1, let us revisit the action of
the oracle:

|µ⟩ = a |+⟩ |φ′⟩ + b |−⟩ |φ⟩ → |µa⟩ = a |+⟩ |φ′⟩ + b |−⟩ |ψa⟩ . (4.6)

To analyze the final state |µa⟩, we will rearrange it in a more convenient manner. Let’s
consider the computational basis {|x⟩}x. We can express the final state as follows:

|ψa⟩ =
∑

x
cx(−1)a·x |x⟩ , (4.7)

In the given expression, we represent the coefficient of the state |φ⟩ =
∑

x cx |x⟩ as cx.
To simplify the notation, we introduce the symbol 0, which represents the string of N
zeros, denoted as 00...0. Hence,

|µa⟩ = a |+⟩ |φ′⟩ + b |−⟩ (c0 |0⟩⊗N) + b |−⟩

∑
x,0

cx(−1)a·x |x⟩

 (4.8)
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In this context, it is assumed that the dimension of the entire system, including the
oracle register, is 2N+1. Now,

|µa⟩ =
√
|a|2 + |b|2|c0|2 |ψ

′
0⟩ + b

∑
x,0

cx(−1)a·x |ψ′x⟩ (4.9)

with the states,

|ψ′0⟩ =
a |+⟩ |φ′⟩ + bc0 |−⟩ |0⟩⊗N√

|a|2 + |b|2|c0|2
(4.10)

and |ψ′x⟩ = |−⟩ |x⟩ for x , 0. It is important to note that the state |ψ′x⟩ is orthogonal to
the state |ψ′0⟩ for all x , 0. By constructing a new basis using these orthogonal states,
we can express the final state as follows:

|µa⟩ =
∑

x
c′x(−1)a·x |ψ′x⟩ (4.11)

with c′0 =
√
|a|2 + |b|2|c0|2 and c′x = bcx for x , 0. Based on these observations, we can

deduce that for an initial state |µ⟩, the action of the oracle unitary is equivalent to the
unitary U′a =

∑
x(−1)a·x |ψ′x⟩⟨ψ

′
x|, which is diagonal in the basis {|ψ′x⟩}x. Consequently,

we can assess the optimal performance by determining the maximum probability of
distinguishing between the unitaries U′a when applied to the state |µ⟩. Analogous to
Eq. (4.49), we obtain:

P(|µ⟩) =
1 + R′(|µ⟩⟨µ|)

2N , (4.12)

where R′ is the robustness of coherence in the basis {|ψ′x⟩}x. By utilizing the structure
of the states |ψ′x⟩ and leveraging the property of the robustness that it is equal to the l1-
norm of coherence for pure states, we can express this result in terms of the robustness
of coherence R with respect to the computational basis.

P(|µ⟩) =
1

2N

[
1 + |b|2R(|φ⟩⟨φ|)

+2|b|
∑
x,0

|cx|

(√
1 − |b|2

(
1 − |c2

0|

)
− |b||c0|

)]
. (4.13)

This completes the proof of Theorem 4.1. □

As we can observe from Eq. (4.12), in order to achieve the maximum performance
P = 1, it is necessary for the robustness of coherence R(|µ⟩⟨µ|) to be equal to 2N − 1.
Consequently, the state |µ⟩ must be a maximally coherent state in the basis |x⟩x which
implies [NKG+22]

|b|2|cx|
2 =

1
2N ∀x , 0, (4.14)

|a|2 + |b|2|c0|
2 =

1
2N . (4.15)
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Taking into account the relationships |a|2 = 1 − |b|2 and
∑

x,0 cx = 1 − |c0|
2, we can

rewrite the equations as follows:

|b|2|c0|
2 =

1
2N (4.16)

1 − |b|2(1 − |c0|
2) =

1
2N . (4.17)

By solving these two equations for |b| and |c0|, we find that |b| = 1 and c0 =
1
√

2N

[NKG+22]. Moreover, from Eq. (4.14), we can deduce that |cx| =
1
√

2N
for all x. This

implies that in order to achieve maximum performance, the initial state must be of
the form |µ⟩ = |−⟩ |ψMC⟩, where |ψMC⟩ represents a maximally coherent state in the
computational basis [NKG+22].

We can extend the result of Theorem 4.1 to mixed states as well. If we initialize the
BV algorithm in a state of the form ρ =

∑
i pi |µi⟩⟨µi|, where |µi⟩ = ai |+⟩ |φ⟩+bi |−⟩ |ψi⟩,

with |ai|
2 + |bi|

2 = 1 and ⟨00...0|ψi⟩ = 0, the action of the oracle unitary on this state is
[NKG+22]:

U =
∑
x,0

(−1)a·x |−⟩⟨−| ⊗ |x⟩⟨x| + |+⟩⟨+| ⊗ |φ⟩⟨φ| . (4.18)

In this scenario, considering the basis {|+⟩ |φ⟩}∪ {|−⟩ |x⟩}x,0, the action of the unitary U
is equivalent to the action of the oracle unitary on the system qubit in the computational
basis when the oracle register is in the state |−⟩. Thus, based on Eq. (4.49), we can
express the performance as follows [NKG+22]:

P(ρ) =
1 + R′(ρ)

2N (4.19)

in which R′(ρ) is the robustness of coherence in the basis {|+⟩ |φ⟩} ∪ {|−⟩ |x⟩}x.

Let’s compare the probabilistic version of the BV algorithm described earlier with
its classical counterpart. To begin, we define the classical version of the probabilistic
BV algorithm [NKG+22]. In the classical case, the BV algorithm maps the N + 1 bit
string (i, x) to (i ⊕ f (x), x). Assuming that each possible function f is applied with an
equal probability of 1/2N , the performance of the classical BV algorithm can be defined
as the maximal probability of correctly guessing the bit string a when the algorithm is
applied to the bit string (i, x). We have the following Theorem [NKG+22].

Theorem 4.2. The performance of the classical probabilistic BV algorithm is given by

Pc(x) =

 1
2N if x = 0,

1
2N−1 otherwise.

(4.20)

Proof. [NKG+22] To prove the theorem, we will provide the maximal probability for
correctly guessing the bit string a in the classical probabilistic BV algorithm. For the
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case where x = 0, we have f (x) = 0, indicating that the oracle does not provide any
information about the bit string (i, x). Therefore, the probability of success in this case
is equal to 1.

Now, we will prove that for any r ∈ 0, 1 and any string x , 0 with xi ∈ 0, 1, there
are 2N−1 different strings a with ai ∈ 0, 1 such that a · x mod 2 = r. Here, N represents
the length of the strings a and x. We have,

a · x mod 2 =

∑
i

aixi mod 2

 mod 2. (4.21)

As x , 0, there is at least one xl = 1 (l ∈ {1, 2, ..,N}). Therefore,

a · x mod 2 =


∑

i,l

aixi

 mod 2 + al

 mod 2 = r. (4.22)

Indeed, based on the result that for any r ∈ 0, 1 and any string x , 0 with xi ∈ 0, 1, there
are 2N−1 different bit strings a satisfying a ·x mod 2 = r, we can conclude that knowing
(i ⊕ f (x), x) for any x , 0, the success probability of correctly guessing a is equal to
1/2N−1. This means that the classical BV algorithm achieves a success probability of
1/2N−1 for correctly guessing a when applied to the bit string (i, x). □

Indeed, upon comparing Eqs. (4.20) and (4.5), it is evident that in the classical ver-
sion of the algorithm, the performance cannot exceed 1/2N−1 in a single oracle call. On
the other hand, the quantum case allows for superior performance, as optimal perfor-
mance P = 1 can be attained for certain initial states. This highlights the advantage of
the quantum BV algorithm, as it enables a higher probability of successfully determin-
ing the target bit string in a single use of the oracle [NKG+22]. Next, we study how we
can perform the BV algorithm without entanglement.

4.2 Probabilistic Bernstein-Vazirani Algorithm With-
out Entanglement.

It is worth noting the significance of quantum coherence in the performance of the BV
algorithm, as stated in Theorem 4.1. The performance of the algorithm is explicitly
given by Eq. (4.5), where the total initial state |µ⟩ can be entangled or separable. Con-
sidering that entanglement is generally considered a valuable and limited resource in
quantum information theory [HHHH09b], it is indeed reasonable to explore the perfor-
mance of the algorithm in scenarios where there is no entanglement between all N + 1
qubits, both before and after the action of the oracle. By investigating the algorithm’s
behavior in the absence of such entanglement, we can gain insights into its performance
using more readily available resources.

58



59
4.2. PROBABILISTIC BERNSTEIN-VAZIRANI ALGORITHM WITHOUT

ENTANGLEMENT.

Let’s begin by focusing on pure initial states and then extend our discussion to
mixed states later on. To demonstrate that the probabilistic BV algorithm can achieve
performance above 1/2N without entanglement in the initial and final state, we need to
show that the total initial state must have the following form [NKG+22]:

|µ⟩ = |−⟩ |φ⟩ (4.23)

with an N-qubit product state |φ⟩. It is worth noting that any pure initial state compris-
ing N+1 qubits can be expressed as |µ⟩ = a |+⟩ |φ′⟩+b |−⟩ |φ⟩. Following the application
of the oracle unitary Ua, the state adopts the following structure [NKG+22]:

Ua |µ⟩ = a |+⟩ |φ′⟩ + b |−⟩ |ψa⟩ (4.24)

with |ψa⟩ =
∑

x cx(−1)a·x |x⟩. When we trace out the oracle register, the resulting
reduced state of the N-qubit system can be described by the following expression
[NKG+22]:

ρa = |a|2 |φ′⟩⟨φ′| + |b|2 |ψa⟩⟨ψa| . (4.25)

To ensure that the state Ua |µ⟩ remains separable for all bit strings a, we can observe that
it must satisfy one of the following conditions: either |a| = 1 or |b| = 1, or |ψa⟩ = |φ

′⟩ for
all a [NKG+22]. However, in the latter case, the final state Ua |µ⟩ becomes independent
of a, leading to minimal performance. Similarly, if |a| = 1, the performance will also
be minimal. Therefore, the only remaining scenario is when |b| = 1, which implies that
the initial state must be in the form described by equation (4.23) [NKG+22].

Based on the arguments presented above, it becomes clear that the only viable
option to avoid entanglement in both the initial and final states of the algorithm while
maintaining nontrivial performance is to initialize the algorithm in a state of the form
|−⟩ |φ⟩p, where |φ⟩p represents a product state [NKG+22]. This choice of initialization
ensures that the state remains separable throughout the algorithm’s execution, while
still allowing for significant performance.

The action of the unitary Ua on states of the form |−⟩ |φ⟩ can be described as follows
[NKG+22]:

Ua (|−⟩ |φ⟩) = |−⟩ ⊗ (Va |φ⟩) (4.26)

where Va is an N-qubit unitary operation that can be implemented by applying σz

on the i-th qubit conditioned on the value of ai, i.e., Va = ⊗
N
i=1σ

ai
z,i. It is important to

note that Va does not introduce any entanglement in the N-qubit system (as it is local).

In order to ensure that entanglement does not have any influence on the algorithm,
we will also investigate the feasibility of implementing the optimal positive operator-
valued measure (POVM) Ma in Eq. (4.3) without requiring the use of entanglement.
Although the density matrix immediately before applying the POVM consists of a com-
bination of non-entangled states that we must differentiate in order to determine the
bit-string a, it is possible that the execution of the POVM to maximize Eq.(4.3) might
necessitate the use of non-local operations[BDF+99, HBAB19]. In this case, we will
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demonstrate that when qubits are initialized in |µ⟩ = |−⟩ |φ⟩, where |φ⟩ = ⊗N
i=1 |φ

i⟩, it is
feasible to attain the maximum value in Eq. (4.3) using non-entangling measurements
[NKG+22]. To achieve this objective, we investigate a positive operator-valued mea-
sure (POVM) that consists of elements Ma =

⊗N
i=1 M(i)ai, where M(i)ai represents a

single-qubit POVM applied to the i-th qubit. By utilizing the fact that the action of the
oracle on |−⟩ |φ⟩ corresponds to the implementation of the unitary Va = ⊗

N
i=1σ

ai
z,i on |φ⟩,

we can deduce the following relationship [NKG+22]:

1
2N

∑
a

Tr
[
Ua |µ⟩⟨µ|U†a Ma

]
=

N∏
i=1

1
2

∑
ai

Tr
[
σai

z,i |φ
i⟩⟨φi|σai

z,iM
(i)
ai

]
. (4.27)

Considering that P(|µ⟩⟨µ|) corresponds to the maximum value attained by any POVM
on the right-hand side of Eq. (4.3), we can state the following:

P(|µ⟩⟨µ|) ≥ max
{M(i)

ai }

N∏
i=1

1
2

∑
ai

Tr
[
σai

z,i |φ
i⟩⟨φi|σai

z,iM
(i)
ai

]
. (4.28)

Our aim is now to establish that the inequality (4.28) is actually an equality. To demon-
strate this, we can recall that P(|µ⟩⟨µ|) = [1 + R(|φ⟩⟨φ|)]/2N as indicated in Eq. (4.33).
By utilizing the fact that for pure states, the robustness of coherence and the ℓ1-norm of
coherence are equivalent [PCB+16], and applying the properties of the ℓ1-norm of co-
herence [BKZW17], we can establish the validity of the following equality [NKG+22]:

1 + R(|φ⟩⟨φ|) =
N∏

i=1

[1 + R(|φi⟩⟨φi|)]. (4.29)

We can now choose M(i)
ai in a manner that ensures the fulfillment of the following con-

dition for all i ∈ [1,N]:

1
2

max
{M(i)

ai }

∑
ai

Tr[σai
z |φ

i⟩⟨φi|σai
z M(i)

ai
] = P(|−⟩ |φi⟩) (4.30)

=
1 + R(|φi⟩⟨φi|)

2
.

This conclusion is derived from the observation that the BV algorithm, when applied
to a single qubit in a pure state, attains its maximum performance [NKG+22]. This
maximum performance corresponds to the [1 + R(|φi⟩⟨φi|)]/2. Finally, as:

P(|µ⟩⟨µ|) ≥ max
{M(i)

ai }

N∏
i=1

1
2

∑
ai

Tr
[
σai

z,i |φ
i⟩⟨φi|σai

z,iM
(i)
ai

]
≥

N∏
i=1

1
2

max
{M(i)

ai }

∑
ai

Tr
[
σai

z,i |φ
i⟩⟨φi|σai

z,iM
(i)
ai

]
, (4.31)

we deduce [NKG+22]:

P(|µ⟩⟨µ|) ≥
N∏

i=1

1 + R(|φi⟩⟨φi|)
2

=
1 + R(|φ⟩⟨φ|)

2N (4.32)
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The equation P(|µ⟩⟨µ|) = (1 + R(|φ⟩⟨φ|))/2N reveals that the performance of the algo-
rithm, as defined in Eq. (4.3), can be maximized when the system is initially in a pure
product state of N qubits [NKG+22]. Moreover, we have provided a concrete exam-
ple of a non-entangling positive operator-valued measure (POVM) that achieves this
maximum performance. This demonstrates that it is possible to achieve the optimal
result without the need for entanglement in the initial or final state of the algorithm
[NKG+22].

Theorem 4.1 establishes that for states in the form (4.23), the performance of the
algorithm can be given by P(|−⟩ |φ⟩) = [1 + R(|φ⟩)]/2N . This expression remains valid
regardless of whether the N-qubit state |φ⟩ is a product state or exhibits entanglement.
The results obtained so far can further be extended to mixed states, allowing for a com-
prehensive analysis of the algorithm’s performance across a broader range of quantum
states. In this regard, we have the following theorem [NKG+22].

Theorem 4.3. For an arbitrary state σ,

P (|−⟩⟨−| ⊗ σ) =
1 + R(σ)

2N , (4.33)

Proof. [NKG+22] The robustness of asymmetry of a given density matrix ρ is a mea-
sure that quantifies the degree of asymmetry present in the matrix. It is the minimum
amount of noise that needs to be added to ρ in order to make it symmetric which is
define as below: [PCB+16]:

RA(ρ) = min
τ

{
s ≥ 0 :

ρ + sτ
1 + s

∈ F

}
, (4.34)

In this context, the group F represents the set of symmetric states under a specific group
action. The robustness of asymmetry, as discussed in [PCB+16], can be mathematically
expressed through a semidefinite program (SDP). Interestingly, the resource theory of
quantum coherence can be seen as a specific case of the resource theory of asymmetry
when considering the symmetry associated with the U(1) group [PCB+16]. This insight
allows us to extend the SDP formulation originally developed for the robustness of
asymmetry and adapt it to quantify the robustness of coherence. By formulating an
SDP maximization problem over a variable X, as described in [PCB+16, NBC+16], we
can effectively quantify the robustness of coherence and explore its properties within
the framework of resource theories. The SDP can be expressed as follows:

R(ρ) = max
X

[Tr(ρX) − 1] (4.35)

X ≥ 0 (4.36)
E(X) = I (4.37)

where E(X) = 1
d
∑

a uaXu†a and ua =
∑

x ei 2π
d ax |x⟩⟨x|. To establish the validity of the

expression in Eq. (4.33), we aim to demonstrate that P(|−⟩⟨−| ⊗ ρ) is bounded from
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below and above by [1 + R(ρ)]/d, where d = 2N . As mentioned earlier, the oracle
unitaries Ua act on states of the form |−⟩⟨−| ⊗ ρ in the following manner:

Ua |−⟩⟨−| ⊗ ρU†a = |−⟩⟨−| ⊗ VaρV†a (4.38)

with the N-qubit unitaries Va = ⊗
N
i=1σ

ai
z,i. The performance of the probabilistic BV

algorithm can be represented by the following expression:

P(|−⟩⟨−| ⊗ ρ) = max
{Ma}

1
d

∑
a

Tr
(
VaρV†a Ma

)
. (4.39)

In order to verify the equation (4.33), we will first show that:

max
{Ma}

1
d

∑
a

Tr
(
VaρV†a Ma

)
≥

1 + R(ρ)
d

. (4.40)

For this, we define the following operators:

M′a =
1
d

VaXV†a , (4.41)

where X is the operator maximizing the SDP in Eqs. (4.37). The positivity of the
operators M′a follows from the positivity of X. Additionally, as E(X) = I, we obtain:

1
d

d∑
k=1

Xx,x = 1, (4.42)

where Xx,y are the components of the matrix X. Therefore, the diagonal elements of X
are all equal to 1. It is worth noting that 1

d
∑

a ei 2π
D a·(x−x′) = δx,x′ due to the orthogonality

of the exponentials, and since Va is a diagonal unitary, we can write:∑
a

M′a =
1
d

∑
f

VaXV†a (4.43)

=
∑
x,y

1
d

∑
a

ei 2π
D a·(x−y)Xx,y |x⟩⟨y| = I.

Therefore {M′a} forms a POVM. Thus, we must have

1
d

∑
a

Tr
(
VaρV†a M′a

)
=

1
d

∑
a

1
d

Tr
(
VaρV†aVaXV†a

)
(4.44)

=
1
d

Tr(ρX) =
1 + R(ρ)

d

≤ max
{Ma}

1
d

∑
a

Tr
(
VaρV†a Ma

)
.

Above we used the definition of the robustness of coherence to derive the expression
Tr(ρX) = 1 + R(ρ).
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We will now indicate that the performance is also bounded above by
(
1 + R(ρ)

)
/d.

This can be inferred from the definition of the robustness of coherence, which implies
that

ρ = [1 + R(ρ)]σ − R(ρ)τ, (4.45)

with some quantum state τ and some incoherent state σ. Thus, for an arbitrary POVM
{Ma} we have, ∑

a
Tr

(
VaρV†a Ma

)
= [1 + R(ρ)]

∑
a

Tr
(
VaσV†a Ma

)
(4.46)

− R(ρ)
∑

a
Tr

(
VaτV†a Ma

)
≤ [1 + R(ρ)]

∑
a

Tr
(
VaσV†a Ma

)
.

Since σ is an incoherent state, we have VaσV†a = σ, which implies that∑
a

Tr
(
VaσV†a Ma

)
= Tr

σ∑
a

Ma

 = 1. (4.47)

Hence, we can derive the inequality

max
{Ma}

1
d

∑
a

Tr
(
VaρV†a Ma

)
≤

1 + R(ρ)
d

. (4.48)

From Eqs. (4.44) and (4.48) we have

max
{Ma}

1
d

∑
a

Tr
(
VaρV†a Ma

)
=

1 + R(ρ)
d

. (4.49)

This completes the proof of Eq. (4.33).

□

The relation given in Eq. (4.33) provides a meaningful operational interpretation
for the robustness of coherence of a quantum state ρ in the context of quantum compu-
tation. It implies that the robustness of coherence directly impacts the performance of
the probabilistic Bernstein-Vazirani algorithm. The higher the robustness of coherence,
we will have the greater potential for successful computation using the algorithm. This
observation highlights the significance of coherence as a valuable resource for quantum
computational tasks and demonstrates the intimate connection between coherence and
the computational capabilities of quantum systems [NKG+22].

It is worth noting that, in general, the POVM that achieves the optimal performance
for mixed states, as expressed in Eq. (4.33), may require the implementation of entan-
glement [NKG+22].

In the following section we study the role of purity as a resource in the algorithm.
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4.3 Purity in Probabilistic Bernstein-Vazirani Algorithm

In the subsequent analysis, we aim to determine the optimal performance of the Bernstein-
Vazirani (BV) algorithm when subjected to noise [NKG+22]. To achieve this, we
consider a scenario where the initial state of the algorithm exhibits a bounded purity.
Specifically, we impose the condition Tr(ρ2) ≤ γ, which places a restriction on the
purity of the state. In light of this constraint, we can characterize the optimal initial
states through the theorem provided below [NKG+22].

Theorem 4.4. Having the oracle register in the state |−⟩, the optimal initial state of the
N-qubit system maximizing the performance of the BV algorithm with bounded purity
Tr[ρ2] ≤ γ is given by

ρmax,γ =
d

2λ1
|ψMC⟩⟨ψMC| +

λ2

2λ1
I (4.50)

with

λ1 =
d
√

1 − 1
d

2
√
γ − 1

d

, λ2 =

√
1 − 1

d√
γ − 1

d

− 1, (4.51)

and |ψMC⟩ being a maximally coherent state in the computational basis. The optimal
performance in this case is given as

P(ρmax,γ) =
1
d
+

d − 1
2λ1

(4.52)

where d = 2N .

Proof. [NKG+22] In order to prove the results outlined in the Theorem 4.4, we begin
by proving that for any pseudo-pure maximally coherent state, the robustness of coher-
ence is equivalent to the ℓ1-norm of coherence. The ℓ1-norm of coherence, denoted as
Cℓ1 (ρ), can be expressed as the sum of absolute values of off-diagonal elements of the
density matrix ρ [BCP14b]. Let us consider the pseudo-pure maximally coherent state
denoted as ρs, which we define it as follows:

ρs = p |ψMC⟩ ⟨ψMC| + (1 − p)
I

d
, (4.53)

in which d is the dimension of the Hilbert space, 0 ≤ p ≤ 1. For Cℓ1 (ρs)we have:

Cℓ1 (ρs) =
∑

x,y,x,y

|ρs,xy| = p(d − 1). (4.54)

Here, ρs,xy represents the elements of the density matrix of ρs in the basis |x⟩. To
evaluate the robustness of coherence R(ρs), we utilize the semidefinite program (SDP)
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formulation of the robustness of coherence. Therefore we have:

R(ρs) = max
X

Tr(ρsX) − 1 (4.55)

=

[
p ⟨ψMC|X∗|ψMC⟩ + (1 − p)

1
d

Tr(X∗)
]
− 1,

where X∗ is the matrix maximizing the SDP. Based on Equation (4.42), we observe that
the diagonal elements of the matrix X are identical and equal to 1. Furthermore, since
X is a positive matrix, we can represent it as X∗ ≡ dρx, where ρx denotes a quantum
state. This enables us to derive the following expression:

max
X

Tr(ρsX) − 1 = dp ⟨ψMC| ρx |ψMC⟩ − p. (4.56)

The constraint on X∗ only requires that the diagonal elements of ρx are equal. In Equa-
tion (4.56), the term ⟨ψMC| ρx |ψMC⟩ is maximized when we consider ρx to be the maxi-
mally coherent state |ψMC⟩⟨ψMC|, which satisfies the requirement for X∗. Therefore, we
can conclude that X∗ = d |ψMC⟩⟨ψMC| maximizes the semidefinite program (SDP) for
ρs. Thus

R(ρs) = p(d − 1) = Cℓ1 (ρs). (4.57)

We proceed by applying the Lagrange multipliers method to maximize the ℓ1-norm of
coherence while considering a fixed amount of purity. The purity of the density matrix
ρ can be expressed in terms of the absolute values of its components |ρi, j| as shown
below:

Tr(ρ2) =
∑
i, j

|ρi, j|
2. (4.58)

The objective is to maximize the ℓ1-norm of coherence while maintaining a fixed purity
of γ. Instead of directly maximizing Cℓ1 , we maximize the function g =

∑
i, j |ρi, j| =

Cℓ1 +1 under the constraint
∑

i= j ρi, j = 1. This constraint ensures that we are effectively
maximizing the Cℓ1 function.

Therefore, our maximization problem is as follows:

• Constraint 1: C1 =
∑

i, j |ρi, j|
2 − γ = 0.

• Constraint 2: C2 =
∑

i= j ρi, j − 1 = 0.

• λ1 and λ2 are the Lagrange multipliers corresponding to C1 and C2 constraints
respectively.

• The function g =
∑

i, j |ρi, j| is the objective function that we aim to maximize with
respect to the variables |ρi, j|.

It is important to note that we have two additional constraints to consider: the Her-
miticity and positivity of the density matrix ρ. Although these constraints are not in-
corporated directly during the maximization process, it is essential to verify them for
the final maximizing state to ensure its validity.
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By applying the Lagrange multipliers method, we derive the following set of equa-
tions:

dg
d|ρi, j|

− λ1
dC1

d|ρi, j|
− λ2

dC2

d|ρi, j|
= 0. (4.59)

Simplifying these equations and taking into account the constraints, we obtain the fol-
lowing set of equations:

for i , j, 1 − 2λ1|ρi, j| = 0, (4.60)
for i = j = k, 1 − 2λ1|ρk,k | + λ2 = 0, (4.61)

C1 =
∑
i, j

|ρi, j|
2 − γ = 0, (4.62)

C2 =
∑
i= j

|ρi, j| − 1 = 0. (4.63)

Solving these equations for |ρi, j|, λ1 and λ2 results in

i , j, |ρi, j| =
1

2λ1
, (4.64)

i = j = k, |ρk,k | =
1 + λ2

2λ1
. (4.65)

Considering a d-dimensional system, we obtain,

λ2 =

√
1 − 1

d√
γ − 1

d

− 1, (4.66)

λ1 =
d
√

1 − 1
d

2
√
γ − 1

d

. (4.67)

Since |ρi, j| = |ρ j,i| and we have the freedom to choose the phases in ρi, j = |ρi, j|eiφi, j , we
can select φi, j such that ρmax,γ becomes Hermitian.

Using the obtained values of ρi, j, we can represent the maximizing state ρmax,γ in
the following form:

ρmax,γ =
d

2λ1
|ψMC⟩⟨ψMC| +

λ2

2λ1
I. (4.68)

As λ1, λ2 ≥ 0 and d
2λ1
+ dλ2

2λ1
= 1, the state ρmax,γ is a valid density matrix that maximizes

the ℓ1-norm of coherence under the constraint of bounded purity γ. Additionally, the
maximum amount of coherence achieved is

Cℓ1,max =
d2 − d

2λ1
. (4.69)
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Since we have previously shown that the ℓ1-norm of coherence is equal to the robust-
ness of coherence for any pseudo-pure maximally coherent state, and that R(ρ) ≤ Cℓ1 (ρ)
for any ρ [PCB+16, NBC+16], we can conclude that the state ρmax,γ given by Eq. (4.68)
also maximizes the robustness of coherence with the same value as Cℓ1,max, subject to
the constraint of purity Tr(ρ2) = γ:

Rmax =
d(d − 1)

2λ1
. (4.70)

□

As we can see, the state that maximizes the robustness of coherence for a given
bounded purity is a pseudo pure state, which can be prepared using NMR techniques
[LP01, CFH97, SHC00]. Furthermore, if we choose |ψMC⟩ to be a product state, the re-
sulting state ρmax,γ will not exhibit entanglement. Since the performance P(ρ) is mono-
tonically related to the robustness of coherence, we can conclude that NMR quantum
computing is a suitable platform for implementing the probabilistic BV algorithm.

In the next section we focus on the connection between multipartite entanglement
and coherence and we will discuss how excessive entanglement can be detrimental to
the algorithm’s performance.

4.4 Multipartite Entanglement and Coherence

As we have observed, achieving optimal performance in the probabilistic BV algorithm
does not necessitate the presence of entanglement. In fact, by using the initial state
|−⟩ |+⟩⊗N , it is possible to perfectly learn the bit string a with just a single application
of the oracle unitary. However, we now aim to investigate more the role of multi-
partite entanglement among the N system qubits and its influence on the algorithm’s
performance. Specifically, we will investigate the relationship between the robustness
of coherence and geometric entanglement for N-qubit systems. Surprisingly, our anal-
ysis reveals that a significant amount of geometric entanglement in the system state can
actually be detrimental to the performance of the algorithm [NKG+22].

For this, we focus on N-qubit W-states [DVC00]:

|ΨW⟩ =
1
√

N
(eiφ1 |ψ1⟩ |ψ2⟩ . . . |ψ

⊥
N⟩ + eiφ2 |ψ1⟩ . . . |ψ

⊥
N−1⟩ |ψN⟩

+ . . . + eiφN |ψ⊥1 ⟩ |ψ2⟩ . . . |ψN⟩), (4.71)

where |ψi⟩ and |ψ⊥i ⟩ are orthogonal. It is worth noting that for N = 3, the W-states
are the only type of states that can achieve maximal geometric entanglement [TWP09].
We have the following theorem regarding the connection of the W-state class of entan-
glement and coherence [NKG+22].
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Theorem 4.5. W-states with the number of particles N ≥ 3 can never be a maximally
coherent state.

Proof. [NKG+22] Let us consider the most general form of a W-state in a given N-
qubit system. [DVC00]:

|ΨW⟩ =
1
√

N
(eiφ1 |ψ1⟩ |ψ2⟩ .. |ψ

⊥
N⟩ + eiφ2 |ψ1⟩ .. |ψ

⊥
N−1⟩ |ψN⟩

+... + eiφN |ψ⊥1 ⟩ |ψ2⟩ .. |ψN⟩)

=
1
√

N
[|ψ1⟩ (eiφ1 |ψ2⟩ .. |ψ

⊥
N⟩ + .. + eiφN−1 |ψ⊥2 ⟩ .. |ψN⟩)

+ |ψ⊥1 ⟩ e
iφN |ψ2⟩ .. |ψN⟩] (4.72)

with {|ψi⟩ , |ψ
⊥
i ⟩}

N
i=1 forming a basis and φi are some phases. Now, we define

|Φ⟩N−1 =
1

√
N − 1

(
eiφ1 |ψ2⟩ . . . |ψ

⊥
N⟩ + . . . + eiφN−1 |ψ⊥2 ⟩ . . . |ψN⟩

)
,

|Φ⊥⟩N−1 = eiφN |ψ2⟩ .. |ψN⟩ . (4.73)

Note that the state |Φ⊥⟩N−1 is orthogonal to the state |Φ⟩N−1. This implies that the state
|ΨW⟩ can be written as:

|ΨW⟩ =

√
N − 1
√

N
|ψ1⟩ |Φ⟩N−1 +

1
√

N
|ψ⊥1 ⟩ |Φ

⊥⟩N−1 . (4.74)

Substituting

|ψ1⟩ = a |0⟩ + b |1⟩ , (4.75)
|ψ⊥1 ⟩ = b∗ |0⟩ − a∗ |1⟩ (4.76)

with |a|2 + |b|2 = 1 we further obtain

|ΨW⟩ = |0⟩
 √N − 1
√

N
a |Φ⟩N−1 +

1
√

N
b∗ |Φ⊥⟩N−1

 (4.77)

+ |1⟩
 √N − 1
√

N
b |Φ⟩N−1 −

1
√

N
a∗ |Φ⊥⟩N−1

 .
For any N-qubit maximally coherent state |ψmax,N⟩, it can be represented as:

|ψMC,N⟩ =
1
√

2

(
|0⟩ |ψMC,N−1⟩ + |1⟩ |ψ′MC,N−1⟩

)
, (4.78)

where |ψMC,N−1⟩ and |ψ′MC,N−1⟩ are (N−1)-qubit maximally coherent states. Comparing
Eqs. (4.77) and (4.78), it can be observed that in order for a W-state to be maximally
coherent, it is necessary for the (unnormalized) states

√
N−1
√

N
a |Φ⟩N−1 +

1
√

N
b∗ |Φ⊥⟩N−1
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and
√

N−1
√

N
b |Φ⟩N−1 −

1
√

N
a∗ |Φ⊥⟩N−1 to have equal norms. By evaluating the norms of

these states and setting them equal to each other, we obtain:

(N − 1)|a|2 + |b|2 = (N − 1)|b|2 + |a|2. (4.79)

This equation implies that |a|2 = |b|2. Similar reasoning can be applied to other qubits
in the W-state. Therefore, in order for |ΨW⟩ to be a maximally coherent state, it is
necessary to satisfy:

|ψi⟩ =
|0⟩ + eiθi |1⟩
√

2
, (4.80)

|ψ⊥i ⟩ =
|0⟩ − eiθi |1⟩
√

2
(4.81)

with some phases θi. Now we consider an N-qubit W-state given by:

|W⟩ =
1
√

N

N∑
j=1

eiφ j |(+)N−1, (−) j⟩ (4.82)

with |(+)N−1, (−) j⟩ = |+⟩1 |+⟩2 ... |−⟩ j ... |+⟩N and |±⟩ j =
|0⟩±eiθ j |1⟩
√

2
. We also define

|1k⟩ = eiθk |1⟩ and |0k⟩ = |0⟩. Our goal is to assess whether the state |W⟩ qualifies
as a maximally coherent state in the computational basis. If it meets the criteria of a
maximally coherent state, we would expect all the states in the computational basis to
have equal probabilities. Since the vectors |(0)N−1, 1 j⟩ = |0⟩ 1 |0⟩ 2... |1⟩ j... |0⟩N rep-
resent the same state in the computational basis but with different phases, we expect
that if |W⟩ is a maximally coherent state, these vectors should have coefficients with
the magnitude of 1

√
2N

when |W⟩ is expanded in the computational basis. Expanding
|W⟩ in the computational basis, we denote the coefficient of the state |x⟩ with f (|x⟩) i.e.
|W⟩ =

∑
x f (|x⟩) |x⟩. Let us first evaluate f (|(0)N−1, 1k⟩) and f (|0⟩⊗N):

f (|0⟩⊗N) =
1
√

N2N

N∑
j=1

eiφ j , (4.83)

f (|(0)N−1, 1k⟩) =
1
√

N2N
(

N∑
j=1

eiφ j − 2eiφk ). (4.84)

If |W⟩ is a maximally coherent state, we expect the following condition to hold:

f (|0⟩⊗N) =
1
√

N2N

N∑
j=1

eiφ j =
eiα0

√
2N
, (4.85)

f (|(0)N−1, 1k⟩) =
1
√

N2N

 N∑
j=1

eiφ j − 2eiφk

 = eiαk

√
2N
. (4.86)
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For some αk and α0. Since only the relative phases are important, we can choose
α0 = 0, resulting in the following equations:

N∑
j=1

eiφ j =
√

N, (4.87)

N∑
j=1

eiφ j − 2eiφk =
√

Neiαk . (4.88)

After solving this set of equations for all φk, we can determine the values of the phases.
By substituting the first equation into the second equation and simplifying, we obtain:

√
N

1 − eiαk

2
= eiφk

⇐⇒

√
N
2

√
1 − cosαke

i arctan
(
− sinαk
1−cosαk

)
= eiφk (4.89)

These equations imply that cosαk = 1 − 2
N and

φk = ± arctan
| sinαk |

|1 − cosαk |
= ± arctan

√
N − 1. (4.90)

Now, let us calculate f (|0⟩⊗N−2 ⊗ |1⟩ ⊗ |1⟩):

f (|0⟩⊗N−2 ⊗ |1⟩ ⊗ |1⟩) =
1
√

N2N

 N∑
j=1

eiφ j − 2eiφN−1 − 2eiφN

 . (4.91)

If the |W⟩ state is a maximally coherent state, then the coefficient 1
√

2N−1
in front of each

computational basis state |(0)N−1, 1 j⟩ should also be equal to eiθ
√

2N
for some phase θ.

Substituting φk = ± arctan
√

N − 1 and
∑N

j=1 eiφ j =
√

N in Eq. (4.91) and equating the
coefficient with eiθ

√
2N

, we have:

1
√

2N

[
1 −

2
√

N

(
e±i arctan

√
N−1 + e±i arctan

√
N−1

)]
=

eiθ

√
2N
. (4.92)

Simplifying the above equation, we obtain:

1 −
2
√

N

(
e±i arctan

√
N−1 + e±i arctan

√
N−1

)
= eiθ. (4.93)

The last equation does not have any solutions for N ∈ N and N > 2. This implies that
the magnitudes of the coefficients of the states |0⟩⊗N−2 ⊗ |1, 1⟩ and |(0)N−1, 1k⟩ when we
expand the |W⟩ state in the computational basis cannot be the same and equal to 1

√
2N

.
Hence, it is clear that a W-state cannot be maximally coherent for N > 2.

□
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This observation implies that when considering initial states of the form |−⟩ |ψ⟩,
there exists a threshold on the geometric entanglement of |ψ⟩. Above this threshold,
it is not possible to achieve the optimal performance P = 1 in the probabilistic BV
algorithm [NKG+22]. This result shares a similar spirit with the findings presented
in [GFE09], which demonstrate that quantum states can possess too much entangle-
ment to be effectively utilized for quantum computation.

We conclude this chapter by generalizing the BV algorithm for an arbitrary number
of qudits.

4.5 Probabilistic BV Algorithm for Qudits

In the BV algorithm using qudits, the objective is to determine the string k with ki ∈

1, ...,D encoded in the linear function [NKG+22].

f (x) = k · x mod D =
N∑

i=1

kixi mod D, (4.94)

where x = (x1, x2, ..., xN) with xi ∈ 1, ...,D. Similarly to the qubit version of the
algorithm, we assume that the function is encoded into an oracle unitary denoted as
Ua, which acts as [NKG+22]

Uk | j⟩ |x⟩ = | j + f (x) mod D⟩ |x⟩ (4.95)

with j ∈ {0, ...,D − 1}. As we will see shortly, there will be no entanglement between
the oracle register and the qudit system when the oracle unitary is applied to a state of
the form |−D⟩ |φ⟩, where

|−D⟩ =
1
√

D

D−1∑
k=0

e−i 2π
D k |k⟩ , (4.96)

and |φ⟩ is a product state of N qudits. Furthermore, we can evaluate the performance of
the protocol when it is applied to states of the form |−D⟩⟨−D| ⊗ρ as follows [NKG+22]:

P(|−D⟩ ⟨−D| ⊗ ρ) =
1 + R(ρ)

d
, (4.97)

where R(ρ) is the robustness of coherence in the computational basis and d = DN .

By utilizing the relationship described in Eq. (4.97), it can be shown that when the
state of the oracle register is |−D⟩, the optimal state of the system qudits that maximizes
the performance P(ρ) with a bounded purity constraint of Tr(ρ) = γ takes the following
form [NKG+22]:

ρ = p |ψMC⟩D⟨ψMC| + (1 − p)
I

DN (4.98)
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with 0 ≤ p ≤ 1 and |ψMC⟩D is an N-qudit maximally coherent state. The proofs for
the aforementioned results in the case of qudits are very similar to the proofs presented
earlier for qubits [NKG+22].

First, we will present a proof for the claim that in the probabilistic BV algorithm
with qudits, if the oracle register is initially prepared in the state |−D⟩, there will be no
entanglement between the oracle register and the system qudits after the action of the
oracle. Additionally, we will show that the unitary Uk acts as a non-entangling gate
[NKG+22].

Consider an arbitrary vector |x⟩ in the computational basis. We can write:

Uk |−D⟩ |x⟩ =
1
√

D

D−1∑
j=0

e−i 2π
D jUk | j⟩ |x⟩ . (4.99)

The oracle unitary acts as Uk | j⟩ |x⟩ = | j + f (x) mod D⟩ |x⟩ with f (x) = k · x =∑N
i=1 kixi. Thus, we can write:

Uk |−D⟩ |x⟩ =
1
√

D

D−1∑
j=0

e−i 2π
D j | j + f (x) mod D⟩ |x⟩

= ei 2π
D f (x) 1

√
D

D−1∑
j=0

e−i 2π
D jUk | j⟩ |x⟩

= ei 2π
D f (x) |−D⟩ |x⟩ . (4.100)

Thus, we observe that if the state of the oracle register is |−D⟩, the action of the ora-
cle unitary U k corresponds to a non-entangling unitary transformation on the system
qudits.

Now we prove the result stated in Eq. (4.97) [NKG+22]. Similar to the qubit case,
we can evaluate the robustness of coherence using a semidefinite program, as shown
in Eqs. (4.37). However, In contrast to the qubit setting, we have E(X) = 1

d
∑

k ukXu†k
and uk =

∑
x ei 2π

d kx |x⟩⟨x|.

In order to establish the expression in Eq. (4.97), we will demonstrate that P(|−D⟩⟨−D|⊗

ρ) is bounded both from below and from above by [1 + R(ρ)]/d. As previously dis-
cussed, when the oracle register is in the state |−D⟩, the action of the oracle unitaries
U k on states of the form |−D⟩⟨−D| ⊗ ρ can be described as follows:

Uk |−D⟩⟨−D| ⊗ ρUk = |−D⟩⟨−D| ⊗ VkρV†k (4.101)

with the N-qudit unitaries

Vk =

D−1∑
j=0

ei 2π
D k1 j | j⟩⟨ j| ⊗

D−1∑
j=0

ei 2π
D k2 j | j⟩⟨ j| ⊗ . . . ⊗

D−1∑
j=0

ei 2π
D kN j | j⟩⟨ j| . (4.102)
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In case of qubits this unitary will become Vk = ⊗
N
i=1σ

ki
z,i and ki ∈ {0, 1} [KMS16]. The

performance of the probabilistic BV algorithm can be represented by the following
expression:

P(|−D⟩⟨−D| ⊗ ρ) = max
{Mk}

1
d

∑
k

Tr
(
VkρV†k Mk

)
. (4.103)

Next, we will indicate that:

max
{Mk}

1
d

∑
k

Tr
(
VkρV†k Mk

)
≥

1 + R(ρ)
d

. (4.104)

To accomplish this, we introduce the following operators:

M′k =
1
d

VkXV†k. (4.105)

It should be noted that the operator X is the one that maximizes the SDP in Eqs. (4.37).
Additionally, the operators M′k are positive because X is positive. Moreover, since
E(X) = I, we obtain the following relation:

1
d

d∑
k=1

Xx,x = 1 (4.106)

Here, Xx,y denotes the components of the matrix X. Consequently, the diagonal ele-
ments of X are identical and equal to 1, which can be expressed as Xx,x = 1 for all x.
Note that as 1

d
∑

k ei 2π
D k·(x−x′) = δx,x′ and Vk are diagonal unitaries, we have∑

k

M′k =
1
d

∑
f

VkXV†k (4.107)

=
∑
x,y

1
d

∑
k

ei 2π
D k·(x−y)Xx,y |x⟩⟨y| = I.

Therefore, the operators M′k form a valid set of positive operator-valued measures
(POVM). As a result, we must have:

1
d

∑
k

Tr
(
VkρV†k M′k

)
=

1
d

∑
k

1
d

Tr
(
VkρV†kVkXV†k

)
(4.108)

=
1
d

Tr(ρX) =
1 + R(ρ)

d

≤ max
{Mk}

1
d

∑
k

Tr
(
VkρV†k Mk

)
.

Above we applied the definition of the robustness of coherence to derive the equation
Tr(ρX) = 1 + R(ρ).

Now, we will prove that the performance is also upper bounded by
(
1 + R(ρ)

)
/d.

Based on the definition of the robustness of coherence, we can deduce that

ρ = [1 + R(ρ)]σ − R(ρ)τ, (4.109)
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with some quantum state τ and some incoherent state σ. Therefore, for any POVM
Ma, we have the following inequality:∑

k

Tr
(
VkρV†k Mk

)
= [1 + R(ρ)]

∑
k

Tr
(
VkσV†k Mk

)
(4.110)

− R(ρ)
∑

k

Tr
(
VkτV†k Mk

)
≤ [1 + R(ρ)]

∑
k

Tr
(
VkσV†k Mk

)
.

As σ is an incoherent state, it holds VkσV†k = σ and

∑
k

Tr
(
VkσV†k Mk

)
= Tr

σ∑
k

Mk

 = 1. (4.111)

Thus, we arrive at the inequality which demonstrates that the performance of the prob-
abilistic BV algorithm, when applied to states of the form P(|−D⟩⟨−D| ⊗ ρ), is upper
bounded by 1+R(ρ)

d :

max
{Mk}

1
d

∑
k

Tr
(
VkρV†k Mk

)
≤

1 + R(ρ)
d

. (4.112)

From Eqs. (4.108) and (4.112) we have

max
{Mk}

1
d

∑
k

Tr
(
VkρV†k Mk

)
=

1 + R(ρ)
d

. (4.113)

This completes the proof of Eq. (4.97).

4.6 Discussion

In this chapter, we have introduced and investigated a probabilistic version of the
Bernstein-Vazirani algorithm where the goal is to accurately unveil a bit string a en-
coded within an oracle unitary. We have examined the algorithm’s performance across
all pure initial states, measured by its highest probability of correctly guessing the en-
coded bit string. We showed that there exists a direct relationship between performance
and the amount of the coherence resource in the initial state. We further indicated that
excessive multipartite entanglement can hinder the algorithm’s ability to achieve peak
performance.

Our approaches are applicable in quantum computation scenarios that involve mixed
initial states. While analyzing the efficiency of the probabilistic Bernstein-Vazirani al-
gorithm under noisy conditions, we observe that pseudo pure states offer superior per-
formance while we have access to a constrained amount of purity. This observation
carries significant implications for NMR-based quantum computation, suggesting that
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NMR serves as an apt framework for implementing the probabilistic Bernstein-Vazirani
algorithm.

In the next 2 chapters, we explore quantum resources in the circuit models with
one control qubit, specifically for the task of computing the normalized trace of a uni-
tary, we will illustrate that the model can achieve speedup over any known classical
algorithm, even with arbitrary small multipartite entanglement, coherence, and general
quantum correlations [NKG+22].
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Chapter 5

Resources in Restricted Models
of Quantum Computation based
on Coherently Controlled
Circuits

In this chapter, we examine quantum resources in restricted computational models.
These models are based on circuits in which a single qubit coherently control unitary
operation are applied on n qubits as shown in Fig. 5.1. One may consider two cases
in these circuits: (i) when the circuit’s gates are noiseless but the initial state of the
qubits except the one controlling the unitaries are noisy, and the other case is (ii) when
the initial state of the qubits is noiseless but the gates are noisy. Because in all our
circuits in this chapter, the qubit controlling the gates is the only measured, we call it
the ”measured register”. Apart when explicitly mentioned, we call the rest of the qubits
the ”data register”.

For the first case, we study the quantum resources within the framework of deter-
ministic quantum computation with one clean qubit (DQC1) [KL98]. This framework
encompasses the circuits with noiseless unitary gates, one clean qubit (i.e. a qubit
initialized in a pure state), and the state of the rest of the qubits being the maximally
mixed state. Here we consider a class of DQC1 circuits where an n qubit unitary U is
controlled by the clean qubit and by measuring this qubit, the goal is to find the normal-
ized trace of U (i.e. Tr U/2n). To date, there is no known efficient classical algorithm
for solving this problem [DFC05]. Several studies have attempted to understand the
source of quantum speedup in this task by examining the properties of the quantum
states used in the algorithm [DFC05, DSC08, DVB10, MEKP16a]. In a study by Datta
et al. [DFC05], the level of bipartite entanglement in the final state of the DQC1 al-
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gorithm was analyzed. The authors specifically examined the entanglement generated
by the algorithm in various bipartitions, using the negativity as a measure of entan-
glement [idZHSL98, VW02]. The authors of [DFC05] concluded that negativity, as a
measure of entanglement, is bounded by a constant that is independent of the number
of qubits. This finding has led to the suggestion that other forms of quantum correla-
tions, such as quantum discord [MBC+12, Str15], may be responsible for the observed
speedup. Specifically, it has been observed that a typical instance of the algorithm ex-
hibits non-zero quantum discord in a certain bipartition [DSC08]. Nevertheless, there is
evidence indicating that exponential speedup can still occur even without the presence
of quantum discord [DVB10]. Additionally, it has been proposed that the performance
of trace estimation using DQC1 is more closely tied to the quantum coherence of the
registers in the algorithm [MEKP16a]. We discover that the algorithm for finding the
normalized trace of a unitary using these circuits, has the potential to achieve speedup
compared to any known classical algorithm, even when there is only a minimal amount
of multipartite entanglement, coherence, and general quantum correlations [NKG+22].
This finding highlights the robustness and power of the one clean qubit model as a
quantum computing paradigm. It suggests that even with limited quantum resources,
significant computational advantages can be attained.

The DQC1 model has the property that all but one of the qubits are initialized in a
maximally mixed state while exhibiting a computational advantage. This feature made
us wonder if by modifying the structure of these circuits, we could design circuits that
are inherently resilient to noise while preserving a quantum advantage. By inherently
resilient, we mean that the circuits provide reliable algorithm outcomes despite having
noise everywhere: not only in the initial state but also in all the gates applied. Partic-
ularly, we ask that the noiseless outcome of the algorithm can be recovered at a cost
(in the number of algorithm runs) that is not exponential in the circuit’s characteristics
(i.e. its total number of qubits, or algorithm depth which is the length of the longest
sequence in the algorithm). It would lead to a way to fight the noise that is scalable, as
its total cost in resources would not grow exponentially.

The motivation behind our question is that error correction is the only known ap-
proach to resist noise in arbitrary circuits that are scalable (for relatively general as-
sumptions about the noise). However, it is challenging to implement as it requires gates
to have error rates below very demanding threshold, making it impractical for the near
term [TBG17, BMSSO18, MZO20, SQC+21, CBB+22, BMKT22, QCL21, Koc21].
Finding possible alternatives to error correction, ideally leading to less stringent re-
quirements is then an interesting question. Note that other techniques than error cor-
rection do exist to resist the noise. They are usually called error mitigation. However
for most noise models and circuit structures, these techniques suffer from scalability
issues, as they require exponentially increasing resources with the size of the quantum
circuit [CBB+22, QFK+22]. Research in this area suggests that, without the use of
quantum error correction, achieving consistent and reliable algorithm outputs in sce-
narios that are classically intractable is not feasible under realistic noise conditions.
However, recent studies have shown that even noisy quantum computers can surpass
classical computers in certain oracle-based tasks [CCHL22]. A major challenge is that,
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for most noise models, the fidelity of the output state declines exponentially as the num-
ber of gates increases [ZSW20]. This usually means that obtaining an accurate estimate
of any expectation value would require an exponentially large number of algorithm ex-
ecutions, undermining the potential for exponential speedup. Other approaches may be
more scalable but generally depend on specific noise models, not experimentally mo-
tivated [TLTC23], require information about the entanglement spectrum of quantum
states [EMG+22], or involve potentially high algorithmic complexity [SMO22]. Con-
sidering these along with our motivation and some technical reasons (which we get into
them in detail in this chapter) leads us to study the coherently controlled circuits with
one control qubit initialized by pure states. These class of circuits obviously belong to
the aforementioned case (ii) and they are called Hadmard tests.

There, we show that by assuming a noise model introducing only bit-flip which
is inspired by existing superconducting cat qubits [PSJG+20], one can design a noisy
restricted class of Hadamard tests, involving specific entangling operations and non-
Clifford 1 gates that are resilient to noise in an asymptotic sense [FAND+23]. Loosely
speaking, if the noise is only composed of bit-flips [NC10], the noise will corrupt the
algorithm outcomes as a function of the algorithm size yet in a manner that a polyno-
mial number of runs in the algorithm would recover the noiseless result. Our circuits
avoid the usual no-go theorems in the literature regarding the possibility of preserving
reliable outcomes for most noise models and circuits [FAND+23].

An important shortcoming of our finding is that we showed that our circuits cannot
give rise to a computational advantage. We found an efficient classical algorithm able
to produce samples that have the same probability distribution as measurement samples
produced on the quantum computer [FAND+23]. This algorithm and the circuits we
designed can nonetheless be used to benchmark the hardware. We can use our find-
ings to see if the expected noise model of the qubits is still occurring in large-scale
circuits [FAND+23]. This is a crucial requirement for superconducting cat qubits as
the whole scalability of this platform relies on the fact that they only produce bit-flip
errors [GRLR+23]. This is due to the fact that correcting only bit-flips would lead to
lower overheads (number of qubits and gates dedicated to error correction). Hence our
benchmarking is directly applicable to experimentalist working with superconducting
cat qubits.

In this chapter, we focused on how these resilient circuits can be designed. In
the next chapter, we will show how our circuits and simulations can be utilized as a
protocol to benchmark the quality of these qubits.
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Measured Register

Data Register

|0⟩

− − −U− − −ρn

Figure 5.1: Schematic circuit for the Hadamard test or DQC1. The unitary matrix U
acting on n number of qubits is controlled by the first one in the {+,−} basis. In the case
that the initial state ρn = |ψ⟩⟨ψ| is pure, the circuit is called a Hadammard test and is
used to estimate ⟨ψ|U |ψ⟩ by only measuring the first qubit. When ρn is the maximally
mixed state then we have a circuit belonging to the DQC1 class, and similar to the case
of the Hadamard test, the circuit allows for the estimation of 1

2n Tr U.

5.1 Hadamard Test and Power of One Qubit

The Hadamard test serves as the fundamental task upon which all of our examples
are constructed. The Hadamard test is a procedure that enables the estimation of the
expectation value ⟨ψ|U |ψ⟩ of a unitary operator U on a prepared n-qubit state |ψ⟩ =
B ⊗

⊗n
i=1 |φi⟩, where |φi⟩ represents a single-qubit state and B is a unitary operation.

A way to implement it is represented in Fig. 5.1. In the Hadamard test, the system
consists of the measured register, initially prepared in the state |0⟩, and the data register
containing the prepared state |ψ⟩. Just before measurement, the reduced state of the
measured register can be written as:

ρ =
1
2

(I + αn (yY + zZ)) (5.1)

where y = −ℑ(⟨ψ|U |ψ⟩), z = ℜ(⟨ψ|U |ψ⟩) and αn = 1 for now on. Consequently,
measuring the first register in the Y-basis enables us to estimate the imaginary part of
⟨ψ|U |ψ⟩, while measuring in the Z-basis allows us to estimate the real part of ⟨ψ|U |ψ⟩.
According to Hoeffding’s inequality [CBB+22], performing N = 2 log(2/δ)/ε2 exper-
imental repetitions is adequate for estimating the values of y or z with an ε-precision
and a probability of 1 − δ. The problem of estimating ⟨ψ|U |ψ⟩, where U is generally
a circuit composed of polynomially many gates as a function of n, to additive preci-
sion is known to be a BQP-complete problem [AJL09]. This implies that, in general,

1We mention the presence of the non-Clifford gates because they are required for an exponential quantum
advantage as long as the qubits are initialized and measured in the eigenstates of a Pauli. However, if one
allows for other state preparations or measurements, non-Clifford gates are not in general required for the
advantage [AG04].
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we do not expect an efficient classical algorithm that can efficiently solve this task.
BQP-completeness signifies that this problem is computationally as hard as any other
problem in the complexity class BQP (bounded-error quantum polynomial time). It is
worth mentioning that BQP class is a complete class for quantum computation mean-
ing that it exhibits the full computational power of a quantum computer. We notice
that if the same model of computation as in the Hadamard test is initialized by the state
|0⟩⟨0| ⊗ I

2N (the first qubit is the controlled qubit), we obtain a class of DQC1 circuits
with the clean qubit to be the control qubit which is explained in more details in what
follows.

As mentioned in the previous chapter, NMR has been identified as a viable platform
for realizing the BV algorithm. Another prominent quantum computational model of-
ten examined in the context of NMR is DQC1 [KL98]. In the DQC1 model with one
control qubit, the initial state is given by ρ ⊗ In/2n, where ρ = |0⟩⟨0|, In/2n is a maxi-
mally mixed n-qubit state. In the context of this model, a method proposed in [DFC05]
allows for efficient estimation of the normalized trace of an n-qubit unitary U Given the
efficient implementation of Vn using quantum gates. See also Fig. 5.1. This estimation
is achieved by applying a controlled version of U to the initial state, where the first
qubit serves as the control and the remaining n qubits act as the target:

Vn = |−⟩⟨−| ⊗ I + |+⟩⟨+| ⊗ U. (5.2)

Note that Vn is the control version of U. Just before measurement, the reduced state of
the controlled qubit can be written as:

ρ =
1
2

(I + αn (yY + zZ)) (5.3)

where y = −ℑ( Tr U
2n ), z = ℜ( Tr U

2n ) and αn > 0. As a result, measuring the first register in
the Y-basis estimates the imaginary part of Tr U/2n, whereas measuring in the Z-basis
provides an estimate of the real part of Tr U/2n. This estimation method is applicable
when αn > 0 [DFC05].

In the next sections, we present the main results of this chapter.

5.2 Quantum Resources in DQC1

We will now demonstrate that the efficient implementation of normalized trace estima-
tion with DQC1 is possible, even when considering a broad class of quantum resource
and correlation quantifiers that can be arbitrarily small at each step of the algorithm.
We will begin our analysis by considering general entanglement quantifiers and then
extend it to other measures. We will prove that in the DQC1 protocol with one con-
trol qubit, any distance-based entanglement measure is bounded by a constant value
[NKG+22]. We can observe that the maximally mixed state of N + 1 qubits, denoted
as IN+1/2N+1, is a fully separable state. Therefore, for any N + 1-qubit state σ, we
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have the inequality E(σ) ≤ D(σ, IN+1/2N+1), where E(σ) represents the distance based
entanglement measure and D(σ, IN+1/2N+1) denotes the distance between σ and the
maximally mixed state [NKG+22]. We can recall that in the DQC1 protocol, the initial
state is given by ρ ⊗ In/2n. After the application of Vn, we obtain [NKG+22]

E
(
Vnρ ⊗

In
2n V†n

)
≤ D

(
Vnρ ⊗

In
2n V†n ,

In+1

2n+1

)
(5.4)

= D
(
ρ ⊗
In
2n ,
In+1

2n+1

)
= D

(
ρ,
I1
2

)
.

Here, we utilized the property that any distance measure D satisfying the data process-
ing inequality remains invariant under unitary operations and the addition or removal
of ancillary systems, i.e. D(ρ, σ) = D(UρU†,UσU†) and D(ρ, σ) = D(ρ ⊗ τ, σ ⊗ τ).

We observe that the amount of multipartite entanglement in the algorithm is bounded
by a constant. This bound holds as long as the distance measure D(ρ, I1/2) is limited
to c for all qubit states ρ [NKG+22]. For any continuous distance measure D, it is
possible to choose an arbitrarily small constant by selecting an appropriate value of αn.
This implies that the amount of multipartite entanglement in the DQC1 algorithm can
be made arbitrarily small by adjusting the parameter αn accordingly [NKG+22]. Note
that the specific form of the unitary Vn is not relevant in Equation (5.4). The result
holds true for any unitary operation acting on the total n + 1 qubit state in the proto-
col. As a consequence of this property, the conclusion also extends to the intermediate
states of the algorithm ρi, which represent the states of the quantum processor after
the application of i quantum gates [NKG+22]. This result indicates that normalized
trace estimation with DQC1 can be accomplished with an extremely small amount of
multipartite entanglement throughout the entire algorithm [NKG+22].

The methodology described above is not restricted to entanglement alone; it can be
extended to encompass a wide range of quantum resource and correlation quantifiers
that exhibit vanishing values on maximally mixed states. Therefore, the conclusion
applies to a broad class of measures that capture various aspects of quantum resources
and correlations [NKG+22]. To illustrate this, let’s consider a general quantity of the
form

M(ρ) = inf
σ∈F

D(ρ, σ), (5.5)

where F is a set of n + 1-qubit states that includes the maximally mixed state, and D
is a distance metric that satisfies the properties mentioned earlier. It is evident that the
arguments presented in Eq. (5.4) can be applied to any quantity of this type. To see that
the above results apply to the quantum mutual information [NKG+22]

I
(
ρAB

)
= S

(
ρA

)
+ S

(
ρB

)
− S

(
ρAB

)
, (5.6)

recall that the mutual information can be expressed in the form given by Eq. (5.5),
where the quantum relative entropy D is used as the distance measure and the set F
consists of product states [BM18]. Here, the systems A and B represent arbitrary sub-
sets of the n+1 qubits. The results discussed earlier extend to various measures of quan-
tum correlations beyond entanglement, such as quantum discord [MBC+12, Str15],
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when considering F as the set of classically correlated states ρcc =
∑

i, j pi j |ai⟩⟨ai| ⊗

|b j⟩⟨b j| or classical-quantum states ρcq =
∑

i pi |ai⟩⟨ai| ⊗ σi with local orthonormal
bases {|ai⟩} and {|b j⟩} and general local states σi. Our results also hold for the relative
entropy of coherence, which is a measure of quantum coherence [BCP14b], by con-
sidering F as the set of incoherent states and utilizing the quantum relative entropy as
the distance measure D [NKG+22]. Finally, In the case where F consists solely of the
maximally mixed state of N + 1 qubits, the quantifierM corresponds to a measure of
purity [HHO03, GMN+15, SKW+18].

To summarize, our analysis demonstrates that the DQC1 protocol can efficiently
estimate normalized traces even in the presence of minimal levels of multipartite en-
tanglement, mutual information, general quantum correlations, coherence, or purity at
each step of the algorithm [NKG+22].

5.3 Scalable Noisy Circuits under Bit-Flip Noise

In this section, we design a class of circuits that are noise-resilient in the asymptotic
sense i.e. the noiseless answer can be recovered at the cost of running the algorithm
polynomially many times as a function of the problem size (see Fig. 5.2). We will see
that, roughly speaking, such scalability is the result of two interconnected resources
which we are provided with; the coherence of the controlled qubit and the asymmetry
of the noise (i.e. the fact that only bit-flips are produced after each gate in the algorithm)
[FAND+23]. Let’s first establish some notations and definitions for future convenience.

We denote the single-qubit Pauli matrices as (σ0, σ1, σ2, σ3) ≡ (I, X,Y,Z). Let H
denote the Hadamard gate. We define PX

n as the set of X-Pauli operators acting on n
qubits, denoted as PX

n ≡ {
⊗n

k=1 σik | ∀k, ik ∈ 0, 1}.

Definition 5.1. We say that fn belongs to the set poly(n) if there exist two positive real
numbers C and a such that limn→∞

fn
Cna = 1. Additionally, when we use poly(n) in an

equation, it implies that the equation holds true if we replace poly(n) with any function
fn belonging to poly(n).

We say that fn = O(gn) if there exists a positive constant C such that limn→∞

∣∣∣∣ fn
gn

∣∣∣∣ ≤
C. We also define the coherently controlled operation of a unitary operator A in the
X-basis as cXA = |+⟩⟨+| ⊗ I + |−⟩⟨−| ⊗ A. Consider a single-qubit unitary denoted as
G. In a tensor product, the notation Gi signifies that G is applied specifically to the i-th
qubit, while the identity operator I is applied to the remaining qubits.

Let’s denote the unitary transformation corresponding to a unitary quantum gate
G as G, and the Completely Positive Trace Preserving (CPTP) operation representing
the noisy implementation of this gate as EG. The CPTP map NG, defined as NG ≡
EG ◦ G

†, is referred to as the “noise map of G” (or the noise map associated with G).
In the context of state preparation, the noise map is the CPTP operation that is applied

83



84
CHAPTER 5. RESOURCES IN RESTRICTED MODELS OF QUANTUM
COMPUTATION BASED ON COHERENTLY CONTROLLED CIRCUITS

Figure 5.2: [FAND+23] The Hadamard test illustrated in this figure is used to estimate
⟨ψ|U |ψ⟩, where |ψ⟩ is defined as B

⊗n
i=1 |φi⟩ (with |φi⟩ being individual qubit states

and B a unitary operator). We define Ln as the count of gates that are applied to the
measured register, including any potential noisy identity gates, after the unitary cXU
has been broken down into a set of gates that can be implemented experimentally. In
this study, we show that for a noise model characterized exclusively by bit-flips, and
under specific conditions on the n-qubit unitaries U and B, the measurement process
will only respond to bit-flips that occur in the measurement register, remaining entirely
unaffected by bit-flips in the data register. Nevertheless, some of the useful informa-
tion encoded in the entangled state |ψ⟩ will still be transferred to the measured register.
Our strategy involves encoding this important information in a ’Pauli Z (or Y) chan-
nel,’ while keeping any errors confined to a ’Pauli X channel.’ If a Pauli X error (such
as a bit-flip) in the data register does not affect the measurement outcome, but Pauli
Z information does, then the useful information will be successfully conveyed to the
measurements. In contrast, the errors will not propagate to the measurement register,
thereby isolating them from affecting the results. In summary, if Ln scales logarithmi-
cally with n (i.e., Ln = O(log(n))), the presence of noise will only result in a polynomial
increase in the number of algorithm repetitions required to ensure reliable results. This
means that the algorithm can remain scalable even in the presence of noise. It is impor-
tant to note that although Ln = O(log(n)), the algorithm itself can still have polynomial
depth.

following an ideal (noiseless) state preparation, ensuring that the sequence of ideal
preparation followed by the CPTP map accounts for the noisy state preparation.

We recall that in the noiseless case, the outcome of the Hadamard test is prescribed
by Eq. 5.1 with αn = 1. Then, one needs to run the algorithm N = 2 log(2/δ)/ε2 to
fulfill the task with ε precision and the probability 1 − δ. For pedagogy, let’s consider
the case that there exists a noise whose effect is in such a way that 0 < αn < 1. Then,
we need Nn =

2 log(2/δ)
(αnε)2 repetitions of the algorithm to achieve an estimation accuracy
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of ε with a desired confidence level δ [FAND+23]. If αn decreases exponentially with
n, the total number of algorithm calls required, as determined by Nn, would also grow
exponentially with n [FAND+23]. In this case, the algorithm would not be considered
scalable. The exponential growth in the number of algorithm repetitions would result
in a significant increase in computational resources needed as the problem size n in-
creases. In the case where αn = 1/poly(n) and is efficiently computable, it is possible to
achieve a reliable estimation of ⟨ψ|U |ψ⟩ with a polynomial overhead in the number of
experiment repetitions [FAND+23]. The goal of everything that follows is to show that
under some restrictions for the gates in the algorithm, everything will behave as in this
example with αn =

1
poly(n) , hence the algorithm will be scalable despite the presence of

the noise.

5.3.1 Noise Model

In general, to implement both B and cXU, they need to be decomposed into a gateset
that is feasible to implement at the experimental level. Consider a unitary channel
G representing a gate from the set of accessible gates, and let EG denote its noisy
implementation in the laboratory. We will assume that every gates in the computation
follows a local biased noise model: EG = NG ◦G, where the ”noise map”NG will only
introduce (possibly correlated) bit-flip errors on the qubits on whichG acts non-trivially
(i.e. supp(G)),

NG(ρ) =
∑

α⊂supp(G)

pGαXαρXα , (5.7)

where we have Xα =
∏

i∈α Xi, and {pGα } is a probability distribution that is defined on
subsets of supp(G). As an illustration, let’s consider the noise model of a two-qubit
gate. In this case, the Kraus operators are proportional to σ ⊗ σ′, where (σ,σ′) can
take values from the set {I, X}. Additionally, a noisy measurement can be represented
by conducting an ideal measurement followed by a probability pmeas of flipping the
measurement outcome. Finally, in the case of single-qubit noisy state preparation,
we consider a two-step process where a perfect state preparation is followed by the
application of a Pauli X-error with probability pprep. Our noise model is inspired by an
idealization of cat qubits, which can effectively suppress noise channels other than bit-
flip errors exponentially, at the expense of an increased bit-flip rate [GM21, LVP+20,
CNAA+22]. Our noise model is an idealization for two reasons [FAND+23]. First, the
Kraus operators are restricted to linear combinations of the Pauli X and I operators,
which we refer to as perfect bias. Second, we disregard coherent errors, meaning that
our noise model is entirely Pauli noise. However, the benchmarking protocol explained
in the next chapter is valid for biased qubits that are designed such that their noise
model can be represented by the first assumption alone [FAND+23] (see Theorem 6.3
and Definition 6.1). We now expound on what we mean by ”an error”.

Definition 5.2 (Error). Let |Ψ⟩ denote the desired state of the qubits at a particular
timestep of the algorithm, assuming perfect gates. Due to the probabilistic nature of
the noise model, the actual n-qubit quantum state will deviate from the ideal state
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|Ψ⟩. This deviation is described by the density operator ρ, which can be expressed
as a weighted sum of terms involving the error operators Ei. Each error operator Ei

represents a specific type of unitary operation that has affected the state |Ψ⟩, and the
corresponding weight pi represents the probability of that particular error occurring
(pi ≥ 0,

∑
i pi = 1). In other words, the actual state ρ will be:

ρ =
∑

i

piEi |Ψ⟩ ⟨Ψ| E
†

i . (5.8)

5.3.2 Characterization of the Gates Preserving the Biased Noises

The central concept underlying our work is to take advantage of the fact that only bit-
flip errors occur, enabling us to design circuits that minimize the propagation of these
errors to the measurement performed in the algorithm. Hence, we need to guarantee
that (i) all along the algorithm we only have bit-flip (more precisely X-errors as defined
in Def. 5.3 ) errors and (ii) most of these errors do not propagate toward the measured
register [FAND+23]. In this section, we show how (i) can be satisfied. In the next
section, we analyze how X-errors propagate through the gates that we will use to craft
our circuits (once B and U as in Fig. 5.2 are decomposed in a sequence of primitive
gates), so that in the section 5.3.4, we present how we can design the circuits satisfying
(ii). For our purposes regarding (i), we introduce some technical definitions.

Definition 5.3 (X-type unitary operators and errors). The set of unitary operators that
can be expressed as a linear combination of Pauli X matrices is referred to as X-type
unitary operators. Formally, for an n-qubit system, we define it as follows:

UX
n ≡ {U =

∑
i

ciPi, |Pi ∈ P
X
n , ci ∈ C,U† = U−1}, (5.9)

Another way to understand UX
n is as the set of unitary operators that have a diagonal

form when expressed in the product basis of the n-qubit system |s⟩ = |s1⟩ |s2⟩ . . . |sn⟩,
where si = ± and |±⟩ are eigenstates of Pauli X matrix [FAND+23]. We will refer to an
error as an ”X-error” if it belongs to the set UX

n . If the error is a Pauli operator, we will
specifically call it a ”Pauli X error” or simply a ”bit-flip”.

Our objective is to ensure that any error that occurs at any step of the computation
is an X-error. In other words, we want to restrict the errors to the set UX

n . To achieve
this, we employ ”bias-preserving” gates which we define as follow [FAND+23].

Definition 5.4 (Bias-preserving gates). A unitary operator G on n qubits is said to
preserve the X-errors (or X-bias) if it satisfies the following property:

∀P ∈ PX
n ,∃A ∈ UX

n such that GP = AG (5.10)

We denote Bn the set of such gates.
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Theorem 5.1 (Preservation of the bias). If a quantum circuit consists only of gates
from Bn, where each gate is subject to the local biased noise model described by Eq.
(5.7), then any error that affects the state of the computation will be an X-error.

Proof. [FAND+23] Following the initialization step and in the absence of errors, the
state of the computation would be |ψprep⟩ =

⊗n
i=1 |φi⟩. Due to the noisy initialization

process, as described in the noise model around (5.7), the state after preparation will
be in a mixed state:

ρi =
∑
α

pprep
α Xα|ψprep⟩⟨ψprep|X†α (5.11)

for some probabilities pprep
α . In this equation (and the subsequent equations), the sum

over α ensures that all n-qubit Pauli-X operators will be reached exactly once, for
some Xα. In more formal terms, the sum is defined such that α ⊂ supp(In), where In
represents the identity matrix applied on n qubits. We now consider a gate G ∈ Bn. For
any state |Ψ⟩, we have, for some probability pG

α :

E(|Ψ⟩⟨Ψ|) = NG ◦ G(|Ψ⟩⟨Ψ|)

=
∑
α

pG
αXαG|Ψ⟩⟨Ψ|G†X†α (5.12)

Hence, we have:

E(ρi) =
∑
α1,α2

pG
α1

pprep
α2 Xα1GXα2 |ψprep⟩⟨ψprep|X†α2

G†X†α1
(5.13)

Using the fact G ∈ Bn, we have: GXα2 = Eα2G for some Eα2 ∈ U
X
n . Hence:

E(ρi) =
∑
α1,α2

pG
α1

pprep
α2 Xα1 Eα2G|ψprep⟩⟨ψprep|G†E†α2

X†α1
(5.14)

The fact that Xα1 ×Eα2 ∈ U
X
n implies that any noisy gate G applied to ρi is only affected

by errors belonging to UX
n . Indeed, the same reasoning can be applied recursively for

any gate applied after this point, confirming the validity of this property throughout the
circuit.

□

Examples of bias-preserving gates include all the unitaries in UX
n , the controlled-

NOT (cNOT) gate, and a modified version of the Toffoli gate denoted as Toffoli’ ≡
H1H2H3 × Toffoli × (H1H2H3)†, where Hi are Hadamard gates applied to the cor-
responding qubits [FAND+23]. To clarify, when we refer to the Toffoli’ gate being
implemented ”natively,” we mean that it can be directly applied as a single unitary op-
eration without relying on separate Hadamard gates. This is crucial for preserving the
X-bias property. An example of a gate that does not preserve the bias is the Hadamard
gate [FAND+23].
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Bias-preserving gates have an elegant interpretation: they can be seen as perform-
ing permutations (up to a phase) in the Pauli X-eigenstates basis [FAND+23].

Theorem 5.2 (Characterization of bias-preserving gates). A unitary operator V be-
longs to the set Bn if and only if, for any s ∈ {+,−}n, there exists a real phase φs,V such
that the action of V on the state |s⟩ can be expressed as V |s⟩ = eiφs,V |σV (s)⟩, where σV

represents a permutation of the elements in {+,−}n induced by the gate V.

Proof. [FAND+23] We consider s ∈ {+,−}n and V ∈ BX
n . We have V |s⟩⟨s|V† =

|Φ(s,V)⟩⟨Φ(s,V)| for some pure state |Φ(s,V)⟩. We also have |s⟩⟨s| =
∑
α cαXα for

some family of complex coefficients {cα}. Let us reiterate our notation, where α is a
bit-string of n bits, and a bit value of 1 (resp. 0) at the i’th position indicates that a Pauli
X (resp. I) operator should be applied to the i’th tensor product, i.e., Xα =

∏
i∈α Xi.

After observing that VXαV† ∈ UX
n , we can conclude that |Φ(s,V)⟩⟨Φ(s,V)| is diago-

nal in the local X-basis. In other words, it is composed of elements from the basis
|s⟩ , s ∈ {+,−}n. Being a pure state, it implies |Φ(s,V)⟩ ∝ |s′⟩ for some s′ ∈ {+,−}n.
Since unitary channels are invertible, for any s ∈ {+,−}n, there exists a permutation
σV : {+,−}n → {+,−}n such that V |s⟩⟨s|V† = |σV (s)⟩⟨σV (s)|. This equation implies:

V |s⟩ = exp(iφs,V ) |σV (s)⟩ (5.15)

where φs,V is a real phase that can depend on s and V .

Reciprocally, if for any s ∈ {+,−}n, there exists a real phase φs,V such that: V |s⟩ =
eiφs,V |σV (s)⟩, we have:∑

s
Vcs|s⟩⟨s|V† =

∑
s

cs|σV (s)⟩⟨σV (s)| ∈ UX
n . (5.16)

Therefore, if an operator is diagonal in the local X-basis, it will remain diagonal in the
same basis after applying the map U → VUV†. This property implies that any unitary
V satisfying equation (5.15) must be bias-preserving. In other words, the set of V’s that
fulfill the condition (5.15) corresponds to bias-preserving gates. □

5.3.3 Coherently Controlled Bias-Preserving Gates Limiting the
Propagation of Errors

The theorem 5.1 of the previous part shows how we can guarantee that at any step of the
computation, only X-errors are damaging the quantum state. In this section, we analyze
how these errors propagate through the gates that we will use to design our circuits.
Since in the circuits we will design (which rely on decomposing U and B from Fig.
5.2 into a set of primitive gates) the only gates interacting with the measured register
will be controlled operations, we need to analyze how X-errors propagate through such
gates. This is the goal of this section. Then, in the next section, we will use such gates
in order to design circuits where most of the X-errors do not reach the measurement,
leading to noise resilience of the circuits.
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Figure 5.3: [FAND+23] a) Example of a unitary gate G1 which propagates bit-flip
error: when an X-Pauli error is present on qubit 2 before applying a two-qubit gate G1,
this error stays on qubit 2. However, it also induces a ’new’ error on qubit 1 as a result
of how the error propagates through G1. In different terms, this diagram represents
the fact that, for this gate G1, we have: G1X2 = Z1X2G1. b) For some other gates (for
instance, if G2 is a cNOT controlled by the qubit 1), X errors occurring at specific places
do not propagate to other qubits but remain confined to the qubit where they originated,
as demonstrated in the figure. Specific examples of how errors can propagate through
different gates are detailed in Figure B.1.

.

We first formally define what we mean by the term ”error propagation”. It refers to
the phenomenon where a pre-existing error occurring on some qubits before a gate can
introduce errors on potentially additional qubits after the gate is applied [FAND+23].
In other words, the errors can spread or propagate to other qubits as the computation
progresses through the gates. The ”new” errors that arise after a gate application are a
consequence of the gate dynamics, even if the gate itself is noiseless. This phenomenon
is illustrated in Figure 5.3.

Ensuring the reliability of the measurement requires preventing X errors from prop-
agating from the target (measured qubit) to the control side of the unitary [FAND+23].
Therefore, we are particularly interested in identifying conditions under which such X
errors do not propagate from the target qubit to the control one. This is essential for
maintaining the integrity of the computation and obtaining accurate results from the
Hadamard test. In our notation, a coherently controlled unitary operation A is denoted
as cPA, where P represents a single-qubit matrix given by n.σ, with n being a unit vec-
tor, and σ = (X,Y,Z). This coherently controlled unitary is applied only if the control
qubit is in the eigenstate −1 of the matrix P. The first notable observation is that A
must commute with every element in PX

n . Otherwise, for a state |ψ⟩ and a PX ∈ P
X
n , the

following relation would hold:

⟨ψ| P†XAPX |ψ⟩ , ⟨ψ| A |ψ⟩ (5.17)

Such a scenario would imply that there exists a Hadamard test implemented on the uni-
tary A and a state |ψ⟩ that would be sensitive to X-errors occurring in the data register.
This contradicts the noise-resilience property we aim to achieve. Hence, A must com-
mute with all elements in PX

n . This remark can be summarized as follows [FAND+23].

Theorem 5.3 (Necessary conditions on a gate A such that cPA does not propagate errors
from the target to the control). If we define the controlled unitary cPA that acts on 1+n
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qubits as:

cPA ≡
1
2

(I + P) ⊗ I +
1
2

(I − P) ⊗ A, (5.18)

and does not propagate X errors from the target to the control, then A commutes with
any element in PX

n , which implies A ∈ UX
n . Here, P ≡ n.σ, where n is a unit vector. The

condition for the absence of propagation of X-errors from the target to the control is
as follows:

∀PX ∈ P
X
n , (cPA)(I ⊗ PX)(cPA)† = I ⊗ B (5.19)

for some unitary B.

We will now demonstrate the following two properties [FAND+23]:

Definition 5.5 (Bias-preserving controlled unitaries avoiding X-errors to propagate to-
ward the control). Let cPA ≡ 1

2 (I + P) ⊗ I + 1
2 (I − P) ⊗ A, where A acts on n qubits.

We say that cPA is bias preserving and does not propagate X-errors to the control if it
satisfies the following conditions:

∀PX ∈ P
X
n+1, (cPA)PX(cPA)† ∈ UX

n (5.20)

∀PX ∈ P
X
n ,∃UX ∈ U

X
n (cPA) (I ⊗ PX) (cPA)† = I ⊗ UX . (5.21)

Theorem 5.4. [Characterisation of controlled unitaries avoiding errors to propagate
toward the control]

The controlled unitary cXA is bias preserving and prevents X errors from propa-
gating toward the control iff A belongs to UX

n .

The controlled unitary cPA with P = yY + zZ (such that (0, y, z) is a unit vector)
is bias preserving and avoids X errors from propagating toward the control register iff
A belongs to UX

n and is Hermitian. None of the controlled unitaries cPA can have any
other n.σ than the ones previously discussed that is not trivial (i.e. A , I) and that will
satisfy the constraints on error propagation.

Proof. [FAND+23] For cPA to meet the requirements, it must satisfy conditions (5.20)
and (5.21). We begin with (5.21):

cPA(I ⊗ PX)(cPA)† = I ⊗ UX (5.22)

for some UX ∈ U
X
n and for any PX ∈ P

X
n . This equation implies:

(I + n · σ) ⊗ PX + (I − n · σ) ⊗ APXA† = 2I ⊗ UX . (5.23)

By expanding cPA in the Pauli basis and identifying the left and right hand sides, we
can verify (5.23) implies that for any PX ∈ P

X
n , PX = APXA† and PX + APXA† = 2UX .

The second equation is a consequence of the first one and is not independent. These
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equations do not impose any additional constraints on A beyond the fact that A ∈ UX
n ,

as we have already established in property 5.3. Hence, we move on with the condition
(5.20). The condition (5.20) implies that for all PX ∈ P

X
n , (cPA)I ⊗ PX(cPA)† ∈ UX

n+1
and (cPA)X ⊗ PX(cPA)† ∈ UX

n+1. The second condition is the key aspect we need to
focus on, as the first condition is already implied by the analysis of (5.21) that we have
just completed. By considering n = (x, y, z), and using the fact x2 + y2 + z2 = 1, we find
that (cPA)X ⊗ PX(cPA)† ∈ UX

n+1 implies:

x
2
I ⊗

(
PX − APXA†

)
+

1
2

X ⊗
(
x2(PX + APXA†) + (y2 + z2)(PXA† + APX)

)
+

1
2

Y ′ ⊗
(
APX − PXA†

)
+

1
2

Z′ ⊗
(
PX − PXA† − APX + APXA†

)
∈ UX

n+1. (5.24)

where Y ′ ≡ iyZ − izY and Z′ = x(yY + zZ). It can be easily verified that the matrices
I, X,Y ′,Z′ form a basis for the space of 2 × 2 complex matrices. Given this equation
and the fact that A ∈ UX

n , we can deduce the following non-trivial implications:

Y ′ ⊗
(
APX − PXA†

)
= 0 (5.25)

Z′ ⊗
(
PX − PXA† − APX + APXA†

)
= 0 (5.26)

First case: either y , 0 or z , 0:
Knowing that A ∈ UX

n , (5.25) implies A = A†. Then, (5.26) implies that we must either
have x(yY+zZ) = 0, or PX−PXA†−APX+APXA† = 0. If PX−PXA†−APX+APXA† = 0.
By leveraging the properties of A being Hermitian and belonging to UX

n , we find that
the only solution for A is A = I, which corresponds to a trivial gate. As a result, to
discover non-trivial gates, we must have x = 0. In conclusion, if y , 0 or z , 0 then
necessarily A is Hermitian and x = 0 in order to satisfy the constraints (5.25), (5.26)
with A , I.
Second case: y = z = 0⇔ x = 1:
In such a scenario, no additional constraints are imposed, and any A ∈ UX

n will satisfy
the conditions (5.25) and (5.26).

Indeed, the condition imposed on the gate A and parameters (x, y, z), are both nec-
essary and sufficient. By injecting any of the solutions into the constraints (5.25) and
(5.26), we ensure that our conditions cover all possible cases. Thus, they represent both
necessary and sufficient conditions.

□

In conclusion, we have characterized the controlled operations which preserve X-
errors and do not propagate them from the target to the control unit. We now proceed
to use these gates to design noise-resilient circuits in the next section.

91



92
CHAPTER 5. RESOURCES IN RESTRICTED MODELS OF QUANTUM
COMPUTATION BASED ON COHERENTLY CONTROLLED CIRCUITS

5.3.4 Scalable Noise-Resillient Hadamard Test

Figure 5.4: [FAND+23] This figure demonstrates how to implement U = W × V =⊗NW

i=1 Wi ×
⊗NV

i=1 Vi, as outlined in Theorem 5.5, in a manner that enhances resistance
to noise. The unitary operations highlighted in blue represent the controlled Hermitian
unitaries Wi, which collectively form the controlled unitary W. Similarly, the opera-
tions highlighted in black denote the controlled Vi unitaries, which together implement
the controlled V . A central element of this construction is the parallelization register
[MN01], which enables the implementation of the unitary W across all qubits in the
data register while preserving noise resilience. Consequently, this setup allows the per-
formance of a Hadamard test where U acts on every qubit in the data register. The
main advantage of the parallelization register is that, despite introducing additional
components that could lead to bit-flip errors, these errors are specifically designed to
remain contained and do not affect the measurement register. They effectively commute
with the last cXX gate applied inbetween the measured and parallelization register, thus
avoiding any impact on the measurement results. This method illustrates the benefit of
increasing the number of qubits to reduce the interaction of the measurement register
from a polynomial number of gates to just O(log(n)) gates, demonstrating a worthwhile
trade-off regarding the implementation of the controlled W. While the parallelization
register prevents bit-flip errors from reaching the measurement register, it does allow
phase-flip errors to propagate. We exploit this property to effectively identify and eval-
uate whether there is an excessive rate of phase-flip errors in the benchmarking protocol
of the next chapter.

We will now outline the essential elements that ensure the existence of noise-
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resilient Hadamard tests. First, we assume the following conditions [FAND+23]:

1. Individual gate errors, as well as measurement and state-preparation errors, occur
with a probability smaller than p < 1/2.

2. only X-errors occur in the algorithm (which can be satisfied with the assumptions
of Property 5.1).

3. these errors cannot propagate from the data to the measured register

4. the number of interactions of the measured register with the data register satisfies
Ln = O(log(n)), implying that the measured register will only be impacted by X-
errors introduced at O(log(n)) locations.

Under the fulfillment of conditions (1-4), the reduced state ρ will satisfy Eq. (5.1), and
the value of αn can be efficiently computed classically. Moreover, αn will satisfy the
condition αn ≥ 1/poly(n). As described in the paragraph preceding 5.3.1, this property
ensures the scalability of the algorithm for estimating ⟨ψ|U |ψ⟩. To be more precise,
the following theorem is applicable [FAND+23].

Theorem 5.5 (Hadamard test resilient to biased noise). Let:

|ψ⟩ = B
NB⊗
i=1

|φi⟩ , U = W · V ,

W ≡
NW∏
i=1

Wi, V ≡
NV∏
i=1

Vi , (5.27)

where B denotes a product of local bias-preserving gates, and the gates Vi and Wi

are local gates belonging to UX
n . It is important to note that the gates Wi are further

assumed to be Hermitian.

In our analysis, we incorporate the local bias noise model described in Eq. (5.7).
We also consider the possibility that state preparation, measurements, and each non-
trivial gate applied to the measurement register may introduce a bit-flip on the mea-
sured register, with a probability not exceeding p < 1/2.

Under these specified conditions, we can construct a quantum circuit that performs
a noise-resilient Hadamard test. In the presence of noise, the reduced state ρ of this
circuit will satisfy Eq. (5.1), and the parameter αn will be bounded by αn ≥ (1 −
2p)O(NV ). Moreover, the value of αn can be efficiently computed classically. Thus, if
the number of gate interactions NV is on the order of O(log(n)), it becomes feasible
to implement the Hadamard test in a manner that running the algorithm a polynomial
number of times would be enough to estimate the real and imaginary parts of ⟨ψ|U |ψ⟩
to a desired precision ε with high probability.

We construct the circuit through the scheme as shown in Fig. 5.4.
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Proof. [FAND+23] Our main focus lies on Figure 5.4. In the diagram, the controlled
unitaries outlined in blue correspond to the Wi gates, while the ones outlined in black
correspond to the Vi gates. First, we will detail the implementation of the U gate as
defined in Theorem 5.5. Then, we will demonstrate the noise-resilience of the circuit.
We can assign indices m, p, and d to represent the measured, parallelization, and data
registers, respectively. Let qn ≤ n be the number of qubits in the parallelization register.
At this stage, the full state of the quantum computer, just before the application of any
controlled Wi or Vi, can be described as an entangled state:

|Ψ⟩0 ≡
|+⟩m |0⟩

⊗qn
p + |−⟩m |1⟩

⊗qn
p

√
2

⊗ |ψ⟩d . (5.28)

This entanglement has been generated through a sequence of cNOT and cXX gates.
(see Figure 5.4). Now, we apply the controlled Wi and the state transforms to:

|Ψ⟩0 →

|+⟩m |0⟩
⊗qn
p |ψ⟩d + |−⟩m |1⟩

⊗qn
p

∏NW
i=1 Wi |ψ⟩d

√
2

. (5.29)

The parallelisation register is then disentangled from the rest of the system by applying
the reverse sequence of cNOT and cXX gates. After discarding this state, we apply the
final sequence of coherently controlled Vi gates to obtain the required final state for the
Hadamard test:

|Ψ⟩ f =
|+⟩m |ψ⟩d + |−⟩m U |ψ⟩d

√
2

, (5.30)

where

U =
NW∏
i=1

Wi ×

NV∏
i=1

Vi. (5.31)

It proves that the appropriate operation is implemented. The parallelisation technique
we use is based on the work by Moore and Nilsson [MN01].

To establish the noise-resilience of this circuit, we define pi as the probability that
the i’th gate applied on the measured register introduces a bit-flip error at that particular
point. For a multi-qubit gate Gi, where the measured register is the first qubit in the
tensor decomposition, we define the probability pi as follows:

pi ≡
∑

(1,α′)⊂supp(Gi)

pGi
1,α′ (5.32)

To clarify the notation with an example, let’s consider a two-qubit gate with the fol-
lowing noise model:

N(ρ) =
∑

0≤i1≤1
0≤i2≤1

pi1,i2 (σi1 ⊗ σi2 )ρ(σi1 ⊗ σi2 ), (5.33)
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The probability of encountering a bit-flip error on the measured register (first tensor
product) would be the sum of the probabilities

∑
0≤i2≤1 p1,i2 . In the subsequent anal-

ysis, we will also take into account noisy state preparation and measurements in our
derivation.

It is worth noting that throughout the entire algorithm, only X-errors can occur.
This is a consequence of utilizing the noise model described around (5.7), coupled
with the fact that all of our gates are bias-preserving (as indicated by theorem 5.1 and
5.4). Another observation arising from the mentioned property is that the reason the Wi

gates must be Hermitian is that they are coherently controlled on the Z basis. At this
point, it is important to emphasize that the gates interacting with the measured register
cannot propagate X-error from either the parallelization or the data register towards
the measured register. This property is a direct consequence of theorem 5.4. This last
point is of crucial importance: the introduction of the parallelization register allows
us to trade space for time. While it introduces additional qubits in the algorithm, it
enables the measured register to interact with only O(NV ) = O(log(n)) gates instead
of O(NW ) ⊂ poly(n) gates. This property is the key to ensuring the noise-resilience
of our circuit. The essential aspect of this tradeoff lies in the fact that errors arising
in the parallelization register do not propagate to the measured register. This is due
to the commutation of these errors with the only gate that interacts with the measured
register, namely the cXX gate. Without the introduction of the parallelization register,
the measured register would be susceptible to errors at approximately O(NW ) more lo-
cations, which would compromise the scalability of the algorithm for NW = poly(n).
Our observations remain valid in this context, with the addition of one further assump-
tion that waiting locations (identity gates) can also introduce noise, as discussed in the
subsequent section. Despite this, we have demonstrated that all the errors capable of
affecting the measurements are directly generated within the measured register.

The final part of the proof involves computing the effect of noise on the measured
register. After the i’th gate interacts with the measured register, the following bit-flip
channel is applied to the measured register, for some pi, (and σ denotes some density
matrix):

Λi(σ) = (1 − pi)σ + piXσX. (5.34)

This noise model naturally accounts for the errors introduced after state preparation.
Furthermore, we can use this noise channel to model noisy measurements as well.
In this model, noisy measurements are represented as perfect measurements followed
by a probability of flipping the measured outcome. Since we measure Pauli Y and Z
observables, we can equivalently represent them as perfect measurements followed by
a bit-flip channel. This allows us to incorporate the measurement noise into our noise
model consistently. Now, we exploit the fact that the bit-flip channel commutes with
every gate applied to the measured register since these gates are coherently controlled
in the X-basis. Therefore, denoting Nn as the number of gates applied to the measured
register, (including state preparation and measurement), the full protocol is equivalent
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as performing noiseless measurements in Y or Z bases on the state:

ρ = (ΛNn ◦ ... ◦ Λ1)(ρideal), (5.35)

ρideal =
1
2

(I + yY + zZ). (5.36)

It is straightforward to show that:

ρ =
1
2

(I + αn(yY + zZ)),

αn =

Nn∏
i=1

(1 − 2pi). (5.37)

Under the assumption that identity gates are noiseless, we can determine that the total
number of gates applied on the measured register denoted as Nn, is Nn = NV + 2 + 2 =
O(NV ). Here, the first ”+2” accounts for state preparation and measurement, while the
last one corresponds to the implementation of the cXX gates using the parallelisation
register, as depicted in Figure 5.4.

Under the assumption that identity gates are noisy, we explore this scenario in the
following section of the proof. However, it’s important to note that αn remains effi-
ciently computable classically, as long as Nn is polynomial in n. If we define p as the
maximum probability of introducing a bit-flip error for any gate on the measured regis-
ter (p = maxi pi), we can observe that αn ≥ (1−2p)O(NV ). As a result, if NV = O(log(n)),
αn decreases at most at a polynomial rate, and we can still efficiently compute it.

Following the explanations provided after Eq. (5.1) in the main text, this implies
that it is feasible to implement the Hadamard test in a manner that conducting the
algorithm poly(n) times is sufficient to estimate the real and imaginary components of
⟨ψ|U |ψ⟩ with an accuracy of ε and a probability greater than 1 − δ.

Extension of Theorem 1 for noisy identity gates. In the context of Theorem 1, we
assumed that any trivial gate (identity) applied on the measured register was noise-
less. However, the inclusion of the parallelization register may introduce a consider-
able number of ”waiting” locations for the measured qubit. These waiting locations are
present during the initialization of the parallelization register or for the implementation
of W gates, for instance. Thankfully, if we assume that the depth of W is in O(log(n)),
we can incorporate noisy identity gates into our reasoning without altering any of our
conclusions. To simplify the explanation, we consider that all gates in the computa-
tion, including identity gates, have the same duration. Let pI be the probability that an
identity gate introduces a bit-flip, and let NI be the total number of identity gates we
apply on the measured register. In such a scenario, the only modification to the proof
of Theorem 1 would be that:

αn = (1 − 2pI)NI

Nn∏
i=1

(1 − 2pi). (5.38)
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The term
∏Nn

i=1(1−2pi) corresponds to the overall probability that the non-trivial gates,
including state preparation and measurements, introduce bit-flip errors. The extra fac-
tor (1 − 2pI)NI represents the noise contribution from identity gates. In cases where
W has a logarithmic depth (O(log(n))), it is possible to execute the algorithm with
NI = O(log(n)). (see figure 5.4): the algorithm would still be noise-resilient. Indeed,
if the depth of W remains in O(log(n)), αn would decrease at a polynomial rate, and
it can still be efficiently computable. However, if the depth of W exceeds O(log(n)),
the presence of identity gates could result in an exponential decay of αn, which would
undermine the scalability of the algorithm. For instance, if the depth of W grows lin-
early with n, then the number of identity gates NI would also grow proportionally to
n, and this could lead to an exponential decay of αn, making the algorithm impractical
for large n. Therefore, it is crucial to ensure that the depth of W remains in O(log(n))
to maintain the noise-resilience and scalability of the algorithm. Indeed, the ability to
create and disentangle the entanglement between the measured and parallelization reg-
isters in O(log(n)) depth is a crucial factor in our discussion [MN01], as also illustrated
on the figure 5.4.

□

It is important to emphasize that the Hadamard test is executed using the circuit
depicted in Figure 5.4, which incorporates a parallelization register. This paralleliza-
tion register enables the implementation of a unitary operation W (as mentioned in the
theorem) that acts on all the qubits in the data register. Simultaneously, it maintains a
logarithmic number of interactions with the measured register, which is necessary to
maintain noise resilience [FAND+23].

Next, we will show that this class of biased noise resilient Hadamard tests can be
efficiently simulated on a classical platform.

5.3.5 Classical Simulation

The previous observation shows that specific limited versions of Hadamard tests can
withstand bit-flip errors occurring during the execution of quantum circuits. The up-
coming theorem proves that the calculations done by such a restricted Hadamard test
can unfortunately be efficiently simulated on a classical computer having access to
polynomial resources [FAND+23].

Note: For the sake of clarity in the main text, our primary emphasis is on Pauli
noise. However, generalization of the results and proofs for the most general perfectly
biased noise (noises with their Kraus operators being a linear combination of the bit-
flip channels) would be straightforward. We refer to the appendix A for more details
regarding the general case.

Theorem 5.6 (Efficient classical simulation of restricted Hadamard test). Let B ∈
Bn,U ∈ UX

n be n qubit unitaries specified by RB and RU local qubit gates (belong-
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ing to respective classes Bn and UX
n ). Let |ψ0⟩ = |φ1⟩ |φ2⟩ · · · |φn⟩ be an initial product

state. Then, there exists a randomized classical algorithm C that takes classical spec-
ifications of circuits defining B, U, and the initial state |ψ0⟩ as input. The algorithm
efficiently and with high probability computes an additive approximation to the value
of ⟨ψ0| B†UB |ψ0⟩. Specifically, we have

Pr
(
| ⟨ψ0| B†UB |ψ0⟩ − C| ≤ ε

)
≥ 1 − δ , (5.39)

while the running time is T = O
(

RB+RU+n
ε2 log(1/δ)

)
.

Proof. [FAND+23] We observe that the operator B†UB ∈ UX
n is diagonal in the local

X basis. Therefore:

⟨ψ0| B†UB |ψ0⟩ = Tr
(
B†UB ρ1 ⊗ ρ2 ⊗ . . . ⊗ ρn

)
, (5.40)

where the ρi are states that act on the i’th qubit and are defined as follows: ρi =
1
2 |φi⟩⟨φi| +

1
2 X|φi⟩⟨φi|X (dephased version of |ψi⟩ in the X basis). Each ρi can be ex-

pressed as ρi = p+i |+⟩⟨+| + p−i |−⟩⟨−|, where the computation of all the probabilities
p±i can be performed in O(n) time. By exploiting the equation (5.40) and the specific
structures of the unitaries B and U, we can develop an efficient sampling technique to
estimate ⟨ψ0| B†UB |ψ0⟩. To this end, we decompose

ρ1 ⊗ ρ2 ⊗ . . . ⊗ ρn =
∑

s∈{+,−}n
ps|s⟩⟨s| (5.41)

where ps =
∏n

i=1 psi
i is a product distribution. When we substitute equation (5.41) into

the right-hand side of equation (5.40), we get the following expression:

⟨ψ0| B†UB |ψ0⟩ =
∑

s∈{+,−}n
ps Tr

(
UB|s⟩⟨s|B†

)
. (5.42)

The expression above can be further simplified by observing that B|s⟩⟨s|B† = |σB(s)⟩⟨σB(s)|
(as stated in Property 5.2), and by utilizing U ∈ UX

n , which implies U |s⟩ = λU(s) |s⟩ for
all |s⟩. By putting all these observations together, we arrive at the following expression:

⟨ψ0| B†UB |ψ0⟩ =
∑

s∈{+,−}n
psλU(σB(s)) . (5.43)

The equation above reveals that the random variables xs = Re(λU(σB(s))) and ys =

Im(λU(σB(s))) serve as unbiased estimators for the real and imaginary parts of ⟨ψ0| B†UB |ψ0⟩,
respectively. We can summarize the approach in a simple three-step algorithm for con-
structing estimators of the quantities of interest:

1. generate s ∼ {ps}

2. compute s′ = σB(s)

3. evaluate λU(s′) in order to compute xs, ys.
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Applying Hoeffding’s inequality to the random variables xs and ys, which take values
in the interval [−1, 1], allows us to conclude that by repeating the above procedure
O((1/ε2) log(1/δ)) times and calculating sample means, we can obtain an ε-accurate
estimation of ⟨ψ0| B†UB |ψ0⟩ with a probability of at least 1 − δ. What remains is to
show the classical computability of the steps 1-3. Generating a single sample of s takes
O(n) time because s follows a simple product measure on n bits. In step (ii), we rely
on Property 5.2 and break down B into a sequence of local gates RB from Bn. As
each gate operates locally, it causes a manageable transformation on |s⟩ affecting only
a constant-sized subset β of qubits. Accordingly, the computational complexity of step
(ii) is O(RB). Similarly, for step (iii), we decompose the unitary U into a sequence of
local unitaries g j from UX

n . As each g j acts locally on a subset of qubits, the overall
computational cost of implementing (iii) is O(RU), where RU represents the size of
this local decomposition. Naturally, we have U |s′⟩ =

∏RU
j=1 λ j(s′) |s′⟩, where λ j(s′) are

defined by g j |s′⟩ = λ j(s′) |s′⟩. The local nature of gates g j ∈ U
X
n allows for the efficient

computation of individual eigenvalues λ j(s′), taking only constant time. Moreover, this
calculation depends solely on the few bits represented by s′.

In conclusion, considering the runtimes estimated for each step of the protocol, we
can combine them to obtain the desired result. The overall cost of the algorithm can be
expressed as O(n + RB + RU), which ensures efficient computation for estimating the
quantities of interest. □

5.4 Discussion

We study quantum characteristics within the DQC1 model, which allows us to esti-
mate the normalized trace of an n-qubit unitary that can be efficiently implemented
using quantum gates. Our analysis shows that the DQC1 circuit can be realized ef-
ficiently with negligible quantum resources and correlations. This conclusion applies
to a broad range of resource and correlation measures, including multipartite entan-
glement, mutual information, quantum coherence, and purity. We anticipate that the
methods we have presented can be extended to other quantum algorithms that operate
on mixed states, including the mixed-state version of Shor’s algorithm [PP00, PP02].
The techniques and insights gained from our analysis can potentially be generalized to
understand and characterize the behavior of these algorithms in the presence of noise
and imperfections. The role of coherence in the implementation of Shor’s algorithm
has been the subject of the recent study, as highlighted in the work by Ahnefeld et
al. [ATE+22b].

We further examine qubits with biased noise, which is relevant for superconduct-
ing cat qubits. This feature allows us to create a series of noisy Hadamard tests that
include certain entangling and non-Clifford gates, which can be performed with high
reliability and only a polynomial increase in the number of algorithm repetitions. On
the other hand, we identified classical algorithms capable of efficiently simulating both
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the noisy and noiseless versions of our specific Hadamard test variants. We recom-
mend using these algorithms to benchmark the noise bias in large circuits. Although
our circuits can be simulated efficiently, they exhibit strong noise resilience, which has
been rigorously demonstrated even in the presence of Pauli bit-flip noise 2. It raises
the natural question of whether extensions of our work could result in noise-resilient
circuits with computational significance. Our research also addresses this fundamental
question and provides insights into it. To explore this, we note that the set of bias-
preserving gates, Bn, includes cXX gates. When these gates are combined with initial
states |0⟩ or |1⟩, they can generate any graph state in the local X basis. It is known that
typical n-qubit stabilizer states exhibit strong multipartite entanglement [SL06]. This,
along with the fact that arbitrary graph states can be transformed into stabilizer states
locally [VdNDDM04], indicates that bias-preserving circuits have the potential to gen-
erate a wide variety of highly entangled states. However, it is important to note that,
for the specific computational problem we tackle in this work, these graph states do not
offer practical utility. We can also include various non-Clifford gates in our design. For
our objectives, any unitary U ∈ UX

n can affect all qubits in the data register in a mean-
ingful way. There are no restrictions on the number of gates in the preparation unitary
B, and the circuit is designed to scale effectively even with noisy measurements.

In the next chapter, we demonstrate that the simulability of the discussed scalable
Hadamard test proposes a simple algorithm to benchmark the biased noise model at
the scale of large and complicated quantum circuits. By assessing the entire circuit, our
benchmark can detect errors that are typically not visible in individual gate tomography,
such as crosstalk or correlated errors suggesting it could be a valuable tool for scaling
up cat qubit technologies.

Contribution: The results in this chapter regarding the DQC1 model of compu-
tation was originally found by Dr. Tulja Varun Kondra under supervision of Prof.
Alexander Streltsov and I was involved in the technical discussions. The other results
are based on the work in the paper Scalable noisy quantum circuits with biased-noise
qubits. I contributed to all the technical discussions in this work. Moreover I did all
the work on how the noise would propagate through controlled operations specifically
the section 5.3.3.

2In cases where a non-Pauli noise model exactly meets the criteria outlined in definition 6.1, the results
from the noisy algorithm typically won’t align with those from the ideal noiseless algorithm. Despite this,
such a mismatch does not affect the validity of our benchmarking approach.
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Chapter 6

Benchmarking Biased Noise at
the Scale of the Whole Circuit

The whole strategy of cat qubits relies on having phase-flip errors negligible (hence the
consequence of imperfect bias is not noticeable), therefore we need a tool to check and
ensure that the bias remains largely effective in big circuits[FAND+23]. There does
not exist any protocol to do this today. In this chapter using the simulability of the
circuits discussed in the previous chapter, we propose a simple protocol to benchmark
the biased noise model in large-scale and complex quantum circuits, capable of de-
tecting some violations of noise properties. This benchmark is particularly beneficial
because it is scalable and capable of detecting collective noise effects that individual
gate analysis cannot reveal, such as crosstalk and correlated errors. The core idea of the
benchmark is to compare experimental results with a classical simulation that assumes
each gate in the complete algorithm has the same noise model as determined from in-
dividual gate tomography. If there is a discrepancy between the simulation and the
experiment, it suggests that collective effects usually invisible from individual gate’s
tomography, are reducing the hardware quality when running a full algorithm, posing
a potential thread to the hardware’s scalability.

6.1 Efficient Simulation of Noise-Resilient Hadamard
Test

In general, the noise model for biased qubits can include Kraus operators that repre-
sent the noise effects of each gate, state preparation, and measurements, which do not
precisely match a Pauli bit-flip channel. This means that the Kraus operators could be
expressed as a linear combination of Pauli bit-flips, following the definition 6.1. Fur-
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thermore, the bias might not be perfect. This implies that the Kraus operators repre-
senting the noise maps could have a non-zero Hilbert-Schmidt inner product with Pauli
operators outside of PX

n . For instance, the Kraus operators might exhibit a non-zero
overlap with a multi-qubit Pauli operator P that contains at least one Z or Y compo-
nent in its tensor product, like P = X ⊗ Y . If this happens, we will describe the noise
model as also generating phase-flip errors. Our benchmarking protocol is capable of
identifying deviations from the assumed noise model in such a broader scenario. The
protocol relies on the ability to simulate the results of the Hadamard test in a noisy en-
vironment, assuming that the bias is perfect but not strictly Pauli, meaning it conforms
to the criteria outlined in definition 6.1 [FAND+23]. This classical simulation uses the
noise model of each individual gate, approximated to match that of a perfect bias, as
its input. If the results of this classical simulation deviate from the experimental out-
comes beyond some error budget that we will quantify, it would indicate that the noise
model described by individual gate tomography does not accurately reflect the exper-
imental conditions [FAND+23]. This error budget pertains to how closely the noise
model derived from individual gate tomography approximates the perfect bias model.
The formal details of the protocol are outlined in theorem 6.3. We will now present the
definitions and theorems required for our discussion [FAND+23].

Definition 6.1. Perfect bias

Let G represent a quantum channel that describes either a noiseless unitary gate
from the available gate set or a single-qubit state preparation, and let EG denote its noisy
implementation in the laboratory. We say that the noisy implementation of the gate (or
state preparation), EG, follows a perfectly biased noise model if EG = NG ◦ G, where
the noise map NG is a CPTP map that admits the following Kraus decomposition:

NG(ρ) =
∑

j

KGj ρ(KGj )† ,

KGj =
∑

α⊂supp(G)

c j
αXα, (6.1)

where Xα =
∏

i∈α Xi, ∀ j, c j
α ∈ C and

∑
j(K
G

j )†KGj = Isupp(G), Isupp(G) being the identity
operator applied on the qubits where G acts non-trivially. A quantum map that meets
the criteria specified in (6.1) will be referred to as perfectly biased [FAND+23].

To model a noisy single-qubit measurement, we consider it as an ideal measurement
preceded by a perfectly biased single-qubit CPTP map applied to the qubit. This CPTP
channel, known as the noise map of the measurement, accounts for the noise induced
by the measurement [FAND+23].

To simplify the presentation of the upcoming theorems, we will assume that state
preparation and measurements are noiseless. This assumption does not remove any
generality under the condition that all gates are bias-preserving (which is assumed
throughout this section) and the noise model is described by the criteria in Defini-
tion 6.1. This is because noise arising from state preparation (resp measurement) can
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be effectively absorbed by updating the noise map of the following (resp preceding)
gate . The revised noise map will remain consistent with the given definition in 6.1
[FAND+23]. To be more specific, let Nprep represent the noise map associated with
state preparation, and Gprep denote the map for an ideal, noiseless state preparation.
Then, the noisy state preparation is given by Nprep ◦ Gprep. Similarly, if NGi is the
noise map for a quantum gate described by the unitary map Gi, the noisy version of
this quantum gate is represented by NGi ◦ Gi. Assuming this gate follows immediately
after state preparation, the noise from state preparation can be accounted for by ad-
justing the gate’s noise map to: NGi → N

′
Gi
≡ NGi ◦ Gi ◦ Nprep ◦ G

†

i . Consequently,
the total noise from state preparation to the first gate is given by: N ′

Gi
◦ Gi ◦ Gprep =

NGi ◦ Gi ◦ Nprep ◦ Gprep. Hence, if the bias is perfect and all gates are bias-preserving,
N ′
Gi

will still represent a perfectly biased noise model. The same reasoning applies to
noisy measurements.

Theorem 6.1. [FAND+23] Efficient classical simulation of a noisy Hadamard test un-
der perfect bias.

Let B, U = W.V ∈ UX
n , and NW ,NV be such that they satisfy the conditions outlined

in Theorem 5.5. Assume |ψ0⟩ = |φ1⟩ |φ2⟩ · · · |φn⟩ represents the initial product state for
the data register. Given that NV = O(log(n)), each gate’s noise model adheres to the
perfect bias definition 6.1, the total gate count is poly(n), and state preparation and
measurements are considered noiseless (as stated earlier in the comments before The-
orem 6.1), there exists a randomized classical algorithm C. This algorithm C requires:

1. (I) the classical descriptions of the circuit performing the Hadamard test for the
chosen (B,U, |ψ0⟩),

2. (II) the quantum channel characterizing each gate’s noise model, and

3. (III) the initial state |ψ0⟩.

With these inputs, C can efficiently and with high probability produce an additive
approximation to Tr(P1ρX), where ρX is the reduced density matrix of the measured
register at the end of the noisy algorithm, and P1 is a single-qubit Pauli matrix.

Specifically, we have:

Pr (|Tr(P1ρX) − C| ≤ ε) ≥ 1 − δ , (6.2)

while the running time is T = O((1/ε2) log(1/δ) × poly(n)).

We refer to the appendix A for the proof of the theorem. The theorem 6.1 estab-
lishes that the computation performed by the restricted Hadamard test we prescribed,
even in the presence of a more general noise model from definition 6.1 can be efficiently
simulated on a classical computer with polynomial effort.

In what follows, we will use this simulation algorithm to perform our benchmarking
protocol. This protocol is designed to validate the assumption of bias noise across the
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entire circuit, even for complex cases. It allows us to assess the impact of biased noise
and gain valuable insights into the performance of the hardware.

6.2 Validity of the Perfect Bias Approximation

Consider G as the quantum map that represents a (noiseless) unitary gate, and let EG
denote the quantum map of its noisy implementation. The noise mapNG can be defined
as:

EG = NG ◦ G. (6.3)

In this study, we assume that each gate’s noise map is perfectly biased. Nevertheless,
this is an approximation because the gate’s bias will not be ideal. Consequently, the
Kraus operators ofNG are not strictly linear combinations of elements in PX

n . We define
NX,G a CPTP map having a perfect bias (according to definition 6.1) that approximates
NG. More precisely, we define ∆NG and ∆EG as:

NG = NX,G + ∆NG (6.4)
EG = EX,G + ∆EG, (6.5)

with:

EX,G ≡ NX,G ◦ G. (6.6)

A smaller diamond norm of ∆EG indicates a better approximation of a perfect bias.
The theorem 6.2 helps quantify the maximum number of gates, N, that can be imple-
mented without the assumption of a perfect bias causing the measurement outcomes of
the Hadamard test to deviate beyond an error budget ε [FAND+23].

Theorem 6.2. Quality of the perfect-bias assumption

Let N represent the total number of gates in the algorithm. The noise map for
the implementation of the i’th gate (i ∈ [1,N]) is referred to as NGi , and the unitary
implementation of this gate is denoted by Gi. We define NX,Gi as a noise map that
approximates NGi , so that NX,Gi has a perfect bias as per definition 6.1. We denote ρX

as the final density matrix of the measured register when the noise model of each gate
”i” is given by NX,Gi . We refer to ρ as the final density matrix of the measured register
when the noise model applied to the gate ”i” is NGi . If:

max
i
||NX,Gi − NGi ||⋄ ≤

ε
√

2N
, (6.7)

where ||.||⋄ represents the diamond norm [Wil11],we can then establish a bound on
the error in the measurement outcome probability of the Hadamard test based on our
approximation of perfect bias. In particular, for any single-qubit Pauli P1,

|Tr(ρP1) − Tr(ρXP1)| ≤ ε (6.8)
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Proof. [FAND+23] Let || · ||2 denote the Hilbert-Schmidt norm. According to the
Cauchy-Schwarz inequality, we have:

|Tr(ρP1) − Tr(ρXP1)| ≤ ||ρ − ρX ||2||P1||2. (6.9)

Using the fact ||ρ − ρX ||2 ≤ ||ρ − ρX ||1 [CCC19], and ||P||2 =
√

2, we also have:

|Tr(ρP1) − Tr(ρXP1)| ≤
√

2||ρ − ρX ||1. (6.10)

For every i ∈ [1,N], we define EGi ≡ NGi ◦ Gi and EX,Gi ≡ NX,Gi ◦ Gi. We now assume
that the noiseless algorithm performs the unitary operation GN ◦ ... ◦ G1. In the noisy
algorithm we then have: EAlgo = EGN ◦ ... ◦EG1 . Under the perfect bias assumption, the
noisy algorithm performs the following EX,Algo = EX,GN ◦ ... ◦ EX,G1 . Let ρ0 denote the
initial state of the entire algorithm, including the data, the measured register, and any
potential parallelization register as illustrated in figure 5.4. Given the definitions of ρ
and ρX , we have:

||ρ − ρX ||1 =||Tr,Measured[(EAlgo − EX,Algo)(ρ0)]||1
≤ ||(EAlgo − EX,Algo)(ρ0)||1 ≤ ||EAlgo − EX,Algo||⋄ (6.11)

In (6.11), Tr,Measured refers to taking the partial trace over all degrees of freedom except
the measured register. This process relies on the fact that the trace distance is non-
increasing when taking a partial trace, and the last inequality follows from the definition
of the diamond norm. Lastly, we apply the chaining properties of the diamond norm
[GLN05], we have:

||EAlgo − EX,Algo||⋄ ≤ N max
i
||EGi − EX,Gi ||⋄ (6.12)

Combining (6.10), (6.11), (6.12), and using the property of unitary invariance of the
diamond norm (i.e. ||Ei − EX,Gi ||⋄ = ||NGi − NX,Gi ||⋄), we deduce:

|Tr(ρP) − Tr(ρXP)| ≤
√

2N max
i
||NGi − NX,Gi ||⋄ (6.13)

Hence, if maxi ||NGi −NX,Gi ||⋄ ≤ ε/(
√

2N), then, |Tr(ρP)− Tr(ρXP)| ≤ ε which proves
the relation in 6.2. □

6.3 Benchmarking Protocol

Evaluating quantum gates individually poses a problem because it overlooks the cu-
mulative interactions that arise when a complete circuit, consisting of numerous gates
arranged both sequentially and in parallel, is executed. One instance is correlated er-
rors, which are typically undetectable through individual gate tomography. Another

105



106
CHAPTER 6. BENCHMARKING BIASED NOISE AT THE SCALE OF THE

WHOLE CIRCUIT

instance of collective effects is ”scale-dependent noise,” where the noise intensity per
gate varies based on the number of qubits or the adjacent gates utilized in the algorithm
[ZLL+22, KLR+20, SR20]. It’s important to recognize that scale-dependent noise can
occasionally be suggested by correlated noise models [FACW+21]. This kind of noise
can be particularly harmful to biased qubits, as the initially low error rate may esca-
late with larger circuit scales, potentially undermining the benefits of employing these
qubits. These noise behaviors pose a significant risk for both near term and the achieve-
ment of large-scale quantum computing [MMMJA20, ALL+23, ZLL+22]. Our bench-
marking protocol, which we now sketch, allows us to detect some of these effects.

Theorem 6.3 (Benchmarking protocol). Consider a Hadamard test that satisfies the
requirements established in Theorem 5.5. This test involves N unitary gates, each
described by the unitary quantum channels {Gi}

N
i=1. The noise associated with each

gate Gi, obtained through quantum tomography, is represented byNGi . We will assume
that both state preparation and measurements are ideal and noiseless, which can be
accommodated by appropriately redefining the noise maps of the quantum gates (as
noted before Theorem 6.1).

LetNX,Gi be an approximation toNGi , such thatNX,Gi has a noise model satisfying
definition 6.1.

Let ρ denote the density matrix of the measured register at the end of the algorithm,
assuming that each gate Gi is affected by the noise map NGi . Define ρX as the reduced
density matrix of the measured register under the noise mapNX,Gi for each gate Gi. Let
ρexp be the reduced density matrix that precisely matches the experimental outcomes.
In other words, performing the measurements used in the Hadamard test on ρexp would
yield measurement results that exactly correspond to those observed experimentally.

Assume that there exists ε > 0 such that

max
i
||NX,Gi − NGi || ≤

ε
√

2N
(6.14)

is satisfied. Then, for any single-qubit Pauli P1:

|Tr(ρP1) − Tr(ρXP1)| ≤ ε (6.15)

Principle of the benchmarking:

Here’s how the benchmarking protocol functions: Tr(ρXP1) is the predicted out-
come of the circuit when using a noise model for each gate that meets the criteria
set out in Definition 6.1. This prediction can be calculated classically using Theorem
6.1. In contrast, Tr(ρexpP1) represents the result obtained from actual experiments. If
the difference between Tr(ρexpP1) and Tr(ρXP1) exceeds ε, it indicates that ρexp and ρ
are different, suggesting that the noise model derived from individual gate tomography
(represented by the noise maps {NGi }

N
i=1) does not accurately reflect the experimental

noise.
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Noteworthy, ∆ ≡ |Tr(ρexpP1) − Tr(ρXP1)| − ε can quantify how strong the noise
violation is at the scale of the whole circuit (if ∆ > 0). It is a consequence of the fact
|Tr(ρexpP1) − Tr(ρP1)| ≥ ∆ (the larger ∆, the larger the violation).

Proof. The benchmarking protocol naturally follows from the theorem 6.1. If

max
i
||NX,Gi − NGi || ≤

ε
√

2N
, (6.16)

then, from theorem 6.2, for any single-qubit Pauli P1, we have:

|Tr(ρP1) − Tr(ρXP1)| ≤ ε (6.17)

Therefore, if |Tr(ρexpP1) − Tr(ρXP1)| > ε, ρexp and ρ necessarily must be different. In
conclusion, by utilizing a basic triangular inequality, we arrive at:

|Tr(ρexpP1) − Tr(ρXP1)| ≤ |Tr(ρP1) − Tr(ρXP1)|
+ |Tr(ρP1) − Tr(ρexpP1)|
≤ ε + |Tr(ρP1) − Tr(ρexpP1)| (6.18)

Hence |Tr(ρexpP1) − Tr(ρP1)| ≥ ∆. □

6.4 Estimating the Size of Implementable Circuits based
on Literature

Our current aim is to estimate the largest circuit size for which our benchmarking pro-
tocol can be implemented. To do this, we need to assign specific values to maxi ||NGi −

NX,Gi ||⋄ appearing in the benchmarking protocol (theorem 6.3) from the literature: This
will help us calculate the maximum number of gates and state preparations, N, that
can be accommodated in the circuit while ensuring that ε remains small enough to be
effective [FAND+23]. We will represent quantum channels using their χ matrix. For
an n-qubit quantum channel N , the χ matrix is composed of elements χi j, such that
N(ρ) =

∑
i j χi jPiρP j. In this expression, Pi denotes a basis of n-qubit Pauli matrices

for the space of n-qubit operators. In [XIBJ22], numerical simulations provided the
χ matrix for the noise map of a cNOT gate for superconducting cat qubits. We will
base our quantitative estimates on this specific noise channel: Our estimate should be
considered as a rough approximation for the maximum permissible circuit size. Since
a cNOT gate is generally noisier than a single-qubit gate, it serves as a reasonable ex-
ample for our calculations. However, a limitation is that [XIBJ22] (as well as other
sources like [GM19, CNAA+22]) only provide absolute values for the real and imag-
inary components of the off-diagonal elements in the χ matrix. Consequently, we use
the Pauli Twirling approximation, which involves ignoring these off-diagonal terms
and approximating the noise channel as a perfectly biased Pauli channel. While this
approach may underestimate the true diamond distance, it is the best we could do given
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the best available method and the data that were openly accessible from the current lit-
erature. However, it’s worth noting that this approximation may be quite reasonable
in practice in certain situations, as the off-diagonal terms can often be much smaller
compared to the dominant diagonal terms [CNAA+22]. Hence, we consider:

NcNOT(ρ) =
∑

0≤i≤3
0≤ j≤3

χcNOT
i ji j (σi ⊗ σ j)ρ(σi ⊗ σ j), (6.19)

where, from [XIBJ22] (we rounded the diagonal terms to the closest order of magnitude
from their color plot), we have:

(χ0000, χ0303, χ0202, χ0101, χ3030, χ3333, χ3232, χ3131,

χ2020, χ2323, χ2222, χ2121, χ1010, χ1313, χ1212, χ1111)

=
1

1.0012000066
(1, 10−9, 10−10, 10−4, 10−9,

10−9, 10−10, 10−10, 10−9, 10−9, 10−10, 10−10, 10−3, 10−9,

10−10, 10−4). (6.20)

The term 1/1.0012000066 is included to ensure that the map remains trace-preserving,
as our rounding might otherwise affect this property. We note that in (6.20), while
we used values from [XIBJ22], we swapped the roles of the Pauli matrices from
(I, X,Y,Z)→ (I,Z,−Y, X). This difference arises because [XIBJ22] considered the pri-
mary noise mechanism to be a phase-flip, whereas our work assumes it to be a bit-flip.
We will approximate NcNOT by the perfectly biased Pauli channel NX,cNOT:

NX,cNOT(ρ) =
∑

0≤i≤3
0≤ j≤3

χcNOT
X,i ji j (σi ⊗ σ j)ρ(σi ⊗ σ j), (6.21)

where:

(χcNOT
X,0000, χ

cNOT
X,0101, χ

cNOT
X,1010, χ

cNOT
X,1111) =

1
1.0012

(1, 10−4,

10−3, 10−4), (6.22)

All other coefficients for χcNOT
X,i ji j are zero. Using the formula for the diamond distance

between Pauli channels [MGE12], we find that ||NcNOT − NX,cNOT||⋄ ≈ 1.31 × 10−8.
Since |Tr(ρP1) − Tr(ρXP1)| ≤ 2, a benchmark is considered useful if ε < 2. How-
ever, we adopt a more stringent criterion for a useful benchmark, requiring that when
Tr(ρXP1) is approximately 1, Tr(ρP1) should provide a reasonably accurate estimate
of Tr(ρXP1). This implies we need ε ≪ 1. In other words, we require our noise ap-
proximation to closely match the measurement outcomes that would be obtained with
the expected noise model, which is based on individual gate tomography. Considering
for instance ε = 1/50, the theorem 6.2 provides us:

N ≤ 1.07 × 106. (6.23)
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Note that it implicitly assumes that ||NcNOT − NX,cNOT||⋄ gives a fair estimate to the
left hand side of (6.7) (We consider this approach reasonable because a cNOT gate is
generally noisier than single-qubit gates). Thus, our benchmark is suitable for circuits
with up to 1.07 × 106 gates. This represents an increase of 3 to 4 orders of magni-
tude compared to what current hardware and circuits without noise bias can handle
[PBE22, SDB+21]. Our benchmark is then in practice applicable for near and longer-
term circuits.

6.5 Discussion

In this chapter, we evaluate the maximum number of quantum gates that our bench-
mark can handle effectively. According to existing research [PBE22], we find that,
when applying the Pauli-Twirling approximation, the benchmark is suitable for cir-
cuits with up to 106 gates. This size is significantly larger—by three to four orders of
magnitude—compared to the circuits used in contemporary experiments. This suggests
that our benchmark is highly relevant for evaluating hardware reliability in the NISQ
(noisy intermediate-scale quantum computation) regime and beyond, particularly for
large circuits. In simple terms, our benchmark is intended for use in situations where
the phase-flip error source is anticipated to be negligible which is precisely the regime
where a benchmark is useful for this kind of qubits. Technically, this is due to its de-
pendence on classical simulation, as outlined in theorem 6.1, which assumes perfect
bias conditions with no phase-flips occurring in the algorithm.

Our protocol can identify some correlated errors that individual gate tomography
might miss. This is because our classical simulation algorithm presumes that individual
gate tomography accurately represents the noise behavior. If noise correlations are too
strong, the simulation results might not align with experimental outcomes. However,
we believe the most valuable aspect of our protocol is its capability to detect phase-flip
errors occurring more frequently than anticipated (We note that increasing error rates
with the size of the computer is a phenomenon observed experimentally in supercon-
ducting qubits [ZLL+22, KLR+20, SR20]). Indeed, such effects would typically result
in discrepancies between the classical simulation and experimental results for algo-
rithms with fewer gates than anticipated (i.e. a total number of gates, N, smaller than
what (6.14) predicts). Specifically, an experimentalist should select the largest N such
that the bound (6.14) is reached. If ∆ ≥ 0, it suggests a violation of the assumptions
underlying the noise model, which could signal a potential issue for the scalability of
the platform. For example, when ε = 1/50, our quantitative analysis suggests that
N = 106 would be effective.

We can also illustrate a specific circuit designed to efficiently detect phase-flip er-
rors occurring at a higher rate than anticipated [FAND+23]. For example, consider a
circuit implementing the controlled unitary cXU, where U = ⊗n

i=1Xi. This circuit sat-
isfies the criteria specified in Theorem 5.5. (including its extension to noisy identity
gates as discussed in the paragraph following Theorem 5.5): We can therefore utilize
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this circuit for benchmarking purposes. It is particularly useful because it makes the
measurement outcomes sensitive to phase-flip errors occurring on any qubit in the data
register after the application of the preparation unitary B. This sensitivity arises be-
cause a phase-flip error on any qubit in the data register will initially propagate to the
parallelization register (through the blue cNOT gates that implement W = U = ⊗n

i=1Xi

as shown in Figure 5.4), and subsequently affect the measured register. Considering
Figure 5.4, we use a parallelization register with n qubits, where each qubit interacts
with the data register qubits through cNOT gates. For instance, if a Pauli Z error (or
’phase-flip’) occurs on the second qubit (from the top) of the data register after applying
B, this Z error will propagate to the second qubit (from the top) of the parallelization
register, due to the cNOT gates transferring Z errors from the target qubit to the control
qubit. The Z error will then spread to the top qubit of the parallelization register via
the cNOT gate between the first and second qubits of this register. Eventually, the Z
error will be transferred to the measured register through the final cXX gate connecting
the parallelization and measured registers, where it will be converted into an X error.
Consequently, the initial Z error will generally affect the measurement probability dis-
tribution. This explanation can be applied to a Z error on any qubit in the data register,
making our protocol sensitive to such errors across the entire data register. Although
we specifically discussed a Pauli-Z error on the second qubit of the data register, the
same principles apply to other operators that have a non-zero Hilbert-Schmidt inner
product with a Pauli operator involving a Pauli Z on the second qubit in their tensor
product. In essence, the phase-flip error does not have to be a Pauli error due to the
linearity of the process. As a result, phase-flip errors introduced during the applica-
tion of B are likely to change the distribution of the measurement outcomes, thereby
allowing for the efficient detection of an elevated rate of these errors [Pro]. An experi-
mentalist could assess whether the circuit, consisting of bias-preserving gates encoded
in the unitary B, produces more phase-flip errors than expected. Detecting such anoma-
lies is critical for superconducting cat qubits, as their scalability strategy depends on
maintaining minimal phase-flip error rates, even in large-scale circuits. [GRLR+23].

In summary, our benchmark protocol can identify deviations from the noise model
that might be missed by individual gate tomography, as some noise effects are not
detectable at that level, a point we elaborated on at the beginning of this chapter.

Contribution: The results in this chapter are based on the work in the paper Scal-
able noisy quantum circuits with biased-noise qubits. I contributed to all the technical
discussions in this work. Moreover, I did the work on finding the original and pre-
liminary proof of ”Efficient Simulation of Noise-Resilient Hadamard Test” in section
6.1 and Appendix A. I also did some preliminary numerics on ”Estimating the Size of
Implementable Circuits based on Literature” in section 6.4.
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Conclusion

In this thesis, we have delved into various aspects of quantum computing, with a partic-
ular focus on the time constraints and resource limitations associated with basis trans-
formations, quantum coherence, and algorithm performance under noise. Through this
work, we have made several contributions to understanding how these factors influence
the efficiency and reliability of quantum systems.

Firstly, we explored the maximum speeds for basis transformations using unitary
evolutions, determining optimal time limits across different dimensionalities. Our anal-
ysis showed that for dimensions d ≤ 4, the shortest evolution times are similar for d = 2
and d = 4 when Hamiltonians with equal average energy E are considered. For d = 3,
achieving the speed limit requires a specific basis ordering that remains unbiased rel-
ative to the computational basis. We further demonstrated that an n-qubit Hadamard
gate can be executed in a time independent of the number of qubits, highlighting how
interactive Hamiltonians can accelerate the evolution process. These insights were ex-
tended to d → ∞, where we established a lower bound on the transformation time
for unbiased bases, tmin ≥

π
4E . Additionally, we examined the speed limits for gener-

ating quantum coherence and transforming pure states into maximally coherent ones,
suggesting the potential to extend these methods to other quantum resources, such as
entanglement.

Secondly, we provided a framework for quantifying the maximum rate of quan-
tum coherence generation, specifically in systems where Hamiltonians possess limited
Hilbert-Schmidt norms. Our research pinpointed the states that maximize the rate of
change in coherence for qubit systems and suggested that similar approaches could
be explored in higher-dimensional systems. This lays the groundwork for future re-
search into optimizing Hamiltonians for enhancing quantum resources like entangle-
ment. Given the theoretical similarities between quantum coherence and entanglement,
our methods offer promising avenues for further exploration of resource theories in
quantum computing.
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In parallel, we investigated a probabilistic version of the Bernstein-Vazirani algo-
rithm, focusing on how coherence in the initial state affects the algorithm’s ability to
decode a bit string a. We demonstrated that multipartite entanglement, while beneficial
up to a point, can diminish performance if present in excessive quantities. Our find-
ings are especially relevant for NMR-based quantum computation, where pseudo-pure
states may provide superior performance under noisy conditions. This opens up new
possibilities for applying probabilistic algorithms in real-world quantum computing
scenarios.

Our work also contributes to understanding how quantum circuits can be realized
efficiently with minimal quantum resources and correlations. By analyzing the perfor-
mance of the DQC1 circuit, we demonstrated that it can be implemented using only
negligible quantum resources, suggesting that the observed quantum speedup is un-
likely to be due to the intrinsic quantum states of the processor. This insight is appli-
cable across a wide range of resource and correlation measures, such as multipartite
entanglement, mutual information, quantum coherence, and purity. These findings, to-
gether with our extension to algorithms on mixed states, suggest that the methodology
can be generalized to other quantum algorithms, including those operating under noisy
conditions, such as the mixed-state version of Shor’s algorithm.

A key part of our investigation involved examining qubits with biased noise, namely
qubits mainly producing bit-flip errors such as superconducting cat qubits. This led to
the development of a restricted class of noisy Hadamard tests that include certain en-
tangling and non-Clifford gates. Despite these noise sources, the circuits we examined
showed remarkable noise resilience in the presence of Pauli bit-flip errors. Our circuits
allow to recover the noiseless’s algorithm outcome with a polynomial increase in al-
gorithm’s repetition (as a function of the problem size), raising the question whether
extensions of this work could lead to noise-resilient circuits with computational signif-
icance. Indeed, while the circuits we analyzed happened to be efficiently simulable, it
is worth noticing that they allow for gates that exhibits interesting computational prop-
erties. In particular, they can generate highly entangled state and allow to implement
non-Cllifordd gates which are usually required for a computational advantage.

Finally, we developed a benchmarking protocol to assess the impact of phase-flip
errors in quantum circuits. We demonstrated that our benchmark can handle circuits
with up to 106 gates when applying the Pauli-Twirling approximation, exceeding the
scale of current experimental circuits by several orders of magnitude. This scalability
makes our protocol useful in the NISQ regime and beyond. Furthermore, our protocol
is designed to detect some errors that can go unnoticed in individual gate tomography
such as correlated or crosstalk errors, providing a comprehensive approach to error
detection in large-scale quantum systems. Our protocol also allows experimentalists to
assess whether circuits with bias-preserving gates introduce more phase-flip errors than
expected, providing valuable insights into the noise behavior in large quantum circuits
(detecting such anomalies is critical for superconducting cat qubits, as their scalability
strategy depends on maintaining minimal phase-flip error rates, even in large-scale
circuits).
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In conclusion, our work advances the understanding of the time and resource lim-
itations in quantum computing and proposes new methods for optimizing both algo-
rithmic performance and system scalability. These contributions not only enhance the
theoretical foundation of quantum resource management but also offer practical in-
sights for future quantum technologies. We anticipate that the methods and findings
presented in this thesis will pave the way for further innovations in the optimization
and implementation of quantum computing systems.
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Appendix A

Proof of Theorem 6.1 and 6.3

We extend the idea from Theorem 5.6 to address the case of a noisy algorithm imple-
mentation. Specifically, we prove that for any single-qubit Pauli operator P1 acting
on the measured register, our classical algorithm can produce samples of measurement
outcomes that match the probability distribution of those on a quantum computer, and
does so with polynomial computational cost [FAND+23]. This proof assumes the cir-
cuit design described in Theorem 5.5. Therefore, the Hadamard test is implemented
using the circuit shown in Figure 5.4, which allows for the most general form of the
Hadamard test.

Proof. [FAND+23] To prove the result, we consider two specific conditions that sim-
plify our analysis. First, assume that noise affects only the gates acting on the measured
register (H.1). Second, assume that after initializing each qubit in the parallelization
and data registers, a single-qubit ”X-dephasing” map, defined as ∆X(ρ) = 1

2 (ρ + XρX),
is applied (H.2). Under these assumptions, we show that the measured register will still
arrive at the final density matrix ρX . These conditions provide a basis for simplifying
our derivations.

The reasoning behind (H.1) is based on several key points: (i) we assume a perfect
bias as outlined in Definition 6.1 from the main text, (ii) the gates used in the algorithm
are all part of Bn,1 and (iii) the gates interacting between the measured register and the
data or parallelization registers commute with any X-Pauli operator, as shown in Figure
5.4.

To be more specific, when a noisy gate is applied locally to the parallelization or
data register, it affects the qubit states through Kraus operators, which are linear com-
binations of X-Pauli operators, as described in (i). Since these gates act on localized

1Although Theorem 5.5 specifies that the unitary B is implemented with bias-preserving gates, it should
be noted that all other gates also fall within Bn due to Property 5.4.
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regions and we are employing a local noise model (see Definition 6.1), the Kraus oper-
ators will also be localized. Furthermore, if these Kraus operators are commuted with
other gates in the circuit, they will remain linear combinations of X-Pauli operators, as
indicated by (ii).

Additionally, if no gates have been placed between the measured register and the
parallelization or data registers, the impact of these Kraus operators on the measured
register will be minimal. Considering that these Kraus operators have been commuted
in the circuit until a gate is applied between the measured register and either the paral-
lelization or data register, and given that these Kraus operators are linear combinations
of X-Pauli operators, they will commute with the applied gate, as noted in (iii). As
a result, the Kraus operators will have no impact on the density matrix of the mea-
sured register (meaning their effect will be trivial on this register). Thus, any noise
introduced by gates applied locally to the parallelization or data register will not alter
the measured register’s density matrix. This supports the validity of (H.1). The same
rationale applies to (H.2), confirming its correctness.

We denote by ρ′f the final density matrix of the algorithm under the conditions
specified by (H.1) and (H.2). We have demonstrated that ρX = Tr,Measured(ρ′f ), where
Tr,Measured refers to the partial trace over all degrees of freedom except those of the
measured register.

We define the set of Kraus operators as

{A i1,i2
j1··· jNV

} i1,i2
j1··· jNV

to represent the sequence of noisy operations applied in the algorithm, as depicted
in Figure 5.4 and under the conditions specified by (H.1) and (H.2). Using this notation,
we have:
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ρX = Tr,Measured(ρ′f ) (A.1)

ρ′f ≡
∑
i1,i2

j1··· jNV

(
A i1,i2

j1··· jNV

)
ρ′ini

(
A i1,i2

j1··· jNV

)†
(A.2)

ρ′ini ≡ |0⟩⟨0|
qn⊗
i=1

ρ
par
i

n⊗
i=1

ρdata
i (A.3)

A i1,i2
j1··· jNV

≡ K
cXGVNV
jNV

cXGVNV
· · ·K

cXGV1
j1

cXGV1 KcX X
i2

cXX(Imeas ⊗ B̃)KcX X
i1

cXX(Imeas ⊗ Ipar ⊗ B),

(A.4)

ρ
par
i ≡ ∆X(|0⟩⟨0|) (A.5)

ρdata
i ≡ ∆X(|φi⟩⟨φi|) (A.6)

In equation (A.3), |0⟩⟨0| denotes the initial state of the measured register. Mean-
while, ρpar

i and ρdata
i represent the X-dephased initial states of the parallelized and data

registers, respectively (as detailed in (A.5) and (A.6)). The term Imeas ⊗ Ipar ⊗ B in
equation (A.4) indicates the ideal, noise-free implementation of the preparation uni-
tary on the data register, with Imeas and Ipar signifying identity operations applied to
the measurement and parallelization registers. The expression KcX X

i1
cXX corresponds

to the application of the first cXX gate between the measured and parallelization regis-
ters, followed by the Kraus operator associated with its noise map. The term Imeas ⊗ B̃
represents the ideal implementation of both the cNOT gates applied locally on the
parallelization register and the controlled operation W. The term KcX X

i2
cXX denotes

the second noisy cXX gate applied between the measured and parallelization registers.

Lastly, K
cXGVNV
jNV

cXGVNV
· · ·K

cXGV1
j1

cXGV1 describes the noisy execution of the controlled
operation V as a series of NV gates.

We will now demonstrate that a classical computer can efficiently produce sam-
ples of measurement results for the observable P1 on ρX , which will have the same
probability distribution as those generated by a quantum computer.

Initially, each ρdata
i can be rewritten as: ρdata

i = p+|data
i |+⟩⟨+| + p−|data

i |−⟩⟨−|, with the
probabilities p±|data

i being computable in O(n) time. The same approach applies to ρpar
i ,

as the calculation can also be completed in O(n) time, given that the number of qubits
in the parallelization register, qn, is at most n. We then proceed to the decomposition:

qn⊗
i=1

ρ
par
i

n⊗
i=1

ρdata
i =

∑
spar∈{+,−}

qn

sdata∈{+,−}
n

pspar,sdata |spar⟩⟨spar||sdata⟩⟨sdata| (A.7)

pspar,sdata = ppar
spar
× pdata

sdata
. (A.8)

Here, pdata
sdata
=

∏n
i=1 psdata,i |data

i represents a product distribution. To be precise, sdata is an
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n-dimensional vector that specifies the state (+ or −) of each data qubit in the mixture
given by (A.7) 2. Since the parallelization register is made up of qn qubits, all of which
start in the state |0⟩, the probability ppar

spar
is 1/2qn . Consequently, we obtain:

Tr(P1ρX) = Tr(P1ρ
′
f ) =

∑
spar∈{+,−}

qn

sdata∈{+,−}
n

pspar,sdata × λspar,sdata (A.9)

λspar,sdata =
∑
i1,i2

j1··· jNV

Tr
(
P1A i1,i2

j1··· jNV

|0⟩⟨0||spar⟩⟨spar||sdata⟩⟨sdata|.(A i1,i2
j1··· jNV

)†
)

(A.10)

The classical algorithm operates as follows: (A) it generates samples s ≡ {spar, sdata}

according to the probability distribution {pspar,sdata } (i.e., samples {spar, sdata} are drawn
based on this distribution), and (B) it computes λspar,sdata . By performing both steps (A)
and (B), the algorithm produces measurement outcome samples for the observable P1
that match the probability distribution of the quantum computer’s measurements.

Step (A) is efficiently handled in O(n) time classically because s is a product
measure over n + qn = O(n) bits. We will also show that step (B) is computation-
ally feasible. To do this, we first estimate the complexity of calculating one specific
term in the summation (with fixed values of (i1, i2, j1, · · · , jNV )) and then multiply by
the total number of terms in the sum. The computation is performed by evaluating
A i1,i2

j1··· jNV

|0, spar, sdata⟩. To compute this, we start by expressing |0, spar, sdata⟩ as the super-

position (|+, spar, sdata⟩+ |−, spar, sdata⟩)/
√

2. We then analyze the action of A i1,i2
j1··· jNV

sepa-

rately on each of these two states. Given that A i1,i2
j1··· jNV

consists of elements that are either

diagonal in the X-Pauli eigenbasis or belong to Bn, and act on a finite number of qubits,
the computation involves performing local operations in the X-Pauli basis and applying
a global complex factor. We describe the steps for calculating A i1,i2

j1··· jNV

|+, spar, sdata⟩ in

detail, noting that the calculation for A i1,i2
j1··· jNV

|−, spar, sdata⟩ follows a similar approach.

This method requires a specific set of operations starting from |+, spar, sdata⟩.

1. Applying (Imeas ⊗ Ipar ⊗ B) requires O(RB) operations. This is due to B being
composed of RB local permutations, which are performed within the eigenbasis
of X-Pauli operators (see Property 5.2). These permutations are carried out on
vectors that are already in this eigenbasis.

2. Applying KcX X
i1

cXX involves O(1) operations. This is because the gate KcX X
i1

cXX
(a) affects only a small, fixed number of qubits, (b) is represented as a diago-
nal matrix in the X-Pauli eigenbasis, and (c) operates on a state that is already
expressed in this basis.

3. Applying (Imeas ⊗ B̃) requires O(RB̃) operations, where RB̃ denotes the number of
gates in B̃. This is due to a similar rationale as explained in item 1.

2The i-th component of sdata, denoted sdata,i, is either + or −
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4. Applying K
cXGVNV
jNV

cXGVNV
· · ·K

cXGV1
j1

cXGV1 KcX X
i2

cXX requires O(NV ) operations.
This is because the product involves O(NV ) individual operations, each of which
takes O(1) time to execute, for reasons similar to those in item 2.

Thus, after Step 4 the state has the following form:

A i1,i2
j1··· jNV

|+, spar, sdata⟩

= e jφ+ |+, σB̃(spar, σB(sdata))⟩ , (A.11)

for some phase φ+ introduced by each of the steps. The permutations σB̃ and σB reflect
the changes made to the qubits in the parallelization and data registers as outlined in
Steps 1 and 3. To determine A i1,i2

j1··· jNV

|−, spar, sdata⟩, a parallel calculation is carried out,

leading to a similar result but involving a different phase φ−:

A i1,i2
j1··· jNV

|−, spar, sdata⟩

= e jφ− |−, σB̃(spar, σB(sdata))⟩ . (A.12)

Given that P1 interacts solely with the first qubit and the final state, which results from
summing (A.12) and (A.11), is a product state, the evaluation of

Tr(P1A i1,i2
j1··· jNV

|0, spar, sdata⟩⟨0, spar, sdata|(A i1,i2
j1··· jNV

)†) (A.13)

takes O(1) number of operations, as it involves evaluating a single-qubit Pauli operator
on a product state. Consequently, computing each term in the sum (A.10) takes O(NV +

RB+RB̃) steps. Next, we need to determine the total number of terms in the sum (A.10).

Each index in the sum corresponds to the count of Kraus operators for a particular
noise map. Let jmax denote the maximum number of qubits affected by any gate in
the algorithm. As a result, the number of elements in the sum is bounded by O( jNV

max).
Therefore, computing (A.10) will require at most O( jNV

max(NV + RB + RB̃)) operations.
Consequently, the total computational cost for performing steps (A) and (B) is O(n +
jNV
max(NV + RB + RB̃)).

Our objective is to compute the expectation value Tr(P1ρX) using samples gener-
ated by the classical algorithm. Hoeffding’s inequality tells us that if P1’s expecta-
tion values are within [−1, 1], then by repeating the process O((1/ε2) log(1/δ)) times
and averaging the results, we can achieve an ε-accurate estimate of Tr(P1ρX) with
probability at least 1 − δ. Therefore, the overall complexity of this method is at most
O((1/ε2) log(1/δ) × (n + jNV

max(NV + RB + RB̃))). Given that NV = O(log(n)) and RB,
RB̃ are polynomial functions of n, the total complexity is O((1/ε2) log(1/δ) × Poly(n)),
which indicates that the algorithm is efficient. □
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Appendix B

Example of Bias-Preserving
Gates

In the following section, we will present specific examples of bias-preserving gates
and demonstrate how these gates propagate errors in quantum circuits [FAND+23].
Indeed, while bias-preserving gates do have a theoretical existence, their practical im-
plementation in a bias-preserving manner can be quite challenging. The challenge in
implementing bias-preserving gates lies in the continuous Hamiltonian evolution used
in the laboratory to realize these gates. When implementing gates through continuous
Hamiltonian evolution, the presence of Pauli Z-terms in the Hamiltonian can lead to
a phenomenon known as error transversal. In this context, a bit-flip (X-error) that oc-
curs during the gate evolution might be converted into a phase flip (Z-error). In other
words, the original type of error can change as the gate is being performed, which can
introduce unexpected errors and impact the accuracy of the quantum computation. For
example, while a cNOT gate preserves X-errors in principle, ensuring that this con-
dition still holds during continuous-time evolution to implement the gate cannot be
guaranteed. In practice, this issue can be overcome by utilizing cat-qubits [PSJG+20]
and both the Toffoli’ ≡ H1H2H3 × Toffoli × (H1H2H3)† and cNOT gates have been
demonstrated to preserve X-errors in the literature [GM21, PSJG+20]. In our work, it
is important to note that we adopted a different convention for the dominant source of
errors. (Indeed, in the references [GM21, PSJG+20], the main focus is on errors caused
by phase-flips, i.e., Z errors, while in our work, we primarily consider errors resulting
from bit-flips, i.e., X errors.). Hence, by ”swapping” the role of X and Z errors, we can
adapt the results from the references [GM21, PSJG+20] to our convention, which al-
lows us to conclude that Toffoli and cNOT gates preserve the bit-flip bias, ensuring that
errors introduced during their implementation remain in the X-error category. Figure
B.1 illustrates the propagation of errors through cNOT and Toffoli gates, highlighting
their bias-preserving property. In Figure B.1, we can observe that the occurrence of a
pre-existing Pauli X error on a specific qubit can lead to the propagation of this error
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Figure B.1: [FAND+23] This image illustrates how initial Pauli errors (either X or Z)
propagate through various bias-preserving gates. Specifically, we provide examples of
bias-preserving gates that maintain X-errors, including the cNOT gate, the Toffoli’ gate
(which is a variant of the Toffoli gate where the roles of X and Z are swapped), and the
cXX gate (where cXG denotes the application of a gate G controlled coherently in the X
basis, meaning G is applied when the control qubit is in state |−⟩ and not applied when
it is in state |+⟩). Coherent control in the X basis is represented by an X symbol within
a black circle, as illustrated on the top qubit in Figure (c). In figure (a), it is shown
that in a cNOT gate, an X error originating from the control qubit will propagate to the
target qubit, but not in the reverse direction. Conversely, a Z error will move from the
target qubit to the control qubit, but not from the control to the target. Figure (b) shows
that the Toffoli gate allows X-errors to spread to multiple qubits, but this only occurs if
there was already an error present on the target qubit beforehand. In this scenario, the
resulting error transforms from being part of PX

n to belonging to UX
n . The Toffoli gate

does not maintain Z (or Y) errors. In part (c), it is shown that an X error commutes with
the cXX gate. However, Z errors are not preserved by this gate: a Z error occurring
before the cXX gate is equivalent to applying the cXX gate followed by an operator that
no longer qualifies as a Pauli Z operator, as demonstrated in the two examples at the
bottom of the figure.
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to multiple qubits, depending on the gate operations applied in the circuit. As depicted
in Figure B.1 b), in certain cases, the error that propagates through the bias-preserving
gates (cNOT and Toffoli’) may no longer remain a simple Pauli X operator. However,
due to the use of bias-preserving gates, we can ensure that any initial Pauli-X errors,
which may be present before the gate operation, will always result in an error that be-
longs to the set UX

n after the gate is applied. In Figure B.1, we also demonstrated the
propagation of Z errors through a cNOT gate (similarly, the definitions can be extended
to Y and Z operators). The way Y errors propagate can be inferred from how X and Z
errors behave during the error propagation process. Toffoli’ does not preserve Z errors,
as a pre-existing Z error on any of the control qubits would no longer be a Z error after
the gate.
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Appendix C

Entanglement Properties of the
States Produced by the
Bias-Preserving Gates

In this section, we aim to discuss various characteristics of the entanglement produced
by bias-preserving circuits and illustrate their application through specific examples
using the Hadamard test [FAND+23]. One can show that highly entangled graph states
can be generated by these circuits [VdNDDM04]. To accomplish this, the data register
is first set to the state |0⟩⊗n, and then specific gates cXX ∈ UX

n are applied within the
preparation unitary B. This indicates that, in general, bias-preserving circuits can pro-
duce quantum states with intriguing computational properties, a point that is important
to consider for potential future extension of the current research.

It is important to note that for the particular computational task examined in our
study—executing a limited category of Hadamard tests, the cXX gates will not influ-
ence the measurement results [FAND+23]. Therefore, this implies that while bias-
preserving circuits are capable of preparing highly entangled graph states, in our spe-
cific task, they would yield the same results as a Hadamard test, represented by ⟨0⊗n|U |0⊗n⟩,
for any U permitted by Theorem 5.5. It is noteworthy that U itself can serve as an en-
tangling operation here.

However, this does not pose a problem for our objectives [FAND+23]: (i) it does
not diminish the value of the benchmarking protocol for these states, and (ii) we can
create other entangled states where the entangling operations used in their preparation
influence the outcome of the Hadamard test. Regarding (i), the goal of the verification
is to determine if the circuit designed to prepare these highly entangled states func-
tions correctly. If there are no errors, our example shows that the expectation value
for this Hadamard test will be identical to that for |ψ⟩ = |0⟩⊗n[FAND+23]. When
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BY THE BIAS-PRESERVING GATES

there is an imperfect bias, the circuit, even if it only uses cXX gates in the preparation
unitary B, will generally propagate Y and Z errors to the measured register. This re-
sults in substantial changes to its density matrix compared to the case with no noise
[FAND+23]. Thus, the verification protocol can still assess whether the highly entan-
gled states were prepared in a bias-preserving way, meaning they are only influenced
by X-errors [FAND+23]. Verification is feasible for the unitaries permitted by Theorem
5.5, provided that ⟨0⊗n|U |0⊗n⟩ , 0, which can indeed be satisfied in our case 1. Re-
garding (ii), it’s straightforward to construct entangled states where the gates involved
in their creation affect the expectation value of the Hadamard test. A basic example of
this is an n-qubit GHZ state. You can create it by setting the first qubit to |+⟩, initial-
izing the remaining qubits to |0⟩⊗n−1, and then applying a series of cNOT gates with
the first qubit as the control and the others as targets [FAND+23]. Although the cNOT
gates are part of BX

n , they are not included in UX
n . Consequently, the preparation unitary

B will affect the measured outcome. In summary, providing a precise characterization
of all entangled states achievable with our circuits is beyond the scope of the work.

Deploying the error mitigation techniques in these circuits along with studying their
scalability could be a direction for future inspection, to evaluate the possibility and the
degree of retrieving the entangled states that were supposed to be generated by the
noiseless circuits.

1For example, if U is a single-qubit rotation around X with an angle different from (π, 0), a perfect bias
would result in a finite (non-zero) value for ⟨ψ|U |ψ⟩. However, with an imperfect bias, we generally expect
Tr(ρY) and Tr(ρZ) to be exponentially small allowing an experimentalist to detect this imperfection, as
discussed in the benchmarking protocol in the following chapter.
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