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Radiative Recombination in Strong Laser Pulses

by Deeksha Kanti

In this dissertation, we investigate laser-assisted radiative recombination (LARR) in strong
laser pulses, an important phenomenon in strong-field physics. This process is crucial as it
serves as a fundamental step of high-order harmonic generation, which ultimately led to the
development of attosecond science.

In our study, we provide a comprehensive treatment of the LARR process, starting with
an analysis of laser-assisted electron-atom radiative recombination. We consider an electron
recombining with a hydrogen-like atom under the influence of a short-range atomic potential
in the presence of a laser pulse, that results in the emission of high-energy photons. Addition-
ally, we treat the laser pulse within the dipole approximation. Unlike previous formalisms,
our comprehensive treatment of LARR eliminates the nonphysical oscillations in the energy
spectrum of emitted photons. Moreover, we identify the laser-field-free recombination, which
manifests as a peak in the energy spectrum of LARR. Together with parameters like the electron
energy, the carrier-envelope phase of the pulse, and its shape, we also investigate the impact
of a train of identical laser pulses on the LARR energy distribution. Our findings show that
the energy distribution coherently enhances, varying in proportion to the square of the num-
ber of pulses in the train. Furthermore, we conduct a time-frequency analysis of the energy
distribution of LARR, which allows for a laser-pulse diagnostics.

Under certain conditions, the dipole approximation may not be applicable. Therefore, the
studies mentioned above serve as a foundation for exploring LARR beyond the dipole approx-
imation. Additionally, we aim to investigate the impact of the Coulomb potential on the energy
spectrum of LARR. Hence, we study the recombination of an electron to a hydrogen-like posi-
tive ion in the presence of the Coulomb potential and the laser field; the latter varying in space
and time. To account for the nondipole corrections in the leading order in 1/c, we perform
a relativistic reduction of the Klein-Gordon equation for the scattering state of the electron.
Our studies reveal that nondipole corrections that are arising are of three different origins:
gauge transformation correction, retardation, and recoil correction. We observe nondipole ef-
fects manifesting as an extension of the plateau and an asymmetry in the energy-angle distri-
bution of LARR, primarily attributed to the recoil effect. In addition, we demonstrate a method
to enhance the intensity of specific harmonics on the edges of the LARR plateau by chirping
the assisting laser pulse. We conclude our investigation by demonstrating the nodal and vortex
structures in the LARR probability amplitude.
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Streszczenie
Wydział Fizyki

Rozprawa Doktorska

Rekombinacja Radiacyjna w Silnych Impulsach Laserowych

Deeksha Kanti

Rozprawa doktorska poświęcona jest rekombinacji radiacyjnej w asyście impulsów lasero-
wych (LARR), które to zjawisko odgrywa znaczącą rolę w fizyce silnych pól laserowych. Pro-
ces ten jest kluczowy, gdyż stanowi podstawowy krok w generowaniu harmonicznych wyższe-
go rzędu, co doprowadziło na przestrzeni ostatnich lat do rozwoju fizyki attosekundowej.

W rozprawie przedstawiono kompleksowe omówienie procesu LARR, zaczynając od anali-
zy wspomaganej laserowo rekombinacji radiacyjnej elektron-atom. Rozważono rekombinację
elektronu z atomem wodoropodobnym pod wpływem krótko-zasięgowego potencjału atomo-
wego oraz w obecności impulsu laserowego, co skutkuje emisją fotonów o wysokiej energii.
Ponadto, potraktowano impuls laserowy w przybliżeniu dipolowym. W przeciwieństwie do
poprzednich sformułowań teoretycznych, przedstawione w rozprawie podejście eliminuje nie-
fizyczne oscylacje w widmie energetycznym emitowanych fotonów. Identyfikuje również re-
kombinację bez pola laserowego, która objawia się jako pik w rozkładzie energetycznym pro-
mieniowania. Wraz z parametrami takimi jak energia elektronu, faza obwiedni impulsu lasero-
wego czy jego kształt, zbadaliśmy ponadto wpływ ciągu identycznych impulsów laserowych
na rozkład energii promieniowania. Nasze badania pokazały, że rozkład ten spójnie się wzma-
cnia, zmieniając się proporcjonalnie do kwadratu liczby impulsów w ciągu. Ponadto, przepro-
wadziliśmy analizę czasowo-częstotliwościową rozkładu energii LARR, co umożliwiło z kolei
diagnostykę impulsów laserowych.

W pewnych warunkach przybliżenie dipolowe nie jest spełnione. Dlatego wymienione po-
wyżej wyniki stanowiły wstęp do badań nad procesem LARR poza przybliżeniem dipolowym.
Naszym celem było też zbadanie wpływu potencjału kulombowskiego na widmo energety-
czne LARR. W związku z powyższym zbadano rekombinację elektronu do dodatniego jonu
wodoropodobnego w obecności potencjału kulombowskiego i pola laserowego, gdzie to ostat-
nie zmieniało się w przestrzeni i w czasie. Aby uwzględnić poprawki pozadipolowe w wiodą-
cym rzędzie 1/c, przeprowadzono relatywistyczną redukcję równania Kleina-Gordona dla
stanu rozproszeniowego elektronu. Nasza analiza pokazała, że poprawki pozadipolowe mogą
wywodzić się z transformacji cechowania, opóźnienia bądź z odrzutu. Zaobserowano efekty
pozadipolowe manifestujące się jako poszerzenie zakresu plateau w widmie energetycznym
promieniowania LARR i asymetria w rozkładach kątowo-energetycznych generowanego pro-
mieniowania, przypisywane przede wszystkim efektowi odrzutu elektronu oddziałującego z
polem laserowym. Pokazano też zwiększenie intensywności określonych harmonicznych na
brzegach plateau LARR spowodowane obecnością impulsów ze świergotem. Na zakończenie
zademonstrowano struktury węzłowe i wirowe w amplitudzie prawdopodobieństwa LARR.
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Chapter 1

Introduction

In 2023, the strong-field physics [1, 2] received well-deserved recognition as the Nobel Prize in
Physics was awarded to Pierre Agostini, Ferenc Krausz, and Anne L’Huillier [3]. They were
awarded for their pioneering work in developing experimental methods to generate attosec-
ond pulses, which have become invaluable tools for probing the dynamics of electrons within
matter [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. Their applications span diverse fields, encompassing
nonlinear optics, atomic and molecular physics and nanotechnology (for recent reviews, see
Refs. [16, 17, 18, 19]). Within this thesis, we aim at theoretical understanding of the fascinating
strong field phenomena, with a particular focus on Laser-Assisted Radiative Recombination
(LARR) in the presence of short laser pulses. This focus is essential because LARR represents
the third and final step of High-Order Harmonic Generation (HHG) [4,20,21]. This process pos-
sesses the capability to generate coherent bursts of light with attosecond duration [22, 23, 24],
opening up an entirely new discipline of scientific inquiry. In HHG [20, 21], the intense laser
field ionises the atomic target, and when the oscillating field brings back the ionised electron
to the parent ion or atom, recombination occurs, followed by the emission of high harmonic
photons, often in the extreme ultraviolet (XUV) or soft X-ray range. Hence, investigating LARR
is of great importance as it enables us to exert control over the properties of the emitted HHG
spectrum, contributing to a deeper understanding of ultrafast physics.

It is worth noting that although LARR represents the final step in the HHG process, there is
a fundamental difference between LARR and HHG. In LARR, the initial electron momentum
can be arbitrary whereas in HHG it is well defined by the first two steps of HHG mechanism.
Also, it is worth stressing that while LARR is a laser-assisted process, the HHG is a laser-
induced process which cannot occur in the absence of a laser field.

As highlighted above, this thesis shines a spotlight on the phenomenon of radiative recom-
bination in the presence of an external laser field. However, radiative recombination can occur
independent of an external laser field. In this process an electron recombines with an atomic
target, resulting in the emission of a high-energy photon. It occurs naturally in various envi-
ronments such as plasmas, astrophysical conditions, or even in laboratory settings without the
presence of a laser field [25, 26, 27]. In this scenario, as determined by the energy conservation
condition, the photon’s energy is an excess of energy necessary to bind an initial electron in
a target. However, in the presence of an external laser field, the energy spectrum of emitted
photons undergoes significant complexity due to the recombination process potentially incor-
porating both the absorption and emission of laser photons. This results in a wide-ranging
spectrum of LARR radiation.

In the early stages of researching LARR processes, the external laser field was assumed to be
weak. Within this setup, the laser was tuned to precisely match the transition energy between
the electron’s scattering state and its recombined bound state. The process resulted in the emis-
sion of a single photon with a well-defined energy. These experiments were carried out in ion
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storage rings and played a crucial role in investigating the electron cooling process and enhanc-
ing the production rate of antihydrogen [28]. The merged beam configuration, involving laser
photons, electrons, and protons within an ion storage ring, provides a favorable setting for
Laser-Induced Recombination (LIR) and LARR [29, 30]. It has been observed that the presence
of the laser field not only amplifies the recombination process but also facilitates the generation
of a recombined system in a well defined final state [29]. Furthermore, this setup helps to in-
vestigate the photorecombination spectrum of LARR/LIR with high resolution, thanks to the
narrow bandwidth of the laser. In the early 2000, there were investigations aimed at directly ob-
serving LARR [31]. The experiment involved Kr+ ions in either the ground state or metastable
state, subject to a laser field at various intensities. The choice of the target is important such
that it should be easily ionised at intensities lower than the ionisation threshold of the ground
state. Once the stable product is formed via recombination, it becomes challenging to ionise
again at those intensities. In this scenario, direct recombination can be observed using parti-
cle detection. Another experiment on LARR was conducted in the presence of a microwave
field [32], where the authors demonstrated that the Coulomb potential plays a significant role
at low kinetic energy of electron and in a weak to moderate laser field. The experiment was
in agreement with Monte Carlo simulations when both the Coulomb potential and laser field
were taken into account. The experimental investigation in Ref. [33] focused on the impact of
laser field polarisation in LARR or LIR. The observation shows different behaviors in the aver-
age differential cross-section of recombination, for parallel and perpendicular polarisations of
the laser field with respect to the field propagation. This underscores the significant influence
of an external laser field on laser-assisted processes. However, these experiments served as a
catalyst for a deeper scientific inquiry. They piqued interest in the generation of high-energy
photons, leading to further investigation of radiative recombination in the presence of strong
external fields.

Being one of the most important laser-assisted processes, LARR has become an intriguing
subject of exploration for physicists in recent years [34,35,36,37,38,39,40,41,42,43,44,45]. The
plateau of the LARR energy spectrum is a crucial feature for extracting information about the
LARR process [35, 39]. It is possible to achieve this through classical considerations of LARR
using Bohr’s correspondence principle. In particular, the width of the energy spectrum and
the probability distribution of the emitted photon are in good agreement with the quantum
considerations of LARR [35]. Additionally, in Ref. [39], the authors investigated the origin of
the LARR and HHG plateaus. Specifically, it was concluded that the LARR plateau reflects
the probability density of the electron in the laser field, whereas, in the case of the HHG spec-
trum, it reflects the probability density of the electron near the parent ion or nucleus after
Above Threshold ionisation (ATI). LARR has also been explored as means to develop a coher-
ent energy source and to gain insights into electron-ion interactions. Substantial work has been
conducted in this direction. For instance, in the Ref. [37], the authors conducted an investiga-
tion into electron-ion scattering that occurs before eventual recombination in the presence of a
laser field. This study aimed to understand how this process impacts the energy spectrum of
emitted photons, particularly when compared to direct LARR. Additionally, it aimed to pro-
vide further insights into related processes such as HHG. Another method to manipulate the
LARR process is by introducing a plasma medium. This approach enables researchers to model
a more realistic scenario and gain insights into the behavior of plasma under extreme fields.
In Ref. [38], the authors not only investigated LARR and its advantages over laser-field-free
recombination but also examined the impact of plasma on LARR. The calculations reveal that
the shape of the emitted LARR spectrum undergoes significant modification and enhancement
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when the velocity of quiver electrons approaches or exceeds that of plasma electrons. There is
also a significant enhancement in the LARR plateau, particularly towards the high energies of
the emitted photons when the electron combines with the atom resonantly [42]. The increase
in the plateau is by almost two orders of magnitude, and the spectra closely match with HHG
spectra of the system. The electron first gains energy in the laser field and subsequently recom-
bines with the atom either resonantly or nonresonantly. During the resonant recombination,
the electron also undergoes spontaneous emission, incorporating energy gained both through
absorption and stimulated emission due to the laser field.

Note that Refs. [34, 35, 37, 38, 39, 41, 42] investigated LARR in the presence of monochro-
matic plane waves. The study in Ref. [41], reveals that the angular distribution of emitted pho-
tons depends on the field strength, while the polarisation of emitted photons is determined
by the geometry between the polarisation of the laser field and the direction of electron mo-
mentum. Also, the impact of field strength on the intensity and energy distribution of emit-
ted photons was explored in Ref. [34]. However, besides controlling the enhancement of the
LARR spectrum with the help of a monochromatic laser field, it is also possible to manipulate
the characteristics of the emitted LARR spectra using multicolor laser fields [36, 40, 43, 44, 45].
For instance, by adjusting the relative phase parameter between different color fields [36, 40],
one can shift the position of maxima in the energy spectrum and alter its shape. The relative
phase of the two selected frequency fields also enables control over the polar distribution of
the differential energy spectrum. In HHG, the bicircular laser field allows for the generation
of circularly polarised radiation, which enables the investigation of the chirality of a molecule.
Therefore, LARR being the third step of the HHG process, was also studied using bichromatic
circularly [43, 45] and elliptically [44] polarised light. It was observed that the ellipticity of the
laser field can also alter the cut-off energy of the plateau in the energy spectrum, providing
further insights into the HHG process.

The most widely used analytical method for studying LARR is the inverse Keldysh-Faisal-
Reiss model, often referred to as the Strong Field Approximation (SFA) [46, 47, 48]. In this
approximation, the incident electron interacts exclusively with the external laser field; thus,
the effect of the atomic potential on the initial electron scattering state is neglected. In addition,
the electron’s final bound state is free from the influence of the laser field. It is worth noting
that the SFA has been extended to include the effect of the long-range Coulomb potential on the
electron’s scattering state [49]. This extension reveals some influence of Coulomb effects on the
emitted photon spectrum, even when dealing with electrons at higher kinetic energies. Includ-
ing Coulomb effects results in a decrease in the intensity of LARR distribution. As the kinetic
energy of electrons increases, the Coulomb effect on LARR distribution diminishes, although it
remains noticeable up to 1 keV. Additionally, some researchers choose to incorporate the effect
of the laser on the bound state of the electron. In this case, enhancements in the energy distri-
bution of emitted photons become apparent, particularly at higher laser field intensities [50].
Other than SFA, there are alternative approaches for investigating LARR. One such method
is the Feynman path integral approach, as detailed in Ref. [51]. In this approach, the tran-
sition amplitude is expanded in the leading order in the atomic potential. The zeroth-order
approximation is equivalent to the LARR transition amplitude calculated using SFA. The first
and second order terms correspond to scattering followed by recombination in the presence
of a laser field. Also, an analytical expression for the cross-section of LARR for hydrogen-like
atoms is formulated in Ref [52]. It represents the transition amplitude using Bessel functions,
as a summation of an infinite series over laser field harmonics. Subsequently, by applying the
Plancherel theorem, the authors further solve the summation, obtaining a closed expression for
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the recombination cross-section in the presence of a laser field. In Ref. [53], the authors used
effective range theory [54] to study the LARR cross-section for the Xe+ ion and realized that
the interference pattern is sensitive to the form of the atomic potential.

In this thesis, our focus is on investigating LARR in the presence of short laser pulses.
The choice of short laser pulses is of particular interest due to their capacity to introduce an
additional dimension for controlling and enhancing the LARR energy spectrum. This control
is possible by manipulating parameters such as the number of cycles in a pulse, the carrier
envelope phase (CEP), the peak intensity, or the duration of the pulse [55, 56, 57, 58, 59, 60,
61]. Although research has been conducted on this topic, our theory distinguishes itself by
effectively eliminating the issue of unphysical oscillations or occurrence of secondary plateau
structures in the energy spectrum of LARR, recognized as the Gibbs effect [62, 63].

Furthermore, the qualitative behavior of the energy spectrum, including features like max-
ima and minima, can be interpreted to some extent through classical or semiclassical treat-
ments. However, these methods fall short in illustrating the oscillations in the energy spec-
trum of LARR. To observe these oscillations, one must delve into a quantum mechanical de-
scription of LARR. The reason being that the oscillations arise from the quantum interference
of the transition amplitude at different times corresponding to the specific energy of the emit-
ted photon [34,37,39,43,44]. Note that in these references, the transition amplitude of LARR is
calculated using the saddle point approximation. In our theoretical formulation of LARR, how-
ever, it is calculated exactly. In our case, the saddle-point approximation serves only as a tool
to interpret our numerical results, for instance, the range of the spectrum and the oscillations
within it, as discussed in the following chapters.

In Chapter 2, we revisit LARR in the presence of a short laser pulse within dipole approx-
imation. Since it involves electron-atom recombination in the presence of a laser pulse, we
refer to it as Laser-Assisted Radiative Attachment (LARA). From our perspective, this Chapter
represents an enhancement of the existing LARR theories, as it allows us to pinpoint the contri-
butions from both laser-field-free and laser-field-modified recombination processes in the en-
ergy spectrum of LARA. Unlike previously developed theories of LARA [56, 57, 58, 59, 60, 61],
our theory approaches the LARA process differently. This approach aims to prevent the Gibbs
effect [62, 63] in the energy spectrum of LARA, which arise from forcibly limiting the time in-
tegral in the transition amplitude to the duration of the pulse. Our analysis encompasses both
the isolated pulse and the pulse train. As an outcome, the respective probability distributions
of LARA photons will be coherently enhanced for the train of pulses as compared to the re-
sults for a single pulse. Furthermore, we have also investigated their respective spectrograms,
as presented in detail in Chapter 2.

In Chapter 3, we investigate the LARR beyond the dipole approximation. We start with the
Klein-Gordon equation and solve it for the scattering wave function of an electron up to a lead-
ing order in 1/c, in the presence of both the Coulomb potential and the laser field. This leads to
the emergence of nondipole corrections of three different origins. When nondipole effects are
taken into account, we observe an extension in the range of the LARR plateau and asymme-
try in the energy-angle distribution of emitted photons. Our numerical analysis of the energy
distribution of LARR demonstrates that the recoil effect is the most prominent one. Note that
Ref. [64] studied LARR beyond the dipole approximation as well, however in a purely rela-
tivistic framework. In contrast to Chapter 3, it assumed a plane wave laser field and neglected
the Coulomb effect on the electron scattering state. It resulted in the emission of gamma rays
and found a shift in angular distributions of emitted photons. Still in Chapter 3, we demon-
strate a way to increase the intensity of LARR radiation with the help of chirped laser pulses.
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We conclude that the flatter pulse leads to an increased yield of emitted photon yield. The
results of our theoretical investigation are put forward in detail in Chapter 3. At the end, we
demonstrate vortex structures that occur in the LARR probability amplitude.

In the thesis, we use the atomic units (a.u.) of the momentum p0 = αmec, energy E0 =
α2mec2, length a0 = h̄/p0, time t0 = h̄/E0, electric field strength E0 = α3m2

ec3/(|e|h̄), and
the laser field intensity I0 = ϵ0cE2

0 ≈ 7.02 × 1016 W/cm2, where me and e = −|e| are the
electron rest mass and charge, α is the fine-structure constant, and ϵ0 = e2/(4παh̄c) is the
vacuum permittivity. In analytical formulas, on the other hand, we put h̄ = 1 while keeping
the remaining fundamental constants explicitly.

This thesis is built upon the publications:

• Laser-assisted electron-atom radiative recombination in short laser pulses, D. Kanti, J. Z. Kamiń-
ski, Liang-You Peng, and K. Krajewska, Phys. Rev. A 104, 033112 (2021),

• Laser-assisted radiative recombination beyond the dipole approximation, D. Kanti, M. M. Maj-
czak, J. Z. Kamiński, Liang-You Peng, and K. Krajewska, Phys. Rev. A 110, 043112 (2024),

which have also been presented at the following conferences and workshops:

• Laser-Assisted Electron-Atom Radiative Recombination in Short Laser Pulses (Talk), D. Kanti,
J. Z. Kamiński, Liang-You Peng, and K. Krajewska, The 29th annual International Laser
Physics Workshop (LPHYS’21), 19-23 July, 2021,

• Laser-assisted electron-atom radiative recombination in short laser pulses (Poster), D. Kanti, J.
Z. Kamiński, Liang-You Peng, and K. Krajewska, Quantum Optics X conference, Toruń
(Poland), 5-11 September, 2021,

• Laser-assisted radiative recombination in short laser pulses (Talk), D. Kanti, J. Z. Kamiński,
Liang-You Peng, and K. Krajewska, DAMCOS-2, IIT Mandi, India, 21-22 June, 2022,

• Laser-assisted radiative recombination (LARR) (Talk), D. Kanti, J. Z. Kamiński, Liang-You
Peng, and K. Krajewska, DAMCOS-3, IIT Mandi, India, 9-10 May, 2023,

• Nondipole effects in laser-assisted radiative recombination by ultrashort laser pulses (Poster),
D. Kanti, M. M. Majczak, J. Z. Kamiński, Liang-You Peng, and K. Krajewska, Attochem
Tenerife, Univ. La Laguna, Tenerife, Canary Islands, 28 Feb-1 March, 2024,

• Laser-Assisted radiative recombination (LARR) in short laser pulses (Talk), D. Kanti, M. M.
Majczak, J. Z. Kamiński, Liang-You Peng, and K. Krajewska, Workshop: Atoms in strong
laser fields, OsloMet Quantum Hub, Oslo, Norway, 10-12 June, 2024,

• Nondipole effects in laser-assisted radiative recombination by ultrashort laser pulses (Poster), D.
Kanti, M. M. Majczak, J. Z. Kamiński, Liang-You Peng, and K. Krajewska, ECLIM 2024
- 37th European Conference on Laser Interaction with Matter, Lisbon, Portugal, 16-20
September, 2024.

The thesis was completed within the project financed by the National Science Centre (Poland)
under Grant No. 2018/30/Q/ST2/00236.
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Chapter 2

Laser-Assisted Radiative Attachment
(LARA)

2.1 Introduction

This Chapter is devoted to electron-atom recombination accompanied by a laser field which is
also referred to as Laser-Assisted Radiative Attachment (LARA). More specifically, we study
the attachment of an electron to a hydrogen-like atom that occurs in the presence of short laser
pulses. In such case, it is legitimate to stay in the framework of SFA. As for other quantum
processes, the probability amplitude of LARA is represented as a time integral. In contrast,
however, to previously formed theory of recombination [56, 57, 58, 59, 60, 61], we do not trun-
cate the time integral to the duration of the laser pulse. In this case, the emergence of an im-
portant contribution is on display, i.e., the contribution from the laser-field-free process. Most
importantly, our theory prevents the appearance of unphysical oscillations in the energy spec-
trum of LARA; which is known as the Gibbs effect [62,63]. Since our approach accounts for an
arbitrary laser field, we display the results for isolated pulses and pulse trains. As we show,
there is a mark of coherent enhancement of the LARA spectra for the latter. More precisely, the
comb-like structures in the spectra occur for the number of identical pulses, with a yield that
scales quadratically with the number of pulses in a train. Another element of our studies is
associated with the time-frequency analysis of LARA spectra, which turns out to be valuable
for a temporal reconstruction of the laser field.

This Chapter is structured as follows. In Section 2.2, we develop the theoretical background
of laser-assisted radiative attachment. We consider LARA by the impact of a monochromatic
electron wave (Section 2.2.1), which leads to a singularity in the probability amplitude. To deal
with it, in Section 2.2.2, we consider an electron wave packet instead of a monochromatic elec-
tron wave. For comparison, in Section 2.2.3, there are simplified formulas for the bandwidth-
limited probability amplitude similar to Refs. [56,57,58,59,60,61]. It provides a way to compare
the previous theory with our comprehensive treatment of LARA. The illustration of the elec-
tron wave packet model and the laser field model used in this Chapter are in Sections 2.2.4
and 2.2.5, respectively. The energy distributions of LARA radiation and comparison between
our comprehensive approach and the simplified one are shown in Section 2.3.1. The results
presented in Section 2.3.1 are for isolated laser pulses, yet we demonstrate the LARA energy
spectra for pulse trains in Section 2.3.2. Consequently, in Section 2.3.3, we conduct the time-
frequency analysis of our numerical results. The proposition to use such analyses as a tool to
retrieve the complete characteristics of the laser field is set in Section 2.3.4. We recapitulate our
results and give possibilities for further research in Section 2.4.
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2.2 Theoretical formulation of LARA

2.2.1 LARA by an impact of a monoenergetic electron wave

Consider the recombination of an electron by a short-range atomic potential V(r̂) in the pres-
ence of a laser field with the emission of a photon. We assume that the latter carries the energy
ωK , the wave vector K, and polarisation εK . In this Chapter, the laser field is described as
a time-dependent electric field E(t); meaning that we use the dipole approximation. For this
approximation to be valid, one has to neglect the spatial dependence and so the magnetic field
component of the laser field, which is a typical situation encountered in strong-field physics.

The Hamiltonian written in the length gauge describing the process takes the form

Ĥ(r̂, t) = Ĥ0(r̂, t) + Ĥ
′
(r̂, t), (2.1)

where Ĥ0(r̂, t) is the unperturbed Hamiltonian of the electron in the presence of the atomic
potential and the laser field E(t),

Ĥ0(r̂, t) =
p̂2

2me
+ V(r̂)− eE(t) · r̂, (2.2)

whereas Ĥ
′
(r̂, t) represents its interaction with a quantised electric field ÊK(r̂, t),

Ĥ
′
(r̂, t) = −eÊK(r̂, t) · r̂. (2.3)

More specifically,

ÊK(r̂, t) = Ê (+)
K (r̂, t) + Ê (−)

K (r̂, t), (2.4)

where

Ê (+)
K (r̂, t) = iε∗K

√
ωK

2ϵ0V
âKe−i(ωK t−K·r̂),

Ê (−)
K (r̂, t) = −iεK

√
ωK

2ϵ0V
â†
Kei(ωK t−K·r̂). (2.5)

In those formulas, V is the quantization volume, whereas âK and â†
K are the annihilation and

creation operators of a photon with energy ωK , the wave vector K, and the polarisation εK
(K · εK = 0). Now, we need the probability amplitude to obtain information about the tran-
sition between the unperturbed initial and final states of the system governed by the Hamilto-
nian (2.2).

The probability amplitude of LARA in the length gauge takes the form

A(p) = −i
ˆ ∞

−∞
dt ⟨ψB(t); 1K | − eÊK(r̂, t) · r̂|ψ(+)

p (t); 0K⟩, (2.6)

where the initial state of the system |ψ(+)
p (t); 0K⟩ = |ψ(+)

p (t)⟩ ⊗ |0K⟩ is expressed by the scat-
tering state of electron ψ

(+)
p (r, t) having momentum p and no photons, and the final state of

the system |ψB(t); 1K⟩ = |ψB(t)⟩ ⊗ |1K⟩ which defines the electron in the bound state ψB(r, t)
of energy EB and an emitted photon with momentum K. Using Eqs. (2.4) and (2.5) as well as
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relations ⟨1K |â+K |0K⟩ = 1 and ⟨1K |âK |0K⟩ = 0, we get from Eq. (2.6),

A(p) = e
√

ωK

2ε0V

ˆ ∞

−∞
dt⟨ψB(t)|(εK · r̂)eiωK t−iK·r̂|ψ(+)

p (t)⟩. (2.7)

Introducing the continuous set of basis vectors |r⟩, satisfying the completeness and orthonor-
mality conditions,

ˆ
d3r|r⟩⟨r| = 1 (2.8)

and

⟨r|r′⟩ = δ(r− r
′
), (2.9)

respectively, we can rewrite the probability amplitude (2.7) as

A(p) = e
√

ωK

2ϵ0V

ˆ ∞

−∞
dt
ˆ

d3r ψ∗
B(r, t)

(
εK · r

)
ψ
(+)
p (r, t)ei(ωK t−K·r). (2.10)

In principle, ψB(r, t) and ψ
(+)
p (r, t) are explicit solutions of the Schrödinger equation with the

Hamiltonian Ĥ0(r, t), i.e., for the electron’s bound state and the scattering state in the presence
of a laser field and an atomic potential. Since they are not known in analytical form, we shall
approximate them such that

ψB(r, t) = e−iEBtψB(r) (2.11)

and

ψ
(+)
p (r, t) =

1√
V

exp
[
−i

p2

2me
t + i(p− eA(t)) · r+ i

2me

ˆ t

0
dτ
(
2eA(τ) · p− e2A2(τ)

)]
. (2.12)

As we are dealing with the attachment accompanied by short laser pulses, the pulse influence
on atomic bound state can be neglected. For this reason, Eq. (2.11) represents the stationary
time-evolution of the atomic bound state in the absence of the laser field. On the other hand,
Eq. (2.12) describes the electron propagating exclusively in the laser field and having an initial
asymptotic momentum p; it is known as the Volkov state [65]. Thus, we neglect the influence
of the atomic potential in the electron scattering state, which is the essence of SFA. Note that in
Eq. (2.12), the laser field is represented by the vector potential A(t) such that E(t) = −∂tA(t).
Substituting Eqs. (2.11) and (2.12) into Eq. (2.10), we obtain

A(p) = e
√

ωK

2ϵ0V

ˆ ∞

−∞
dt exp

[
i(EB + ωK − p2

2me
)t +

i
2me

ˆ t

0
dτ
(
2eA(τ) · p− e2A2(τ)

)]
×
ˆ

d3r ψ∗
B(r)

(
εK · r

)
exp

[
i(p− eA(t)−K) · r

]
. (2.13)

Introducing,

π(t) = p− eA(t)−K, (2.14)
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the second line in Eq. (2.13) takes the form,

Φ̃B[π(t)] =
ˆ

d3r ψ∗
B(r)

(
εK · r

)
eiπ(t)·r = −i

(
εK ·∇π

)
ψ̃∗

B[π(t)], (2.15)

where ψ̃B[π(t)] represents the Fourier transform of ψB(r), whereas ∇π is the gradient with
respect to π. Now the probability amplitude of radiative attachment (2.13) can be written as

A(p) =
e
V

√
ωK

2ϵ0

ˆ ∞

−∞
dt Φ̃B [π(t)] eiQt+iH(t), (2.16)

where

Q = EB + ωK − p2

2me
, (2.17)

H(t) =
ˆ t

0
dτ h(τ), (2.18)

and

h(t) =
e

me
p ·A(t)− e2

2me
A2(t). (2.19)

Suppose an electron recombines with a hydrogen atom to form an H− ion in the presence
of a laser field. Following the work of Gribakin and Kuchiev [66], we take for the ground state
wave function of H−,

ψB(r) =
A√
4π

e−κr

r
, (2.20)

where κ =
√

2me|EB| = 0.2354p0 and A = 0.75
√

p0. In this case,

Φ̃B[π(t)] = −i(εK ·∇π)

ˆ
d3r

A√
4π

e−κr

r
eiπ(t)·r. (2.21)

Performing the position integral in spherical coordinates, we arrive at

Φ̃B[π(t)] = −2
√

πiA(εK ·∇π)
1

κ2 + π2(t)
, (2.22)

which after calculating the gradient leads to

Φ̃B[π(t)] = 4i
√

πA
εK · π(t)

[κ2 + π2(t)]2
. (2.23)

Putting the function Φ̃B[π(t)] into the definition of the probability amplitude (2.16) and recall-
ing that εK ·K = 0, we come up with the following expression for the probability amplitude
of LARA within the SFA,

A(p) = 4iA
√

πωK

2ϵ0

e
V

ˆ ∞

−∞
dt

εK · [p− eA(t)]
[κ2 + π2(t)]2

eiQt+iH(t). (2.24)
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Next, the goal is to show that the above integral incorporates the contribution from the laser-
field-free process.

Since we consider the recombination process assisted by a laser field, which lasts from 0 to
Tp, its corresponding vector potential is zero except for t ∈ [0, Tp]. Because of that, the integral
in Eq. (2.24) splits into two integrals,

A(p) = 4iA
√

πωK

2ϵ0

e
V

[
εK · p

ˆ ∞

−∞
dt

eiQt+iH(t)

[κ2 + π2(t)]2
−
ˆ Tp

0
dt

εK · eA(t)
[κ2 + π2(t)]2

eiQt+iH(t)
]
, (2.25)

where the first one needs special treatment. Below we shall demonstrate how to regularise this
integral by means of the Boca-Florescu transformation [67].

Consider the following integral,

I(ϵ) =
ˆ ∞

−∞
dt

eiQt+iH(t)−ϵ|t|

[κ2 + π2(t)]2
, (2.26)

where the parameter ϵ is chosen such that this integral is convergent; namely, ϵ > 0. As one can
see, the regularised integral (2.26) reproduces the divergent integral in Eq. (2.25) in the limit
when ϵ → 0+. Now, dividing the integral I(ϵ) into two intervals [−∞, 0] and [0, ∞], we obtain

I(ϵ) =
ˆ 0

−∞
dt

ei(Q−iϵ)t+iH(t)

[κ2 + π2(t)]2
+

ˆ ∞

0
dt

ei(Q+iϵ)t+iH(t)

[κ2 + π2(t)]2
. (2.27)

Calculating both integrals by parts, we arrive at

I(ϵ) =
eiH(0)

[κ2 + π2(0)]2

[
1

i(Q − iϵ)
− 1

i(Q + iϵ)

]
− 1

i(Q − iϵ)

ˆ 0

−∞
dt ei(Q−iϵ)t

(
eiH(t)

[κ2 + π2(t)]2

)′

− 1
i(Q + iϵ)

ˆ ∞

0
dt ei(Q+iϵ)t

(
eiH(t)

[κ2 + π2(t)]2

)′

, (2.28)

where the prime denotes the time derivative. The values of functions H(t) and π(t) at t = 0
can be calculated from Eqs. (2.14) and (2.19),

H(0) = 1, π(0) = p−K ≡ π0. (2.29)

In addition, the derivative in Eq. (2.28) takes the form(
eiH(t)

[κ2 + π2(t)]2

)′

=
iF(t)

[κ2 + π2(t)]2
eiH(t), (2.30)

where the function F(t) is

F(t) = h(t) + 4i
eE(t) · π(t)
κ2 + π2(t)

, (2.31)
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with h(t) given by Eq. (2.19). Note that F(t) is zero beyond the interval [0, Tp] and so the
derivative defined in Eq. (2.30). Taking this into account, we conclude that Eq. (2.28) becomes

I(ϵ) =
1

(κ2 + π2
0)

2
2ϵ

Q2 + ϵ2 − 1
Q + iϵ

ˆ Tp

0
dt

F(t)
[κ2 + π2(t)]2

ei(Q+iϵ)t+iH(t). (2.32)

One needs to look for the limit of the above expression as ϵ → 0+. Knowing that [68]

δ(Q) =
1
π

lim
ϵ→0+

ϵ

Q2 + ϵ2 , (2.33)

Eq. (2.32) takes the form,

lim
ϵ→0+

I(ϵ) =
ˆ ∞

−∞
dt

eiQt+iH(t)

[κ2 + π2(t)]2
=

2π

(κ2 + π2
0)

2
δ(Q)− 1

Q + iϵ

ˆ Tp

0
dt

F(t)
[κ2 + π2(t)]2

eiQt+iH(t).

(2.34)

The latter defines the first integral in Eq. (2.25) and was obtained following Boca and Florescu
treatment [67].

After Boca-Florescu transformation (2.34), the probability amplitude of LARA to form H−

ion equals

A(p) = 4iA
√

πωK

2ϵ0

e
V

[
2πδ(Q)

εK · p
(κ2 + π2

0)
2
− εK · p

Q + iϵ

ˆ Tp

0
dt

F(t)
[κ2 + π2(t)]2

eiQt+iH(t)

−
ˆ Tp

0
dt

εK · eA(t)
[κ2 + π2(t)]2

eiQt+iH(t)
]
, (2.35)

where the prescription iϵ (ϵ > 0) allows to avoid the singularity at Q = 0.
In principle, the emitted LARA radiation can be elliptically polarised, meaning that

εK = cos δεK1 + i sin δεK2, (2.36)

where εK1 and εK2 are linearly polarised vectors such that they satisfy orthonormalility con-
dition εKi · εK j = δij for i, j ∈ {1, 2} and δ is the ellipticity parameter. Taking Eq. (2.35)
into consideration, we define the partial probability amplitude for each linear polarisation εK j
(j = 1, 2),

R(0)
j = A(np · εK j)

1
(κ2 + π2

0)
2

, (2.37)

R(1)
j = A(np · εK j)

ˆ Tp

0
dt

F(t)
[κ2 + π2(t)]2

eiQt+iH(t), (2.38)

R(2)
j = −A

ˆ Tp

0
dt

εK j · eA(t)
[κ2 + π2(t)]2

eiQt+iH(t), (2.39)

where np = p/|p| stands for the direction of the electron’s initial momentum. Introducing the
following abbreviation,

R(ℓ)
δ = cos δR(ℓ)

1 + i sin δR(ℓ)
2 (2.40)



2.2. Theoretical formulation of LARA 13

for ℓ = 0, 1, 2, and a constant

N = 4i
√

πωK

2ϵ0

e
V = −4πi

V
√

2αcωK , (2.41)

we rewrite Eq. (2.35) as

A(p) = N
[

2π|p|δ(Q)R(0)
δ − |p|

Q + iϵ
R(1)

δ +R(2)
δ

]
. (2.42)

It follows from Eqs. (2.31), (2.38), (2.39), and (2.40) that R(1)
δ and R(2)

δ are laser-field-dependent

terms whereas R(0)
δ is a laser-field-independent term. It implies that in the absence of the laser

field, R(1)
δ = R(2)

δ = 0. Nevertheless, the probability amplitude of radiative attachment is
nonzero. Namely, for the laser-field-free process, the probability amplitude equals [27]

AFF(p) = 2πN |p|δ(Q)R(0)
δ . (2.43)

As it is well-known, the Dirac delta function in (2.43) conveys the energy conservation condi-
tion. Hence, in the absence of the laser field, we observe monochromatic radiation with energy,

ωK =
p2

2me
+ |EB|. (2.44)

As we will see later on, this spectral line (while modified) is embedded in a more complicated
spectral pattern associated with the presence of a laser field.

In closing this Section, we note that in the presence of a monochromatic electron wave, the
probability amplitude of LARA [Eq. (2.42)] has a laser-field-free singularity at Q = 0. As shown
next, this singularity can be smeared out by considering an electron wave packet instead.

2.2.2 LARA by an impact of an electron wave packet

Now, we consider an impact of a coherent electron wave packet ψ
(+)
p [r, t| fp] on a hydrogen

atom in the presence of a laser field. We assume that the profile of the wave packet fp(q) is
peaked around the momentum p such that

fp(q) ≈ δ(3)(q − p). (2.45)

Thus, it describes the nearly monochromatic electron beam. Defining the initial wave packet
of the electron,

ψ
(+)
p [r, t| fp] =

ˆ
d3q ψ

(+)
q (r, t) fp(q), (2.46)

we learn that the probability amplitude of LARA [Eq. (2.10)] integrated over the initial electron
momentum profile equals

⟨A(p)⟩ =
ˆ

d3qA(q) fp(q). (2.47)

This means that we account coherently for all contributions from different electron scattering
waves which contribute to Eq. (2.46). Now, taking into account the formula (2.42), we derive
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that

⟨A(p)⟩ = N⟨Rδ(p)⟩, (2.48)

where
⟨Rδ(p)⟩ = 2π|p|R(0)

δ ⟨δ(Q)⟩ − |p|⟨ 1
Q + iϵ

⟩R(1)
δ +R(2)

δ . (2.49)

Here, the amplitudes R(0)
δ , R(1)

δ , and R(2)
δ are slowly varying functions of their arguments.

Besides that,

⟨δ(Q)⟩ =
ˆ

d3q δ(Qq) fp(q), (2.50)

⟨ 1
Q + iϵ

⟩ =
ˆ

d3q
fp(q)

Qq + iϵ
, (2.51)

and

Qq = EB + ωK − q2

2me
. (2.52)

The total energy illuminated (per initial electron flux) in LARA is obtained when integrating
over the density of final radiation states, Vd3K/(2π)3,

EK(p) =
1

je(p)

ˆ
Vd3K

(2π)3 ωK |⟨A(p)⟩|2. (2.53)

Since the wave vector and angular frequency of the emitted photons are related to each other
such that |K| = ωK/c, we derive that d3K = ω2

KdωKd2ΩK/c3, where d2ΩK is the solid
angle of emitted photons. Moreover, the initial electron flux per the quantisation volume is

je(p) =
|p|
me

1
V . (2.54)

Substituting Eqs. (2.41), (2.48), and (2.54) into Eq. (2.53) we obtain

EK(p) =
4α

πc2
me

|p|

ˆ
d2ΩK

ˆ
dωK ω4

K |⟨Rδ(p)⟩|2. (2.55)

The last expression can be written as

EK(p) =

ˆ
d2ΩK

ˆ
dωK

d3EK(p)

dωKd2ΩK
, (2.56)

from where we deduce that the triply differential energy distribution (per the initial elec-
tron flux) of photons emitted in the solid angle d2ΩK and having energy within the interval
(ωK , ωK + dωK) is

d3EK(p)

dωKd2ΩK
=

4α

πc2
me

|p|ω
4
K |⟨Rδ(p)⟩|2. (2.57)
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Here, ⟨Rδ(p)⟩ has been given by Eq. (2.49). Based on this result, we will compare the previ-
ously formed theory [56, 57, 58, 59, 60, 61] with our complete theory in Section 2.3. For now, let
us briefly introduce the previously formed theory of LARA, which we refer to as the simplified
one.

2.2.3 Simplified formulation of LARA

Let us go back to the definition of transition amplitude (2.24) defined in the beginning of this
Chapter. Instead of keeping the time integral from −∞ to +∞, we will forcefully reduce it to
the duration of the laser field, [0, Tp], similar to Refs. [56,57,58,59,60,61]. Hence, the transition
amplitude takes the form,

A(p) = 4iA
√

πωK

2ϵ0

e
V

ˆ Tp

0
dt

εK · [p− eA(t)]
[κ2 + π2(t)]2

eiQt+iH(t). (2.58)

It is equivalent to replacing the function G(t) = εK ·[p−eA(t)]
[κ2+π2(t)]2 by G(t)θ(t)θ(Tp − t), where θ(·)

is the step function. By doing that, we artificially force the integrand to be zero at times t = 0
and t = Tp, and beyond. It also means that there is discontinuity in the integrand at t = 0 and
t = Tp. This sharp cutoff of the integration limits may lead to some false effects in the energy
distribution of LARA, which will be shown in Section 2.3. We also bring into focus that the
above formula overlaps with Eq. (2.24) only if εK · p = 0, i.e., when the polarisation of LARA
photons and electron initial momentum are perpendicular to each other. This is, however, the
least favorable setup for LARA, when the LARA photons are generated in the direction of
initial electron (see, Section 2.3.1 for numerical illustration). Introducing here εK in the most
general form (2.36), we can rewrite Eq. (2.58) as A(p) = N R̃δ where N is defined by Eq. (2.41),

R̃δ = cos δR̃1 + i sin δR̃2, (2.59)

and

R̃j = A
ˆ Tp

0
dt

εK j · [p− eA(t)]
[κ2 + π2(t)]2

eiQt+iH(t). (2.60)

Since we want to show the comparison between the results of the current theory and our com-
plete theory, we average Eq. (2.58) with respect to the initial electron momentum distribution
fp(q) [Eq. (2.47)]. Since R̃δ is a regular function of the electron momentum, such averaging
provides

⟨A(p)⟩ = N R̃δ(p). (2.61)

In order to define the energy distribution of the emitted radiation per the initial electron
flux (per quantisation volume), we follow the same approach as demonstrated in Section 2.2.2.
It turns out that

d3EK(p)

dωKd2ΩK
=

4α

πc2
me

|p|ω
4
K |⟨R̃δ(p)⟩|2. (2.62)

Thus, in Section 2.3 we shall calculate (2.57) and (2.62) numerically and compare both formu-
lations.
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2.2.4 Electron wave packet model

In order to proceed with numerical calculations, it is necessary to set the profile fp(q) of the
electron wave packet that satisfies (2.45). For a well-collimated beam, we choose cylindrical
coordinate system to define the momentum profile of the electron wave packet. The cylindri-
cal coordinates are considered with respect to the direction of the central momentum of the
electron wave packet, np = p/|p|. Thus, the longitudinal and the transverse components of
electron momenta are defined as q∥ = q · np and q⊥ = q − q∥np, respectively. While we
assume that the spread of the electron wave packet in the direction perpendicular to p is neg-
ligible, the profile of the wave packet for contributing longitudinal momentum components is
of a Lorentzian type. The contributing longitudinal momentum distribution is peaked at |p|
and has a half-width at half-maximum (HWHM) equal to ∆|p|. Hence, we assume that

fp(q) =
1
π

∆|p|
(q∥ − |p|)2 + (∆|p|)2 δ(2)(q⊥), (2.63)

where

lim
∆|p|→0

1
π

∆|p|
(q∥ − |p|)2 + (∆|p|)2 = δ(1)(q∥ − |p|). (2.64)

With this model of the wave packet profile (2.45), it is possible to estimate the averages given
by Eqs. (2.50) and (2.51). It follows from Eq. (2.50) that

⟨δ(Q)⟩ =
ˆ

d3q fp(q) δ(Qq) =
1
π

ˆ
d3q

∆|p|
(q∥ − |p|)2 + (∆|p|)2 δ(2)(q⊥) δ(Qq), (2.65)

where Qq is given by Eq. (2.52). Performing the integral over q⊥, we obtain

⟨δ(Q)⟩ = 1
π

ˆ +∞

−∞
dq∥

∆|p|
(q∥ − |p|)2 + (∆|p|)2 δ(Qq∥), (2.66)

where Qq∥ = EB + ωK − q∥
2

2me
. Using property of a delta function, δ( f (x)) = ∑

i

1
| f ′ (xi)|

δ(x − xi)

where f (xi) = 0, we find that

⟨δ(Q)⟩ = me

πq0

ˆ +∞

−∞
dq∥

∆|p|
(q∥ − |p|)2 + (∆|p|)2 [δ(q∥ − q0) + δ(q∥ + q0)], (2.67)

where q0 =
√

2me(EB + ωK) is the magnitude of the initial electron momentum which results
in the laser-field-free peak. Taking into account that fp(q) is peaked around a positive value of
q∥, we conclude that the second term in this integral does not contribute. Hence,

⟨δ(Q)⟩ = me

πq0

∆|p|
(q0 − |p|)2 + (∆|p|)2 . (2.68)

Similarly, taking Eq. (2.51), we obtain

⟨ 1
Q + iϵ

⟩ =
ˆ

d3q
fp(q)

Qq + iϵ
=

1
π

ˆ
d3q

1
Qq + iϵ

∆|p|
(q∥ − |p|)2 + (∆|p|)2 δ(2)(q⊥). (2.69)
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Again, the integral over the transverse components of electron momentum q⊥ can be easily
performed. This leads to

⟨ 1
Q + iϵ

⟩ = 1
π

ˆ +∞

−∞
dq∥

1
Qq∥ + iϵ

∆|p|
(q∥ − |p|)2 + (∆|p|)2 , (2.70)

or, writing Qq∥ explicitly,

⟨ 1
Q + iϵ

⟩ = 2me

π

ˆ +∞

−∞
dq∥

1

q2
0 − q∥

2
+ iϵ

∆|p|
(q∥ − |p|)2 + (∆|p|)2 . (2.71)

The integrand in Eq. (2.71) has four complex poles at q∥ = |p| ± i∆|p| and q∥2 = q2
0 + iϵ. For the

latter, we find that q∥ = ±q0

√(
1 + iϵ

q2
0

)
≈ ±q0

(
1 + iϵ

2q2
0

)
. Using the Cauchy’s residue theorem,

we calculate the integral in (2.71) over the contour that is closed by the upper semicircle. In this
case, only poles from the upper quadrant of the complex plane will contribute to the integral.
Hence, we obtain

⟨ 1
Q + iϵ

⟩ = 4ime∆|p|
[

q∥ − q0 − iϵ
2q0

q2
0 − q∥2 + iϵ

1
(q∥ − |p|)2 + (∆|p|)2

∣∣∣∣∣
q∥=q0+

iϵ
2q0

+

+
1

q2
0 − q∥2 + iϵ

q∥ − |p| − i∆|p|
(q∥ − |p|)2 + (∆|p|)2

∣∣∣∣∣
q∥=|p|+i∆|p|

]
. (2.72)

For ϵ going to 0 and in the leading order of ∆|p|, we obtain from Eq. (2.72),

⟨ 1
Q + iϵ

⟩ = −2ime

q0

∆|p|
(q0 − |p|)2 + (∆|p|)2 +

2me

q2
0 − p2 − 2i|p|∆|p|

. (2.73)

Note that we can write the first term in the above expressions in terms of ⟨δ(Q)⟩. Hence, we
have

⟨ 1
Q + iϵ

⟩ = −2iπ⟨δ(Q)⟩+ 2me

q2
0 − p2 − 2i|p|∆|p|

. (2.74)

In addition, as it follows from the Sokhotski-Plemelj formula [68], ⟨ 1
Q+iϵ ⟩ = ⟨P( 1

Q )⟩− iπ⟨δ(Q)⟩.
Combining it with Eq. (2.73), we obtain that〈

P
(

1
Q

)〉
=

2me

q2
0 − p2 − 2i|p|∆|p|

− iπ⟨δ(Q)⟩. (2.75)

These formulas permit us to calculate ⟨Rδ(p)⟩ according to Eq. (2.49) and, consequently, the
energy distribution defined by Eq. (2.57). In closing this Section, we would like to note that
the same results can be derived by closing the contour in Eq. (2.69) with the lower semicircle.
A somewhat different approach can be also developed (see, Appendix A.1) which agrees with
the current formulas.
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FIGURE 2.1: Temporal profiles of the electric field E(t) and the vector potential A(t) of a 4000 nm (ω =
0.31 eV) two-cycle (Nosc = 2) laser pulse (Nrep = 1) with a sine-squared envelope (M = 1); see, Eq. (2.76).
The intensity parameter is set to η = 0.005, so the laser peak intensity equals Imax = 1.76× 1012 W/cm2,
and the carrier-envelope phase χ is indicated in each panel.

2.2.5 Laser field model

In our numerical ilustrations, we shall use a linearly polarised laser field that is given by a
vector potential A(t) = A(t)ε such that

A(t) =

{
A0 sin2M

(
ωt

2Nosc

)
sin(ωt + χ) if 0 ⩽ t ⩽ Tp;

0 otherwise.
(2.76)

In principle, it represents the train of identical Nrep laser pulses having minimum (zero) de-
lay to guarantee the temporal separation between them. The individual pulse lasts for τp =
2πNosc/ω, meaning that the time duration of the entire train of pulses equals Tp = Nrepτp.
Here, ω means the carrier frequency, Nosc represents the number of cycles in an individual
pulse, χ stands for its carrier-envelope phase (CEP), and the parameter M for shaping a pulse
envelope. We specify the constant A0 such that the corresponding electric field E(t) = E(t)ε,
where E(t) = −∂A(t)/∂t, meets the condition,

max
0⩽t⩽Tp

|E(t)| = ηE0. (2.77)
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Hence, the maximum field intensity is

Imax = ϵ0cη2E2
0 = η2 I0, (2.78)

where η is an arbitrary constant. As an illustration, for a two-cycle laser pulse (Nrep = 1,
Nosc = 2), in Fig. 2.1 we plot the time-dependence of the electric field E(t) and the vector
potential A(t) having wavelength λ = 2πc/ω = 4000 nm (hence, ω = 0.31 eV) and the
sine-squared envelope (M = 1). In addition, the peak intensity of the pulse is defined by the
parameter η = 0.005 which corresponds to the peak intensity Imax = 1.76× 1012 W/cm2. While
the solid blue line represents field for χ = 0, the dashed red line is for χ = π/2.

Having specified the laser field for our numerical analysis, we shall proceed now with pre-
senting the directional energy distributions of emitted LARA radiation.

2.3 Numerical illustrations

2.3.1 Energy distributions of LARA radiation

Fig. 2.2 demonstrates the energy distributions of photons emitted in the interaction of a hy-
drogen atom with a coherent electron wave packet under the action of a laser pulse. We use
a two-cycle, sine-squared laser pulse, that is presented in Fig. 2.1 as a solid blue line. The
pulse is linearly polarised along the x-axis, ε = ex. The kinetic energy corresponding to the
central momentum of the electron wave packet in Eq. (2.63) is Ep = p2

2me
= 1 eV. Examin-

ing the change in kinetic energy with respect to the electron’s central momentum allows us to
write that ∆Ep = |p|

me
∆|p|. This relation is useful in evaluating the half-width at half maximum

(HWHM) in the electron momentum distribution described in Eq. (2.63). When the electron
wave packet interacts with a laser pulse for time τp, it is important to minimize the spread of
the wave packet. This is achieved when ∆Epτp ≪ 1. For some large value of ζ ≫ 1, we can
write ζ = (∆Epτp)−1. Consequently, the HWHM of the momentum distribution in Eq. (2.63)
is given by ∆|p| = me/(ζ|p|τp). For our purposes, we choose ζ = 104 and set the geome-
try such that np = εK = ex and nK = cK/ωK = ez. This means that the direction of the
central momentum of the electron wave packet and emitted photons in the LARA process are
perpendicular (p ·K = 0). This configuration maximizes the emission of LARA photons.

For the given geometry, we calculate the energy distribution of emitted photons using ei-
ther Eq. (2.57) (blue line) or a simplified theorem based on Eq. (2.62) (red line). The upper
panel of Fig. 2.2 displays the energy distribution of LARA in a logarithmic scale, and the lower
panel displays it in a linear scale. Each panel shows the difference between the energy spectra
of emitted radiation of the simplified theorem (2.62) and the complete formalism (2.57). The
difference is noticeable in the high-energy portion of the distribution in the upper panel, where
the simplified theory shows an extended plateau, while the complete theory shows a clear cut-
off of the energy distribution. The extended unphysical plateau in the energy distribution of
the simplified theory is an artifact stemming from the Gibbs effect that occurs in band-limited
Fourier analysis [62, 63]. The lower panel displays the enlarged portion of the energy distribu-
tion where, again, the Gibbs phenomenon is responsible for the artificial oscillations. Another
notable difference between our complete theory, as described by Eq. (2.57), and the simplified
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FIGURE 2.2: The energy spectra of emitted photons by recombination of an electron and a hydrogen
atom in the presence of a laser field. The laser pulse is used (Nrep = 1, Nosc = 2) with λ = 4000 nm
(ω = 0.31 eV) and the sine-squared envelope (M = 1) having η = 0.005 (Imax = 1.76 × 1012 W/cm2), as
illustrated in Fig. 2.1 for χ = 0. It is linearly polarised along the x-axis, ε = ex. The kinetic energy asso-
ciated with the central momentum of the electron wave packet is Ep = p2

2me
= 1 eV. The wave packet’s

well-collimated momentum profile, given by Eq. (2.63), has a longitudinal spread ∆|p| = me/(ζ|p|τp),
where ζ = 104. We assume that the LARA radiation propagates in the z-direction, nK = ez, whereas
the initial electron in the x-direction, np = ex. Moreover, εK = ex. Hence, p ·K = 0 but εK ·p ̸= 0. The
thick blue curve corresponds to Eq. (2.57), and the thin red curve corresponds to the simplified LARA
theory introduced in Section 2.2.3. The upper panel displays the data in the logarithmic scale, while the
lower panel shows the high-energy portion of the spectra in the linear scale.

theory presented in Section 2.2.3 is the presence of a characteristic peak in the energy distribu-
tion at the laser-field-free energy, as given by Eq. (2.44). Despite these discrepancies, the overall
behavior of both distributions is similar.

In Fig. 2.3, we present the results for Ep = 30 eV, with the remaining parameters being
the same as in Fig. 2.2. The upper panel shows the energy spectra of emitted photons in the
LARA process according to both the simplified theory, as described by Eq. (2.61) (red curve),
and the complete theory, as described by Eq. (2.57) (blue curve). Similar to the results shown
in Fig. 2.2, the radiation spectrum (red curve) in Fig. 2.3 exhibit artificial wiggles followed by
high-energy oscillations that extend far beyond the actual range of emitted photons. On the
other hand, the radiation spectrum (blue curve) has sharp cutoffs on both ends, in addition to
the laser-field-free peak at roughly 30 eV.
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FIGURE 2.3: The upper panel shows the energy spectra of the emitted radiation for the laser field pa-
rameters: Nrep = 1, Nosc = 2, with λ = 4000 nm (ω = 0.31 eV), M = 1 and η = 0.005 (Imax = 1.76× 1012

W/cm2), as illustrated in Fig. 2.1 for χ = 0. The laser pulse polarisation vector equals ε = ex. Here, the
kinetic energy associated with the central momentum of the electron wave packet is Ep = p2

2me
= 30 eV

with ∆|p| = me/(ζ|p|τp), where ζ = 104. We assume that the LARA radiation propagates in the z-
direction, nK = ez, whereas the initial electron in the x-direction, np = ex. Moreover, εK = ex. Hence,
p ·K = 0 but εK · p ̸= 0. The thick blue curve here corresponds to Eq. (2.57) and the thin red curve
corresponds to simplified LARA theory, as introduced in Section 2.2.3. The vertical black lines mark the
irradiated energy cutoffs. Moreover, the vertical green lines divide the regions of regular and irregular
oscillations. The nature of oscillations in the upper panel can be explained with the help of the lower
panel, which shows the time-dependence of the temporal energy irradiated by a moving electron in a
laser field, that is captured by the atom, Eq. (2.81).

To describe the oscillations in the energy spectrum of emitted photons, we need to revisit
the expression for transition amplitude, given by Eq. (2.35). The second and third term of
Eq. (2.35) involve an integral, which can be written as

I =

ˆ Tp

0
dt G(t)eiS(t), (2.79)

where S(t) = Qt + H(t) is a rapidly varying function of time. Writing this phase explicitly, we
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FIGURE 2.4: The same as in Fig. 2.3 but for χ = π
2 and M = 2. In addition, the central kinetic energy of

the electron wave packet equals Ep = 10 eV.

have

S(t) = (EB + ωK − p2

2me
)t +
ˆ t

0
dt

[
e

me
p ·A(τ)− e2

2me
A2(τ)

]

= (EB + ωK)t − 1
2me

ˆ t

0
dt[p− eA(τ)]2. (2.80)

As it follows from the stationary phase method, the biggest contribution to the integral (2.79)
comes from the stationary points defined such that ∂tS(t) = 0. This condition leads to

ωK(t) =
1

2me
[p− eA(t)]2 − EB, (2.81)

which represents the most probable energy emitted in the process. At the same time, it turns
out to be the classical electron energy radiated by a moving electron with momentum p in
the presence of a laser pulse, when it is captured by the atom at time t [36, 57, 58]. Notably, the
range of the emitted radiation spectra in Fig. 2.3 coincides well with the range of ωK(t) marked
by the black vertical lines in both panels. As one can see in the lower panel, the radiation of
same energy can be emitted at different times. This will reflect as an interference pattern in the
energy spectrum. In the upper panel of Fig. 2.3, the vertical green lines set apart the regions
of regular and irregular oscillations in the energy spectrum. The difference in the pattern of
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FIGURE 2.5: The enlarged portions of the spectra shown in Fig. 2.3 in the linear scale.

oscillations is a direct manifestation of interference between multiple LARA probability am-
plitudes having same photon energy emitted at different times. In Fig. 2.3, the first and third
regions in the upper panel exhibit very steady oscillations as a result of interference between
only two probability amplitudes. In this case, the given photon energy is taking the same value
at two different times as shown in lower panel. The relatively erratic behavior of the radiation
spectrum is due to the interference of four probability amplitudes at energies corresponding to
the central region in the lower panel. We observe the same qualitative behavior in the energy
spectra of LARR for other parameters, as presented in Fig. 2.4. In Fig. 2.5, we show the portions
of the spectrum presented in the upper panel of Fig. 2.3 (in the linear scale) to emphasize that
the additional oscillations arising from the simplified theory are absent in our complete theory.

In order to emphasize a universal character of our results, in Fig. 2.6 we show the energy
distributions of LARA radiation arising from the interaction of a coherent electron wave packet
with a hydrogen atom assisted by a CO2 laser pulse (Nrep = 1). More specifically, we consider a
two-cycle CO2 laser field (λ ≈ 10.6 µm, ω = 0.117 eV) with the sine-squared envelope such that
the intensity parameter equals η = 0.0008 (Imax = 4.5× 1010 W/cm2). We choose the geometry
such that ε = εK = np = ex whereas nK = ez. Panels (a) and (c) of Fig. 2.6 compare the
energy distributions of emitted radiation according to the complete theory [Eq. (2.57)] (blue
line) and the simplified one based on Eq. (2.61) (red line) for χ = 0 and χ = π/2, respectively.
The red line exhibits unphysical wiggles that exceed the existing range of emitted radiation.
These artifacts stem from the Gibbs effect, as discussed previously for the 4000 nm laser field.
The energy distribution calculated based on Eq. (2.57), however, exhibits a characteristic peak
at the laser-field-free energy given by Eq. (2.44). Moreover, the pattern and oscillations in
the energy spectrum are also affected by the CEP in both theories. This demonstrates that
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FIGURE 2.6: The upper panels show the energy spectra of LARA radiation ejected by an electron evolv-
ing in a two-cycle (Nosc = 2) linearly polarised CO2 laser pulse and being captured by a hydrogen atom.
The laser pulse is having wavelength λ ≈ 10.6 µm (ω = 0.117 eV), a sine-squared envelope (M = 1),
and the peak intensity Imax = 4.5 × 1010 W/cm2 (η = 0.0008). The wave packet centred at momentum
p describes the electron wave packet such that Ep = p2

2me
= 30 eV. The momentum profile of the wave

packet (2.63) is well collimated, with the longitudinal spread ∆|p| = me/(ζ|p|τp), where ζ = 104. The
geometry is such that p ·K = 0 and εK · p ̸= 0. The blue line in panels (a) and (c) corresponds to the
complete LARA theory [Eq. (2.57)], whereas the thin red line follows from the simplified LARA theory,
introduced in Section 2.2.3. The oscillations in the central regions of panels (a) and (c) can be explained
by the corresponding lower panels (b) and (d), where we plot the time-dependence of ωK(t) [Eq. (2.81)].
Each panel also indicates the corresponding carrier-envelope phase.

the CEP can be used to control the plateau of the LARA radiation spectrum. The temporal
energy of emitted radiation, Eq. (2.81), plotted in the lower panel of Fig. 2.6 helps to interpret
the radiation spectrum of LARA. Similar to the explanation provided for the 4000 nm laser
pulse, a very comparable explanation applies here. Specifically, the energy distributions in
panel (a) and (c) have region of regular (the area between the pink and black vertical lines)
and irregular oscillations (the area between the vertical pink lines), which originate from the
interference of number of LARA probability amplitudes in corresponding regions of panels (b)
and (d). Next in Fig. 2.7, we plot the energy spectra of emitted photons in the LARA process,
keeping all parameters the same as in Fig. 2.6 for χ = 0, except that now εK · p = 0, i.e., the
polarisation direction of LARA photons is perpendicular to the central momentum of electron
wave packet. More specifically, we keep ε = εK = ex,np = ey and nK = ez. We observe that
there is no laser-field-free peak in the energy spectrum of the emitted radiation, in agreement
with Eq. (2.35). Moreover, the plateau of the energy spectrum is much narrower as compared
to Fig. 2.6. Also, the magnitude of the energy spectrum in Fig. 2.7 is smaller by an order
of magnitude than in Fig. 2.6. This, in fact, is the least promising configuration for LARA
generation when assisted by laser pulses. Also, for this specific geometry, the energy spectra of
LARA corresponding to both formulations discussed in Section 2.2.2 and Section 2.2.3 coincide



2.3. Numerical illustrations 25

30 30.5 31 31.5 32

10
-8

10
-6

10
-4

30 30.5 31 31.5 32

0

1000

2000

FIGURE 2.7: The same as in Fig. 2.6 for χ = 0, except that now εK · p = 0. In this case, the blue and red
lines in the upper panel are identical. Note also the lack of the laser-field-free peak. Both features follow
from the formulas; see, for instance, Eq. (2.35) for εK · p = 0.

with each other as seen in Fig. 2.7.
In this Section, we demonstrated the results for LARA assisted by an isolated laser pulse.

We also noticed that similar characteristics are visible in the results obtained for different laser
parameters; thus showing their universal character. In the following Section, it will be interest-
ing to see how the train of laser pulses affects the energy spectrum of emitted photons.

2.3.2 Frequency combs

In this Section, we will explore the impact of a train of pulses on the LARA energy spectrum.
Specifically, we will compare the energy spectra resulting from the impact of one, two, and
three identical laser pulses, each of them demonstrated in Fig. 2.1 for χ = 0. We assume that
the LARA radiation propagates in the z-direction, nK = ez, whereas the initial electron in the
x-direction, np = ex. Moreover, the polarisation of the laser field and the radiation photon
are the same, ε = εK = ex. Hence, p ·K = 0 but εK · p ̸= 0. The energy spectrum of
LARA induced by a pulse train exhibits an elongated plateau with sharp cutoffs, similar to
that shown in Fig. 2.3. Additionally, a delta-like peak is present in the spectrum, similar to the
case of an isolated pulse. To highlight the differences between the energy spectra calculated
for different pulse trains, in Fig. 2.8 we plot magnified portions of the scaled energy distribu-
tions [Eq. (2.57)], divided by N2

rep. The energy distribution for an isolated pulse (Nrep = 1)
is represented by the black line and serves as an envelope for the other two distributions.
The dashed blue line represents the energy spectrum resulting from two pulses (Nrep = 2),
while the solid red line corresponds to three pulses (Nrep = 3). Notably, when the LARA
process is accompanied by a train of pulses (Nrep > 1), the energy distributions of radiated
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FIGURE 2.8: Energy spectrum of the LARA radiation emitted in the presence of an isolated pulse (Nrep =
1, solid black curve) that is represented in Fig 2.1 for χ = 0, and compared to a train of two (Nrep = 2,
dashed blue curve) and three (Nrep = 3, solid red curve) such pulses. The remaining parameters are
the same as in Fig. 2.3. The spectra have been divided by N2

rep. The bottom panel shows the magnified
portions of the scaled energy distributions. While for a single pulse there is no frequency comb, they
appear for LARA accompanied by a train of pulses.

photons display comb-like structures, with characteristic N2
rep scaling. Our second example

concerns the CO2 laser field with parameters 10.6 µm (ω = 0.117 eV), M = 1 and η = 0.0008
(Imax = 4.5 × 1010 W/cm2), and the same electron and laser field configuration. Hence, we ob-
serve the exact same behaviour of energy spectrum with increasing Nrep, as demonstrated in
Fig. 2.9. This general behavior can be explained by the following derivation, where we neglect
the contribution from the laser-field-free process.

Consider the probability amplitude of a recombination process assisted by the train of Nrep
identical laser pulses of duration τp each. Omitting the laser-field-free contribution in Eq. (2.35)
that is represented there by the delta function, the probability amplitude can be written as

ANrep(p) =

ˆ Nrepτp

0
dtG(t)eiQt+iH(t), (2.82)

where Q and H(t) are defined by Eqs. (2.17) and (2.18), respectively, whereas

G(t) =
F(t)

[κ2 + π2(t)]2
− εK · eA(t)

[κ2 + π2(t)]2
, (2.83)

which follows from Eq. (2.35). Note that in our model of the laser field, it holds that
´ ∞
−∞ dt E(t) =

0, as A(0) = A(τp) = 0. The same condition retains for identical pulse train [Eq. (2.76)], as
A(ℓτp) = 0 for ℓ = 0, 1, ..., Nrep. Keeping this in mind, we conclude that G(0) = G(τp) = 0.
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FIGURE 2.9: Same as in Fig. 2.8 but for CO2 laser. The parameters are specified in Fig. 2.6, with χ = 0.

Moreover, the function G(t) and the integrand defining H(t), i.e., h(t) given by Eq. (2.19), are
periodic within the time duration of a train Nrepτp. On the contrary, H(t) does not change
repeatedly over the duration of the train. What is changing repeatedly is in turn,

Hosc(t) =
ˆ t

0
dτ[h(τ)− Dp], (2.84)

where

Dp =
1
τp

ˆ τp

0
dτh(τ) =

H(τp)

τp
. (2.85)

It also fulfills the condition,
Hosc(0) = Hosc(τp) = 0. (2.86)

Taking these facts into account, we rewrite Eq. (2.82) such that

ANrep(p) =

ˆ Nrepτp

0
dtG(t)ei(Q+Dp)t+iHosc(t). (2.87)

Next, we split this integral into the sum of integrals over the time duration of a single pulse
from the train,

ANrep(p) =
Nrep

∑
K=1

ˆ Kτp

(K−1)τp

dtG(t)ei(Q+Dp)t+iHosc(t). (2.88)
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By changing the integration variable in each of those integrals to t′ = t − (K − 1)τp, we obtain

ANrep(p) =
Nrep

∑
K=1

ˆ τp

0
dt′G(t′)ei(Q+Dp)(t′+(K−1)τp)+iHosc(t′). (2.89)

Recognizing here the probability amplitude of LARA by a single pulse A1(p) [see, Eq. (2.87)
for Nrep=1], we rewrite Eq. (2.89) as

ANrep(p) = A1(p)
Nrep

∑
K=1

ei(K−1)(Q+Dp)τp . (2.90)

Summing up the above geometric series leads to

ANrep(p) = e
i
2 (Q+Dp)(Nrep−1)τpA1(p)

sin[1
2(Q + Dp)Nrepτp]

sin[1
2(Q + Dp)τp]

. (2.91)

It follows from this formula that the probability amplitude of radiative attachment in the pres-
ence of a train of pulses is proportional to the one for a single pulse. As one can see, it is
modulated by an interference term that is expressed by sine functions. Here, e

i
2 (Q+Dp)(Nrep−1)τp

is an overall phase factor. One sees from Eq. (2.91) that the probability amplitude ANrep(p) has
the maximum values when the sine function in the denominator is zero, which happens when

1
2
(Q + Dp)τp = πN, N ∈ Z. (2.92)

Plugging here the expression for Q [Eq. (2.17)] and for τp = 2π
ω Nosc, we obtain

(ωK − p2

2me
+ EB + Dp)

Nosc

ω
= N, N ∈ Z. (2.93)

The above equation can be solved for the values of ωK . At those ωK , the interference factor
defined by the sine functions equals Nrep. Hence, the energy distribution gets enhanced by a
factor of N2

rep as compared to the one for a single pulse. This can be attributed to constructive
interference of probability amplitudes of LARA accompanied by each pulse from the train.
There is also (Nrep − 2) of secondary maxima for Nrep ⩾ 2 and (Nrep − 1) of zeros of the energy
distribution between two subsequent major peaks, as shown in Figs. 2.8 and 2.9. One can also
examine that those major peaks become narrower with increasing Nrep, by a factor of Nrep.
Hence, the total energy of the emitted radiation scales like Nrep, whereas the LARA spectrum
becomes similar to the Dirac comb with increasing Nrep.

In this Section, we have shown that the coherent frequency combs can be generated in ra-
diative attachment when accompanied by a train of identical laser pulses. For the parameters
considered, we have demonstrated the frequency comb in extreme ultraviolet regime. While
the plateau in the energy spectrum of LARA can be extended by increasing the energy of the
initial electron wave packet, this would also facilitate the generation of more energetic fre-
quency combs.
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2.3.3 Energy distribution spectrograms

In this Section, we shall perform a time-frequency analysis of energy distributions of LARA
radiation. This will be done by means of a spectrogram, S(t, ωK), that is closely related to
the short-time Fourier transform [69]. In Appendix A.2 we present general definitions and
properties of spectrograms. Here, we adapt this tool to visualize when in time the given LARA
radiation is emitted. Since the respective energy distributions will be analyzed, in what follows
we refer to them as signals.

In general, for a given signal A(ω) that is defined for frequencies ω within the range ω1 ⩽
ω ⩽ ω2, we truncate it first with the cutoff function,

fT(x, ∆x) =



0 for x ⩽ 0
sin2 ( πx

2∆x
)

for 0 < x < ∆x
1 for ∆x ⩽ x ⩽ 1 − ∆x
sin2

(
π(1−x)

2∆x

)
for 1 − ∆x < x < 1

0 for x ⩾ 1,

(2.94)

such that

AT(ω) = A(ω) fT

(
ω − ω1

ω2 − ω1
, ξT(ω2 − ω1)

)
(2.95)

is a truncated signal. Here ξT is a small parameter. Then, the short-time Fourier transform of
the truncated signal is [69]

AST(t, ωK) =

ˆ ω2

ω1

dωAT(ω)W(ω − ωK , ξW(ω2 − ω1))e−iωt, (2.96)

where a parameter ξW specifies the width of the window function W(x, ∆x). Now, choosing
the Gaussian window,

W(x, ∆x) =
e−(x/∆x)2

√
π∆x

, (2.97)

with ˆ ∞

−∞
dxW(x, ∆x) = 1, (2.98)

we define the time-frequency spectrogram as

S(t, ωK) = |AST(t, ωK)|2. (2.99)

Here, we need to comment on calculating the Fourier transform in Eq. (2.96). In order to avoid
Gibbs effect, the integrand in Eq. (2.96) has to be continuous and take the same values at the
boundaries. For this reason, we have truncated the original signal A(ω). Another point worth
mentioning is that for a truncated signal that is peaked around ω0, i.e., AT(ω) ≈ δ(ω − ω0),
the spectrogram equals S(t, ωK) ≈ |W(ω0 − ωK , ξW(ω2 − ω1))|2. It is, therefore, constant in
time which we will use to interpret our results.

In Fig. 2.10, we demonstrate the energy spectra (upper row) and their related spectrograms
(lower row). The results demonstrated in the left column are calculated based on the complete
theory (Section 2.2.2), while in the right column they correspond to the simplified theory (Sec-
tion 2.2.3). We consider a two-cycle (Nosc = 2), sine-squared (M = 1) laser pulse (Nrep = 1)
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FIGURE 2.10: While the left column shows the energy spectrum and its corresponding spectrogram
calculated within the complete theory (Section 2.2.2), the right column is for the simplified theory (Sec-
tion 2.2.3). The parameters for energy spectra are same as in Fig. 2.3. For spectrograms, we use the
Gaussian window (2.97) and the cutoff function (2.94), with the parameters: ξT = 0.1, ξW = 0.03,
ω1 = 1 eV, and ω2 = 65 eV. The zigzag yellow line is seen in both spectrograms and it extends for the
duration of the laser pulse. The straight vertical yellow line in bottom left panel at roughly 30 eV cor-
responds to the laser-field-free peak in the spectrum. In the bottom left panel, the red horizontal lines
mark the beginning and the end of the laser pulse. In the bottom right panel, the horizontal blue lines
are reminiscence of the Gibbs effect.

with parameters λ = 4000 nm, η = 0.005 and χ = 0, as defined in Eq. (2.76). The kinetic energy
corresponding to the central momentum of the electron wave packet (2.63) is Ep = p2

2me
= 30 eV

and the HWHM is ∆|p| = me/(ζ|p|τp), where ζ = 104. We choose the LARA geometry such
that ε = εK = np = ex and nK = cK/ωK = ez. We use the cutoff function and the window
function with parameters ξT = 0.1, ξW = 0.03, ω1 = 1 eV, and ω2 = 65 eV. In the bottom panel
of Fig. 2.10, the two distinct patterns can be observed in the spectrograms corresponding to the
respective energy spectrum. At roughly 30 eV, the straight vertical line in the bottom left panel
extends beyond the pulse duration [0, τp] and indicates the laser-field-free recombination. This
vertical line is absent in the spectrogram in the bottom right panel, as the simplified theory
neglects the contribution from the laser-field-free process. Additionally, both spectrograms
display a zigzag pattern that lasts for the entire duration of the pulse, signifying recombina-
tion in the presence of the laser pulse in both cases. For convenience, the two horizontal red
lines mark the pulse duration in the spectrogram at the bottom left panel. Furthermore, the
two unphysical blue stripes can be observed in the bottom right panel when the laser field is
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FIGURE 2.11: In the upper row, we demonstrate the energy distributions of emitted radiation presented
in Fig. 2.6. The blue curve corresponds to complete theory (2.39), whereas the red curve follows from
the simplified LARA theory as introduced in Section 2.2.3. Below we demonstrate their corresponding
spectrograms. They have been calculated using the cutoff function and Gaussian window as specified
by Eqs. (2.95), (2.94) and (2.96), with the parameters: ξT = 0.1, ξW = 0.03, ω1 = 1 eV, and ω2 = 65 eV.
In the spectrogram corresponding to energy spectra (a) and (c), the yellow horizontal lines mark the
beginning and the end of the laser pulse. In the spectrogram corresponding to energy spectra (b) and
(d), the blue horizontal lines are artifacts originating from the Gibbs effect in the case of the simplified
theory. The red line overlapping the zigzag yellow pattern in the spectrograms represents Eq. (2.81).

turned on and off. These are marks of the Gibbs effect in the case of simplified theory (Sec-
tion 2.2.3). The same is not observed in the bottom left panel that refers to the complete LARA
formulation (Section 2.2.2).

A similar time-frequency analysis of the LARA spectrum can be applied to other fields,
such as a CO2 laser field, with the same laser and electron wave packet parameters as shown
in Fig. 2.6. Fig. 2.11 presents the energy spectra and their corresponding spectrograms for
the cases where χ = 0 and χ = π

2 , calculated using both the complete theory introduced
in Section 2.2.2 (blue line) and the simplified theory from Section 2.2.3 (red line). As with
the previous analysis, the spectrogram resulting from the complete theory [panels (a) and (c)]
display a vertical yellow line that extends beyond the pulse duration [0, τp] and is roughly at
ωK = 1.2 a.u (30 eV) for both χ = 0 and χ = π

2 . This line corresponds to the laser-field-
free peak in the energy radiation spectra. In each spectrogram, a characteristic zigzag pattern
lasts over the duration of the pulse and it varies with CEP. Interestingly, it overlaps the red
line representing the temporal energy emitted by the electron in a laser field, ωK(t), given by
Eq. (2.81). The latter can be used in laser field metrology, which is discussed next.

2.3.4 LARA-based laser field metrology

In this Section, we propose a method of temporal reconstruction of the laser field which follows
from analyzing the spectrogram of LARA radiation. In Fig. 2.12, we present the spectrogram
of the energy distribution of LARA radiation generated by the interaction of an electron with
a hydrogen atom and an isolated pulse. While the upper panel of Fig. 2.12 is for χ = 0, lower
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FIGURE 2.12: Spectrograms of the energy distribution (2.57) of LARA radiation generated by the inter-
action of an electron with a hydrogen atom and an isolated pulse represented in Fig. 2.1, either for χ = 0
(upper panel) or for χ = π

2 (lower panel). The remaining parameters are the same as in Fig. 2.10. Again,
the straight vertical yellow line in both panels, at roughly 30 eV, corresponds to the laser-field-free peak
in the spectrum. Red lines represent the time-dependence of ωK(t) given by Eq. (2.81).

panel is for χ = π
2 . The parameters used for calculations are the same as in Fig. 2.10. Again, one

can notice the zigzag pattern lasting for the entire pulse duration. Importantly, it is sensitive to
the pulse parameters such as CEP (see, also Fig. 2.11). For this reason, it opens an idea to use
this sensitivity for field reconstruction. Specifically, the red line in the spectrograms marks the
quantity ωK(t) [Eq. (2.81)] which represents the energy emitted by the recombining electron
throughout the pulse duration. It is defined in terms of the vector potential of the laser field,
the kinetic and the binding energies of the electron. Therefore, by providing the binding energy
of the target and the central kinetic energy of the initial electron wave packet, it is possible to
reconstruct A(t) from the spectrogram.

This method can also be applicable for characterisation of a pulse train, in addition to an
isolated pulse. In Fig. 2.13, we present the spectrogram of the energy spectrum of LARA radi-
ation with the impact of a train of two laser pulses (Nrep = 2). The remaining parameters are
the same as in Fig. 2.12 with χ = 0. Similar to the case of an isolated pulse, the laser field is im-
printed in the spectrogram. By comparing the zigzag line against the analytic form of ωK(t),
one can deduce what the temporal characteristics of the pulse train are.

2.4 Summary

In this Chapter, we have formulated a complete theoretical description of laser-assisted electron-
atom radiative attachment, which goes beyond the previously established one (see, e.g., Refs. [56,
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FIGURE 2.13: The same as in Fig. 2.12 but for the pulse train (Nrep = 2) and χ = 0.

57, 58, 59, 60, 61]). We have shown various differences between both treatments. Specifically,
our approach contains a contribution from a laser-field-free process which manifests as a pro-
nounced peak in the energy distribution of LARA radiation. This is missing in the simplified
theory of LARA (Section 2.2.3). In addition, we do not observe unphysical oscillations in the
energy spectra of LARA radiation leading to appearance of secondary plateaux, or artificial
patterns in the spectrograms; both originating from the forcefully limiting the range of time
integral defining the probability amplitude of LARA in Refs. [56,57,58,59,60,61]. All these dis-
crepancies have been illustrated by various examples and different sets of parameters, proving
a very general character of our results.

We have studied electron attachment in the presence of a single pulse and a train of identi-
cal pulses. While in both cases, we have observed an extended plateau region of radiation with
an aforementioned δ peak, for a pulse train the LARA spectra exhibit an additional pattern.
Namely, a comb-like structure that scales like the number of pulse repetitions squared (N2

rep).
This coherent enhancement of energy distributions was attributed to a constructive interfer-
ence of probability amplitudes of LARA by each pulse from the train. Interestingly, such clear
combs have been observed despite a spread of momenta in the initial electron wave packet.

Finally, we have demonstrated a time-frequency analysis of the emitted radiation and its
sensitivity to temporal properties of the laser field. Hence, an idea of using LARA spectrogram
towards laser-field metrology has been put forward.

In closing this Chapter, we note that by developing a new theoretical framework of treat-
ing LARA, we have also established foundation for our further investigation, involving the
Coulomb potential as well as nondipole corrections. This is presented next.
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Chapter 3

Laser-Assisted Radiative Recombination
(LARR)

3.1 Introduction

This Chapter is devoted to laser-assisted radiative recombination beyond the dipole approxi-
mation. In other words, we study the recombination of electrons with hydrogen-like positive
ions described by the long-range Coloumb potential [36, 38, 41, 49, 50, 55, 59] in the presence of
an external laser field which will lead to the emission of high-energy photons. Note that the
above references treat the laser field within the dipole approximation. Our theoretical frame-
work extends beyond the dipole approximation such that the external laser field depends on
both space and time.

Specifically, due to the recent development of laser technology, a lot of attention is given to
nondipole effects in ionisation [81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95]. However, going
beyond the dipole approximation not only applies to ionisation but can also occur wherever
there are electron-laser-field interactions, resulting in a radiation pressure effect. The radiation
pressure effect occurs when the laser field imparts momentum to the electron. This effect arises
from the magnetic component of the electromagnetic field under certain conditions, namely, for
high-frequency or low-frequency but high intensity laser fields [96, 97]. Therefore, it is neces-
sary to go beyond the dipole approximation to comprehend the non-linearity that emerges in
atomic and molecular processes beyond a certain range of field parameters. Since LARR is a
time-reversed process to ionisation and an underlying process in HHG, it is important to study
the influence of nondipole corrections on the properties of the LARR spectrum.

The experimental investigations, such as the one referenced in [98, 99], were among the
first to identify the presence of nondipole effects in strong-field ionisation. Many theoretical
investigations were inspired by these experiments, focusing mainly on ionisation and laser-
assisted electron scattering [81,82,83,84,86,87,88,89,90,91,92,93,94,95,100] within the strong-
field regime. We are not aware, however, of any work, prior to ours [101], that would study
nondipole effect in laser-assisted radiative recombination. We came across only one paper [64]
that explored LARR beyond the dipole approximation, which was within the relativistic frame-
work. In this study, the external laser field was represented as a circularly polarised plane wave
dependent on space and time. Also, the initial state of the highly energetic electron in the pres-
ence of a high-intensity and low-frequency field was approximated by the Volkov solution,
neglecting the Coulomb effects. This interaction resulted in the emission of gamma rays and
introduced a shift in the angular distribution of emitted photons. In our investigation of LARR,
along with the nondipole effect, we are considering Coulomb effects on LARR. Additionally,
the laser field is assumed to be a short laser pulse rather than a plane wave.
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In this Chapter, we develop a systematic study leading to the inclusion of nondipole cor-
rections to the LARR theory. As it will be clear, by comparing different contributions, the
recoil effect seems to be most relevant. On top of studying nondipole corrections, which lead
to an extension of the LARR plateau, we also investigate the possibility of enhancing partic-
ular harmonics. This is done by chirping the assisting laser pulse. It was investigated for
HHG [102, 103] but not for LARR. This is a way to control LARR.

This Chapter is structured as follows. In Section 3.2.1, we derive the scattering state of the
electron in the presence of an external laser field and a Coulomb interaction using relativistic
reduction of the Klein-Gordon equation. In Section 3.2.2, we consider LARR by the impact
of the electron wave packet and derive the expression for the probability amplitude of LARR
beyond the dipole approximation. Following that, in Section 3.2.3, we derive the expression
for the energy distribution of emitted photons resulting from the impact of a coherent electron
wave packet. We keep the profile of the electron wave packet as Lorentzian (Section 2.2.4),
consistent with Chapter 2. In Section 3.3.1, we first illustrate the laser field model that we
use. Henceforth, we demonstrate the nondipole effects in the energy distribution of LARR
along with its spectrogram. Subsequently, we demonstrate the nondipole effects in the angular
distribution of LARR radiation. In Section 3.3.2, we propose a method to enhance a specific
harmonic in the energy distribution by chirping the laser pulse. Additionally, in Section 3.3.3,
we demonstrate the vortex structures in LARR. We provide a short summary of this Chapter
in Section 3.4.

3.2 Theoretical formulation of LARR

3.2.1 Coulomb-Volkov scattering state with nondipole corrections

In this Section, we present a systematic development of the Coulomb-Volkov scattering state
that includes nondipole corrections. We start with the relativistic Klein-Gordon equation de-
scribing the electron in a Coloumb potential and a laser field; thus treating electron as a spinless
particle. The solution of the Klein-Gordon equation is then expanded in powers of 1/c to track
the leading nondipole corrections to the Coulomb-Volkov scattering state. This is subsequently
used in derivations of the LARR probability amplitude in Section 3.2.2.

Consider an electron that moves with momentum p in an external laser field and an atomic
potential. If treated as spin-0 particle, the electron wave function ψp(r, t) satisfies the so-called
Klein-Gordon equation,[ 1

c2 (i∂t − V(r, t))2 − (p̂− eA(r, t))2 − (mec)2
]
ψp(r, t) = 0. (3.1)

Here, A(r, t) = A(t − n·r
c ) is the vector potential describing the laser field propagating in the

direction n. Hence, it depends on the retarded time,

tR = t − n · r
c

. (3.2)

Moreover, V(r, t) represents the scalar potential which, in principle, can depend on time. In
what follows, we assume however that V(r, t) = V(r) = − Ze2

4πε0|r|
, as it corresponds to the

atomic Coulomb interaction.
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We search for solutions of the Klein-Gordon equation (3.1) such that

ψp(r, t) =
1√
V

eiF(r,t)ϕp(r, t), (3.3)

where the phase factor F(r, t) reflects the dependence on the retarded time, similar to the vector
potential A(r, t). Here V is the quantisation volume. Keeping this in mind, one can derive that

(i∂t − V(r))2ψp(r, t) = eiF(r,t)(i∂t − V(r)− F
′
(r, t))2ϕp(r, t), (3.4)

(p̂− eA(r, t))2ψp(r, t) = eiF(r,t)(p̂− eA(r, t)− 1
c

F
′
(r, t)n)2ϕp(r, t), (3.5)

where the prime denotes the derivative with respect to the retarded time. Now, expanding the
square bracket of the operators on the right-hand sides of the Eqs. (3.4) and (3.5), we get

(i∂t − V(r)− F
′
(r, t))2 = (i∂t − V(r))2 − 2F

′
(r, t)(i∂t − V(r)) + F

′2(r, t)− iF
′′
(r, t),

(3.6)

(p̂− eA(r, t)− 1
c

F
′
(r, t)n)2 = p̂2 − 2(eA(r, t) +

1
c

F
′
(r, t)n) · p̂+ (eA(r, t) +

1
c

F
′
(r, t)n)2

− i
c2 F

′′
(r, t), (3.7)

where the Coulomb gauge for the vector potential has been chosen such that ∇ ·A(r, t) = 0.
After plugging Eqs. (3.4), (3.5), (3.6) and (3.7) into the Klein-Gordon equation (3.1), we arrive
at [ 1

c2 (i∂t − V(r))2 − p̂2 − (mec)2 − 2
c2 F

′
(r, t)(i∂t − V(r)) + 2(eA(r, t) +

1
c

F
′
(r, t)n) · p̂

− e2A2(r, t)
]
ϕp(r, t) = 0. (3.8)

In the following, we assume that

2
c

(Ep

c
−n · p

)
F
′
(r, t) = 2eA(r, t) · p+ e2A2(r, t), (3.9)

where Ep is the electron energy. Note that the above condition can be written in a compact form

by introducing the four-vector notation. Namely, the four-vectors x = (ct, r), p =
(

Ep

c ,p
)

and

n = (1,n), as well as the scalar product defined as a · b = a0 · b0 −a · b, for any two four-vectors
a = (a0,a) and b = (b0, b). Specifically, the four-vector potential equals A(n·x

c ) = (0,A(n·x
c )),

where tR = n·x
c . Using this notation, Eq. (3.9) becomes

F
′
(n · x

c

)
= −c

eA(n·x
c ) · p

n · p
+ c

e2A2(n·x
c )

2n · p
, (3.10)

which leads to

F
(n · x

c

)
=

ˆ n·x
c

dϕ
[
− c

eA(ϕ) · p
n · p

+ c
e2A2(ϕ)

2n · p

]
. (3.11)
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With this in mind, Eq. (3.8) can be simplified such that[ 1
c2 (i∂t − V(r))2 − p̂2 − (mec)2 − 2

c2 F
′
(r, t)(i∂t − V(r)− Ep)

+ 2(eA(r, t) +
1
c

F
′
(r, t)n) · (p̂− p)

]
ϕp(r, t) = 0. (3.12)

Next, we take care of rest-mass oscillations by replacing ϕp(r, t) by

ϕp(r, t) = e−imec2tϕ̄p(r, t). (3.13)

This leads us to the following equation,[
i∂t − V(r)− p̂2

2me
+

1
2mec2 (i∂t − V(r))2 − 1

mec2 F
′
(r, t)(i∂t − V(r) + mec2 − Ep)

+
1

me
(eA(r, t) +

1
c

F
′
(r, t)n) · (p̂− p)

]
ϕ̄p(r, t) = 0. (3.14)

Let us rewrite this equation such that[
i∂t − V(r)− p̂2

2me
+ ĥ
]
ϕ̄p(r, t) = 0, (3.15)

where

ĥ =
1

2me
(eA(r, t) +

1
c

F
′
(r, t)n) · (p̂− p) +

1
2mec2

[
(i∂t − V(r))2

− 2F
′
(r, t)(i∂t − V(r) + mec2 − Ep)

]
. (3.16)

The reason being that ĥ can be treated as perturbation to the nonrelativistic atomic problem.
For highly energetic electrons, the first term in Eq. (3.16) represents the correction of the order
(p̂ − p) [104] whereas the second term represents the correction of the order of 1/c2. It is,
therefore, justified to represent ϕ̄p(r, t) as a series

ϕ̄p(r, t) = ϕ̄
(0)
p (r, t) + ϕ̄

(1)
p (r, t) + ..., (3.17)

where, ϕ̄
(0)
p (r, t) is the solution of the unperturbed problem, whereas ϕ̄

(i)
p (i = 1, 2, . . . ) are the

corrections to the electronic state due to perturbation ĥ. By substituting Eq. (3.17) into Eq. (3.15),
we obtain the hierarchy of differential equations, where the lowest order equations are[

i∂t −
p̂2

2me
− V(r)

]
ϕ̄
(0)
p (r, t) = 0, (3.18)[

i∂t −
p̂2

2me
− V(r)

]
ϕ̄
(1)
p (r, t) = −ĥϕ̄

(0)
p (r, t), . . . . (3.19)

Clearly, if the perturbation is small, the higher-order corrections are insignificant. Therefore, in
the zeroth order of approximation, we are left with nonrelativistic Schrödinger equation (3.18)
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for the Coulomb scattering state. For our further purposes, we choose the state with the out-
going boundary conditions, meaning that

ϕ̄
(0)
p (r, t) = e−i p

2t
2me eip·rCp(r), (3.20)

where

Cp(r) = exp (
πν

2
)Γ(1 − iν)1F1(iν, 1, i(|p||r| − p · r)). (3.21)

Here, ν = Z
a0|p|

, Γ(·) is the Gamma function whereas 1F1(iν, 1, i(|p||r| − p · r)) is a confluent
hypergeometric function of the first kind. This along with Eqs. (3.3) and (3.13) allows us to
write

ψp(r, t) =
1√
V

e−imec2t+iF(r,t)ϕ̄
(0)
p (r, t) (3.22)

for the scattering state with an outgoing boundary conditions that describes an energetic elec-
tron in a Coulomb potential and a laser field. It is known as the Coulomb-Volkov state, where
the Volkov phase F(r, t) in its relativistic form is given by Eq. (3.11).

For our further purpose, let us consider the Coulomb-Volkov state (3.22) in the length
gauge, since now on denoted as ψ

(+)
p (r, t). As we will argue later, it takes the following form,

ψ
(+)
p (r, t) = e−ieA(r,t)·rψp(r, t) =

1√
V

e−imec2t−ieA(r,t)·r+iF(r,t)ϕ̄
(0)
p (r, t), (3.23)

and is the starting point in deriving the leading order nondipole corrections. They are of dif-
ferent origin:

1. Gauge transformation correction
Since the laser field depends on the retarded time tR = t − n·r

c , we can expand the corre-
sponding vector potential in the leading order in 1/c such that

A(t − n · r
c

) ≈ A(t) +
n · r

c
E(t) + . . . , (3.24)

where E(t) = − ∂A(t)
∂t is the electric field describing the laser light in the dipole approxi-

mation. Hence, the gauge transformation phase factor in Eq. (3.23) becomes

e−ieA(r,t)·r ≈ e−ieA(t)·r
[
1 − ie

c
(E(t) · r)(n · r)

]
. (3.25)

Thus, we will refer to the second term of this expression as the gauge transformation
correction.

2. Retardation correction
The Volkov phase (3.11) depends on the retarded time via the upper integration limit.
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Hence, expanding Eq. (3.11) in that limit, gives

F(r, t) =
c

n · p

ˆ t−n·r
c

0
dϕ
[
eA(ϕ) · p− e2A2(ϕ)

2

]
≈ c

n · p

ˆ t

0
dϕ
[
eA(ϕ) · p− e2A2(ϕ)

2

]
− n · r

n · p

[
eA(t) · p− e2A2(t)

2

]
, (3.26)

where

n · p =
Ep

c
−n · p =

√
(mec)2 + p2 −n · p. (3.27)

3. Recoil correction
As one can see in Eq. (3.26), the Volkov phase contains the coefficient 1

n·p . It follows from
Eq. (3.27) that in the leading order in 1/c we have

1
n · p

≈ 1
mec

(
1 +

n · p
mec

)
, (3.28)

which is known as the Nordsieck correction [105]. As it was argued in Ref. [85] in the
context of ionisation, this term is responsible for the electron recoil when interacting with
the laser field. For this reason, we shall also refer to it as the recoil correction.

Since the retardation (3.26) and recoil (3.28) corrections refer to the Volkov phase, combining
them we obtain that, in the leading order in 1/c, the relativistic Volkov phase can be approxi-
mated by

F(r, t) ≈ 1
me

(
1 +

n · p
mec

) ˆ t
dϕ
[
eA(ϕ) · p− e2A2(ϕ)

2

]
− n · r

mec

[
eA(t) · p− e2A2(t)

2

]
. (3.29)

Let us compare this expression with the Volkov phase in the dipole approximation, denoted in
Chapter 2 as H(t) and given by Eqs. (2.18) and (2.19). The first term in Eq. (3.29) corresponds

to H(t) except that it is multiplied by
(

1 + n·p
mec

)
. Note that this is equivalent to introducing

into the nonrelativistic theorem that is based on the dipole approximation the effective mass of
the electron meff equal to

meff = me −
n · p

c
. (3.30)

The same conclusion has been reached in Ref. [85] regarding nondipole effects in ionisation.
Once the radiation pressure of the laser field is accounted for the electron moving in the di-
rection of the field propagation appears to be "lighter"; in contrast to the electron moving in
the opposite direction. Hence, the concept of momentum-dependent electron mass arises. On
the other hand, the second term in Eq. (3.29) is absent in the dipole approximation and, as it
follows from our derivation, it originates from the retardation of a laser wave.

To summarize, by accounting for leading nondipole corrections we have derived that the
Coulomb-Volkov scattering state with outgoing boundary conditions, written in the length
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gauge, takes the form

ψ
(+)
p (r, t) =

1√
V

e−imec2t−ieA(t)·r+iF(r,t)
[
1 − ie

c
(E(t) · r)(n · r)

]
ϕ̄
(0)
p (r, t), (3.31)

where F(r, t) is given by Eq. (3.29), whereas ϕ̄
(0)
p (r, t) is defined by Eqs. (3.20) and (3.21). It

has been derived assuming large electron momenta. In this case, the state resembles the state

corresponding to the instantaneous electron momentum, π(t) = p− eA(t)− n
mec

[
eA(t) · p−

e2

2 A
2(t)

]
. While in the dipole approximation, the corresponding momentum is π(dip)(t) =

p − eA(t), as it follows from Eq. (2.12), here we have an additional term. This additional
momentum is in the direction of the laser field propagation. Thus showing that the electron is
exposed to radiation pressure, that is absent in the dipole approximation. The state (3.31) will
be used next when deriving the LARR probability amplitude.

3.2.2 LARR by an impact of a monoenergetic electron wave

Consider the recombination of an electron by atomic potential V(r̂) in the presence of a laser
field with the emission of a photon. We assume that the emitted photon carries the energy
ωK , the wave vector K, and polarisation εK . The external laser field and emitted photon field
depend on both space and time.

The Hamiltonian describing the process takes the form

Ĥ(r̂, t) =
1

2me
(p̂− eA(r̂, t)− eÂK(r̂, t))2 + V(r̂). (3.32)

Here, A(r̂, t) = A(t − n·r̂
c ) represents vector potential corresponding to the classical laser

field propagating in the n-direction, whereas ÂK(r̂, t) = ÂK(t − nK ·r̂
c ) represents the vector

potential corresponding to the quantized electromagnetic field propagating in the direction
nK . We assume that these fields are transverse, meaning that n ·A(r̂, t) = nK · ÂK(r̂, t) = 0,

and we define the corresponding electric fields E(r̂, t) = − ∂A(r̂,t)
∂t and ÊK(r̂, t) = − ∂ÂK(r̂,t)

∂t .
The Hamiltonian within the length gauge can be obtained by applying a unitary transfor-

mation

Û (r̂, t) = exp[−ieA(r̂, t) · r̂− ieÂK(r̂, t) · r̂] (3.33)

to Eq. (3.32). This is done according to Eq. (B.4) [see Appendix B.1, for more details],

Ĥ
′
(r̂, t) = [i∂tÛ (r̂, t)]Û †(r̂, t) + Û (r̂, t)Ĥ(r̂, t)Û †(r̂, t)

= −eE(r̂, t) · r̂− eÊK(r̂, t) · r̂+ Û †(r̂, t)Ĥ(r̂, t)Û (r̂, t). (3.34)

In order to find an explicit form of the third term of the above equation, we use Baker-Campbell-
Hausdorff formula, eλG Ae−λG = A + λ[G, A] + λ2

2 [G, [G, A]] + . . . [106]. As a result, we obtain

Û †(r̂, t)(p̂− eA(r̂, t)− eÂK(r̂, t))Û (r̂, t) = p̂+
n

c
(eE(r̂, t) · r̂) + nK

c
(eÊK(r̂, t) · r̂), (3.35)
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and

Û †(r̂, t)(p̂− eA(r̂, t)− eÂK(r̂, t))2Û (r̂, t) = [p̂+
n

c
(eE(r̂, t) · r̂) + nK

c
(eÊK(r̂, t) · r̂)]2.

(3.36)

Hence, the new Hamiltonian (3.34) takes the form

Ĥ
′
(r̂, t) = −eE(r̂, t) · r̂− eÊK(r̂, t) · r̂

+
1

2me
[p̂+

n

c
(eE(r̂, t) · r̂) + nK

c
(eÊK(r̂, t) · r̂)]2 + V(r̂). (3.37)

Neglecting the terms of the order 1/c2 and higher, we obtain

Ĥ
′
(r̂, t) = Ĥ0(r̂, t) + Ĥ

′′
(r̂, t), (3.38)

where

Ĥ0(r̂, t) =
p̂2

2me
+ V(r̂)− eE(r̂, t) · r̂

(
1 − n · p̂

mec

)
(3.39)

describes an electron in the atomic potential and the laser field, whereas

Ĥ
′′
(r̂, t) = −eÊK(r̂, t) · r̂

(
1 − nK · p̂

mec

)
(3.40)

represents the electron interaction with the quantized field ÊK(r̂, t), which is given by Eqs. (2.4)
and (2.5).

Let us define the probability amplitude of LARR governed by the perturbation Ĥ
′′
(r̂, t) in

the length gauge such that

A(p) = −i
ˆ ∞

−∞
dt ⟨ψB(t); 1K |Ĥ′′

(r̂, t)|ψ(+)
p (t); 0K⟩, (3.41)

where the initial electron scattering state ψ
(+)
p (r, t) is defined by Eq. (3.31) whereas the final

electron bound state ψB(r, t) is given by the following formulas

ψB(r, t) = e−iEBte−imec2tψB(r), (3.42)

with

ψB(r) =
1√
π

(
Z
a0

)3/2

e−Zr/a0 , (3.43)

and the binding energy equal to EB = −Z2E0
2 . Both ψB(r, t) and ψ

(+)
p (r, t) should be in prin-

ciple the exact eigenstates of Ĥ0(r, t). However, they are not known, thus need to be approxi-
mated. Here, it is done using the relativistic reduction of Klein-Gordon equation in the leading
order in 1/c. Note the appearance of the free mass oscillations in Eq. (3.42). They appear when
we derive the electron bound state from the Klein-Gordon equation as well.
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Substituting Eq. (3.40) together with Eqs. (2.4) and (2.5) into Eq. (3.41), the probability am-
plitude of LARR [Eq. (3.41)] in the position representation takes the form

A(p) = e
√

ωK

2ϵ0V

ˆ ∞

−∞
dt
ˆ

d3r ei(ωK t−K·r)ψ∗
B(r, t)

(
εK · r

)(
1 − nK · p̂

mec

)
ψ
(+)
p (r, t). (3.44)

Following the discussion of Eq. (3.31) we can figure out that for large momenta, p̂ψ
(+)
p (r, t) ≈(

p− eA(t)− n
mec

[
eA(t) · p− e2

2 A
2(t)

])
ψ
(+)
p (r, t). Since this term is divided in Eq. (3.44) by c,

it is justified in the leading order in 1/c to approximate that p̂
mec ψ

(+)
p (r, t) ≈ p−eA(t)

mec ψ
(+)
p (r, t).

Hence, Eq. (3.44) takes the form

A(p) = e
√

ωK

2ϵ0V

ˆ ∞

−∞
dt
ˆ

d3r ei(ωK t−K·r)ψ∗
B(r, t)

(
εK · r

)
Gp(t)ψ

(+)
p (r, t), (3.45)

where

Gp(t) = 1 − nK · (p− eA(t))
mec

. (3.46)

Furthermore, substituting the scattering electron states (3.31) and bound state [Eq. (3.42) and
(3.43)] in Eq. (3.45) we arrive at the following expression describing the LARR probability am-
plitude up to the leading nondipole corrections,

A(p) =
Ze
a0V

√
ZωK

2πε0a0
e

πν
2 Γ(1 − iν)

ˆ ∞

−∞
dt eiQt+iHeff(t)

ˆ
d3r (εK · r)

×
[

Gp(t)− ieE(t) · r n · r
c

]
1F1(iν, 1, i(|p||r| − p · r)) e−Zr/a0+iq(t)·r. (3.47)

Here, we have introduced Q defined by Eq. (2.17) along with

Heff(t) =
1

me

(
1 +

n · p
mec

) ˆ t

0
dϕ
[
eA(ϕ) · p− e2

2
A2(ϕ)

]
, (3.48)

q(t) = p− eA(t)−K − n

mec

[
eA(t) · p− e2

2
A2(t)

]
. (3.49)

Note that Heff(t) accounts for recoil correction (3.28) while q(t) contains retardation correction
coming from Eq. (3.26). In addition, Gp(t) [Eq. (3.46)] arises from the electron-photon interac-
tion Hamiltonian (3.40) while performing the length gauge transformation.

The LARR probability amplitude (3.47) has the following structure

A(p) = N
ˆ ∞

−∞
dt eiQt+iHeff(t)

[
Gp(t)B(t)−

1
c
D(t)

]
, (3.50)

where

N =
Ze
a0V

√
ZωK

2πε0a0
Γ(1 − iν)e

πν
2 , (3.51)
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whereas

B(t) =
ˆ

d3r (εK · r)e−Zr/a0+iq(t)·r
1F1(iν, 1, i(|p||r| − p · r)) (3.52)

and

D(t) = i
ˆ

d3r (εK · r)(n · r)(eE(t) · r)e−Zr/a0+iq(t)·r
1F1(iν, 1, i(|p||r| − p · r)). (3.53)

Both integrals given by Eqs. (3.52) and (3.53) can be expressed in terms of the Nordsieck integral
defined as (see, Appendix B.2)

f (ν, λ, q,p) =
ˆ

d3r
e−λr

r
eiq·r

1F1(iν, 1, i(|p||r| − p · r)). (3.54)

As elaborated in detail in Appendix B.2, this integral can be performed analytically, leading to

f (ν, λ, q,p) = 4πζ(1 + ξ)−iν, (3.55)

where

ζ =
1

λ2 + q2 , ξ = −2ζ(p · q + iλ|p|). (3.56)

Thus, going back to Eqs. (3.52) and (3.53), we conclude that

B(t) = i
∂

∂λ
(εK · ∇q) f (ν, λ, q,p), (3.57)

and

D(t) =
∂

∂λ
(εK · ∇q)(eE(t) · ∇q)(n · ∇q) f (ν, λ, q,p), (3.58)

where q = q(t) is given by Eq. (3.49) and λ = Z/a0. Specifically, B(t) can be calculated with
the help of Eq. (B.97) and D(t) using Eq. (B.101). For more technical details we refer the reader
to Appendix B.3.

The focus of this thesis is on radiative recombination in a finite laser field, i.e., lasting from
0 to Tp. In this case, the first term in Eq. (3.50) is divergent; the problem which we have al-
ready encountered in Chapter 2. As we have elaborated there, such divergence can be treated
using the Boca-Florescu transformation [67]. In relation to Eq. (3.50) we define, therefore, the
regularised integral,

I(ϵ) =
ˆ ∞

−∞
dt eiQt+iHeff(t)−ϵ|t|B(t)Gp(t), (3.59)
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where ϵ > 0. Here, we are interested in the limit when ϵ → 0+. In order to calculate I(ϵ), we
split the integral into two intervals and each of them is calculated by parts as follows

I(ϵ) =
ˆ 0

−∞
dt ei(Q−iϵ)teiHeff(t)B(t)Gp(t) +

ˆ ∞

0
dt ei(Q+iϵ)teiHeff(t)B(t)Gp(t)

= eiHeff(t)B(t)Gp(t)
ei(Q−iϵ)t

i(Q − iϵ)

∣∣∣∣∣
0

−∞

+ eiHeff(t)B(t)Gp(t)
ei(Q+iϵ)t

i(Q + iϵ)

∣∣∣∣∣
∞

0

− 1
i(Q − iϵ)

ˆ 0

−∞
dt [iḢeff(t)B(t)Gp(t) + Ḃ(t)Gp(t) + B(t)Ġp(t)]ei(Q−iϵ)teiHeff(t)

− 1
i(Q + iϵ)

ˆ ∞

0
dt [iḢeff(t)B(t)Gp(t) + Ḃ(t)Gp(t) + B(t)Ġp(t)]ei(Q+iϵ)teiHeff(t). (3.60)

Because Heff(0) = 0 and Ḣeff(t) = 0 for t > Tp [see, Eq. (3.48)], we arrive at the formula

I(ϵ) =
2ϵ

Q2 + ϵ2B(0)Gp(0) +
i

(Q + iϵ)

ˆ Tp

0
dt [iḢeff(t)B(t)Gp(t) + Ḃ(t)Gp(t)

+ B(t)Ġp(t)]ei(Q+iϵ)teiHeff(t). (3.61)

When taking the limit ϵ → 0+, we use Eq. (2.33). Hence,

lim
ϵ→0+

I(ϵ) = 2πB(0)Gp(0)δ(Q) +
i

(Q + iϵ)

ˆ Tp

0
dt [iḢeff(t)B(t)Gp(t) + Ḃ(t)Gp(t)

+ B(t)Ġp(t)]eiQt+iHeff(t). (3.62)

Here, the prescription how to avoid the singularity at Q = 0 has been kept. In the next step,
we use the Sokhotski-Plemelji formula [68], 1

Q+iϵ = P( 1
Q )− iπδ(Q), which gives

lim
ϵ→0+

I(ϵ) = 2πB(0)Gp(0)δ(Q)

+ πδ(Q)

ˆ Tp

0
dt [iḢeff(t)B(t)Gp(t) + Ḃ(t)Gp(t) + B(t)Ġp(t)]eiHeff(t)

+ iP(
1
Q
)

ˆ Tp

0
dt [iḢeff(t)B(t)Gp(t) + Ḃ(t)Gp(t) + B(t)Ġp(t)]eiQt+iHeff(t). (3.63)

The first integral can be performed exactly using the fact that

d
dt

[eiHeff(t)B(t)Gp(t)] = [iḢeff(t)B(t)Gp(t) + Ḃ(t)Gp(t) + B(t)Ġp(t)]eiHeff(t). (3.64)

As a result, we obtain

lim
ϵ→0+

I(ϵ) = 2πB(0)Gp(0)δ(Q) + πδ(Q) [B(Tp)Gp(Tp)eiHeff(Tp) −B(0)Gp(0)eiHeff(0)]

+ iP(
1
Q
)

ˆ Tp

0
dt [iḢeff(t)B(t)Gp(t) + Ḃ(t)Gp(t) + B(t)Ġp(t)]eiQt+iHeff(t). (3.65)
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By taking into account that Heff(0) = 0 as well as Gp(Tp) = Gp(0) and B(Tp) = B(0) [see,
Eqs. (3.48), (3.46) and (3.52)], we finally arrive at

lim
ϵ→0+

I(ϵ) = 2πB(0)Gp(0)δ(Q)eiHeff(Tp)/2 cos
(

Heff(Tp)/2
)

+ iP(
1
Q
)

ˆ Tp

0
dt [iḢeff(t)B(t)Gp(t) + Ḃ(t)Gp(t) + B(t)Ġp(t)]eiQt+iHeff(t). (3.66)

Going back to the probability amplitude of LARR [Eq. (3.50)], we obtain based on Eq. (3.66)
that

A(p) = N
[
2πB(0)Gp(0)δ(Q)eiHeff(Tp)/2 cos

(
Heff(Tp)/2

)
+ iP(

1
Q
)

ˆ Tp

0
dt [iḢeff(t)B(t)Gp(t) + Ḃ(t)Gp(t) + B(t)Ġp(t)]eiQt+iHeff(t)

− 1
c

ˆ Tp

0
dt eiQt+iHeff(t)D(t)

]
. (3.67)

Also, we have used the fact that D(t) is nonzero only within the time interval [0, Tp].
As it follows from the formula (3.67), the general features of the LARR probability ampli-

tude are similar to those encountered in Chapter 2 for LARA treated within the dipole approx-
imation. Namely, the probability of LARR does account for a laser-field-free process. This is
clear from the presence of the Dirac delta function in Eq. (3.67) leading to the energy conser-
vation condition (2.44). It is also clear from Eq. (3.67) that this point spectrum is accompanied
by a contribution present only in a laser field. Note, however, that this contribution can be
significantly modified by nondipole effects which will be investigated later.

For our further purposes, we rewrite Eq. (3.67) in a more compact form. First of all, we
note that the emitted LARR photons can be elliptically polarised, in which case εK can be
decomposed in two linear polarisations εK1 and εK2 following Eq. (2.36). Thus, for each of
those components (j = 1, 2) we define the functions,

Bj(t) = i
∂

∂λ
(εK j · ∇q) f (ν, λ, q,p), (3.68)

Dj(t) =
∂

∂λ
(εK j · ∇q)(eE(t) · ∇q)(n · ∇q) f (ν, λ, q,p), (3.69)

in accordance with Eqs. (3.57) and (3.53). We also introduce the functions

R(0)
j (p) = 2πBj(0)Gp(0)eiHeff(Tp)/2 cos

(
Heff(Tp)/2

)
, (3.70)

R(1)
j (p) = i

ˆ Tp

0
dt [iḢeff(t)Bj(t) + Ḃj(t)Gp(t) + Bj(t)Ġp(t)]eiQt+iHeff(t), (3.71)

R(2)
j (p) = −1

c

ˆ Tp

0
dtDj(t)eiQt+iHeff(t), (3.72)
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which determine contributions to the LARR probabilty amplitude (3.67). Namely, accounting
for ellipticity parameter δ characterizing the emitted radiation according to Eq. (2.36), we have

R(ℓ)
δ = cos δR(ℓ)

1 + i sin δR(ℓ)
2 , for ℓ = 0, 1, 2. (3.73)

This in turn allows us to rewrite Eq. (3.67) such that

A(p) = NR(p), (3.74)

with

R(p) = δ(Q)R(0)
δ (p) + iP(

1
Q
)R(1)

δ (p) +R(2)
δ (p). (3.75)

Note that in deriving these formula we have assumed a monochromatic electron wave ψ
(+)
p (r, t)

[Eq. (3.31)] as the initial state. Next, we will generalize this formulation to account for a coher-
ent superposition of those waves, similar to what has been worked out in Chapter 2.

3.2.3 LARR by an impact of an electron wave packet

In order to smooth out divergences that appear in Eq. (3.75) defining the probability ampli-
tude of LARR [Eq. (3.74)], we consider now a coherent electron wave packet interacting with a
positive ion and a laser field. It is defined by Eq. (2.46) except that this time ψ

(+)
p (r, t) is given

as the Coulomb-Volkov wave with nondipole corrections, Eq. (3.31). We still assume that the
wave packet describes nearly monoenergetic electrons, which allows us to define the LARR
probability amplitude (3.74) integrated over the initial electron momentum profile fp(q) such
that

⟨A(p)⟩ =
ˆ

d3qA(q) fp(q) = N⟨Rδ(p)⟩

= N
[
⟨δ(Q)⟩R(0)

δ (p) + i⟨P(
1
Q
)⟩R(1)

δ (p) +R(2)
δ (p)

]
. (3.76)

Here, NR(ℓ)
δ (p) are slowly varying functions of p (ℓ = 0, 1, 2). For a Lorentzian shape pro-

file fp(q), as specified by Eq. (2.63), the averages ⟨δ(Q)⟩ and ⟨P( 1
Q )⟩ are given by Eq. (2.68)

and (2.75), respectively. Thus, Eq. (3.76) defines the probability amplitude of LARR integrated
over the initial electron momentum distribution (2.63).

3.2.4 Energy distributions of LARR radiation

The total energy EK(p) (per the initial electron flux) irradiated over the density of final photon
states, Vd3K/(2π)3, is defined by Eq. (2.53). As shown in Ref. [107], the initial electron flux
is given by Eq. (2.54). Hence, substituting in Eq. (2.53) that d3K = ω2

KdωKd2ΩK/c3, where
d2ΩK is the solid angle of emitted photons, we arrive at

EK(p) =
meV2

|p|
|N |2
(2πc)3

ˆ
d2ΩK

ˆ
dωK ω3

K |⟨Rδ(p)⟩|2, (3.77)
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where we have used the relation (3.74). Substituting here Eq. (3.51), we obtain

EK(p) =
αme|p|2
(2πc)2

ν4eπν

sinh (πν)

ˆ
d2ΩK

ˆ
dωK ω4

K |⟨Rδ(p)⟩|2, (3.78)

where the property |Γ(1 − iν)|2 = πν
sinh (πν)

has been applied [108]. By comparing the above
expression with Eq. (2.56), we conclude that the triply differential energy distribution (per
the initial electron flux) of photons emitted in the solid angle d2ΩK with energies within the
interval (ωK , ωK + dωK) equals

d3EK(p)

dωKd2ΩK
=

αme|p|2
(2πc)2

ν4eπν

sinh (πν)
ω4

K |⟨Rδ(p)⟩|2, (3.79)

where ⟨Rδ(p)⟩ is implicitly given by Eq. (3.76). While the above derivations are quite general,
our numerical analysis is for certain models of a laser field, that will be specified in the next
Section.

3.3 Numerical illustrations

In this Section, we shall present numerical analysis of LARR based on the formulation pre-
sented above. Various aspects have been investigated, including Coulomb effects. However,
despite the fact that the LARR spectrum is enhanced by the presence of the Coulomb potential
we have not observed qualitatively new effects. For this reason, we shall focus in this Section
on studying nondipole effects as well as studying the effect of using chirped laser pulses on the
LARR spectrum. Moreover, we shall demonstrate the appearance of vortices in the spectrum
of emitted photons, as elaborated below.

3.3.1 Nondipole effects in LARR

In this Section, we shall study LARR in the presence of an Nosc cycle laser pulse that is linearly
polarised. It is defined by the electric field vector E = E(t)ε, where

E(t) =
{

EN sin2
(

ωt
2Nosc

)
sin(ωt) if 0 ⩽ t ⩽ Tp,

0 otherwise,
(3.80)

and the polarisation vector is along the x-axis, ε = ex. Here, ω denotes the carrier frequency
so the relation Tp = 2πNosc/ω holds. Moreover, the parameter N is adjusted such that

max
0⩽t⩽Tp

|E(t)| = E , (3.81)

meaning that E is the peak amplitude of the electric field (3.80). Note that for a laser pulse
propagating in the direction n, t in these definitions should be replaced by the retarded time,
tR [Eq. (3.2)]. For numerical illustrations, we consider a three-cycle laser pulse (Nosc = 3) of
frequency ω = 30.1 eV = 1.14E0 ( λ = 40 nm), with the peak amplitude equal to E = 10E0. In
Fig. 3.1, we have depicted the time-dependence of the electric field E(t) and the vector potential
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FIGURE 3.1: Shows the electric field E(t) and the vector potential A(t) corresponding to a laser pulse
with a sine-squared envelope [Eq. (3.80)]. The laser field parameters are: ω = 30.1 eV =1.14 E0 (λ = 40
nm), E = 10E0, and Nosc = 3. For a propagating laser pulse, t should be replaced by tR [Eq. (3.2)].

A(t) =
´ t

0 dϕE(ϕ) corresponding to that pulse. Notably, the condition
´ ∞
−∞ dtE(t) = 0 ensures

that A(0) = A(Tp) = 0.
In Fig. 3.2(a), we demonstrate the energy distribution of LARR [Eq. (3.79)], when an electron

wave packet collides with a hydrogen-like ion (Z = 4) in the presence of a laser field specified
above. The electron beam has a well-defined Lorentzian profile (2.63). It is centered at |p|,
corresponding to the electron energy Ep = p2

2me
= 10 keV. Moreover, the longitudinal spread

of the Lorentzian distribution is assumed to be ∆|p| = ∆
√

2meEp = 10−6√2meEp = 2.74 ×
10−5p0. In the following, we consider geometry in which the laser pulse propagates along the
z-axis, and is linearly polarised along the x-axis, whereas the electron wave packet propagates
in the xz-plane at the polar angle θp = 0.432π. Moreover, we consider the case when the
radiation is emitted in the z-direction, nK = ez, and is linearly polarised along the x-axis, i.e.,
εK = ex. For this geometry, there is no radiation that would have polarisation transverse to the
xz-plane. We observe three distinct plateaus in the energy spectrum presented in Fig. 3.2(a). In
addition, we see a laser-field-free peak at the energy around 375E0 ≈ 10.2 keV. The location of
this peak is determined by Eq. (2.44); hence, it originates from a laser-field-free process.

In Fig. 3.2(b), we present a time-frequency analysis of the LARR spectrum that is shown
in Fig 3.2(a). This is done by means of a spectrogram, see Appendix A.2. To determine the
spectrogram, a given signal is initially truncated using the cutoff function (2.94) within the
range ω1 ⩽ ω ⩽ ω2, where ω1 = −5 a.u. and ω2 = 21.5 a.u. The truncated signal AT(ω) is
defined by Eq. (2.95), where ξT = 0.1 is a small parameter. Subsequently, a short-time Fourier
transform is applied to the truncated signal [see, Eq. (2.96)] using a window function specified
by Eqs. (2.97) and (2.98). Notably, the width of the window function is given by ξW = 0.03.
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FIGURE 3.2: (a) Energy spectrum of LARR [Eq. (3.79)], when the electron recombines with a hydrogen-
like positive ion (Z = 4) in the presence of a laser pulse plotted in Fig. 3.1. While the laser pulse
propagates in the z-direction and is linearly polarised in the x-direction, the electron wave packet prop-
agates at angles θp = 0.432π and φp = π. The central momentum of the electron wave packet |p|
corresponds to the energy Ep = 10 keV and it has longitudinal spread determined by the parameter
∆|p| = 2.74 × 10−5 p0 (for details regarding the electron wave packet, see Section 2.2.2). Together with
Coulomb effects, the spectrum comprises of nondipole effects. Note that the emitted radiation propa-
gates along the z-axis, nK = ez, and is polarised along the x-axis, εK = ex. In this case, there is no radia-
tion with polarisation perpendicular to the xz-plane. (b) Corresponding spectrogram (2.99) (yellow line).
The red line represents the temporal behaviour of emitted LARR photons given by ωK(t) [Eq. (3.84)].
For spectrograms, we use the Gaussian window (2.97) and the cutoff function (2.94), with the param-
eters: ξT = 0.1, ξW = 0.03, ω1 = −5 a.u., and ω2 = 21.5 a.u.. The zigzag yellow line is seen in the
spectrogram and it extends for the duration of laser pulse. The straight vertical yellow line in the bot-
tom panel at roughly 375E0 = 10.2 keV corresponds to the laser-field-free peak in the spectrum. The
white horizontal lines mark the switch on and off the laser pulse. (c) The end portion of the energy
spectrum of LARR for different orientations of the electron wave packet, as given in the legend.
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FIGURE 3.3: Energy spectrum of LARR (3.79) in the (θp, ωK) plane for φp = π, keeping the laser
and the electron wave packet parameters same as in Fig. 3.2, except that now (a) all leading nondipole
correction, (b) only retardation correction, (c) only recoil correction are included in our calculations.

Hence, the spectrogram is given by Eq. (2.99). The spectrogram reveals when the given fre-
quency photon is emitted. Since the monochromatic peak at ωK = 375E0 corresponds to the
laser-field-free process, it appears in the spectrogram as a straight line. Because the recombin-
ing electron picks up energy from the laser field, the emitted spectrum is much wider; it spans
from roughly 180E0 to 700E0. It is the zigzag line in the spectrogram that reveals it.

In order to get more insight into the origin of emitted spectrum, we have performed saddle-
point analysis of the time-integrals defining the LARR probability amplitude (3.67). The point
is that each of those integrals has the following structure,

I =

ˆ Tp

0
dt G(t)eiSeff(t), (3.82)
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where Seff(t) = Qt + Heff(t) is a rapidly varying function of time. More specifically,

Seff(t) = (EB + ωK − p2

2me
)t +

1
me

(
1 +

n · p
mec

) ˆ t

0
dϕ
[
eA(ϕ) · p− e2

2
A2(ϕ)

]
, (3.83)

where we have used Eqs. (2.17) and (3.48). As we have already discussed in Chapter 2, the
most essential contribution to the integral representing the LARR probability amplitude comes
from saddle points. In our case, they are determined from the condition that ∂tSeff(t) = 0,
leading to

ωK(t) =
1

2me
[p− eA(t)]2 − EB − n · p

m2
ec

[
eA(t) · p− e2

2
A2(t)

]
. (3.84)

This equation defines the temporal energy of the emitted photon when an electron dressed by
the laser field recombines with the positive ion. By comparing this formula with Eq. (2.81), that
was derived for a short-range atomic potential and disregarding nondipole corrections, we in-
fer that the long-range Coulomb potential should not have a significant qualitative impact on
the LARR spectrum. In addition, among leading nondipole corrections that we have derived
in Section 3.2.1, it is the recoil correction that appears in Eq. (3.84). Our classical analysis of
electron dynamics in the presence of the laser field beyond the dipole approximation also re-
veals that the most significant contribution to the kinetic energy of an electron comes from the
recoil correction [see Appendix B.4]. Thus, we expect that the recoil correction contributes to
the LARR spectrum most significantly. Let us note that the behaviour of ωK(t) [Eq. (3.84)] is
represented by the red curve in Fig. 3.2(b). Most importantly, it agrees very well with the zigzag
pattern of spectrogram, that resulted from purely numerical calculations of the LARR energy
spectrum [Eq. (3.79)]. Hence, the extend of the LARR energy spectrum and characteristics of
its plateau can be interpreted using the saddle point approach. Specifically, the most energetic
plateau results from interference of the probability amplitudes at two different times for a par-
ticular emitted photon energy, i.e., contribution from two saddle points. This leads to very
regular oscillations, as seen from Fig. 3.2(a). The least energetic plateau is formed from four
saddle-point contributions whereas the mid-energy plateau from six saddle points. Therefore,
the oscillations in those regions are irregular. It appears that the saddle-point interpretation of
LARR is well-supported, even when considering the Coulomb interaction and going beyond
the dipole approximation. Therefore, it demonstrates the capability of LARR-based metrology,
as previously discussed in Chapter 2 in the context of LARA.

In Fig. 3.2(c), we present the end portions of the energy spectrum of LARR at various ori-
entations of the initial electron with respect to the pulse propagation direction, as specified by
the electron polar angle θp. While the blue solid line corresponds to the same parameters as
Fig. 3.2(a), the red dashed line and the black dotted line are for increasingly larger polar angles
θp, as stated in the legend. As we can see, the plateau cutoff extends towards larger energies
with decreasing the angle θp. This agrees with Eq. (3.84). Introducing the polar angle θp such
that cos θp = n·p

|p| , we can rewrite Eq. (3.84) so it reads

ωK(t) =
p2

2me
− EB +

1
2me

(
1 +

|p| cos θp
mec

)(
e2A2(t) + 2e|A(t)||p| sin θp

)
. (3.85)

It shows that, for as long as we neglect the recoil term, most energetic radiations would be
emitted for θp = π

2 . Clearly, this is not the case here. In contrast, for θp = π
2 , we observe the
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FIGURE 3.4: Same as Fig. 3.2 but for Gp(t) [Eq. (3.46)] equal to 1. Both Figs. 3.2 and 3.4 basically coin-
cide, meaning that the correction coming from the quantised electric field corresponding to the emitted
photon has a negligible effect on the energy distribution of LARR.

least energetic radiation. In this case, the electron propagates perpendicularly to the laser pulse
and so it does not experience the radiation pressure. That is why the recoil term in Eq. (3.85)
vanishes for θp = π

2 . With decreasing θp, however, the recoil term increases rapidly enough
so it dominates the decreasing term containing sin θp. As a result, the electron propagating
at smaller angles will release more energetic radiation. Specifically, for the data plotted in
Fig. 3.3(c), a small variation in the polar angle θp results in extending the plateau cuttoff by
roughly 8 a.u or, equivalently, by roughly 200 eV. Thus, the nondipole effects in LARR are
non-negligible and have to be carefully accounted for in light of potential applications.

While in Fig. 3.2(c) we have presented the energy distributions of LARR radiation for cho-
sen values of electron polar angle, in Fig. 3.3 we generalise those results. This time we show the
complete polar mappings of the LARR energy distributions close to the cutoff. The mappings
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FIGURE 3.5: Same as Fig. 3.3 but for Gp(t) [Eq. (3.46)] equal to 1, i.e., neglecting the 1/c contribution to
the electron-photon interaction Hamiltonian (3.40).

consist of interference pattern, with strips of small and large probability laying interchange-
ably. Let us note that the results plotted in panel (a) have been calculated by accounting for all
leading nondipole corrections, as introduced in Section 3.2.1. On the other hand, in panels (b)
and (c) we present the results with an account for only the retardation or the recoil corrections,
respectively. As one can see, panels (a) and (c) show asymmetry around polar angle θp = π

2 ,
which is not the case in panel (b). This indicates that it is the recoil correction which contributes
the most, as it has been already discussed in relation to formulas (3.84) and (3.85). If we dis-
regard the recoil correction, the temporal energy of emitted radiation ωK(t) will depend on
the electron polar angle as sin θp, being symmetric with respect to θp = π

2 . This explains the
behaviour of energy distribution in panel (b). The asymmetry in panel (a) and (c) is therefore
caused by radiation pressure that the propagating laser pulse imposes on the electron. This
additional momentum transfer from the laser field also explains a shift of the maximum of the
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LARR energy distributions towards smaller polar angles.
At this point, we would like to note that in the current formulation of LARR we have used

consistently the expansion in 1/c. This concerns the nondipole corrections arising from the
electron-laser-field interaction but also from the electron-photon interaction. To make sure that
the observed effects are indeed related to nondipole electron-laser-field interaction, we have
performed the same calculations neglecting 1/c term in Eq. (3.46) and plotted Figs. 3.4 and 3.5,
which are analogs of Figs. 3.2 and 3.3 for Gp(t) = 1 [Eq. (3.46)]. We observe marginal difference
in the intensity scale when we compare Fig. 3.3 with Fig. 3.5. There is basically no difference
between Fig. 3.2 and Fig. 3.4. Therefore, we conclude that the 1/c correction to the electron-
photon interaction Hamiltonian (3.40) does not play a significant role. This also means that the
observed effects are clearly related to nondipole effects originating from the electron interaction
with the laser field.

In this Section, we have studied nondipole effects in the laser-assisted radiative recombi-
nation. Together with a noticeable asymmetry in the energy-angle distributions of LARR, our
studies revealed a way of extending LARR plateau towards higher photon energy. In the next
Section, we investigate the possibility of enhancing particular LARR harmonics. This is done
by chirping the assisting laser pulse.

3.3.2 LARR in chirped laser pulses

In this Section, we are examining methods to enhance the production of high-energy harmonics
in LARR. As previously studied, we can enhance LARR by fine-tuning the laser field param-
eters such as intensity, number of oscillations, or carrier envelope phase. Our objective is to
increase the intensity of high harmonics, by introducing different forms of chirp in the laser
field phase. These harmonics are extracted at the edges of the plateau, which is important
for applications such as imaging, radiation therapy, spectroscopy, astrophysics, and climate
studies [109, 110, 111, 112].

We consider LARR in the presence of a chirped linearly polarised laser pulse, that is de-
scribed by the vector potential

A(t) = A0 f j(t)ε, j = 1, 2, (3.86)

where ε = ex, whereas the pulse shape is given by either

f1(t) = F(t) sin[Υ(t)], (3.87)

or

f2(t) = [ f1(t) + 1]2 − 1. (3.88)

Here,

F(t) =

{ [
sin
(

ωt
2Nosc

)]Npow
if 0 ⩽ t ⩽ Tp,

0 otherwise,
(3.89)

where Nosc stands for the number of cycles in a pulse, Tp = 2πNosc/ω is a pulse duration,
and Npow is a pulse shaping parameter. Moreover, the carrier wave of the pulse, sin[Υ(t)], has
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FIGURE 3.6: Comparison between vector potentials of different chirped pulses. As a reference, a pulse
without a chirp is plotted in green. It corresponds to the shape function f1(t) [Eqs. (3.87) and (3.89)] with
η0 = 0 and χ = π

2 . The same shape pulses with a linear chirp (Nc = 0, blue line), chirp proportional
to the amplitude of the field (Nc = 1, red line), and chirp proportional to the intensity of the field
(Nc = 2, yellow line) are presented. In addition, the pulse with a linear chirp for the shape function f2(t)
[Eq. (3.88)] (Nc = 0, black line) is shown. For chirped pulses, we keep χ = 0 for η0 = − 1

6π . All examples
correspond to Npow = 2, have three cycles (Nosc = 3), λ = 40 nm, and eA0 = 10p0.

chirped phase defined as

Υ(t) = ωt + χ + η0

[
F(t)

]Nc
(ωt)2, (3.90)

where χ is the carrier envelope phase of the pulse, whereas η0 and Nc define the pulse chirp.
As before, one has to remember that for a propagating laser pulse t should be replaced by tR,
Eq. (3.2), in the above definitions.

In Fig. 3.6, we plot the vector potential over time for different chirp types. In general, we
use a three-cycle (Nosc = 3) laser pulse, with λ = 40 nm, eA0 = 10p0, and Npow = 2. For
χ = −(−1)Nosc π

2 , the vector potential with the shape function f1(t) [Eq. (3.87) and (3.89)] and
no chirp (η0 = 0) attains a maximum at t = Tp/2, as shown in Fig. 3.6. However, when η0 ̸= 0,
it introduces a linear chirp for Nc = 0, a chirp that is proportional to the pulse instantaneous
amplitude for Nc = 1, and to its instantaneous intensity for Nc = 2. Additionally, assuming
the maxima at t = Tp/2 for pulses with a chirp, we obtain χ = −(Nosc + 1)π

2 for η0 = − 1
2Noscπ ,

as shown in Fig. 3.6. Moreover, for such values of χ and η0, the shape function f2(t) [Eq. (3.88)]
remains flat in the central region for Nc = 0, achieving flatness up to the third order derivative
of the function f2(t) at t = Tp/2. Note that when the electron moves in a laser field with a
flat top, it absorbs maximum energy from the field over an extended time interval. This will
lead to more efficient emission of photons in the high-energy region. Note that, in Ref. [36], the
authors demonstrated a similar way to increase the yield of a particular harmonic, i.e., by the
flattening of the pulse shape. However, their approach was different from the one presented in
this Chapter. In our case, we are considering LARR in the presence of short laser pulses while
in Ref. [36], a bichromatic laser field was used. In their approach, the authors manipulated the
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FIGURE 3.7: Energy spectra of LARR (3.79) (third row) and corresponding spectrograms (2.99) (fourth
row) when electron recombines with a hydrogen-like ion (Z = 4) in the presence of chirped laser pulses.
The laser pulse propagates along the z-axis and is linearly polarised along the x-axis, whereas the elec-
tron wave packet propagates in the xz-plane at the polar angle of θp = 0.432π. For the emitted photon,
we assume nK = ez and εK = ex. The parameters for the electric field (top row) and the corresponding
vector potential (second row) for a different choice of chirped laser pulses for the shape function f1(t)
[Eq. (3.87) and (3.89)] with Nc = 0 (first column), Nc = 1 (second column), Nc = 2 (third column), and
by the shape function f2(t) [Eq. (3.88)] for Nc = 0 (fourth column) are the same as in Fig. 3.6. The pa-
rameters for spectrogram are kept the same as Fig. 3.2. The red line in the spectrograms follows from the
definition of ωK(t) which shows the time-dependence of the temporal energy irradiated by a moving
electron in a laser field, that is captured by the atom, given by Eq. (3.84). The horizontal white lines
mark the beginning and the end of the laser pulses.

phase difference between the bichromatic laser field components to flatten the vector potential.
On the other hand, we introduce a chirp in the phase of the vector potential to achieve a similar
result. Next, we demonstrate energy distributions and spectrograms for the different pulse
choices that we have discussed above.

In Fig. 3.7, we demonstrate the energy spectrum of LARR (3.79) and their corresponding
spectrograms (2.99) when the electron beam collides with a hydrogen-like ion (Z = 4) in the
presence of various chirped laser pulses, discussed already in Fig. 3.6. To explain the energy
spectra, we display E (t) and the corresponding vector potential A(t) with respect to time for
different chirp kinds. When Nc = 0, the chirp is linear [see, Fig. 3.7(a) and Fig. 3.7(e)]. When
Nc = 1, the chirp is proportional to the amplitude of the field [see, Fig. 3.7(b) and Fig. 3.7(f)],
and for Nc = 2, it is proportional to the intensity of the field [see, Fig. 3.7(c) and Fig. 3.7(g)].
These three cases are considered for the shape function f1(t) [Eqs. (3.87) and (3.89)]. The re-
maining column corresponds to the pulse shape f2(t) [see, Fig. 3.7(d) and Fig. 3.7(h)] with a
linear temporal chirp (Nc = 0). The electron wave packet has a well-defined Lorentzian pro-
file (2.63). It is centered at |p|, where this central momentum of the electron wave packet p
corresponds to the energy Ep = 10 keV. Moreover, the longitudinal spread of the Lorentzian
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FIGURE 3.8: Comparison between the high-energy end of the spectrum for different laser pulse models,
as stated in the legends. The remaining parameters are the same as in Fig. 3.7.

distribution is assumed to be ∆|p| = 2.74 × 10−5p0. We consider geometry such that the laser
pulse propagates along the z-axis, it is linearly polarised in the x-direction, whereas the elec-
tron wave packet propagates in the xz-plane at the polar angle of θp = 0.432π. For the emitted
photon, we assume nK = ez and εK = ex. We note that the end-portions of the LARR en-
ergy spectra of the first three columns of Fig. 3.7 are almost of the same magnitude. To have
close insight, we plot the comparison of the enlarged portion of spectra near the cutoff of the
LARR plateau in Fig. 3.8. We observe that the maximum yield out of the three chirps for shape
function f1(t) [Eq. (3.87) and (3.89)] is gathered when the chirp is linear (solid blue line) and
it decreases with the increase in Nc. Nevertheless, the spectrum shown in the last column of
Fig. 3.7 is significantly enhanced near the cutoff as compared to the other spectra. To confirm
the enhancement, we compare the spectra near the cutoff of the LARR plateau for pulses with
linear chirp described by either the shape function f2(t) (solid blue line), or f1(t) [Eq. (3.87)
and (3.89)] (dash red line), and the pulse with shape function f1(t) but no chirp (η0 = 0). It is
clear that the emitted photon intensity is much higher, i.e., almost by an order of magnitude
for the shape function f2(t) [Eq. (3.88)]. This can be explained with the help of Eq. (3.84). We
note that, with overall differences, the highest energy photon will be emitted when an elec-
tron absorbs maximum energy from the laser field. If the vector potential of the pulse remains
constant in time at the peak amplitude of the pulse, then the electron in the strong laser field
absorbs energy from the laser field for a longer time. Hence, the emission of photons with
higher energies is amplified. This is to be noted that in Ref. [101] we have demonstrated the
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results for θp = π
2 , i.e., when there is no electron recoil. The only difference is that the yield of

high harmonics increases towards higher energies of emitted photons by roughly 8 a.u. in the
current case.

The spectrogram (2.99) in Fig. 3.7 follows the same definition and parameters as in Fig. 3.2,
which are also explained in Section. 3.3.1. It is important to observe that all the spectrograms
depicted in Fig. 3.7 exhibit a straight yellow line at approximately 375 a.u= 10.2 keV, repre-
senting the laser-field-free radiative recombination. However, the zigzag pattern representing
recombination in the presence of the laser field differs in each spectrogram. It is worth men-
tioning that the signal will vary depending on the type of external laser field used. In our case,
we use different kinds of chirps in the laser pulse, which is also reflected in the spectrograms.
The red line represents ωK(t) [Eq. (3.84)] , and it coincides well with the zigzag pattern.

3.3.3 Vortex structures

Vortices have gained attention in scientific research, particularly in the field of strong field ion-
isation [113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130]. However,
their study in the context of LARR is yet to be explored. The electron vortices were first dis-
cussed theoretically by Dirac [124] in the context of quantum mechanics and later experimen-
tally verified by Vivan [125]. We refer the readers to the textbook by Cieplak et. al [107] where
the notion of quantum-mechanical vortices is well described. Adapting those definitions and
following the ideas presented in Refs. [126,127,128,129,130] for ionisation, we demonstrate be-
low how the vortex structures arises in LARR. A mathematical example of vortices and nodal
structures is presented in Appendix B.5. Here, we adapt these notions to describe the struc-
tures formed in the probability amplitude of LARR when considered in the parameter space of
the emitted photon momentum K.

Let us consider the situation analyzed in Section 3.3.1. For the parameters chosen there, in
Fig. 3.9 we present the angular mappings of the modulus of the probability amplitude, |A(p)|,
for emitted LARR photons with energy ωK,1 = 5275 eV [panels (a), (b)], ωK,2 = 10217.5 eV
[panels (c), (d)], and ωK,3 = 18340 eV [panels (e), (f)]. The photons are emitted in the direction,

nK = (sin θK cos φK , sin θK sin φK , cos θK) (3.91)

and they are linearly polarised along either εK,1 or εK,2, where

εK,1 = (cos θK cos φK , cos θK sin φK ,− sin φK), (3.92)
εK,2 = (− sin φK , cos φK , 0). (3.93)

Note that all three vectors form an orthogonal triad of unit vectors such that εK,1 × εK,2 = nK .
As one can understand from these definitions, each point in Fig. 3.9 (and in the subsequent
figures) corresponds to the photon propagating in a different direction with a different polari-
sation vector. In each panel, we observe regions with negligible probability of LARR emission.
Specifically, there is no photon emission of either energy ωK,1, ωK,2 or ωK,3 with linear polari-
sation εK,2 at angles φK = 0 and φK = π (right column). Therefore, one may wonder whether
we are dealing here with nodes or vortices. As shown in Fig. 3.10, where we present the phase
of the LARR probability amplitude arg[A(p)], at φK = 0 and φK = π we must have nodal
surfaces. This is because, at those angles, arg[A(p)] jumps by π (see, Appendix B.5). In the case
shown in the left column of Fig. 3.9, we observe that photons with given energies cannot be
emitted in particular directions either. Again, this will correspond to nodal surfaces, although
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FIGURE 3.9: Angular mappings of the modulus of the LARR probability amplitude, |A(p)|, with respect
to the polar and azimuthal photon angles, θK and φK . The same geometry and parameters of the
laser pulse and the electron wave packet are considered as in Fig. 3.2(a). The emitted photons are
linearly polarised with the polarisation vector εK,1 [Eq. (3.92), left column] or εK,2 [Eq. (3.93), right
column]. Panels (a) and (b) correspond to the photon energy ωK,1 = 5275 eV, panels (c) and (d) are for
ωK,2 = 10217.5 eV, whereas panels (e) and (f) are for ωK,3 = 18340 eV.
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FIGURE 3.10: Color mappings of the LARR probability amplitude phase, arg[A(p)]/π, as a function of
the polar and azimuthal photon angles, θK and φK . Each panel has its equivalent panel in Fig. 3.9.

it is difficult to infer this from the left column of Fig. 3.10, due to the color coding. What is
important here to note is that, in some directions and regardless of polarisation, photons with
energies ωK,1, ωK,2, and ωK,3 cannot be produced at all. This happens when nodal surfaces
for both orthogonal linear polarisations intersect each other. The point is that, having known
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FIGURE 3.11: Same as in Fig. 3.9 except that now the emitted photons are circularly polarised. The left
column corresponds to polarisation εK,+1 [Eq. (3.94)], whereas the right column to polarisation εK,−1
[Eq. (3.95)].

the LARR probability amplitudes for two linear and orthogonal photon polarisations allows
one to calculate the probability amplitude of emitting the photon with an arbitrary, in general,
elliptical polarisation. This is illustrated in Figs. 3.11 and 3.12 for circularly polarised photons.
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FIGURE 3.12: Color mappings of the LARR probability phase (in units of π) corresponding to Fig. 3.11.

In Figs. 3.11 and 3.12, we present the color mappings for the modulus of the probability
amplitude and the probability amplitude phase, respectively, for photons emitted with circular
polarisations:

εK,+1 =
1√
2
(εK,1 − iεK,2) (3.94)
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FIGURE 3.13: Energy spectra of linearly polarised radiation emitted in different directions in the xz-
plane, as specified in each panel. The parameters characterizing the electron wave packet and the laser
pulse are the same as in Fig. 3.2(a). Actually in the top panel here we repeat Fig. 3.2(a). This is contrasted
against the other panels, in which the energy spectra of LARR photons are by at least three orders of
magnitude smaller than in the top panel. While the presented data are for photons polarised in the xz-
plane, in the current geometry there is no emission of radiation polarised perpendicularly to this plane.

in the left column, or

εK,−1 =
1√
2
(εK,2 − iεK,1) (3.95)
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in the right column. The remaining parameters are the same as in Figs. 3.9 and 3.10. Specifically,
panels (a) and (b) are for the photon energy ωK,1 = 5275 eV, panels (c) and (d) are for ωK,2 =
10217.5 eV, whereas panels (e) and (f) are for ωK,3 = 18340 eV. As one can see in Fig. 3.11, the
photon emission is forbidden only in two directions, determined by the angles: θK = 0.58π,
φK = 0 and θK = 0.424π, φK = π. Interestingly, when looking at Fig. 3.12, we observe that at
these points the phase of the probability amplitude is not well defined. In fact, in the vicinity
of these points, arg[A(p)] changes continuously from 0 to 2π, either in the counterclockwise
direction (left column) or in the clockwise direction (right column). This corresponds to having
vortices with the topological charge of m = +1 (left column) and m = −1 (right column), as
explained in Appendix B.5. We also mention that the position of these vortices seems to be
independent of the photon energy. This is confirmed by Fig. 3.13. Finally, we would like to
note that for other ellipticities of emitted photons we would observe the isolated vortices at the
exact same energies and directions.

While in Fig. 3.9 we presented the angular distributions of linearly polarised photons with
fixed energies, in Fig. 3.13 we present the energy distributions of linearly polarised photons
emitted in the fixed directions. The remaining parameters are the same in both figures. The
directions of photon emission are specified by the angles θK and φK , which are indicated in
each panel of Fig. 3.13. Moreover, each panel is for polarisation εK,1. Note that for the geome-
try considered here, the polarisation vectors εK,1 are in the xz plane, and there is no emission
of photons with the polarisation vector perpendicular to this plane, εK,2. In the current case,
we observe that the spectra in the middle and bottom panels are by at least three orders of
magnitude smaller than the one in the top panel. In other words, they are practically zero.
Importantly, this holds for the entire range of photon energies. Therefore, we confirmed nu-
merically that for linearly polarised photons we deal here with nodal surfaces. Since the photon
emission with polarisation εK,2 does not occur, at the same time Fig. 3.13 represents the spectra
for an arbitrary elliptical polarisation (up to the scalar product of the linear and elliptical po-
larisations squared). Specifically, these spectra refer to the circularly polarised photons, similar
to Figs. 3.11 and 3.12. In this case, we conclude that for an elliptically polarised photons (with
ellipticity parameter δ ̸= 0) we deal with isolated vortex half-lines.

3.4 Summary

In this Chapter, we provided a detailed theoretical explanation of LARR that goes beyond
the dipole approximation [101]. Although ionisation beyond the dipole approximation in the
presence of a strong laser field is a well-studied phenomenon [81, 82, 83, 84, 86, 87, 88, 89, 90, 91,
92,93,94,95], it has not been studied extensively in the context of LARR prior to our work [101].

In Section 3.3.1, we presented the energy distribution and spectrogram for LARR, which
takes into account nondipole effects like retardation and recoil. This leads to an extension of
the LARR plateau towards higher photon energies. We found that the recoil effect contributes
significantly to this extension, as shown in Eq. (3.84). Additionally, we noticed a shift in the
angular distribution of LARR with respect to the electron polar angle θp = π

2 , which is also
caused by the recoil effect, as illustrated in Fig. 3.3.

Additionally, we explored a method to improve high harmonics yield in the LARR energy
spectrum. This method involves chirping the accompanying laser pulse. With an appropriately
chosen chirp, the electron in the laser field absorbs energy from the laser field for an extended
time duration. This results in an enhanced yield of emitted photons, especially at both ends
of the spectrum (see Fig. 3.7). This method differs from the one presented in Ref. [36], where
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the phase difference between bichromatic fields is adjusted to increase the intensity of high
harmonics. We conclude this Chapter by demonstrating the appearance of vortex structures in
the probability amplitude of LARR.
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Conclusions

This thesis is devoted to radiative recombination in the presence of short laser pulses, that leads
to the generation of high-energy photons. It provides a new theoretical approach to describe
the process, considering a finite pulse duration. Various aspects of LARR are then analyzed,
indicating ways to control the LARR radiation with external laser fields.

Our theoretical formulation of LARR simultaneously refines existing theories of LARR (see,
e.g., Refs. [56, 57, 58, 59, 60, 61]) by removing unphysical oscillations in the energy distribution
of LARR. These unphysical oscillations, also known as the Gibbs effect, arise by limiting the
probability amplitude integral to the duration of the laser pulse. As we argue, this is not jus-
tified for radiative recombination when accompanied by a laser pulse. Another aspect that
has been shown is that, for finite laser pulses, there is a chance for the electron to emit radi-
ation while recombining with the ion before the pulse arrives or after the pulse is gone. The
reason being that the radiative recombination does occur, in principle, in the absence of the
field (see, Appendix B in Ref. [79], where the laser-field-free probability amplitude of radiative
recombination is derived). Therefore, the probability amplitude of LARR, while assisted by
a finite-in-time laser pulse, contains the laser-field-free contribution as well. This seems to be
overlooked in the literature prior to our works [79, 101].

A key aspect of this thesis focuses on enhancing the characteristics of the energy distribution
of LARR using an external laser field. Notably, as the number of pulses Nrep in a laser pulse
train increases, we observe a coherent enhancement in the energy distribution of irradiated
photons, scaling by a factor of N2

rep. We have theoretically demonstrated that this enhancement
results from the constructive interference of probability amplitudes of recombination accom-
panied by each pulse in the train. Another way to boost the high harmonic yield of LARR,
particularly at the high-energy cutoff, is by optimizing the electron energy absorption from the
laser field. We have accomplished this by chirping the laser pulse.

We have also observed an extension of the LARR plateau when accounting for nondipole
corrections in our theoretical formulation of LARR. We have discovered that the nondipole cor-
rections arise from three different origins: the gauge transformation correction, the retardation
correction, and the recoil correction. The first two nondipole corrections stem from the depen-
dence of the laser field on the retarded time. The final correction arises when we consider the
radiation pressure of the laser field, imparted on the electron. As we demonstrate, the primary
reason for the extension of the LARR plateau is the recoil correction. These enhancements
are of great practical importance. Specifically, longer energy ranges are capable of producing
shorter pulses.

As we have shown in the thesis, the recoil effect also introduces asymmetries in the angu-
lar distribution of LARR. We can justify the extension of LARR plateau and asymmetry in the
angular distribution of LARR using Eq. (3.84). It defines the temporal energy of the emitted
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photon when an electron dressed by the laser field recombines with a positive ion. Subse-
quently, changes in the geometry of the propagation direction of the laser field and the electron
wave packet impact the range of the LARR plateau and cause asymmetries in the angular dis-
tribution. Moreover, comparing Eq. (3.84) with Eq. (2.81), which was derived for a short-range
atomic potential and disregarding nondipole corrections, we infer that long-range Coulomb
potential should not have a significant qualitative impact on the LARR spectrum.

Furthermore, we have demonstrated the spectrogram (or time-frequency) analysis for both
cases, i.e., when the radiative recombination is accompanied by an isolated pulse or a pulse
train. Note that the spectrogram analysis aligns with our comprehensive framework of LARR,
as it takes into account contributions from both laser-field-free and laser-field-modified recom-
bination. Furthermore, we have revealed the presence of the Gibbs effect in the spectrogram
analysis of previous theories. Our rigorous theory successfully addresses and eliminates this
effect. Finally, we have shown that the vector potential describing the laser field is encoded in
the spectrogram of LARR radiation. This suggests using spectrograms for a complete temporal
reconstruction of the laser field, irrespective of whether it is an isolated pulse or a pulse train.
Hence, making it a useful tool for laser-pulse diagnostics. Moreover, the spectrogram analysis
of LARR has proven to be universal, as it is also consistent with our theoretical investigation
of the process beyond the dipole approximation.

In the end, we have explored angular maps of the LARR probability amplitude in the mo-
mentum space of generated photons. We have demonstrated examples of nodal surfaces and
isolated vortex half-lines along which the emission of radiation is not possible. This, of course,
may have important practical implications.

Finally, while the thesis presents various aspects related to laser-assisted radiative recombi-
nation in short laser pulses, we believe that some of our results can be generalized. Specifically,
our theoretical method can be adapted to describe other laser-assisted processes accompanied
by short laser pulses. Thus, we expect that similar features such as a laser-field-free peak
should be also observed there. Another aspect which seems to be universal is the analysis
performed in Section 3.2.1, where we have derived the Coulomb-Volkov scattering state with
leading nondipole corrections. Also, our analysis of the Nordsieck integral with a detailed ex-
planation of how to calculate the respective contributions to the LARR probability amplitude
can serve as an example for other investigations of laser-assisted processes in a Coulomb field.
We hope, therefore, that the results collected during the realization of this thesis can become
useful not only in the context of LARR but, more generally, in the context of strong-field physics
phenomena.
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Appendix A

Supplementary materials for Chapter 2

A.1 Alternative derivation of ⟨δ(Q)⟩ and ⟨P( 1
Q)⟩

The purpose of this Section is to present an alternative derivation of Eqs. (2.68) and (2.75).
They define the electron-wave-packet-averaged distributions that we deal with in our rigorous
treatment of laser-assisted radiative recombination. We start with Eq. (2.71) that we repeat
below for the convenience of the reader,

⟨ 1
Q + iϵ

⟩ = 2me

π

ˆ +∞

−∞
dq∥

1
q2

0 − q∥2 + iϵ
∆|p|

(q∥ − |p|)2 + (∆|p|)2 . (A.1)

Let us consider q∥ = |p|+ β. It implies dq∥ = dβ for fixed |p|. Writing Eq. (A.1) in terms of β,
we have

⟨ 1
Q + iϵ

⟩ = 2me

π

ˆ +∞

−∞
dβ

1

q2
0 − (|p|+ β)2 + iϵ

∆|p|
β2 + (∆|p|)2 . (A.2)

For small β,

⟨ 1
Q + iϵ

⟩ ≈ 2me

π

ˆ +∞

−∞
dβ

1
q2

0 − p2 − 2β|p|+ iϵ
∆|p|

β2 + (∆|p|)2 . (A.3)

We calculate this integral using the Cauchy residue theorem. For this purpose we close the
integration contour in the upper half-plane with a semicircle. In this case, the contour encircles

two poles, β =
q2

0−|p|2
2|p| + iϵ and β = i∆|p|, which leads to

⟨ 1
Q + iϵ

⟩ = 2me

[
1

q2
0 − p2 − 2i|p|∆|p|

− i
4|p|∆|p|

(q2
0 − p2)2 + (2|p|∆|p|)2

]
. (A.4)

Decomposing the second term into simple fractions, we obtain that Eq. (A.4) simplifies to

⟨ 1
Q + iϵ

⟩ = 2me

q2
0 − p2 + 2i|p|∆|p|

. (A.5)

When we close the integration contour with a semicircle in the lower half-plane, there is one
pole β = −i∆|p|. As we have checked, this leads to the same result as Eq. (A.5). This can be
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further represented as

⟨ 1
Q + iϵ

⟩ = −2iπ⟨δ(Q)⟩+ 2me

q2
0 − p2 − 2i|p|∆|p|

. (A.6)

Taking Sokhotski-Plemelj formula [68], we can write that

⟨ 1
Q + iϵ

⟩ =
〈
P
( 1

Q

)〉
− iπ⟨δ(Q)⟩. (A.7)

Hence, we have 〈
P
( 1

Q

)〉
= 2me

q2
0 − |p|2

(q2
0 − p2)2 + (2|p|∆|p|)2

(A.8)

and

⟨δ(Q)⟩ = 4me

π

|p|∆|p|
(q2

0 − p2)2 + (2|p|∆|p|)2
. (A.9)

Considering that q0 ≈ |p|, we have q2
0 − p2 = (q0 − |p|)(q0 + |p|) ≈ 2|p|(q0 − |p|). Thus,〈

P
( 1

Q

)〉
≈ me

q0

q0 − |p|
(q0 − |p|)2 + (∆|p|)2 (A.10)

and

⟨δ(Q)⟩ ≈ me

πq0

∆|p|
(q0 − |p|)2 + (∆|p|)2 , (A.11)

which are the same as Eqs. (2.68) and (2.75).

A.2 Spectrogram

A.2.1 Definition, properties, and method of calculating the spectrogram

The function that we call the spectrogram of a certain signal is closely related to a Fourier
transform. Since the definition of a Fourier transform depends on the domain in which it is
used, we should first define what we mean by a Fourier transform. Our analysis will concern
quantum processes, so our definition of Fourier transforms should follow the convention used
in quantum theories. In quantum theories, other definitions of the Fourier transform are used
for position- and time-dependent functions. Namely,

f̃ (p) =
ˆ

dx f (x)e−ipx (A.12)

and

f̃ (ω) =

ˆ
dt f (t)eiωt, (A.13)
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whereas the inverse Fourier transforms have the form,

f (x) =
ˆ

dp
2π

f̃ (p)eipx, (A.14)

f (t) =
ˆ

dω

2π
f̃ (ω)e−iωt. (A.15)

This choice is related to the fact that for such definitions and in units h̄ = 1, p corresponds to
the momentum of a particle and ω to its energy. That is, if f (x) is the probability amplitude of
finding the particle at position x, normalized so that

ˆ
dx| f (x)|2 = 1, (A.16)

then f̃ (p) is the probability amplitude of finding the particle with momentum p, normalized
according to

ˆ
dp
2π

| f̃ (p)|2 = 1. (A.17)

Similar formulation for time-frequency variables can be introduced. If, as a result of some
quantum process, the energy distribution is given by the function f̃ (ω), i.e., the probability of
observing a quantum transition with an energy in the interval [ω, ω + dω] is

dP(ω) =
dω

2π
| f̃ (ω)|2, (A.18)

then the probability of observing this transition in time [t, t + dt] becomes

dP(t) = dt| f (t)|2. (A.19)

By Parsevel’s theorem, the total probabilities in both cases are the same, i.e.,
ˆ

dt| f (t)|2 =

ˆ
dω

2π
| f̃ (ω)|2. (A.20)

Let us introduce the Fourier transform operator, F̂s, with s = ±1, taking into account both
options,

(F̂s f )(v) =
ˆ

du f (u)eisuv = f̃s(v), (A.21)

where u and v are real numbers and f (u) is a complex function. Of course,

(F̂−1
s f̃ )(u) =

ˆ
dv
2π

f̃s(v)e−isuv = f (u), (A.22)

that is, formally,

F̂−1
s =

F̂−s

2π
. (A.23)



72 Appendix A. Supplementary materials for Chapter 2

Next, we define the windowed Fourier transform, F̂s[W], by

f̃s[v, w|W] = (F̂s[W] f )(v, w) =

ˆ
du f (u)W(w − u)eisuv. (A.24)

This transform has the following properties:

• If W(u) = δ(u), then

f̃s[v, w|δ] =
ˆ

du f (u)δ(w − u)eisuv = f (w)eiswv. (A.25)

• If W(u) = 1
2π , then

f̃s[v, w| 1
2π

] =

ˆ
du
2π

f (u)eisuv = f̃s(v). (A.26)

That is, in these special cases:

• | f̃s[v, w|δ]| = | f (w)| recreates module of the input signal,

• f̃s[v, w| 1
2π ] = f̃s(v) is a Fourier transform of the input signal.

Now, we define the spectrogram:

Ss[v, w|W] = | f̃s[v, w|W]|2, (A.27)

with properties

Ss[v, w|δ] = | f (w)|2, (A.28)

Ss[v, w| 1
2π

] = | f̃s(v)|2. (A.29)

In the special case when f (u) is the amplitude A(ν), u and w are replaced by frequency ν and
ω, respectively, whereas v is replaced by time t,

Ãs[t, ω|W] =

ˆ
dνA(ν)W(ω − ν)eisνt (A.30)

and, specifically,

Ãs[t, ω| 1
2π

] =

ˆ
dν

2π
A(ν)eisνt = Ãs(t). (A.31)

Hence, we reproduce the time amplitude Ã(t) by choosing s = −1. Thus, for the time-
frequency analysis, we define the spectrogram by selecting s = −1,

S [t, ω|W] = S−[t, ω|W] = |Ã[t, ω|W]|2, (A.32)

Ã[t, ω|W] =

ˆ
dνA(ν)W(w − ν)e−iνt, (A.33)

which is consistent with Eq. (2.96).
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Let us go back to the original integral (A.24), which we denote by the symbol

T(v, w) =

ˆ
du f (u)W(w − u)eisuv. (A.34)

In order to calculate the above integral, we will demand from function f (u) that it has a finite
support, i.e., f (u) = 0 for u /∈ [u1, u2]. This allows us to write that

T(v, w) =

ˆ u2

u1

du f (u)W(w − u)eisuv. (A.35)

Numerical computation of this integral for many values of v and w takes a long time, so it is
convenient to express it in the form,

T(v, w) = eiswv
ˆ u2

u1

du f (u)W(w − u)e−is(w−u)v. (A.36)

Defining

gv(z) = W(z)e−iszv, where z ∈ R, (A.37)

Eq. (A.36) can be written in the form,

T(v, w) = eiswv
ˆ u2

u1

du f (u)gv(w − u). (A.38)

This means that T is proportional to the convolution of functions f and gv,

T(v, w) = eiswv( f ∗ gv)(w) (A.39)

and

|T(v, w)| = |( f ∗ gv)(w)|. (A.40)

Thus, in order to calculate the spectrogram, we set the value of v and compute the convolution
of the functions f (u) and gv(u).

It is known that the convolution of functions is most conveniently calculated using the
Fourier transform, or rather the discrete fast Fourier transform. Thus, the problem is reduced
to determining the convolution of two functions, f and h,

( f ∗ h)(w) =

ˆ u2

u1

du f (u)h(w − u), (A.41)

where h(u) has a finite support. Moreover, h(u) is defined as a periodic function with period
u2 − u1, i.e.,

h(u) = h(u + N(u2 − u1)), where N ∈ Z. (A.42)
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In the same way, we treat the function f (u) as a periodic function with period u2 − u1. To
quickly determine the convolution (A.41), we introduce the change of variables,

u = u1 +
ϕ

2π
(u2 − u1), (A.43)

w = u1 +
η

2π
(u2 − u1). (A.44)

Introducing the new functions F(ϕ) and H(ϕ),

F(ϕ) = f (u1 +
ϕ

2π
(u2 − u1)) (A.45)

and

H(ϕ) =
u2 − u1

2π
h(

ϕ

2π
(u2 − u1)), (A.46)

we will replace the convolution of functions f and h by the convolution of functions F and H,

( f ∗ h)(w) =

ˆ 2π

0
dϕF(ϕ)H(η − ϕ). (A.47)

Since both functions F(ϕ) and H(ϕ) are periodic functions with period 2π, we represent each
of them as a Fourier series,

F(ϕ) = ∑
N

F̃Ne−iNϕ, where N ∈ Z, (A.48)

H(ϕ) = ∑
M

H̃Me−iMϕ, where M ∈ Z. (A.49)

It leads to the result

( f ∗ h)(w) = ∑
N,M

F̃N H̃Me−iMη

ˆ 2π

0
dϕe−i(N−M)ϕ. (A.50)

Since the integral with respect to ϕ equals to 2πδN,M we reduce Eq. (A.50) to

( f ∗ h)(w) = 2π ∑
N

F̃N H̃Ne−iNη. (A.51)

The remaining sum is determined using the inverse Fourier transform. In practice, this means
that we specify a discrete number of ϕ and η variable points,

ϕj =
2π

2K j (A.52)

ηj =
2π

2K j, j = 0, 1, 2, . . . , 2K − 1, (A.53)
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where K is a given natural number, e.g., K = 10. At these points we will determine the values
of the functions,

Fj = F(ϕj), Hj = H(ϕj). (A.54)

From the values of Fj and Hj, we determine the Fourier coefficients of F and H using the
discrete fast Fourier transform, which leads to the convolution function at the points wl =
u1 +

ηl
2π (u2 − u1),

( f ∗ h)(wl) = 2π
2K−1

∑
j=0

F̃jH̃je−ijηl . (A.55)

The last sum is calculated using the discrete inverse fast Fourier transform.

A.2.2 Numerical examples and their analysis

To better understand the meaning and physical contents of spectrograms, we analyze below the
amplitude profiles (functions with complex values) with well-known properties. Specifically,
we shall examine these properties in two cases:

• when the amplitude is a function of frequency, F(ω),

• when the amplitude is a function of time, f (t).

Let us begin our discussion with the first case. We define the unit of frequency as ω0; it can
be an atomic unit of frequency such that h̄ω0 = α2mec2 (h̄ = 1). Furthermore, we choose the
frequency range such that ωmin ⩽ ω ⩽ ωmax, where ωmin = 0 and ωmax = 100ω0. Within this
interval, we define three functions with the following analytical expressions,

F1(ω) = exp

[
−
(

ω − 30ω0

5ω0

)2

+ i
7

ω0
ω

]
, (A.56)

F2(ω) = 2 exp

[
−
(

ω − 60ω0

4ω0

)2

− i
3

ω0
ω

]
, (A.57)

F3(ω) =

[
cos

(
9

ω0
ω
)
+ sin

(
5

ω0
ω
)]

cosh2
(

ω−50ω0
10ω0

) . (A.58)

For each of them, we analyze below what we can say about their Fourier transforms,

F̃j(t) =
ˆ

dω

2π
Fj(ω)e−iωt, where j = 1, 2, 3. (A.59)

In the case of F̃1(t), it takes significant values for such times t for which the integrand changes
slowly as a function of ω. This occurs when t ≈ 7

ω0
, indicating that the spectrogram of this

function takes significant values around the point (t, ω) = ( 7
ω0

, 30ω0). A similar reasoning
applied to function F2(ω) leads to the conclusion that its spectrogram is significantly different
from zero in the vicinity of point (t, ω) = (− 3

ω0
, 60ω0). A more complex discussion arises in the
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case of function F3(ω). From the properties of the cosh(x) function, it is evident that this func-
tion is centered around ω = 50ω0. Moreover, its Fourier transform is centered around times,
± 9

ω0
and ± 5

ω0
. Therefore, in this case, we have four points (t, ω) = (± 9

ω0
, 50ω0), (± 5

ω0
, 50ω0)

around which the spectrogram of this function takes significant values.
Now, we consider function F(ω), which is the sum of the above functions,

F(ω) = F1(ω) + F2(ω) + F3(ω). (A.60)

A similar discussion leads us to the conclusion that the spectrogram of this function has max-
ima at six points on the (t, ω) plane, that have been discussed above. To verify this, we write
the spectrogram for the function F(ω),

S(t, ω) =
∣∣∣ ˆ ωmax

ωmin

dνF(ν)W(ω − ν, σ)e−iνt
∣∣∣2, ω ∈ [ωmin, ωmax], (A.61)

where the parameter σ controls the width of the window function W(ω − ν, σ) around the
value ω − ν. We have the freedom to choose the analytical form of this function, but it must
always satisfy two conditions:

• Its spread in frequency should be smaller than ωmax − ωmin.

• It should be periodic with the period of ωmax − ωmin, i.e.,

W(ω − ν + K(ωmax − ωmax), σ) = W(ω − ν, σ), K = 0,±1,±2, . . . , (A.62)

to enable expansion into a Fourier series.

In addition, in our further analysis, we will choose the window function in the form of a Gaus-
sian function,

W(ω − ν, σ) =
1√
πσ

exp
[
−
(ω − ν

σ

)2]
, (A.63)

such that

σ = ξW(ωmax − ωmax), 0 < ξW < 1, (A.64)

together with the periodicity condition (A.62).
In Fig. A.1, we present function F(ω) along with its squared magnitude |F(ω)|2 in a loga-

rithmic scale. Its spectrograms for ξW = 0.003, 0.01, 0.03, and 0.1 are depicted in the Fig. A.2. To
avoid representing insignificant values in time-frequency analysis, a small number 10−5 was
added to the spectrogram. This eliminates values of S(t, ω) smaller than this value from the
graph. According to the discussion above, the spectrogram exhibits significant values around
the specified points. Of course, the form of the spectrogram significantly depends on the choice
of the controlling parameter ξW . From the definition of the spectrogram, it follows that for
small values of ξW , the window function is close to a Dirac delta distribution, effectively repro-
ducing the frequency distribution when the time distribution is blurred. Conversely, when ξW
is large, the window function is spread in frequency, resulting in a spectrogram that accurately
approximates the Fourier transform F̃(t). Therefore, by analyzing the spectrogram for inter-
mediate values of ξW , we can gain insight into the time-frequency properties of function F(ω).
In this analysis, the value ξW=0.03 seems to be a good choice.
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FIGURE A.1: In the left panel, we display the function F(ω) [Eq. (A.60)] using a linear scale. The blue
line corresponds to the real part Re[F(ω)], while the dashed red line represents the imaginary part
Im[F(ω)]. In the right panel, we illustrate the squared magnitude of the function, |F(ω)|2, using a
logarithmic scale.

For the sake of completeness, let us illustrate the case of a signal being a function of time,
f (t). This case does not necessarily pertain to problems mentioned in this thesis, but it plays
a significant role in areas like sonography or seismology. Similar to the frequency case, let
us choose unit of time t0 (which in atomic units would be t0 = 1

α2mec2 ) and a time interval
tmin ⩽ t ⩽ tmax, such that tmin = −30t0, tmax = 60t0. As before, we introduce the following
analytical functions,

f1(t) = exp

[
−
(

t + 5t0

5t0

)2

+ i
2
t0

t

]
, (A.65)

f2(t) = exp

[
−
(

t − 30t0

5t0

)2

− i
3
t0

t

]
, (A.66)

f3(t) =
cos

(
8
t0

t
)

cosh2
(

t−30t0
3t0

) . (A.67)

The signal

f (t) = f1(t) + f2(t) + f3(t), (A.68)

is illustrated in Fig. A.3. Similar analysis to that performed for the frequency case leads us to
the conclusion that the spectrogram S̃(ω, t), now defined as

S̃(ω, t) =
∣∣∣ ˆ tmax

tmin

dτ f (τ)W(t − τ, σ)eiωτ
∣∣∣2, t ∈ [tmin, tmax], (A.69)
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FIGURE A.2: Spectrograms of the function F(ω) [(A.60)] exhibit distinctive features across all panels,
corresponding to parameters ξW = 0.003, 0.01, 0.03, and 0.1. These spectrograms are generated using
the Gaussian window W(ω − ν, σ) as defined in Eq. (A.63). The frequency range extends from ωmin = 0
to ωmax = 100ω0, where ω0 is the unit of frequency. Notably, the width parameter σ (A.64) depends on
ξW , playing a pivotal role in shaping the distinctive characteristics of the spectrogram.

is centered around points (ω, t)= (− 2
t0

,−5t0), ( 3
t0

, 30t0), and (± 8
t0

, 30t0). Similarly, the window
function has been chosen as a Gaussian function,

W(t − τ, σ) =
1√
πσ

exp
[
−
( t − τ

σ

)2]
, (A.70)

such that

σ = ξW(tmax − tmax), 0 < ξW < 1. (A.71)

In Fig. A.4, we demonstrate the spectrogram of the function f (t) calculated using the Gaus-
sian window W(t − τ, σ). The left and right panels of Fig. A.4 correspond to two different
values of ξW = 0.03 and 0.1, showcasing how the window function width influences the char-
acteristics of spectrogram. Overall, this analysis of the time domain complements the earlier
discussion of the frequency domain, providing a comprehensive understanding of how the
signal evolves both in terms of frequency and time.
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FIGURE A.3: In the left panel, we display the function f (t) (A.68) using a linear scale. The blue line
corresponds to the real part Re[ f (t)], while the dashed red line represents the imaginary part Im[ f (t)].
In the right panel, we illustrate the squared magnitude of the function, | f (t)|2, using a logarithmic scale.

FIGURE A.4: The spectrograms of the function f (t) are computed using the Gaussian window W(t −
τ, σ) defined in Eq. (A.70). The left and right panels correspond to the parameters ξW = 0.03 and ξW =
0.1, respectively. The temporal range spans from tmin = 0 to tmax = 100t0, where t0 represents the unit
of time. The parameter σ controls the width of the window [Eq. (A.71)], influencing the spectrogram’s
characteristics. To avoid showing small values in time-frequency analysis, a small number 10−6 is added
to the spectrogram.
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B.1 Gauge transformation

Consider the Schrödinger equation that describes the dynamics of the quantum state |ϕ(t)⟩
under the action of the Hamiltonian Ĥ(t),

i
∂

∂t
|ϕ(t)⟩ = Ĥ(t)|ϕ(t)⟩, (B.1)

and a unitary transformation Û(t) such that

|ψ(t)⟩ = Û(t)|ϕ(t)⟩, Û†Û = Î. (B.2)

One can show that the transformed state |ψ(t)⟩ satisfies the Schrödinger equation,

i
∂

∂t
|ψ(t)⟩ = Ĥ(t)|ψ(t)⟩, (B.3)

provided that the Hamiltonian is changed to

Ĥ(t) =
[

i
∂

∂t
Û(t)

]
Û†(t) + Û(t)Ĥ(t)Û†(t). (B.4)

As it was already demonstrated in [131], along with a unitary transformation of the quantum
state (B.2) one has to consistently transform the Hamiltonian (B.4).

B.2 Nordsieck integral

In this Appendix, we evaluate the so-called Nordsieck integral defined as [105]

Iσ,η(λ, q,p) =
ˆ

d3r
e−λr

r
eiq·r

1F1(a, 1, i(σpr + ηp · r)), (B.5)

where η, σ = ±1, a = iν and where we assume that 0 < Re a < 1. Here, 1F1(a, b, x) is the
confluent hypergeometric function [77], which has the following integral representation,

1F1(a, 1, z) =
1

Γ(a)Γ(1 − a)

ˆ 1

0
ezu(1 − u)−aua−1du. (B.6)
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Here, the integral over u is convergent provided that 0 < Re a < 1. Evaluating this integral for
such a, afterwards we shall continue this integral analytically to account for our case. Substi-
tuting Eq. (B.6) into Eq. (B.5) leads to

Iσ,η(λ, q,p) =
1

Γ(a)Γ(1 − a)

ˆ 1

0
du(1 − u)−aua−1Jσ,η(λ, q,p, u), (B.7)

where

Jσ,η(λ, q,p, u) =
ˆ

d3r
e−λr

r
eiq·reiu(σpr+ηp·r) =

ˆ
d3r

1
r

e−(λ−iσpu)rei(q+ηup)·r. (B.8)

Evaluating the above integral using spherical coordinates, gives

Jσ,η(λ, q,p, u) =
4π

λ2 + q2
1

1 + ξu
, (B.9)

where
ξ = −2

iσpλ − ηp · q
λ2 + q2 . (B.10)

Now, putting the value of Jσ,η(λ, q,p, u) in Eq. (B.7), we obtain

Iσ,η(λ, q,p) =
4π

λ2 + q2Kσ,η(λ, q,p), (B.11)

where

Kσ,η(λ, q,p) =
1

Γ(a)Γ(1 − a)

ˆ 1

0
du(1 − u)−aua−1 1

1 + ξu
. (B.12)

Using the Euler Beta function [78], the value of above integral is

Kσ,η(λ, q,p) = (1 + ξ)−a. (B.13)

Substituting the value of Kσ,η(λ, q,p) in Eq. (B.12), we obtain

Iσ,η(λ, q,p) =
4π

λ2 + q2 (1 + ξ)−a. (B.14)

The phase of (1 + ξ)−a has to be chosen such that for small ξ,

(1 + ξ)−a ≈ 1 − aξ. (B.15)

From the practical point of view,

(1 + ξ)−a = exp[−a ln(1 + ξ)]. (B.16)

Also, for small ξ we have ln(1 + ξ) ≈ ξ. Hence,

arg[ln (1 + ξ)] = arg ξ. (B.17)
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Since Im ξ < 0, the phase of ξ has to be such that −π < arg ξ < 0, and the same for 1 + ξ:
−π < 1 + arg ξ < 0. Consider ν = Zαmec/|p| > 0. In this case,

(1 + ξ)−iν = |1 + ξ|eνϕξ = [(1 + Re ξ)2 + (Im ξ)2]−iν/2(1 + νϕξ) = 1 − iν(Re ξ + iϕξ) (B.18)

and νϕξ < 0, where ϕξ = arg ξ. Moreover, for |ξ| ≪ 1, ϕξ ≈ 0. It allows one to conclude that

Im(1 + ξ) = |1 + ξ| sin ϕξ ≈ ϕξ = Im ξ. (B.19)

Using the value ϕξ = Im ξ in Eq. (B.18), we get

(1 + ξ)−iν = 1 − iνξ. (B.20)

Moreover,
|(1 + ξ)−iν| = |e−iν ln |1+ξ|eνϕξ | = eνϕξ < 1. (B.21)

Using the value of the Nordsieck integral (B.14), we can evaluate expressions which appear in
the probability amplitude of LARR in Section 3.2.2. The way that this is done in our numerical
code is presented in the next Appendix.

B.3 Details of calculations using the Nordsieck integral

Introducing the following functions,

ζ = ζ(λ, q) =
1

λ2 + q2 , (B.22)

ξ = ξ(λ, q,p) = 2ζ (σ2p · q − iλpσ1) , (B.23)

f = f (λ, q,p) = ζ(1 + ξ)−iν, (B.24)

we can express the value of the Nordsieck integral (B.14) such that

Iσ1σ2(λ, q,p) = 4πζ(1 + ξ)−iν = 4π f . (B.25)

In our calculations in Section 3.2.2, we use derivatives of Iσ1σ2(λ, q,p). For this reason, we
define

ζλ =
∂ζ

∂λ
= − 2λ

(λ2 + q2)
2 = −2λζ2, (B.26)

ζv = (v ·∇q)ζ = − 2(v · q)
(λ2 + q2)

2 = −2ζ2(v · q), (B.27)

ζu = (u ·∇q)ζ = − 2(u · q)
(λ2 + q2)

2 = −2ζ2(u · q), (B.28)

ζw = (w ·∇q)ζ = − 2(w · q)
(λ2 + q2)

2 = −2ζ2(w · q), (B.29)
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ζλ,u =
∂

∂λ
(u ·∇q)ζ =

8λ(u · q)
(λ2 + q2)

3 = 8ζ3λ(u · q), (B.30)

ζλ,v =
∂

∂λ
(v ·∇q)ζ =

8λ(v · q)
(λ2 + q2)

3 = 8ζ3λ(v · q), (B.31)

ζλ,w =
∂

∂λ
(w ·∇q)ζ =

8λ(w · q)
(λ2 + q2)

3 = 8ζ3λ(w · q), (B.32)

ζu,v = (u ·∇q)(v ·∇q)ζ = −u ·
{

2v · 1

(λ2 + q2)
2 − 8q(v · q)

(λ2 + q2)
3

}
= −2ζ2(v · u)− 4ζζv(u · q), (B.33)

ζw,v = (w ·∇q)(v ·∇q)ζ = −w ·
{

2v · 1

(λ2 + q2)
2 − 8q(v · q)

(λ2 + q2)
3

}
= −2ζ2(v ·w)− 4ζζv(w · q), (B.34)

ζu,w = (u ·∇q)(w ·∇q)ζ = −u ·
{

2w · 1

(λ2 + q2)
2 − 8q(w · q)

(λ2 + q2)
3

}
= −2ζ2(w · u)− 4ζζw(u · q), (B.35)

ζw,u,v = (w ·∇q)(u ·∇q)(w ·∇q)ζ

= −4ζζw(v · u)− 4ζvζw(u · q)− 4ζζw,v(u · q)− 4ζζv(u ·w), (B.36)

ζλ,u,v =
∂

∂λ
(u ·∇q)(v ·∇q)ζ =

(
8λ(v·u)
(λ2+q2)

3 −
48λ(u·q)(v·q)

(λ2+q2)
4

)
= −4ζζλ(v · u)− 4(ζλζu + ζζλ,u)(v · q), (B.37)

ζλ,w,v =
∂

∂λ
(w ·∇q)(v ·∇q)ζ =

(
8λ(v·w)

(λ2+q2)
3 −

48λ(w·q)(v·q)
(λ2+q2)

4

)
= −4ζζλ(v ·w)− 4(ζλζw + ζζλ,w)(v · q), (B.38)

ζλ,u,v,w = −4ζwζλ(v · u)− 4ζζλ,w(v · u)− 4ζλ,vζw(u · q)− 4ζvζλ,w(u · q)
− 4ζλζw,v(u · q)− 4ζζλ,w,v(u · q)− 4ζλζv(u ·w)− 4ζζλ,v(u ·w). (B.39)

Note that ζu,v = ζv,u and ζλ,u,v = ζλ,v,u. Similarly, ζu,v,w = ζv,u,w = ζu,w,v = ζw,v,u and
ζλ,u,v,w = ζλ,v,u,w and so on. Moreover,

ξλ =
∂ξ

∂λ
= −4λ (σ2p · q − iλpσ1)

(λ2 + q2)
2 − 2ipσ1

λ2 + q2

= 2ζλ (σ2p · q − iλpσ1)− 2ipσ1ζ, (B.40)

ξv = (v ·∇q)ξ =

{
2σ2(p · v)
λ2 + q2 − 4(v · q) (σ2p · q − iλpσ1)

(λ2 + q2)
2

}
= 2σ2(p · v)ζ + 2ζv (σ2p · q − iλpσ1) , (B.41)

ξu = (u ·∇q)ξ =

{
2σ2(p · u)

λ2 + q2 − 4(u · q) (σ2p · q − iλpσ1)

(λ2 + q2)
2

}
= 2σ2(p · u)ζ + 2ζu (σ2p · q − iλpσ1) , (B.42)
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ξw = (w ·∇q)ξ =

{
2σ2(p ·w)

λ2 + q2 − 4(w · q) (σ2p · q − iλpσ1)

(λ2 + q2)
2

}
= 2σ2(p ·w)ζ + 2ζw (σ2p · q − iλpσ1) , (B.43)

ξλ,u =
∂

∂λ
(u ·∇q)ξ =

{
16λ(u · q) (σ2p · q − iλpσ1)

(λ2 + q2)
3 +

4ipσ1(v · q)
(λ2 + q2)

2 − 4λσ2(p · u)
(λ2 + q2)

2

}
= 2ζλ,v (σ2p · q − iλpσ1) + 2ζλσ2(p · u)− 2ipσ1ζu, (B.44)

ξλ,v =
∂

∂λ
(v ·∇q)ξ =

{
16λ(v · q) (σ2p · q − iλpσ1)

(λ2 + q2)
3 +

4ipσ1(v · q)
(λ2 + q2)

2 − 4λσ2(p · v)
(λ2 + q2)

2

}
= 2ζλ,v (σ2p · q − iλpσ1) + 2ζλσ2(p · v)− 2ipσ1ζv, (B.45)

ξλ,w =
∂

∂λ
(w ·∇q)ξ =

{
16λ(w · q) (σ2p · q − iλpσ1)

(λ2 + q2)
3 +

4ipσ1(w · q)
(λ2 + q2)

2 − 4λσ2(p ·w)

(λ2 + q2)
2

}
= 2ζλ,w (σ2p · q − iλpσ1) + 2ζλσ2(p ·w)− 2ipσ1ζw, (B.46)

ξu,v = (u ·∇q)(v ·∇q)ξ =
16(u · q)(v · q) (σ2p · q − iλpσ1)

(λ2 + q2)
3

− 4(u · v) (σ2p · q − iλpσ1)

(λ2 + q2)
2 − 4σ2(p · v)(u · q)

(λ2 + q2)
2 − 4σ2(p · u)(v · q)

(λ2 + q2)
2

= 2ζu,v (σ2p · q − iλpσ1) + 2σ2(p · v)ζu + 2σ2(p · u)ζv, (B.47)
ξu,w = 2ζu,w (σ2p · q − iλpσ1) + 2σ2(p ·w)ζu + 2σ2(p · u)ζw, (B.48)
ξw,v = 2ζw,v (σ2p · q − iλpσ1) + 2σ2(p · v)ζw + 2σ2(p ·w)ζv, (B.49)

ξu,v,w = 2ζu,v,w (σ2p · q − iλpσ1) + 2ζu,vσ2(p ·w) + 2σ2(p · v)ζw,u + 2σ2(p · u)ζv,w, (B.50)

ξλ,u,v =
∂

∂λ
(u ·∇q)(v ·∇q)ξ

=
16λ(u · v) (σ2p · q − iλpσ1)

(λ2 + q2)
3 − 96λ(u · q)(v · q) (σ2p · q − iλpσ1)

(λ2 + q2)
4

+
4ipσ1(u · v)
(λ2 + q2)

2 − 16ipσ1(u · q)(v · q)
(λ2 + q2)

3 +
16λσ2(p · v)(u · q)

(λ2 + q2)
3 +

16λσ2(p · u)(v · q)
(λ2 + q2)

3

= 2ζλ,u,v (σ2p · q − iλpσ1)− 2ipσ1ζu,v + 2σ2(p · v)ζλ,u + 2σ2(p · u)ζλ,v, (B.51)
ξλ,u,w = 2ζλ,u,w (σ2p · q − iλpσ1)− 2ipσ1ζu,w + 2σ2(p ·w)ζλ,u + 2σ2(p · u)ζλ,w, (B.52)
ξλ,v,w = 2ζλ,v,w (σ2p · q − iλpσ1)− 2ipσ1ζv,w + 2σ2(p ·w)ζλ,v + 2σ2(p · v)ζλ,w, (B.53)

ξλ,u,v,w = 2ζλ,u,v,w (σ2p · q − iλpσ1)− 2ipσ1ζu,v,w + 2σ2(p ·w)ζλ,u,v + 2σ2(p · v)ζλ,w,u

+ 2σ2(p · u)ζλ,v,w. (B.54)

Hence, we have the derivatives:

fλ =
∂ f
∂λ

= (1 + ξ)−iν(
−iνζξλ

1 + ξ
+ ζλ) = f (1)λ · f , (B.55)
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fv = (v ·∇q) f = −2(1 + ξ)−iν(v · q)
(λ2 + q2)

2 − iν(1 + ξ)−1−iνξv
λ2 + q2

= ζ(1 + ξ)−iν
(

ζv
ζ

− iνξv
1 + ξ

)
= f (1)v · f , (B.56)

fu = (u ·∇q) f = f (1)u · f , (B.57)

fλ,v =
∂

∂λ
(v ·∇q) f

= −iζν(1 + ξ)−1−iνξλ,u + 2iζ2λνξλ(1 + ξ)−1−iν + 8ζ3λ(1 + ξ)−iν(v · q)+
2iζ2νξλ(1 + ξ)−1−iν(v · q)− iζ(−1 − iν)νξλ(1 + ξ)−2−iνξv

= (1 + ξ)−iν
(

ζλ,v

ζ
− iνξλ,v

1 + ξ
− iνζλξλ

ζ(1 + ξ)
− iνξλζv

ζ(1 + ξ)
− ν2ξλξv

(1 + ξ)2 +
iνξλξv
(1 + ξ)2

)
= f (2)λ,v · f , (B.58)

fλ,u =
∂

∂λ
(u ·∇q) f = f (2)λ,u · f , (B.59)

fu,v = (u ·∇q)(v ·∇q) f

− iζν(1 + ξ)−1−iνξu,v + 8ζ3(1 + ξ)−iν(u · q)(v · q) + 2iζ2ν(1 + ξ)−1−iν(v · q)ξu
+ 2iζ2ν(v · q)(1 + ξ)−1−iνξv − 2ζ2(1 + ξ)−iνv · u− iζ(−1 − iν)ν(1 + ξ)−2−iνξuξv

= ζ(1 + ξ)−iν
(

ζu,v

ζ
− iνξu,v

1 + ξ
− iνξuζv

ζ(1 + ξ)
− iνζuξv

ζ(1 + ξ)
− ν2ξuξv

(1 + ξ)2 +
iνξuξv
(1 + ξ)2

)
= f (2)u,v · f , (B.60)

fλ,u,v =
∂

∂λ
(u ·∇q)(v ·∇q) f

=
(
− iνζuξλ,v

ζ(1 + ξ)
− iνζvξλ,u

ζ(1 + ξ)
− iνζλξu,v

ζ(1 + ξ)
− iνξvζλ,u

ζ(1 + ξ)
− iλνξuζλ,v

ζ(1 + ξ)
− iνξλζu,v

ζ(1 + ξ)
+

ζλ,u,v

ζ

− i(−1 − iν)νξuξλ,v

(1 + ξ)2 − i(−1 − iν)νξλξu,v

(1 + ξ)2 − i(−1 − iν)νξvξλ,u

(1 + ξ)2 − iνξλ,u,v

1 + ξ

− i(−1 − iν)νξλζuξv
ζ(1 + ξ)2 − i(−1 − iν)νξλξuζv

ζ(1 + ξ)2 − i(−1 − iν)νζλξuξv
ζ(1 + ξ)2

− i(−2 − iν)(−1 − iν)νξλξuξv
(1 + ξ)3

)
· f , (B.61)

fλ,u,v = f (3)λ,u,v · f , (B.62)

fu,v,w = (w ·∇q)(u ·∇q)(v ·∇q) f = ( f (2)u,v,w + f (2)u,v · f (1)w ) · f = f (3)u,v,w · f , (B.63)

fλ,u,v,w =
∂

∂λ
fu,v,w = f (4)λ,u,v,w · f . (B.64)

Note that fu,v = fv,u and fλ,u,v = fλ,v,u. Moreover,

f (1)λ =

(
ζλ
ζ

− iνξλ
1 + ξ

)
, (B.65)
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f (1)u =

(
ζu
ζ

− iνξu
1 + ξ

)
, (B.66)

f (1)v =

(
ζv
ζ

− iνξv
1 + ξ

)
, (B.67)

f (1)w =

(
ζw
ζ

− iνξw
1 + ξ

)
, (B.68)

f (1)u,v =

(
ζu,v

ζ
− ζuζv

ζ2 − iνξu,v

1 + ξ
+

iνξuξv
(1 + ξ)2

)
, (B.69)

f (1)v,w = w · ∇q f (1)v =

(
ζv,w

ζ
− ζvζw

ζ2 − iνξv,w

1 + ξ
+

iνξvξw
(1 + ξ)2

)
, (B.70)

f (1)u,w = w · ∇q f (1)u =

(
ζu,w

ζ
− ζuζw

ζ2 − iνξu,w

1 + ξ
+

iνξuξw
(1 + ξ)2

)
, (B.71)

f (2)λ,v,u =
ζλ,u,v

ζ
− ζv,uζλ

ζ2 − ζλ,vζu

ζ2 − ζλ,uζv

ζ2 +
2ζvζuζλ

ζ3 − iν
ξλ,u,v

1 + ξ
+ iν

ξv,uξλ

(1 + ξ)2

+ iν
ξλ,uξv
(1 + ξ)2 + iν

ξλ,vξu
(1 + ξ)2 − 2iν

ξvξuξλ

(1 + ξ)3 , (B.72)

f (2)λ,u,w =
ζλ,u,w

ζ
− ζλζu,w

ζ2 − ζλ,uζw
ζ2 − ζuζλ,w

ζ2 + 2
ζλζuζw

ζ3 − iνξλ,u,w

1 + ξ
+

iνξλξu,w

(1 + ξ)2

+
iνξλ,uξw
(1 + ξ)2 +

iνξuξλ,w

(1 + ξ)2 − 2
iνξλξuξw
(1 + ξ)3 , (B.73)

f (2)λ,v,w =
ζλ,v,w

ζ
− ζλζv,w

ζ2 − ζλvζw
ζ2 − ζvζλ,w

ζ2 + 2
ζλζvζw

ζ3 − iνξλ,vw

1 + ξ
+

iνξλξv,w

(1 + ξ)2

+
iνξλ,vξw
(1 + ξ)2 +

iνξvξλ,w

(1 + ξ)2 − 2
iνξλξvξw
(1 + ξ)3 , (B.74)

f (1)λ,v =
∂

∂λ
f (1)v =

ζλ,v

ζ
− ζλζv

ζ2 − iνξλ,v

1 + ξ
+

iνξλξv
(1 + ξ)2 , (B.75)

f (1)λ,u =
∂

∂λ
f (1)u =

ζλ,u

ζ
− ζλζu

ζ2 − iνξλ,u

1 + ξ
+

iνξλξu
(1 + ξ)2 , (B.76)

f (1)λ,w =
∂

∂λ
f (1)w =

ζλ,w

ζ
− ζλζw

ζ2 − iνξλ,w

1 + ξ
+

iνξλξw
(1 + ξ)2 , (B.77)

f (2)λ,v = f (1)λ,v + f (1)λ · f (1)v , (B.78)

f (2)λ,u = f (1)λ,u + f (1)λ · f (1)u , (B.79)

f (2)λ,w = f (1)λ,w + f (1)λ · f (1)w , (B.80)

f (1)u,v,w =
ζu,v,w

ζ
− ζu,vζw

ζ2 − ζu,wζv
ζ2 − ζuζv,w

ζ2 +
2ζuζvζw

ζ3 − iνξu,v,w

1 + ξ
+

iνξu,vξw
(1 + ξ)2

+
iνξu,wξv
(1 + ξ)2 +

iνξuξv,w

(1 + ξ)2 − 2
iνξuξvξw
(1 + ξ)3 . (B.81)
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f (1)λ,u,v,w =
ζλ,u,v,w

ζ
− ζu,v,wζλ

ζ2 − ζλ,u,vζw
ζ2 − ζu,vζλ,w

ζ2 + 2
ζu,vζwζλ

ζ3

− ζλ,u,wζv
ζ2 − ζu,wζλv

ζ2 + 2
ζu,wζvζλ

ζ3 − ζλ,uζv,w

ζ2 − ζuζλ,v,w

ζ2 + 2
ζuζv,wζλ

ζ3

+
2ζλ,uζvζw

ζ3 +
2ζuζλ,vζw

ζ3 +
2ζuζvζλ,w

ζ3 − 6ζuζvζwζλ

ζ4 − iνξλ,u,v,w

1 + ξ

+
iνξλξu,v,w

(1 + ξ)2 +
iνξλ,u,vξw
(1 + ξ)2 +

iνξu,vξλ,w

(1 + ξ)2 − 2
iνξu,vξwξλ

(1 + ξ)3 +
iνξλ,u,wξv
(1 + ξ)2

+
iνξu,wξλ,v

(1 + ξ)2 − 2
iνξλξu,wξv
(1 + ξ)3 +

iνξλ,uξv,w

(1 + ξ)2 +
iνξuξλ,v,w

(1 + ξ)2 − 2
iνξλξuξv,w

(1 + ξ)3

− 2
iνξλ,uξvξw
(1 + ξ)3 − 2

iνξuξλ,vξw
(1 + ξ)3 − 2

iνξuξvξλ,w

(1 + ξ)3 + 6
iνξλξuξvξw
(1 + ξ)4 , (B.82)

f (2)v,u = f (1)v,u + f (1)v · f (1)u , (B.83)

f (2)λ,v,u = f (1)λ,v,u + f (1)λ,u · f (1)v + f (1)λ,v · f (1)u , (B.84)

f (2)λ,v,w = f (1)λ,v,w + f (1)λ,w · f (1)v + f (1)λ,v · f (1)w , (B.85)

f (2)λ,u,w = f (1)λ,u,w + f (1)λ,w · f (1)u + f (1)λ,u · f (1)w , (B.86)

f (2)u,v,w = f (1)u,v,w + f (1)v,w · f (1)u + f (1)v · f (1)u,w, (B.87)

f (3)u,v,w = f (2)u,v,w + f (2)u,v · f (1)w , (B.88)

f (3)λ,v,u = f (2)λ,v,u + f (2)u,v · f (1)λ , (B.89)

f (2)λ,u,v,w = f (1)λ,u,v,w + f (1)λ,v,w · f (1)u + f (1)v,w · f (1)λ,u + f (1)λ,v · f (1)u,w + f (1)v · f (1)λ,u,w, (B.90)

f (3)λ,u,v,w = f (2)λ,u,v,w + f (2)λ,u,v · f (1)w + f (2)u,v · f (1)λ,w (B.91)

= f (1)λ,u,v,w + f (3)λ,u,w · f (1)v + f (3)λ,v,w · f (1)u − 2 f (2)u,w · f (1)λ · f (1)v − 2 f (2)v,w · f (1)λ · f (1)u

− 2 f (2)λ,w · f (1)v · f (1)u − 2 f (2)λ,u · f (1)v · f (1)w − 2 f (2)λ,w · f (1)v · f (1)u − 2 f (2)λ,v · f (1)u · f (1)w

+ 6 f (1)λ · f (1)w · f (1)u · f (1)v + f (2)u,w · f (2)λ,v + f (2)v,w · f (2)λ,u + f (3)λ,u,v · f (1)w

+ f (2)u,v · f (2)λ,w − 2 f (2)v,u · f (1)λ · f (1)w , (B.92)

f (4)λ,u,v,w = f (3)λ,u,v,w + f (3)u,v,w · f (1)λ . (B.93)

Finally,

∂

∂λ
Iσ1,σ2(ν, λ, q,p) = 4π fλ, (B.94)

(v ·∇q)Iσ1,σ2(ν, λ, q,p) = 4π fv, (B.95)
(u ·∇q)Iσ1,σ2(ν, λ, q,p) = 4π fu, (B.96)

∂

∂λ
(u ·∇q)Iσ1,σ2(ν, λ, q,p) = 4π fλ,u, (B.97)

∂

∂λ
(v ·∇q)Iσ1,σ2(ν, λ, q,p) = 4π fλ,v, (B.98)
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(u ·∇q)(v ·∇q)Iσ1,σ2(ν, λ, q,p) = 4π fu,v, (B.99)
∂

∂λ
(u ·∇q)(v ·∇q)Iσ1,σ2(ν, λ, q,p) = 4π fλ,u,v, (B.100)

∂

∂λ
(w ·∇q)(u ·∇q)(v ·∇q)Iσ1,σ2(ν, λ, q,p) = 4π fλ,u,v,w, (B.101)

which allows us to calculate the probability amplitude of LARR, as specified in Section 3.2.2.

B.4 Classical consideration

Consider an electron of momentum p moving in a laser field, that propagates in the direction
n. The Newton-Lorentz equation describing the electron dynamics takes the form,

π̇cl = eE(r, t) +
e

me
πcl ×B(r, t), (B.102)

where πcl is the electron kinetic momentum. Here, E(r, t) = E(t − n·r
c ) and B(r, t) = B(t −

n·r
c ) are the electric and magnetic components of the laser field such that n · E(r, t) = 0 and

n ·B(r, t) = 0. Using Maxwell relation B(r, t) = 1
cn× E(r, t) and applying the vector triple

product formula in the second term of Eq. (B.102), we get

π̇cl = eE(r, t) +
e

mec
n[πcl · E(r, t)]− e

mec
E(r, t)(n · πcl). (B.103)

Expanding Eq. (B.103) in the leading order in 1/c, we arrive at

π̇cl = eE(t)− n · r
c

eĖ(t) + e
mec

n(πcl · E(t))−
e

mec
E(t)(n · πcl), (B.104)

where E(t) is already the spatially homogeneous electric field. Henceforth, we look for the
solution of Eq. (B.104) in the form

πcl = p− eA(t) + δπ(t). (B.105)

where A(t) is the vector potential corresponding to the laser field such that E(t) = −Ȧ(t), and
δπ(t) consists of the terms of the order of 1/c. Substituting Eq. (B.105) in Eq. (B.104), we arrive
at

δπ̇(t) = −n · r
c

eĖ(t) + e
mec

n · [(p− eA(t)) · E(t)]− e
mec

E(t)[n · (p− eA(t))]. (B.106)

Using the fact that the field is transverse such that n ·A(t) = 0 and integrating Eq. (B.106) with
respect to time, we arrive at the solution,

δπ(t) = −n · r
c

eE(t)− e
mec

n · [p ·A(t)] +n
e2A2(t)

2mec
. (B.107)
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FIGURE B.1: The top row demonstrates the magnitude of the function A(r) [Eq. (B.109)] in the xy-plane
at z = 0, z = 1, and z = 2. In the bottom row, we plot the corresponding phase of A(r). We use
parameters a = 1, b = 1, d = 1, M = 2, and σ = 1. The magnitude of the function is displayed to the
power 1/4 to better visualise the vortices and nodal surfaces.

Now, we use Eqs. (B.105) and (B.107) to derive the expression for the kinetic energy of an
electron in the presence of a laser field. In the leading order in 1/c, we obtain

π2
cl

2me
=

[p− eA(t)]2

2me
− n · p

m2
ec

[
eA(t) · p− 1

2
e2A2(t)

]
+

n · r
mec

[(p− eA(t)) · eE(t)] +O
( 1

c2

)
. (B.108)

Here, the second term corresponds to the electron recoil, whereas the third term originates from
the retardation. This agrees with our results and their interpretation provided in Chapter 3.

B.5 Mathematical model of vortices

To understand the formation of vortex structures and nodal surfaces or lines, we analyse a
complex function A(r) in a three-dimensional space of a parameter r = (x, y, z),

A(r) = A(x, y, z) = [(x + iσy)M + a2 − z2] sin (b(x2 + y2 + d2)), (B.109)

where we assume that M ∈ N, σ ∈ Z, and a, b, d ∈ R. For this function we have zeroes at

sin (b(x2 + y2 + d2)) = 0 (B.110)

and

(x + iσy)M + a2 − z2 = 0. (B.111)
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FIGURE B.2: Same as in Fig. B.1 except for σ = −1.

The solution of Eq. (B.110) can be derived analytically since

b(x2 + y2 + d2) = nπ, n ∈ Z. (B.112)

Hence, we will observe zero surfaces in the form of cylinders along the z-axis, with a radius√
nπ−bd2

b , provided that nπ ⩾ bd2. The solutions of Eq. (B.111) form lines in the space of
r = (x, y, z). For Eq. (B.111), for different values of z, we will have a different set of zeroes
of A(r) based on parameters a, b, d, M, σ. It follows from this analysis that we should observe
regions of zero values of A(r) forming concentric circles and points in the xy-plane.

For instance, when a = 1 and M = 2, we have

(x + iσy)2 + 1 − z2 = 0. (B.113)

We demonstrate the magnitude and the phase of the function A(r) for σ = 1 (Fig. B.1) and
σ = −1 (Fig. B.2). These cases are shown in xy-planes for d = 1 at z = 0, z = 1, and z = 2.
We observe in each case concentric rings with zero values (upper rows) but with the phase of
A(r) jumping across those rings by π (lower rows). This is typical for nodal lines (surfaces). In
the case of vortices, the value of the function A(r) is zero at those points as well, however the
amplitude arg[A(r)] is singular there. Moreover, it changes continuously around the vortex by
multiples of 2π. The multiplication index is called a topological charge (or, a winding number),
m. This is very well illustrated, for instance, in Fig. B.1 for z = 1. The function A(r) has clearly
a zero at the point (x, y) = (0, 0) but its phase is changing anticlockwise by 4π during one
complete turn around that point. This means that A(r) has a vortex at the point (0, 0) with a
topological charge m = +2. In contrast, for σ = −1 (Fig. B.2) the function A(r) has a vortex
at (0,0) with a topological charge m = −2. Even more rich vortex structures are shown in both
figures for z = 0 and z = 2. Each of the corresponding columns shows two vortices with the
topological charge m = +1 (Fig. B.1) or m = −1 (Fig. B.2).
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