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Chapter 1

Introduction

The most beautiful thing we can experience is the mysterious. It is the source of all true

art and science. He to whom the emotion is a stranger, who can no longer pause to

wonder and stand wrapped in awe, is as good as dead; his eyes are closed.

Albert Einstein

1.1 Motivation

Pattern formation in nature is an ubiquitous phenomenon where intricate shapes
often emerge from a seemingly complex and chaotic process. A very similar-looking
structure can be observed in di"erent physical systems. Conversely, within a physical
system, the formed patterns can be very di"erent from each other, which is due
to their sensitivity to external parameters. For instance, a variety of shapes are
observed in snowflakes (Fig. 1.1), which form due to the molecular arrangement of
freezing water, depending on temperature and humidity.

The phenomenon of pattern formation is not limited to smaller systems such as
snowflakes. It is also observed at larger scales such as in geological and cosmological
systems. An impressive example of a geological pattern is the Giant’s Causeway
in Ireland (Fig. 1.2a), made by a polygonal arrangement of basalt columns, which
are up to 12m in height. The striking feature of these columns is their hexagonal
shape—sometimes there are pentagons as well—which is the result of shrinkage
cracking of solidifying lava rocks [2]. Other fascinating examples of pattern formation
in geology are stalactites (Fig. 1.2b) and stalagmites (Fig. 1.2d), which are formed in
caves by precipitating CaCO3 and can be of several meters in height [3]. The largest
known examples of pattern formation are cosmic structures such as the logarithmic
spiral galaxies (Fig. 1.2c). These galaxies consist of a flat, rotating disk which
extends through gigantic spiral arms up to several light-years in size.

The origins of a vast majority of these patterns are still not well understood. The
question, “How did these patterns emerge from a seemingly chaotic system?” ba’ed
generations of scientists in di"erent fields, including physics, chemistry, biology,
mathematics, and computer science [5, 6]. One of the biggest hurdles in answering
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(a) (b)

Figure 1.1: Di"erent types of snowflakes made in laboratory setup by Ken Libbrecht
[1] (a) Fernlike stellar dendritic snowflake (b) Stellar dendritic snowflake.

this question is either the complexity of the process itself or the spatial and temporal
scales of emerging patterns, which makes them hard to study in a laboratory under
controlled conditions. However, in some systems, similar-looking patterns have been
observed in laboratory experiments. This similarity between natural patterns and
laboratory-made patterns is usually not coincidental but is a result of a similar
mechanism of growth, even though the length and time scales in these systems
di"er significantly.

Physical instabilities are often referred to be the cause of the emergence of these
patterns, regardless of their length scales. One classic example here is the Kármán
vortex street [7]. In a laboratory setup, when flow moves around a cylinder at a
certain speed, it can become unstable. In certain flow conditions, a regular pattern
of alternating vortices known as Kármán vortex street appears [8]. These vortex
streets are also observed in clouds near the Chilean coast when the wind hits Juan
Fernandez island (see Fig. 1.3).

Another example of pattern-forming instabilities is Rayleigh-Taylor (RT) instabil-
ity [9, 10], which appears at the interface of two fluids of di"erent densities when
heavier fluid is placed at the top of lighter fluid in a gravitational field. The heavier
fluid forms a finger-like shape which streams downward while the lighter fluid rises
upward. This instability has been observed in Crab Nebulae (Fig. 1.4a) after a super-
nova explosion which happened in 1054 AD and was witnessed by Arab and Chinese
astronomers [11]. The supernova explosion formed a bubble of ejected heavy mate-
rial trapping the lighter relativistic plasma known as the Crab synchrotron nebula,
which pushes through the ejected heavy material. The remaining ejecta formed dis-
tinct filaments or finger-like shapes [12, 13]. It has also been observed in laboratory
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(a) (b)

(c) (d)

Figure 1.2: Pattern formation at large scale (a) Basalt columns in the giant cause-
way, Antrim, Ireland. Source: livingartphotography.ie (b) A stalactite—current
size 1.5m—in Crystal King cavern in Ohio forming over the span of 250,000 years.
Source: TrekOhio.com (c) The spiral shape of Messier 81 galaxy with a diameter
of 96000 lightyears. Source: NASA [4] (d) World’s second tallest stalagmite (67.2m
high) in Cueva San Martin Infierno. Source: Kevin Downey, The Virtual Cave,
(www.goodearthgraphics.com/virtcave/largest.htm). Note that a caver on the left,
dressed in red, is almost invisible at the scale of the image.

experiments [9, 10, 14] (see Fig. 1.4b).

In this variety of examples we have mentioned, patterns can be categorized in dif-
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Figure 1.3: A satellite image, taken by Landsat 7 on 15 Sep 1999, shows Kármán
vortex street imprinted on clouds, produced by wind flowing around Juan Fernandez
island, which is at the top left corner. The island has a diameter of around 1.5 km
and rises 1.6 km into the atmosphere. Source: NASA [7].

ferent ways such as tiling, branching, spirals, waves, and fingers. In this thesis,
our main interest lies in fingering pattern which is very common in moving front
problems where a boundary separating two phases (for example two liquids of di"er-
ent densities) moves initially with a flat profile. In certain conditions, the advancing
interface becomes unstable and a slight disturbance in the front results in the appear-
ance of sinusoidal-looking undulations which then transform into fingers. Previously
mentioned RT fingers are a result of such process (Fig. 1.4b).

Moving front problems are particularly di%cult to describe due to their lack of order-
liness and their occurrence at far from equilibrium conditions. Typically, in systems
close to equilibrium, regular shapes (for example, interface movement without any
perturbation) are formed, but as the system is pushed far from equilibrium, the
mechanism of self-organization takes place and distinct patterns with a range of
complexity—for instance, fingers—emerge. The characteristic feature of far-from-
equilibrium moving boundary processes is that the formed patterns are scale-free and
can have fractal properties, for which the interactions between individual elements
of the system are responsible.

Another important example of the moving front instability is Sa"man-Taylor insta-
bility [15], which occurs at the interface of two fluids of di"erent viscosities. When
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(a) (b)

Figure 1.4: Finger formations due to RT instability (a) Crab Nebulae. Source:
NASA/ESA (b) In laboratory experiments, conducted in Hele-Shaw cell, consisting
of two closely placed transparent plates, with heavier fluid moving from top to
bottom. The resulting fingers are formed by denser fluid shown in brown color.

a less viscous fluid is injected into a system filled with more viscous fluid, it pushes
through the more viscous fluid. The interface between these fluids becomes unsta-
ble and leads to the emergence of complex patterns. At lower injection rates, the
interface moves smoothly; however, an increase in flow rates results in an unstable
front, which splits into fingers (Fig. 1.5a). The shapes and dynamics of these fingers
depend on di"erent physical parameters such as injection rate, fluids miscibility and
mobility ratio—the ratio of the viscosity of fluids [16]. In the case of two miscible
fluids, a similar experiment as Fig. 1.5a produces a highly branched fingering pattern
(see Fig. 1.5b) which is very di"erent than the original experiment.

Moving front instabilities are not limited to fluids but are also observed in elec-
tromagnetic systems such as dielectric breakdown, where high voltage is applied
between two electrodes separated by an insulating material. When the voltage
di"erence between the electrodes increases su%ciently, the insulating material sud-
denly becomes conductive, forming fractal patterns known as Lichtenberg figures
(Fig. 1.6a). A frequently encountered example of dielectric breakdown is lightning
(Fig. 1.6b) in which the atmosphere acts as an insulator and the earth-cloud system
acts as electrodes. However, the timescales of the formation of lightning patterns
are very short, making it di%cult to observe the details of dynamics with the naked
eye.

Another example of the moving front problems in a non-fluidic system is the slow
combustion of paper in a quasi-2D system [17]. In a Hele-Shaw cell, when a thin
paper is burnt in controlled conditions against an oxidizing wind, a fingering in-
stability develops. The shape of the fingers depends on several system parameters
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(a) (b)

Figure 1.5: Viscous fingering experiment conducted in a Hele-Shaw cell at same flow
rates with (a) immiscible fluids and (b) miscible fluids, In (a) the time evolution of
the pattern is captured by overlaying the digitized images of time-sequence pho-
tographs. The di"erence between both patterns is due to the presence or absence
of surface tension. In the left figure, there is a sharp front indicating the surface
tension e"ect while in the right figure, there is a di"use front due to the absence of
surface tension, shown by the gradient of grey color. [16]

including the amount of provided oxygen. At a higher volume of available oxygen,
the paper burns uniformly. However, with a decrease in the amount of oxygen, the
burning front becomes perturbed, and splits into fingers with recurrent tip split-
ting (Fig. 1.7a). The fingers compete for the available oxygen, and the ones closer
to the oxygen source dominate, resulting in the screening of neighbouring fingers
which stop growing due to unavailability of the oxygen. Further decrease of oxygen
amount results in the formation of distinct fingers with larger spacing and without
tip splitting (Fig. 1.7b).

Up to this point, we have discussed moving front problems only in physical systems,
but it is also observed in a biological system This is rather unobvious to expect
pattern formation in a system where a living organism is involved. However, when
a bacteria colony such as Bascillus subtilis is allowed to grow on a Petri dish with
a limited amount of food, it strongly competes for food and self-organizes itself for
survival into strongly bifurcated fingers. (Fig. 1.8a). These patterns depend on
the type and concentration of food as well as the species of bacteria. Moreover,
in the same species, when the population of di"erent morphotypes dominates, the
competition leads to a change in the pattern after some time, which is entirely
di"erent from the parent generation colonies (Fig. 1.8b).

In most of the above-mentioned cases, the time scales of formation of the patterns
from instabilities are relatively small. Furthermore, these patterns cease to exist as
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(a) (b)

Figure 1.6: Fractal patterns in dielectric breakdown case (a) Lichtenberg figures
produced in a lab experiment in acrylic specimens. The colour is artificially added
using blue LEDs. Source: capturedlightning.com (b) Lightning in a storm as a result
of atmospheric dielectric breakdown. Source: Wikimedia commons.

soon as the driving force disappears. One notable exception is pattern formation in
geological systems in which the patterns can take thousands or millions of years to
form and, once formed, can exist another millions of years. However, longer time
scales also make them particularly hard to study as the evolution of the patterns can
not be directly observed, and they might still be evolving while being studied. On
the other hand, these processes shape our planet, and perhaps Mars as well [19, 20],
by forming rivers, and karst landscapes such as valleys, sinkholes, and caverns,
making them crucial subjects of study. Among this rich variety of patterns, some
noteworthy examples of the geological patterns formed due to moving boundary
processes are river networks, dendrites, and dissolution channels.

Probably one of the most commonly observed geological patterns is a river network,
which is formed by flowing streams of water towards lower altitude regions. The
water flows and erodes the land, resulting in the formation of a network of streams
and tributaries which compete for water and continue to grow in a direction that
corresponds to the water flux entering its head [21, 22]. These networks can have
fractal features with numerous sub-streams and a unique feature—the direction of
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(a) (b)

Figure 1.7: Fingering patterns in the combustion of thin paper with a counter
flow of oxygen with (a) tip splitting (b) distinct fingers without tip splitting. Two
characteristic length-scales are observed: finger width and spacing. The latter is the
function of the amount of oxygen available—the smaller the amount, the larger the
spacing, resulting in stronger screening of neighbouring fingers. [17]

(a) (b)

Figure 1.8: Bascillus subtilis colony growth experiments on a Petri dish with the
same concentration of food (a) first generation colony with fractal-like shape (b) a
mutated colony with chiral pattern with a notable feature of the same twist of all
the branches. [18]

the growth of these networks, contrary to other fingering patterns, is opposite of the
flow direction. Fig. 1.9a shows a high-resolution topographic view of a river network
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near Bristol, Florida. The streams flow toward the Apalachicola River (on the left).

(a) (b)

Figure 1.9: Examples of geological patterns (a) Topographic map of a river network
located near Bristol, Florida. The colour represents here the height of the valley [21]
(b) Mineral dendrites (scale at bottom in mm) formed by manganese on a limestone,
Solnhofen, Germany. Source: Mark A. Wilson, Department of Geology, The College
of Wooster.

Another noteworthy example of a geological pattern are mineral dendrites which
are fractal-like structures formed by precipitation of minerals. Two categories of
dendrites exist: the first one is a crystalline dendrite, whose shape is governed by
crystalline structures, for example, metal crystals; the second one is non-crystalline
dendrite, which is usually observed in rocks (Fig. 1.9b). The former is very common
in metallic growth processes in which the crystallization of minerals takes place
in a supercooled solution [23]. The latter forms when a super-saturated solution
(for example manganese rich water) infiltrates a porous rock and precipitates metal
oxides, while mixing with the oxygenated solution [24]. The resulting branches are
highly irregular, contrary to crystal dendrites, where crystallographic angles govern
the branching angle. The geometry of these patterns is controlled by concentrations
of chemical reagents, interfacial energy, di"usion coe%cients, and temperature [25].

1.2 Dissolution patterns

So far, we have provided a general overview of various examples of fingering patterns
observed in moving boundary processes across physical, biological, and geological
systems. A more specific example of moving front problem is chemical erosion (dis-
solution), which is the main interest of this thesis, and the corresponding patterns
are known as dissolution patterns. Notable examples of these patterns are karst
caves, dolines, sinkholes, karst funnels, solution pipes, and wormholes. These pat-
terns are very common in carbonate systems where reactive fluids such as acidic
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water dissolve the minerals of the rock. The formation of these intricate patterns
is a complex process in which the interplay of reaction and transport plays a vi-
tal role. Here, the dissolution front creates an interface between the dissolved and
undissolved parts of the rock. The dissolved phase grows in an undissolved phase,
resulting in the occurrence of reaction-infiltration instabilities [26]. As a result, the
interface between dissolved and undissolved phases is prone to be perturbed, and a
slight perturbation can grow into finger-like shapes. The resulting dissolution fingers
can exist in many forms across various length scales—from centimeter scale redox
fronts in siltstones [27] to kilometer scales uranium rolls [28].

(a) (b)

Figure 1.10: (a) Solution pipes in limestone rock observed in an active quarry in
Smerdyna, Poland, with a colleague as a scale. The freshly uncovered pipes are
filled with clay. (b) A hollow solution pipe in Roca-Vecchia, Italy, with a hammer
as a scale. Photos: Author

Dissolution patterns are observed in a variety of natural systems where CO2 en-
riched ground water flows through a rock and chemically dissolves the carbonate
minerals, permanently altering the morphology of the rock. However, this process is
not instantaneous—the reaction front advances along the flow direction, gradually
dissolving the rock. A small perturbation in the front can evolve into distinct fingers
over hundreds to thousands of years. Notable examples of dissolution-induced struc-
tures are solution pipes (Fig. 1.10) which are finger-shaped formations that form in
carbonate rocks over thousands of years [29]. However, it was not always obvious
that these patterns are formed due to dissolution. For instance, in the case of karst
caves, till the 18th century, it was believed that the mechanical erosion of rock by
flowing water was forming caves [30, 31]. In the 19th century, Lyell [32] was the first
one to point out that the caves are formed due to the chemical erosion of limestone
by water surcharged with carbonic acid.

Dissolution fingers are also important in many engineering processes where the ex-
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amples of their application range from the stability of dams built on a soluble rock
[33], CO2 sequestration process [34], risk assessment of contaminant migration in
groundwater [35], to the reservoir stimulation process [36]. However, unlike the nat-
ural formations, in many engineering applications dissolution rates are higher and
the system can be dissolved in a matter of hours. A relevant example here is the
acidization of petroleum reservoirs, where a strong acid is injected into the perme-
able rocks of a reservoir to increase oil extraction. The acid enlarges the pores in
reservoir rocks and stimulates the flow of oil. The most e%cient stimulation of a
reservoir is obtained when the flow self-organizes into a small number of distinct
channels and bypasses the rest of the medium. In fact, petroleum engineers have
observed the formation of these channels in the oil stimulation process and named
them wormholes (see Fig. 1.11), similar to the holes made by worms [37–40].

Figure 1.11: A wormhole formed in a lab experiment conducted on Pi&czów lime-
stone core with length 11.9 cm and diameter 3.8 cm. The sample is dissolved by
HCl solution, which was injected from the left. The data is obtained using an X-ray
imaging technique and post-processed to extract the formed channel. [41]

Studying the processes involved in the formation of dissolution patterns and the
factors influencing their shape and morphology is the main theme of this thesis.
Based on the previous studies [37–39, 42–44], it has been concluded that the shape
and geometrical properties of dissolution channels depend on system parameters
such as flow through the system, system length and heterogeneity, and the reaction
rate of the reactive fluid. For instance, in a sample of fixed size, injection of an
acid with a very low flow rate leads to face dissolution—the reaction front is flat
and incoming acid is consumed at the inlet pores. On the other extreme, if the flow
rates are high, the reactant is consumed simultaneously in all pores, resulting in
uniform dissolution of the entire sample. The most interesting regime (wormholing
regime) is observed with moderate flow rates. At moderate flows, the reaction front
splits into fingers, dissolving certain areas of rock faster and bypassing the rest of
the system.
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1.3 The Thesis

This dissertation is an attempt to gain an improved understanding of the factors
influencing the shape of dissolution patterns as well as their e"ect on the system
in which they form. In particular, it is dedicated to investigating the role of rock
heterogeneity and pore-scale mixing process on the shape and growth dynamics of
dissolution patterns, as well as to examining how dissolution, in turn, a"ects and
modifies the pore-space of the host rock.

The growth of wormholes is often shielded from our eyes due to the rock mass sur-
rounding the structure. Initial studies of the dissolution process were limited to the
visual observation of the rock cores in which dissolution patterns form. Since the
rocks are non-transparent, it was only possible to record openings at the inlet and
outlet side of the samples where the channels first emerged. A significant advance-
ment was to extract the shape of formed channels using non-invasive methods such
as casting Wood’s metal into the developed wormhole or using tomographic imag-
ing techniques [37, 45, 46]. This allowed the visualization of the final stage of the
dissolving sample and the extraction of the final wormhole network. However, the
understanding of the growth dynamics of these patterns remained limited to mea-
suring the changes in permeability and pressure throughout the experiment. Bazin
et al. [47], in their pioneering work, developed an approach for in-situ observations
of dissolution process. The growth dynamics of wormholes were studied by taking
2D scans (i.e radiographs) at di"erent locations of the sample. Nevertheless, the
dynamics was still hard to capture due to technological limitations on acquisition
times. The channels progress relatively fast inside the rock; therefore, a shorter
acquisition time was required to capture the growing wormholes.

More recently, tomographic imaging technique has been increasingly employed in
wormhole studies [48–51], although it was still restricted to (→ 30) min time reso-
lution, typically allowing only a few 3D scans per dissolution experiments. Cooper
et al. [41] further improved the tomography method by balancing resolution with ac-
quisition time and were able to conduct up to → 130 scans per experiment with scan
times as short as five minutes. This approach has provided an unprecedented insight
into the progressive development of wormholes within the sample. The time-lapse
experiments conducted by Cooper et al. [41] showed that the tip of a dissolution
channel does not move linearly in the mean flow direction but shows speed-ups in
di"erent regions of the sample. Moreover, the final wormhole showed geometric fea-
tures such as turns in the lateral direction and di"erent branching intensities along
the length. These detailed geometric properties of a wormhole are important for
understanding its growth dynamics; however, they have not been extensively stud-
ied. Li et al. [52] attempted to characterize the geometric properties of dissolution
patterns in laboratory made gypsum samples. Laboratory-made gypsum cores are
relatively homogeneous in comparison to the cores made of naturally formed lime-
stone. Consequently, the wormholes observed in gypsum [52] show less geometrical
complexity compared to, for example, the wormhole formed in Pi&czów limestone
[41]. We expect that local rock inhomogeneities influence the shape of dissolution
patterns; even in the same rock, the formed wormholes can be di"erent between the

12



samples, and this variability can be correlated to the heterogeneity of the rock.

In Ch. 5, we will attempt to address these issues by studying the geometry of
dissolution channels formed in the cylindrical cores of di"erent limestones as well as
in plaster of Paris cores made in a laboratory. We will use grayscale tomography data
collected from two types of experiments: first one, when the sample is scanned during
dissolution, resulting in a time-series data of evolving wormhole. In the second case,
scanning is done after the dissolution experiment finishes. For both types of data,
the developed image processing methods—such as volume segmentation, connected
component and skeletonization—will be discussed. These methods will be used for
the removal of noise, existing voids and grains from the scans, and finally isolating
the dissolution channels. We will first investigate the e"ect of tomography scan
resolution on its ability to capture the fine details of wormhole geometry. Later, we
will discuss the characteristics such as tortuosity and length wastefulness, used by us
for the characterization of the geometry of these patterns. These characteristics will
be calculated for the wormholes formed in di"erent dissolution experiments. Next,
we will extract the tip movement of wormholes in di"erent time-series experiments.
Finally, we will attempt to correlate all wormhole characteristics with rock properties
and injection rates.

Dissolution patterns are usually observed at the macro scale, while the reactive
transport driving the emergence of these formations takes place at the pore scale.
The governing process, dissolution, is controlled by transport within pore-bodies,
as well as chemical reactions at the rock surfaces. However, the flow magnitude
and concentration profile within the rock are global in nature and highly sensi-
tive to large-scale heterogeneities or the presence of preferential flow paths. This
micro-to-macro scale coupling may be significantly intensified by dissolution, es-
pecially in the unstable regime, where existing flow paths are enhanced, and new
ones appear [53, 54]. Recent research has demonstrated that pore-scale properties
significantly impact large-scale phenomena, suggesting that macroscopic transport
can be influenced by pore geometry and distribution of the minerals at pore scale
[55, 56]. Furthermore, pore-scale transport processes such as mixing are shown to
significantly a"ect the e"ective surface reaction rates [57–60].

The pore-scale mixing process is important in reactive flows as it influences the
transport of reactants and mixing-induced reactions. In particular, mixing at pore
intersections is very important because fluids with di"erent properties vigorously
mix and react in these areas. Previous research has pointed out that the extent
of mixing at pore intersections can govern solute spreading at a larger scale [61–
63]. This implies that dissolution patterns can also be influenced by mixing at these
intersections, with recent studies indicating that there is a wide range of mixing con-
ditions which can occur at intersections [64, 65]. Note that these modelling studies
do not use a continuum approach, where fundamental equations (like Navier-Stokes)
are applied in actual pore space. Instead, they introduce a simplified representation
of porous medium as pores and intersections. This leads to a problem of deter-
mining how to partition the concentrations at the intersections—specifically, which
percentage of the incoming concentration from each pore should go to each outgoing
pore. This problem is remedied by introducing mixing rules at intersections, which
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account for mixing intensity at pore intersections. Nevertheless, the e"ect of pore-
scale mixing rules on the shape of macro-scale dissolution patterns remains unclear,
with most of the modelling studies assuming full mixing condition at pore intersec-
tions [37, 38, 56, 66]. This is mainly due to the absence of a universal, coarse-grained
mixing rule that quantifies the degree of mixing at intersections.

We attempt to fill this gap in Ch. 6 by using a modelling approach, similar to Budek
and Szymczak [66], and Roded et al. [56], in which we will assume that pore space can
be represented as a network of interconnected cylindrical tubes, which can widen as
a result of dissolution. In order to study the e"ects of the mixing of reactive solutes
at pore junctions on large-scale dissolution patterns, we will implement two mixing
rules at pore junctions into the pore network model of a dissolving porous medium.
The first is so-called full mixing. It assumes that the solute transport at pore
junctions is di"usion-dominated such that reactive solutes become well mixed. The
second is streamline routing which assumes that the system is advection-dominated
such that reactive solutes follow streamlines and do not transit between streamlines
at pore junctions. This leads to partial mixing or even a complete lack of mixing of
incoming concentrations at junctions. Using the network model, we will investigate
the influence of di"erent mixing rules on the shape of the channels formed in networks
of di"erent heterogeneity.

Till now, we discussed a number of factors which can influence the shape of dis-
solution patterns. However, the pore space of the host rock also evolves with the
development of the patterns. Recent advancements in tomographic measurement
provided insight into the dynamics of evolving pore space during chemical transfor-
mation [48, 53, 67–71]. The alteration in solid phase volume, along with the asso-
ciated modification to rock structures, characterized by changes in reactive surface
area, tortuosity, and connectivity, have been studied and linked with the progress of
the reaction and evolving flow paths within the sample. To quantify the dynamics of
evolving pore space, two characteristic features of dissolution have been identified.
The first are the changes in reactive surface area of dissolving rocks [72–75]. It is
well-known that in rocks of relatively smaller porosity, the specific reactive surface
area increases during the early stages of dissolution. As the pores widen, more
mineral surface is exposed. However, this trend reverses at a certain point due to
pore merging, with reactive surface area ultimately decreasing to zero as the poros-
ity approaches unity [74]. Here, the mechanisms of pore space evolution are pore
widening and pore merging, where the latter is arguably the most elusive process in
mineral dissolution, di%cult to characterize in a quantitative manner [76]. The sec-
ond challenging aspect of dissolution is its multi-scale nature: flow and transport are
influenced by the large-scale properties of the medium, while the chemical reactions
are controlled by the local geometry of the fluid-mineral interface [37, 56, 77–79].

Contrary to the large amounts of data collected from lab experiments, much less is
known about the changes in the pore geometry due to natural dissolution. One of
the reasons for such a situation might be the di%culty in making a comparison of
the dissolved rock geometry with the original one since, in many cases, the latter is
no longer available, as the entire rock mass has undergone the transformation.
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In Ch. 4, we attempt to fill this gap by analyzing the changes in pore-geometry
of rock as a result of natural dissolution. For this purpose, we will use samples of
naturally dissolved limestone rock, which are collected from a karstified area near a
solution pipe. Using the tomography data of the samples, we will first extract the
pore space, and then carry out a comparative study of it by quantifying the changes
in pore geometry of each sample. For quantification, we will use various geometric
properties such as connectivity, flow tortuosity, thickness distribution, and ellipsoid
factor, which are measured using image processing methods. We will show that in
our samples, natural dissolution resulted in an inhomogeneous growth of the pore
space, with pore-merging playing a key role. The occurrence of pore merging is
confirmed by an analytical model of local thickness change as well as by the analysis
of the evolution of geometrical properties. In addition, we will show that dissolution
is strongly focused on largest pores, resulting in a decrease in number of flow-paths
and flow-tortuosity.

1.4 Structure of thesis

This dissertation consists of seven chapters: the first three are introductory, while
the following three present the main findings of the thesis. For the reader without
any prior knowledge of dissolution patterns, Ch. 2 presents the physics behind their
formation. It delves into various concepts, such as reaction-infiltration instability,
dimensionless numbers, breakthrough curves, and pressure curves, which are impor-
tant tools for studying dissolution patterns. The following chapter, Ch. 3, deals with
the modelling of dissolution process. It discusses three main modeling approaches:
micro-scale models, continuum models and pore network models. Ch. 4 is the first
result chapter which presents a study in which we analyze the changes in pore geom-
etry of limestone induced by the natural dissolution. In the method section of this
chapter, we present several image analysis methods, including connectivity, thick-
ness distribution and ellipsoid factor, which are adopted from bone research [80, 81].
In addition, we will investigate the changes in flow characteristics in both samples
by calculating the flow field numerically. The flow field will be used to calculate the
permeability ratio and flow tortuosity.

In the following chapter, Ch. 5, we investigate the influence of rock characteris-
tics and flow rates on the evolution of wormhole shape and its geometry. For this
purpose, we use the tomography data obtained from the dissolution experiments
[41] which were conducted by Dr. Max P. Cooper. We have data from several ex-
periments in which cylindrical cores of two types of rocks, Pi&czów and Wierzbica
limestone, were dissolved at a range of flow rates. This data is processed using
a specially devised segmentation method—volume-based segmentation which com-
bines the typical segmentation process and connected component algorithm—to ex-
tract the shape of the wormholes. The extracted wormholes are then converted to
network graphs following the skeletonization process [82]. These graphs are further
used in the characterization of the geometric characteristics of a wormhole. We first
investigate the influence of di"erent resolutions of tomographic data on the geom-
etry of a wormhole. Next, we study the time evolution of the tip of wormholes in
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Pi&czów limestone by analyzing the time-series 3D X-ray scans. Finally, we analyze
the geometry of the wormholes using the geometrical characteristics such as tortu-
osity and length wastefulness, and study their dependence on the rock structures
and the flow rates.

The next chapter, Ch. 6, presents a study related to the e"ect of micro-scale mixing
process on large-scale dissolution patterns. We first introduce two end members of
mixing rules: full mixing and streamline routing. Then, we discuss the implementa-
tion of both mixing rules in a pore network model, introduced in Ch. 3. Later in the
result sections, we simulate dissolution patterns using both type of mixing rules for
a range of Damköhler numbers in the networks of di"erent heterogeneity. The shape
of the dissolution patterns is analyzed, both qualitatively and quantitatively. We
also investigate the influence of mixing rules on the amount of reactant required for
a wormhole to reach the outlet. Finally, we study the e"ect of system heterogeneity
and the sensitivity of mixing rules towards it.
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Chapter 2

Physics of dissolution patterns

Water is fluid, soft and yielding. But water will wear away rock, which is rigid and

cannot yield. As a rule, whatever is fluid, soft and yielding, will overcome whatever is

rigid and hard. This is another paradox: what is soft is strong.

Lao Tzu (600 BC)

2.1 Introduction

In the general introduction of the thesis (Ch. 1), we have discussed di"erent types
of pattern formation observed in nature, especially dissolution patterns, which is
our main focus. In this chapter, we will discuss more specifically the physics of
dissolution and how it leads to the emergence of patterns in a carbonate rock. In
Sec. 2.2, we will explain the basic concepts behind the emergence of dissolution
patterns from a perturbed dissolution front. Then, in Sec. 2.3, the dimensionless
numbers will be discussed, which control the form of the patterns.

A porous carbonate rock is made of voids and solid grains—fossils and impermeable
minerals—which are usually distributed non-uniformly. More than that—there are
micro-cracks, fractures, and voids etc—in the field, limestone can be very hetero-
geneous across all scales, resulting in a non-uniform distribution of flow paths in
the system. The injected reactant, following these flow paths, preferentially flows
through the regions of larger permeability and dissolves them. The dissolution of the
pore matrix enlarges the existing flow paths, causing them to receive even more flow.
The complex interplay of reaction and transport results in the preferential growth
of some regions over others and leads to the spontaneous appearance of intricate
patterns.

Dissolution patterns are observed both in laboratory experiments and in nature,
where dissolution timescales are extremely long, making them particularly di%cult
to study. In contrast, laboratory experiments allow the use of much stronger acids
than those present in natural systems. This shortens the dissolution timescales
and enables the study of pattern formation in a controlled environment. Hence, to
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understand the physics of the problem, we will review the past experimental studies
in Sec. 2.5.

Many factors can influence the shape of dissolution patterns including physical pa-
rameters, such as flow rate, system length, rock porosity, and permeability, as well
as processes like pore-scale mixing and chemical kinetics. These factors can strongly
influence the dissolution mechanism, potentially leading to entirely di"erent disso-
lution regimes within the same rock. The e"ect of these factors will be discussed in
Sec. 2.7.

2.2 Reactive-infiltration instability

Reaction-infiltration instability is a physical mechanism [26, 83], which is known
to be behind the formation of dissolution patterns. In a dissolving medium, a
planar reaction front is potentially unstable to an arbitrarily small perturbation.
A positive feedback loop of dissolution and transport amplifies certain wavelengths
of the perturbation, resulting in the splitting of the reaction front into finger-like
protrusions. Here the positive feedback loop refers to a closed loop of a sequence of
processes in which each process amplifies itself through the others in the loop. In
reactive transport process, reaction enhances flow, flow enhances the transport of
reactant, which in turn speeds up the reaction.

Using linear stability analysis, Chadam et al. [26] were the first to show that reaction-
infiltration instabilities can arise in dissolving rocks and result in the formation of
fingering patterns. This process can be understood intuitively. Let us consider a
small protrusion in a planar reaction front, as shown in Fig. 2.1a by a solid line. Be-
hind the reaction front, the medium is dissolved and, therefore, has lower hydraulic
resistance compared to the undissolved medium ahead of the front. Incoming flow
preferentially focuses within the bump and brings more fresh reactant to the tip of
the perturbation. As a result, the bump dissolves faster (dashed line in Fig. 2.1a)
compared to the neighborhood and gets amplified.

Fig. 2.1b shows a time-evolution of dissolution fingers from multiple small protru-
sions in microfluidic experiments [84]. Initially, the perturbations exhibit a nearly
sinusoidal pattern. However, as the nonlinear e"ects of dissolution begin to dom-
inate their dynamics, the protrusions evolve into finger-like shapes. These fingers
compete for the available flow and screen each other o". Consequently, the screened
fingers stop growing and merge with the winning fingers.

2.3 Dimensionless parameters

To study a physical phenomenon, it is a common practice to use dimensionless
numbers obtained from non-dimensionalizing the governing di"erential equations.
We will also adopt a similar method by non-dimensionalizing the advection-di"usion-
reaction (ADR) equation, governing the transport of a reactant in the system. The
obtained dimensionless numbers provide a convenient way to compare the relative

18



(a) (b)

Figure 2.1: (a) A perturbation in a planar dissolution front (solid line). The left side
of the perturbation is the dissolved phase, while the right side is the undissolved one.
The flow comes from left to right and focuses within the bump, resulting in faster
growth of the bump. The dashed line shows the new position of the perturbation.
Source: Ortoleva et al. [83] (b) Evolution of fingers from dissolution instabilities in
a fracture dissolution experiment performed in microfluidic setup—gypsum, shown
in grey colour, is dissolved using distilled water. Flow direction is from left to right,
and the dissolved part is black [84].

importance of di"erent terms of the governing equation (e.g. advective flux to
di"usive flux).

2.3.1 Damköhler number
Damköhler number (Da) is a dimensionless number, named after Gerhard Damköhler
(1908 – 1944), used in chemical engineering. It is defined as the ratio of advective
time scale (ωA) to reactive time scale (ωR). In a porous medium in which a reactant
is injected at a constant volumetric flowrate (Q), the advective time scale can be
defined by (ωA = l0/v0). Here l0 is the characteristic length scale over which the
solute is transported advectively, and v0 is the Darcy velocity, defined as (v0 = Q/A),
where A is the cross-section area of the porous medium. Similarly, the reactive time
scale can be defined by (ωR = d0/k), where k is the reaction rate constant (assuming
first-order kinetics), and d0 is the characteristic length for geometry change (i.e pore
diameter or grain size). Using these definitions Da can be written as following:

Da(l0, d0) =
ωA
ωR

=
kl0
v0d0

, (2.1)

When Da ↑ 1, the reaction time scale is smaller in comparison to the time scale
of advective transport of solute to the mineral surface. The reactant is consumed
at the inlet, with less being transported inside the system. On the other hand, for
Da ↓ 1, the advective time scale is smaller, and the reactant is transported and
consumed deep in the system. The whole system dissolves homogeneously as the
reactant invades the whole system and dissolves all the pores throughout the system.
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2.3.2 Péclet number
Péclet number (Pe), named after Jean Claude Eugene Péclet (1793-1857), is a di-
mensionless number which is very useful in studying di"erent transport phenomena.
It is defined as the ratio of di"usive time scale (ωD) to advective time scale (ωA). In
a porous medium, di"usive time scale can be written as (ωD = l20/D) where D is the
di"usion constant of the reactive fluid. Then, Pe can be written as following:

Pe =
ωD
ωA

=
v0l0
D

(2.2)

For larger length scales (Pe ↑ 1), flow in the system is naturally advection-dominated,
while for smaller l0, Pe is ↓ 1; therefore, di"usion dominates the transport phe-
nomenon.

2.4 Penetration length

In dissolving system, penetration length (lp) relates to a natural length scale that
represents the spatial decay of reactant concentration in the mean flow direction
(Fig. 2.2). Bazin et al. [39] reported that in the same physical conditions, samples
with di"erent lengths dissolve di"erently—permeability of the 5cm sample increases
faster compared to the 20cm long sample, indicating a reactant penetration length
lp between 5cm and 20cm. This shows that in laboratory experiments, the ratio
of the penetration length to the system length (lp/L) is an important parameter.
However, this ratio plays a much less important role in natural systems, e.g. karst
conduits or cave systems, where the system size is usually very large [85, 86].

Let us consider a homogeneous porous medium of size L, and specific reactive surface
area s0 (defined as reactive surface area per unit system volume). The reactive
transport in this medium is governed by advection-reaction equation.

dc

dx
=

↔ks0c

v0
(2.3)

On integrating Eq. 2.3, we obtain c = cin exp(↔ks0/v0x) where the term (v0/ks0)
is the penetration length lp. Note that, lp/L = 1/Da(L, 1/s0) according to the
definition 2.1.

In an advection-dominated system, such as described above, penetration length is
proportional to the flow rate. For larger flow rates, penetration length is larger,
which means a similar reactant concentration is available along the whole length
of the system, resulting in a nearly uniform dissolution of whole system at the
same time. On the other hand, for smaller flow rates, the penetration length is also
smaller, and the reactant is consumed close to the inlet, resulting in face dissolution.
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Figure 2.2: A schematic description of decay of reactant concentration c along the
length of the system L with penetration length lp.

2.5 Dissolution patterns in experiments

Studying dissolution patterns is of key importance from geological and industrial
perspectives; however, due to the large length and time scales involved, there is
a limited amount of methods to study these processes. Laboratory acid-flooding
experiments on rock cores o"er precise control over system parameters like pressure,
temperature, and reactant concentration, making them an e%cient way to study the
formation of dissolution patterns. In these experiments, changes in pore space can
be directly measured before, during, and after the tests.

In a core-flooding experiment, a reactant such as hydrochloric acid (HCl), is used
to dissolve samples of a carbonate rock.

2 H+ + CaCO3 Ca2+ + CO2 + H2O (2.4)

One of the first experimental studies related to the formation of dissolution patterns
using core-dissolution experiments was conducted by Hoefner and Fogler [37] in
1988. In this study, cylindrical cores of di"erent carbonate rocks were dissolved
using a reactant in a pressurized system. The experimental setup consists of a high-
pressure cell to which a high-pressure pump is connected, and injection of a reactant
is performed either at a constant flow rate or at constant pressure. Fig. 2.3 shows
the schematic of the setup in which the pump is connected to a reactant source. The
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pump injects a reactant, such as HCl, at the inlet of the cell (bottom) and keeps
the flow continuous. To prevent the flow of reactant around the core, a confining
pressure is applied between the cell wall and the core surface. In addition, to avoid
the formation of CO2 in the gas phase (Eq. 2.4) and keep the flow single-phase, back
pressure is maintained in the sample by a back-pressure regulator downstream of
the sample.

Figure 2.3: A schematic of general core-flood experimental setup.

Using this setup, Hoefner and Fogler [37] dissolved several limestone cores with
a range of acid injection rates. Fig. 2.4 shows the wormholes formed in di"erent
limestone samples with increasing flow rates. A smaller injection rate leads to face
dissolution in which the acid flux is insu%cient to propagate inside the core, and acid
is consumed at the surface (Fig. 2.4a). At slightly higher flow rates, the reaction front
becomes unstable. As a result, the acid starts penetrating inside the pores, creating
a dissolution channel. However, due to the relatively slow velocity, most of the acid is
consumed at the walls of the channel before reaching the tip; therefore, it propagates
slowly and increases its size in a lateral direction to mean flow. The formed wormhole
is very wide near the entrance, with a decrease in diameter along the length. The
required amount of acid for the wormhole to reach the outlet is also very large.
This regime of wormholing is known as a conical regime (Fig. 2.4b). At moderate
flow rates, the channel becomes thinner with a slight branching (Fig. 2.4c). More
unconsumed acid starts reaching the tip of the wormhole. As a result, the wormhole
propagates faster and increases the permeability of the sample significantly while
spending the least amount of acid volume. Further increase in flow rates results in
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Figure 2.4: Dissolution patterns obtained in the experiments conducted by Hoefner
and Fogler [37] by injecting HCl in limestone samples at di"erent flow rates (a)
Illustration of face dissolution is added by the Author (b-g) Adapted from Hoefner
and Fogler [37].

the formation of multiple pathways simultaneously, and the resulting patterns are
highly ramified with stronger branching (Fig. 2.4d-g). With even larger flow rates,
the reactant invades the whole pore space simultaneously and dissolves the sample
uniformly. This regime of dissolution is known as uniform dissolution regime.

Golfier et al. [43] also correlated the transition of dissolution regimes and the re-
sulting change in dissolution patterns to injection rates (i.e. to Pe), and reported
that in water-NaCl system face dissolution and uniform dissolution are observed
at very low and very high injection rates, respectively. At intermediate flow rates,
conical, dominant, and ramified wormholes are observed in sequence as injection
rates increase. In addition, a Pe-Da phase diagram (see Fig. 2.5) was also reported,
based on the numerical simulation of salt dissolution process. Note that, Da in
this study is defined as Da = εl/v where ε is the mass transfer coe%cient, l and
v—similar to the Eq. 2.1—are the pore-scale characteristic length and inlet velocity,
respectively. This definition of Da is essentially similar to our definition of Dae! in
transport-limited dissolution, which we will discuss in Ch. 3.

The diagram reported by Golfier et al. [43] shows that the transition between the
face dissolution, conical, and dominant wormhole regime does not depend only on
the Péclet number but also can be influenced by Damköhler number. For example,
with Pe ↗ 10

→2, no dominant wormholes are observed for any Da regime, while for
Pe > 10

→2, uniform dissolution as well as ramified and dominant wormholes are
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observed, depending on Da.

Figure 2.5: Pe-Da phase diagram for water-salt system where points indicate the
type of wormhole observed in numerical simulations. [43]

A similar variety of wormholes is also reported in several other studies [39, 42–44, 87–
90]. However, the key emphasis is placed usually on dominant wormholes due to
their importance in the oil industry, since they minimize the amount of reactant
needed to significantly increase the permeability of the sample. Experimentally,
this is investigated by measuring the amount of reactant required for a wormhole
to reach the outlet (referred to as breakthrough) as a function of the Damköhler
number.

A typical shape of a breakthrough curve is presented in Fig. 2.6, with a well-defined
minimum corresponding to the Damköhler number at which dominant wormholes
appear. On the other hand, both extremes—low and high Da—of this curve show
a larger amount of reactant volume needed to achieve breakthrough. At low Da,
dissolution occurs across all pore surfaces, leading to significant reactant consump-
tion. At high Da, in the face dissolution regime, the front moves steadily from the
inlet to the outlet, and breakthrough can only be achieved by dissolving the entire
sample, again requiring a large amount of reactant

Fredd and Fogler [38] noted that for di"erent acids the wormholes corresponding to
the optimum Damköhler number are morphologically di"erent (Fig. 2.7) from each
other. For instance, the channels formed with stronger reactant (HCl) and weaker
reactant (acetic acid, HAc) are relatively thinner while the wormholes formed with
chelating agents—organic molecules that release protons (H+ ions) when mixed with
water, forming a weak acid—are wider and di"use. In addition, the wormhole formed
with the weakest acid (HAc) is highly tortuous with the least amount of branching.
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Figure 2.6: Illustration of the dependence of injected volumes of reactant (pore
volume) required to obtain breakthrough on Damköhler number. Note that from
Eq. 2.1, Da is directly related to injection rate Q, (Da → 1/Q).

Figure 2.7: Dominant wormholes formed in limestone-core dissolution experiments
with di"erent type of reactants. Note that, in all these experiments, the reactive
solution prepared from di"erent reactants has same e"ective acid capacity which
means that they all can dissolve at similar rates. Wormholes formed with strong
acid HCl and weak acid (acetic acid, HAc) are relatively thinner than the wormholes
formed with chelating agents (panels 3-6 from left). Furthermore, the branching
intensity varies in the wormholes, with HAc wormhole showing least amount of
branching, while chelating agents showing stronger branching. [38]

Another step forward in research on dissolution patterns was associated with the
advancements in CT scanning. A good example of the level of detail that such an
approach can provide is the work of McDu" et al. [40] who studied wormholing using
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phase-contrast X-ray imaging technique. This method exploits the fact that di"erent
materials have di"erent refractive indices, resulting in a phase-shift in the passing
X-ray beams. The obtained scans provide detailed information on 3D characteristics
of the wormhole by utilizing phase shift enhanced contrast (see Fig. 2.8).

Figure 2.8: Visualization of di"erent wormholes in dissolution experiments per-
formed on Indiana limestone samples. The middle panel corresponds to optimum
injection rate, while the top and bottom panels correspond to lower and higher in-
jection rates with respect to optimum. These visualizations show detailed geometric
features of wormholes, which were not observed in 2D radiographs. [40]

With recent advancements in X-ray micro-CT technology, in the last decade, sev-
eral authors [48–51] attempted to capture the intermediate stages of the wormhole
evolution by scanning a dissolving sample inside the X-ray machine. However, due
to technical limitations the scanning time remained larger than a characteristic
wormhole propagation time. A better time resolution (even up to 125 frames per
experiment) was reported in a recent study by Cooper et al. [41]. Interestingly,
such detailed data revealed that the extension of the tip of the wormhole is highly
non-uniform in time, with periods of slower growth interspersed with sudden jumps.
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2.6 Permeability evolution in dissolving system

The evolving channels in a sample increase its permeability, which can be quantified
by observing pressure drop evolution with time across the sample in the experiments
in which the injection rate of the reactant (Q) remains constant in time. The
correlation of wormhole length with the increasing permeability of the sample can be
explained using a toy model [47, 52, 91]. Let us consider a homogeneous system with
initial permeability K in which a wormhole is growing in the mean flow direction,
left to right (Fig. 2.9). The total length of the system is L, and at a certain instant,
a wormhole has developed up to the length z. Further, let us assume a negligible
hydraulic resistivity in a wormhole, in comparison to that of the surrounding medium
and approximate the flow in the part beyond the wormhole tip (of length L-z) by
a uniform flow. By applying Darcy’s law (Q = K!P/(L ↔ z)), we can obtain a
linear decrease of the total hydraulic resistance of the sample with the length of the
wormhole (Fig. 2.9):

Figure 2.9: (left) A model of dissolving porous medium with a wormhole of length
z inside, shown in grey colour. (right) The corresponding pressure (!P ) drop along
the length in this simplified model, normalized pressure by initial pressure drop
(!P0) without the wormhole.

Hill et al. [91] reported a similar linear pressure curve in core-flood experiments
in which cores of Indiana limestone were dissolved at di"erent injection rates. In
the same study, however, the pressure curve obtained in dolomite dissolution ex-
periments showed a deviation from linearity in terms of plateaus and large drops,
indicating that wormhole progress was not uniform. Several other studies [39, 41, 92]
also reported non-uniform pressure drop curves. For instance, in HCl-limestone sys-
tem Bazin et al. [39] observed plateaus and drops in pressure curve (!P ) in the
dominant wormhole experiment. Similar behaviour is also observed by Izgec et al.
[92], who attributed it to the vugs, where pressure drop is related to the intersection
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of vugs and wormholes. In another experimental study, conducted by Cooper et al.
[41], the non-linear pressure curves were correlated to layers of small porosity. The
wormhole moves faster through these regions, which is accompanied by a significant
change in the permeability of the sample.

The limited understanding of the non-linear behaviour of the (!P ) curve is related
to the lack of information on the evolving dissolution patterns. In most of the studies
[37–39, 43, 45, 47, 87, 93], the X-ray scans of the samples were usually taken either
at the beginning or at the end of experiments, ignoring the details of the temporal
evolution of the pattern. We will return to these matters in Ch. 5

2.7 Other factors influencing dissolution patterns

As already mentioned, dissolution patterns do not depend only on the flow rate and
reaction rate, but also on the characteristics of the rock matrix, such as porosity,
permeability as well as the degree to which these properties are heterogeneous within
the rock [37–39, 43, 47, 87, 92–95].

Porosity refers to the overall void fraction of pore space in a rock, but it also includes
local variations in the sample such as packed regions [41, 96] and larger vugs [92].
These local variations can influence the shape and growth of dissolution channels.
For example, high local permeability of the vugs can lead to flow focusing and attract
the moving tip of the wormhole. On the other hand, the packed regions of lower
porosity act as obstacles to the flow. In core-dissolution experiments, conducted
on Pi&czów limestone samples, Cooper et al. [41] observed that dominant wormhole
progress non-uniformly within the sample. While passing through a packed layer,
wormhole show speed-ups in tip movement, which was correlated to relatively larger
drops in pressure curves. In another study, Petrus and Szymczak [96] reported
that larger porosity contrast between the packed layers increases the competition
between wormholes. The growth of the smaller ones is hindered and entire flux is
directed to the winning channel. The stratification (layers) also a"ected the shape of
the channel with characteristic narrowing within the packed region and the bulbous
widening as it emerged from the layer.

The relation between permeability and porosity is not always simple. A sample with
well-connected but relatively low porosity can have higher permeability, while a sam-
ple with larger porosity can still have lower permeability. Frick et al. [93] showed
that in Austrian limestone samples (permeability range 0.2 - 2md), dissolution pat-
terns are influenced by rock permeability; the channels formed in highly permeable
samples are of dominant type, even at the lower injection rates—it is contrary to the
results reported by other authors [37, 38] who observed conical channels at similar
injection rates. However, Dubetz et al. [95] argued that there is no significant cor-
relation between permeability and breakthrough volumes. Furthermore, Ziauddin
and Bize [97] suggested that the permeability of tip region can also influence the
shape of these patterns. In experiments conducted with rocks of di"erent perme-
ability and porosity, even with similar breakthrough curves, the wormhole formed
in Austin chalk (ϑ ↘ 25% and K ↘ 14md) were more ramified compared to Win-
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terset limestone (ϑ ↘ 16% and K ↘ 17md). The lower permeability of tip region of
Austin chalk wormhole allow acid to explore multiple flowpaths, resulting in a more
branched wormhole. Similar findings of combined e"ect of porosity-permeability are
also supported in several other numerical studies [43, 56].

Summing up, the formation of dissolution patterns is a complex process which can be
influenced by several factors including the rock structures and injection rates. Recent
advancements in imaging and modeling technologies have significantly improved our
understanding of the processes underlying the formation of these patterns. However,
the complexity of wormholing remains challenging due to the non-linear coupling
between processes at micro- and macro-scales. The following chapters will explore
these issues in greater detail, beginning with a discussion of di"erent modeling ap-
proaches for studying dissolution patterns.
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Chapter 3

Numerical modelling of dissolution
process

All models are wrong, but some are useful.

George Box

3.1 Introduction

This chapter aims to give a brief overview of the modelling approaches of dissolution
process and set up a framework for numerical study presented in Ch. 6. In last two
decades, several models have been proposed to study dissolution [37, 38, 45, 56, 66,
79, 98–111], which can be broadly classified into three main categories: pore-scale,
continuum-scale and network models. The representation of scale comparison of
Darcy and pore-scale models is shown in Fig. 3.1.

At pore-scale, the pore space is fully resolved and each point of it is occupied by
either a solid phase or a liquid phase. Therefore, to model dissolution at pore-scale,
an accurate description of pore matrix is required. The first pore-scale models were
introduced in the pioneering work of Békri et al. [98]. These models solve for flow and
reactant transport in the actual, three-dimensional pore-space geometry, built either
numerically or reconstructed from the tomographic data. With recent advances
in X-ray micro-tomography and computational power, there has been a surge in
pore-scale studies [79, 101–110, 112], encompassing the X-ray imaging techniques,
characterization methods, experimental studies, numerical simulation, and various
combination of these approaches. We will discuss these models in detail in Sec. 3.2.2.
Despite the ability to capture accurate pore-scale physics, pore-scale models are
computationally very expensive. To reconstruct the fine details of a pore matrix,
substantial information on pore space is required. Furthermore, the time needed
to model the relevant time scales is often prohibitive. These requirements limit
the pore-scale approaches to micro-scale systems and make them impractical for
studying larger (km-scale) systems.
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Figure 3.1: Representation of a dissolving porous medium at di"erent scales which
are used in modelling. The gray colour represents the matrix phase, while the white
colour represents the empty space (pores). (left) At Darcy scale, porosity of the
medium is a continuous field where the details of porosity are still unresolved. A
wormhole-like feature is visible at this scale. (right) An enlarged view of the region,
marked by the black dot next to the wormhole, shows a reaction front at pore scale
with clearly resolved pores and grains.

Another class of models are continuum scale or Darcy-scale models [43, 113, 114] in
which pore space is represented by a continuous field. An underlying assumption
in this approach is that a representative elementary volume (REV) can be defined
within which the properties of pore space are assumed to be homogeneous and
statistically representative of the larger system. This assumption allows the usage
of continuous equations for fields like porosity, concentration, and Darcy velocity
[109, 115]. We will discuss these models in detail in Sec. 3.2.2. Although these
models are computationally e%cient and widely used, their limitation lies in the
absence of explicit pore space geometry, which makes them less accurate if the
processes such as the competition between the individual pores for the available
reactant become important.

A third approach to study reactive-transport problems is network models in which
porous rock is represented either as a network of interconnected capillaries [37, 56, 66]
or as spherical pores connected by cylindrical channels [116, 117]. Compared to
Darcy scale models where the details of the pore space are smeared out, competi-
tion among pores at individual pore level is possible to capture in network models.
Therefore, in problems where individual pore-level competition is important, net-
work models are a suitable candidate. We will discuss them in detail in Sec. 3.2.3.
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3.2 Dissolution models

3.2.1 Pore-scale models
These models account for the details of pore matrix where each point r in pore space
belongs to either a solid phase or a fluid phase. Hence, the medium properties such as
viscosity and di"usivity can be measured directly and independently. In addition,
the complete flow physics is considered in these models, making them a method
of choice where a detailed study of dissolving porous medium is required. Let us
consider a porous medium where a reactive fluid of constant density ϖ and viscosity
µ is injected into the system. The solid grains are assumed to be impermeable
to flow except if the grains are made of smaller pores through which the di"usion
of ions is allowed [118]. Then the flow is governed by Navier-Stokes equation for
incompressible fluid.

≃ · (uu) +≃(p/ϖ) = µ≃2u; ≃ · u = 0 (3.1)

Here on all pore-grain boundaries, a no-slip boundary condition is applied. In be-
tween the grains, the transport of aqueous species is governed by advection and
di"usion. In advective transport, the species are carried away by bulk flow, while
in di"usion, these species move from regions of higher concentration to regions of
lower concentration due to random molecular motion. The transport equation in
the pores is as follows:

≃ · (uci) = D≃2ci (3.2)

where D is the di"usion coe%cient. The transported reactant chemically dissolves
the minerals at the pore-grain boundary, therefore the chemical reactions can be
incorporated as a reactive boundary condition at the mineral surface as follows:

D(n ·≃ci)S = ↔R(c1, c2, ...cn) (3.3)

where R is the reaction term and the subscript S indicates the mineral surface. For a
single component reaction with linear kinetics, the reaction term can be expressed as
kcS where k is the reaction rate, and cS is the reactant concentration at the mineral
surface. Here, the di"usive flux of ions to the surface (D(n ·≃c)S), is balanced by
their consumption through the chemical reaction (kcS). Finally, the evolution of
pore space can be calculated by utilizing reactive flux

csol
ϱrs
ϱt

= ↔ςD(n ·≃c)Sn (3.4)

where ς is the stoichiometric coe%cient and csol is the molar concentration of the
mineral in the consolidated rock, which is the inverse of the molar volume of the
mineral (csol = 1/vm). It is important to note that neither the flow (Eq. 3.1) nor
the transport equation (Eq. 3.2) includes a time derivative. This time-independence
is a consequence of the time-scale separation between the characteristic time over
which changes in pore geometry occur and the flow and transport relaxation times.
Using scaling analysis [119], it can be shown that in most of the field-related cases
dissolution time scales are much larger than either the concentration or velocity
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relaxation times.

The main computational problems in pore-scale modeling are, how to represent the
mineral-fluid interface and how to update it as the mineral dissolves. To tackle them,
three solution methodologies are proposed [120]. The first is the interface tracking
approach which requires that the mineral–fluid interface is defined by a bounding
curve (2D) or surface (3D). The time evolution of this bounding surface is governed
by an equation of motion [91, 121–124]. The second is the interface reconstruction
method in which evolving porosity field is tracked and the interface is constructed
at each step from its spatial variation [125–127]. Both of these methods assume a
sharp solid-fluid interface. The third approach—di"use-interface models—assumes
that the interface spans multiple computational grid points [128, 129]. The obtained
governing equations can be solved numerically using di"erent numerical methods
including finite-volume, particle-tracking, and lattice Boltzmann methods.

One of the potential applications of the pore-scale modelling approach is to set
up benchmark solutions for upscaled models such as Darcy models. Accordingly,
several experimental studies have validated these models against the measurements
of e’uent concentration [79, 122, 130, 131], and the local dissolution of interface
[108, 109, 132]. However, the system size in these experiments is limited to micro-
scale; therefore the study of the large-scale dissolution patterns using these models
remains of limited use.

3.2.2 Darcy-scale models
In this category of models, a porous media is represented by continuous fields such
as porosity ϑ(r, t)—the fraction of void space—and permeability K, which can vary
in space r and time t. Consequently, the flow physics can be modelled using a
continuum approach where all the fields including concentrations of di"erent aqueous
species and velocity field can evolve as a result of dissolution.

In a saturated porous medium, the flow is governed by Darcy’s law, formulated
by Henry Darcy (1803-1858) based on the experiments. It dictates that the Darcy
velocity v ( = Q/A, where Q is volumetric flow rate, and A is cross-sectional area)
in a porous medium is related to the applied pressure gradient ≃p, the permeability
of the medium, and the viscosity of the fluid µ (Eq. 3.5):

v = ↔K

µ
≃p (3.5)

This needs to be supplemented by the incompressibility condition

≃ · v = 0 (3.6)

The pore matrix can be highly heterogeneous and anisotropic, with properties that
vary locally. In this model, we assume that porosity ϑ(X, t) is the only property
which contains the information of the pore-matrix, and the permeability field K
can be derived from the porosity field. However, there is no universal relationship
between K and ϑ(X, t) and the dependence of K over ϑ could be di"erent for
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di"erent porous medium. We assume a general expression of K ↔ ϑ dependence,
similar to the Kozeny-Carman [115] relationship as follows:

K = K0
ϑn

(1↔ ϑ)2
(3.7)

where K0 is a constant, and for n = 3, we recover the classic Kozeny-Carman equa-
tion, but in general, a di"erent value of n can be used. As mentioned earlier, the
transport is governed by advection and di"usion. However, microscopic di"usion is
further enhanced by the presence of solid grains, which act as obstacles within the
pore matrix. Even small di"usive displacements can cause a molecule to jump be-
tween streamlines, redirecting it along an entirely di"erent path than a neighboring
molecule. This mechanism is known as dispersion and can be expressed as a tensor
(dispersion tensor, D), which depends on the flow rate and porosity of the medium.
Considering these transport mechanisms, the governing equation can be written as
follows:

≃ · (D≃ci)↔ v ·≃ci +R(c1, c2, ....., cn) = 0 (3.8)

Here, the reaction term R, unlike the pore scale models, depends not only on re-
action rate k but also on the specific reactive surface area s(ϑ) in a pore space.
This distinction arises because, at the REV scale, the actual pore geometry is not
explicitly resolved, necessitating introduction of available reactive surface area per
unit volume [120]. For single-component linear chemical reactions controlled by the
reactant concentration, R can be given as follows:

R = ↔ks(ϑ)c (3.9)

here, R < 0 represents the chemical erosion of the mineral. For specific reactive
surface area s(ϑ), a so-called sugar-lump model [74] is often used.

s(ϑ) = 4s0ϑ
m
(1↔ ϑ)n (3.10)

where s0 is a constant. Reflecting the fact that at low porosity, dissolution primarily
occurs through pore expansion, increasing the reactive surface area. In contrast, at
high ϑ, dissolution is better described as grain shrinkage, which reduces the reactive
surface area. At both extremes when there is no surface area exposed to reactive fluid
(ϑ = 0) or the system is completely dissolved (ϑ = 1), s can be assumed negligible
(i.e. s ⇐ 0). Finally, the system of equations can be closed by introducing a porosity
evolution law

csol
ϱϑ

ϱt
= ↔ςR (3.11)

As we argued before, the time scales of flow and transport are much smaller com-
pared to porosity evolution time scale. Therefore, we dropped the time derivatives
in flow (Eq. 3.6) and transport (Eq. 3.8) equations. This ensures the stationarity
of the flow and concentration fields while allowing the porosity to evolve over time
(Eq. 3.11).
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Dimensionless numbers in Darcy models

The dimensionless numbers in Darcy models are derived from non-dimensionlization
of the transport equation (Eq. 3.8). The advantage of the dimensionless form of a
partial di"erential equation (PDE) is a direct comparison of the relative importance
of physical processes represented by that PDE. For that purpose, let us consider
a 1D porous medium with characteristic length scale l0, Darcy velocity (v0), and
specific reactive surface area (s0). A reactant of concentration c0 is injected into the
system. The fields and the spatial coordinates can be scaled as follows

x↑
=

x

l0
; c↑ =

c

c0
; v↑ =

v

v0
; s↑ =

s

s0
(3.12)

Now, for simplicity, by using a 1D steady-state version of Eq. 3.8 with reaction term
from Eq. 3.9, the dimensionless form of the transport equation can be written as
follows:

Dc0
l20

ϱ2c↑

ϱx↑2 ↔ v0c0
v↑

l0

ϱc↑

ϱx↑ ↔ ks↑s0c
↑c0 = 0 (3.13)

for which we get:
1

Pe

ϱ2c↑

ϱx↑2 ↔ v↑
ϱc↑

ϱx↑ ↔ Da(l0, 1/s0)s↑c↑ = 0 (3.14)

where, the expressions, Da(l0, 1/s0) = ks0l0/v0 and Pe = v0l0/D, are analogous to
definitions 2.1 and 2.2, respectively.

The study of reactive transport problems using Darcy scale models is a well-established
approach for which various commercial and open-source codes are available. General
purpose codes were first developed 30 years ago [133–135], and have been under con-
stant development ever since. Some notable examples are PFLOTRAN, CrunchFlow
[136], and PorousFoam [103]. These codes are not only able to simulate multiple
component chemical reactions but also able to solve field scale problems using su-
percomputers. However, dissolution is a highly nonlinear process where reactions
and transport occur at the microscale, while large-scale dissolution patterns emerge
at the macroscale. In Darcy-scale models, the porous medium is represented by
averaged continuous properties, neglecting key micro-scale processes. This includes
local concentration gradients, the precise evolution of streamlines at pore intersec-
tions, and their role in enhancing or suppressing mixing. Such oversimplifications
make Darcy-scale models inadequate for capturing the intricate coupling between
micro- and macro-scale dynamics, which is crucial for understanding the growth and
evolution of large-scale dissolution patterns.

3.2.3 Pore network models
These models introduce a simplified representation of a porous material, either as a
network of interconnected capillaries [37, 56, 66, 137, 138] or as spherical pore bod-
ies connected by cylindrical throats [116, 139–143], o"ering a compromise between
the computational accuracy characterizing the pore-scale models and the ability to
tackle large-scale problems, which are the advantages of Darcy-scale methods.
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Pore-network models (PNM) allow for control of the pore architecture (diameters,
lengths, connectivity), tuning it to represent di"erent rocks. In dissolution problems,
pore network models are able to correctly reproduce the competition between the
individual pores for the reactant flux, which leads to a successful representation of
the variety of spontaneously formed dissolution patterns such as wormholes [66, 144],
including their structure and advancement rate, permeability evolution, and the
non-monotonic relationship between injection rate and fluid volume required for
breakthrough [37, 38, 66]. They were also successfully used to analyze the link
between pore-scale features and large-scale morphologies [56, 137].

In this section, we will discuss PNM in which the pore-space of a rock is represented
using a network of interconnected cylindrical tubes [37, 66, 137, 138] which are
broadened by dissolution. The intersections of the tubes are nodes in the network,
which are assumed to be negligible in volume and only play a role in the mixing
and distribution of reactant concentrations while the reaction takes place in the
tubes. Fig. 3.2 shows a representation of the extracted network from a quasi two-
dimensional porous medium. The lines represent cylindrical tubes (pores) to which
diameters can be assigned using a diameter distribution with given mean d0 and
standard deviation φ, while the red dots mark nodes.

Pore networks of a porous medium can be constructed either directly from micro-CT
images of it [145] or by assigning statistical properties of the medium to a random
network [66]. However, for simplicity, a regular pore network is often preferred. For
example, Hoefner and Fogler [37], and Fredd and Fogler [38] used a hexagonal lattice-
based network for dissolution modelling, while Roded et al. [137] and Roded et al.
[56] used a square lattice-based network. Sharma et al. [138] used a rhombic lattice
based network—essentially a square lattice rotated at 45

↓—to study intersection
mixing e"ects. Fig. 3.3 shows di"erent types of regular pore networks where lines
are capillaries and nodes are red dots.

In this model, the injected fluid is assumed to be incompressible, and the flow in each
pore is considered to be laminar and fully developed. For a pore (ij), joining nodes
i and j, the volumetric flow rate (qij) then is given by Hagen-Poisueille equation

qij = ↔
↼d4ij

128µl0
(pi ↔ pj) (3.15)

where dij is the diameter of pore (ij), pi is the pressure at node i, and µ is the
dynamic viscosity of the fluid. The term ↼d4ij/128µl0 in Eq. (3.15) represents the
hydraulic conductance of a pore (ij) which increases with time as the pore grows.
Finally, the flow conservation condition is applied at each node.

∑

j

qij = 0 (3.16)

where the summation in Eq. (3.16) is taken over all the neighboring nodes directly
connected to node j. As a result, we obtain a system of sparse linear algebraic
equations for pressure, which, after solving, will give the value of pressure at each
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Figure 3.2: (a) A 2D representation of a porous medium with pores and grains. The
grey blobs with dashed lines represent the grains, and the fitted lines represent the
pores. (b) The extracted pore network with nodes as red dots where mixing takes
place. In this representation, it is assumed that pore-space can be fully resolved in
terms of pores (ϑ = 1) and grains (ϑ = 0) and there are no semi-porous objects.
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Figure 3.3: Di"erent type of regular 2D networks: (left) square lattice with 4 coor-
dination number, (middle) rhombic lattice also 4 coordination number, and (right)
hexagonal lattice with 6 neighboring nodes. In the networks, lines are the pores or
capillaries, and red dots are volumeless nodes where mixing takes place. Each pore
has a fixed length, i.e. lattice constant (l0) of the network, and a diameter dij. The
mean flow direction is shown by the arrow, and in the lateral direction, a periodic
boundary condition is applied.

node.

We now can introduce reactant into the system through inlet face by applying fixed
concentration boundary conditions (c = cin). The reactive flux, defined as the num-
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ber of reactant particles consumed in a unit pore surface in unit time, is following:

R = ↔kcw (3.17)

where cw is the reactant concentration available at the pore surface and k, as men-
tioned earlier in Eq. 2.1, is the reaction rate. In addition, to participate in the
reaction, the reactant particles first need to di"use from bulk toward the surface of
the pore. Assuming a steady state bulk concentration (c) and surface concentration
(cw), the di"usive flux can be expressed by

J = ↔DSh

d
(c↔ cw) (3.18)

where Sh is a dimensionless mass transfer coe%cient known as Sherwood number
[146, 147]. The bulk concentration c is calculated by taking a flow-weighted average
of the concentration field over the cross-section of a pore. Finally, the wall con-
centration cw can be expressed in terms of bulk concentration c by equating both
di"usive and reactive flux, which leads to:

cw =
c

1 +
kd
DSh

(3.19)

Using this expression, we can now write the final expression of kinetic rate law in
terms of mean bulk concentration for a pore (ij)

R = ↔ k

1 +
kdij
DSh

c ⇒ ↔ke!(dij)c (3.20)

The parameter g = kdij/DSh in the denominator of Eq. (3.20) accounts for the
hindering e"ect of di"usion on the dissolution rate, particularly pronounced in wider
pores. As a result, the pore surfaces tend to react with a slower e"ective rate, ke!,
which includes the transverse di"usion e"ect. For narrow pores or low reaction rates
(g ↓ 1), dissolution is reaction-limited (ke! ↘ k), and di"usion is fast enough to
maintain the uniform concentration profile along the diameter of the pore. When the
pores are large or reaction rates are high, then dissolution becomes transport-limited
(g ↑ 1) and the e"ective reaction rate is controlled by di"usion. The Sherwood
number itself depends on kd/D, but the variation is relatively small [147], bounded
by two asymptotic limits: high reaction rates (transport limit) and low reaction rates
(reaction limit). For circular cross section, these limits correspond to Sh = 4.861 and
Sh = 5.385, respectively [148]. In practice, Sh is often assumed to be approximated
by a constant (e.g. Sh = 5 is used by Sharma et al. [138])

The reactant concentration decays along the length of the pore due to its consump-
tion at pore walls, which can be obtained from mass balance [66]

qij
dc

dx
= ↔↼dijke!c (3.21)

where (x) is the axial coordinate and di"usion along the axial direction is neglected.
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By solving Eq. (3.20) for a constant diameter, we obtain an expression of concen-
tration decay along the length of the pore (Eq. 3.22).

c(x) = cin
ij exp(↔

↼dijke!

qij
x) (3.22)

here cin
ij is the concentration at the inlet of the pore ij. Eq. 3.22 can also be solved

for the decay of concentration along the whole length lij for pore ij with a uniform
diameter, which yields

cout
ij = cin

ij exp(↔
↼dijke!

qij
l0) (3.23)

These equations need to be supplemented with mixing rules at all the pore inter-
sections. For mixing of concentrations at intersections, it is usually assumed that
incoming reactant concentrations have enough residence time to mix completely and
the final outgoing concentration is calculated by taking a flux-weighted average of
incoming concentrations. More specifically, for a node i with incoming concentra-
tions cout

ij from pore-outlets (j), the expression of outgoing concentration cin
ij to pore

inlets (k) is:
cin
ik = (

∑

j

qjic
out
ji )/(

∑

j

qji) (3.24)

where, for a node i, the sum is taken over all the neighbouring pores (ij) connected
to that node (i), which are bringing flow to the node while ik refers to the one of
the outgoing pores into which the final concentration given by Eq. (3.24) is entering.
By solving Eq. (3.23) and (3.24) together, we again obtain a system of sparse linear
equations which is solved for the concentration at the intersections.

To close the system of equations, the final element of this model is the erosion
equation which governs the evolution of pore diameters [66, 138].

ϱt(dij/2) =
ke!

ςcsol
c (3.25)

As we argued before in Darcy and pore-scale models, the time-scales of dissolution
are significantly larger. Therefore, the time-scales of flow and transport can be
neglected [66]. This assumption is crucial for the network model to work because in
solving the transport equations, the time-dependent terms (ϱtc) are neglected, and
a quasi-static approximation is adopted. Next, by using Eq. (3.25), one can obtain
the volume of material removed from the walls of the pores with diameter d over
time !t.

!V =
↼dkeff!t

ςcsol

∫ l

0

c(z)dz = !tq
c0

csolς
(1↔ exp(↔↼dkeff l/q)) (3.26)

Within the network model, it is assumed that a pore grows in diameter uniformly
along the length and maintains its cylindrical shape [37, 38]. Hence, the above
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mentioned change in volume corresponds to an increase in the pore diameter by

!d =
!V

↼dl
=

2!tq

↼dl

c0
csolς

(1↔ exp(↔↼dkeff l/q)) (3.27)

For more details about the implementation of this network model, we refer the reader
to Roded et al. [56], Budek and Szymczak [66] and Sharma et al. [138].

Dimensionless numbers in pore network models

In this network model, instead of the traditional approach of introducing Da and
Pe, we define two dimensionless numbers G and Dae!, which are derived at pore
scale using a single tube model [66], and account for the combined e"ect of flow
rate, reaction rate, and transverse di"usion. As given in Eq. (3.20), parameter
g(dij), at an individual pore level, accounts for the relative strength of reaction and
transverse di"usion. We can define a characteristic value of g at the sample level in
the following manner:

G =
kd0
DSh

(3.28)

Here, G, which plays a similar role to Thiele’s module in chemical engineering [149],
characterizes the hindering e"ect of the di"usive transport on the dissolution rate
throughout the sample. Note that d0 in Eq. (3.28) is the average diameter in the
system.

Another important parameter in our model is the e"ective Damköhler number (Dae!)
which is related to the exponent in Eq. 3.23.

Dae! =
↼d0ke!l0

q0
=

↼d0kl0
q0(1 +G)

(3.29)

where q0 is a characteristic initial volumetric flux in a pore. It is noteworthy to
mention that Dae! depends on G and, therefore, accounts for transverse di"usion in
the pore. Budek and Szymczak [66] has shown that Dae! has stronger influence on
the shape of dissolution patterns than G.

Note that this definition (Eq. 3.29) is consistent with our earlier definitions of the
Damköhler number. Substitution of q0 = ↼d20⇑v0⇓/4 leads to Dae! = ke!l0/d0⇑v0⇓
which is of the same form as Eq. 2.1, only with k replaced by the e"ective reaction
rate. Finally, we can define the dimensionless time t̂ which is given by

t̂ =
2k↽t

d0
(3.30)

where ↽ = c0/ςcsol is the acid capacity number, which is defined as the ratio of
number of molecules of reactant per unit volume of incoming fluid to the number of
molecules per unit volume of a mineral.

Concluding this chapter, we introduced di"erent type of dissolution models, ranging
from micro-scale models which utilize the information of pore space, to continuum
models such as Darcy models in which the medium properties are characterized by

41



continuous fields such as porosity and permeability. These models are highly accu-
rate within their specific application ranges. However, they struggle to bridge micro-
scale processes, such as pore-scale mixing, with large-scale dissolution. For example,
while pore-scale models e"ectively capture detailed physics, they are restricted to
very small systems. In contrast, Darcy models are well-suited for field-scale prob-
lems but lack mechanisms to incorporate micro-scale processes. The alternative is
the third model we discussed (i.e. network model) in which the pore-space is repre-
sented as interconnected capillaries. These models are able to capture the pore-scale
physics without compromising the size of the system. Therefore, in Ch. 6, we will
take advantage of network models in investigating the influence of pore-scale mixing
rules on network scale dissolution patterns.
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Chapter 4

Pore merging and flow focusing:
Comparative study of undissolved
and karstified limestone based on
micro-tomography

There is no royal road to geometry

Euclid

4.1 Introduction

Building on the previous chapters that reviewed the dynamics of dissolution finger
formation based on past studies, this chapter and the following ones present the
original research of this thesis. The results of this study have been published [150].

Dissolution leads to permanent changes in the rock’s pore space, either increasing or
decreasing system heterogeneity. Penetration lengths comparable to the system size
result in uniform dissolution, which homogenizes the system, while shorter penetra-
tion lengths lead to channel formation that increases heterogeneity. The mechanisms
behind the formation of dissolution patterns are usually explored through labora-
tory experiments, where reactions occur faster than in natural dissolution processes.
Pore-space changes in such studies are often assessed using micro-tomography imag-
ing [48, 53, 67–69, 71], allowing for the quantification of modifications in rock struc-
ture, including variations in reactive surface area, connectivity, and tortuosity, and
linking these changes to reaction progress and the evolution of flow paths in the
sample.

On the contrary, in case of natural dissolution much less is known about the changes
of pore geometry of a rock (see, however, [151, 152]). The pore geometries could
evolve through di"erent mechanisms such as pore-enlarging, merging, or a combi-
nation of both. In this chapter, we will argue that this is indeed the case. This
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Figure 4.1: Solution pipes in Smerdyna quarry with locations of samples S1 and S2.

study [150] is among the first original works that investigate the natural dissolution-
induced changes in pore geometry using the collected limestone samples from karsti-
fied area. We will focus on di"erent mechanisms, through which pore-geometry can
evolve, by performing a comparative study of undissolved and karstified limestone
samples. In addition, we will explore changes in the geometrical properties of pore
space.

To investigate the influence of natural dissolution over a rock, we will perform a
comparative study between two samples. One of them is collected from a karstified
area, where, due to natural dissolution, an intense flow focusing took place, resulting
in the formation of solution pipes which are freshly exposed due to mining activity
[153, 154] (see Fig. 4.1). The presence of spontaneous piping indicates that the
rock in the immediate vicinity of the pipes has been exposed to the aggressive flow,
leading to the chemical erosion of the rock matrix while the rest of the rock masses
between the pipes remained largely una"ected by karstification. The second sample
belongs to the unkarstified area. Details of these samples will be discussed in Sec. 4.2.

Comparison of these samples, provided us a unique opportunity to characterize the
changes in pore geometry induced by natural dissolution. The host rock has around
40% porosity, and pore-space is very irregular with extensively interconnected pores,
which means the merging of pores might play an important role in pore-space evolu-
tion. The irregular geometry and lack of distinct pore-throats complicate the usage
of conventional tools for pore geometry analysis, such as identifying individual pores
and throats, and the subsequent calculation of pore-size distributions. Consequently,
an alternative approach is required for the characterization of such a geometry lack-
ing well-separated pore structures. For this purpose, we have adopted the geometri-
cal and topological characteristics developed for bone research [80, 81] such as local
thickness, ellipsoid factor, and connectivity, which will be introduced in Sec. 4.3.
Furthermore, we have also integrated the data analysis of micro-tomography images
with simple analytical models, which enabled us to quantify the impact of pore-
merging and inhomogeneous dissolution in the natural dissolution of the analyzed
samples. The results are discussed in Sec. 4.4
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4.2 Materials and methods

4.2.1 Collection of samples
The study site is near Smerdyna, Poland, approximately 12 km northeast of Staszów.
The mining activities provide extensive exposures of mid-Miocene calcarenite for-
mations characterized by intense epikarst features. The carbonate content in cal-
carenites of Chmielnik Formation around Smerdyna is, on average, more than 90%
[153]. These calcarenites are covered by uncemented glacial till up to 5 m, which
serves as the source material for filling solution pipes [153, 155].

Two samples of Miocene calcarenites, referred to as S1 and S2, were obtained
from a fresh exposure within one of the quarries, where extensive epikarst devel-
opment—mainly in the form of solution pipes which can reach a diameter of about
0.5 m and length up to 6 m (cf. Fig. 4.1)—is observed on the open cut walls. The
samples are taken along the axis perpendicular to the pipe in a cylindrical shape
with a diameter of 2.2 cm and length of 2.4 cm. Sample S1 was collected from a
location of approximately 1.5 m away from the solution pipe, while sample S2 was
extracted directly from the side of a long-and-wide pipe such that the top of the
cylinder aligned with the surface of the pipe.

Visual examination of sample S2 reveals it to be more porous and much softer than
S1, almost at the edge of crumbling. This di"erence is corroborated by the porosity
measurements conducted using the hydrostatic method, ISO 5017, which gives the
porosity values of sample S1 at ϑ1 = 39.35 ± 0.8% and of S2 at ϑ2 = 50.7 ± 0.6%.
The observed porosity di"erence is likely attributed to the dissolution of sample S2
by CO2-saturated water, which was focused in the pipe. Consequently, we have the
opportunity to observe the di"erence between a naturally dissolved sample, S2, and
a relatively undissolved sample, S1, originating from the same host rock.

Figure 4.2: The tomographic images of the undissolved sample (S1, left) and natu-
rally dissolved sample (S2, right) [150]
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4.2.2 X-ray microtomography
The collected samples were scanned at 26 µm resolution using an Xradia MicroXCT-
200 X-ray imaging system at the Institute of Paleobiology, Polish Academy of Sci-
ences. The obtained scans were of 1024⇔ 1024 pixels with 648 slices, each in 16-bit
grayscale format.

An image processing software, ImageJ [156], is used to analyze the obtained X-ray
microtomgoraphy scans. Fig. 4.2 shows a single slice of obtained scans for both
samples, S1 and S2. To facilitate comparison between the samples, a cubic re-
gion of interest (ROI) was selected in each, measuring 5064 voxels corresponding to
13.2 mm3 in size. Furthermore, the image stacks were converted to 8-bit images to
reduce the data size for computational purposes. Finally, for segmentation process,
a grayscale threshold value is chosen by tuning it to match the experimentally mea-
sured porosity values of the respective samples. The variation of porosity within the
cores remained relatively small, within 3%, and no macroscopic porosity gradients
were observed. Notably, the scans (as shown in Fig. 4.2) confirm a considerably
rougher appearance of naturally dissolved sample, S2. However, the objective of
this study is to quantitatively characterize these di"erences to gain insights into the
dissolution process.

4.2.3 Numerically eroded sample
In order to investigate the similarities and di"erences between natural dissolution
and homogeneous dissolution, we have created a numerically generated pore geome-
try from segmented undissolved sample, S1. The segmented geometry is numerically
dissolved by removing pixels randomly from pores/grains boundaries with proba-
bility P which is tuned to ensure a total porosity increment of 11.35%, precisely
matching the di"erence between the sample S1 and S2. Following numerical ero-
sion, we have applied a median filter with a radius of one voxel to smooth out the
boundaries between pores and grains. Since each voxel at pore-grain boundary has
same probability of removal, such procedure mimics a fully homogeneous dissolution
of rock. By construction, the porosity of the resulting geometry (hereafter referred
to as sample S3) matches that of sample S2. Moreover, to maintain consistency, we
have applied an identical median filter to the original geometries of both S1 and S2.

4.3 Pore space characterization

In both collected samples, the pore space has highly irregular geometry which is com-
prised of a single connected component without distinct pore bodies and throats.
This makes it di%cult to apply standard tools for pore-space analysis such as iden-
tification of individual pores and subsequent calculation of pore size distribution.
The division of the pore space into individual pores becomes somewhat arbitrary
in such cases, largely reliant on the parameters utilized in the pore-segmentation
algorithm (watershedding) [157]. The alternative, in such cases, is to employ con-
tinuous measures of pore (and grain) space, such as local-thickness and ellipsoid
factors [80, 81], which are defined at each point in the sample. However, for samples
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Figure 4.3: Numerical erosion of the samples: starting from the undissolved sample
(S1, with pores depicted in yellow and rock matrix - in white) we produce a ho-
mogeneously dissolved one (S3) by removing a fraction of the voxels at pore-grain
boundaries and smoothing it using median filter (marked in red in the figure) [150]

with smaller porosity, a standard pore-network extraction algorithm —capable of
identifying pore bodies and throats—combined with mercury intrusion porosimetry
remains a viable alternative [71, 158].

4.3.1 Local thickness
One of the most important measures to characterize such an interconnected pore
space is the local thickness. It is defined locally at each point by fitting the largest
possible sphere within the pore, containing that point, as depicted in Fig. 4.4 [80, 81].
The diameter of this sphere is the local thickness at that point. It is important
to note that the local thickness di"ers from pore diameter and pore throat size,
providing an independent measure of the pore extent.

In the context of digital rocks physics, the concept of local thickness has been uti-
lized in a variety of applications: in multiphase flow problems to characterize the
pore-scale configurations of fluids [159, 160], in the characterization of pore space
constrictions to interpret mercury intrusion porosimetry experiments [161], and-of
particular relevance in present context-to quantify the opening of pore spaces during
the dissolution experiments [162].

In this work, to calculate the local thickness (as well as other measures discussed
below), we used an image processing algorithm, BoneJ, developed for trabecular
bone analysis and implemented in ImageJ [163]. In fact, the pore space in trabecular
bone exhibits numerous similarities with the extended and irregular pore space of
analyzed rock samples. Notably, the concept of local thickness can also be employed
for a grain phase, following an analogous methodology to that used for the thickness
of pore space, by looking for the largest sphere fitting in the grain phase only, which
encompasses the point of measurement.
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Figure 4.4: Left: Schematic illustration of a local thickness measurement. Right:
thickness map of a cross-section of sample S1 [150].

4.3.2 Ellipsoid factor and Flinn diagram
Pore space or matrix can be further characterized using the local thickness method
by incorporating additional geometric information about the surrounding space at
a specific point of interest. This is achieved locally by fitting a maximum ellipsoid
instead of a sphere. We refer the reader to Doube [164] for a comprehensive expla-
nation. For an ellipsoid with axes A ↗ B ↗ C, the ellipsoid factor (EF ) is defined
as the di"erence in the axes ratios:

EF =
A

B
↔ B

C
,

This factor, EF , distinguishes between oblate (pancake-like) shape, indicated by
A/B ⇐ 0 and B/C ⇐ 1, and prolate (cigar-like) shapes, indicated by A/B ⇐ 1

and B/C ⇐ 0. For illustration purposes, we employ the Flinn diagram [164, 165],
a two-dimensional plot with coordinates of A/B versus B/C.

4.3.3 Connectivity
The interconnectedness of the pore space can be measured using connectivity ⇀1
which, in the context of a graph or a network, corresponds to the maximum number
of edges (links) that can be removed without disconnecting the structure into sep-
arate parts [166]. This measure is a topological invariant of pore space, hence it is
preserved under deformations as long as they do not involve cutting of the grains or
filling the holes. Euler-characteristic ⇁ is another well-known topological invariant
that relates to connectivity by the Euler-Poincare formula, which for 3D geometry
is expressed as:

⇁ = ⇀0 ↔ ⇀1 + ⇀2,

where ⇀0 and ⇀2 are zeroth and second Betti numbers, respectively [167]. The first
Betti number ⇀1 corresponds to connectivity. In the context of rock matrix, ⇀0

can be interpreted as the number of connected pieces or components of the rock,
typically equal to unity. Conversely, ⇀2 indicates the number of cavities in the rock
[166] which may be greater than zero in the presence of closed porosity.
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BoneJ calculates connectivity by relating it to these Euler characteristics. To do so,
it purifies the sample first by filling all closed pores and therefore setting ⇀2 = 0.

4.3.4 Permeability, tortuosity and velocity distribution
We have also employed computational modelling of the flow field through the ROI
of our samples to supplement the analysis of the geometric characterization of the
pore space. Lattice Boltzmann method, implemented in Palabos library [168], is
used to solve the Stokes equation within the pore space which is obtained from
the segmented tomographic images. The absolute permeability of the sample is
calculated by integrating the flow velocity across the cross-section. Additionally,
tortuosity is calculated as:

ω =
⇑u⇓
⇑ux⇓

, (4.1)

where ⇑u⇓ is the average magnitude of the Darcy velocity over the entire sample
volume and ⇑ux⇓ is the volumetric average of its component along the macroscopic
flow direction [169]. Furthermore, we analyze the velocity distributions for both
samples and compare them.

4.4 Results and Discussions

In this comparative study, we analyze the pore geometry by comparing the ROI of
the samples S1 and S2, and the numerically eroded sample S3, which serves as a
reference for homogeneous dissolution.

As previously mentioned, the samples are highly porous (→40% primary porosity)
even before dissolution, exhibiting a complex and highly irregular pore structure
with high reactive surface area. In the segmented images, a direct count of sides of
voxels on the pore-grain boundaries gives an estimation of a specific surface area,
s1, around 10 mm2/mm3 which is comparatively larger than the other limestones of
similar porosity [74]. Given the high porosity and reactive surface area of a sample,
even uniform dissolution may induce significant changes in pore space topology, as
some walls between pores will be completely dissolved. Consequently, we anticipate
that pore merging might be an important process in Smerdyna limestone. Indeed,
the estimated reactive surface area of the dissolved sample is approximately (s2 ↘ 9.1
mm2/mm3) which is around 10% smaller compared to s1. The decrease of reactive
surface area, s, during dissolution, indicates that pore merging plays a significant
role in the dissolution process, which is fundamentally di"erent from the dissolution
process of packed limestones where the dilation of the pores is a dominating process
and no merging takes place.

Fig. 4.5 illustrates the distribution of measured local thickness for samples S1, S2,
and S3, representing the number of voxels associated with a specific local thickness.
BoneJ, a plugin of ImageJ, is used to obtain the distributions from the segmented
images, and a local Gaussian filter is applied to smooth out the distribution curves.
The smoothing of the curves removes the artificial variability in data resulting from
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the voxelization e"ects in small pores.

Figure 4.5: Thickness distribution for samples S1, S2 and S3. The counts correspond
to the number of voxels with thickness in the range (b↔ !b

2 , b+ !b
2 ) with the bin size

!b = 0.26 µm [150].

We observed that the distributions of S2 and S3 overlap for small local thicknesses,
below 100 µm. When interpreting these data, it is important to note that S3 has
been obtained from the fully uniform dissolution of S1 by the removal of a layer
with uniform thickness across the entire rock matrix. The overlap of local thickness
distributions, Pth(b), for small b values indicates that during the natural dissolution,
the smallest pores grow in size in an approximately uniform manner. Conversely, the
tail of the thickness distribution Pth(b), corresponding to larger pores, for dissolved
sample S2 is significantly higher, not only compared to undissolved sample S1 but
also with respect to the uniformly eroded sample S3. This suggests that the majority
of the dissolution process has been focused on the largest pore spaces.

As previously noted, no macroscopic porosity gradients were observed in the dis-
solved sample, leading us to the conclusion that the penetration length of the reac-
tant was significantly larger than the sample size. This is commonly referred to as
the uniform dissolution regime [37, 43, 44, 53, 170], in the sense that the dissolution
takes place throughout the rock matrix rather than being localized near the inlet of
a reactive fluid. However, if the dissolution was truly uniform across the pore space,
then the statistical characteristics of the naturally dissolved sample (S2) should re-
semble the characteristics of the numerically dissolved sample (S3). This is clearly
not the case, as evidenced by the preferential dissolution of the largest pore spaces.

50



It is important to mention that this phenomenon, characterized by the relatively
greater dissolution of larger pore structures, is not related to the concept of pore-
controlled solubility [171, 172]. Indeed, the solubility dependence on pore size arises
from the interphase surface tension.

c(r) = c↔eωε/NAkBTr

where ↽ is the interfacial energy, r is the pore size, NA is Avogadro’s number, T
is the temperature, ς is the mineral molar volume and c↔ is the bulk solubility.
Nonetheless, in the case of calcite, the interfacial energy significantly contributes to
the solubility for pores smaller than 1µm [173], well below the size range considered
here.

Instead, we draw a connection between our observations and the experimental find-
ings of Menke et al. [53]. In their study, they conducted a series of dissolution ex-
periments on limestone samples by dissolving them in a uniform dissolution regime
using CO2-saturated brine. They found that the heterogeneity of the rock facilitates
the formation of preferential flow paths which focus the majority of the reactant on
a relatively limited portion of the surface of the rock. Since the permeability of the
pore structures increases significantly with pore size (as indicated by the local thick-
ness), we anticipate that these preferential pathways primarily involve the regions
with high thickness, which should result in the most intense growth of pore space, as
indeed observed in Fig. 4.5. Qajar and Arns [71] and Egermann et al. [174] reported
similar findings of preferential enlargement of the pores in their experimental studies
in which they analyzed the dissolution of limestone in a uniform dissolution regime.

Thickness (µm) S1 S2 S3
pores (max) 588 ± 52 1097 ± 159 641 ± 43
pores (mean) 184 ± 8 261 ± 15 221 ± 9
pores (std) 68 ± 3 109± 12 75 ± 3
grains (max) 840 ± 48 764 ± 51 807 ± 43
grains (mean) 245 ± 5 262 ± 7 226 ± 4
grains (std) 90 ± 4 104 ± 4 87 ± 4

Table 4.1: Characteristics of the thickness distribution of the samples S1-S3

Further insight into the characteristics of natural dissolution can be obtained from
the study of distribution statistics, as presented in Table 4.1. Before we discuss these
results, it is important to note that during the dissolution process, the local thickness
of pore space may increase through two di"erent mechanisms: firstly, through the
enlargement of individual pores and secondly, by merging of pores. If the former
takes place without the latter, the average thickness increase (!b) can be calculated
by balancing the gain of the volume of pores (!V → ϑ2 ↔ ϑ1) to the surface area of
pores times “shift" of the pore-grain boundary (!b/2).

!b ↘ 2(ϕ2 ↔ ϕ1)/s1 = 22.7µm
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The above calculation shows a much smaller increase in local thickness compared to
the thickness di"erence between the numerically eroded sample S3 and the undis-
solved sample S1, which is approximately 34 µm. This implies that the merging
plays a significant role in the increase of local thickness, consistent with the high
porosity of the original sample. Conversely, the increase in local thickness in the
naturally dissolved sample S2 compared to S1 is even larger, exceeding 70 µm. This
further suggests that the dissolution is non-uniform and predominantly occurs in
regions with the largest local thickness. Since these regions contribute dominantly
to the average (scaling as b3), any additional increase in their local thickness leads
to a substantial growth of ⇑b⇓.

Another noteworthy observation based on the data presented in Table 4.1 is that,
while the mean thickness of pore space in the dissolved sample is significantly larger
than the mean thickness of an undissolved one, the mean thickness of grains (rock
phase) remains approximately the same. Intuitively, one might anticipate these two
e"ects to balance each other, with the thickness of grains decreasing by a similar
amount as the thickness of pores increased. This assumption would hold if the
pores in the samples are well-separated. Nevertheless, as we will discuss further,
the merging of pores disrupts this balance. To elucidate this point, we introduce
a two-dimensional conceptual model (Fig. 4.6) made with a specific arrangement
of circular grains in which a smaller grain is surrounded by several larger grains
and pore spaces, which merge as a result of the dissolution. Merging of the pores
removes the ‘obstacles’, allowing a much larger sphere or ellipse to be inscribed
than when such ‘obstacles’ exist (as illustrated by the small circle in the middle of
Fig. 4.6(left)). This results in an additional thickness increase beyond that caused
solely by the shifting of the rock/pore boundary. For the details of this model, the
reader is referred to Sharma et al. [150].

Figure 4.6: A simple conceptual model showing the asymmetry between growth
of pore thickness and decrease of grain thickness: initial geometry (A), and the
geometry after the dissolution (B). The blue circles represent grains while the in-
between white space represents pores. The grains in (A) shrink and the small one
completely vanishes due to dissolution, resulting in larger pore space in (B) [150].

In three dimensional case, it becomes evident that not all pore shapes, while merging,
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experience a significant increase in their average local thickness: the largest relative
increase is anticipated in oblate or pancake-like shapes, which have similar depths
as their initial local thickness (Fig. 4.7). When two such pores merge, their local
thickness can increase significantly. Conversely, if two prolate (cigar-like ellipsoids)
shapes merge, the increase in their local thickness is only marginal.

Consequently, if we claim that the local thickness increases due to pore merging, we
must also ensure that at least some of the pores are of the oblate shape. This is
because merging between two prolate shapes, or even between a prolate and an oblate
shape, results in a relatively smaller increase in local thickness. This phenomenon
can be observed in the corresponding Flinn diagram for an undissolved sample, as
depicted in Fig. 4.8, which shows the fraction of pore volume for which the largest
inscribed ellipsoid has specific values of A/B and B/C (as indicated on the axes).
Small A/B and relatively large B/C ratios characterize the oblate shapes while the
opposite corresponds to prolate shapes. Although the majority of the pore shapes
are neither oblate nor prolate, there is in fact a significant fraction of oblate-shaped
pores in our sample.

S1 S2 S3
⇁ 139987 82438 103955

Table 4.2: Connectivity (⇁) for samples S1-S3.

We also study the changes in pore structure due to natural dissolution using connec-
tivity ⇁. Change in connectivity is a direct indicator of pore-merging in the sample,
since ⇁ is a topological invariant pore enlargening without merging does not change
it. Table 4.2 shows the measured connectivity in all three samples. The natural
dissolution results in a substantial change in ⇁ with a 25% decrease in connectiv-
ity between S1 and S3. This is primarily due to merging associated with uniform
dissolution of the pore space. Conversely, the dissolved sample S2 shows an addi-
tional 20% decrease in connectivity, which is attributed to extra merging due to the
focusing of dissolution in the largest pore spaces.

Finally, the changes in pore space are also reflected in the flow characteristics, the
description of which is given in Section 4.3.4. The dissolution results in a large
increase in rock permeability as the dissolved sample is characterized by a larger
overall permeability compared to the undissolved one, with a ratio of (K2/K1 ↘
4.15). This exceeds the expected calculated values from Kozeny-Carman equation
(K(ϑ) → ϑ3/(1↔ ϑ)2), which would yield the ratio (K2/K1) around 3.24, indicating
an additional focusing of flow in larger pores. The tortuosity (ω) of the samples is
calculated using Eq. (4.1) which yields (ω = 1.463) for the undissolved sample and
(ω = 1.323) for the dissolved sample. The decrease of tortuosity during dissolution is
an indication of straightening of flow paths, which is consistent with the experimental
findings of Luquot et al. [68] and Pereira Nunes et al. [107]. Notably, Luquot et al.
[68] observed that a significant (>10%) decrease in tortuosity is usually associated
with the uniform dissolution regime, whereas the changes in tortuosity are relatively
smaller in wormholing regime.
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Figure 4.7: Merging of two oblate spheroidal pores (A), an oblate and prolate pore
(B), and two prolate spheroidal pores (C). The left column shows the pores just
before merging, in the right column the pores are enlarged by dissolution and they
intersect. Red balls correspond to the maximal inscribed spheres inside the pores. In
(C) the increase of thickness is only due to the dissolution of the larger pore, with no
contribution from merging. In (B) there is a relatively small, but non-zero, increase
in b due to merging. Finally, in (C) there is a significant increase of thickness, most
of it due to merging, with the final b of the order of the sum of the thicknesses of
the original pores, b12 ↘ b1 + b2 [150].
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0.0

Figure 4.8: Flinn diagram for the undissolved sample. The colors indicate value of
the contribution to the total pore volume coming from specific shape - i.e. volumes
for which the largest inscribed ellipsoid has values of A/B and B/C from specific
ranges. All contributions sum to 1. Oblate shapes correspond to small A/B and
relatively large B/C [150].

Confirmation of the presence of faster-flowing region in the sample is further sup-
ported by the analysis of the velocity distribution (Fig. 4.9) which shows a noticeable
shift towards higher values with an emergence of a fat tail for large velocities.

4.5 Conclusions

In this study, we have investigated the changes of pore space geometry incurred in
natural samples as a result of dissolution. The small porosity gradients observed
in a dissolved sample led us to the conclusion that dissolution proceeded in a uni-
form regime, with a reactant penetration length much larger than the system size.
Naively, one would expect that uniform dissolution should result in the removal of
a constant layer of mineral from all the rock surfaces and the associated increase
in the local thickness by !b = 2!ϕ/s, however, the actual increase in thickness is
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Figure 4.9: The distribution of velocities in the dissolved and undissolved sample.
The velocities are normalized by the mean velocity in the undissolved sample. The
bin size used to calculate the counts is ! = 0.004 [150].

much larger. One important mechanism is merging of the pores, which is prevalent
in a sample of such high porosity. Merging can significantly increase the thickness
of the pore space; in the extreme case (if the merging pores are oblate in shape),
the merged pore will have a thickness equal to the sum of the thicknesses of the
constituents. However, it turns out that merging itself cannot explain all of the
changes in the pore-space geometry. We observe strong focusing of dissolution in
the largest pore spaces, which can be described in terms of the uniform channeling
regime, with the emergence of preferential pathways linking the regions of the high-
est local permeability. This is also reflected in the decrease of tortuosity of the flow
paths, and the increase of the fraction of the faster flow in the sample.

From a more general perspective, a set of tools presented in this chapter should
allow one to delineate the e"ects of uniform dissolution of individual pores, merging
and emergence of preferential flow paths during dissolution, both in natural and
laboratory settings.
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Chapter 5

Geometric characterization of
wormhole shape in core-dissolution
and influence of rock structures

There is geometry in the humming of the strings, there is music in the spacing of the

spheres.

Pythagoras

5.1 Introduction

This chapter is also the original work of the Author and contains both published
[41] and unpublished findings. In the published article [41], Author has contributed
significantly by developing image-processing methods to analyze the tomographic
images of conducted experiments. The discussion will cover those results in detail,
along with new findings that further expand upon the study.

In the previous chapter, we discussed how dissolution changes the pore space and
therefore influences the rock heterogeneity. However, the resulting dissolution pat-
terns and their growth dynamics can also be influenced by the structural features
of the rock, such as microfacies. This influence is not easy to observe as the worm-
hole usually forms inside a rock, shielded from the naked eye by the rock matrix.
The first attempts to study the growth of wormholes were thus limited to either
a quasi-2D systems [46] or observing the emergence of channels at the inlet and
outlet of 3D systems. A significant advancement was casting Wood’s metal into the
formed channel [37, 45]. After casting, the remaining sample is dissolved, leaving an
imprint of the wormhole network. This allowed the visualization of the network of
the wormholes in acidized cores and established that the geometry of the wormholes
strongly depends on the injection rate of the fluid.

The growth dynamics of wormholes were still impossible to capture using casting
methods and the alternative was to use X-rays. However, due to technological limita-
tions, the studies involving X-rays were initially restricted to projection radiography

57



of wormholes [175]. The growth of a wormhole can only be indirectly inferred by
measuring the pressure and permeability change in a dissolving sample through-
out the experiments. Building on the use of X-ray techniques, a way forward was
to use time-lapse tomography, which required placing the reactive flow core holder
along with a dissolving sample inside a tomograph. A pioneering study of this kind
was conducted by Bazin et al. [47]. However, the acquisition times were still long
compared to the wormhole growth rate. While imaging had improved, it was still
limited to a few low-resolution 2D scans. Recently, this technique has been signifi-
cantly advanced, allowing four to ten 3D scans per experiment with time resolution
up to 30 minutes [48–51]. In the present study, we optimize scan spatial resolution
by balancing it with acquisition times. Using a lower spatial resolution allows for
more scans per dissolution experiment within a shorter acquisition time. By taking
advantage of shorter acquisition times, we will capture details of the growing worm-
hole shape, including the position of its tip. We will compare the geometric details
of the growing tip at three di"erent resolutions: 42, 84.5 and 169 µm, and select the
optimal spatial resolution, balancing accuracy and acquisition speed. We will also
investigate the influence of tip movement on sample permeability during wormhole
growth.

We will use image-processing methods to extract the wormhole shape from tomog-
raphy scans. These shapes will then be analyzed to study the geometric evolu-
tion of wormholes quantitatively. The analysis will be performed using geometrical
measures, such as tortuosity and length wastefulness. These measures will also be
used to investigate the influence of micro-layers of a rock over the shape of the
formed wormhole. Two di"erent types of limestone will be considered in dissolu-
tion experiments: Pi&czów and Wierzbica limestone. Both of them are from the
Swi(tokrzyskie mountain region; however, they both di"er significantly. Pi&czów
limestone is ten times younger than Wierzbica limestone and formed in di"erent
environmental conditions. Both limestones display characteristic microfacies layers,
indicative of their unique depositional environments. A detailed discussion of these
rocks is presented in Sec. 5.2.1. Later in Sec. 5.2.2-5.2.3, we will discuss the sample
preparation method, experimental setup, and a list of performed experiments, along
with sample properties.

This chapter presents both the results of Cooper et al. [41] as well as the unpublished
data analyzed by the Author. The publication, Cooper et al. [41], was a result of
a collaborative e"ort, with experiments and tomography performed by Dr. Max
Cooper and the image analysis done by the Author. In the following sections, we
will concentrate on the work of the Author. In Sec. 5.2.4, we will introduce an image
processing method to extract the shape of the wormhole from the tomographic scans.
To achieve this, we propose a volume-based segmentation algorithm that includes a
connected component approach. The extracted wormholes are then converted into
skeletons, which are single voxel-wide structures that preserve the wormhole features
such as branching and overall shape. For the characterization of wormhole shape,
we will propose geometric measures, which will be discussed in Sec. 5.2.5. Finally,
the results will be discussed in Sec. 5.3.
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5.2 Materials and methods

To study the geometrical properties of dissolution channels, we employ 3D and
4D (time-series 3D) X-ray micro-tomography data of dissolved limestone samples,
image-processing methods, and calculations of proposed geometrical measures. In
this section, we will discuss these methods in detail.

5.2.1 Material properties
We have used two types of limestone rock collected from the Pi&czów and Wierzbica
quarries. Pi&czów quarry is in the Swi(tokrzyskie (Holy Cross) mountain region,
while the Wierzbica quarry is situated in the northeast margin of these mountains.

The time of formation and geological properties of these limestones di"er signifi-
cantly, with Pi&czów being formed during the Middle Miocene (Badenian) forma-
tion, approximately 15.97 to 11.608 million years old. The well-described facies of
this limestone [176]—characteristics of the rock such as grain size, fossil content,
and sedimentary structures, that distinguish it from the adjacent rock—indicate a
warm and shallow marine environment at the time of its formation. The deposition
of material took place with fluctuating water levels [176], resulting in the formation
of less compact and porous limestone with higher primary porosity (25↔ 35%) and
permeability. The fluctuating water levels also resulted in less diverse marine life
and, therefore, less variety of fossils, mostly dominated by foraminifer and echinoid
spines.

Figure 5.1: Sample collection sites in Poland
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Wierzbica limestone, on the other hand, was formed in the upper Jurassic period
(to be more precise, Early Kimmeridgian) around 157 to 152 million years ago [177].
This is an ooid limestone with varying amounts of molluscan bioclasts that exhibits
intercalations of oolitic layers (classified as packstone and grainstone) and micritic
limestone (classified as wackestone) as well as intercalations containing glauconite
[178].

Table 5.1: Material properties of Pi&czów and Wierzbica limestones

Limestone Porosity (%) Permeability (Darcy)
Pi&czów 25↔ 35 2↔ 2.5⇔ 10

→3

Wierzbica 22↔ 23 1.8⇔ 10
→2

5.2.2 Sample preparation
The samples used in this study are cylindrical cores. Most have dimensions of
around 3.84 cm in diameter and a length of approximately 11.2 cm. However, in
four experiments, the samples were smaller: two samples were 6.0 cm in length,
and the other two samples were 2.5 and 3.2 cm in length with a diameter of 1.5
cm. Table. 5.2 shows in detail the physical dimensions of di"erent samples. These
samples were prepared on a drill press using a coring bit. The drilling was done
perpendicular to the bedding direction of Pi&czów rock, while for Wierzbica, no
specific direction was selected. These samples are then put in a vacuum chamber
at 1 bar negative pressure for 12 hours to let the air out of the samples. Later, the
samples are left in deionized water for another 12 hours for full saturation. We will
follow a labeling method here in which the samples of Pi&czów rock are labeled with
the prefix “P” and the samples of Wierzbica limestone are labeled with the “WB”
prefix.

5.2.3 Experimental Setup and Computed Tomography
The experimental setup used in this study is the same as described in Cooper et al.
[41]. The samples were put inside a Viton sleeve with both sides of the tube covered
by ceramic disks (3.83 cm diameter) to ensure uniform flow distribution at inlet
and outlet. For shorter samples, cylindrical spacers were used to maintain overall
length. The whole setup was then mounted in a high-pressure Hassler cell with
a confining pressure applied radially to avoid leakage of reactant to the side of the
sample. A water/HCl solution was injected into the cell using a computer-controlled
high-pressure pump, and back pressure was applied at the outlet of the system to
prevent the formation of CO2 during dissolution experiments. The appropriate
back pressure was adjusted to acid concentration using Henry’s law [179], and the
confinement pressure was set to the sum of the back pressure and the initial pressure
drop across the sample, plus a 10% overhead. All the fluids used in the setup were
degassed under vacuum prior to an experiment, and all the fluid lines were filled
with deionized water to ensure single-phase flow through the entire system.

To obtain in-situ information on dissolving samples, we have used X-ray computed
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Table 5.2: Experimental parameters, and properties of di"erent specimens extracted
from di"erent limestone rocks.

Sample Diameter Length Injection rate Acid
name (cm) (cm) (ml/min) molarity
PIN01 1.50 3.50 0.07 0.25M HCl
PIN02 1.50 2.50 0.18 0.1M HCl
PIN04 3.84 11.04 0.175 0.5M HCl
PIN05 3.84 11.07 0.175 0.5M HCl
PIN43 3.90 6.00 0.5 0.1M HCl
PZ01 3.82 11.42 0.5 1.0M HCl
PZ02 3.83 11.42 1 0.25M HCl
PZ03 3.83 11.25 1 0.25M HCl
PZ05 3.84 11.40 0.25 1.0M HCl
PZ07 3.83 11.41 4 0.25M HCl
PZ08 3.84 11.36 0.5 0.25M HCl
PZ09 3.84 11.50 4 0.1M HCl
PZ14 3.84 11.50 1 0.25M HCl
PZ25 3.84 11.37 0.25 1.0M HCl
PZ26 3.84 11.66 1 0.25M HCl
PZ27 3.84 11.46 1 0.125M HCl
PZ29 3.86 10.10 0.175 0.5M HCl
PZ103 3.8 11.40 1 0.25M HCl
WB03 3.83 12.15 1 1.0M HCl
WB06 3.85 12.28 1 1.0M HCl
WB10 3.84 12.11 1 1.0M HCl

tomography (XCMT) technique. The scanning was done at two di"erent facilities:
the Institute of Oil and Gas (INiG), Krakow, Poland, and Institut Laue-Langevin
(ILL), Grenoble, France. Both of these facilities have tomographs of di"erent speci-
fications. INiG model (RXCT GeoTek Ltd. machine) is designed for scanning longer
cores at horizontal orientation. The X-ray source (Thermo Kevex Microfocus, 45-
130 kV, 4-65W) and detector (Varian PAXScan 2520DX, 1920⇔ 1536, 16bit pixels)
rotate around the core and can scan in the range of 30↔ 350 µm voxel resolutions.
The ILL tomograph, on the other hand, combines neutron and X-ray tomography.
The X-ray system in this facility o"ers high-resolution imaging, combining a Hama-
matsu L12161-07 microfocus source and a Varex PaxScan 2530HE detector. The
source achieves a minimum focal spot size of 5 µm, while the detector, with its
1792⇔ 2176 pixel array, ensures precise image capture.

All the static scanning (pre and post-dissolution) for di"erent samples were per-
formed using INiG Kraków tomograph at full resolution (30 µm), while the scan-
ning of actively dissolving cores (dynamic scanning), was performed at both facilities
(ILL and INiG) for di"erent experiments with resolution ranging from 42↔ 169 µm.
To scan a full sample (static scanning), a core was held in a plexiglass tube that is
attached to motor-controlled arms, capable of repositioning itself, allowing to scan
longer cores that go out of field of view due to their length. To cover the whole
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Figure 5.2: Core dissolution experimental setup with a core holder placed inside
micro-CT machine. A sample visualization of a wormhole formed inside the sample,
shown in right panel. The visualization is prepared from the grayscale scans in an
open-source package TomViz.

length of a sample, it was scanned in multiple sections. For each section, the X-ray
source rotated 360

↓ and recorded the radiographic projections at 16-bit precision to
have enough data for rebuilding the 3D pore-space of the scanned sample. The pore
space was then reconstructed from the radiographs of di"erent sections of a sample,
resulting in a 3D stack of slices of 16-bit grayscale images. Each slice of the stack is
1800⇔ 1800 pixels, containing sections of core-holder, sleeve, and core. The number
of slices di"ers for each sample based on the length of the sample. Fig. 5.2 shows
the schematic of the whole setup and an example of the obtained 3D tomography
scan visualized in TomViz.

While scanning dissolving cores, a similar process was followed; however, instead of
placing just a sample, the entire core-holder setup—including connecting lines and
fluid-carrying tubes—was placed inside the tomograph. The scanning was performed
at lower resolutions to reduce the time required for one complete scan of a sample.
The resolution of each time-series scans are given in Table. 5.4.

5.2.4 Image processing methods
Each grayscale image contains data of 16 bits which means the pixels contain the
values (pixel intensity) ranging from 0 to 65536. The lower intensities correspond
to air or pores, while the higher intensity indicates a higher-density material such
as metal and solid grains. Since in our scans, we captured a core holder (metal)
and Viton sleeve in addition to the core sample, we need to process the image to
remove this extra information. To do this, we have adopted a sequence of procedures
including cropping, subtracting, binning, etc., depending on the type of experiments:
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static scans (3D) and time-series 4D (3D with time). For static scans, all the slices
are first cropped to 1400⇔1400 pixels in size, containing mainly the pixels belonging
to the core. The cropped slices are converted to a 3D image stack, which is around
16 GB in size, and is hard to process due to computational limitations. Therefore,
each 3D image stack is binned by a factor of 4, resulting in an image stack with
350⇔350 pixels size image. The reason for not scanning the sample directly at lower
resolution—but downscaling it—is that due to the availability of higher resolution
scans, the loss of information in downscaling a sample can be inspected. The finalized
downscaling factor—without much information loss— can be applied to the bulk of
the data.

The number of slices in a binned stack depends on the sample size. At this stage,
our scans are ready for the segmentation process, which is a crucial step to convert a
greyscale stack to binary images containing black and white voxels, referring to pores
and grains, respectively. We will discuss the segmentation process in the following
section.

(a) (b) (c)

Wormhole WormholeFossil Fossil

Figure 5.3: Slices of 16-bit grayscale scans of the PZ103 sample at a resolution of
42 µm (a) undissolved sample (b) corresponding slice of dissolved sample (c) the
subtracted image. The pixel intensities of all three slices are enhanced for better
contrast by rescaling the minimum and maximum to a similar range.

The time-series 4D scans are also processed similarly with a few extra steps. A
series of scans contains the information on the time-evolution of evolving porosity
in dissolving parts of the sample as well as una"ected rock matrix. To remove this
una"ected part, all the scans are subtracted from the initial scan. However, due
to moving fluid in the system, and errors in scanning and reconstruction, voxel in-
tensities of some voxel corresponding to rock matrix are not the same in di"erent
scans, which results in the appearance of small noise after subtraction. The sub-
tracted images thus contain the evolving wormhole along with minor noise, which
needs to be removed for the clean extraction of wormhole. Fig. 5.3a and b show a
slice of a sample before and after dissolution, respectively. The slices, shown here,
are post-processed by cropping them to 1400⇔ 1400 voxels and removing the voxels
corresponding to the core-holder. Fig. 5.3c shows the same slice after subtracting
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the dissolved one (Fig. 5.3b) from the initial (Fig. 5.3a). It contains noise and a
wormhole over a black background.

Volume based segmentation

Segmentation is a commonly used method in image processing that reduces an im-
age to binary format (black and white) and allows one to focus on the specific part
(i.e. white, “1”s) of that image by discarding extra information (black,“0”s). Several
segmentation methods exist—such as watershed methods [180], region-based meth-
ods [181], and of particular interest to us, thresholding methods—most of which
are designed for general purposes, making them widely applicable. However, in our
case, existing pores and unresolved micro-pores make it harder for an algorithm to
di"erentiate between newly formed pores (dissolution channels) and existing ones.
Consequently, we have developed a thresholding method—similar to the Otsu seg-
mentation method [182]—based on calculating the volume of the wormhole. Fig. 5.4
shows a flowchart of the developed volume-based segmentation procedure.

In this algorithm, we first select a region of interest (ROI), for example, 300⇔300⇔
300 voxels here, from the grayscale scans, containing a part of wormhole and rock-
matrix. The lowest voxel intensity values are pores (either dissolved or pre-existing),
and higher values represent grains. Then, we invert the image so that the pores are
brighter and the grains are darker. Starting from the minimum voxel value, in the
ROI, as a threshold value (Th), we segment the image so that the values higher than
Th become white (“1”s) and lower values become black (“0”s). The segmented image
contains only the voxels belonging to the dissolution channel and pre-existing pores.
To isolate the dissolution channel, we select a voxel of the wormhole and use the
Scikit-flood-fill algorithm [183] to extract all the voxels of the wormhole connected
to the given voxel. This algorithm finds individual objects for both 2D/3D images
by finding orthogonally connected pixels/voxels. Fig. 5.5 shows an example of this
algorithm in which a structure corresponding to a given pixel is isolated from a 4⇔4

binary matrix. The number of voxels in the wormhole is counted and saved as the
volume of the wormhole in ROI. The process is repeated with a fixed step increase
of Th values to obtain a dependence of volume on the Th values (top right panel of
Fig. 5.4).

In the region where the connected component algorithm isolates the wormhole from
the surrounding noise or pore space, we observe a smaller slope of volume-threshold
curve—indicated by dashed lines in the plots of Fig. 5.4—in comparison to the
slope when the wormhole is connected with noise or existing porosity. We analyze
the changes in the slope of this curve by calculating the first and second derivatives.
When the wormhole is completely detached from noise or pre-existing pores (in
the region marked by dashed lines in Fig. 5.4), both the first and second derivatives
play a crucial role in selecting a suitable Th value. The first derivative helps identify
the transition region where the structure stabilizes, while the second derivative re-
veals fluctuations caused by the connecting-disconnecting surrounding pores. In the
transition region (just before the plateau), the first derivative appears to smoothly
approach zero, indicating a reduction in rapid structural changes. However, analyz-
ing the second derivative reveals residual oscillations in the first derivative, which
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Figure 5.4: Description of volume-based segmentation procedure with flow-chart of
the algorithm (left panel). The variation of the volume (rescaled by ROI volume), of
the connected structure (wormhole) with threshold values is shown in the right panel,
which comprises three plots: rescaled volume vs threshold (top), rate of change of
rescaled volume with respect to threshold values (middle) and the second derivative
of rescaled volume with respect to the threshold (bottom). Note that both first
and second derivatives are also rescaled by the maximum Th value in ROI. These
curves show the sensitivity of the volume of the structure to the threshold values.
At a specific threshold, the connected component algorithm no longer connects the
wormhole to the rest of the pore-matrix leading to a plateau in the curves, as
highlighted by the dashed lines.

stem from interactions with nearby pores. These oscillations decay as the plateau
is reached, marking the stabilization of the wormhole structure. To ensure that the
selected Th value reliably extracts only the largest connected component—without
introducing noise or pre-existing pores—we focus on the region where both the first
and second derivatives are small. The smallness criteria for these derivatives is
defined as when the standard deviation of the values around the plateau value is
< ±0.1. This ensures that the chosen threshold corresponds to a stable structural
regime, where minor adjustments do not significantly alter the extracted morphol-
ogy. Thus, we verify this criterion for ten successive Th values to confirm robustness.

Finally, the threshold value selected using this method is applied to the downscaled
greyscale scans of the whole sample. The 3D binary matrix can contain multiple
wormholes, of which we ignore the wormholes of length smaller than one-third of the
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Figure 5.5: A pictorial description of the connected component algorithm in a sample
image of 4⇔4 pixels. In the left panel, three structures are shown in white color, and
X represents the selected pixel of the structure of our interest. In the right panel,
the connected pixels are found (marked with X), and the rest of the structures are
discarded.

diameter of the sample. In most of the experiments, the secondary wormholes are
very small therefore we only isolate the largest one in those experiments. However,
if the length of secondary wormholes exceeds the criteria (> d0/3), they are also
considered. The selected wormholes are extracted by finding connected components
and later used in studying the geometrical properties of the dissolution channels.

Skeletonization

To study the morphological properties of wormholes, we use the SciPy library [82].
A 3D skeletonization method is adopted, in which we convert a 3D binary matrix to
a structure (skeleton) of one voxel width. For this, we use the scikit-skeletonize3D
algorithm. First, the scikit-binary-fillholes function is used to fill the possible holes
in the wormhole to avoid artificial loops in the skeleton. These holes may form
within the wormhole either due to the undissolvable material that obstructs its
evolution, causing the wormhole to develop around the obstacle and form a hole, or
from the noise. Next, a median filter of two voxel size is applied for smoothening
the surface of the wormhole, as a slight noise can create artificial branching. Finally,
the scikit-skeletonize3D function is used to convert the wormhole into a skeleton.
The obtained skeleton is still in the form of a binary image stack, which needs to be
processed further to convert it into a network graph for studying its properties.

Following skeletonization, we load the skeletonized images in a python package
SKAN [184] and convert them into 3D network graphs, which are further loaded
in another python package NetworkX [185] for network analysis. A 3D graph is
made of connected nodes which are voxels of skeletons in our case, and it contains
the information of the coordinates of nodes and their connections in the form of a
sparse matrix. These graphs are saved for further inspection using the VTK library
[186].
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Visualization

The visualization of all the 3D data, including image stacks of wormholes, skele-
tons, and network graphs, is performed mainly in open-source packages: TomViz,
Paraview, and Mayavi. The binned grayscale scans and segmented images are visu-
alized in TomViz [187], which is also used to prepare figures in this study. Paraview
[188] is mainly used in the visualization and inspection of the NetworkX graphs.
Mayavi [189] is used in the preparation of videos of developing wormholes from
time-series experiments.

5.2.5 Geometric measures
For quantitative analysis of wormhole geometry, we use tortuosity (ω) as a stan-
dard geometrical measure, along with a newly proposed metric, length wastefulness
(WL). For time-series 4D experiments, we also measure the movement of wormhole
tip position rtip(t) with time, in addition to the time evolution of other geometric
measures. These measures are calculated either from wormhole binary images or
from the network graphs. A detailed description of these measures is given below.

Tip position rtip(t)

The movement of the wormhole tip is calculated from binary 3D time-series scans
by extracting the coordinates of the tip from each scan. For a scan, tip position rtip
can be defined as:

rtip(t) = xtipî+ ytipĵ+ ztipk̂

where î, ĵ and k̂ are the unit vectors, and xtip, ytip and ztip are the components of
tip position in X, Y and Z directions, respectively.

Tortuosity (ω)

The tortuosity (ω) of a wormhole is defined as the ratio of its total length to the
distance traveled by the tip along Z-direction (ztip). For samples that have reached
a breakthrough, ztip is just the length of the sample. The measurement of tortuosity
is done on a NetworkX graph. First, the inlet node and the node at the tip of
the wormhole skeleton are selected. Then, the shortest path along the wormhole
between both nodes is extracted from the network using the NetworkX package
with the Djikstra algorithm. The length of such a shortest path is considered the
length of the wormhole.

Length Wastefulness (WL)

The length wastefulness (WL) is defined as the ratio of the total length of a wormhole
network, including branches, to ztip.

WL =
Length of the wormhole including branches

ztip
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This property can be treated as the generalization of a tortuosity for a branched
structure. It measures the amount of total length wasted—or created—on moving
the structure by a unit length. For a non-branched structure, size of network re-
duces to the actual length of the structure, and therefore, length wastefulness of the
structure reduces then to ω . We measure this quantity using NetworkX graphs. The
calculation is done by summing up all the lengths in a 3D network and dividing by
the z-coordinate of wormhole tip.

5.3 E!ect of image resolution on wormhole geome-

try

Before proceeding to analyze the wormhole geometry, we have investigated the ef-
fect of tomography scan resolutions on the fine details of wormhole features. At low
resolution, the fine details of the structure will be smeared out while at high reso-
lution the acquisition time will be longer comparing to the time-scales of wormhole
growth. Thus, capturing the growth dynamics of a wormhole requires balancing
scan duration with the resolution needed to real its fine structure. To determine the
optimal acquisition settings, three static scans of a partially dissolved core (PZ103
sample) were performed within the cell setup described in Sec. 5.2.3.

The voxel resolutions of the scans were 42, 84.5, and 169 micrometers, and cor-
responding voxel grayscale distributions are shown in Fig. 5.6. It is evident that
higher resolution (42 µm) has a larger spread, and therefore larger range of pixel
values, indicating a larger amount of captured information, which decreases with
lower resolutions (82 and 169 µm). In addition, the mean value of the 169 µm dis-
tribution is around 2% higher, compared to 42 and 84.5 µm scans, indicating that
the segmentation method will give di"erent optimum threshold values for 169 µm
resolution. This is indeed the case as seen in Table. 5.3, which shows the obtained
threshold values as well as the wormhole volume at di"erent resolutions. For both
42 and 84.5 µm resolution scans, the threshold value is the same (8450 voxels), while
for 169 µm case, the threshold value is higher (9495 voxels). Moreover, the volume
of the wormhole is very similar for 42 and 84.5 µm resolution, compared to 169 µm
scans, which results in a higher volume of the wormhole.

Table 5.3: PZ103: Thresholds and volumes at di"erent resolutions.

Voxel size (µm) Threshold Volume (voxels) Volume (mm3)
42 8450 9012746 668

84.5 8450 1000227 603
169 9495 238432 1150

We have also visualized the e"ect of the resolution of the scans and corresponding
threshold values on the geometry of wormhole tip (see Fig. 5.7). For this purpose,
we have selected a fixed section of wormhole near the tip region, and performed
the segmentation procedure with connected components. The extracted tip region
from all three resolution scans is shown in the right panel of Fig. 5.7. We again
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Figure 5.6: PZ103 grayscale distributions for 42, 84.5, and 169 micrometer voxel
resolutions.

observe a similar e"ect of resolution on wormhole tip as on the volume of wormhole,
which was larger with lowest resolution (169 µm). At this resolution, the tip appears
bulkier, displaying distinct larger features (branches) similar to those observed in
higher-resolution tip regions (42 and 84.5 µm), while smaller features remain unre-
solved. These unresolved features—for instance, small branches and spacing between
them—at lowest resolution merge together and form a bulkier structure with a rough
appearance.

It is important to note that even at the lowest resolution of 169 µm the most impor-
tant features of the wormhole, such as the position of the branches, are large enough
to be preserved without any significant loss in details. This justifies the use of lower
resolution (169 µm) scans for the purpose of capturing details of growing wormholes
in time-series experiments where the shortest scanning time is required. For static
scans, usually performed before and after the experiment, higher resolution can be
used.

5.4 Results and Discussions

5.4.1 Tip evolution of a dominant wormhole
We have first investigated the tip movement of a wormhole in PZ103 sample. The ex-
perimental setup is described in Sec. 5.2.3. For shorter acquisition time, as discussed
previously, we have scanned PZ103 sample at 169 µm resolution, which resulted in
five-minute scanning time. The wormhole shown in Fig. 5.8 was formed in a core
taken perpendicular to the bedding of the rock. The sample was dissolved using
0.25M HCl at the flow rate at 1 ml/min flow rate. At this flow rate, a single worm-
hole develops in the sample, focusing most of the flow. As discussed in Ch. 2, this
is so-called dominant wormholing regime.
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Figure 5.7: PZ103: Projections of the entire wormhole in greyscale shades from
tomography (left panels) and wormhole tip region extracted using connected com-
ponents (flood fill) segmentation (right panels), for 42 µm (a), 84.5 µm (b), and 169

µm (c). The overall morphology of the wormhole is maintained at each resolution,
though fine details are lost for larger voxel sizes (e.g., bulkier/merged branches).
While finer details are smeared out, the main feature of interest, the wormhole tip
position, remains the same for the three resolutions.

As shown in Cooper et al. [41], the wormhole advances in a highly irregular manner,
with numerous jumps, branching, and sudden changes of direction. What is more
intriguing, however, is the apparent lack of correlation between the wormhole tip
position and the changes in the sample permeability. The latter can be measured
by a pressure curve (see Fig. 5.9), which shows the pressure required for a pump to
push fluid through the sample at a constant injection rate, at which the experiment
is performed. The pressure curve shows long plateaus interspersed with step-like
pressure decreases. The corresponding tip movement of wormhole indicates that
the tip advances throughout the experiment but with slower speed during these
plateaus.

Interpretation of this behavior is not straightforward; the simplest but frequently
used model of wormhole evolution—discussed in Ch. 2—argues that due to high
permeability of a wormhole, the pressure drop along its length is negligible. Follow-
ing this, and assuming that the rock in front of the wormhole tip is homogeneous,
hydraulic resistance of the rock core should drop linearly with the length of the
wormhole, R → L ↔ z where z is the length of the wormhole, and L is the total
length of the system. An immediate consequence of this model is that pressure
should decrease linearly with the advancement of a wormhole, !p/!p0 = 1↔ z/L,
with !p0 standing for an initial pressure drop through the sample. However, Fig. 5.9
shows that this is not the case for our system; during pressure plateaus the wormhole
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Figure 5.8: Projections of 3D renders of a wormhole at di"erent time instances show-
ing the development of a wormhole in PZ103 sample. Rendered data is generated by
subtracting a tomographic scan from the initial tomographic scan, and projections
are generated in TomViz. Diameter of plotted cylinders is 38.3mm.

tip progresses noticeably with a nearly constant velocity. Such a behavior has been
reported in only a few previous wormhole studies [39, 92]. Izgec et al. [92] attributed
it to vugs—large-scale local heterogeneity in pore matrix—where pressure drops are
associated with the interaction of vugs with a wormhole. As the wormhole connects
to a vug, it causes a more significant change in the permeability of the sample.

Pi&czów Limestone, however, is not vuggy [190], and as such, we seek another
explanation for this e"ect. We argue that such a behavior is attributed to the
presence of regions of very small porosity within the sample. These regions restrict
the flow and e"ectively act as barriers to permeability [41]. Analogous to the flow
of electric current, the rock would resemble then a circuit of resistors, which are
connected in series, with regions of small resistance interspersed with regions of
very high resistance. If such a system was measured with an ohmmeter, the overall
system resistance would be dominated by high-resistance regions. It is only when
the wormhole tip reaches these high-resistance regions and begins to etch its way
through them that the permeability of the core changes significantly.

Toy model

The mechanism of permeability variations can be demonstrated using a simple model
[41] of porous medium of porosity ϕ0, which contains bands of much smaller porosity
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Figure 5.9: Experimentally measured pressure drop in the PZ103 sample as a func-
tion of time (blue solid line) correlated with the wormhole tip position determined
from the tomographic images (orange line with an X marking the end time of the
scan). Orange numbers next to points indicate scan numbers corresponding to Fig.
5.8.

ϕ1, marked by light yellow bands in Fig. 5.10A. We also introduced a small region
of very high porosity near the inlet of the sample (marked by a red rectangle),
to trigger the growth of wormhole at this point. We then let the system dissolve
(using the Darcy model described in Ch. 3) and record the advancement of the tip
and evolution of the pressure drop in time. Fig. 5.10B shows marked similarities
with analogous results for the experimental system, including long pressure plateaus
during which the tip of the wormhole advances considerably. Interestingly, and
somewhat surprisingly, the model calculation predicts acceleration of the growth
rate as the wormhole tip penetrates the impermeable layers in the model. The
cause of this is that within a packed layer it is harder for the wormhole to broaden
because there is more mineral matter to dissolve around the perimeter [96]. A
thinner wormhole results in higher flow velocities within it, in turn leading to a
larger propagation velocity of the wormhole tip.

Tip position correlation to heterogeneity

Based on the 4D tomography results (Fig. 5.9) and theoretical considerations (Fig. 5.10),
several questions arise: What is the real bulk pore-grain geometry of the sample?
Are there any large-scale structures that can block the flow-paths? If so, do such
structures correlate spatially with the wormhole tip position jumps?

To determine if such large-scale structures could be the permeability barriers pos-
tulated in our model (Fig. 5.10), we analyze high-resolution (30 µm voxels) tomo-
graphic images of PZ103 core prior to the dissolution, taken outside of the core
holder. In X-ray tomography, image intensity represents the attenuation of matter
to X-rays, which is proportional to its atomic number and density. Therefore, pixels
of higher intensity correspond to regions with higher solid fraction or minerals with
higher atomic numbers. For a rock dominated by one mineral (as is Pi&czów Lime-
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Figure 5.10: A simple numerical model of wormhole growth in a layered medium. (A)
The general setup; a rectangular system of porosity ϕ0 with two layers of porosity
ϕ1, with ϕ1/ϕ0 = 0.1. (B) The pressure drop in the system (blue) and the tip
position (orange) as a function of time rescaled by breakthrough time (TBT). (C)
The final dissolution pattern with shades of red marking porosity (fully dissolved
regions correspond to dark red areas). Jumps in tip position and permeability
correlate in time, with tip jumps correlating with regions of lower permeability.

stone), a higher average intensity corresponds, therefore, to a higher grain density
(and thus lower porosity). We prepare 2D projection plots by projecting the median
values of 3D data in Y (Fig. 5.11A) and X (Fig. 5.11B) direction, respectively. Re-
markably, we observe that the large-scale structures—loosely (reddish regions) and
densely (bright yellow) packed regions— in both projections appear at the same
location with the same orientation, almost perpendicular to the mean flow direction
(i.e Z axis). The overlaid image of the wormhole on these projections reveals that
the wormhole evolved through these regions as there was no way to bypass them.
The competition between the two largest branches of the wormhole (frame 14-28 in
Fig. 5.8) ends as the tip of one branch hits the second barrier of low-permeability.
The wormhole abandons the growth of this branch and shows speed up in the win-
ning branch (frame 29 in Fig. 5.8). This moment is captured in the pressure curve
as the first bigger drop (large permeability increase) after a long plateau.

We also calculate the average grayscale intensity for successive slices perpendicular
to the core axis. The data presented in Fig. 5.11C show quantifiable peaks, as de-
termined by an automated peak detection algorithm [82], where average grayscale
is higher than for the bulk of the rock. When wormhole tip displacement is juxta-
posed with the average grayscale diagram, one notes that the wormhole propagation
velocity increases in the peak regions, otherwise maintaining a steady velocity in
the bulk of the rock (see Fig. 5.11D). This supports our hypothesis that wormhole
propagation rate is controlled by the permeability barriers within the sample. While
a peak at z/L ↘ 0.1 does not necessarily correlate to acceleration in the tip posi-
tion, and the acceleration at z/L ↘ 0.7 does not seem to be correlated with a peak,
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Figure 5.11: A and B show projected median grayscale values of PZ103 pre-
dissolution scans in Y and X axis, respectively. Median values are derived from
the high resolution, 30 µm initial scans, and are overlaid with the final wormhole
geometry (blackish color) projected in the same axis. Red color in these plots cor-
responds to regions of less voxel intensity (more porous) while yellow/white corre-
sponds to regions of more intensity (grains/crystalline calcite). C shows the average
grayscale pixel intensity where the average is taken through the slices perpendicular
to the core axis. The average intensities are spatially correlated to the tip position,
z/L, (where L = 115 mm), plotted versus time (D). Large propagation velocities
are associated with high average grayscale pixel intensity, a proxy for solid content.
As the wormhole dissolves its way through the packed regions it remains a single
channel with minimal branching, with branching and lateral movement occurring
before entering the cemented regions.

these two features are relatively narrow and thus the respective correlations might
be harder to detect.

Naturally, projecting the grain content information on Z-axis (as performed in
Fig. 5.11C) considerably smears out the data on the 3D configurations of pores,
grains, and positions of the micro-cementation regions. As a result, the overall vari-
ations in the grain content remain relatively small, on the level of a few percent.
This is much smaller than the ones used in the toy model of Fig. 5.10 when the
porosity in the cemented regions was 10 times smaller than that in the bulk of the
rock. Since both the pressure drops and the wormhole speedups recorded during
the experiment are substantial (Fig. 5.9), we conclude that the wormhole tip does
encounter local, highly cemented structures that it needs to navigate around. or
dissolve its way through. The coarse projection of Fig. 5.11C succeeds in picking
up the most extended of these regions but—as already mentioned—misses a thinner
one at z ↘ 0.7, as marked in Fig. 5.9. It is important to point out here that these
speed-ups are not related to the orientation of wormhole velocity with respect to
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the mean flow direction (i.e Z axis) [41].

Figure 5.12: Comparison of PZ103 wormhole length (green curve) over time to z
extent of tip (orange curve), rescaled by sample length (z/L). The pressure curve
over time from this experiment is also shown (blue curve). As the wormhole is
tortuous and migrates laterally, the wormhole length can be longer than the sample
length (115 mm).

Finally, let us note that cemented regions in the core can have yet another impact on
the wormhole advancement, as the wormhole might try to avoid the low permeability,
crystalline portions by progressing laterally. In essence, the wormhole searches for
an easiest to-dissolve pathway that would lead it through the barrier. This is a
three-dimensional e"ect, not possible to represent in terms of our 1D toy model,
since in the latter there is no possibility of bypassing the packed layers. As shown
in Cooper et al. [41], this happens between frames 13–15, 30–31 and 33–35, i.e., just
before the encounter with the cemented region. In the first and third cases (13–15
and 33–35) this lateral movement is also accompanied by an intense branching of
the wormhole, as if it is probing di"erent ways through the obstacle before finding
the most e"ective one (see e.g. frame 34 in Fig. 5.8). The quantification of the
lateral movement of the wormhole is provided by Fig. 5.12 which compares the axial
movement of the wormhole tip (along Z) with the total movement. As observed,
in the regions where z(t) plot is almost flat (no axial advancement), there is still
a noticeable advancement in the absolute length of the wormhole, LW (t). Note
that the vertical scale on the two plots is di"erent due to the large tortuosity of
the wormhole (its absolute length is about two times larger than its extent in Z
direction, thus the real slopes of the LW (t) line are about twice larger than the z(t).

5.4.2 Tip evolution of a conical wormhole
We have also investigated the tip evolution of a conical wormhole in Pi&czów lime-
stone sample. Fig. 5.13 shows 3D visualizations of an evolving conical wormhole
(PIN44). The setup of this experiment is similar to PZ103 case, except for the reac-
tant molarity and injection rate. The sample was dissolved with 0.8M HCl at a low
flow rate (0.175 ml/min), at which most of the acid is consumed near the inlet pores.
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As discussed in Ch. 2, at this flow rate, the formed channel evolves slowly in the
mean flow direction with a larger diameter near the inlet that gradually decreases
along the length. Due to the slow progress of conical wormhole, the scanning was
performed at a regular interval with relatively higher resolution (42 µm) compared
to PZ103. The acquisition time for a full scan was around eight minutes, including
seven minutes of scanning time and around one minute of resetting time of the X-
ray source. However, the slow growth of this wormhole also resulted in significantly
long breakthrough times. Therefore, the experiment was stopped before wormhole
reached the outlet.

The obtained scans were processed similarly to PZ103 scans by first subtracting
them from the initial scan and then isolating the wormhole using the volume-based
segmentation method. However, due to large size of PIN44 time-series data with
52 scans—each of 42 µm voxel resolution and 13 GB in size—we downscaled the
scans by a factor of four before processing. This resulted in the voxel resolution
of each scan of around 168 µm at which—as we discussed in the resolution study
(Sec. 5.3)—the PZ103 wormhole does not lose much details.

Figure 5.13: Projection of 3D rendering of a conical wormhole at di"erent time
instances showing the evolution of the wormhole in acidized PIN44 core. Rendered
data is generated by subtracting a tomographic scan from the initial tomographic
scan, and visualizing it in TomViz. The sample is half dissolved therefore all the
renderings are cropped based on Scan-51 to improve the visualization. To represent
the size of wormhole, a scaling cube of 3.4 mm sides is shown in Scan-51.

Fig. 5.14 shows the tip position movement of PIN44 conical wormhole. Similarly
to the tip movement in the dominant wormhole (PZ103) that we discussed in the
previous section, we observe a non-linear tip movement with jumps, plateaus, and
changes in direction. This non-linear growth of conical wormholes has not been
reported before. We argue that similar to the PZ103 case, it is correlated with local
porosity layers, which act as permeability barriers. When the wormhole tip reaches
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these layers, it moves rapidly through the layers, etching out its way and increasing
the permeability of the system significantly.

Figure 5.14: Tip position (orange line) and length (green line) of a conical wormhole
(PIN44) measured from consecutive tomography scans. Black dots correspond to
the scan numbers shown in Fig. 5.13. Note that the sample is half dissolved so the
tip of the wormhole is almost halfway. However, the final length of the wormhole is
approximately the same as the length of the sample (i.e. 6 cm)

5.4.3 Time evolution of geometrical characteristics
Continuing the line of research outlined in the previous section, we have performed
time-lapse experiments to quantify the evolution of geometric properties of worm-
holes in several Pi&czów and Wierzbica rock samples. The experiments involved
five dominant-type wormholes including four Pi&czów and one Wierzbica wormhole.
The details of specimens and experimental parameters related to these experiments
are given in Tab. 5.4. The table also shows the specifications of time-series scans
taken at di"erent time resolutions for di"erent experiments. All these experiments

Sample Length Diameter Injection Scan Wormhole
(cm) (cm) rate (ml/min) resolution (µm) type

PZ103 11.4 3.8 1 169 Dominant
PIN43 6 3.9 0.5 42 Dominant
WB10 12.1 3.8 1 60 Dominant
PZ08 11.8 3.8 0.5 30 Dominant
PIN02 2.5 1.5 0.18 70 Dominant

Table 5.4: The characteristics of dissolution experiments, which are scanned at
regular time intervals as a time series

are processed using the methodology described in the previous section (Sec. 5.2.4),
and the extracted wormholes are used to measure the geometrical properties defined
in Sec. 5.2.5.

77



Fig. 5.15 shows the time evolution of tortuosity (ω) of dominant-type wormholes as
a function of the tip position rescaled by the respective core diameter (ztip/d0). We
observe that in PZ103 and PIN43 experiments, initially, the wormhole tortuosity
sharply increases, before reaching an asymptotic value around which it oscillates
until the wormhole reaches a certain length. However, for other samples—WB10,
PIN02, and PZ08—this behavior is not observed, which may be due to the time-
frequency of the data not being high enough to capture the early stages of wormhole
growth. Therefore, these results should be treated with a certain degree of caution.

For both WB10 and PIN02 wormholes, the first available scan shows that the worm-
hole has already reached a length where tortuosity is in the asymptotic regime. This
can be inferred from Fig. 5.15 where the points of WB10 and PIN02 do not exhibit
much spread. Therefore we will use them in calculating the mean and relative vari-
ance of tortuosity. On the other hand, for PZ08 we do not see stabilization, so we
cannot infer anything about the asymptotic regime from this data.

Figure 5.15: Time evolution of tortuosity of dominant type wormholes in time-
series dissolution experiments with full-length samples (↘ 11 cm) (left) and smaller
samples (↗ 6 cm) (right). Dashed lines are fitted, and their color corresponds to
the respective points of the same color.

To determine the wormhole length at which tortuosity stabilizes, we fit a horizontal
line from the end of the curve (rightmost point) and extend it backward as far as
possible, down to the smallest ztip/d0 while imposing a criterion that keeps point
deviations from the line within an acceptable range. For tortuosity, the maximum
deviation is set to 0.1. The calculated values, presented in Table 5.5, show that
Wierzbica wormhole (WB10) is characterized by the smallest asymptotic tortuosity
(↘ 1.6), while the Pi&czów wormholes are more tortuous.

To study the time evolution of the overall wormhole structure, we have investigated
length wastefulness (WL) as a function of ztip/d0 (Fig. 5.16). The length wasteful-
ness of all four wormholes (PZ103, PIN43, PIN02, and WB10) exhibits a behavior
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Table 5.5: Asymptotic values of wormhole tortuosity in Fig. 5.15

Sample Fit Mean (µ) Relative standard
name interval deviation (φ/µ)
PZ103 0.97↔ 3.08d0 2.121 0.064
PIN43 0.71↔ 1.45d0 2.589 0.027
PIN02 0.42↔ 1.19d0 1.798 0.054
WB10 0.55↔ 3.14d0 1.690 0.101

similar to tortuosity, reaching an asymptotic value after initial fluctuations. The
only exception is PIN43, whose WL stabilizes earlier than tortuosity.

To quantify the asymptotic behavior of WL curve, we used a line fitting method sim-
ilar to that for tortuosity. The calculated values are given in Table 5.6. Note that
PZ08 shows no stabilization; therefore, we did not include it in the calculation. We
observe that WB10 wormhole shows the smallest mean length wastefulness while
PIN43 has the highest value. Overall, Pi&czów wormholes have higher WL than
Wierzbica wormholes, which aligns with the observation made for tortuosity (Ta-
ble 5.5). We believe that this di"erence is correlated to the large-scale structures of
Pi&czów and Wierzbica limestone, a topic we will discuss in later sections.

Table 5.6: Asymptotic values of wormhole length wastefulness in Fig. 5.16

Sample Fit Mean (µ) Relative standard
name interval deviation (φ/µ)
PZ103 1.1↔ 3.08d0 10.71 0.102
PIN43 0.45↔ 1.45d0 12.12 0.075
PIN02 0.42↔ 1.19d0 4.195 0.196
WB10 0.55↔ 3.14d0 3.164 0.095

From this study, we can conclude that the geometrical characteristics of the dom-
inant wormholes in Pi&czów limestone stabilize as the length of the wormhole in-
creases. Both tortuosity and length wastefulness of Pi&czów wormholes stabilize
for the tip positions between 0.4d0 and 1.0d0. Experiments with more available
data, where wormholes are scanned at high temporal resolution, exhibit a relative
dispersion below 10%. This suggests that the geometric measures, such as tortuos-
ity or length wastefulness, are well-defined, represent stable characteristics for long
wormholes, and can be used to di"erentiate between wormhole structures.

5.4.4 Analysis of post-experiment wormhole geometries
While the previous section was devoted to the time-dependent characteristics of the
wormhole, which are challenging to obtain due to the need for 4D tomography data,
this section analyzes the geometry of wormholes from post-experiment scanning,
where significantly more data is available.
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Figure 5.16: Time evolution of length wastefulness of dominant type wormholes
in time-series dissolution experiments with full-length samples (↘ 11 cm) (left) and
smaller samples (↗ 6 cm) (right). Dashed lines are fitted, and their color corresponds
to the respective curve of the same color.

E!ect of rock structures on wormhole shape

To investigate the e"ect of rock structures on wormhole shape, we have studied the
wormholes formed in both Pi&czów and Wierzbica rock samples at 1ml/min injection
rate. At this flow rate, multiple wormholes initially form, but one soon outcompetes
the others and continues to grow toward breakthrough. As mentioned previously,
in our experiments the secondary wormholes are relatively small. Therefore, in the
analysis, we have only included those secondary wormholes whose lengths are larger
than one-third of the respective sample diameter (> d0/3). Fig. 5.17 and 5.18 show
the extracted dominant channels in di"erent samples of Pi&czów and Wierzbica
rocks. Despite being formed in the same physical conditions, the wormholes formed
in these rocks are visually very di"erent, indicating the e"ect of rock structures.
Wormholes in Wierzbica limestone are relatively straight with minimal branching,
in contrast to the highly tortuous and extensively branched wormholes in Pi&czów
limestone.

To quantify the di"erences in wormhole shape, we have calculated tortuosity (ω)
and length wastefulness (WL) for all the wormholes in both type of rocks. Fig. 5.20
shows the ω vs WL plot for these wormholes. Remarkably, we observe the clustering
of data points based on the rock type. Points corresponding to Pi&czów wormholes
are grouped separately, exhibiting higher tortuosity and length wastefulness, with
mean values of approximately 2 and 10, respectively. In contrast, Wierzbica worm-
holes cluster around lower values, showing a mean tortuosity of ↘ 1.75 and a mean
wastefulness (WL) of ↘ 6. We have also compared the relative deviations of these
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Figure 5.17: Post experiment dominant type wormholes in Pi&czów rock samples.
Most wormholes have broken through to the outlet, except for PZ05, PZ08, and
PZ25–PZ27, where the experiments ended before breakthrough. Secondary worm-
holes are also shown in PZ03, PZ14 and PZ26

Table 5.7: Mean and relative deviation of post-experiment wormhole measures used
in Fig. 5.20

Rock Measure Mean Relative standard
type (µ) deviation (φ/µ)
WB ω 1.746 0.131
PZ ω 2.102 0.043
WB WL 5.88 0.26
PZ WL 9.81 0.257

values (Table 5.7) with time series experiments (Table 5.5 and 5.6). We observe
that the relative deviation of ω in both types of experiments is similar for both
rocks, while the relative deviation of WL is larger in post-experiment wormholes.
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Figure 5.18: Post experiment dominant type wormholes in Wierzbica rock samples.
WB06 and WB10 wormholes reached the outlet of the sample while for WB03 the
experiment was stopped before the breakthrough. A secondary wormhole is also
shown in WB10.

Figure 5.19: Post experiment conical type wormholes in Pi&czów rock samples. Due
to the longer duration of these experiments, all the experiments were stopped before
the wormhole reached outlet.

This could be the result of the formation, growth, and eventual termination of large
secondary branches or the formation of large secondary wormholes. In most of our
experiments, including time series, the secondary wormholes did not reach signifi-
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Figure 5.20: Tortuosity vs length wastefullness (WL) plot for final dominant worm-
holes in Wierzbica and Pi&czów samples. All samples used here are dissolved at 1
ml/min flowrate. The dots represent the mean of the geometric properties of a rock,
while the colored ellipses show the standard deviation of the properties of a rock

cant length (> d0/3). However, WB10, PZ03, PZ14 and PZ26 samples produced
large secondary wormholes. PZ14 sample has the largest secondary wormhole and
the resulting WL is also the highest (↘ 14.5) among all other experiments. This
indicates that the formation of large secondary wormholes can produce a larger
variance, compared to the experiments where the secondary wormholes are small.

Table 5.8: Mean and standard deviation of porosity measured from tomography
images

Rock Mean Standard
type (µ) deviation (φ)
WB 23.309% 0.093
PZ 27.085% 0.031

The di"erences between the geometric measures (ω and WL) of Pi&czów and Wierzbica
wormholes can be explained by analyzing rock structures. Earlier, in Sec. 5.4, we
have seen that a Pi&czów sample, PZ103, has packed cemented regions that are
mostly perpendicular to the mean flow direction (Fig. 5.11) i.e the normal vector is
close to (0, 0, 1). These regions act as a potential barrier that a wormhole either nav-
igates around or dissolves its way through. Once entering inside the packed region,
the wormhole moves quickly and spends less time there compared to when going
through loosely packed regions. This also influences the overall shape of the worm-
hole as PZ103 wormhole. We believe that this is the case for most of the Pi&czów
wormholes as all the Pi&czów samples are taken perpendicular to the bedding plane.
However, the Wierzbica samples were not taken perpendicular to the bedding layers
but at an arbitrary angle. The 2D projection plots (Fig. 5.21) of WB10 sample
reveals that the layers are nearly perpendicular to Y axis, i.e. the normal vec-
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tor (nx,ny,nz) is such that |nx||nz| ↓ |ny|. Contrary to PZ103 wormhole, which
evolves by going through less and more packed regions, WB10 wormhole advances
along a less packed layer (Fig. 5.21A). This layer provides a path of less resistance
(high permeability). As a result, wormhole prefers to move quickly through the layer,
restricting the lateral movement. This not only reduces the amount of branches but
also decreases the tortuosity of the wormhole. That is why WB10 wormhole shows
least amount of branching (WL = 3.164) and the smallest tortuosity (ω = 1.690)
among all other wormholes, including Pi&czów wormholes.

Figure 5.21: 2D projections of WB10 pre-dissolution scans by median grayscale
values in X (A), Y (B), and Z (C) axis respectively. Median values are derived from
the high resolution, 30µm initial scans, and are overlaid with the final wormhole
geometry (blackish color) projected in the same axis. Darker red color in these
plots corresponds to regions of less voxel intensity (more porous) while yellow/white
corresponds to regions of more intensity (grains/crystalline calcite). Packed layers
are visible in X axis projection (A) and Z axis projection (C) in which the layers
are highlighted by dashed lines.

To quantify the di"erences between the rock structures of PZ103 and WB10 samples,
we have calculated the voxel intensity-based auto-correlational function (ACF) in
X, Y , and Z directions for both samples. The definition of ACF is similar to Cooper
et al. [41].

ACF(l) =
⇑(I(r+ l)↔ µ) (I(r)↔ µ)⇓r

⇑(I(r)↔ µ)2⇓r
, (5.1)

where I(r) is a grayscale value at point r within a sample and ⇑. . . ⇓r denotes aver-
aging over r. Finally, µ = ⇑I(r)⇓r is the average grayscale value. While computing
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ACF(l) in a specific direction (i.e X, Y or Z) the vector l can be replaced by the
directional vector.

Fig. 5.22 shows the absolute values of calculated ACF for both PZ103 and WB10
samples. Remarkably, the fingerprints of the packed layers are evident in these plots.
PZ103 has layers perpendicular to Z direction, resulting in an initial decay of ACF
along Z-axis followed with an increase as it enters in di"erently packed layer (see
Fig. 5.22 left). This increase reflects anti-correlation between layers (less or more
packed regions) i.e. ACF becomes negative here. WB10, on the other hand, has
packed layers with a normal vector oriented approximately along the Y axis, which
results in a very slow decay of the correlation function along both X and Z. Note
that in this case, the correlation function does not decay to zero, which reflects
the presence of persistent large-scale heterogeneity and the non-ergodic nature of
the system (the mean value of porosity in the packed layer is di"erent from the
mean porosity in the less packed region). However, for Y -axis, the calculated ACF
of WB10 shows a periodic behavior (Fig. 5.22 middle). After an initial decay it
becomes negative (anti-correlated layer) then around 1 cm it becomes positive while
going through a correlated layer, following which it enters in a second anti-correlated
layer around 1.8 cm (negative ACF). This highlights the similarity in the behavior
of the grayscale auto-correlation function for the WB10 sample along the Y -axis and
PZ103 along the Z-axis, as both exhibit packed layers with a normal vector along
these directions.

Figure 5.22: Comparison of directional auto-correlation function (ACF) in PZ103
(blue curve) and WB10 (red curve) samples. Note that we are plotting absolute
values here. The left panel shows ACF in Z direction, while the middle and right
panels show in Y and X directions, respectively. ACF in these plots is calculated
on a 2 cm cubic section which is cropped from 30 µm resolution scans.

E!ect of flow rates on wormhole shape

To study the e"ect of flow rate on the geometry of wormholes we conducted disso-
lution experiments on Pi&czów cores at flow rates ranging from 0.175 ml/min to 4
ml/min. Following these experiments, we analyzed the geometric characteristics of
the resulting wormholes shown in Fig. 5.17 and 5.19. As discussed in Ch. 2, lower
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flow rates in wormholing regime result in the formation of conical channels, while
at moderate flow rates, multiple wormholes compete, and one dominates, result-
ing in a thinner channel with slight branching which increases with the flow rate
[37, 38, 191]. Figures 5.17 and 5.19 confirm such a dependence of wormhole shape
on the flow rates. However, contrary to previous studies [38, 43, 191] that lacked 3D
information of the shape of conical wormholes, we observe highly tortuous structures
with reduced number of small branches and extended main pathways. This is most
probably, as we discussed earlier, due to the presence of packed layers in Pi&czów
samples. Furthermore, the conical wormhole while growing has extensive periods
where it does not elongate but simply increases its diameter. In these periods it
“swallows” the shorter side branches. We will quantify these observations using the
geometric properties below.

Figure 5.23: Geometric characteristics of post-experiment wormholes vs injection
rates. All the wormholes used in this plot were formed in Pi&czów limestone samples.
The data related to conical wormholes is shown in black color while for dominant
wormholes red color is used.

Fig. 5.23(left), shows the variation of tortuosity with injection rates. We observe
that the tortuosity of Pi&czów wormholes does not exhibit any clear dependence
on flow rates. This is a rather surprising result and is in contrast to the results
of Li et al. [52], who observed a dependence of tortuosity on injection rates in the
wormholes formed in plaster of Paris cores. It is also consistent with our observations
made in Fig. 5.17 and 5.19, where Pi&czów conical wormholes are as tortuous as
the dominant wormholes. We argue that it is connected to the characteristics of
a particular rock. Pi&czów rock is known to be very heterogeneous [41, 190], in
comparison to laboratory-made plaster of Paris, which is relatively homogeneous
[45, 52]. Moreover, Pi&czów samples used in Cooper et al. [41] are reported to have
layers of varying porosity with abundant fossils, which contributes to the tortuosity
of both the existing flow paths and the wormholes.

Finally, we have investigated the e"ect of flow rate on length wastefulness, WL.
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Fig. 5.23 (right) shows that WL is nearly constant for conical wormholes while for
dominant wormholes it keeps on increasing. Note that increasing WL indicates an
increase in the amount of branching—the number of branches and their length—in a
wormhole. Conical wormholes (Q ↗ 0.25 ml/min) show the lowest WL (↘ 8), which
means that they have the lowest number of branches. This is evident in Fig. 5.19,
where we observe fewer branches compared to dominant wormholes (Fig. 5.17),
which have a higher number of branches.

5.5 Conclusions

In this chapter, we presented a novel data analysis approach to study the growth
dynamics of wormholes in dissolving limestone rocks. More specifically, we devel-
oped a volume-based segmentation method with a self-adjustable threshold, relying
on a connected component algorithm to extract the wormhole shape from tomogra-
phy images. We also proposed geometric measures to quantify the shape of three-
dimensional wormholes. These methods provided new insights into the e"ect of
specific rock characteristics, such as low porosity layers, on the tip advancement of
a wormhole, as well as how the rock structures and injection rates can a"ect the
overall shape of wormholes.

The tip movement study showed that the growth of the wormhole in a real lime-
stone rock can be more complex than simple proportionality of the driving pressure
and tip displacement predicted by a typical model which assumes micro-structural
homogeneity [45, 46, 52, 91]. In our sample, we observed temporal plateaus alter-
nated with larger drops in pressure, which correlate well with the predictions of
a conceptual model that assumes a layered porosity distribution. The toy model
reproduced the general character of the observed pressure curve (Fig. 5.10), and
predicted speedups of wormhole tip. The high temporal resolution of the 4D tomog-
raphy technique used here enabled the capture of wormhole growth characteristics
corresponding to temporal variation of the driving pressure. This made it possible
to test the permeability barrier model and show that tip velocity increases as the
wormhole penetrates the barrier. The observed spatial correlation of wormhole tip
propagation velocity with average grayscale intensity indicates that regions which
contain large structures, such as impermeable fossils, act as barriers to reactive
flow. As confirmed in the numerical model, tip velocity increases as the wormhole
penetrates these barriers.

The quantification of evolving wormhole geometry using the proposed geometric
measures, such as tortuosity and length wastefulness, reveals that these measures
approach an asymptotic value as the dominant wormhole elongates. For PZ103
and PIN43 wormholes, where enough time series scans are available, this behavior is
observed within 10% relative standard deviation when the wormhole reaches a length
equal to the sample diameter. However, for the wormholes with a limited number of
scans, the relatively standard deviation is higher (10 ↔ 20%). The tendency of our
geometric measures to approach well-defined values for su%ciently long wormholes
suggests that these measures can reliably characterize di"erent wormhole structures.
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We also investigated the e"ect of rock structures on the shape of post-experiment
wormholes. The comparison of tortuosity and length wastefulness of Pi&czów and
Wierzbica wormholes—formed at 1ml/min flowrate—led us to conclude that these
measures can serve as characteristics of rock structures. The geometric measures
showed that Wierzbica wormholes, on average, are relatively straight and have fewer
branches compared to Pi&czów wormholes. On investigating the di"erences between
these measures of Wierzbica and Pi&czów wormholes, we found that rock structures
such as packed regions have a significant e"ect on wormhole shape. WB10 sample
has packed layers of low porosity with a large normal vector in Y direction, contrary
to Pi&czów samples where the layers have the normal vector in Z-axis. The result
of the di"erent orientation of these layers is that WB10 wormhole evolved in a
less packed region of higher permeability (almost parallel to the layer), completely
ignoring crossing the densely packed region. On the other hand, PZ103 wormhole
was growing in a setting where the layers were oriented perpendicular to its growth
direction, hence it could not bypass them. These observations are confirmed by
comparing the 2D projection plots of 3D rock matrix and directional auto-correlation
functions of PZ103 and WB10 sample.

The results of this study can be generalized to all Pi&czów and Wierzbica samples,
where PZ103 is the representative of all of the Pi&czów samples, since they were cut
perpendicular to the bedding. On the other hand, WB samples had random orien-
tation, which means that in most cases, the layers would not block the wormhole
completely, and it can propagate along the less packed regions without crossing it,
resulting in the structures of smaller tortuosity than those of Pi&czów limestone.
Note that these di"erent behaviors and geometric characteristics are thus the com-
bination of the rock properties (presence of the layers) and the sample preparation
(orientation of the cores), where Pi&czów samples are just an extreme case of sam-
ple/layer orientation, i.e. perpendicular to the mean flow direction.

Finally, we conducted a study to examine the e"ect of varying injection rates on the
wormhole shapes. This study reveals that there is no dependence of the tortuosity
of the Pi&czów wormholes on flow rates, indicating that conical wormholes are as
tortuous as dominant ones. This observation further supports our argument that
wormhole tortuosity is a characteristic feature of rock structures. However, the
length wastefullness does show a direct dependence on injection rates and increases
with it. This result is aligned with other studies [37, 38, 191] where increasing flow
rate (or decreasing Dae!) resulted in the transition from conical wormholes (which
have a small number of branches) to a ramified regime, where many parallel flow
paths develop.
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Chapter 6

E!ects of mixing at pore
intersections on large-scale
dissolution patterns

The poet’s task is to bring together the disparate elements of experience, to mix them into

something that sings.

T. S. Elliot

6.1 Introduction

In this chapter, we will turn our focus toward the pore-scale mixing processes and
their e"ects on network-scale dissolution patterns. This chapter also contains a set
of new findings which are published in a peer-reviewed journal article [138].

Dissolution patterns are commonly observed at macro-scales, while they are the
result of micro-scale reactive transport processes. The chemical reactions occur at
the rock surface, which, coupled with reactant transport via advection and di"usion,
govern the dissolution process. On the other hand, the magnitude of the flow and the
concentration profile in the sample are global in nature and depend on the existence
of dominant flow paths and large-scale heterogeneities. The coupling between micro
and macro scale processes could influence the dissolution process, especially in the
unstable regime, where the existing flow paths compete, and the dominating one
gets amplified [53, 54].

Realizing the importance of pore-scale processes in the formation of large-scale dis-
solution patterns, several researchers conducted studies to understand their e"ects
and showed that macroscopic reactive transport can be influenced by pore-scale mix-
ing [57–59] and pore-scale properties such as mineral distribution and pore network
structure [56, 77]. Pore-scale mixing plays a crucial role in reactive flows, control-
ling the transport of reactants at pore surfaces and the reactions induced by mixing
processes [192]. Particularly, the mixing at fracture intersections and pore junctions
has attracted considerable interest because the intersections are the places where
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vigorous mixing and reactions between di"erent fluids take place [65, 193, 194]. For
instance, Bochet et al. [195] and Lee and Kang [64] have identified the fracture
intersections as the hotspots for potential biogeochemical reactions. Additionally,
previous studies have indicated that the degree of mixing at pore intersections can
influence solute spreading at large-scale [61–63]. This suggests that the dissolution
patterns could be influenced by mixing at pore-intersections, with recent findings
showing a wide range of mixing conditions can occur at these places [64, 65]. Never-
theless, the traditional network scale dissolution models [56, 66], described in Ch. 3,
assume a full mixing of reactant concentrations at pore-intersections. This is due
to the absence of a universal, coarse-grained mixing rule to quantify the degree of
mixing at intersections.

To tackle this issue, we will use the pore network model introduced in Ch. 3 with one
exception. Instead of considering only the traditional full mixing condition which
assumes that the solute transport at pore junctions is di"usion-dominated and the
reactive solute becomes well mixed, we will also use streamline routing. This type of
mixing assumes that the reactant transport is advection-dominated, and the solute
is carried by streamlines without transitioning between them. As a result, the
latter leads to partial or no mixing of incoming reactant concentrations. We have
implemented both mixing conditions at pore junctions in the network model of a
dissolving porous medium.

In Sec. 6.3, we will describe in details a general formulation of streamline routing.
The formulation is inspired by Kang et al. [62] and is based on the calculation of flow
fractions at an intersection with four connected pores. The results will be presented
in Sec. 6.4 with a quantitative and qualitative comparison of dissolution patterns
formed by both types of mixing. In addition, we will also compare breakthrough
curves, which are important in petroleum reservoir stimulation, where the key em-
phasis is on the amount of reactant required for the breakthrough. In this study, we
found that the interplay between network heterogeneity and mixing strongly a"ects
the macroscopic dissolution patterns, and the underlying mechanism is highlighted.

6.2 Pore network model

We use a network model similar to the one described in Ch. 3, in which the porous
rock is represented as a network of cylindrical capillaries (of initially heterogeneous
sizes) that are broadened by the dissolution [37, 56, 66]. The nodes of the network
(pore junctions) are assumed to be volumeless such that all the reactions take place
in the capillaries (pores) only. A rhombic (diamond) lattice is used to create a
network for which the nodes are placed on a regular lattice with the link length of
constant l0, as shown in Fig. 6.1(a). Such geometry with four branch intersections
is particularly well suited to study the mixing e"ects [196–198]. In the limiting
case of short residence times at the intersection and uniform pore diameters, the
two incoming tracer streams will remain unmixed in this geometry. Heterogeneity
in the network is introduced by assigning each pore an initial diameter according
to a log-normal distribution, generated with mean d0 and the variance of hydraulic
conductance φ2. A wide range of φ2 is considered to study the e"ects of initial
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network heterogeneity. The reason to choose a log-normal distribution in this study
is its ubiquity in many natural systems [199]. In the generated network, the reactive
fluid enters through the set of Ny inlet nodes (see Fig. 6.1a) where the pressure
pin(t) is imposed, and leaves through outlet nodes where the pressure is kept at
zero, pout(t) = 0. The inlet pressure is adjusted in each time step to keep the
total volumetric flow rate through the system, Q0, constant. Periodic boundary
conditions are applied along the lateral direction.

A fixed value of Sherwood number, Sh(= 5) and parameter G (= 1) is used in
this study. In our model, the geometry of each pore is circular, for which the
approximation of Sh = 5 is well in the asymptotic limits of higher Sh= 4.861 and
lower Sh= 5.385 reaction rates [148]. The rationale for choosing a fixed value of
G, as shown by Budek and Szymczak [66], is that the influence of varying G on
dissolution patterns is less significant than the e"ect of Dae!. Moreover, G = 1

implies a mixed transport and reaction control on the dissolution rate, which is
similar to the conditions of acidization experiments. For example, in the case of the
dissolution of Indiana limestone using hydrochloric acid, the surface reaction rate
k = 0.2 cm/s yields G ↘ 0.7, close to G = 1 adopted here.

6.3 Incomplete mixing

We have discussed full mixing in Sec. 3.2.3, where it was assumed that the solute
has a longer residence time at pore intersections to mix completely. However, in
the case of shorter residence time (corresponding to higher flow rates), the mixing is
incomplete, with a considerable portion of reactant following the streamlines. In the
limit of negligible residence time, the incoming reactant concentrations do not mix at
all and follow the streamlines as depicted in Fig. 6.1c. The choice of mixing protocol
in a given physical situation depends on the local Péclet number characterizing
the flow through the intersection, Peint. This number is equal to the ratio of the
advective travel time through the intersection, dint/v, to the respective di"usive
time, d2int/D, with dint – a characteristic size of an intersection. The intersection
Péclet number is then Peint = dintv/D, with Peint > 1 leading to streamline routing,
and Peint ↓ 1 defining the range over which full mixing assumption should work
well. In natural and laboratory systems, one encounters a large range of Peint.
Taking as an example acidization of Indiana limestone [37], where v is in the range
0.05↔ 5 cm/s, D = 3.6⇔ 10

→5 cm2/s [38] and dint ↘ 5µm [200], we get Peint in the
range 0.5 ↔ 50, depending on the flow rate used. On the other hand, groundwater
flows in natural rocks are much lower, usually in the range 10

→8 ↔ 10
→5cms→1 [201],

which leads to Peint ↓ 1. A substantially di"erent situation is encountered for
the dissolution of rock fractures or bedding planes. Such systems can be simulated
using the present model, with the 2D network of channels then representing the flow
paths in the fracture plane around the asperities. Fracture apertures are between
0.005cm and 0.1cm [202–204], and hydraulic gradients are of the order of 10→3 to
10

→1 [205, 206]. This gives a range of characteristic flow velocities in undissolved
fractures from 10

→4cm/s to 1cm/s. The corresponding intersection Péclet numbers
are then 0.05 < Peint < 10

4, taking the fracture aperture as the characteristic
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intersection size and assuming the solute di"usion coe%cient of D = 10
→5cm2s→1.

The above shows that a wide range of Péclet numbers can be encountered when
dissolving fractured and porous rocks, which implies that both mixing rules can
commonly occur in nature. For a node i, a general mixing rule would be:

cin
ik = (

∑

j

εjkqjic
out
ji )/(

∑

j

εjkqji) (6.1)

where εjk is the fraction of flow from pore ji that makes it to the pore ik. It is
noteworthy to point out that if εjk is a constant and independent of j and k, then
streamline routing reduces to full mixing rules.
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Figure 6.1: (a) A schematic representation of a network with rhombic lattice and
line inputs and outputs. (b) Full mixing: Junction i is fed by two solute fluxes with
concentrations cout

1i and cout
2i from pore outlets 1 and 2 respectively. After full mixing,

a final concentration cin flows into pores 3 and 4. The colour indicates di"erent
concentrations. (c) Streamline routing: Reactant fluxes follow the streamlines. The
concentrations entering pores 3 and 4 from node i are cin

i3 and cin
i4 respectively.

In the case of a diamond lattice, fraction εjk can be calculated by considering a
pore junction i. The incoming concentrations (cout

1i ) from pore-1 outlet to node i
are shown in blue while from pore-2 is marked in red. Pore-2 is assumed to have
a larger volumetric flow rate than pore-4 (q2i > qi4). With a longer residence time
limit (corresponding to full mixing conditions (Fig. 6.1b), these probabilities are
ε13 = ε14 = ε23 = ε24 = 1 and the final concentration cin is shown in violet.
In the case of streamline routing (Fig. 6.1c), due to larger flow in pore-2, pore-3
will get reactant fluxes from both pore-1 and a fraction of pore-2. The remaining
flux is forwarded to pore-4. The corresponding reactant transfer probabilities are
ε13 = 1,ε14 = 0,ε23 = (q2i ↔ qi4)/q2i,ε24 = qi4/q2i. Using these probabilities in
Eq. (6.1), the outgoing concentrations are following:

cin
i3 =

q1icout
1i + (q2i ↔ qi4)cout

2i

qi3
(6.2)

cini4 = cout
2i (6.3)

In the case of the reverse situation, that is qi4 > q2i (or qi3 < q1i), the transfer
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probabilities can be calculated similarly by performing an appropriate permutation
of indices in above expression [61, 62]. In another situation, when there is a node
with one inlet pore and three outlet pores or vice versa, the streamline routing rules
reduce to full mixing rules; therefore, Eq. (3.24) can be used.

6.4 Results and Discussions

To investigate the e"ects of pore intersection mixing on the network scale dissolution
patterns, we have performed a large number of simulations on a network made of
200 ⇔ 200 nodes, using both full mixing rules (3.24) and streamline routing rules
(6.1). Simulations are carried out for a range of Damköhler numbers (0.01 < Dae! <
1.0). The reason for selecting Dae! within this range is that outside this range,
dissolution is either uniform (small Dae!) due to large penetration length or leads
to face dissolution (large Dae!) resulting from small penetration length.

One other parameter of consideration is system heterogeneity. Based on hydraulic
variance, three categories of networks are generated: homogeneous (φ2

= 0.002),
moderate heterogeneous (φ2

= 0.16) and strongly heterogeneous (φ2
= 11). The

results of dissolution simulations conducted with di"erent Dae! on di"erent hetero-
geneous networks are shown in Fig. 6.2. All simulations have a stopping criterion
at half breakthrough time, which is defined as when any pore at location x = Lx/2
grows five times its initial diameter, with Lx standing for the domain size in the
mean flow direction, x. In a uniform dissolution regime, that is, Dae! ↗ 0.02, it
is observed that there is no significant di"erence in the dissolution patterns formed
with di"erent mixing rules. Due to the large penetration length, the reactant in-
vades the whole network and results in the same concentrations arriving at the
pore intersections from di"erent channels. Referring to Fig. 6.1b-c, if the incoming
concentrations (cout

1i ↘ cout
2i ) are the same at any pore intersection, the outgoing con-

centrations (cin
i3 = cin

i4 = cout
1i ) are also same and therefore streamline routing behaves

similar to full mixing resulting in similar patterns. However, with increasing Dae!,
the penetration length lp decreases, which results in more localized dissolution. The
reactant is consumed more rapidly locally by the competing flow paths, resulting
in faster growth of dominant channels that further localize the dissolution to a few
selected dissolution paths. Within this Dae! range (0.05 < Dae! < 0.1), streamline
routing yields thinner channels in comparison to channels produced by full mixing
rules.

To understand this e"ect, let us first comment on the impact of mixing protocol on
the value of transverse dispersion in the network. In case of fully homogeneous net-
work (φ2

= 0), the reactant transfer probabilities εjk at pore junctions (Fig. 3.3(c))
reduces to ε13 = 1,ε14 = 0,ε23 = 0,ε24 = 1. The reactant concentration in pore-1
is transferred to pore-3 and the concentration in pore-2 is forwarded to pore-4, re-
sulting in the movement of concentration in the mean flow direction without any
transverse dispersion. On the other hand, in the case of full mixing, the transfer
probabilities at any junctions are (εjk = 1/2) which results in a uniform distribution
of the concentrations in outgoing pores, regardless of the flow. This gives rise to a
Sa"man-type dispersion [207] in a fully homogeneous network (φ2

= 0) for which
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Figure 6.2: Dissolution patterns for di"erent mixing rules as a function of e"ec-
tive Damköhler number (Dae!) and initial heterogeneity of the network. Initial
pore diameters are distributed log-normally, and φ2 is the log-variance of initial
hydraulic conductance values. The colours represent the growth of pore diameters
(dij(t)↔dij(0)). To better visualize the dissolution patterns, we increased the widths
of the lines with which we plot individual pores to three times the diameter of each
pore (3dij). The successive shadings indicate large chemical erosion (dark red), in-
termediate erosion (yellow and green), low erosion (blue), and no erosion (white).

the transverse dispersion coe%cient can be calculated by considering a small section
of the network (Fig. 6.3).

In full mixing condition, the solute particles can go to either of the outgoing pores
with equal transfer probabilities (1/2). The mean square displacement of solute
particles in the transverse direction is:

⇑X2
i ⇓ = (l0 sin(↼/4))

2
= l20/2

After n time-steps where each step is of size !t, the dispersion coe%cient can be
calculated by:

2Dfm
T n!t = nl20/2
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Figure 6.3: A small section of diamond lattice where the solute particles are injected
at a node at origin. In full mixing conditions, the solute particle has equal proba-
bilities (1/2) to go out of a node in either of the outgoing pores.

Now replacing, !t = l0/u gives the dispersion coe%cient, Dfm
T = ul0/4 where u is

the mean flow rate in the pore.

For streamline routing in a homogeneous network transverse dispersion coe%cient
vanishes (Dst

T = 0), which reflects the fact that the concentration is s simply trans-
mitted from pore to pore, without spreading. Naturally, for a heterogeneous network
Dst

T will have a finite value, but the magnitude of it is still expected to be consider-
ably smaller than the corresponding value of Dfm

T . Another observation, as argued
by Steefel and Lasaga [208], is that the width of the dissolution channel is pro-
portional to the square root of dispersion coe%cient,

↖
DT which means that full

mixing should produce wider channels in comparison to streamline routing, which is
indeed observed. However, as system heterogeneity increases, many of the transfer
coe%cients εjk become non-zero, and there is an appreciable redistribution of the
reactant between the outgoing pores for both mixing protocols [62]. Thus we expect
that the di"erences in channel width produced by di"erent mixing rules decrease
with increasing heterogeneity. In the case of moderate and large Dae! ↙ 0.5, the
reactant penetration length lp becomes comparable to the pore length resulting in
stronger competition between pores for available reactant concentration. The dom-
inant pores with larger flow rates receive more reactant and exhibit faster growth.
In a strongly heterogeneous system (φ2

= 11), this leads to the formation of highly
branched dissolution patterns with fractal-like characteristics and the width compa-
rable to that of a single pore. The e"ect of mixing rules is weaker in this dissolution
regime. It can be explained by considering a pore-intersection (Fig. 6.4) at which the
tip of the wormhole has arrived. Pore-1, corresponding to the path of the wormhole,
has significantly higher flow rate in comparison to the other pores. In this situation,
the outlet pores (3 & 4) receive a similar concentration as the leading pore, pore-1,
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Figure 6.4: Two di"erent scenarios in which streamline routing behaves similar to
full mixing (a) Large penetration length (lp) where concentrations (violet colour)
from both pore outlets 1 and 2 are the same (cout

1i = cout
1i ) and the resulting final

concentration (cin
i3 = cin

i4 = cout
2i ) enters in pore 3 and 4 (b) Small penetration length

with pore 1 having larger flow rate (q1i ↑ q2i). The respective concentration cout
1i

(blue colour) dominates the junction and is forwarded to both pores 3 and 4.

reducing the e"ect of streamline routing. The resulting patterns from both mixing
rules are very much the same.

In this dissolution regime (Dae! ↙ 0.5), with smaller heterogeneity (φ2
= 0.002), reg-

ular Y-shaped patterns are observed with two dominant branches extending along
the lattice directions with a characteristic angle of ±45

↓ from the mean flow di-
rection. For full mixing case, as shown by Budek and Szymczak [66], once such a
configuration forms, it continues to grow since the reactant flux in the pores paral-
lel to the arms will always be larger than that in di"erently oriented pores around
the channel tip. On the other hand, in the case of streamline routing, the for-
mation of Y-shaped patterns is delayed to larger Dae! because streamline routing
more strongly focuses reactant in the flow direction. Such a focusing e"ect inten-
sifies with a decrease in network heterogeneity. This is evidenced, for example, by
formed patterns in a small heterogeneity case (φ2

= 0.002) with Damköhler number
Dae! = 0.5, in which straight fingers form with characteristics splitting near the tip
where the side-branches, angled at ±45

↓, briefly appear and grow before dying o".
At an even higher Damköhler number (Dae! = 1.0), the two patterns (straight and
angled) coexist, with small straight fingers forming near the inlet, only to give way
to Y-shaped channels, which emerge from their side branches. This is because a very
short penetration length diminishes the e"ect of mixing by increasing the network
heterogeneity near the dissolution front.

For the quantitative study of the e"ect of mixing rules over the width of dissolution
patterns, we introduce the total width (W ) of patterns—defined as the sum of the
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Figure 6.5: (a) The width of the pattern (W) vs e"ective Damköhler number Dae! for
a network of 200x200 nodes with the transport parameter G = 1 and heterogeneity
φ2 = 11. The simulations were run with full mixing (red line) and streamline routing
(blue dashed line). The points present averages over ten realizations of the initial
disorder in the network, along with the respective error bars. In the inset, the ratio
of the total pattern widths with full mixing and streamline routing, (W fm/W sr

), is
plotted vs Dae! for di"erent heterogeneities (φ2

= 0.002, 0.16, 11). (b) Breakthrough
volume (Vb) dependence on the Damköhler number for 200x200 network with the
transport parameter G = 1 and heterogeneity φ2 = 11 for both full mixing (red
line) and streamline routing (blue dashed line). The points represent averages over
ten simulations, along with the respective error bars. In the inset, the ratio of full
mixing breakthrough volume to streamline routing volume (V fm

b /V sr
b ) is shown for

di"erent heterogeneities.

growth of pore diameters (
∑

!di) where di is the diameter of the pores intersecting
the mid-line—along the line (x = Lx/2). Variation of channel width (W ) with
di"erent Dae! is shown in Fig. 6.5. It is evident that for both small and large Dae! the
values of W are insensitive to the mixing rules. However, in the intermediate regime
10

→2 < Dae! < 1 the e"ect of streamline routing is most pronounced and therefore
the channels are the thinnest. The inset of Fig. 6.5 depicts the ratio of channel
widths, formed using two mixing rules Wfm/Wst, for di"erent network heterogeneities
(φ2). It shows that in the least heterogeneous systems (φ2

= 0.002), the e"ect of
mixing rules is maximised at the intermediate values of Dae!, diminishing with an
increase in network heterogeneity.

We also investigate the e"ect of both mixing protocols on the total volume of reactive
fluid, Vb, that must be injected into the pores to obtain the breakthrough of the
dissolution front. The breakthrough criteria is defined here as the moment when at
least one pore at the outlet broadens five times of its initial value. Note that, the
breakthrough criteria is set here at the outlet contrary to the Fig. 6.2 where it was
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set at x = Lx/2. The dependence of Vb on Dae! holds a particular significance in
the optimisation of dissolution of carbonate reservoirs in which the permeability of
reservoirs needs to be increased with the least reactant expense [38, 43, 44, 89, 90].

Fig. 6.5b shows the variation of breakthrough volume, Vb, with Dae! for both types
of mixing rules in a highly heterogeneous system (φ2

= 11). Vb increases for both
low (Dae! < 10

→2) and high (Dae! > 1) Damköhler numbers, with similar values
observed for both types of mixing protocols. In these regimes, dissolution is far from
optimal in terms of the required volume of reactant to open up the system. In a
low Damköhler number regime, the penetration length is larger than the system size
resulting in a uniform dissolution throughout the system. In such a case, a lot of
reactant is needed to dissolve all the available pore surfaces. On the other hand,
for large Dae!, face dissolution takes place. All the reactant is consumed at the
inlet face of the sample, which results in very long dissolution times, and therefore
larger breakthrough volume. However, in the moderate Dae! number regime, strong
competition for reactant among growing pores leads to the formation of dominant
channels, which are very e"ective conduits for the reactant. In this regime, we
observed that the streamline routing not only produces thinner wormholes but also
minimizes the breakthrough reactant volume. This e"ect of minimisation is stronger
in a nearly homogeneous system (φ2

= 0.002), as shown in the inset of Fig. 6.5(a),
where the required breakthrough volume can be as much as five times smaller than
that in the full mixing case. As the heterogeneity of the system increases, this e"ect
of mixing protocols diminishes but even for the most heterogeneous system (φ2

= 11)
there can still be a factor of two di"erence between the breakthrough volumes (inset
of Fig. 6.5a).

Lastly, we have also investigated the e"ect heterogeneity of the system over the
breakthrough volume as shown in Fig. 6.6. The Damköhler number used here
(Dae! = 0.1) corresponds to the optimum Dae! for the fastest breakthrough in
the system. As discussed above, streamline routing requires less reactant volume to
achieve breakthrough. This e"ect is the strongest for the least inhomogeneous case,
and then diminishes with heterogeneity, in accordance to our previous observations
on the impact of heterogeneity on the mixing e"ect on dissolution.

6.5 Conclusions

Dissolution of porous medium by an infiltrating reactive fluid is a prime example
of a process where pore scales couple to the core- or even reservoir scales. This
coupling is particularly pronounced in the unstable regime, which is characterized
by the emergence of dissolution channels. This work shows that shapes and prop-
agation velocities of these channels are sensitive to the details of mixing process
at pore intersections. When the reactant follows the streamlines, with no time to
mix di"usively at the intersections, the flow focusing at the tips of the channels is
significantly enhanced and they propagate faster, thus decreasing the breakthrough
time. These e"ects are the strongest in the intermediate Damköhler number regime,
where the reactive and advective timescales are similar. Both for larger and smaller
Damköhler number the e"ect of mixing on the dissolution patterns becomes weaker,
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Figure 6.6: Dependence of breakthrough volume (Vb) on system heterogeneity—log-
variance of hydraulic conductance (φ2)—for a network of 200x200 nodes at Dae! =

0.1 with transport parameter G = 1 for both mixing rules: the blue dashed line
represents streamline routing, while the red solid line corresponds to full mixing.
The points represent average over ten realization of initial disorder of the network,
along with the respective error bars.

but for di"erent reasons. At small Dae!, the concentration of reactant becomes
uniform throughout the sample and the mixing rules become irrelevant. At large
Dae!, on the other hand, the wormhole tip focuses a very large flow and reactant
concentration, so the presence of other incoming pores no longer matters. This is
because the disparity of flow and concentration between the pore at wormhole tip
and others results in an increase of network heterogeneity at dissolution front. This
increase, combined with the short penetration length diminishes the mixing e"ect.
Additionally, the coupling of mixing rules and the large-scale dissolution patterns is
suppressed as the initial heterogeneity of the pore space increases.
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Chapter 7

Summary

Therefore, I conclude. Therefore, I assume it complete. ...But is it a conclusion, or

merely an illusion?...

The present thesis has investigated the dissolution of porous rocks and resulting
patterns through a combination of experimental (image-analysis), numerical, and
theoretical approaches, mainly focusing on the coupling between micro-scale pro-
cesses and macro-scale evolution. A key theme of the thesis is micro-macro inter-
play, where micro-scale dissolution mechanisms such as mixing at pore intersections
and pore geometry evolution influence the macro-scale properties such as perme-
ability and porosity, and the shape of dissolution patterns. This thesis integrates
both static (pre-post dissolution) and dynamics (during dissolution) perspectives,
analyzing dissolution patterns in both naturally karstified and experimentally al-
tered environments. To systematically categorize the findings of this thesis, the
research work is described using Table 7.1. The categorization is done based on
scale—micro vs. macro, di"erentiating between micro-scale dissolution mechanisms
and their large-scale consequences, as well as on-time dependence, i.e., static vs. dy-
namic systems, distinguishing structural analysis from the study of time-dependent
evolution.

This framework highlights how static characterizations (such as micro and macro
structural analysis using tomography imaging) complement dynamic investigations
(such as time-lapse tomography analysis of evolving wormhole and network mod-
elling simulation) to provide a comprehensive picture of dissolution-driven evolution
in porous media.

Achievements
The key achievements of the thesis are the following:

• We have developed a quantitative framework to analyze pore merging, con-
nectivity evolution, and thickness distribution using X-ray microtomography.
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e Scale

Micro Macro
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at
ic

• X-ray microtomography re-
vealed dissolution-induced
changes in pore geometry
(Ch. 4)

• Thickness distribution and
connectivity analysis indicates
pore-merging (Ch. 4)

• Flinn diagram quantified merg-
ing of di"erent pore geometries
(Ch. 4)

• 4D tomography captured large-
scale rock structures before dis-
solution (Ch. 5)

• Packed layers of low permeabil-
ity act as a barrier, resulting
dissolution patterns are tortu-
ous and have more branches
(Ch. 5)

• Wormholes formed in the layer
of higher permeability, are rela-
tively less tortuous and contain
fewer branches (Ch. 5)

• Tortuosity of wormholes is a
characteristic of rock (Ch. 5)

• Dissolution-induced changes in
pore geometry decreased flow
tortuosity (Ch. 4)

D
yn

am
ic

• Network scale dissolution mod-
eling shows how inhomoge-
neous dissolution develops over
time (Ch. 6)

• Wormhole growth dynamics
depends on pore intersection
mixing rules (Ch. 6)

• Full mixing rules lead to higher
dispersion of solute particles at
pore intersections, compared to
streamline routing (Ch. 6)

• In natural dissolution, pore ge-
ometries evolve by enlargening
as well as merging of pores
(Ch. 4)

• Strong flow focusing in largest
pores also accounts for changes
in pore-geometries (Ch. 4)

• Time-lapse (4D) tomography
tracked real-time wormhole
propagation (Ch. 5)

• Tip evolution of wormhole
showed speed-ups and lateral
turns. (Ch. 5)

• Permeability evolution is corre-
lated with tip evolution, show-
ing larger drops and plateaus
(Ch. 5)

• Evolution of wormhole geome-
try is quantified by geometric
characteristics (Ch. 5)

• Streamline routing resulted in
thinner channels that move
faster, leading to a faster break-
through in comparison to the
channels formed by full mixing
rules (Ch. 6)

Table 7.1: Categorization of thesis contributions based on micro-macro coupling and
static-dynamic aspects.

• We have also used, Flinn diagrams, to quantify the type of merging geometries
(i.e. oblate and prolate shapes) and their impact on the thickness evolution in
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the merging process.

• We have demonstrated that inhomogeneous dissolution plays a significant role
in karstification where pore space evolves through di"erent mechanisms: uni-
form dissolution of individual pores, merging of pores, and emergence of pref-
erential flow paths.

• We have developed a novel segmentation method, volume-based segmentation,
to analyze time-lapse 4D microtomography images.

• We have also proposed geometric characteristics to quantify the di"erences in
the shape of di"erent wormholes formed in two types of rock.

• We have shown that large-scale structures such as cemented regions (packed
layers) act as flow barriers, influencing not only the growth dynamics but also
the overall shape of a wormhole.

• Using time-lapse experiments, we demonstrated that wormhole while evolving
through packed layers, shows speed-ups and lateral turns, which correspond
to non-linear permeability evolution (dispersed in plateaus and large drops).

• Using a network modeling approach, we have established that pore-scale pro-
cesses (such as pore-intersection mixing) not only influence the shape large-
scale dissolution patterns but also their growth velocities.

These findings improve our understanding of dissolution processes in porous me-
dia by elucidating the fundamental physics behind reactive flow instabilities, pore-
scale transport phenomena, and the formation of self-organized dissolution patterns,
which enhances predictive capabilities in this key area of reactive transport. The
insights gained into porous media dissolution, particularly in terms of micro-macro
coupling, could help refine reactive-transport models and address various transport
physics challenges. The deeper understanding of wormholing—especially the role of
system heterogeneity, such as macro-scale rock microfacies—has direct implications
for geology and petroleum engineering. However, its relevance extends beyond these
fields, as wormhole-like, fractal channels also form in other unstable growth systems.
The results of this thesis will also be valuable for applications such as geological car-
bon storage, groundwater remediation, karst formation studies, or any area where
predicting and controlling dissolution-driven processes is crucial. Additionally, the
methods developed for extracting and analyzing dissolution pattern shapes have
significant potential for pattern formation studies. Techniques like volume-based
segmentation and tools for analyzing pore geometry from tomography images, ini-
tially designed for reactive transport studies, could benefit a wider range of research
communities
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