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“God runs electromagnetics by wave theory on Monday, Wednesday, and Friday, and the
Devil runs them by quantum theory on Tuesday, Thursday, and Saturday.”
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The wavefunction of a quantum particle leads to distinctly non-classical mechani-
cal effects. An important example is quantum tunneling, which enables scanning
tunneling microscopy, Josephson junctions, and flash memory. An equally puzzling
effect is quantum backflow — an interference effect where a free quantum particle
with positive momentum exhibits negative probability current at some space-time
point, seemingly moving backwards. This is explained by the distinction between
local properties such as probability density and probability current and global prop-
erties such as momentum, which require knowledge of the entire wavefunction.

The term ‘quantum’ in quantum backflow underscores the stark contrast be-
tween classical and quantum particle dynamics. The broader concept of ‘backflow’—a
wave phenomenon where the flow of some quantity (such as energy or probability)
in certain regions of space-time is opposite to the flow direction of its constituent
elementary waves—is explored experimentally and theoretically with classical and
quantum light in this thesis. Our experimental observations of anomalous trans-
verse ‘local’ linear and orbital angular momentum in simple optical two-beam inter-
ference using a Shack-Hartmann wavefront sensor, provide new insights and high-
light that ‘backflow’ in such scenarios is quite common, owing to the practical im-
possibility of creating the constituent beams with perfectly equal amplitudes. These
observations are extended to the single photon regime.

It ought to be noted that the flow of energy, quantified by the Poynting mo-
mentum, is co-directional with the measured local momentum only in the case of
linearly polarized paraxial fields in free space. As discussed in a dedicated chapter
of the thesis, this assumption no longer holds true for vector fields.

Despite the observations of backflow in optical systems, the prospect of exper-
imentally observing the counter-propagation of a massive quantum particle, such
as an electron, remains a compelling challenge. A proposal, to observe the phe-
nomenon with electrons in a transmission electron microscope, is discussed in this
thesis.
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Obserwacje anomalnych poprzecznych lokalnych pędów w przestrzennych

funkcjach falowych

Bohnishikha GHOSH

Funkcja falowa cząstki kwantowej prowadzi do wyraźnie nieklasycznych efek-
tów mechanicznych. Ważnym przykładem jest tunelowanie kwantowe, które umożli-
wia skaningową mikroskopię tunelową, złącza Josephsona oraz pamięci flash. Równie
zagadkowym zjawiskiem jest kwantowy przepływ wsteczny — efekt interferen-
cyjny, w którym swobodna cząstka kwantowa o dodatnim pędzie wykazuje ujemny
prąd prawdopodobieństwa w pewnym punkcie czasoprzestrzeni, pozornie porusza-
jąc się wstecz. Zjawisko to można wyjaśnić różnicą między lokalnymi właściwości-
ami, takimi jak gęstość prawdopodobieństwa i prąd prawdopodobieństwa, a glob-
alnymi właściwościami, takimi jak pęd, które wymagają znajomości całej funkcji
falowej.

Termin „kwantowy” w przepływie wstecznym podkreśla wyraźny kontrast między
klasyczną a kwantową dynamiką cząstek. Szersza koncepcja „przepływu wstecznego”
— zjawiska falowego, w którym przepływ pewnej wielkości (takiej jak energia lub
prawdopodobieństwo) w określonych obszarach czasoprzestrzeni jest przeciwny do
kierunku przepływu jego składowych fal elementarnych — jest badana doświad-
czalnie i teoretycznie w świetle klasycznym i kwantowym w tej rozprawie. Nasze
obserwacje anomalnego poprzecznego „lokalnego” pędu liniowego i orbitalnego mo-
mentu pędu w prostych superpozycjach dwóch wiązek światła przy użyciu sensora
frontu falowego Shacka-Hartmanna demonstrują, że „przepływ wsteczny” w takich
scenariuszach jest dość powsze-chny, z uwagi na praktyczną niemożność stworzenia
wiązek składowych o idealnie równych amplitudach. Obserwacje te zostały rozsz-
erzone do reżimu pojedynczych fotonów.

Należy zauważyć, że przepływ energii, kwantyfikowany poprzez wektor Poyntinga,
jest współkierunkowy z mierzonym lokalnym pędem jedynie w przypadku liniowo
spolaryzowanych przyosiowych pól w wolnej przestrzeni. Jak omówiono w dedyko-
wanym rozdziale rozprawy, założenie to przestaje być prawdziwe dla pól wek-
torowych.

Pomimo obserwacji przepływu wstecznego w układach optycznych, perspek-
tywa eksperymentalnego zaobserwowania tego zjawiska dla masywnej cząstki kwan-
towej, takiej jak elektron, pozostaje interesującym wyzwaniem. W pracy omówi-
ono propozycję zaobserwowania tego zjawiska przy użyciu elektronów w trans-
misyjnym mikroskopie elektronowym.
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chodzeń and the Division of Optics, Faculty of Physics (FUW), University of Warsaw
at large, as well as the Doctoral School of Exact and Natural Sciences, for their in-
valuable administrative assistance during my doctoral journey, which provided me
with a solid foundation to pursue my research.

A heartfelt thanks goes to the past and present members of the Quantum Imag-
ing Lab group at FUW, for creating a special, supportive, and stimulating environ-
ment—one filled with academic rigor and a sense of fun. In particular, I express
my sincere gratitude to Dr. Anat Daniel and Bernard Gorzkowski, who have been
incredible collaborators and teammates. Working with them has been an enriching
experience.

Additionally, I express my earnest thanks to Dr. Monika Pawłowska, Adrian
Makow-ski, Paweł Szczypkowski, Alexander Krupiński-Ptaszek, Dr. Sanjukta Kundu,
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Chapter 1

Introduction

A plethora of counterintuitive effects that have been encountered in quantum me-
chanics can be attributed to the wave nature of matter: tunnelling, superposition, to
name a few. Richard Feynman famously said that the double-slit experiment, which
provides an example of the superposition principle, is "impossible to explain in any
classical way" and "has in it the heart of quantum mechanics. In reality, it contains
the only mystery." Admittedly, the advent of entangled states of two or more parti-
cles has led to further mysteries. Nonetheless, for the purpose of this dissertation,
Thomas Young’s double-slit experiment (see Fig. (1.1)) with classical light and its
variants, that have since been performed ubiquitously with electrons [1], neutrons
[2], photons [3], atoms [4] and molecules [5], merit our attention. A coherent train
of particles is shot at two parallel slits and is registered, one by one, on a screen in
the far field of slits. An interference pattern emerges on the screen after some time.
Thus, the total probability density of finding the particle at any position behind the
slits is the modulus square of the sums of the probability amplitudes of arriving at
the said position via each of the slits. The striking feature of this experiment is that
not only the intensity (energy), but also the phase, of the resultant fields behind the
slits, is generally not a spatially homogeneous distribution. This very redistribution
of energy and phase allowed by the superposition principle can account for another
lesser known and surprising phenomenon called ’backflow’. In general, backflow
occurs when wave-functions are a superposition of states carrying entirely positive
momenta (Fourier components), and yet their local probability current (phase gradi-
ent) can sometimes be negative [6].

FIGURE 1.1: Visualization of double slit interference. Light from a
green laser passing through two slits 0.4 mm wide and 0.1 mm apart
leads to this pattern of bright and dark fringes in the far field. Source-

Wikipedia.

In the late sixties, GR Allcock [7, 8, 9] realised that, for a free particle, obeying
the one dimensional Schrödinger equation, described by a wave function centred in
x < 0 consisting entirely of positive momenta, the probability of remaining in x < 0
may nevertheless increase with time. That is, the quantum-mechanical current at
the origin can be negative and the probability can flow "backwards". In general, the
question of ’when’ a detector clicks due to a particle or the time-of-arrival problem,
is a nuanced one. A state with only positive momentum is such that, if we measure
the momentum, then we find a positive value with certainty. This is not equivalent
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to stating that the particle moves only from the left to the right when we do not
measure it. In fact, interference may produce a temporary inversion of the motion
at a detector placed at the origin [10, 11]. We can conclude from Allcock’s studies
that the probability current is not a good measure of the time-of-arrival. Further
advances on the time-of-arrival problem were made by Muga et al. [12, 13, 14].
Following this, in 1994 [15], a systematic study showed that the probability of the
particle remaining in x < 0 may increase with time, but only by 4%, at most. More
recently, the works of Arseni Goussev and collaborators showed that for charged
particles moving on a ring, this bound increases to about 12% [16]. To overcome
such bounds that make the experimental observation of the phenomenon difficult,
researchers studied backflow in two dimensions for a charged particle moving either
in a uniform magnetic field in the infinite (x, y) plane [17, 18] or on a finite disk such
that a magnetic flux line passes through the center of the disk [19]. In such two-
dimensional systems, the probability of backflow can be unbounded. The effect has
also been explored in relativistic wave equations [20, 21].

Notwithstanding the volume of theoretical studies on backflow in quantum me-
chanics and experiment-friendly proposals [22, 23], there are no known experimen-
tal demonstrations of this effect. Nonetheless, the fact that band-limited functions
can contain anomalously high (low) local phase gradients, i.e., the concept of su-
peroscillations (suboscillations) in waves, has been noted by Michael Berry, to be
equivalent to backflow in quantum mechanics [6]. It was proposed by Berry and
Popescu [24] and verified experimentally [25, 26] that the phenomenon of super-
oscillations can be used to realise far-field sub-wavelength optical focusing without
the use of evanescent waves. Other areas of application include optical and elec-
tron beam shaping [27, 28] and particle trapping [29]. The reader is referred to a
sub-section in (1.2.2) for further insights on the applications of superoscillations in
super-resolution imaging.

In 2020, the connection between backflow and suboscillations was utilized by
Eliezer et al. [30] to experimentally demonstrate anomalous values of transverse
local momentum in a complex superposition of optical waves, an analogue of back-
flow in quantum mechanics. We realised that despite this development, the phe-
nonmenon of backflow and its connection to superoscillations, remained somewhat
elusive. We, therefore, experimentally demonstrated ’optical’ backflow using the
simple interference of two beams of unequal amplitudes [31, 32]. In fact, our find-
ings highlight that backflow in these scenarios is very common owing to the practi-
cal impossibility of creating the constituent beams with perfectly equal amplitudes.
Utilising one-shot measurements allowed by the Shack-Hartmann wavefront sensor
(SHWFS), we observe anomalous values of transverse local momentum in the dark
fringes of such an interference pattern. We thus experimentally highlighted the con-
nection between high phase gradients and backflow, hitherto merely a theoretical
concept. Additionally, as discussed in later chapters, our findings can have impli-
cations for studies on optical tweezers [33, 29], for designing ultra-precise atomic
clocks [34, 35] and light-matter interaction at large.

The structure of this dissertation is as follows. The above written general intro-
duction to the subject is supported by a technical introduction to the tools required
to further understand the subject–a theoretical introduction to backflow in quantum
mechanics using tools such a probability density and probability current, parallels
between backflow in quantum mechanics and in optics, and an introduction to the
concept of local momentum. Once the reader is acquainted with the necessary tools,
Chapter 2 provides an introduction to the method of measuring local momentum of
optical waves with a Shack-Hartmann wavefront sensor. Furthermore, the detection
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technique described in Chapter 2 is utilised in Chapters 3 and 4 to experimentally
demonstrate optical backflow using the superposition of two Gaussian beams, two
beams carrying orbital angular momentum (azimuthal backflow). Chapter 5 de-
scribes an experiment demonstrating azimuthal backflow with single photons and
shows that the results are consistent with the classical case. Chapter 6 is a proposal
to demonstrate quantum backflow with electrons in a Transmission Electron Micro-
scrope (TEM). The dissertation concludes in Chapter 7 with a summary and future
plans.

1.1 Backflow in quantum mechanics

In this section, we present a mathematical introduction to the concept of backflow.
The knowledge of definitions of quantities from quantum mechanics is assumed.

We consider a free particle with initial position-space wave-function Ψ(x, 0) con-
centrated in x < 0 and consisting entirely of positive momenta p. The position-space
wave function is a Fourier transform of the momentum-space wave-function Φ(p).

Ψ(x, 0) =
∫ ∞

0
dpΦ(p)

eipx/h̄

√
2πh̄

, (1.1)

∫ ∞

−∞
dx|Ψ(x, 0)|2 = 1 =

∫ ∞

0
dp|Φ(p)|2 (1.2)

The time evolution is governed by the one-dimensional Schrödinger equation (in the
absence of a potential).

i
∂Ψ(x, t)

∂t
= − h̄

2m

∂2Ψ(x, t)

∂x2
, (1.3)

Ψ(x, t) =
∫ ∞

0
dpΦ(p)e−i

p2t
2h̄m

eipx/h̄

√
2πh̄

(1.4)

The flow of probability density is governed by the probability current J(x, t).
The continuity equation connects the probability density function to the probability
current.

∂|Ψ(x, t)|2
∂t

+
∂J(x, t)

∂x
= 0, (1.5)

J(x, t) =
h̄

m
Im

{

Ψ∗(x, t)
∂Ψ(x, t)

∂x

}

(1.6)

Let us now consider the probability flux crossing the origin within the time interval
[t1, t2] [36]. It follows from the integral version of eqn. (1.5) that

∫ 0

−∞
dx|Ψ(x, t1)|2 −

∫ 0

−∞
dx|Ψ(x, t2)|2 =

∫ t2

t1

dtJ(0, t),

Therefore, P(t1)− P(t2) =
∫ t2

t1

dtJ(0, t)

(1.7)

Here, P(t) is the probability of the particle remaining in x < 0 at time instance
t. Thus, for the particle in our consideration, according to its definition, backflow
occurs when P(t1)− P(t2) < 0 for t1 < t2. More specifically, as seen from eqn.(1.7),
although the momentum is positive with 100% certainty, backflow can occur when
the probability current at the origin, J(0, t), is negative.
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Over the years, several specific examples of Ψ(x, 0) have been shown to exhibit
backflow (the superposition of two plane waves carrying only positive momenta
[15], states exhibiting maximum backflow [37]). Even the superposition of two Gaus-
sian wavepackets, although not containing only positive momenta, can allow us to
observe backflow [36]. See Fig. (1.2) for a visual example (without associated mathe-
matical expressions) of the well-known superposition of two Gaussian wavepackets
exhibiting backflow. Subplots (A) and (B) show the probability density, in momen-
tum and position space respectively, of the two Gaussian wavepackets of unequal
amplitudes. Subplot (C) is a bird’s-eye view of the probability density as a function
of position and time. If a screen is placed at x = 0, then the probability current, plot-
ted in (D), negative in some instances of time, can be recorded. For further details,
the reader is referred to the figure’s caption.

We also mathematically describe below a simple experimentally realizable ex-
ample of a slit in momentum space that, to the best of our knowledge, hasn’t been
explored previously. We will refer to this example later in Chapter 7.

1.1.1 An unusual example of a state exhibiting backflow

Let us consider the particle’s momentum space distribution to be a small slit cen-
tered around positive value p0 with a width of ∆p. The momentum distribution is
plotted in Fig. (1.3a). Also see Fig. (1.4a) for a schematic representation using an
optical model. Therefore, using eqn. (1.1), the momentum and initial position space
(obtained by Fourier transforming the former) wave-functions are as follows.

Φ1(p) =
1

√

∆p

[

Θ(p − (p0 −
∆p

2
))− Θ(p − (p0 +

∆p

2
))

]

,

Ψ1(x, 0) =

√

2h̄

π∆p

eip0x/h̄

x
sin

(

∆p

2h̄
x

)

(1.8)

Here, Θ(), is the unit step function [38]. According to eqn. (1.4), the wave-function
at a later time instance is given by

Ψ1(x, t) =
e−ip2

0t/2h̄m+ip0x/h̄

√

2πh̄∆p

∫ ∆p/2

−∆p/2
dpe−p2t/2h̄meip(x−p0t/m)/h̄ (1.9)

After a suitable change of coordinates, the probability density can be expressed as
follows.

|Ψ1(x, t)|2 =
1

2πh̄∆p

∫ ∆p/2

−∆p/2
du

∫ ∆p−2|u|

−∆p+2|u|
dveiv[x−(p0+u)t/m]/h̄ (1.10)

Let us now mathematically express the probability of the particle to remain in x < L
at time t, where L is not necessarily the origin.

P(t|x < L) =
∫ L

−∞
dx|Ψ1(x, t)|2

=
1

2
+

1

π∆p

∫ ∆p/2

−∆p/2
du

∫ [L−(p0+u)t/m](∆p−2|u|)/h̄

0
dv

sin v

v

(1.11)

For the ease of our calculations, we can introduce the following dimensionless parameters–

α =
L∆p

h̄ , β = 2p0

∆p
, and τ =

∆2
p

2h̄m t. Once the integration variable is changed to ũ = 2u
∆p

,
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FIGURE 1.2: A visual example of a state exhibiting backflow. Two
Gaussian wavepackets initially centered in x1 = −10 and x2 = −34,
both with initial variance of position equal to 3, move with average
momentum p1 = 2 and p2 = 6, respectively. The variance in mo-
mentum is 1/6. The first wavepacket is higher in amplitude that the
second by a factor of 1.8. All parameters are dimensionless and h̄ and
m are chosen to be unity for the sake of simplicity. It is assumed that
a detector is placed at x = 0 (indicated by dashed lines in the plots).
(A) The distribution of probability in momentum space is chosen to
be quite narrow. Thus, negative value of momenta arising from this
distribution can be neglected for all practical purposes. (B) The prob-
ability density |Ψ(x, t)|2 as a function of position, at three different
times (t) are plotted. The second packet overcomes the first when
they are both in the region around the origin, where the detector is
placed. In this area the two packets interfere, but then they sepa-
rate again at a later time. (C) The probability density of the position
as a function of position and time are is shown. (D) The probability
current J(0, t) at the detector as a function of time. Negative values

indicate backflow.
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the flux crossing L within the time interval [t1, t2] can be expressed as follows.

P(t1|x < L)− P(t2|x < L) =
1

2π

∫ 1

−1
dũ

∫ (α−βτ1−τ1ũ)(1−|ũ|)

(α−βτ2−τ2z)(1−|ũ|)
dv

sin v

v

=
1

2π

∫ 1

−1
dũ[Si{(α − βτ1 − τ1ũ)(1 − |ũ|)} − Si{(α − βτ2 − τ2ũ)(1 − |ũ|)}]

(1.12)
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FIGURE 1.3: The unconventional example of backflow using a slit
in momentum space. A slit in momentum-space exhibits backflow
in position-space. Parameters: α = 0; β = 1. (A) Momentum space
wave-function with scaled coordinates. (B) Probability of remaining
in x < L, where L = 0; grows by 0.2% between τ1 and τ2. Conse-
quently, the intensity |Ψ1(x, t)|2 crossing x > L grows between t1 and

t2 grows by 0.2%, for the right set of physical parameters.

Here, Si(x) =
∫ x

0
dv
v sin(v). Given L, for suitably chosen values of the parame-

ters, α and β, times τ1 and τ2 can be found such that the above-written flux (and the
probability current) is negative between them. As seen in Fig. (1.3b), quite surpris-
ingly, the probability to remain in x < 0 grows with time for the interval between τ1

and τ2. The probability current at x = 0, or the rate of change of probability, is also
negative. The analogy between the probability current in optics and the Poynting
momentum for scalar optical fields is discussed in the following section.

1.2 Backflow in optics

Optical backflow or counter-propagation in both transverse and longitudinal direc-
tions have been theoretically explored in [6]. Counter-propagation in the transverse
direction for certain paraxial wave-packets, follows naturally from the mathemati-
cal equivalence between the paraxial Helmholtz equation and the Schrödinger equa-
tion.
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1.2.1 Counter-propagating solutions to the paraxial Helmholtz equation

In the paraxial approximation of the Helmholtz equation, the complex amplitude
A(x, y, z) = u(x, y, z)eikz contains a sinusoidal plane wave represented by the expo-
nential factor and u(x, y, z) which approximately solves

i
∂u(x, y, z)

∂z
= − 1

2k
∇§u(x, y, z), (1.13)

where ∇§ is the transverse Laplacian operator and k = 2π/λ, the wavenumber and
is equivalent to m/h̄ in eqn. (1.3). Here, z, is the primary direction of propagation
and is equivalent to t in eqn. (1.3).

Consider a generic one-dimensional monochromatic scalar wave with boundary
value

A(x, z = 0) =
N

∑
n=0

cneiknx, (1.14)

where kn g 0 are the transverse momenta of the constituent plane waves with
max{kn}jk and cn are complex to account for relative phases between the con-
stituents. Thus, A(x, z = 0) is a generic superposition of plane waves with each
constituent travelling to the right (positive x). Assuming that the wave is travelling
in the positive z direction, the solution of eqn. (1.10) is

A(x, z) = eikz
N

∑
n=0

cnei(knx− k2
nz
k ) (1.15)

Following the equivalence between eqns. (1.11) and (1.2), backflow in the x, z plane,
i.e., leftward propagation over some slices of forward propagation, is identical to the
above described backflow in the spacetime plane x, t [6].

Let’s now revisit the familiar example of the single slit centered around a posi-
tive x′ = x0 (1.1.1). As shown in Fig. (1.4a), let’s consider a one-dimensional aper-
ture of width ∆ in the front-focal plane of a convex lens with normalized amplitude

transmittance given by 1√
∆

rect
(

x′−x0
∆

)

, where rect() is the rectangular function [39],

illuminated by a monochromatic plane wave. The field at the back-focal plane of the
lens is a Fourier transform evaluated at ξ/λ f :

U f (ξ) = −i

√

∆

λ f
e
−i2πx0

ξ
λ f sinc

(

∆ξ

λ f

)

. (1.16)

Here sinc(x) = sin(πx)/(πx) and λ = 2π/k is the wavelength. It may be verified
that the field in eqn. (1.16) is normalized to 1 over all of ξ-space. Utilising the Fresnel
integral [40], the field that propagates from the back-focal plane of the lens is given
by

A(x, z) = −i
eikz

√

λ f ∆
e
−i

kzx2
0

2 f 2 e
−i

kxx0
f

∫ ∆/2

−∆/2
dξe

−i kzξ2

2 f 2 e
i kξ

f [x+
x0z

f ]
(1.17)

Eqn. (1.17) is quite similar to eqn. (1.9), barring some unimportant phase factors.
All rays are assumed to be paraxial, i.e., close to the optical axis with low angles of
diffraction. Thus, following a similar method, it can be shown that the probability
of the photon/electron in a transmission electron microscope re-entering in x > L at
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propagation distance z: is expressed as follows.

P(z|x > L) =
1

2
− 1

2π

∫ 1

−1
dũ Si ((α − βz̃ − z̃ũ)(1 − |z̃|)) , (1.18)

where α = k∆L
f , β = 2(−x0)

∆
, z̃ = k∆2z

2 f 2 , and the integration variable ũ are dimen-
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FIGURE 1.4: Example of counter-propagating paraxial wave-packet.
(A) Simple optical setup to observe backflow using a single slit. Af-
ter the back-focal plane of the intensity of the electron beam should
propagate towards the negative x. However, backflow occurs when
the intensity moves back to the positive x between planes z1 and
z1. The intensity at any x − z plane can be measured by appro-
priately scanning a camera. A growth in the intensity integrated
over the right half plane of the camera should be observed between
z1 and z2. All angles are small such that the paraxial approxima-
tion is valid. (B) The normalised intensity given by |A(x, z̃)|2 =

α
4πL

∫ 1
−1 dũ

∫ (1−|ũ|)
−(1−|ũ|) dṽeiṽ[ α

L x−z̃(β+ũ)] grows towards the positive x di-

rection, across x > L = 1 at at a larger propagation distance z̃2 com-
pared to z̃1 by about 0.5 %. This is verified by comparing the area of
the green shaded region to that of the blue shaded region. Here, x and
L are in the same units (a.u.). The parameters α, β and L are specified

in the plot.

sionless parameters, similar to those in eqn. (1.12). As seen from the expressions
of α in eqns. (1.12) and (1.18), momentum-space under the paraxial approximation,
is conjugate-position-space, scaled appropriately by the product of wavelength and
focal length. Hence, as shown in Fig. (1.3), the parameters α = 0, β = −1, allow
for around 0.2% backflow between z̃1 = 5.04 and z̃2 = 6.28. Corresponding sets of
physical parameters, viable under the paraxial approximation can also be found. In
Chapter 6, this concept will be explored further. However, in order to understand
the contents of Chapters 2-5, the next section, which doesn’t involve any evolution
or propagation, can be useful.
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1.2.2 Anomalous values of local transverse momentum

Let us reconsider the generic one-dimensional monochromatic scalar wave with
boundary value A(x) = ∑

N
n=0 cneiknx, where kn g 0 are the transverse momenta

of the constituent plane waves and cn are complex (c.f. eqn. (1.14)). It may appear
that the wave travels only towards positive x at z = 0. However, depending on the
values of cn, this may not be true. In order to understand this further, let us express
the wave in the following integral form [6].

A(x) = ρ(x) exp

{

i
∫ x′

0
dx′k(x′)

}

, (1.19)

in which both the amplitude ρ(x) and the local wavenumber (gradient of phase of
the wave)

k(x) = ∂xargA(x), (1.20)

are real. The local wavenumber can also be expressed as a real weak value of the mo-

mentum operator post-selected in position [41] –k(x) = Re<x|k̂|A>

<x|A>
. When k(x) > 0,

the wave locally travels forward; when k(x) < 0, the wave locally travels backwards
in certain regions of x and this can occur even when kn g 0. In general, when k(x)
varies in scales unrepresented by the Fourier spectrum, super or suboscillations or
backflow, can occur [24]. In fact, there is no fundamental limit on how large or small
the local wavevenumber can be. As a result, the free-space optical field created by
the interference of several band-limited waves, such as by diffraction of a plane wave
on a structured mask, can have deeply sub-wavelength spatial features [26]. Such
features can be used for super-resolution imaging [42] (see sub-section below); the
disadvantage is that they are associated with regions of low intensity surrounded by
high intensity side lobes. Michael Berry proposed to use combinations of frequen-
cies below 1 Hz (well below the human hearing range) to reproduce Beethoven’s
ninth symphony [43]. However, the signal strength required for this is exp{1019}
times conventional signals.

For scalar fields, the Poynting vector is co-directional with the local wave-vector
(x-component in eqn. (1.17)) [44].

P(r) = Im {A∗(r, z)∇A(r, z)} = |A(r, z)|2∇argA(r, z) (1.21)

The similarity between the expressions of the quantum mechanical current in eqn.
(1.6) and the Poynting vector in eqn. (1.21), for scalar fields, suggests that, for such
fields, anomalous values of the Poynting vector/local wave-vector components cor-
respond to backflow in optics. However, the local wave-vector and the Poynting
vector are not necessarily co-directional for vector fields and Chapter 2 sheds light
on this. A description of our experiments measuring anomalous local momenta at a
chosen z plane are presented in Chapters 3 and 4.

Using superoscillations for super-resolution imaging

As explained earlier in section (1.2.2), and in the upcoming chapters, this disser-
tation emphasizes our experimental investigation into the superoscillatory (Faster
than Fourier) behavior of local phase gradients, characterized by anomalously steep
phase changes within confined spatial regions. In contrast, recent research has fo-
cused on combining multiple coherent sinusoidal components to generate super-
oscillatory sub-diffraction intensity hotspots with optical wave-functions [45, 42,
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46] and electron wave-functions [28]. In fact, it can be shown using the Helmholtz
equation that such intensity hotspots naturally arise when local phase gradients are
anomalously high [45].

Such intensity hotspots have previously been engineered by directing light through
nanohole arrays [25, 47] (often referred to as a Superoscillatory lens (SOL)) and have
been explored as a means of achieving super-resolution without relying on evanes-
cent waves [24]. However, a significant limitation is the reduced intensity and the
presence of brighter sidebands as the hotspots become smaller. The energy in these
sidebands grows exponentially with their separation distance but only polynomially
with the inverse of the hotspot size (or equivalently with the superoscillation rate)
[48]. This implies that maintaining the same power level in the hotspot requires only
a polynomial increase in the total power of the light source.

Recently, superoscillatory microscopy has been successfully demonstrated for
label-free imaging of living biological cells [49]. For practical applications, a con-
ventional microscope objective lens cannot simply be replaced with a superoscilla-
tory lens (SOL). When imaging objects larger than the field of view (limited by the
separation between sidebands, i.e., the diameter of the halo), light scattering from
halo-illuminated regions distorts the images. This issue can be addressed in a con-
focal microscope setup by using a conventional high-numerical-aperture objective
lens while illuminating the sample with a tightly focused superoscillatory pattern
(the SOL). Imaging is achieved by scanning the sample relative to the SOL focus
and employing a detector with a small confocal aperture to reject most of the scat-
tering from halo-illuminated areas. Superoscillatory illumination of the object, thus,
creates a superoscillatory image.

1.3 Concluding remarks

The term ’quantum backflow’ underscores the stark contrast between classical and
quantum dynamics of particles– a tennis ball, while moving forward with strictly
positive momentum, cannot suddenly change its course but an electron moving
forward with strictly positive momentum, can have an increasing probability to
be found backwards at later instances of time. However, the broader concept of
’backflow’, resulting from wave interference, is ubiquitous in systems supporting
coherent waves. Related to this, there is an ongoing debate on the interpretation of
backflow as a purely quantum phenomenon [21, 50, 51, 52].

The measurement of transverse local momentum was previously used to plot
Bohmian trajectories of photons [53]. Later, a classical interpretation of this experi-
ment with the concept of momentum weak-values was provided by Bliokh et al [54].

The notion that the center-of-mass (CoM) of a wave-packet in free space propa-
gates along straight trajectories is in accordance with Ehrenfest’s theorem [55]. This
is also observed in example given in Fig. 1.4b, wherein the CoM of the beam moves
to the left between z̃1 and z̃2. However, the straight-line motion of the CoM, doesn’t
restrict the growth in the intensity measured on the right of x = 1 between z̃1 and z̃2.
This behaviour can be observed from the intensity cross-sections on just two x − z
planes. In a somewhat similar yet distinct manner, in accelerating beams [56], while
the CoM propagates along a straight line, the peak intensity accelerates along the di-
rection of propagation. In order to observe this, one needs to measure the intensity
cross-section across at least three different x − z planes. Additionally, a purely pos-
itive (negative) momentum distribution (c.f. Fig. 1.3a), that gives rise to backflow,
cannot produce accelerating beams.
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A direct mathematical connection between states exhibiting anomalous trans-
verse local momentum at a given z plane and those exhibiting counter propagation
in z, hasn’t yet been firmly established.

Contributions: The author developed the structure and content of this chapter.
She expresses her gratitude to Prof. Tomasz Paterek, Dr. Arseni Goussev, and Prof.
Thomas Juffmann for their invaluable discussions, exchange of ideas, and shared
insights, which greatly contributed to the writing of this chapter.
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Chapter 2

Transverse local momentum and its
measurement

The purpose of this chapter is to introduce the measurement of local transverse
momentum (see eqn. (1.20)) using a microlens array focusing onto a CMOS (com-
plementary metal-oxide-semiconductor) device, a combination known as the Shack-
Hartmann wavefront sensor (SHWFS) [57]. As described in [30] (see Fig. 2), the
transverse local momentum can also measured be isolating regions in the position
space with a slit and following this up with Fourier transform using a lens. How-
ever, this method involves scanning the slit across the position space. Contrariwise,
the Shack-Hartmann wavefront sensor enables single-shot measurements of local
momentum.

The second part of the present chapter discusses the connection between local
momentum and the Poynting vector for vector fields. For linearly polarized, i.e.,
spinless fields, the two are co-directional.

2.1 Measuring local momentum using the Shack-Hartmann

wavefront sensor

As shown in Fig. (2.1) pattern of spots (spotfield; Fig. (2.1b)) is formed as each
lens of the microlens array focuses an area of the incoming wavefront (locus of all
points having the same phase) onto the corresponding region on the CMOS sensor
at the back-focal plane of the array. In accordance with the principle of the SHWFS, a
reference spotfield is generated by impinging a reference beam such as a wide Gaus-
sian beam on the microlens array. The transverse displacement of each spot in the
spotfield of the incoming wavefront with respect to the corresponding spot in the
spotfield of the reference wavefront is measured. As we shall show here, these dis-
placements are proportional to the transverse local wave-vector components. This
wave-front sensor works under the assumption that the spots in the spotfield of the
incoming wavefront are distinct and don’t overlap.

Fig. (2.1a) in an example of a commertially available microlens array with a
pitch (d) of 150 µm and focal length fm = 5.6 mm (of each microlens). Fig. (2.1c)
is a schematic representation of the side-view of such a microlens array focusing
on a CMOS sensor. As seen from geometric considerations, the y-component of the
gradient of the wavefront impinging on the i-th microlens, is proportional to ∆yi/ fm,
under the small angle approximation. We thus have,

kx,i, ky,i =
2π

λ

(

∆xi

fm
,

∆yi

fm

)

(2.1)
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(A)

(B)

(C)

FIGURE 2.1: A Shack-Hartmann Wavefront Sensor. (A) A commer-
tially available two-dimensional microlens array. Thorlabs MLA150-
5C - 10 mm x 10 mm. (B) A sample spotfield due an incoming spheri-
cal wavefront generated when the microlens array in (A) focuses on a
CMOS device. (C) Concept of the setup. Consider a distorted wave-
front impinging on the microlens array (side view). Following the
Shack–Hartmann technique, by finding the centroids of the spot-field
and measuring their displacement ∆yi with respect to a reference, the
wavefront is reconstructed. The local wave-vector is derived for the

i-th microlens.
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The maximum possible displacement in x or y without making the spots overlap is
half of the pitch (d/2). In general, while the scales in which ∆xi and ∆yi vary are in
the range of sub-pixels of the CMOS device, d/2 is usually in the range of several
pixels. In the event that a microlens intercepts a few (N) photons (N independent
events), then, the uncertainty, in measuring the local momentum behind it, in the
x or y direction is 2π

λ
±d/2
fm

√
N

[58]. When there is enough light, the above-described

uncertainty due to Poisson noise is insignificant. Under these circumstances, the
sub-pixel displacement of each spot in the spotfield with respect to a reference, is
relevant. Displacements in the range of camera sub-pixels can be measured by em-
ploying an algorithm discussed in [59]. A brief review of this algorithm is presented
below.

2.1.1 Algorithm to measure centroid displacements

A typical method to estimate the centroid/CoM coordinates of a focal spot on the
CMOS is to multiply the position of each pixel (i) with its associated intensity (I(i)),
sum this product over all the pixels (−M f i f M) and divide the sum by the sum
of intensities over all the pixels. Thus, in a simple one-dimensional scenario, the x
coordinate of the centroid/CoM is the following.

Ĉx =
∑

M
i=−M iI(i)

∑
M
i=−M I(i)

. (2.2)

The accuracy of the displacement measurements discussed above is directly related
to the method used to estimate the centroid of a focal spot. A challenge of centroid
estimation is to identify the useful signal within a sub-aperture on the detector. For
the experiments discussed in this dissertation, we use a centroid estimation method
proposed by Kong et al. [59], based on stream processing, wherein a floating window
can be selected to match the spot size without cutting off useful signal pixels. This
approach of using a CoM window that floats with the incoming pixel of the detector
is known to be useful for reducing the effects of background and noise compared to
the traditional CoM approach in eqn. (2.2).

The numerator in eqn. (2.2) can be interpreted as the sum of a multiplication
between a linear filter F(i) = [−M, .., M] of size 2M+ 1 and the intensity distribution
I(i). The denominator can also be interpreted as the same operation, but with a
filter J(i) = 1, ∀i ∈ [−M, .., M]. Thus, applying the aforementioned filters to all the
pixels, the x coordinate of the centroid in eqn. (2.2) can be used to calculate another
quantity–Ĉx(i), the center-of-mass of intensity I(i), at the i-th pixel, calculated and
centered on the same pixel location.

Ĉx(i) =
∑

M
m=−M F(m)I(i + m)

∑
M
m=−M I(i + m)

=
F(i) ∗ I(i)

J(i) ∗ I(i)
, (2.3)

where, ∗ denotes correlation. Ĉx(i) represents the estimated centroid of different
parts of the signal I(i). In order to further understand this, let us reconsider the
filter F(m) = m − M, ∀m ∈ [−M, .., M]. The expression on the left hand side, in eqn.
(2.3) can then be modified as follows.

Ĉx(i) =
∑

M
m=−M mI(i + m)

∑
M
m=−M I(i + m)

− M (2.4)
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This form of the expression makes it evident that the action of the operator Ĉx on the
i-th pixel, tells us whether the centroid of I(i) is to left or right of the said pixel. As
we shall see in the example below, much like that of the derivative of intensity across
a spot, the sign of Ĉx(i) changes as we cross the centroid/center-of-mass (CoM) of
the entire spot. Such zero-crossing of Ĉx(i) allow us to determine the centroid of a
spot. In general, the lengths of the filters F(i) and J(i) do not need to be the same as
that of I(i).

(A)

M

(B)

FIGURE 2.2: Detecting the centroids of two Gaussian spots in a
spotfield using the stream-processing algorithm. Adapted from
[59]. (A) The intensity distribution (per pixel on the camera)–I(i)–
of a one-dimensional signal that is a concatenation of two Gaussians.
The Full-width-half-maximum (FWMH) of each Gaussian is NT = 4
pixels and together they span over 33 pixels. While, the peak of the
Gaussian on the left sits on pixel number i1, that of the Gaussian on
the right is situated at the middle of two pixels, i.e., has a sub-pixel
location. (B) Estimated centroids for different parts of I(i)–Ĉx(i)–are
calculated for different filter sizes. A zero-crossing from positive to
negative values of Ĉx(i), indicates a detected spot centroid. When the
filter size is increased to 15NT + 1, the centroid of the concatenation
is detected instead of the individual centroids. The optimized width

of the filter is, approximately, the size of each spot–2NT + 1.

In Fig. (2.2), which is adapted from [59] (Fig. (1)), the centroid of the Gaussian
on the left x̂1 = i1. However, the centroid of the spot on the right x̂2, sits between
i2 − 1 and i2. Assuming that Ĉx(i) is linear between the i2 − 1-th pixel and the i2-th
pixel and i2 is the first pixel with negative Ĉx(i) value, we have

x̂2 = i2 +
Ĉx(i2)

Ĉx(i2 − 1)− Ĉx(i2)
(2.5)

Relevant codes in Python to implement the above described algorithm in two
dimensions can be found in the following Github repository. The latest version of
the code was written by Bernard Gorzkowski.

2.1.2 How ’local’ is local momentum?

It is well known [40], that the width d of the central Airy lobe, in x or y directions,
generated at the back-focal plane of a lens, when the incoming beam covers the entire

https://github.com/BernGorz/Shack-Hartmann-module
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surface of the lens of diameter D and focal length fm, is

d =
1.22λ fm

D
(2.6)

If the focal length and diameter of the lens are changed proportionately, then d re-
mains the same. However, increasing D, can cause a loss of sampling of the features
of the wavefront. Akondi et al. discuss errors that might arise due to non-uniform
illumination on microlenses [60]. Spotfields can be simulated by means of two-
dimensional convolution of the Fourier transform of the part of the field impinging
on a microlens and an Airy spot produced at the focal plane of the microlens. The
local momentum obtained from detecting the displacements of the centroids in the
simulated spotfield, with respect to a reference, can then be compared to mathemat-
ically expected local momentum, in order to identify imperfections due to the finite
size of the microlenses. A version of this code can also be found in the aforemen-
tioned Github repository.

2.1.3 The algorithm’s error in estimating a spot’s centroid

Due to the boundary effect and noise, the stream processing algorithm may misiden-
tify fake spots as potential centroids (c.f. Fig. (2.3)). Hence, a threshold must be
applied to the local sum of pixels within the center of gravity window to elimi-
nate those fake spots. However, in extreme situations, adaptive optics systems have
to work under strong noise and weak signal conditions. Besides, there may exist
strong interference of light from the environment. Fake spots may be brighter than
real spots, and if the spot is not detected, centroid calculation with such methods is
completely wrong [61].

1200 μm

FIGURE 2.3: An illustration of misidentified spots in a simulated
spotfield. A spotfield was simulated, assuming the wavefront to
be helical (carrying orbital angular momentum). Poisson noise and
Gaussian readout noise were included in the simulation. Identified
centroids are marked with red crosses. While many real centroids are

undetected, several fake centroids are identified.
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2.2 The connection between local momentum and Poynting

vector

Most textbooks on optics and electromagnetism (Born and Wolf [62], for instance)
introduce the Poynting vector as the main and only quantity characterizing the mo-
mentum or energy-flux density. While the Poynting vector is universally well de-
fined for arbitrary electromagnetic fields in any media, it is not directly observable in
standard optical experiments as it does not determine the optical force on small par-
ticles. Additionally, if only the Poynting vector is considered, then difficulties arise
in determining the spin and orbital parts of the angular momentum of light [63].
In order to overcome these challenges, more recently, an alternative canonical (also
called ’orbital’) momentum density (so far called the local momentum in this dis-
sertation) was introduced for monochromatic structured optical fields in free space
or isotropic media [64, 54]. Specifically, in [54] it was shown that local differences
between the Poynting vector and the canonical momentum can cause discrepancies
such as the circular-polarization-dependent components of the Poynting vector or-
thogonal to the canonical momentum. It has already been established that small
probe particles or atoms experience local optical forces proportional to the canonical
momentum density (while the contribution proportional to the Poynting vector is
much weaker) [65, 66]. Here, in contrast to the optomechanical methods, we utilize
the SHWFS to measure the local momentum of circularly polarized vortex beams
[67].

The time-averaged energy density W, Poynting momentum density Π, and canon-
ical momentum density P, for monochromatic paraxial optical fields in free space
can be written, as follows, in Gaussian units omitting inessential common factors,
and using the equivalence of the electric and magnetic field contributions under the
paraxial approximation [64].

W ≃ |E|2,

Π =
1

c
Re{E∗ × H},

P ≃ 1

ω
Im{E∗ · ∇E}

(2.7)

As discussed earlier in section (1.2.2), the canonical momentum density represents a
natural optical counterpart of the probability current (J(x, t)) in quantum mechanics
and, as is evident from its expression (P in eqn. (2.7)), essentially the local wave-
vector multiplied by the intensity. It can also be associated with the ’weak’ value of
the canonical momentum operator p̂ = i∇.

The local difference between Π and P can be determined by the spin momentum
density S.

Π = P +
1

2
∇×S,

S ≃ 1

ω
Im{E∗×E}

(2.8)

Let us now study circularly polarized Laguerre-Gauss beam with zero radial in-
dex (see [68] for expressions of the transverse and longitudinal electric field com-
ponents) using the Shack-Hartmann wavefront sensor. Previous studies of vortex
beams using the Shack-Hartmann wavefront sensor [69, 70] dealt with linearly po-
larized paraxial beams and hence didn’t note the difference between canonical and
Poynting momentum densities (recall from eqn. (1.21) that the two are co-directional
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for scalar fields).

2.2.1 The Poynting-canonical dilemma in circularly polarized vortex beams

For circularly polarized Laguerre-Gauss (LG) beams [68] with zero radial index, the
expressions for energy density, canonical momentum density, and Poynting momen-
tum density are the following respectively.

W =
r2|ℓ|

w(z)2|ℓ|+2
e

−2r2

w(z)2 (2.9)

P =
1

c

(

ℓ

kr
φ̂ +

r

R(z)
r̂ + ẑ

)

W (2.10)

Π ≃ 1

c

[(

ℓ

kr
− σ|ℓ|

kr
+

2σr

kw(z)2

)

φ̂ +
r

R(z)
r̂ + ẑ

]

W (2.11)

Here, w(z) is the Gaussian-envelope radius at propagation distance z involving
the waist radius w0 and the Rayleigh diffraction length zR = kw2

0/2 (k = ω/c is

the wavenumber): w(z) = w0

√

1 + z2/z2
R. R(z) = z(1 + z2

R/z2) is the radius of

curvature of the wavefront. ℓ is the azimuthal index and σ = ±1 denotes the helicity
of circular polarization.

Fig. (2.4) illustrates a schematic of the experimental setup. The LG beams, with
azimuthal indices ℓ = 0,±1 were generated by using phase masks displayed on a
phase-only spatial light modulator, as shown in the inset A of Fig. (2.4). A continu-
ous wave laser with the wavelength λ = 780 nm (Thorlabs CLD1015) was expanded
and directed onto the SLM. To simultaneously modulate phase and amplitude us-
ing a phase-only SLM, the technique described in [71] was employed, such that the
desired field was obtained after filtering the first diffraction order. Polarizer P1 was
used to set the linear polarization of the incident beam prior to the SLM. Then, the
light reflected from the SLM was converted to have circular polarization using a
quarter wave plate (QWP) oriented at 45◦ with respect to P1. Polarizer P2 was used
to determine the orientations of the fast and slow axes of the QWP, and it was re-
moved after that. Also, to determine the circular-polarization helicity σ , a Q-plate
(QP) of the order q=1/2 (Thorlabs-WPV10L-780) was employed [72] and removed
afterwards. This procedure ensured the generation of LG beams with the desired
circular polarization.

Next, the SLM was imaged using lenses L3 and L4 onto the microlens array
(ThorLabs-MLA-150-5C-M; each lens has a pitch of 150 µm and a focal length of
5.6 mm) that focused the beam onto the CMOS camera (mvBlueFOX-200wG, pixel
size 6 µm). The inset B in Fig. (2.4) depicts the spotfield pattern generated on the
CMOS when the mask shown in the inset A was applied on the SLM. To create a ref-
erence spotfield for the Shack-Hartmann Wavefront Sensor (SHWFS), a wide Gaus-
sian beam hologram was displayed on the SLM, and the reflected light was similarly
imaged onto the microlens array. For the reference beam, the polarization settings
for both the incident and reflected light were adjusted following the same procedure
outlined earlier.

The displacements of the centroids of each spot in the spotfield generated by the
LG beam were measured relative to the corresponding spots in the reference spot-
field. The Cartesian coordinates of these displacements were then converted to the
azimuthal component of the displacement [32]. Then, the azimuthal displacement
of the ith spot centroid, ∆ϕi, is divided by the focal length fm of each microlens
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FIGURE 2.4: Schematic of the experimental setup to measure trans-
verse local momentum of circularly polarized LG beams. The setup
consists of polarizers P1 and P2; spatial light modulator (SLM); iris
(I); quarter wave plate (QWP); Q-plate (QP); micro-lens array (MLA);
lenses L1 ( f = 50 mm), L2 ( f = 500 mm), L3 ( f = 250 mm), and L4
( f = 150 mm); and complementary metal-oxide semiconductor sen-
sor (CMOS). The Shack-Hartmann wavefront sensor (SHWFS) con-
sists of the MLA and the CMOS. Inset A shows a sample hologram to
produce the desired LG beam with |ℓ| = 1. Inset B shows the corre-

sponding spotfield observed on the CMOS sensor.

and multiplied by the corresponding intensity Ii of the spot. The resulting quantity
P

exp
ϕ i = Ii∆ϕi/ fm provides the experimentally measured azimuthal component of

the momentum density, which is in agreement with the canonical momentum ( eqn.
2.10) Pϕ = Iℓ/kr (see Fig. 2.5). To improve accuracy, multiple frames of the same
spotfield were recorded, and the intensity and canonical momentum density mea-
surements were grouped into bins corresponding to radial segments rj. For each

radial bin rj, the average intensity ïIðj and azimuthal momentum density ïP
exp
ϕ ðj

were calculated over all frames.
The measurement results are displayed in Fig. 2.5. Grey symbols represent the

experimentally measured intensity ïIðj as a function of radius r, and the solid grey
curves depict the theoretical intensity profile W(r) (Eq. 2.9), optimally fitted to the
experimental data. The red and blue curves show the theoretical distributions of the
azimuthal components of the canonical momentum density Pϕ(r) and the Poynting
momentum density Πϕ(r) from Eqs. 2.10 and 2.11, respectively. The red symbols,
representing the measured azimuthal momentum densities, clearly align with the
canonical momentum Pϕ(r) rather than the Poynting momentum Πϕ(r). Notably,
the canonical momentum is independent of the polarization helicity σ and remains
sign-consistent across the beam radius. In contrast, the azimuthal Poynting momen-
tum depends on σ and reverses its sign with radius r, following the σℓ symmetry.

These experimental observations corroborate theoretical predictions, specifically
the argument that a Shack-Hartmann Wavefront Sensor (SHWFS) measures the weak
value of the momentum operator, effectively providing the canonical momentum
density [73].

Statistical errors in the measured azimuthal momentum density (red points in
Fig. 2.1) range from 5 × 10−3 to 6 × 10−2 across different radii. The maximum statis-
tical error occurs near the vortex core, where low spot intensities lead to less precise
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centroid detection. For vortex beams (ℓ ̸= 0), systematic deviations from the the-
oretical curves are evident around r/w0 = 0.5, corresponding to regions of high
intensity gradients (see grey curves). These deviations may arise from cross-talk be-
tween neighboring microlenses, as discussed in the supplementary section of [32].

FIGURE 2.5: Experimental study of the distinction between canoni-
cal momentum and Poynting vector. Experimental (dots) versus the-
oretical (curves) results for the radial distributions of the intensity and
azimuthal component of the momentum density in LG beams with
ℓ = 0,±1 and circular polarization σ = ±1 in the z = 0 plane (plotted
in arbitrary units). The experimental results are obtained using the
Shack-Hartmann wavefront sensor, as explained in the section (2.1).
The displacements in cartesian coordinates were transformed to those
in polar coordinates. These are consistent with the canonical momen-
tum density independent of circular polarization, rather than with
the circular polarization-dependent Poynting vector (eqns. (2.10) and

(2.11).

Note that the change in sign of Πφ when ℓσ = −1, does not signify azimuthal
backflow as this can occur only due to the interference of at least two orbital angular
momentum eigenmodes (c.f. Chapter 4).

2.3 Concluding remarks

The method of measuring transverse local momentum using a SHWFS is described.
The local or canonical momentum and the Poynting vector are not one and the same
for vector fields. In order to illustrate this, we have performed experimental mea-
surements of the transverse momentum density in circularly polarized vortex LG
beams via a SHWFS. This yielded polarization-independent results consistent with
the canonical current rather than the Poynting vector. For the rest of the dissertation,
fields with uniform linear polarization will be considered.
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Chapter 3

Backflow in the interference of two
Gaussian beams

In the present chapter we discuss the observation of anomalous transverse local
momenta in the superposition of two wide Gaussian beams of unequal amplitudes.
Such a superposition is prepared using a polarization based Mach-Zehnder interfer-
ometer. The measurement of local momenta is performed using the SHWFS (dis-
cussed in Chapter 2). Although the interference of two beams has been widely stud-
ied since Thomas Young’s experiment in 1801, the wavefront of such a superposi-
tion, when the beams are unequal in amplitude, isn’t entirely intuitive. As described
below, the concept of the present work, stems from the nature of this wavefront.

3.1 Introduction to the concept

For the sake of simplicity, instead of working with Gaussian beams, let us consider
the superposition of two plane waves with unequal amplitudes and equal but op-
posite inclinations to the z-axis.

Ψ(x, z) = ei(z+ax) + bei(z−ax). (3.1)

Here, b ∈ [0, 1] is the ratio between the amplitudes of the beams and 2a is a mea-

sure of the angle between the propagation directions of the two plane waves–⃗k1 =

(a, 1), k⃗2 = (−a, 1), x and z are the transverse and longitudinal directions respec-
tively. All the parameters are dimensionless. The intensity distribution of this su-
perposition is |Ψ(x, z)|2 = 1 + b2 + 2b cos(2ax) (see gray scale map in Fig. 1). When

b < 1, the wavy nature of the wavefront–arg{Ψ(x, z)} = z + arctan
[

1−b
1+b tan(ax)

]

–of

this superposition (see yellow curves in Fig. (3.1)) has intrigued Michael Berry and
coauthors [44, 64]. This very nature of the wavefront, accounts for stronger phase

gradients–⃗ks = ∇⃗ arg{Ψ(x, z)}-in the dark fringes (represented by the red arrows in

Fig. (3.1)). The local wave-vector of the superposition k⃗s can be expressed as follows.

k⃗s =
( a(1 − b2)

1 + b2 + 2b cos(2ax)
, 1
)

(3.2)

It is clearly seen from eqn. (3.2), the x-component of the local wave-vector of the su-
perposition vanishes when b = 1, i.e., for the case of equal amplitudes. It may also

be noticed the x-component of k⃗s is higher in magnitude than |a|, when the intensity
of the superposition is lower. These anomalously high values of the x-component
can be thought of as backflow, in the context of section 1.2.2 by considering an appro-
priate zero axis of the x-component of the local wave-vector. Upon understanding
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FIGURE 3.1: Visualization of Backflow in Two-Plane Wave Interfer-
ence. This simulation illustrates the intensity distribution and wave-
front of two interfering plane waves with unequal amplitudes prop-
agating along the z-axis. The intensity distribution is described by
|ψ(x, z)|2 = 1 + b2 + 2b cos(2ax), where b represents the amplitude
ratio, and 2 arctan a denotes the angle between the propagation direc-
tions of the two plane waves. Yellow curves correspond to the wave-
fronts, defined by arg{ψ(x, z)} = const, with a = 1. The local wave-

vector of the superposition, k⃗s = ∇arg{ψ(x, z)}, is depicted by red ar-

rows and is expressed as k⃗s =
(

a(1−b2)
1+b2+2b cos(2ax)

, 1
)

. The white arrows

represent the wave-vectors of the constituent plane waves, k⃗1 = (a, 1)

and k⃗2 = (−a, 1), respectively. In panel (a), where b = 0.35, the wave-
front exhibits a wavy structure, and backflow occurs in regions of

dark fringes, as indicated by the green box. In these areas, k⃗s lies out-

side the triangle formed by k⃗1 and k⃗2, signifying that the x-component
of the local wave-vector exceeds that of the individual plane waves.
In panel (b), with b → 1, the wavefronts become flat with phase jumps
(singularities) in the zero intensity lines of the fringes, and no back-

flow is observed since k⃗s remains bounded by k⃗1 and k⃗2 in all regions.
This visualization highlights how backflow emerges naturally from
simple optical interference of unequal beams, emphasizing the wave-

like nature of the phenomenon.

the above-described simple scenario, let us now consider a similar superposition
but with Gaussian envelopes as plane waves are infinite in extent and cannot be
produced experimentally. The Gaussian beams overlap at their waist (z = 0)

ΨG(x, z) = (eiax + be−iax)
w0

w(z)
e
− r2

w2(z) e
i
(

kr2

2R(z)
−φ(z)+kz

)

. (3.3)

Here, w(z) = w0

√

1 + (z/zR)2 and R(z) =
z2+z2

R
z represent the Gaussian beam waist

and inverse curvature respectively. zR =
kw2

0
2 is the Rayleigh range of the beam.

φ(z) = arctan
(

z
zR

)

is the Gouy phase that appears from propagation along z. It

can be shown (see supplementary section of [31]) that the x-component of the local

wave-vector of ΨG(x, z), akin to k⃗S, exhibits backflow in the region of interference,
i.e., in the Fresnel propagation range from the plane of interference (z = 0). In fact,

at z = 0, the behaviour of the local wave-vector of the ΨG, is identical to k⃗S.
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3.2 A polarisation based common path Mach-Zehnder inter-

ferometer

Fig. (3.2) is an illustration of the experimental setup. A superposition of two unequal
Gaussian beams is prepared by passing a 780 nm polarized laser beam through a
half wave plate (HWP) and two identical polarizing beam displacers (PBD, Thor-
Labs BD40) with another HWP between them. The first HWP controls b, i.e., the
amplitude ratio between the two orthogonal displaced beams generated by PBD1.
The second polarising beam displacer–PBD2, together with the HWP placed prior
to it, rotated by 45◦ in the basis of PBD1, compensates for the path difference be-
tween the beams generated by PBD1. The combination of the second HWP and
PBD2 generates four beams and allows us to control the spatial separation between
the chosen orthogonal beams. This transverse spatial separation between the chosen
parallel beams determines their angle of intersection (related to a) at the back-focal
plane A of lens L1 ( f = 150 mm). Plane A is thus the plane of interference between
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FIGURE 3.2: Schematic representation of the experimental setup
to observe backflow in the x component of the local momentum.
λ/2–half wave plate; PBD–polarising beam displacer; POL–polariser;
L–lens; MLA–microlens array; CMOS– complementary metal-oxide
sensor. The superposition of two Gaussian beams of unequal am-
plitudes is generated at plane A using a polarization based Mach-
Zehnder interferometer. The plane of interefernce (A) is magnified
by a 4 f imaging system consisting of L2 and L3, thus emulating a su-
perposition of plane waves. ϕ1 and ϕ2 indicate the wavefronts of the
individual beams. The wavefront of the superposition is analysed by
a combination of MLA and CMOS, i.e., a SHWFS. A spotfield of ver-
tical fringes on the camera sensor ensures that only he x component
of the local wave-vector is of significance. Yet, in general, for tilted
fringes, the predicted backflow remains unchanged. See text for fur-

ther details on the setup.

the beams (See x-y cross-section of sample fringes obtained by placing the sensor at
A), provided that their polarizations are made diagonal by virtue of the polarizer
prior to L1. This plane is then imaged onto the microlens array (ThorLabs-MLA-
150-5C-M; pitch=150 µm) using a 4 f imaging system (L2, fFT = 35 mm and L3, f =
1000 mm), with a magnification (M) of 28.6. This magnification allows us to emulate
the superposition of plane waves, as the Gaussian beams impinging on the MLA
have a small but finite spread in momentum. By placing sensor at the back-focal
plane of L2, i.e., at plane B, the transverse momentum distribution (spectrum) of
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the beams is measured (see the two spots below B). A spot-field, behind the MLA,
of the x-y cross-section of the fringes, is observed at plane C on the CMOS device
(mvBlueFOX-200wG). A sample of such a spot-field is shown below the sensor. The
centroid of each spot in this spotfield is then compared to a reference (not shown
in the figure), which is not measured directly, but calculated: corresponding to each
microlens, the centroid position of the spot given by each beam is obtained by block-
ing the other one, and their mean position is assigned as the reference position. It
is worth noting that the diffraction spread introduced by each microlens does not
change the position of the centroid thereby assuring that it is determined only by
the associated local momentum.

3.3 Experimental results

Let us now discuss the results obtained from the aforementioned setup and the
method of analysing the data. As expected from the wavy wavefront discussed

FIGURE 3.3: Experimental observation of backflow in transverse
momentum. The orange dots are experimentally obtained values of
intensity behind each microlens. The orange curve is a fit of the in-
tensity data to a sinusoidal function with a Gaussian envelope. The
blue and the magenta dots represent the experimental values of k1,x,
k2,x and ks,x (mm−1) respectively, at the position of each microlens,
extracted from one row of the spot field matrix (as seen from the inset
below plane C in Fig. (3.2)). The error of each data point in a given x
position is found by estimating the standard deviation of centroids in
the corresponding column of the spot field matrix. The blue lines, k1,x

and k2,x fit the data to a constant value, as expected from the behavior
of Gaussian beams at their waists. Values of the parameters a (mm−1)
and b, extracted from the fit intensity, are used to plot the magenta
curve, that represents the theoretical prediction of the x-component
of the superposition’s local wave-vector (ks,x). In the dark fringes,
the experimental values of ks,x, while being in good agreement with
the theory, are seen to exceed not only k1,x (the x-component of the
wave-vector of the brighter beam) but also the spread of the Fourier

transform (blue shaded region). See main text for further details.
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in section 3.1, the plot in Fig. (3.3) shows the oscillating local wave-vector of the
superposition (magenta curve and dots). Backflow is observed in the transverse x
direction, in regions where the local wave-vector of the superposition exceeds its
constituent Gaussian momentum distributions, i.e. the spectrum of the first beam,
(centered at k1,x, width ±3σ) and of the second beam (centered at k2,x, width ±3σ).
This result can be associated with Fig. (3.1), where ks lies outside the triangle formed
by the mean directions of the constituent beams–k1 and k2, thus leading to back-
flow. Here, k1,x, k2,x (blue dots) and ks,x (magenta dots) are estimated by measuring
centroid displacements from the reference, as discussed in Chapter (2)). The blue
shaded regions centered on k1,x and k2,x represent the widths (±3σ) of the individual
beams’ Fourier spectrum obtained by appropriately scaling the standard deviation
of Gaussian intensity cross-sections recorded at the Fourier plane of L2 (see inset be-
low plane B in Fig. (3.2)). σ = 2π∆L

Mλ fFT
, where ∆L is one standard deviation obtained

from the fitting of a 2D Gaussian function to the intensity profile recorded at the
Fourier plane of L2, and M is the magnification of the imaging system.

The orange dots represent experimentally obtained values of intensity at the
back-focal plane of each microlens. While, the x coordinate of each dot is the cen-
troid position of the corresponding spot from the reference spot field, its y coordinate
represents the mean value of all the pixels in a given spot of the spotfield from the
fringes, divided by the exposure time of the camera. The orange curve is a fit of the

intensity data to e
− 2x2

w2
0 (1 + b2 + 2b cos(2ax)), where w0 is the identical width of each

Gaussian beam at z = 0, i.e., their waist planes. The amplitude ratio measured in
the experiment– b = 0.45 obtained by fitting Gaussian functions to the images of the
constituent beams and taking the ratio of the Gaussian amplitudes–is a constraint in
the fit of the intensity of the superposition. The value of a = 3.19 mm−1 is extracted
from the fit intensity curve. These parameters are then used to calculate and plot the
theoretical prediction of ks,x (magenta curve).

In order to acquire further insight, we experimentally study the dependence
of backflow on the amplitude ratio (b) and the angle between the two superposed
beams (a). Fig. (3.4) shows the features of backflow in a given interval of x.

While the experimentally measured ks,x is in excellent agreement with the theo-
retical prediction, there are some nuances in the data and its analysis that lend the
experiment some differences from the simplistic theoretical model discussed in sec-
tion (3.1). We discuss these in the subsections below.

3.3.1 Explaining the difference in heights of the peaks of ks,x

It may be observed that the heights of the peaks corresponding to backflow are
slightly different across the x position (unlike the prediction from eqn. (3.2)). This is
owed to a slight shift between the centers of the constituent Gaussian beams as they
don’t overlap perfectly on the MLA, owing to a minor misalignment of the imag-
ing system. It is interesting to note that, despite taking this correction into account,
backflow can clearly be observed.

Let us consider the superposition of two plane waves of unequal amplitudes
with Gaussian envelopes with their centers shifted in equal and opposite directions
along x by ξ.
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FIGURE 3.4: The effect of the amplitude ratio and the angle be-
tween the beams on the observation of backflow. (a)–(c) Ratio, b,
is constant (up to the second digit after the decimal point) and the
angle between the beams is increasing. As the angle increases, the
peaks of backflow are higher and appear is more frequently. Namely,
the observed backflow has a better chance to exceed the spectrum for
higher angles, but simultaneously, its detection requires finer sam-
pling (see subsection (3.3.3)) in the x direction and therefore higher
spatial resolution. (d)–(f) The angle between the beams, a, is constant
and the amplitude ratio is increasing. Note how the interference con-
trast changes. As a is the same in all the cases, backflow appears
with the same frequency across the interval of x. On the other hand,
the displacement due to backflow is greater as the ratio between the
beams increases. When b is closer to unity (but b ̸= 1; otherwise, we
reach a singularity in the dark fringe) the x-component of the local
wave-vector is more likely to exceed the spectrum (i.e. backflow) as
the peaks are higher, but might not be sampled owing to the spatial
resolution of the measuring device. A case where backflow is not ob-
served is (d), where the displacements do not exceed the spectrum. In
order to observe it, one can magnify further the Gaussian beams and
accordingly shrink their spectra. In (f) the changing heights of the
theoretically predicted peaks are due to the non-overlapping beams
as mentioned in the main text. Yet, the observation of backflow is not

affected. See the main text for further information.

ΨS(x, y, z) =
w0

w(z)
e
− y2

w2(z) e
i

(

ky2

R(z)
−φ(z)+kz

)

[

eiaxe
− (x+ξ)2

w2(z) e
i

k(x+ξ)2

R(z) + be−iaxe
− (x−ξ)2

w2(z) e
i

k(x−ξ)2

R(z)

]

,

(3.4)



3.3. Experimental results 29

where, w0, w(z), R(z), and φ(z), are parameters of the Gaussian beam, defined
above. Here a and x are in the units of inverse of length and length respectively.
b, as usual, is unitless. When the Gaussian envelopes have a large Rayleigh range
and plane of interest is z = 0, eqn. (3.4) can be approximately modified to the fol-
lowing.

ΨS(x, y, z) ≈ eikze
− x2+y2+ξ2

w2
0

[

e
− 2xξ

w2
0 eiax + be

2xξ

w2
0 e−iax

]

(3.5)

Thus, the phase and its x gradient can be expressed as follows.

arg{ΨS(x, y, z)} = z + arctan

[

1 − B(x)

1 + B(x)
tan(ax)

]

, (3.6)

where B(x) = be
4xξ

w2
0 , is the position dependent ratio between the beams.

kx =
∂

∂x
arg{ΨS(x, y, z)} =

a

(

e
− 4xξ

w2
0 − b2e

4xξ

w2
0 − 4bξ

aw2
0

sin(2ax)

)

e
− 4xξ

w2
0 + b2e

4xξ

w2
0 + 2b cos(2ax)

(3.7)

The factor 4bξ
aw2

0
appearing in the third term of the numerator in eqn. (3.7), was ex-

perimentally measured to be approximately 0.02b, for all values of a. Therefore, the
effect of the non-overlapping beams can be considered to be negligible for ratios
that are not close to unity. Although, the degree of brightness changes across the
camera, for ratios much less than unity, one beam is consistently brighter than the
other, and hence the peaks have the same signs but are gradually smaller in heights
(Figs. (3.3-3.4)). However, for b close to unity, the effect on the heights of the peaks
is clearly visible, as seen in Fig. (3.4) (f). Additionally, when the ratio is closer to
unity (b = 0.98) one beam is brighter than the other across only half of the camera
and hence the signs of the peaks flip in addition to being different in heights. See
Fig. (3.5).

3.3.2 Ensuring backflow beyond the tails of the Gaussian spectra of the
constituent beams

The Fourier spectra of the constituent wide Gaussian beams, although narrow, are
infinite in extent, and hence it is required to carefully certify backflow i.e., to ensure
that the ’anomalous’ local linear momentum does not arise from the infinite tail of
the Fourier spectrum. In order to confirm that we observed backflow, it is required to
estimate the contribution of the momentum values which lie in the tail of the Gaus-
sian spectrum of the individual beams, and show that it is negligible compared to
the ‘anomalous’ local momentum values arising from interference [36, 74]. For this
estimation, the backflow probability PBF is given by integrating the intensity over
the regions of x positions within one fringe where anomalous momentum values
are observed, and dividing by the intensity over one period of the fringe. The prob-
ability of finding the anomalous values within the Gaussian tails of the spectrum
PSP is given by integrating the spectrum over the part of its tail that can lead to such
anomalous momentum values, and dividing by the integral over the full spectrum.

Let us now mathematically describe PBF and PSP. While obtaining a mathemat-
ical expression for the latter, we can restrict ourselves to the measured spectrum at
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FIGURE 3.5: The effect of non-overlapping beams. The sign of the
peaks of backflow flips when the amplitude ratio is very close to
unity, and the beams don’t overlap. Backflow is still observed as
the x-component of the local wave-vector of the superposition ex-
ceeds the x-component of the wave-vector of the beam that is locally

brighter.

plane B (Fig. (3.2)) as the probability PSP remains unchanged, despite the magnifica-
tion. The probability of backflow is expressed as follows.

PBF =

∫ x0+fringe size
x0

dxdy1kx<kx,ref
(x)I(x, y)

∫ x0+fringe size
x0

∫

∞

−∞
dxdyI(x, y)

. (3.8)

Here, x0 is the position of an arbitrary fringe. I(x, y) is the fit of the distribution of
the intensity cross-section. kx,ref is the transverse momentum value chosen as a cut-
off for the tails of the spectra. 1kx<kx,ref

(x) is the identity function (equals 1 when kx

is lower than kx,ref, 0 elsewhere).
Now, the probability of finding the anomalous values within the Gaussian tails

of the spectra is given by

PSP =

∫ kx,ref

−∞

∫

∞

−∞
dkxdkye

− λ2 f 2
FT

4π2w2
FT

{(kx−k1,x)
2+k2

y}

∫

∞

−∞

∫

∞
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dkxdkye

− λ2 f 2
FT

4π2w2
FT

{(kx−k1,x)2+k2
y}

. (3.9)

Here, wFT is the waist of the Gaussian spectrum of the brighter beam at the Fourier
plane of the lens L2 of focal length fFT. The beam’s mean transverse momentum is
k1,x. Depending on the direction of backflow, k2,x may also be considered.

For the data presented in Fig. (3.3), we found PBF to be larger than PSP by three
orders of magnitude, hence, confirming backflow. On repeating this procedure for
the data presented in the subplots of Fig. (3.4), except in the case of (d), PBF to be
larger than PSP by at least three orders of magnitude, again confirming backflow.
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3.3.3 Measuring ‘local momentum’ with microlenses of finite size

As discussed in section (2.1.2) of the previous chapter, sampling the wavefront by the
microlenses owing to their finite size leads to a deviation in the measured centroid
displacement, and hence the measured transverse local momentum–kD

s,x is different
from its theoretical counterpart ks,x, which assumes infinitely small lenses (limD→0).
Here, we provide a quantitative analysis of this discrepancy.

The wave-vector associated with the displacement of the microlens spot centroid
along the x-axis, under the Fresnel approximation of the Huygens-Fresnel principle,
on the pixelated sensor at the focus of the microlens array (centered on (xc, yc)) is
given by [60, 75, 76]

kD
s,x =

∫ yc+
D
2

yc− D
2

∫

xc+
D
2

xc− D
2

dxdy ∂
∂x arg{Ψ(x, y)}

∫ yc+
D
2

yc− D
2

∫

xc+
D
2

xc− D
2

dxdyI(x, y)

. (3.10)

Here I(x, y) and arg{Ψ(x, y)} are intensity profile and wavefront at the microlens
respectively, and the integration is performed over the area of a microlens. For the
simple case of superposition of two plane waves described in section (3.1), consid-
ering each microlens to be centered on a point xc, the expression for the angular
displacement in eqn. (3.10) simplifies to the following.

kD
s,x =

a(1 − b2)

1 + b2 + 2b cos(2axc)
sin(Da)

Da

. (3.11)

Clearly, limD→0 kD
s,x → ks,x, i.e., eqn. (3.11) is identical to the x component in eqn.

(3.2), if the microlenses are infinitely small. In our case, D = 150 µm and all the
measured angles are also quite small. However, it cannot be assumed that the term
sin(Da)

Da ≈ 1 for all values of b. The maximum ks,x that can be measured with the
setup is dependent on the angle between the beams (a) we set. Fig. (3.6) shows
the plot of ks,x (grey) and kD

s,x (magenta) for a given a = 3.19 mm−1 and different
values of b (panels (a-f)). It is clearly visible that for b values that are close to 1,
the deviation (namely the difference between ks,x and kD

s,x) due to the finite size of
the lens is substantial. For b close to 1 the values of ks,x reach to maximum, but at
the same time their derivative relative to x is higher. Under such circumstances, the
wavefront passing through a single microlens cannot be approximated as constant,
and the measured centroid offset cannot be associated with a single wavefront slope
anymore. For calculations of the maximum value of kD

s,x for a given value of a, see
supplementary information in [31].

3.3.4 A slight deviation of the data from the theoretical plot in the bright
fringes

A close observation of Fig. (3.3) and the subplots in Fig. (3.4) reveals that the ma-
genta dots exhibit a slight deviation from the magenta curve in the region of transi-
tion between the bright and dark fringes. There are two possible factors responsible
for this deviation. (1) The CMOS sensor was not placed exactly at the geometrical
focus of the microlens array, which led to aberrations in the measured centroid po-
sition, particularly in the regions of higher intensity gradients [75, 76]. (2) The the-
oretical model doesn’t consider cross-talks between microlenses, i.e., the influence
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FIGURE 3.6: The effect of finite-sized microlenses. A comparison
between ks,x (grey) and kD

s,x (magenta) for a given a = 3.19 mm−1

and different values of b. For values of b closer to unity (d-f), the
difference between the peaks of ks,x and kD

s,x are substantial. This can
also be observed in the difference between the values of magenta dots

and the magenta curves near the peaks in Figs. (3.3-3.4)

of overlapping diffraction rings of adjacent lenses. These cross-talks, as we shall
explore further in the following chapter, may cause the aforementioned deviation.

3.4 Concluding remarks

In summary, we demonstrate backflow by measuring the local transverse compo-
nent of the wave-vector of the superposition of two wide Gaussian beams, and show
that, in the dark intensity regions, it exceeds the spectrum of its constituents. The
interference takes place in free space thereby excluding effects related to anisotropy
or dispersion of media. We note that due to measuring the spectrum (local trans-
verse momentum) by implementing the Fourier transform with a lens (microlens),
the demonstration is confined to the paraxial approximation [40]. The diffraction
spread introduced by each microlens, i.e., the size of each focal spot in the spotfield
is much greater than the amount of displacement of the spot centroid. However, this
uncertainty doesn’t play a role here as the experiment doesn’t operate in the shot
noise limit.

Our study on optical waves makes use of a simple experimental configuration
and can possibly be extended to various types of systems including matter waves
[77, 78, 79, 80], single photons [81, 82], and mechanical waves. Apart from prepar-
ing a superposition of two wavepackets, observation of backflow requires a mea-
surement of local momentum, which is relatively straightforward and involves only
spatial filtering and detection in the far field. In the case of single photons, for ex-
ample, we could repeat the experiment and expect the results to be consistent with
the current ones achieved using classical beams (see Chapter (5) for further informa-
tion).
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Backflow thus far was considered to be exotic and difficult to observe. Here,
on the contrary, we show that it would be hard not to observe backflow as it is
experimentally infeasible to satisfy the criterion of equal intensity of the interfer-
ing beams. Additionally, we can control the parameters (i.e. amplitude ratio and
angle) and understand their physical relevance in observing the effect. Unlike the
previous study [30] which involves constraints on state preparation (for example
the resolution of the SLM), we show that it is not necessary to engineer a state that
manifests backflow a priori, as such an engineering might be difficult in particular
physical systems. The two-dimensional single shot local momentum measurement
using a Shack–Hartmann wavefront sensor, devoid of scanning, can be advanta-
geous in systems manifesting backflow in any two transverse directions, for exam-
ple in beams containing orbital angular momentum or any azimuthal degree of free-
dom (see Chapter (4) for further information). Moreover, our setup enables studying
backflow for partially coherent superpositions (corresponding to mixed quantum
states) as local transverse momenta of partially coherent light can be measured with
a Shack–Hartmann wavefront sensor [73]. This, however, awaits further theoretical
investigations.

Contributions: In the work [31], the author has constructed the experimental
setup, performed the experiment, performed theoretical calculations, assisted in
conceptualising the idea, in analysing the data, and in writing the manuscript. Anat
Daniel has assisted in conceptualising the idea, performing the experiment, and
writing the manuscript. Bernard Gorzkowski has assisted in conceptualising the
idea and in analysing the data. Radek Łapkiewicz has assisted in conceptualising
the idea, has designed the experimental setup, and has supervised the project.
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Chapter 4

Observation of Azimuthal
backflow

Light beams with azimuthal (helical) phase dependence eiℓφ were identified to be
carrying orbital angular momentum (OAM) by Allen et al. in 1992 [83]. They were
experimentally generated for the first time in 1993, by employing cylindrical lenses
[84], and since then beams carrying OAM have found applications in numerous
fields such as optical tweezers [85], optical microscopy [86], interactions with chiral
molecules [87], etc. States of light with azimuthal phase dependence are also analo-
gous to the eigenstates of the angular momentum operator in quantum mechanics–Lz.
In the present chapter, based on [32], we examine the interference of classical light
carrying only negative orbital angular momenta, and in the dark fringes of such an
interference, we observe positive local orbital angular momentum. This finding has
implications for the studies of light matter interactions.

4.1 Introduction

In the recent experimental observations, one-dimensional transverse local momen-
tum of a superposition of beams was measured by scanning a slit [30] or by using the
Shack–Hartmann wavefront sensor technique [31], respectively. The Shack–Hartmann
wavefront sensor technique also allows for one-shot measurement of the two-dimensio-
nal transverse local momentum, as reported for the case of azimuthally phased
beams in [69]. Another method, employing digital-hologram-based modal decom-
positions, for measuring local OAM is given in [88, 89]. In the present chapter, simi-
lar to the last chapter, we use the Shack–Hartman sensor to measure the local OAM
of the superposition of two beams with helical phases, thereby moving from linear
optical backflow to azimuthal backflow. In practice, we examine the superposition
of two beams carrying only negative orbital angular momentum and observe, in the
dark fringes of such an interference pattern, positive local OAM. This is what we
term azimuthal backflow. We clarify that, by “local OAM” of a scalar field at each
point, we refer to the product of the azimuthal component of the local momentum
at that point and its corresponding radius.

Zacharias and Bahabad [90] have previously utilized the superposition of Bessel
beams with OAM to realize transverse super-oscillatory intensity patterns. Our cur-
rent demonstration of azimuthal backflow in beams carrying OAM can be inter-
preted as superoscillations in phase. The backflow presented here is thus a mani-
festation of rapid changes in phase, which could be of importance in applications
that involve light–matter interactions such as in optical trapping or in enhancing
chiral response of molecules [87, 91]. Apart from these, our demonstration is a step
in the direction of observing quantum backflow in two dimensions, which has been
theoretically found to be more robust than one-dimensional backflow [19].
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4.1.1 Theoretical Model

It is often thought that beams containing vortices alone can carry OAM [92]. This is a
misconception, probably arising from the familiar special beams that are eigenstates
of OAM [e.g. individual Laguerre–Gauss (LG) beams and Bessel-Gauss (BG) beams].
General beams can be represented by superpositions of eigenstates, for which there
is no relation between the OAM in the beam and its vortices [93]. We dispel the
aforementioned misconception and use a simple model described below to create the
superposition of beams carrying helical phases to demonstrate azimuthal backflow.
At z = 0, these superpositions do not have any vortices. As we shall see later (sub-
section (4.1.4)), the presence of vortices in the superposition of conventional beams
with helical phases such as Laguerre–Gauss (LG) and higher-order Bessel–Gauss
(BG) beams can cause the measurement of azimuthal backflow to be challenging
due to the sparsity of local regions in which such backflow can be observed. Fig.

�� ��Beam 1 Beam 2

�� ��

FIGURE 4.1: Visualization of the superposition of two beams carry-
ing helical phases. Two Gaussian beams—beam 1 and beam 2—with
intensities I1 and I2, respectively, and amplitude ratio b=0.6 between
them, each of waist w0=1 mm, carrying negative helical phases ℓ1=-1
and ℓ2=-3, respectively, are superposed. The normalized azimuthal
components of local wave-vectors–kφ,1,2/|kφ,1,2| are indicated with
gray arrows on top of the intensity pattern of each beam. A con-
ceptual realization of such a superposition with a beam splitter (BS)
is shown in the bottom panel. The z = 0 plane (see Fig. (4.2)) is the
image plane (lenses not shown) of the phase plates indicated with

blue-green colour-map.

(4.1) is a schematic of the superposition of two Gaussian beams with unequal am-
plitudes, carrying helical phases of orders ℓ1 and ℓ2 (both negative or positive) re-
spectively. In inset (A), we provide a schematic of an interferometer setup in which
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such a demonstration can be realized. Here, we provide a mathematical description
of the propagation of this superposition along the z-axis. We restrict ourselves to
quasi-monochromatic scalar fields under the paraxial approximation, instead of the
more rigorous approach using Maxwell’s equations. For z = 0, i.e., no propagation
from the image plane of the helical phase plates at the output of the beam splitter in
inset A, the scalar field is given by

ΨS(r, φ, z = 0) = e
− r2

w2
0 (eiℓ1φ + beiℓ2φ), (4.1)

where (r, φ) are the polar coordinates and |b| ∈ [0, 1] is a constant ratio between the
amplitudes of the two interfering Gaussian beams, each of waist w0. The φ compo-
nent of the gradient of the wavefront– ∂

r∂φ arg{Ψ(r, φ, z = 0)} can be expressed as

follows.

kφ,S =
1

2r

(

ℓ1 + ℓ2 +
(ℓ1 − ℓ2)(1 − b2)

1 + b2 + 2b cos{(ℓ1 − ℓ2)φ}

)

. (4.2)

As seen from eq. (4.2), kφ,S has the potential to point in the counterclockwise (clock-
wise) direction at any given radius, depending on φ and b, thus indicating backflow.
This is represented in Fig. (4.2) for ℓ1 = −1 and ℓ2 = −3. Note that there is no
backflow when the beams are equal in amplitude. In Fig. (4.2) (a), the grayscale

Superposi�on of Beam 1 and Beam 2

Without propaga�on (Z=0)

(a) (b)
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FIGURE 4.2: Schematic representation of azimuthal backflow in the
superposition of two beams carrying helical phases at the plane
of superposition. (a) Two-dimensional cross-section of the intensity
distribution on the plane of the superposition without propagation
(grayscale map) with b = 0.6 and normalized azimuthal components
of local wave-vectors–kφ,S/|kφ,S| (scale bar indicated at the bottom
right corner). While the gray arrows, in the bright fringes, point in
clockwise direction (defined by the signs of ℓ1 and ℓ2), the orange
arrows, in the dark fringes, point in the counter-clockwise direction,
thus illustrating backflow. One such region of backflow, in a given
dark fringe, is marked by the white triangle labelled A. (b) The lo-
cal OAM rkφ for each constituent (red, green constant lines) and the
superposition (blue) and the intensity (orange) at a constant radius
as functions of the azimuthal angle φ. The values of the blue curve,
indicating positive local OAM (above the gray line), i.e., backflow, co-

incide with the minima of the orange curve, i.e., the dark fringes.

map represents the intensity distribution of the field in eqn. (4.1), on top of which
the normalised φ component of the local wave-vector—kφ,S/|kφ,S|–has been marked
with arrows. The arrows marked in gray in the bright fringes, point in the clock-
wise direction, i.e., in the directions of kφ,1 and kφ,2, while the orange arrows in the
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dark fringes point in the counterclockwise direction and correspond to azimuthal
backflow.

A quantitative representation of the same azimuthal backflow is shown in the
plot in Fig. (4.2) (b). We plot rkφ,1 (red), rkφ,2 (green), and rkφ,S (blue), which are mea-
sures of the local OAM [69] of each constituent and the superposition in eqn. (4.1),
as functions of φ. While rkφ,1 and rkφ,2 are constant negative values as expected,
the positive values of rkφ,S in the dark fringes of intensity at a constant radius (I(φ);
plotted in orange), are a manifestation of azimuthal backflow. Clearly, this represen-
tation is consistent with the plots in the last chapter.

4.1.2 Angular extent of the region of backflow

The angular extent of the region of backflow naturally depends on the parameters
ℓ1, ℓ2 and b. In fact, an optimal value of b, for chosen ℓ1, ℓ2, can maximize angular
extent of azimuthal backflow.

In order to find the boundaries of the regions of azimuthal backflow, we need
to set rkφ,S = 0. It can be observed from eqn. (4.2), that this condition leads to the
following.

cos((ℓ1 − ℓ2)φ) = −
1
b + b ℓ2

ℓ1

1 + ℓ2
ℓ1

. (4.3)

It is observed from equation 4.3, starting from φ = 0 (bright region, no backflow),

the first crossings are at φ = ± 1
|ℓ1−ℓ2| arccos(−

1
b+b

ℓ2
ℓ1

1+
ℓ2
ℓ1

). The angular extent of this

bright ‘no-backflow’ region is:

∆φ =
2

|ℓ1 − ℓ2|
arccos(−

1
b + b ℓ2

ℓ1

1 + ℓ2
ℓ1

) (4.4)

The angular extent of one complete fringe is 2π
|ℓ1−ℓ2| . For simplicity’s sake we consider

the proportion of the ‘no-backflow’ region within a fringe:

∆φ̃ = ∆φ
|ℓ1 − ℓ2|

2π
=

1

π
arccos(−

1
b + b ℓ2

ℓ1

1 + ℓ2
ℓ1

) (4.5)

We want a b value such that this region is minimized, we search for
∂∆φ̃
∂b = 0

1

π

− 1
b2 +

ℓ2
ℓ1

√

(1 + ℓ2
ℓ1
)2 − ( 1

b + b ℓ2
ℓ1
)2

= 0 ⇒ b = +

√

ℓ1

ℓ2
(4.6)

The b value that maximizes the angular extent of the backflow region is therefore

b =
√

ℓ1
ℓ2

. With this value of b, we can also calculate the proportion of the fringe

where backflow is observed:

Backflow proportion = 1 − ∆φ̃|
b=

√

ℓ1
ℓ2

= 1 − 1

π
arccos(

−2
√

ℓ1
ℓ2
+
√

ℓ2
ℓ1

) (4.7)
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The aforementioned analysis leads to the understanding that not every value of
b ∈ (0, 1) can lead to azimuthal backflow (the exclusion of the lower and the up-
per bounds is self-explanatory). Quantitative plots of rkφ,s, similar to Fig. (4.2) (c)
of the main text can help us visualize this. In Fig. (4.3), the top panel shows plots
of the intensity cross-section of the superposition in eqn. (4.1), at a given radius
I(φ) = 1 + b2 + 2b cos (ℓ1 − ℓ2)φ for two different values of b. The lower panel,
along with ℓ1 and ℓ2, shows the corresponding plots of rkφ,s.
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FIGURE 4.3: Here ℓ1 = −1, ℓ2 = −3. Top panel shows I(φ) for b =
√

ℓ1
ℓ2

≈ 0.6, i.e., the optimal ratio (gold) and b = 0.3 (violet). The

bottom panel shows rkφ,1 (red), rkφ,2 (green) and the two plots of rkφ,s

for the corresponding values of b from the top panel. It is evident
from the violet plot that when b = 0.3, the angular extent of the region
of backflow is 0, i.e., no backflow is observed. The local OAM of the

constituent beams and the superposition are all negative.

4.1.3 Azimuthal backflow persits upon beam propagation

As seen from subsection (4.1.2), azimuthal backflow can already be observed us-
ing the field in eqn. (4.1). However, we wish to provide a complete description of
the field’s propagation and to theoretically study the azimuthal backflow at other
planes. The field at any (z > 0), (i.e., after it propagates) is given by solving the
Fresnel diffraction integral [40, 94], considering free propagation of the field in eqn.
(4.1):

ΨS(r
′, φ′, z) =

k

iz
eikzei kr′2

2z

(

Fℓ1
(kr′/z)eiℓ1(φ

′− π
2 ) + bFℓ2

(kr′/z)eiℓ2(φ
′− π

2 )
)

, (4.8)
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where (r′, φ′) are the transverse coordinates and Fℓi
(kr′/z) is the ℓi-th order Hankel

transform of the function e
− r2

w2
0 ei kr2

2z , obtained using the ℓi-th order Bessel function
Jℓi
(kr′r/z). The explicit expression of Fℓi

(kr′/z) can be found in tables of integral
transforms [95].

Assuming, b ∈ R, the azimuthal component of the local wave-vector of the su-
perposition in eqn. (4.8) is the following.

kφ′,S =
1

2r′

{

l1 + l2 +
(l1 − l2)(1 − B(r′)2)

1 + B(r′)2 + 2B(r′) cos{(l1 − l2)(φ′ − π
2 ) + C(r′)}

}

, (4.9)

where B(r′) = b
|Fℓ2

(kr′/z)|
|Fℓ1

(kr′/z)| is a position-dependent amplitude ratio and C(r′) =

arg{Fℓ1
(kr′/z)}− arg{Fℓ2

(kr′/z)} is the position-dependent phase. Observe the sim-
ilarities between eqn. (4.2) and eqn. (4.9). While the azimuthal components of the

local wave-vectors of the constituents kφ′,1 = ℓ1
r′ and kφ′,2 = ℓ2

r′ are independent of
φ′ and have a constant clockwise (counterclockwise) for negative (positive) signs of
ℓ1 and ℓ2 direction at any given radius, it is seen that kφ′,S depends on φ′. This is a
prerequisite for observing azimuthal backflow.

We use eqns. (4.8) and (4.9) to plot the intensity distribution |ΨS(r
′, φ′, z)| and the

normalized local wave-vectors kφ′,S/|kφ′,S|, respectively. The two-dimensional plot
is given in Fig. (4.4)(a). Comparing Fig. (4.4)(a) to Fig. 4.2 (b), we see on the grayscale
map of the intensity distribution, that for z > 0, a vortex around r′ = 0 is formed
and no azimuthal backflow exists within this region. The value of z determines the
radius of this vortex. Apart from this observation, the arrow-fields in both figures
are similar. However, from the quantitative point of view, for z > 0, we see from
eqn. (4.8) that the local OAM depends on the radius r′. In contrast to a single plot in
the case of z = 0 [c.f. Fig. 4.2 (c)], here, for each radius there is a corresponding plot
of local OAM and intensity cross-section as functions of φ′ [c.f. Fig. (4.4)(b)].

It is worth noting that in Fig. (4.2) (b) and Fig. (4.4) (b), there’s a non-zero amount
of energy in the dark regions because the beams have unequal amplitudes. The
intensity in these regions is relatively low but nonetheless detectable.

4.1.4 Exploring azimuthal backflow in the superposition of Laguerre-Gauss
beams

Consider the LG beam uℓ,p in cylindrical polar coordinates (r, φ, z)

uℓ,p(r, φ, z) =

√

2p!

π(p + |ℓ|)!
1

w(z)

(

r
√

2

w(z)

)|ℓ|

L
|ℓ|
p

(

2r2

w(z)2

)

e−r2/w2(z)e
i{kz+ kr2

2R(z)
−ψ(z)+ℓφ}

,

(4.10)

where L
|ℓ|
p is the associated Laguerre polynomial, zR = kw0

2

2 , is the Rayleigh range,

w(z) = w0

√

1 +
(

z
zR

)2
is the beam waist and 1

R(z)
= z

z2+zR
2 is the inverse radius of

curvature. The Gouy phase is ψ(z) = (2p + |ℓ|) arctan
(

z
zR

)

. Linear polarization is

assumed.
For the sake of simplicity, we are interested in the superposition Ψ̃(r, φ, z = 0) =

uℓ1,p1
+ buℓ2,p2

, for b ∈ [0, 1]. In order to examine the prospect of azimuthal backflow



4.1. Introduction 41

Superposi�on of Beam 1 and Beam 2
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FIGURE 4.4: Visual representation of azimuthal backflow in the su-
perposition of two beams carrying helical phases away from the
plane of superposition. Here b = 0.6, and w0 = 1 mm, z = 20 mm,
and ℓ1 = −1 and ℓ2 = −3. (a) Two-dimensional cross-section of the
intensity distribution (grayscale map) on a plane after propagation
and normalized kφ′ ,S . As in Fig. (4.2) (a), the azimuthal component
of the local wave-vector exhibits backflow outside the central vortex.
(b) Quantitative plots of local OAM r′kφ′ considering local amplitude

ratio B(r′) and local phase C(r′). The red and green lines represent
the constants r′kφ′ ,1 and r′kφ′ ,2. Three different values of r′ : r′1 = 0.2

mm (black solid line), r′2 = 1.5 mm (brown dashed line), r′3 = 2.5 mm
(purple dotted line) are used to plot their respective r′kφ′ ,S. The black,
brown, and purple curves peak at the minima of the respective black,
brown, and purple curves of the intensity cross-section in the upper
panel. Again, the positive values of r′kφ′ ,S (above the gray line) are

indicative of backflow, respectively.

in such a superposition, we calculate the azimuthal component of the local wave-
vector kφ,s (note that the radial component of the local wave-vector is non-zero).

1

r

∂

∂φ
arg Ψ̃(r, φ) =

1

2r

(

ℓ1 + ℓ2 +
(ℓ1 − ℓ2)(1 − b(r, ℓ1, p1, ℓ2, p2)

2)

1 + b(r, ℓ1, p1, ℓ2, p2)
2 + 2b(r, ℓ1, p1, ℓ2, p2)cos{(ℓ1 − ℓ2)φ}

)

,

(4.11)

where b(r, ℓ1, p1, ℓ2, p2) = b
√

p2!(p1+|ℓ1|)!
p1!(p2+|ℓ2|)!

(

r
√

2
w0

)|ℓ2|−|ℓ1| L
|ℓ2 |
p2

(

2r2

w0
2

)

L
|ℓ1 |
p1

(

2r2

w0
2

) . Equation 4.11 is

thus similar in nature to equation 3 of the main text, owing to the term b(r, ℓ1, p1, ℓ2, p2),
which has a complex radial dependence. Thus, only specific values of the parame-
ters involved can lead to azimuthal backflow. As seen from the examples in Figure
4.5 the regions of azimuthal backflow are restrictive and sparse. Given that in the
experiment, we would use microlenses of a finite size (which adds to aberrations) to
sample these regions, measuring the azimuthal backflow would be quite challeng-
ing in these cases. A similar argument holds for the superposition of higher order
Bessel-Gauss (BG) beams.
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FIGURE 4.5: Two-dimensional representation of azimuthal back-
flow in the superposition of LG beams. As in Figs (4.2)(b) and
(4.4)(b) of the main text, the intensity distribution is shown via grey-
scale maps. Normalized kφ,s are plotted with arrows. The yellow
arrows correspond to azimuthal backflow. Here ℓ1 = −1, ℓ2 =
−3, w0 = 1mm. In (a)-(c) p1 = p2 = 0 and b = 0.3, 0.6, 0.8 respec-
tively. Clearly, even if the radial index p of each constituent beam is
set to 0, the complex radial dependence allows only specific regions
of backflow to exist. In (d) p1 = 4, p2 = 3, b = 0.8. Non-zero radial in-
dices lead to different distributions of the regions of backflow. Hence,
azimuthal backflow in the superposition of LG beams is restrictive

and localised, thus making it less applicable.

4.2 The Experiment

From subsection (4.1.3), it is thus understood that for z > 0, suitable radii ought to
be chosen in order to observe azimuthal backflow utilizing the field in eq. (4.8). As
the purpose of our experiment is to demonstrate azimuthal backflow, we limit our
experimental demonstration to the field in eq. (4.1), i.e., at z = 0, wherein the local
wave-vector has only an azimuthal component and this component in turn has no
radial dependence.

A schematic representation of the experimental setup can be found in Fig. (4.6).
The field in eq. (4.1) is realized by using phase masks on a phase-only spatial
light modulator (Holoeye Pluto 2.0 SLM), as shown in inset A of Fig. (4.6). A 780
nm continuous wave laser (Thorlabs CLD1015) is reflected off the SLM. Since we
use a phase-only SLM to simultaneously modulate phase and amplitude, we adopt
the technique discussed in [71], so that the desired field is generated after filter-
ing the first diffraction order. The SLM is imaged using lenses L3 and L4 onto the
microlens array (ThorLabs-MLA-150-5C-M) that focuses the beam onto the CMOS
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camera (mvBlueFOX-200wG). By definition, the image plane of the SLM refers to
the z = 0 plane, as mentioned in the previous section. Inset B shows the spotfield
generated on the CMOS when the mask in inset A is displayed on the SLM. Addi-
tionally, following the Shack–Hartmann sensor principle [57], a reference spotfield
is generated by illuminating the microlens array with a wide Gaussian beam.

I

A

B

x

y

x

y

A

B

FIGURE 4.6: Schematic of the experimental setup to observe az-
imuthal backflow. POL, polarizer; SLM, spatial light modulator;
MLA, micro-lens array; I, iris to spatially filter the first order of
diffraction; L1, L2, L3, and L4 are lenses. The laser beam is polar-
ized and expanded by a factor of eight by lenses L1 ( f = 50 mm) and
L2 ( f = 400 mm) to cover the spatial extent of the SLM. Inset A shows
a sample hologram to produce the desired superposition field in eq.
(4.1) with ℓ1=-1,ℓ2=-3, b = 0.6. This hologram is encoded on the plane
of the SLM using the method described in [71]. The first diffraction
order of the beam reflected from the SLM is spatially filtered by an
iris (I) in the Fourier plane of the lens L3 ( f =250mm). The filtered
beam is Fourier transformed once again by the lens L4 ( f =125mm)
onto the microlens array (ThorLabs-MLA-150-5C-M), which is placed
at the image plane of the SLM (z=0). The micro lens array (each lens
has a pitch of 150 µm and a focal length of 5.6 mm) focuses the light
onto the CMOS camera (mvBlueFOX-200wG; pixel size 6 µm). Inset
B shows the corresponding spotfield observed on the CMOS sensor.

4.2.1 Experimental Results

The displacement of the centroids of the spotfield generated by the superposition
(inset B of Fig. (4.6)) field w.r.t. that of the reference are measured in the x and y
directions. These are combined to find the directions of the local wave-vectors of the
superposition, as plotted in Fig. (4.7) (a) on top of each spot in the spotfield in inset
B of Fig. (4.6). In agreement with the theoretical two-dimensional illustrations in
Figs. (4.2)(a) and (4.4)(a), the yellow arrows here in the dark fringes correspond to
the regions of backflow. Due to imperfections in the imaging and the finite sizes of
the microlenses used to sample the wave-vectors, the yellow arrows in the regions
between the dark and bright fringes have radial components (and are not purely
azimuthal). Hence, in order to quantitatively analyze the azimuthal backflow, we
generate one-dimensional plots of the local OAM [c.f. Fig. (4.2)(b)] in Fig. ().
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FIGURE 4.7: Observation of azimuthal backflow–result and
method. (a) On every spot in inset B of Fig. (4.6), an arrow corre-
sponding to the normalized direction of the total local wave-vector

k⃗/|⃗k| is displayed. The arrows are generated by combining the x and
y displacements of the centroids of the spotfield in inset B relative
to the reference (see inset of (b)). Due to imperfections in imaging
and the finite size of the microlenses, the arrows contain both radial
and azimuthal components. While the gray arrows point in the clock-
wise direction in accordance with the negative values of ℓ1 and ℓ2, the
yellow arrows, predominantly pointing in the counter-clockwise di-
rection, indicate local regions in which backflow occurs. (b) illustrates
the method used to extract the local OAM. The center of mass (CM)
of the reference spotfield is marked in yellow. Then polar coordinates
of the ith spot (ri, φi) are found. For the ith spot in the reference (Ref),
there is a corresponding displaced (Dis) spot (in spotfield of the con-
stituent beams or the superposition) marked in red. ∆φi is found by
converting the displacements in cartesian coordinates ∆xi and ∆yi to
displacements in polar coordinates. The local OAM is then given by

ri
2π

λ fm
∆φi = rikφi

, fm is the focal length of each microlens.

The data points of the plots given in Fig. 3 are generated as follows. In the spot-
fields of the constituent beams or the superposition, the i-th spot’s centroid on the
reference spotfield is displaced by ∆xi and ∆yi in the x and y directions, respectively.
The displacements in the cartesian coordinates are transformed to displacements in
the polar coordinates (ri, φi). ri is found by calculating the distance between the
spotfield’s global center of mass and the individual spot’s centroid. φi is given by
the angle between the horizontal axis and the line joining the center of mass and
the individual spot’s centroid. See the illustration in Fig. (4.7)(b) for a schematic
representation. Following this, ∆xi and ∆yi are combined to find the angular dis-
placement of the spot ∆φi = − sin φi∆xi + cos φi∆yi. To obtain the azimuthal com-
ponent of the local wave-vector for the i-th displaced spot, the angular displacement
is scaled using the focal length fm of each microlens–kφi

= 2π
λ fm

∆φi. The local OAM

is then given by rikφi
.

The experimentally measured local OAM is plotted in Fig. (4.8) for each con-
stituent beam (red and green scatter plots) and the superposition (blue scatter plot).
The solid red, green, and blue are the corresponding theoretical predictions, and
we find the experimental data to be in good agreement with the theory. Here, the
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constituent beams carry negative angular momenta; hence, all blue data points that
correspond to positive values (above the black line) are indicative of azimuthal back-
flow.

The periodicity of the local OAM of the superposition depends on |ℓ1 − ℓ2| = ∆ℓ.
For higher ∆ℓ=3 [Fig. (4.8)(B)], the number of peaks increases and the peaks are taller
relative to the peaks in Fig. (4.8)(A) (for which ∆ℓ=2). Once ∆ℓ is increased further,
although the value of backflow increases substantially, its detection requires finer
sampling, i.e., microlenses of smaller size [60, 75].

(A)

ɸ [rad]

ɸ [rad]

rk
ɸ

superposition

beam 1

beam 2

rk
ɸ

(B)

FIGURE 4.8: Experimental observation of azimuthal backflow. In
(A) and (B), the scatter plots are data points and the solid curves are
theoretical predictions. The y-axes representing local OAM are di-
mensionless and x-axes, representing azimuthal angle φ, are in radi-
ans. The red, green, and blue scatter plots of rkφ,1 (beam 1),rkφ,2 (beam
2), and rkφ,S (superposition), respectively, are in good agreement with
their corresponding theoretical predictions. In these examples, the
constituent beams carry negative angular momenta; hence, all blue
data points that are positive correspond to azimuthal backflow. In
(A) and (B), the ratio |b| = 0.6 is the same, while ∆ℓ = 2 (ℓ1=-1, ℓ2=-3)
and ∆ℓ = 3 (ℓ1=-1, ℓ2=-4), respectively. Note that in both (A) and (B),
the minima of the blue scatter plot show slight deviations from the
theoretical prediction. This is a systematic error owing to cross-talks
between microlenses (further explored in the following subsection).
The statistical error in rkφ,S ranges from ±0.02 to ±1.3. Yet, the obser-

vation of azimuthal backflow is unaffected by these errors.
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4.2.2 Error Analysis

An estimation of statistical error in the quantitative measurement results presented
in Fig. (4.8) (A) and (B) of the main text has been performed by repeating the ex-
periment 20 times. In each of the 20 runs of the experiment, images of spotfields of
the constituent beams and their superposition are saved. The local OAM rikφi

cor-
responding to each spot in the aforementioned images is obtained by the method
explained above. In order to find the statistical error in our measurement of the local
OAM of the superposition, the azimuthal angles φi are grouped into small sectors
consisting of data from at most two microlenses. Then the corresponding rikφi

from
every run of the experiment are stacked together. The mean local OAM < rkφ >,
corresponding to each such stack is found. The standard deviation of the mean local
OAM from the sectors of angles are plotted in Fig. (4.9). The greenish-blue data
points and their associated error bars in subplots (A) and (B) are reflective of the sta-
tistical error in measuring the local OAM of the superposition for the data presented
in Fig. (4.8) (A) and (B) respectively.

As explored in the previous chapter, a possible cause of minor but systematic
deviation of the local OAM of the superposition, i.e., the data points in Fig. (4.8) (A)
and (B) from the associated theoretical plots, is the presence of cross-talks between
the microlenses. A visualization of the cross talk is given in Fig. (4.10). Fig. (4.10a) is
an experimentally obtained spot-field, one can observe bright diffraction rings sur-
rounding each spot. (4.10b) is a simulated spot field based on the parameters of the
experiment. The microlenses are assumed to be independent in this simulation for
avoiding cross-talks (diffraction rings of neighbouring microlenses do not contribute
either coherently or incoherently). Fig. (4.10c) is a simulated spot field based on the
parameters of the experiment but here, the microlenses are no longer assumed to be
independent. Namely, the diffraction rings of the microlenses are made to interfere
with its neighbors. In experimental data, these cross-talks cause the detected cen-
troids in the transition of regions of bright intensity to dark intensity to be shifted.

4.3 Concluding remarks

In this chapter, we have studied the phenomenon of azimuthal backflow both the-
oretically and experimentally, by utilizing the superposition of two beams carry-
ing helical phases and having unequal amplitudes. We show explicitly that for two
beams carrying negative OAM, the local OAM of their superposition is positive in
certain spatial regions. As the angular spectra of the constituent beams are discrete,
the backflow is directly certified from the measurement. This is advantageous com-
pared to previous demonstrations [30, 31], where the Fourier spectra of the con-
stituent beams are infinite, and hence it is required to carefully certify backflow i.e.,
to ensure that the local linear momentum does not arise from the infinite tail of the
Fourier spectrum [74]. This is because beams carrying well-defined OAM can be
experimentally generated, unlike plane waves.

It is worth reiterating that the azimuthal backflow in superpositions of LG/BG
beams is hard to observe due to complex radial dependence (c.f. subsection (4.1.4)).
For the beams that we propose, even if the azimuthal component of the local wave-
vector has a radial dependence (i.e., for z > 0), the azimuthal backflow can be ob-
served and is relatively robust.

Note that in our study, we use a scalar field description where the polarization of
light is not of consequence. However, the research can be extended to vector fields
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(B)

(A)

FIGURE 4.9: Statistical error in measuring local OAM of the super-
position. The greenish-blue data points, represent the average lo-
cal OAM of the superposition in the corresponding sector of the the
stacked spotfields, as described in the text. The standard deviation of
this mean value is plotted as an associated error bar in greenish-blue.
Subplots (A) and (B) are obtained by repeating the measurement 20
times for the parameters in Fig. (4.8) (A) and (B) of the main text
respectively. The statistical error is significantly higher in the dark
fringes (c.f. Figure (4.2) (B) of the main text), as is evident from ei-
ther subplot. This is owed to the inherent error detecting spot cen-
troids in low intensity regions. Moreover, in (A), the statistical errors
in the dark fringes are higher than those in (B). As the angular ex-
tent of a dark fringe in (A) is higher than those in (B), in the former
case, more imperfections in the wavefront are sampled with higher
resolution by the microlenses in the dark fringes. While generating
(A), two anomalous data points (due to dust on specific microlenses),

have been excluded from every run of the experiment.
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(A) (B) (C)

FIGURE 4.10: Examining cross-talks in spotfields–a possible cause
of systematic errors. The contrast and the brightness in all the spot-
fields have been adjusted to make the cross-talks visible. (A) Spot-
field obtained from the experiment. (B) Simulated spotfield assum-
ing independent microlenses (diffraction rings of neighbouring mi-
crolenses do not contribute either coherently or incoherently). (C)
Simulated spotfield where diffraction rings from neighbouring spots
interfere. Note that (A) and (C) are similar and this interference effect
causes the centroid positions to deviate slightly from theoretical pre-

dictions.

[96, 97, 63] as well. Particularly, in various recent theoretical works [98, 99, 100, 101,
102] energy backflow has been predicted in vector fields.

As explained in this chapter, azimuthal backflow is a consequence of strong
phase gradients of fields over small spatial extents. Such gradients can affect the
interactions of fields with atoms and molecules. For example, high phase gradi-
ents present in the superpositions we generate can be used to excite higher order
multipole transitions in atoms. Such higher order transitions are possible, specifi-
cally, in cold atoms with wave-functions that sample a large region in space [103].
These transitions are relevant in designing ultra-precise atomic clocks [34, 35] or in
generating atom probes for photons in low-light intensity regions [104]. A study of
the interplay between the size of the wave-function of an atom placed in a super-
position of negative angular momentum states of light and the region of backflow
(positive local OAM) in such states would be interesting. The electric field pattern
investigated by us can also be employed in manipulating small particles in optical
tweezers [105] or even to enhance chiral light–matter interactions [87, 91].

Contributions: In the work [32], the author has designed and constructed the ex-
perimental setup, performed the experiment, analysed the data, performed theoret-
ical calculations, performed simulations, and written the manuscript. Anat Daniel
has assisted in writing the manuscript. Bernard Gorzkowski has assisted in perform-
ing the experiment and analysing the data. Radek Łapkiewicz has conceptualised
the idea and supervised the project.
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Chapter 5

Optical backflow in the single
photon regime

5.1 Introduction

In this chapter, we extend our observations in Chapters 3 and 4 to the single photon
regime. We utilize the interference of a single photon wave-function with itself [106]
to observe the presence of anomalous transverse local momenta. Upon considering
transverse properties of single photon wave-functions, the theoretical description
of anomalous transverse local momenta can be shown to be equivalent to the clas-
sical case described in Chapters 3 and 4. Hence, the theoretical description is not
repeated here. The primary difference between the experiments with classical light
(previously described) and the single photon experiment (to be discussed here) is
in the preparation of a heralded single photon source via spontaneous parametric
down-conversion (SPDC). Under ideal circumstances, in the presence of photon-
number-resolving detectors, the detection of a photon in the idler arm guarantees
the detection of another photon in the signal arm.

Superoscillatory hotspots in intensity have been previously observed with single
photons [82]. However, to the best of our knowledge, anomalous transverse local
momenta or backflow haven’t yet been observed with quantum particles and partic-
ularly in the single photon regime. Our results are a step in this direction.

The primary challenge in observing the anomalous transverse local momenta in
dark fringes of the superposition of two beams in the single photon regime is the
presence of Poisson noise and dark counts. This is explored in numerical simula-
tions. Additionally, as a first step, the experimental conditions are simulated with
an attenuated laser replacing the signal arm of a heralded single photon source pre-
pared via a SPDC process by precisely gating (with the idler photons) an image
intensifier that is a part of an intensified scientific CMOS device assembly.

5.1.1 Simulations with Poisson noise

The primary difference between the experiments presented in Chapters 3 and 4 and
the one presented here is the presence of Poisson noise. Poisson noise, often referred
to as shot noise, originates from the particle-like nature of light and is caused by fluc-
tuations in photon numbers due to variations in their arrival times at the detector
[107]. The number of photons detected by a sensor within a given time interval fol-
lows a discrete Poisson probability distribution, where a mean of N photons results
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in an uncertainty of
√

N photons. Additionally, Gaussian noise or thermal noise orig-
inates from the random motion of charge carriers in the sensor material due to ther-
mal energy, even in the absence of incident photons. Thermal noise is independent
of the signal and manifests as random fluctuations in pixel values, following a Gaus-
sian distribution with zero mean (non-zero mean in the presence of a background)
[108]. A code to generate images with Poisson noise and thermal noise (based on a
Gaussian distribution) can be found in this Github link. The current version of the
code was written by Bernard Gorzkowski. Fig. (5.1) depicts some simulated spot-
fields and associated local wave-vectors. Fig. (5.2) is a plot generated by simulating
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FIGURE 5.1: Simulated Spotfield Images with Added Noise. (A)
Reference spotfield image derived by convolving an input Gaussian
field with the Airy disc of a microlens, producing intensity values
from 0 to 255. (B) Poisson noise is applied to the image in (A) by
randomizing each pixel’s value according to a Poisson distribution
with the original pixel intensity as the mean, preserving the total de-
tected photon counts. (C) Gaussian noise is superimposed on the
Poisson-noised image, simulating experimental conditions. This se-
quence replicates noise characteristics observed in real spotfield mea-
surements. (D) A spotfield generated from an input field of the form

Ψ(r, φ) = e
−r2/w2

0{eiℓ1φ + beiℓ2φ}, with w0 = 3.8 µm, ℓ1 = −3,
ℓ2 = −5, and b = 0.8. This configuration replicates experimental con-
ditions, with Poisson noise (0.7 million detected counts) and negligi-
ble Gaussian noise. Green arrows represent normalized local wave-
vectors proportional to displacements of the detected spot centroids
(red crosses) relative to a reference Gaussian spotfield. No azimuthal
backflow is visible since dark fringe centroids are undetected, and
some centroids are misidentified. (E) Same as (D) but with 7 million
total counts, leading to observable azimuthal backflow, indicated by
counterclockwise pink arrows. This setting is ideal and as we shall
see below, cannot be achieved in the current experimental setup. Note
that spots close to center in the spotfields in (E) and (D) are not Gaus-

sian owing to fast changes in phase.

spotfields with Poisson noise after fixing the total number of counts (i.e., detected

https://github.com/BernGorz/Noise-generation
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photons) over all the pixels. The mean and standard deviation of Gaussian noise,
while generating the spotfields, are set to zero. The results are qualitatively similar
to Fig. (4.8).
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FIGURE 5.2: Simulated Local OAM with Poisson Noise. This
plot closely resembles Fig. (4.8) generated from experimental data.
Spotfields were generated using input fields defined as Ψ1(r, φ) =

e
−r2/w2

0 eiℓ1φ, Ψ2(r, φ) = e
−r2/w2

0 eiℓ2φ, and Ψ(r, φ) = Ψ1(r, φ) +
bΨ2(r, φ), where w0 = 3.9 µm, ℓ1 = −4, ℓ2 = −6, and b = 0.7. A
Gaussian reference spotfield was also simulated. Poisson noise was
applied to each spotfield, with the total photon count set to 7 million,
as described in Fig. (5.1). Red, green, and blue symbols represent the
local rikφi

values extracted from the centroid detection of spotfields
corresponding to Ψ1(r, φ), Ψ2(r, φ), and Ψ(r, φ), respectively. Solid
lines denote the theoretical local OAM for each field. The simulated
data deviates from theoretical predictions due to systematic errors in
the centroid detection process. Error bars on blue points correspond
to ±6σ/

√
Ni, where σ is the standard deviation from Gaussian fits to

each spot, and Ni is the photon count per spot. This is based on a total
count of 7 million photons, which, experimentally, corresponds to 400
photons/second over 5 hours (assuming no dark counts). The simu-
lation illustrates that with minimal dark counts, the chosen photon
rate can reveal azimuthal backflow, despite momentum uncertainty

associates with spot size (refer to section 2.1).

5.2 The experiment

The experiment consists of several components, which are outlined below. These
include the preparation of a single-photon source, heralding the detection of one
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photon by detecting its counterpart using an intensified camera, and constructing
the setup to observe azimuthal backflow with single photons.

5.2.1 A source of single photons generated by SPDC

Firstly, the experiment involves preparing a source of single photons using co-linear,
Type-II spontaneous parametric down conversion (SPDC). As depicted in Fig. (5.3),
a periodically poled potassium titanyl phosphate (PPKTP) crystal, with a poling pe-
riod of 10 µm and dimensions 1 × 2 × 5 mm3, is pumped by a 405 nm continuous
wave laser at 113.00 mW output power. A lens (L1) of focal length 150 mm focuses
the appropriately polarised (using the half wave plate λ/2) pump beam onto the
crystal, whose temperature is set at 24.03◦ Celsius, via a Peltier-based crystal oven
operated by an external temperature controller (TC). After the crystal, the pump
is filtered using a long-pass filter (F1), and orthogonally polarised bi-photons gen-
erated via SPDC, are separated into two arms (signal, idler) by a polarising beam
splitter (PBS). Narrowband filters (F2) in either arm, centered on 810 nm, having
a 3 nm full width half maximum (FWHM) each, are used to select degenerate sin-
gle photons. The coincidences between the signal and idler arms are optimised by
coupling the single photons to single mode fibers (SMFs), which are, in turn, di-
rected to avalanche photo-diodes (APDs). The transistor-transistor logic (TTL) sig-
nals from these APDs are sent to a Field Programmable Gate Array (FPGA), which
is connected to a computer. The FPGA is programmed in LabVIEW (code written by
Jerzy Szuniewicz) to analyze the number of counts in each channel, as well as to de-
tect coincidences—events where the two photons arrive within 10 ns of each other.
Beam-walking techniques (with mirrors not shown in the schematic representation)
are employed to optimise the coupling into the SMFs and thereby to optimise the
coincidences by observing the LabVIEW interface.

5.2.2 Heralding one photon via the detection of its counterpart using an
intensified camera

The second part of the experiment involves building the set-up shown in Fig. (5.5)
to observe optical backflow with heralded single photons. The idler photon from the
pair produced by the SPDC process described above, is registered by an APD, which,
in turn, generates a short TTL pulse. This pulse is used to trigger our custom-built
intensified scientific CMOS (IsCMOS) camera [109] using a gating module (Photek
GM300-3N) with a mean trigger rate of 150 kHz to herald the other photon from
the pair and thereby create a heralded signal. DG in the figure stands for a delay
generator (Stanford Delay Generator DG645) and is used to manipulate the original
TTL pulse from the APD and control to set an electronic delay of 10 ns, a gap of 3.3
µs between consecutive pulses, and an effective opening time of the gating module
to 40 ns. The signal photon is then transmitted through a 45 m long spool of a sin-
gle mode fiber (SMF) to synchronize the gating time of the image intensifier and the
arrival of the signal photon by compensating for the processing time of the image
intensifier (II in Fig. (5.5)) and the DG. A relay lens (RL) is used to image the photon
flashes on the phosphor screen of the image intensifier to the sCMOS. The image in-
tensifier consists of a photo-cathode that generates a photoelectron from the incident
photon, followed by a micro-channel plate (MCP) that amplifies the photoelectron
into a burst of electrons, and lastly a scintillator, commonly referred to as a phosphor
screen, on which the burst of electrons strikes to generate a flash of photons [110];
while the diameter of each microchannel is 6 µm, the pixel size of the sCMOS sensor
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FIGURE 5.3: Experimental setup to generate single photons via
SPDC and to optimise coincidences between the singal and idler
arms. A 405 nm continuous wave laser pumps a PPKTP crystal (10
µm poling period, 1 × 2 × 5 mm3 dimensions) at 113 mW, focused by
lens L1 (150 mm focal length). The crystal temperature is maintained
at24.03◦C by a Peltier oven (TC). After filtering out the pump (F1), or-
thogonally polarized bi-photons are split by a polarizing beam split-
ter (PBS) into signal and idler arms. Degenerate photons (810 nm,
3 nm FWHM) are selected by filters (F2), coupled into single-mode
fibers (SMFs), and detected by avalanche photodiodes (APDs). Coin-
cidence detection occurs through TTL signals processed by an FPGA
interfaced with a PC. The rate of coincidence counts is 30 kHz and the

rate of single counts s 250 kHz.

is 6.5 µm. See Fig. (5.4) for a schematic representation of the intensified camera and
the image intensifier. The purpose of this setup is to achieve an accurate temporal
correlation between the camera’s operation and the arrival of the signal photon from
the experimental setup.

5.2.3 Setup to observe azimuthal backflow with heralded single photons

The experimental setup to generate a superposition of two beams and observe back-
flow in the local momentum is very similar to that described in Chapter 4 section
4.2. As shown in Fig. (5.5) the signal photons, after passing through the long spool
of SMF, pass through a quarter wave plate (λ/4) and a half wave plate (λ/2) to en-
sure linear polarization. The polariser (POL) tunes the linear polarization to ensure
that the first order diffraction pattern from the SLM has the maximum intensity. As
discussed in earlier chapters, the plane of the SLM is imaged onto the microlens ar-
ray (MLA; parameters same as those in previous chapters). The back-focal plane of
the MLA (labelled as A in Fig. (5.5)) is imaged onto the photo-cathode of the image
intensifier (labelled as B in Fig. (5.5)) with two achromatic doublets (L5 and L6).
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(B)

(A)

(C)

(D)

FIGURE 5.4: Schematic representation of the intensified sCMOS
camera and the constituents of the image intensifier. Adapted from
[110]. (A) The assembly of an intensified sCMOS camera, sensitive to
single photons. Photons striking the image intensifier generate elec-
trons, which are amplified within the device and then converted back
into light on a phosphor screen. These flashes are captured by the
sCMOS camera sensor using a bright relay lens. (B) Constituents of
the image intensifier and its operation. Photons entering through the
input window strike the photocathode, where the photoelectric ef-
fect takes place. The resulting electrons are accelerated by the gated
voltage Vin towards the microchannel plate (MCP), where they un-
dergo multiplication under the influence of the voltage VMCP. The
amplified electrons are further accelerated by the output voltage Vout

before striking the phosphor screen, which emits flashes of light that
exit through the output window. (C) When viewed from the front,
the MCP comprises approximately 9 million individual tubes, each
functioning as an electron multiplier. (D) An electron entering a sin-
gle tube repeatedly collides with its walls, generating a significant

charge avalanche.

5.2.4 Simulating the experiment with an attenuated laser

As a first step, we replace the signal photons in the experiment after the long loop
of SMF with an attenuated continuous wave laser of wavelength 780 nm. We atten-
uate the laser of power 5 mW with absorptive neutral density filters of a combined
optical density of 12. The idler photons from the source are used to open the gat-
ing module connected to the image intensifier, as described above. After acquiring
camera frames for 5 minutes, a total number of approximately 0.7 million events
was registered. In this case, due to the short time of acquisition, the dark counts
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FIGURE 5.5: Experimental setup to observe quantum optical back-
flow with heralded single photons. The gating module (GM), image
intensifier (II), relay lens (RL), and scientific CMOS (sCMOS) device
comprise the intensified sCMOS camera (marked by a box). The idler
photon from the Type-II collinear SPDC process described in Fig. (5.5)
is used to synchronise the opening time of the gating module (GM)
connected to the image intensifier (II) with the arrival of the signal
photon from the experiment. The signal photons from the aforemen-
tioned SPDC process pass through a long spool of single mode fiber
(SMF), followed by quarter wave plate (λ/4), a half wave plate (λ/2)
and a polarizer (POL). They are spatially filtered by the lens L2 ( f =75
mm), a pinhole (PH) and lens L3 ( f =300 mm) and imaged onto the
spatial light modulator (SLM). A hologram (not shown here) to gen-
erate the superposition of two beams, each carrying negative OAM,
is applied on the SLM (see Chapter 4 for further details). The first
diffraction order in the Fourier plane of lens L4 ( f =150 mm) is iso-
lated by an iris (I). The spatially filtered beam is then Fourier trans-
formed again by lens L5 ( f =150 mm) onto the microlens array (MLA).
The back-focal plane of the MLA is imaged onto the phtocathode of
the II via achromatic doublets L5 ( f =50 mm) and L6 ( f =200 mm). M1,

M2, and M3 are mirrors to redirect the beam path.

were negligible. The results are shown in Fig. (5.6). As explained in the figure cap-
tion, the counterclockwise motion of the pink arrows in the second subplot of Fig.
(5.6) represents anomalous directions of local wave-vectors in the dark fringes of a
superposition of two beams carrying negative OAM.

5.2.5 Difficulties in realising the experiment with heralded single pho-
tons and possible solutions

There are several challenges associated with realizing the experiment with heralded
single photons with the existing setup. They are listed below along with possible
solutions that are currently being implemented.

1. Humidity accumulation on the sCMOS sensor, when it is cooled, to reduce
dark counts, causes speckle-like spots in a spotfield (see Fig. (5.7)). Thus, in
order to obtain reasonable results, the cooling process had to be stopped and
the sensor temperature was maintained at 26.5◦C.

2. The arrival of signal photons onto the camera sensor is governed by the open-
ing time (40 ns) of the gate of the image intensifier by pulses from the APD
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FIGURE 5.6: Azimuthal backflow observed with an attenuated laser
in the single photon counting regime. The arrows on top of each
detected spot (centroids marked with red crosses) represent the di-
rections of normalized local wave-vectors (proportional to displace-
ments of the corresponding spot centroids w.r.t. the reference spots).
The axes are marked in pixels. The size of each pixel is 6.5×6.5 µm2.
(A) The normalized local wave-vectors in green of a beam with Gaus-
sian amplitude and azimuthal phase of order ℓ=-3. A general clock-
wise orientation of the arrows is observed, thus confirming the pres-
ence of a beam carrying a single OAM. A similar plot (not shown
here) of normalized local wave-vectors on top of the spotfield can be
observed for a beam with Gaussian amplitude and azimuthal phase
of order ℓ=-5. (B) The normalized local wave-vectors of the superpo-
sition of two beams, each with the same Gaussian amplitude profile,
an amplitude ratio of 0.7, and azimuthal phases of order ℓ=-3 and
ℓ=-5 respectively. The counterclockwise arrows in pink, in the dark
fringes, are representative of azimuthal backflow. For higher radii,
the directions of the arrows are often random, owing to decreasing

intensity of the spots along the Gaussian tails.
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that receives the idler photons. In addition, a dead time of 3.3 µs is set be-
tween the pulses to reduce the background. These conditions, along with the
long loop of SMF, and the properties of the chosen non-linear crystal, cause the
total number of ’true’ (heralded) signal photons detected per second to be as
low as 400.

Over a 24-hour period, with any mask applied to the SLM, an average of 9
million events were recorded by the camera. In contrast, when the signal pho-
tons were blocked during the same 24-hour timeframe, an average of 7 million
dark counts were detected. This indicates that, under the given experimental
conditions, the signal-to-noise ratio is quite low.

3. The length of the PPKTP crystal (5 mm) and the focal lengths of the coupling
lenses (8 mm), are suboptimal and ratio of coincidences to single counts is
difficult to improve. For a discussion on the optimization of the pump beam
focusing and crystal properties, the reader is directed to [111].

The aforementioned issues cause the centroids of the spotfields generated from her-
alded signal photons to be difficult to discern beyond the Poisson noise limit even
when the photons are collected for a duration of 24 hours. See Fig. (5.8) for a sample
image of the spotfield generated from the signal photons. The detected centroids are
marked with red crosses in Fig. (5.9). Additionally, see Fig. (5.10) for a plot of local
wave-vectors generated from a mask with azimuthal phase on the SLM, following
the acquisition of heralded signal photons. It is important to note that most of the
arrows are scattered. See Fig. (5.11) for a sample of the dark counts/background.

In order to observe backflow in transverse local momentum with single photons,
the ratio of coincidences to singles from the SPDC source should be improved by
utilizing a longer PPKTP crystal.

Additionally, the detection mechanism can be improved by utilising a Timepix
camera (TPX3CAM from Amsterdam Scientific Instruments) [112, 113, 114, 115].
These cameras were designed, in an initiative associated with CERN, to capture
and time-stamp individual quantum events, such as a photon detection, with high
temporal resolution (down to a couple of nanoseconds) as well as good spatial res-
olution (256×256 pixels; 55 µm pixel pitch). TTL pulses from the APD receiving the
idler photon can be directly connected to the camera and can be used as time-stamps
for the arrival of the signal photon. The image intensifier’s gate can be externally
opened, with a large duty cycle, under these circumstances. The use of the Timepix
camera in the setup can reduce dark counts and improve the signal-to-noise ratio by
at least a factor of 7, since the problems of the dead time of the image intensifier (3.3
µs) and the long coincidence window (40 ns compared to the Timepix’s ~3 ns), can
be bypassed.

5.3 Concluding remarks

This chapter outlines key advancements toward the observation of anomalous trans-
verse local momenta in single-photon wave-functions. A simulation was conducted
to analyze Poisson noise effects in the low-light regime. A heralded single-photon
source was developed, and an experimental setup for observing quantum optical
backflow was implemented, incorporating a 4 f imaging system between the mi-
crolens array’s back-focal plane and the image intensifier’s photo-cathode. These
efforts culminated in the observation of azimuthal backflow in the single-photon
regime. Furthermore, local momenta consistent with a helical wavefront generated



58 Chapter 5. Optical backflow in the single photon regime

FIGURE 5.7: Speckle-like spots owing to humidity that condenses
on the sCMOS sensor, on account of cooling. In order to avoid this,
the sensor temperature was maintained at 26.5◦C, leading to an in-

crease in thermal noise.

from heralded single photons were successfully observed. Challenges encountered
during the observation of azimuthal backflow using the heralded single-photon
source were identified, and mitigation strategies were discussed.

Once understood, the high dimensionality of the orbital angular momentum
state was harnessed in quantum communication tasks. See [116] and references
therein for an overview. Similarly, the counterintuitive observation of azimuthal
backflow in single photons may be extended to a system of entangled photons to
investigate the combination of backflow and nonlocal correlations.

Contributions: The author has designed the experimental setup, constructed the
experimental setup, performed the experiment, performed simulations, and ana-
lyzed the preliminary data. Jakub Lawandowski has assisted in constructing the ex-
perimental setup, the SPDC source, in particular. Bernard Gorzkowski has assisted
in analyzing the preliminary data and in performing simulations. Radek Łapkiewicz
has supervised the project.

After this chapter (and most of the dissertation) was written and long after its
contents were presented at several scientific conferences [SQL 23, VCQ 23, Complex
Waves 24, MIRAQLS 24, SQL 24], we recently learned of an almost identical work
(slightly different detection mechanism) by Zhang et al [117].

https://www.we-heraeus-stiftung.de/fileadmin/Redaktion/PDF/Seminare/2023/790_Booklet.pdf
https://qt.eu/events/vcq-summer-school-2023-hybrid-quantum-systems
https://complexmedia2024.sciencesconf.org/
https://complexmedia2024.sciencesconf.org/
https://miraqls.fuw.edu.pl/wp-content/uploads/2024/06/BOA_MIRAQLS_25_6_compressed.pdf
https://sql24.hu-berlin.de/wp-content/uploads/SQL24_program_final.pdf
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FIGURE 5.8: Sample photon spotfield from a Gaussian mask on the
SLM and 24 hours of photon acquisition. The axes are represented in
pixels. The scale bar shows the approximate separation between the
centroids of two adjacent spots. The image is generated by adding
a count to the pixel of a matrix of size 2048×2048 pixels where the
Gaussian spot of the detected photon was centered on the camera. A
halo, predominantly from dark counts, is seen towards the edge of
the image. A diagonal pattern of bright and dark fringes are seen on

the spots and can be fixed with some changes in the alignment.
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FIGURE 5.9: Detected spot centroids for the spotfield in Fig. (5.8).
As discussed in section 2.1.3, owing to the low number of signal
photons, several spots centroids are not identified, while others are
misidentified. As the reference spot-centroids are misidentified, dis-
placements of field spot-centroids w.r.t. the reference, i.e., measure-

ment of the local wave-vector, are also erroneous.
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FIGURE 5.10: Detected spot centroids and local wave-vectors using
heralded single photons. A mask with Gaussian amplitude and az-
imuthal phase (ℓ = −3) was applied on the SLM. A spotfield is gen-
erated after 24 hours of collection of the heralded signal photons. It is
compared to a reference spotfield (similar to the one presented in Fig.
(5.8)) and the normalised local wave-vectors are obtained (plotted in
green). The detected spot centroids are marked with red crosses. The
axes are represented in pixels. The separation between between two
adjacent spots is 1100 µm. The region marked in red, shows arrows
pointing in the expected direction. However, owing to the Poisson

noise and dark counts, most of the spot centroids are not detected.
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FIGURE 5.11: Sample of dark counts/ background with the signal
photons blocked, collected for 24 hours. A dim halo that also ap-

pears in Fig. (5.8) is seen.
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Chapter 6

Quantum backflow with electrons:
a proposal

6.1 Introduction and motivation

In this chapter, we present a proposal to observe backflow of electrons within a
transmission electron microscope (TEM). To date, there have been no experimen-
tal demonstrations of counter-propagation or probability backflow in massive quan-
tum particles. The experimental realization of the proposed method is currently
underway. This proposal aims to detect a counter-intuitive shift in intensity in the
transverse direction between two consecutive planes along the electron beam’s prop-
agation axis (see Section 6.3).

To better contextualize this proposal, it is necessary to discuss the analogy be-
tween light optics and electron optics, which serves as a foundation for this chap-
ter [118, 119]. The principles governing electron optics are conceptually analogous
to those of light optics, as both systems exhibit wave-like behavior, albeit arising
from different underlying mechanisms. This analogy is rooted in the wave-particle
duality of electrons, as described by quantum mechanics, and the wave nature of
light, as described by classical optics. When electrons are isolated from the environ-
ment, they exhibit wave-like properties characterized by the de Broglie wavelength.
Analogous to lenses in light optics, electron optics in modern TEMs utilize magnetic
lenses to bend or focus electron beams. As an electron traveling parallel to the op-
tical axis enters a magnetic lens, the Lorentz force induces a helical trajectory while
leaving the longitudinal momentum component largely unaffected. In advanced
TEMs, the rotational motion caused by one lens is compensated for by adjustments
in other lenses.

Under the paraxial approximation, akin to geometric optics, the effects of lenses
on electrons traveling near the optical axis can be simplified. However, spherical
aberrations arise from non-paraxial rays and require separate consideration. Ad-
ditionally, diffraction phenomena such as Fresnel and Fraunhofer diffraction apply
equally to both light and electrons.

For the purposes of this proposal, we assume that the electron beam emitted by
the TEM source (see Section 6.2) and accelerated by a high voltage is approximately
monochromatic or mono-energetic. This quasi-monochromatic beam is further as-
sumed to remain close to the optical axis, which defines the propagation direction,
as it passes through the TEM. During this process, the beam interacts with the sam-
ple and is influenced by the system’s lenses. Within the paraxial approximation, the
propagation along the optical axis can be interpreted as equivalent to the progres-
sion of time. Since TEM lenses minimally affect longitudinal motion, we can assume
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(even beyond the paraxial approximation) that the transverse and longitudinal dy-
namics of the electrons are governed by separable wave-functions. Consequently,
the electrons possess an effective mass and a de Broglie wavelength in the trans-
verse direction, which differ from those along the propagation axis.

This proposal predicts that implementing the experimental setup will reveal a
counter-intuitive shift in the transverse intensity distribution of the electrons be-
tween two planes perpendicular to the propagation direction (see Subsection 6.3.1).
If realized, this shift would constitute an observation of quantum backflow with a
massive particle in its purest form, as introduced in Chapter 1. A complete anal-
ysis of the energy spread among the electrons in the beam and a relaxation of the
paraxial approximation would add complexity to the problem, but the essence of
the phenomenon would remain intact.

6.2 A very brief introduction to the TEM and its operation

A TEM can be broadly separated into three main components: (1) the illumination
system, which includes an electron gun and a condenser system that shapes the elec-
tron beam for the sample; (2) the objective lens region, encompassing the sample and
its holder; and (3) the imaging system [120]. A brief description of these components
follows.

The electron beam is generated by extracting electrons from the source and accel-
erating them through an electric field to a specific energy level, determined by the
operating voltage of the microscope. Higher acceleration voltages yield electrons
with greater energy, shorter effective wavelengths, and higher mean free paths. For
experimentally realizing the proposal discussed in this chapter, a FEI Titan micro-
scope will operate at a voltage between 100-200 kV; the voltage may be chosen by
taking the resolution achievable and the de Broglie wavelength suitable for observ-
ing backflow (given the properties of the double slits, see section 6.3 below) into
consideration. The condenser system, comprising optical elements such as lenses,
apertures, and scan coils, enables the beam to be shaped into a parallel or conver-
gent form before it interacts with the sample.

The sample is situated between the illumination and imaging systems. It is
mounted on a sample holder, which facilitates its transfer and precise positioning
within the microscope via a support stage. These stages typically allow for three-
dimensional positioning and tilting of the sample along one axis to optimize its ori-
entation during imaging.

The imaging system encompasses all optical components located between the
sample and the TEM’s phosphorescent screen. This system generally includes in-
termediate and projector lenses, as well as apertures such as the objective aperture
and the selected area diffraction (SAD) aperture, which can be inserted as needed.
In some cases, an image aberration corrector may also be incorporated to minimize
spherical aberrations, thereby enhancing imaging resolution. The imaging system
operates in two primary modes: imaging mode and diffraction mode.

In the imaging mode, the lenses are configured to project the image plane of the
objective lens, and an image of the sample appears on the screen. In the diffraction
mode, the lenses are configured to project the back focal plane of the objective lens,
and the Fourier transform of the sample appears on the screen. See Fig. (6.1) below
for a schematic representation of these two modes. To realize the proposal discussed
in this chapter, we plan to operate the TEM in the diffraction mode.
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FIGURE 6.1: The two modes of operation of the imaging system in
a TEM. The illumination system is not shown here. The two basic
operations of the TEM imaging system involve (A) diffraction mode:
projecting the diffraction pattern (DP) onto the viewing screen and
(B) image mode: projecting the image onto the screen. In each case
the intermediate lens selects either the back focal plane (BFP) (A) or
the image plane (B) of the objective lens as its object. The imaging
systems shown here are highly simplified. A basic principle of TEM
operation is that when the DP (i.e., the BFP of the objective lens) is
to be observed using parallel illumination, a selected-area-diffraction
(SAD) aperture is inserted into the image plane of the objective lens to
acquire the diffraction pattern of a specific area. See [120] for further

information on the figure.

6.3 Backflow with electrons in a TEM

In order to avoid large electron optical aberrations in a TEM, the beam must be con-
fined to a very narrow domain in the vicinity of the optical axis. Thus, as mentioned
earlier, paraxial wave optics is assumed. Under this assumption, a sample of two
slits with different widths can be used for the demonstration of a reasonable per-
centage of backflow (higher than that achievable with a single slit, i.e., the scenario
represented in Fig (1.4)), as discussed below.

6.3.1 Theoretical description under the paraxial approximation

The phenomena of diffraction, interference and hence backflow in paraxial electron
waves [118, 119], can be described using the mathematical tools introduced in sec-
tion (1.2.1). Using a double slit in the front focal plane of the objective leads to a
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higher percentage of backflow compared to a single slit. See Fig. (6.2) for a simpli-
fied schematic representation of the setup. The normalised amplitude transmittance
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FIGURE 6.2: A toy model of the setup to observe backflow with elec-
trons. A simple model of the TEM setup to observe backflow using
two slits of widths ∆1 and ∆2, centered around positive x1 and x2 re-
spectively, in the front-focal plane of the objective lens (represented
as a convex lens in blue; in reality this is a complex system of several
electric and magnetic fields). z = 0 at the back-focal plane of the ob-
jective lens. The relative amplitude transmittance of the second slit
to the first–tan γ–is not depicted in the figure. After the back-focal
plane of the intensity of the electron beam should propagate towards
the negative x. However, backflow occurs when the intensity of the
superposition moves back to the positive x between planes z1 and z1.
To access the z1 and z2 planes, in the TEM, lenses used to image the
back-focal plane of the objective can be de-focused (a standard pro-
cedure in a TEM) and the appropriate image magnifications can be
taken into account while obtaining the probability of backflow. All

angles are small such that the paraxial approximation is valid.

of the double slit is given as follows.

tA(x′) =
cos γ√

∆1

rect

(

x′ − x1

∆1

)

+
sin γ√

∆2

rect

(

x′ − x2

∆2

)

(6.1)

Here, ∆1 and ∆2 are the widths and x1 and x2 are centres of the slits on the positive
conjugate position space (x′) respectively. Additionally, tan γ is the relative ampli-
tude ratio between the slits. This can be incorporated by depositing thin films on the
slits while preparing them (typically using electron beam lithography). As seen in
Fig. (6.2), using principles of geometric optics [121, 122], the rays of electrons, after
passing through the slits in the front focal plane of the objective lens (focal length f ),
following the deflection by the objective lens, should continue to travel along the left
half of the x axis (after the back focal plane of the objective). Thus, one may natu-
rally assume that by measuring the counts/ intensity along x − z planes by scanning
the camera in the x and z directions, the counts on the right half-planes gradually
decrease along the direction of propagation. However, as explained in Chapter 1,
owing to the wave nature of electrons, the counter-intuitive phenomenon of back-
flow may be observed, if a right set of physical parameters are chosen. Note that in
a TEM, the detector doesn’t move. Nonetheless, various planes, along the directions
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of propagation can be imaged onto the detector by de-focusing or changing the field
strengths of lenses in the imaging system.

One can argue that the growth in counts across any x > L (x = L is parallel to
the z axis) between two transverse x − z planes, can be considered as backflow as
long as the electrons are prepared with positive momenta, i.e., the slits are placed
entirely on the positive half of the x′ − z plane.

From the amplitude transmittance in eqn. (6.1) it can be shown using Fraun-
hofer and Fresnel integrals that the probability of finding the electron in x > L at
propagation distance z is given by
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where, the relevant dimensionless parameters are:

α =
k∆2L

f
; β =

2(−x2)

∆2
; z̃ =

k∆2
2z

2 f 2
; ν =

∆1

∆2
; µ =

x1

x2
.

Here, k = 2π/λ is the wavenumber and λ is the de Broglie wavelength of the elec-
trons due to the acceleration voltage. Note that it is assumed that the slits are located
entirely in positive x′ and that the spacing between their centers is more than the
sums of their half widths, such that the slits are distinct. Additionally, without loss
of any generality, it is assumed that ∆1 < ∆2. The angle γ is in the first quadrant.
Mathematically, these assumptions may be represented as follows.

0 < ν < 1; β < 0; |β| > max{ 1 + ν

|1 − µ| ,
ν

µ
, 1}; 0 f γ f π

2

Using these assumptions, sets of parameters maximising the percentage of backflow
can be found (see Fig. (6.3) for an example) by means of a random search followed
by optimisation. In order to further visualise the backward motion of the normalised
field intensity between two z planes after the back-focal plane of the objective lens,
let us represent it in terms of the aforementioned dimensionless parameters.

|A(x, z)|2 = ρ1(x, z) + ρ2(x, z) + ρ12(x, z), (6.3)
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where
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−ν(1−|ũ|)
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L
− 1 + µ

2
βz̃ − z̃ũ}]
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For the parameters in the titles of Fig. (6.3), given that λ = 3 pm; f = 2 mm, and
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FIGURE 6.3: A set of parameters leading to backflow. (A) Probability
of entering x > L grows by 1.15 % between z̃1 and z̃2. The values of
the corresponding dimensionless parameters are mentioned in the ti-
tle of the plot. Appropriate physical parameters are given in the main
text. Amongst these, a choice of L is 10.66 nm.(B) Intensity crossing
x > L = 10.66 nm grows by about 1.17 % between propagation planes

z̃1 and z̃2. x and L are in the same units [nm].

radius of aperture of the objective lens: 25 µm, we can make the following choice for
the corresponding physical parameters.

1. Slit widths: ∆1 = 60 nm; ∆2 = 195.44 nm

2. slit centers: x1 = 30.08 nm; x2 = 227.88 nm; |x2 − x1| = 197.8 nm j 25µm

3. zero of the x-axis, L = 10.66 nm

4. z1 = 3.4µm; z2 = 104.1µm

5. tan γ = 0.431
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The relative amplitude ratio tan γ ̸= 1 can be challenging to implement while prepar-
ing slit samples using electron beam lithography or other methods. Additionally,
even if such a sample can be prepared, the effect of charging (accumulation of ex-
cess charge from the electron beam illumination in non-conducting materials) due
to the deposition thicknesses on the slits may lead to further distortions. Hence, an-
other example of experiment-friendly physical parameters leading to backflow after
setting tan γ = 1 is shown in Fig (6.4) below. It is evident from subplots (B) in Figs.
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FIGURE 6.4: A set of parameters leading to backflow assuming no
relative amplitude ratio between the slits. (A) Probability of enter-
ing x > L grows by 0.88 % between z̃1 and z̃2. The values of the corre-
sponding dimensionless parameters are mentioned in the title of the
plot. Once again, λ = 3 pm and f = 2 mm. By choosing ∆1 = 60
nm, we have ∆2 = 389.34 nm, x1 = 30.002 nm, x2 = 257.003 nm,
and L = 6.885 nm. The planes z1 and z2 between which the afore-
mentioned percentage of backflow occurs are 24.26 µm and 66.60 µm
respectively. (B) Intensity crossing x > L = 6.885 nm grows by about
0.88 % between propagation planes z̃1 and z̃2. x and L are in the same

units [nm].

(6.3) and (6.4) that while the center of mass of the intensity distribution moves to the
left between the planes z̃1 and z̃2 as expected, the area under the curve to the right
of x = L, grows between the planes z̃1 and z̃2. This notion of backflow can also be
explained in terms of percentiles of the probability density, according to Dr. Arseni
Goussev. Keeping in mind wave-functions that are solutions of the one dimensional
Schrödinger equation, discussed in Chapter 1, let us define C-percentile M(C, t) of
the probability density |Ψ(x, t)|2 as follows.

∫ M(C,t)

−∞

dx|Ψ(x, t)|2 = C. (6.6)

Here, 0 f C f 1. If the particle in question has positive momentum, using the
continuity equation, it can be shown that the occurrence of backflow is equivalent to
the existence of C, t1, t2 with t1 < t2, such that the following inequality holds true.

M(C, t2) < M(C, t1) (6.7)

This essentially means that backflow occurs when the particle, moving to the right,
can be found in a comparitively leftward region with the same probability at a later
time. This insight can also be translated to our problem using the paraxial approxi-
mation and the equivalence between t and z̃.
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6.4 Images of a double slit from a TEM in diffraction mode

FIGURE 6.5: Images collected in diffraction mode from a TEM us-
ing a double slit sample. Courtesy: Prof. Thomas Juffmann. (Top
left) Image of the slits (obtained in imaging mode), placed in the front
focal plane of the objective along the center of the optic axis. The scale
bar indicates that the slit separation is ∼2.5 µm, the width of each slit
is ∼0.5 µm, and its length is ∼15 µm. (Top right, bottom left and
bottom right) Diffraction pattern of the slits at different z planes, ob-
tained by offsetting the sample stage and changing the field strength
of the imaging lenses. The top right panel indicates the diffraction
pattern when the sample is placed at the eucentric height (see main
text). The other planes are determined with respect to this plane. The
rotations of the diffraction pattern between the top right panel and
the other two panels are due helical trajectories of the electrons set
by the lenses. The scale-bar in all three plots indicates a distance in

frequency space.

The operation of the TEM (FEI Technai F20 at 200 kV) with a double slit sample
(equal widths and no amplitude ratio), placed along the center of the optical axis
(hence there is no restriction of positivity on the momentum distribution), was tested
by Prof. Thomas Juffmann’s group at the Sternwarte in Vienna. See Fig. (6.5) for
images of the preliminary results. In the top left panel, an image of the slits is shown.
From the top right, bottom left, and bottom right panels, we see diffraction patterns
(obtained in the diffraction mode) of the double slit, at different z planes. The top
left panel shows the diffraction pattern at the eucentric height. When the sample
holder is placed at this height, then the objective lens strength is always the same
when the image on the screen is in focus [120]. All other planes in the imaging
system are defined with respect to the eucentric plane. Rotations of the diffraction
pattern at different z planes are due to helical trajectories of electrons set by the
lenses. Furthermore, analyses (ongoing) of the preliminary results can be found in
this Google collaboration notebook. While the diffraction patterns are as expected

https://colab.research.google.com/drive/1lCwt9uNO5kipzT17A3YLfBu-iJ8_69-Y?usp=sharing
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from a double slit, in order to observe backflow, a double slit sample with suitable
experimental parameters must be prepared and rotations due to the imaging system
should be corrected in post-processing. Instead of preparing a sample of slits with
different widths, the effect of unequal widths may also be obtained by placing a
movable mask in the intermediate image plane of the objective lens (marked in Fig.
(6.1)) [123].

6.5 Concluding remarks

An experimental proposal to observe backflow with electrons in a TEM, is presented
in this chapter. A set of experimentally realizable parameters is also presented. As
argued in the introductory section of this chapter and in Chapter 1, while the previ-
ous observations of backflow were based on anomalous transverse local momenta,
i.e., optical analogues of backflow in quantum mechanics, an experimental realiza-
tion of the proposal discussed here would be a true demonstration of the counter-
intuitive flow of probability density for a massive particle, i.e., of the phenomenon
of backflow in its original sense. The effect of backflow for a sample of double slits
is around 1% and cannot be much higher as the bound of 4% [15] can be achieved
only by specific backflow-maximising states. A preliminary data set from operating
a TEM in the diffraction mode using a double slit sample is also presented in this
chapter.

In order to certify the observation of such a small effect, spherical aberrations,
image shifts (due to defocusing; can be measured with sub-pixel accuracy and pixel
size is ∼ 50 µm), image rotations, the precision of translations (in transverse and
longitudinal directions) and rotations of the sample holder, must be taken into ac-
count and the theoretical description must be modified accordingly. Although the
rate of electrons from the source in a TEM (~107 − 1010 electrons per second) and the
quantum efficiency of the detectors are typically better than those discussed for sin-
gle photons in Chapter 5, shot noise or Poisson noise that occurs due to fluctuations
in the detection process, should also be taken into account for a complete analysis.

Contributions: The author contributed to conceptualizing the idea, designing
the setup, performing simulations, and conducting theoretical calculations. Thomas
Juffmann contributed to conceptualizing the idea, designing the setup, and super-
vising the collection of preliminary data. Arseni Goussev and Tomasz Paterek con-
tributed to developing the theoretical framework. Thomas Juffmann and Radek Lap-
kiewicz supervised the project.
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Chapter 7

Conclusion and outlook

7.1 Dissertation summary

In summary, this dissertation explores the concept of anomalous "local" momentum
arising in the superposition of states with well-defined momenta, a phenomenon
recognized in quantum mechanics since the 1960s. Such states, which exhibit anoma-
lous local behaviour or backflow, have more recently been linked to the concept of
superoscillations in optics, as developed by Michael Berry and collaborators. By in-
vestigating the occurrence of superoscillatory local wave-vectors or backflow within
the straightforward interference of two unequal beams, this work uncovers the crit-
ical role of the interference angle and amplitude ratio. This simplification not only
demystifies the phenomenon, but also lays the groundwork for its broader accessi-
bility and potential applications in future research.

Chapter 2 introduces the one-shot measurement of transverse local momentum
using a Shack-Hartmann wavefront sensor (SHWFS). It examines potential errors
in the algorithm employed to determine the spot centroids from the spotfield cap-
tured on the SHWFS sensor. The chapter also explores the distinction between local
momentum and the Poynting vector, utilising the insensitivity of the SHWFS to po-
larization: the SHWFS measures the transverse components of phase changes, corre-
sponding to transverse local momentum, rather than the spin-dependent Poynting
momentum.

Chapter 3 details the experimental observation of an anomalous local transverse
component of the wave-vector generated by the interference of two wide Gaussian
beams with unequal amplitudes using a SHWFS. This serves as an optical analogue
of the backflow phenomenon previously discussed in quantum mechanics (Chap-
ter 1). While backflow has traditionally been regarded as exotic and challenging
to observe, this work demonstrates that it is, in fact, difficult to avoid in practice.
Experimental constraints, such as achieving perfectly equal beam intensities, make
backflow a near-inevitable feature of such systems. Moreover, this study provides
control over key parameters—amplitude ratio and interference angle—while elu-
cidating their physical relevance, thereby offering a deeper understanding of the
effect.

Chapter 4 builds on the observations from Chapter 3, extending the analysis to
the superposition of two beams with helical phases and unequal amplitudes. In
this case, "azimuthal backflow," or an anomalous azimuthal component of the local
wave-vector scaled by the radius, is observed within the dark fringes, once again us-
ing the two-dimensional one-shot measurement offered by the SHWFS. Since the an-
gular spectra of the constituent beams are discrete, backflow can be directly verified
through measurement. This approach offers a significant advantage over previous



74 Chapter 7. Conclusion and outlook

demonstrations, where the Fourier spectra of the constituent beams were infinite,
necessitating careful validation to ensure that the observed local linear momentum
was not a result of the infinite tails of the Fourier spectrum. This is because beams
with well-defined orbital angular momentum (OAM) can be experimentally gener-
ated, whereas plane waves cannot.

Chapter 5 examines an experiment aimed at extending the observation of az-
imuthal backflow to the single-photon regime. The detection of the transverse lo-
cal wave-vector is accomplished using the SHWFS technique described earlier, now
combined with an intensified camera to achieve enhanced sensitivity at low photon
levels. To obtain reliable results with heralded single photons, improvements are
needed in the efficiency of the SPDC source, as well as the replacement of the current
camera with one that provides higher temporal resolution and a shorter coincidence
window. Despite these challenges, this represents the first attempt to observe coun-
terintuitive transverse local momenta with single quantum particles, aligning with
how the phenomenon was originally proposed.

Chapter 6 builds on the concept of interfering two beams with unequal ampli-
tudes, introduced earlier in the dissertation, to propose an experiment aimed at ob-
serving the counter-intuitive propagation of single electrons in a transmission elec-
tron microscope (TEM). This represents the first-ever attempt to experimentally ver-
ify quantum backflow, with the experimental work currently underway in the group
of Prof. Thomas Juffmann.

7.2 Outlook

7.2.1 On the distinction between canonical momentum and Poynting mo-
mentum

In Chapter 2, we demonstrated that the local momentum (canonical momentum)
of circularly polarized Laguerre-Gauss beams, as measured by a SHWFS, exhibits
distinct characteristics compared to the Poynting momentum. The SHWFS, being
insensitive to polarization components, measures the local or canonical momentum
density. Another approach for distinguishing between canonical and Poynting mo-
mentum densities involves examining the radially dependent rotation of truncated
paraxial vortex beams along the propagation direction [67]. Additionally, the con-
cept of "supermomentum" near a vortex core emerges due to polarization-dependent
nonparaxial correction terms in the canonical momentum density, rather than from
the Poynting vector [67].

This work highlights the theoretical utility of canonical momentum density in
understanding the free-space evolution of monochromatic light fields. Future stud-
ies could extend this framework to encompass more complex scenarios, such as
polychromatic optical fields or structured light in anisotropic media. Exploring these
directions would deepen our understanding of light-matter interactions in diverse
optical systems.

7.2.2 On the observations of optical backflow with classical light

Our experiments, detailed in Chapters 3 and 4, demonstrate the presence of anoma-
lous transverse local momentum in the dark fringes of the interference of two beams
and highlight that such anomalies arise due to high phase gradients over a certain
spatial extent. These gradients significantly influence the interaction of electromag-
netic fields with atoms and molecules, facilitating the excitation of higher-order
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multipole transitions—a fundamental process in the development of ultra-precise
atomic clocks [34, 35] and in the detection of photons in the dark regions of beams
with complex spatial structures [104].

Our findings open avenues for designing electromagnetic fields with non-conserv-
ative forces, which can exhibit locally retrograde radiation pressure and enable "tractor-
beam"-like behavior, drawing small particles toward the light source [33, 102, 124].
Another compelling application lies in light-matter interactions with chiral molecules
mediated by optical fields exhibiting azimuthal backflow. While small chiral molecules
usually respond to the spin (circular polarization) of light rather than the helical
wavefronts associated with extrinsic orbital angular momentum, this behavior could
shift in regions of tight focusing, at shorter wavelengths, or where the wavefront
changes rapidly—such as in backflow regions [87]. For instance, ’superchiral’ light
can be produced by creating a standing wave from two counter-propagating circu-
larly polarized beams with opposite handedness and slightly different amplitudes
[91]. Similarly, our experiments demonstrate that the simple superposition of two
beams with slightly different amplitudes provides an intuitive and effective method
for generating rapid phase changes.

7.2.3 On the attempt to observe optical backflow with single photons

The experiment presented in Chapter 5 demonstrates the feasibility of using a Shack-
Hartmann wavefront sensor (SHWFS)-based technique to detect anomalous trans-
verse local momenta in single-photon wave-functions. Beyond this specific appli-
cation, the setup—incorporating a microlens array imaged onto an intensified cam-
era—has broader potential for investigating spatial properties of biphotons, as high-
lighted in prior studies [125]. However, the spatial and spatial frequency resolutions
of the system remain constrained by the microlens pitch size and the aperture’s point
spread function, respectively.

Despite these limitations, the integration of a microlens array with an imaging
camera is versatile, particularly in its ability to simultaneously capture positional
and angular information. This capability aligns with its application in fast 3D imag-
ing techniques, such as plenoptic imaging [126]. Furthermore, a fundamentally dif-
ferent yet complementary approach to plenoptic imaging—known as "correlation
plenoptic imaging"—offers intriguing prospects. This method, suitable for chaotic
light and SPDC-generated biphotons, involves spatial and directional measurements
on separate sensors, with the data later combined through correlation analysis [127].

Expanding the application of the discussed setup, its capacity to measure the
wavefront as a function of propagation direction and transverse position opens av-
enues for studying photon trajectories in exotic optical fields, such as those exhibit-
ing azimuthal backflow [53]. On the quantum front, this setup holds promise for
exploring enhanced backflow effects in photon number states, which offer increased
phase sensitivity [128]. These advancements could pave the way for future explo-
rations in both fundamental physics and applied imaging technologies.

7.2.4 On the experimental proposal to observe quantum backflow in a
TEM

A significant portion of contemporary research in quantum theory centers on lever-
aging quantum effects for communication and computation. However, quantum
systems were originally appreciated for their benefits in mechanical processes, with
the tunneling effect and its applications, such as in scanning tunneling microscopy,
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serving as notable examples. The tunneling effect allows a quantum particle to ap-
pear in regions that are classically inaccessible due to energy constraints. Similarly,
quantum backflow, a phenomenon where a free quantum particle with positive mo-
mentum can later reappear in a region it had previously vacated, holds potential for
mechanical applications.

In this context, Trillo et al. have theoretically demonstrated the superiority of
quantum mechanical systems over classical counterparts in a practical transporta-
tion task involving a projectile, connecting the scenario to quantum backflow [129].
A projectile of a fixed mass is prepared in a bound region in space along the x-axis
at time t = 0. The maximum quantum advantage (compared to a classical particle
with the same parameters) in the probability of detecting the particle in a part of the
x-axis further on the right, is found to be 4 %, i.e., the bound set by Bracken and Mel-
loy [15]. Generally, mechanical "paradoxes" like quantum backflow emerge because
position is a quantum observable, not merely a classical label. Moreover, exploring
time-of-arrival scenarios [7, 8, 9] could pave the way for a deeper understanding of
time in quantum theory.

Our experimental proposal to demonstrate quantum backflow using single elec-
trons (discussed in Chapter 6) inspires questions on the use of TEMs to implement
quantum-advantaged transportation tasks [129]. Discussions with Prof. Miguel
Navascués, the last author of [129], suggest that applying the frameworks of quan-
tum information science—particularly those focused on operational tasks with well-
defined figures of merit—to the study of mechanical phenomena could provide fur-
ther insights into the fundamental nature of space and time.
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