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Abstract

Strongly correlated quantum systems, characterized by competing interactions, play a cen-
tral role in emergent phenomena across quantum materials. Motivated by the need for
robust models and reliable simulation techniques, this thesis develops a rigorous theoretical
framework alongside novel efficient methods to study hybrid quantum systems that combine
light—-matter and electron—phonon interactions.

We begin by deriving the fundamental Hamiltonians governing these interactions. For
light—matter systems, the second quantization of the electromagnetic field leads to the Dicke
model, which is then extended by incorporating direct spin—spin interactions. In parallel,
the Holstein model for electron—phonon systems is derived and further generalized to include
electron—electron interactions, thereby capturing the essential physics of competing processes
in complex materials.

Building on these theoretical developments, efficient numerical techniques are introduced
by representing bosonic degrees of freedom through Gaussian and non-Gaussian states and
applying variational methods that culminate in a hybrid numerical approach. This method
integrates a variational ansatz for the bosonic sector with many-body numerical techniques for
fermionic and spin components, enabling precise simulations of strongly correlated systems.

The developed framework is then applied to both sectors. For electron—phonon systems,
a quantum simulation platform is proposed and the hybrid numerical method is validated
on the Hubbard—Holstein model, serving as a precursor to its extension to more complex
scenarios. For light—matter systems, the extended Dicke—Heisenberg model is systemati-
cally investigated under the hybrid numerical method to elucidate the interplay between
spin—photon and spin—spin interactions and to clarify the conditions underlying superradi-
ance and magnetic ordering.

Overall, this study provides a clear and versatile framework for exploring the interplay of
competing interactions in hybrid quantum systems, with direct implications for both theo-
retical analysis and experimental design in quantum materials.
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Abstrakt

Uktady kwantowe o silnych sprzezeniach, charakteryzujace sie konkurujacymi oddziatywani-
ami, odgrywaja kluczowa role w emergentnych zjawiskach w materiatach kwantowych. Mo-
tywowana potrzeba niezawodnych technik symulacyjnych, niniejsza rozprawa rozwija ramy
teoretyczne wraz z efektywnymi metodami badania hybrydowych uktadéw kwantowych, ta-
kich jak silnie skorelowane uktady $wiatto-materia oraz elektron-fonon.

Rozpoczynamy od wyprowadzenia fundamentalnych hamiltonianéw opisujacych te odd-
zialywania. Dla uktadow $wiatto-materia, druga kwantyzacja pola elektromagnetycznego
prowadzi do modelu Dickego, ktory nastepnie zostaje rozszerzony poprzez wlaczenie bezposred-
nich oddzialywan spin-spin, tworzac model Dicke-Heisenberga. Rownolegle wyprowadzony
zostaje model Holsteina dla uktadéw elektron—fonon, ktory jest dalej uogdlniany o oddziaty-
wania elektron—elektron, co pozwala uchwycié¢ istotna fizyke konkurujacych ze soba proceséw
w zlozonych materiatach. Bazujgc na tym modelu teoretycznym, wprowadzamy efektywne
techniki numeryczne, polegajace na reprezentowaniu bozonowych stopni swobody za pomoca
stanow gaussowskich, a nastepnie niegaussowskich, oraz zastosowaniu metod wariacyjnych,
ktore odgrywaja kluczowa role w hybrydowym podej$ciu numerycznym. Metoda ta taczy
wariacyjny ansatz dla sektora bozonowego z technikami numerycznymi dla uktadéw wieloci-
atowych zastosowanych do komponentéw fermionowych i spinowych, umozliwiajac precyzyjne
symulacje uktadéw o silnych sprzezeniach.

Opracowana metoda jest nastepnie stosowana w obu obszarach. Dla uktadow elek-
tron—fonon zaproponowana jest réwniez platforma symulacji kwantowych, a hybrydowa metoda
numeryczna jest weryfikowana na modelu Hubbard-Holsteina, stanowiac punkt wyjscia do
rozszerzenia jej na bardziej zlozone scenariusze. Dla uktadéow swiatto-materia systematy-
cznie badany jest rozszerzony model Dicke-Heisenberga, aby wyjasni¢ wspotdziatanie oddzi-
altywan spin—foton i spin—spin oraz doprecyzowaé¢ warunki lezgce u podstaw nadpromiennosci
i uporzadkowania magnetycznego. Podsumowujac, niniejsza rozprawa dostarcza jasnych i
wszechstronnych ram do badania wspoétdziatania konkurencyjnych oddziatywari w hybry-
dowych uktadach kwantowych, majac bezposrednie zastosowanie zaréwno dla analizy teore-
tycznej, jak i projektowania eksperymentalnego materiatow kwantowych.
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Introduction

Highly correlated systems lay the foundation for exploring novel phases of matter due to
emergent phenomena. In fact, one of the goals of modern condensed-matter physics is to
design states of matter with desirable emergent properties. Two important examples of
emergent phenomena are superfluidity and fractional quantum Hall effect: low-energy col-
lective effects of many particles that cannot be deduced from the microscopic equations of
motion in a rigorous way and that disappears completely when the system is taken apart.
Emergent phenomena are associated with the formation of quasi-particles—effective excita-
tions arising from collective interactions in many-body systems—that behave in ways nearly
identical to those of genuine particles. For example, in a crystal, lattice vibrations turn into
phonons-the quanta of sound which, at low-energy scales, behave as a particle. Phonons
propagate carrying energy and momentum without decaying, and are only destroyed if the
crystal falls apart. Phonon-mediated interactions can lead to emergent phenomena such as
conventional superconductivity.

When studying systems with unpredictable emergent phenomena, it helps to clearly de-
fine when two states of matter are the same. This is related to the study of phase transitions,
which occur only in the thermodynamic limit. In smaller systems, finite-size effects smooth
out the transition. One common way to investigate this is by testing whether one state can
continuously transform into another—a process known as an adiabatic transformation. In
small systems, this continuous transformation is readily observed, whereas in thermodynam-
ically large systems, even minor perturbations can induce abrupt, dramatic shifts, making
such smooth transitions impossible. When this happens, we say the states belong to different
phases. For example, the microscopic details of the electron-electron interactions are not so
important if the emergent phenomena observed are qualitatively the same: two metals with
slightly different interactions are considered the same phase since the macroscopic behavior
is metallic. On the other hand, a metal and an insulator belong to two distinct quantum
phases. This idea simplifies our understanding by circumventing the need to predict complex
behaviors solely from first principles—a task that remains extremely challenging even with
current methods [56]. In short, the essential feature that defines strongly correlated systems,
also known as quantum materials, is that the behavior of its components cannot be described
solely in terms of non-interacting entities.

A broad class of quantum materials involves combining two systems with distinct nature,
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such as bosons and fermions. Strong competing interactions between the distinct components
lead to novel quasi-particles, which then lead to complex emergent phenomena. For example,
strong interaction between electrons and phonons form polarons at low-temperature. Po-
larons are quasiparticles defined as an electron plus an attached phonon cloud. Effectively,
the electrons screen the atoms in the lattice while the lattice screens the electrons. The effec-
tive attractive interaction between electrons competes with strong electron-electron interac-
tions which can lead to the conventional superconductivity, as aforementioned. Analogously,
we have the quasi-particle called polariton, where photons, the quanta of light, strongly in-
teract with a dipole-carrier excitation, such as excitons. In the quest for designing states
of matter for implementing quantum technologies, which exploit nonclassical correlations for
computing, simulation, communication, and sensing purposes [36]|, composite systems offer
a higher degree of control, as the interaction between distinct components offers indirect
strong competing interactions among one of the constituents. As we will dig deeper in the
next sections of this chapter and during the whole thesis, atom-photon and electron-phonon
systems show to be great platforms to observe complex phenomena that are useful not only
for future technological advancements but also for deepening the fundamental understanding
of the microscopic nature of many collective macroscopic phenomena.

1.1 Collective atomic interactions with light

interaction strength
per photon

Figure 1.1: Conceptual 3D representation of the regimes in quantum optics. Adapted from [19]
(arXiv, CC BY-NC-ND 4.0).

Optical methods are natural candidates for realizing state preparation and quantum con-
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trol schemes in various systems, owing to the availability of tunable laser light, single-photon
sources, and pulse modulation techniques that allow for excellent time resolution. It is also
worthwhile to consider the backaction of the system in the light field, an essential aspect
for applications such as energy storage and extraction in a quantum battery [69] or state
readout from quantum memories [70]. These recent advancements enable the optical control
of quasi-particles in solid-state systems, their many-body collective modes and excitations.
This interplay between the distinct constituents is pushing the boundaries of important areas
such as quantum materials, quantum optics, and nonlinear laser physics. The term strongly
correlated electron—photon science was coined in Ref. [18] to refer to the research area that
lies in the intersection of those then separated areas.

The majority of the aforementioned advancements on the optical control of solid-state
quasi-particles relies on materials where electron correlations are weak. On the other hand,
at weak interaction regimes, where a strong optical field can be treated semi-classically, light
has been used to drive cooperative responses in strongly interacting materials. For instance
by inducing transient high-temperature superconductivity [98|, mediating long-range inter-
actions leading to self-organization [119], photo-induced magnetism [34, 128|, ferroelectric-
ity [105, 85|, and non-equilibrium topological phases [140, 93]. A conceptual map of research
fields in quantum optics, classified according to emergent phenomena as functions of pho-
ton number, electron correlations, and electron-photon interaction strength (adapted from
Ref. [19]), is shown in Fig. 1.1. Starting from a baseline with low photon numbers, weak
electron-photon interactions, and negligible electron correlations, familiar regimes such as
metamaterials, integrated photonics, and plasmonics are observed. The figure organizes phe-
nomena based on which of these parameters is weak or absent. For example, in the absence
of significant electron correlations, when electron-photon interactions are weak, increasing
the photon number drives a transition from the linear optical responses of metamaterials to
nonlinear optical phenomena, whereas with strong electron-photon interactions, low photon
numbers lead to cavity quantum electrodynamics (cQED) phenomena and further increases
in photon number result in exotic states like Mott insulators of light. In contrast, in the
weak-field limit with strong electron correlations, weak electron-photon interactions can give
rise to Moiré polaritons, while increasing the interaction strength in this regime leads to emer-
gent phenomena such as exciton-polaritons and the cavity fractional quantum Hall effect as
electron correlations become more pronounced. It is also important to note that when the
photon number is large and electron-photon interactions are negligible, the strong light field
behaves classically. Finally, by varying both the photon number and electron correlations
in the absence of significant electron-photon interactions, a variety of phenomena emerge,
including photo-induced driven superconductivity in systems with strongly correlated elec-
trons under a strong field. Our main interest is in the interplay between strong electron
correlations and interactions for small photon numbers, which we treat as an extension of
cQED adding direct electron interactions that cause strong correlations. Starting from the
paradigmatic Dicke model, we extend the model to include competing exchange interactions.

The Dicke model is a cornerstone for understanding collective interactions between a
single-mode light field and matter. It has been experimentally realized in diverse platforms,
including solid-state cavity QED [29], trapped ions [122], organic molecules [43], and cold
gases [10, 119, 28, 110]. Central to its appeal is the superradiant phase transition, where
macroscopic photon occupancy emerges as a distinctive characteristic of collective quantum
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behavior. Variations of this model have proven vital in understanding phenomena such as
quantum batteries [42, 114, 35|, polaritonic chemistry [117], and quantum spin glasses [131,
73]. In particular, photon-mediated long-range spin-spin interactions achieved via coupling
to light enabled applications in quantum state engineering and spin squeezing |90, 103, 111].
The Dicke model is obtained via second quantization of the Hamiltonian of a collection of
atoms in an external field under dipole approximation. The rigorous calculations for obtaining
this model are shown as the ultimate goal of Chapter 2. Specifically, the conventional Dicke
model is represented by the Hamiltonian:

N N
1 € g
) _ 1 - = z _J T T
HDicke = w(a a+ 2> + 5 ;1 o; + N ;1 of(a+a"), (1.1)

where the state of each two-level qubit is encoded by a local spin operator s& = 0% /2, and
the photonic operators z = (a! + a)/v2, p = i(a' — a)/V/2, with a(a!) being the photon
annihilation(creation) operator. Here, w is the cavity frequency, £ the atomic transition
frequency, g is the collective coupling strength, and N is the number of atoms. The Dicke
model can be mapped to an SU(N) spin model and solved exactly [75], and exhibits a phase
transition between superradiant and normal phases.

However, spin-spin interactions, arising from electronic Coulomb interactions or atomic
interactions, are often unavoidable in realistic material and atomic systems. These inter-
actions are expected to significantly affect the properties of the system, deviating from the
conventional Dicke model, but are usually not included into theoretical studies due to the ex-
tremely increasing complexity. These interactions compete with light-induced order, offering
a complex but potentially tunable platform to study quantum many-body phenomena both
in and out of equilibrium. This generalization can be described by introducing a Heisenberg

interaction term, written as
— Z Jost® . s§a). (1.2)
(i.4) o=@,z

The isotropic Heisenberg model (J, = J) features ferromagnetic and antiferromagnetic in-
teractions, depending on the sign on the exchange interaction J. Indeed, these two types of
interactions have distinct physical origins: in systems governed by Hund’s coupling where
intra-atomic exchange favors parallel spin alignment the effective interaction is ferromagnetic,
while in systems where the interaction arises from superexchange processes (as in Hubbard
models), the coupling is inherently antiferromagnetic [91]. The latter is obtained in Chap-
ter 3 from the Hubbard model in the limit of strong on-site repulsion at half-filling. As we
will see in Chapter 7, the interplay between strong spin-photon and spin-spin interactions
leads to novel phenomena including a transient coexistence between spin order and photon
superradiance.

1.2 Lattice vibrations coupled to electronic motion

Phonons are collective excitations of the vibrational modes in elastic materials. The crystal
lattice formed by periodic arrangement of atoms is allowed to deform and distort without
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destroying the crystal structure. The vibrational modes are quantized and the formed quasi-
particle representing the collective excitation is called phonon, as first coined by Frenkel [46].
Analogous to energy and momentum, phonon dispersion relation is given by w(k) frequency
and wavevector. Since k is well defined, phonons are not localized particles, but for a small k
we obtain a fairly localized wavepacket with group velocity v, = dw(k)/dk. As photons are
the quanta of light, phonons are interpreted as the quanta of sound, and the group velocity
is the velocity of sound in the material. However, phonons have a broad spectrum, which
strongly depends on the source as they reveal themselves in all electrical, thermal, and optical
phenomena in materials, are usually labeled in different frequency ranges as sound waves (10—
10* Hz), ultrasound (10*-10® Hz), hypersound (108-10'! Hz), and heat (over 10* Hz) [104].
The phonon propagation can be engineered with low-dimensional systems (nano-structures)
and metamaterials like phononic crystals. Phononics, or phonon engeneering, opens a wide
range of possibilities for controlling transport such as acoustic and sound wave propagation,
heat transfer, and mediated interactions.

The motion of ions arranged in a periodic lattice, quantized as phonons, couples with itin-
erant electrons and thus electron-phonon interactions become important. Electron-phonon
interaction is one of the cornerstones of condensed-matter and materials physics, and its no-
tion is as old as the quantum theory of solids. Despite being extensively studied, its emergent
phenomena and the lack of a clear fundamental understanding makes it still very attractive.
Coupling electrons with the lattice’s vibrational degrees of freedom fundamentally alters the
material’s properties, leading to phenomena such as electrical resistance, superconductivity,
and carrier relaxation in semiconductor structures [118].

Placing a charge in a polarizable media causes a screening effect that alters the properties
of the carrier. In solids, the ions that constitute the lattice are polarized by the presence of
electrons. In fact, electron motion induces ions to displace from their equilibrium positions
followed by a relaxation which induces lattice vibrations. The electron carries the polarization
around itself, effectively screening its charge, a phenomenon known as phonon cloud. The
electron bound to the phonon cloud work as a single entity, a quasi-particle known as polaron,
as coined by Pekar [109]. Properties of polarons such as response to external fields and
effective mass differ from that of band electrons. The details of polaron formation are crucial
for carrier transport since polaron formation leads to a larger effective mass of a carrier.
In systems with strong electron-phonon interactions, like when coupling with longitudinal
optical phonons, the polaron picture becomes dominant and governs the transport properties.
The Frolich model [50, 48, 49] is the most paradigmatic model for polaron description. It
considers the so described system of electrons in an ionic medium with electrons in the free
electron approximation interacting with a single longitudinal optical phonon in the Einstein
approximation. It reads

2
Hivsticn = o + 1w > Bibg + > (Vibae'™ + h.c.), (1.3)
q q

2m

where bg account for phonon the annihilation, r, p, and m are the position, momentum and
mass of the band electron, and V is the effective potential experienced by the electrons given
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where « is the dimensionless coupling constant, V' is the volume, €., and ¢, are the high-
frequency and static dielectric constants. Since the model treats the phonon field in a contin-
uum approximation, the resulting lattice distortion extends over many unit cells. Thus the
quasiparticle emerging from the model is called a large polaron, its size is much larger than
the lattice spacing. In short, the Frohlich Hamiltonian is interesting because it captures how
an electron in a polar crystal interacts with a long-range polarization field created by longitu-
dinal optical phonons. This interaction leads to the formation of a large polaron—an electron
dressed by a spread-out cloud of phonons. Its analytical tractability and relevance for under-
standing effective mass renormalization, carrier mobility, and various transport phenomena
in polar materials make it a fundamental and insightful model in condensed matter physics.
However, when dealing with materials where the electron-phonon interaction is essentially
local, the Holstein model is more appropriate |64, 65|. We show in figure 1.2 a cartoon rep-
resentation of the two types of polarons. In addition to its focus on local phonon modes,
the Holstein model is compelling because it provides a minimal framework that captures the
essential physics of small polaron formation. The understanding of polaron formation and
its consequences is important to understand the underlying mechanisms of electron-phonon
systems, however, in the work presented here, polarons are not the main goal of the study.
A thorough analysis of polarons in general is found at Emin’s book [38] and specifically for
Frolich polarons in the progress review by Devreese and Alexandrov [4]. A compendium of
theoretical and experimental realizations for both cases in found at [44].

4 2 1 1
hw [Ara h e m ( )7 (1.4)
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Figure 1.2: Frohlich (large) and Holstein (small) polarons.

While the Frohlich Hamiltonian is well-suited for describing extended, long-range interac-
tions in polar materials, the Holstein model is particularly useful when the electron couples
strongly to a local lattice distortion. This local interaction can lead to phenomena such as
self-trapping of the electron, an increase in effective mass, and distinctive transport properties
that are key in systems like molecular crystals or narrow-band semiconductors. Moreover,
its relative simplicity allows us to apply some analytical approximations and numerical sim-
ulations, allowing for a deeper exploration of the interplay between electronic motion and
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lattice dynamics. In this work, we focus on extended Hubbard-Holstein models of the form

,HEHH = —t Z (C;FUCJ'U + HC) —+ U Z niTnii + Z wqubq + Z gq(bL + b—Q)pq )
q q

(ij)o i

where local electron-phonon interactions are replaced by long-range interactions, the phonon
dispersion is taken into account, and electron-electron Coulomb interactions play a crucial
role in the emergent phenomena. Here, pq = ka CL tqoCko- In chapter 3 we rigorously
obtain the Hubbard-Holstein (HH) model and its extended family from second quantization
of a general classical model that takes into account all electronic and ionic motion and the
interactions between each of its constituents under a series of approximations. The study of
extended HH models via quantum simulation protocols and innovative numerical techniques
is given by chapter 6.

1.3 Efficient techniques

The quest for theoretical understanding of strongly correlated many-body systems is known
to be extremely challenging. Classical simulation methods can become inefficient as the
Hilbert space becomes too large to effectively sample. The number of parameters needed to
describe and store a quantum state grows exponentially with the system size. The situation
becomes even more involved when dealing with composite (hybrid) systems. Hybrid systems,
such as electrons and phonons or atoms and light, combine distinct components, Fermions
and Bosons, each with unique nature and demands, posing significant challenges to numerical
methods. Fermionic degrees of freedom exhibit strong correlations that require many-body
techniques [143, 144, 146, 83| or quantum computational approaches [39, 27, 21|. Bosonic
systems, on the other hand, belong to an infinite-dimensional Hilbert space with possibly
large occupation numbers, where variational methods can be effective |58, 24|. While these
methods have proven effective in isolated systems, they are limited when applied to hybrid
systems. Such kind of strongly correlated materials can feature a competition between differ-
ent processes, which drives the system towards to complex phases that cannot be captured
by perturbative methods because of the lack of a small parameter. Computational meth-
ods such as exact diagonalization (ED), quantum Monte Carlo (QMC), and density matrix
renormalization group (DMRG), greatly advanced the understanding of many-body systems.
However, as the phonon Hilbert space has to be truncated, numerical studies typically allow
only a small phonon number and system size. For instance, competition between electron-
electron and electron-phonon interactions, in the Hubbard-Holstein model, can lead to rich
phase diagrams and strongly correlated ground states. Phonon-mediated attraction between
electrons can enhance fermion pairing even when the Coulomb repulsion is strong [3, 82|. In
light-matter photon induces effective long-ranged (all-to-all) interactions between the atoms
that compete with short-range couplings. Theoretical treatment of such multicomponent
models turns out to be a nontrivial task. For separable energy scales, one can rely on per-
turbative expansions or approximate decoupling approaches such as the Holstein-Primakoff
transformation [112, 134]. However, for competing processes, numerical techniques are typ-
ically required. For example, as the ground state of the Dicke model in the strong coupling
regime is well represented by the coherent state for the photonic part, approaches working
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in Fock space suffer from its infinite Hilbert space dimension that requires truncation, mak-
ing exact diagonalization (ED) or tensor network methods ineffective. Simulations based
on phase-space representations such as truncated Wigner method can be more reliable in
describing large QED setups [67, 107|. On the other hand, due to the presence of competing
orders in hybrid systems, simple variational ansétze based on a prior: intuitions could intro-
duce bias to the conclusion. For instance, separable state assumptions followed by tracing
out the infinity bosonic Hilbert space cannot capture the intricate correlations of the system.

Quantum computers hold the promise to overcome this difficulty, but near-term devices
cannot be expected to provide the needed number of logical qubits and sufficient circuit depth.
For these reasons, analog quantum simulators are among the most promising tools to study
ground state properties as well as dynamics of interacting quantum systems [25, 55, 45]. As
the approach of analog simulation is to construct a controllable system that can reproduce
the physics of a different one, it is nonuniversal and thus the details of experimental imple-
mentation matter. The platforms for quantum simulation must feature some versatility in
tuning the system parameters, scalability in the number of qubits, and reliable measurement
schemes. Over the past two decades, a wide range of promising quantum devices that may
have some of the desired properties has emerged [6]. Among the various platforms avail-
able, ultracold neutral atoms [17] and Rydberg atom arrays [13] received a lot of attention
in this respect. A hybrid approach involving a combination of setups can be promising as
well, allowing for easier implementation of more complex systems with potentially indepen-
dently tunable properties [15]. A number of theoretical proposals for quantum simulation of
electron-phonon models using molecules as well as ions exists [113, 108, 59, 68|. However,
they have stringent requirements and can lack versatility. For example, in order to crystallize
the molecules one needs extremely low temperatures, while in ion-atom systems the relevant
energy scales are quite separated. Here we focus on a different type of mixture involving
an array of Rydberg atoms and a ground state gas. In most experimental realizations, the
Rydberg states are repelled by optical traps and the laser field must be turned oftf during
experiments. However, recent developments allow for keeping the tweezer array on as well
as to achieve state-insensitive traps [148, 95|, leading to long lifetimes and opening the door
towards a new simulation platform. In chapter 6 we propose a hybrid setup involving two
species: Rydberg atoms, that are pinned by optical tweezers by are allowed to perform small
displacements from equilibrium, and neutral atoms that are free to move but feel the presence
of the Rydberg atomic array as a background lattice potential. We show that this platform
is efficient for simulating a class of extended Hubbard-Holstein models.

Another way to circumvent these challenges is to develop novel efficient numerical tech-
niques that are specifically designed to tackle the problem. By utilizing a hybrid variational
approach [127, 138| designed to work for general electron-phonon systems regardless of the
Hamiltonian details, we study the Hubbard-Holstein model in chapter 6. In this approach,
the bosonic part of the wavefunction is approximated by a Gaussian state, and optimized
variationally. The fermionic part of the system is on the other hand treated numerically ex-
actly via exact diagonalization or density matrix renormalization group (DMRG) methods.
The key component is a suitable entangling operation added in order to include possible cor-
relations between the subsystems. The goal of this numerical study was to probe the method
for the simplest case of electron-phonon and electron-electron interaction model, to finally
move to the study of extended Hubbard-Holstein models with intricate properties, such as
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the model that we obtained in 6.1. Related works show that the approach works well for
extended Hubbard-Holstein models [138, 137, 139, 31|, where it very accurately reproduced
state-of-the-art numerical results. Even though this hybrid approach was initially designed
for electron-phonon systems, extensions for distinct types of multicomponent systems seem
viable. In order to study the Dicke-Heisenberg model, the model that includes both strong
spin-spin and spin-photon interactions, we adapted the hybrid numerical method to work
for a general class of spin-photon systems where the photonic part of the wavefunction that
optimized variationally is treated as a Gaussian state, reflecting the Dicke model solution at
strong coupling. The spin part of the system is on the other hand treated numerically exactly
via DMRG. The entangling transformation for the electron-phonon systems is a parametrized
Lang-Firsov transformation. Thus, we designed a dressing transformation where the trans-
verse spin operator works as the electronic density. This adapted hybrid numerical approach
shows to be very efficient, where it reproduces the Dicke model in the thermodynamic limit
and its finite-size effects depending on the choice of the variational ansatz. We show in
chapter 7 a thorough analysis of spin-photon systems with both isotropic and anisotropic
spin-spin interactions. The spin exchange fundamentally alters the phase landscape of the
Dicke model, where we observe enhanced superradiance, distinct phase transitions, and co-
existence between superradiance and spin order.

This thesis is primarily based on the following articles: Quantum simulation of extended
electron—phonon-coupling models in a hybrid Rydberg atom setup, Phys. Rev. A 107, 032808
(2023); The role of exchange interactions in the superradiant phenomena, arXiv:2503.04961
(2024); A wvariational non-Gaussian approach to cavity QED with strongly interacting emit-
ters, In preparation. In these works, the author had the leading contribution and performed
all the derivations and calculations. The results presented in this thesis represent the original
research carried out by the author during his PhD studies, developed under the guidance of
his supervisor and in close collaboration with his colleagues.
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INTRODUCTION



Light-matter Systems

Cavity quantum electrodynamics (cQED) systems are among the most prominent platforms
for quantum computing, quantum simulation, and quantum devices. Atoms provide robust
carriers of information due to their well-defined energy levels, while photons, with their high
degree of coherence, are ideal for transmitting information over long distances. This synergy
makes hybrid light-matter systems promising candidates for large-scale quantum computing
and the realization of the quantum internet [74]. However, achieving strong atom-light inter-
actions requires extremely small cavity volumes, which complicates experimental control [2],
making it challenging in terms of scalability and controllability. Despite their applicability
potential, cQED systems are intrinsically difficult to understand at a fundamental level, due
to the distinct and competing nature of its components. As recognized by the 2012 Nobel
Prize in Physics awarded to Serge Haroche and David J. Wineland [60, 149], the study of
such systems is of vital importance, not only due to future application advancements, but
also to fundamental understanding of light-matter interacting systems. In this chapter, we
focus on the second quantization of the electromagnetic light field in a microcavity, and of
the light-matter interaction under certain approximations, ultimately obtaining the quan-
tum Hamiltonian of interest. In the next chapters, we will study a class of light-matter
systems derived from this Hamiltonian, developing a novel numerical method to address the
aforementioned challenges.

2.1 Quantization of the electromagnetic field

Before studying the quantum theory of light-matter interaction, we need to quantize the
electromagnetic field in a cavity. This is a special application of second quantization [5]. Let
us begin by recalling Maxwell’s equations with sources

v.E=" V.B=0,
2.1)
O (

VXE=—— VXB:MQGOE—F,M()J.

13
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The fields can be expressed in terms of potentials. Since the divergence of the magnetic
induction field is zero, it can be written in terms of a vector potential A via

B=V xA. (2.2)

The electric field can also be written in terms of both scalar and vector potentials as

A
E=-Vo¢— %—t. (2.3)

That way, one can describe the system solely in terms of ¢ and A, leading to

D?A 0
(V2A — Mo:?ow) -V (V A+ /J(]é?oa—gtb) = _/,L(]J (24&)
0 p
2 —_— . [ —
Vio+ 5 (V- A) =~ (2.4b)

These two equations encapsulate all the information in Maxwell’s equations, showing that
we can work solely with potentials.

2.1.1 Non-Uniqueness of Potentials and Gauge Transformations

The potentials obtained are not unique. Observe that we can perform the following trans-
formations without altering the fields E and B:

A — A+ Vy, (2.5b)

where (3 is constant in space. The fields remain invariant under these transformations because
Vi3 =0and V X (Vx) = 0. The gauge transformation relates 5 and Vx by considering
that the transformations yield the same electric field,

0 B ox\
VB+5(VX)—0=>V(6+ at) =0,
we conclude that § = — dx/0t. Hence,
b, Ox
A=A+ Vy, (2.6Db)

the potentials (¢', A’) and (¢, A) produce the same fields E and B. This is the gauge
transformation, which is invariant. In classical electromagnetism, the choice of x is often
used to simplify calculations. In this work, we focus on the Coulomb gauge, where x is
chosen such that V - A = 0. This implies that ¢ will reflect all variations in p, since

Vg =L, (2.7)

€0
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i.e., the scalar potential ¢ can be written in terms of the source

o(x,t) = ! /p(x’,t) d*z’ . (2.8)

Ameg ) |x — /|

When there is no source, the scalar potential is zero. Another implication of the Coulomb
gauge comes from the fact that any vector field that vanishes sufficiently quickly at infinity
can be decomposed into its rotational and irrotational components as!

A=A +A (2.9)

where V-A | = 0and V XA = 0. In this case, this is equivalent to separating the transverse
and longitudinal parts. Thus we note that the Coulomb gauge considers a transverse vector
potential, A = A (rotational field).

2.1.2 Quantization of the Radiation Field Hamiltonian

Let us start by performing a Fourier decomposition of the vector potential in a cubic volume
V = L3 with periodic boundary conditions. At t = 0,

2
1 1kex *(a) —ikex
A(X,t = O) = W E E Cka = O)elk + € ( )ck,a(t = 0)6 k ) s (210)

where ¢y, are the expansion coefficients, k is the wave vector with k; = 27n;/L (i = x,y, 2),
1/ V'V arises from the normalization of the plane waves, and €@ are two polarization vectors
that satisfy orthonormality relations. Polarization vectors can have Cartesian directions z
and y (making them real), where €*¥ - k = 0. They can also represent circular polarizations
(making them complex), expressed in terms of €* and €.

Maxwell’s equations in the Coulomb gauge, assuming no source, becomes simple: [JA* =
0. Thus, the temporal dependence is given by

Cra(t) = cra(0)e ™ where w = c|k|.
The vector potential can then be written as

2
A(x,t) \/—ZZ ey a(t)e™* + el (t)e ™). (2.11)

Explicitly including the temporal dependence of A and keeping time-independent coefficients
k.a(0) = k0, We can write in the covariant form, which makes the calculations much easier,

2
1 .
. (o) ikpxP
= — e Yoy o€ +c.c., (2.12)
/V Z Z K ’
k a=l1

where the inner product is k,a* = k - x — wt.

!This was proven by Helmholtz in 1858 [61], in the context of hydrodynamics.
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The local Hamiltonian can be expressed in terms of the tensorial field F** and A" as
1
poH = F00° A" + ZFWF’“’, (2.13)

with the total Hamiltonian given by H = [ d*xz H. After some algebra, H can be simplified
to
poH = —0°A*9° AL, (2.14)

Thus, the total Hamiltonian, in terms of ¢y o, reads
H=20» 0 [kalhn+ Calhal - (2.15)
k,a

This Hamiltonian resembles a collection of uncoupled oscillators, one for each k and «, by
defining the coordinates

Qra = Veo(Cka + Ca), (2.16)

and the corresponding conjugate momenta
Pro = —iw/Eo(Ca — ) (2.17)

This change of variables gives rise to the usual form of the harmonic oscillator Hamiltonian

1
H=: > [P+ wQr.] (2.18)
k,a
where Qx o and P, satisfy the Hamilton equations.
Second quantization involves replacing Q. and P, with quantum operators Qx , and

]51{7& satisfying the commutation relations

[Quas Bo.r] = 1110110000, (2.19a)
[Qk,aa Qk’,a’] - 07 (219b)
[pk,aa pkgo/] = 0. (219C>

Following the equations above, we can express the Fourier coefficients ¢y, and ¢y , in terms
of the creation and annihilation operators that satisfy [dx a, dL o) = Ok aa,

| R
a = (k.o 2.20
K, 2€0wak’ ( a)
h
f =1/ al 2.20b
Cx,a 2€0wa’k,o¢ (2.20D)

The quantum Hamiltonian for each oscillator reads

. 1
Hyo = hw (aLa&k,a + 5) : (2.21)
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Finally, the second quantized fields of interest, written in relativistic notation, become

R 1 .

AP = » kz 6ke;(f)&k7ae’kf’xp +H.c., (2.22a)

Er =i eeMag e —He, (2.22b)
k,a

where ¢y is a scalar with dimensions of electric field,

hwk
=4/ 2.23
ok 2‘/80’ ( )
with w = wy, = c|k|.

This completes the quantization of the electromagnetic field in a cavity, providing the
foundational expressions for further study of light-matter interactions. We drop the hat
notation from now on.

2.1.3 Photon Statistics

In this section, we will examine some properties of the operators a and af, define the Fock
states and a coherent state. With knowledge of photon statistics, we can investigate the
quantum behavior of the electromagnetic field. Since the Hamiltonian has been reduced to
a set of uncoupled harmonic oscillators, we will, from now on, omit the (k,«) indices and
study the properties of a single harmonic oscillator in the context of photon statistics.

The Fock states are the eigenstates of the cavity field Hamiltonian H., defined via

H.|n) = hw (CLTCL + %) In) = E, |n). (2.24)

We note that the states a|n) and af |n) are also eigenstates of H., since Hea|n) = (E, —
hw)a|n). That is, the state a |n) is an eigenstate of the Hamiltonian with energy —hw relative
to the state |n). The operator a is called the annihilation operator because it removes one
quantum of energy when applied. For the ground state, a|0) = 0, because Ej is the lowest

energy level. Thus,

H, |0) = hw (cﬁa + %) 0y = % 0), (2.25)

giving Fy = hw/2. The discrete energy levels can then be written recursively as E, ; =
E, —hw or E, = E, 1+ hw. Observing this, one defines the bosonic number operator
a'a = n, which gives the average number of photons in the cavity (n) = (n|a'a|n) = n, and
the energy can be written as E,, = hw(n + 1/2). Following this reasoning, the operator a
satisfies u
n—1) =L n).

where «,, = y/n is obtained from orthonormality of the Fock states. Applying the same
procedure to af, we find

a'ln) =vn+1|n+1), (2.26)
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By applying the above equation n times starting from |0), we obtain

(ah)"

Vn!

This is an important equation that reflects how to go from a vacuum state to any Fock state
|n) in terms of the ladder operators.

In summary, the main important characteristics of Fock states are: Fock states form a
complete orthonormal set, so (n|m) = 0,,, and >_ - |n)(n| = 1. An arbitrary state vector
|¢) can be expressed as a superposition of eigenstates of the Hamiltonian |¢) = > C,, |n).

In) = 0). (2.27)

The operators a and a' are not Hermitian, but certain combinations are, such as z = % (a+

a'), p = iy/®(a — a'), and H.. The only nonzero matrix elements of these operators are

(n—1]aln) = /n and (n+ 1|a’|n) = v/n+ 1. Classically, the energy distribution of the
electromagnetic field is continuous, but quantum mechanically, the eigenenergies are discrete.
A direct application that shows the quantum nature of the photonic field is related to the
fluctuations of the electric field ((AFE)?) in vacuum. For a monochromatic electric field with

fixed linear polarization,
E =ice™a — H.c., (2.28)

the mean value (n|E|n) = (F) is clearly zero, while
(E*) = (n|E?|n) = € (n]aa" + a'a|n) = * (2n 4+ 1).

Thus, the field fluctuations,

((AE)?) = (E?) — (E)? = 2¢? (n + %) : (2.29)

In the vacuum state, i.e., for n =0,

(AE)?) = &2 (2.30)
The mean value is zero, but fluctuations are present. These vacuum fluctuations lead to
various quantum phenomena, such as spontaneous emission and the Lamb shift.
Coherent States

Coherent states are of great importance because of their unique properties. A coherent state
is an eigenstate of the annihilation operator? a |a) = a|a). To derive the form of this state,
we use the completeness of |n) and equation 2.27,

a) = (Z |n><n|> o) = 3 0 ﬁ o) = 0) 3 % n).

2While | ) is the eigenket of a, af has no eigenket. On the other hand, a has no eigenbra. As non-Hermitian
operators, a and a' share many peculiar properties.
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The normalization (o|a) =1 gives

1= [0l 2 32 U oy et

so (0]a) = exp(—|a|?/2). Hence, the coherent state can be written as

ol Q" _lo? | (caf)m _la ot
) =e" 2 > ——n)=¢ > [Z—,]m:e 22 |0) .
— vn! ~ nl
Using the property e~ % |0) = |0), we obtain
OL2 A * A
la) = e~ godl o' 0) = exp(aa’ — a*a) [0) . (2.31)

This allows us to define the displacement operator as
D(a) = exp(aa’ — a*a), (2.32)

which is unitary®, D(a) = D7!(«), and transforms the vacuum state into a coherent state
as D(«) |0) = |a). The action of D(«) on the ladder operators then is given by

D(a)'aD(a) = a + a, (2.33a)
D(a)a'D(a) = a' + . (2.33b)

That way, its action on x and p is written as

D(a)tzD(a) = = + V2Re(a), (2.34a)
D(a)'pD(a) = p + v2Im(a). (2.34h)
Thus, we understand the reason why D(«) is called the displacement operator. In phase
space, i.e. (z)—(p) plane, the operator displaces the vacuum state, with origin ({x), (p)) =
(0,0), to ((z),(p)) = (V2Re(a),v2Im(a)). We intuitively also see that it preserves the

uncertainty relation between x and p, which will be proved below.
An equivalent definition for the displacement operator is

Ug = exp(i[A,x — Ayp]), (2.35)
so its action on the operators x and p is given by
UleUy =z + A,, (2.36a)
UlpUy = p + A, (2.36b)
Collecting x and p in a vector form, R = (z,p)T
in a compact form via

A —Ap= (2 p) (_AKI) —(x p) (_01 é) @x) —RToAn  (237)

P

, we can write the displacement operator

31t also holds that Df(a) = D(—a), so D(a)aD(a)t =a — a.
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where we defined the displacement vector Ag = (A,, A,)T, so that we obtain
Us = exp(iR" 0 AR). (2.38)

The action of Uy on R is then UJRUd = R+ Ag. In the form of Eq. 2.38, the displacement
operator can be easily extended to multi-mode systems, as we will see in Chapter 4. For a
single-mode system, Uy and D(a) are equivalent and related via AL = v/2(Re(a), Im(a))7.

There is a series of properties of coherent states that follow from the canonical properties
mentioned above, including:

1. The average number of photons in a coherent state |a) is given by (n) = |al?.

Proof -
o0 2\n
_ (alatala) = e-lor 5 Uel)”
(an]a) = (ala’ala) =€ nz:% o
0
— ol 42 lof?
|| Flaf’
= |a. (2.39)

2. The probability of finding n photons follows a Poisson distribution.

Proof:
e—\a|2|a|2n <n>ne—<n>
P(n) = |(njo)? = <1 _ (e (2.40)

3. Coherent states are not orthogonal, but they are normalized.
Proof -

(alay = et S A"y (2.41)

n

(alB) # 0= [(a|B)* = e, (2.41D)

4. Coherent states minimize the uncertainty relation, AxAp = h/2.

Proof: Recall that the non-Hermitian operators a and a can be combined to write

and p,
1
5 a+a = %x, (2.42a)
1 1
—(a — 2.42
pia—a) =1/ gp (2.42b)

These satisfy the commutation relation [x, p| = if. The uncertainty relation holds

h
AxAp > 5

(2.43)
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For a coherent state |a), the variances are

h
Az)?) = —
(A0)) = o
hw
(ap?) = 2.
Multiplying these gives
h ho h
AzAp =4 —  — = —. 2.44
RPN T2 (2.44)

These properties make coherent states crucial for understanding quantum optics and
the quantum behavior of electromagnetic fields. In the Jaynes-Cummings model, the most
basic quantum ligh-matter interaction model, the coherent states are responsible for a pure
quantum phenomena called collapse and revival [129].

2.2 Quantization of the light-matter interactions

The classical Hamiltonian of the atom (or molecule) is given by
p?
H=—+V 2.45
YV, (2.45)

where the potential V' (x) can be Coulomb-like. When interacting with an external field, the
operators transform as

P —p—cA, (2.46a)
H — H + eg, (2.46b)

so that the Hamiltonian of an atom interacting with an external electromagnetic field becomes

1
P A S (ApipA) V() (2.47)
2m 2m om PTp ' ’

There are several ways to address the above Hamiltonian. We show two approaches based
on the Coulomb gauge, where V- A = 0 and ¢ = 0 (source-free). First, consider the following
application to a scalar function f(x), knowing that p = —ihV,

(A-p-p-Afx)= (V- -A-A-V)/(x)

| v =

= [(V-A)f+(V))-A-A-(V])]

q
>
=

@.|§\‘®
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where, in the Coulomb gauge, the result is zero, leading to A -p = p-A. The term involving
A? can be neglected if A - p is comparatively much larger. Thus,

p €

H=—+4+V(x)——A-p, 2.48

Y- Sap (2.45)

where the last term represents the atom-field interaction.
Another way to write the Hamiltonian involves expressing the interaction in terms of the

electric dipole form. Considering the electric dipole approximation, A(x,t) — A(t), we take
the Hamiltonian in the Coulomb gauge and perform another gauge transformation as

H = % [p—e(A+ Vx)]Q - e% + V(x), (2.49)

choosing x such that

X(x,t)=—A:-x = Vx=-A,
ax 0A
—=—-—-x=E'x.
ot ot
This implies that the Hamiltonian can be written as the sum of the atomic Hamiltonian and
the electric dipole interaction
p?

H=— —d-E 2.
V) , (2.50)

where d = ex is the electric dipole moment. There is an equivalence between these two
representations, as the regime where A? is negligible coincides with the regime where the
electric dipole approximation can be applied. Neglecting the A? term, however, may lead to
several physical implications. Rzazewski et. al. [121] studied the second quantized versions
of Hamiltonians 2.47 and 2.50 and concluded that the absence of the A% term is required to
obtain a superradiance phase transition. This conclusion leads to what is now called a no-go
theorem [14], which does not destroy the validity of the Dicke model, as many platforms have
been proposed to engineer effective two-level systems with weak A2 out of multi-level atom
systems with tunable transition frequencies or at the right geometry {100, 136, 135].

2.2.1 Second quantized description

The part of the Hamiltonian 2.50 that represents the pure atomic part can be represented
quantum mechanically in various ways depending on the system of interest. In this work, we
will focus on a case where the system of interest is a non-interacting collection of two-level
systems®*. Since there is no classical analog for spin, there is no need to address second quan-
tization in this context. Let us now focus on the quantization of the interaction Hamiltonian.

4The potential part of the atomic Hamiltonian can represent spin-spin interactions, which will be taken
into consideration in later chapters.
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Two-Level Systems Recap

A two-level quantum system is described by a two-dimensional Hilbert space with basis
states |e) and |g), corresponding to eigenenergies E, and E,, respectively. These states
form a complete orthonormal set (e|g) = 0, (e|e) = (g|g) = 1,1 = |e)e| + |g)g|.
The Hamiltonian in the energy eigenstate basis is written as: H, = E. |e)e|+ E, |g)g].
Introducing the energy difference fwy = E. — F, and rescaling, we have
hw
H, = 0%, (2.51)
2
where 0 = |e)e| — |g)g]| is the Pauli z operator.
In a two-dimensional space, we define the complete set of independent operators

1=leXel +lgXgl, o =leXel —lgXgl, o™ =leXgl, o= =lgXel, (2.52)

where 0% and o~ are the fermionic creation and annihilation operators satisfying the
anti-commutation relations

{ct,07} =1 {o",0"}={0",07}=0. (2.53)

Let us consider a generic two-level system with states |g) and |e). The dipole moment
operator d in this basis states can be written as

d = dyg [g)g| + dee |e)e] + dye [g)e] + deg le)g] (2.54)

where d;; = (¢|d|j). When dealing with a two-level system, the projections |i)(j| can be
written in terms of the Pauli matrices, as in Eqs. 2.52. Thus, the dipole moment operator

becomes
d=dol+d.,0c* +d,o"+d, 0", (2.55)

where dg = (dgy + dee)/2, d. = (dgy — dee)/2, and since the dipole operator is Hermitian
d., = d;, we have d, = Re(dy.) and d, = —Im(d,.). We note that dy is just a global shift,
d. is the longitudinal contribution, and d,. is the transition dipole moment. In general, for
systems under the electric dipole approximation, the atom has no dipole moment when it
is in an energy eigenstate, and we consider the off-diagonal elements real. That way, the
operator simplifies to

d=d,.o"| (2.56)

In the many-atom scenario, we assume d is homogeneous so that d = ), dg.07.
Now, to obtain the quantized interaction Hamiltonian, we remember that the electric field
operator in the Coulomb gauge

_zZek 5kakae lex—wt) _ Y ¢, (2.57)

so in d - E, the dot product selects the dg. component based on the polarization el(f‘). Thus,

Hy=-d-E=—i) Ma0lag.e ™ —He, (2.58)

k,a,i
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Figure 2.1: Cartoon representation of the considered model. The system is composed of an
ensemble of two-level quantum systems (TLSs) in an optical cavity. Each TLS has a separation wy
between the two states and is interacting with the cavity field with a interaction strength A. The
decoherence effects k and v happen at a much slower rate than the coupling A.

with the atom-photon interaction strength given by

/ ﬁwk ()
>\ka = d e * € . 25)9
s 2‘750( g k ) ( )

This is the usual form of the interaction strength obtained in the SI units, which may differ
especially old articles or textbooks where the CGS is used and some approximations are
taken beforehand.

We can explore a few transformations and approximations to transform this Hamiltonian
into a more usual and compact form. This Hamiltonian comes from the long-wavelength
limit (dipole approximation), where k - r ~ 0, so eXT ~ 1 to maintain consistence with the
approximations. The time-dependence given by e** can be removed in the interaction picture
via rotating wave approximation (RWA), where we neglect fast rotating terms with e*#(«w+«o)?
and keep dominant terms with e****, where A = w — wy is the detuning which is set to zero
(resonant condition). These transformations to obtain the time-independent model have no
physical consequences if the system is closed. Finally, one can use U(1) transformations
(global phase), e.g. a — e®a with ¢ = 7/2, to remove the imaginary unit and swap the signs
in the Hamiltonian.

The interaction Hamiltonian in its final form is written as

Hy =Y Mea0] (o + al,). (2.60)

k,a,i

The schematic representation of an optical cavity interacting with a collection of two-
level atoms is shown in Figure 2.1. In the calculations above, we considered a closed system,
however, there are two main components that cause losses in the system. First, the cavity is
not perfectly sealed, leading to a non-zero probability of photon leakage from the cavity at
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a rate k. Second, there is a finite probability, proportional to ~, of light leakage due to the
spontaneous emission of photons from the atom’s excited state. In this work, we explicitly
neglect all dissipation processes by assuming that A is significantly greater than the loss rates,

2

A
—>1

2.61
o (2.61)

which implies that the timescales of atom-field interactions are much larger than the timescale
at which losses become significant. This assumption is known in the literature as the strong
coupling regime.
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Electron-phonon Systems

Electron-phonon systems describe the interactions between electrons and the vibrational
modes of a crystal lattice. These interactions are fundamental in determining various material
properties, such as electrical resistivity and thermal conductivity, and play a crucial role in
phenomena like superconductivity. By studying these systems, we can gain insight into how
electrons move through a material and how lattice vibrations influence this motion, thereby
deepening our understanding of the underlying mechanisms in condensed matter physics.
When studying strongly-interacting materials, the most general model that comes to mind,
which we could call “Theory of everything”, is given by the combined contributions from ions
and electrons. The Hamiltonian is written as

N
H=- - Z TTRE Z IR
. \rj
Jj=1 j=1 a=1
A o
klnetlc terms electron-ion Coulomb attraction
M
Z Z 56
+ E + E (3.1)
Irj — T [Ra—Ry|
7,k=1
i<k a<[3
TV 4
electron-electron Coulomb repulsion  ion-ion Coulomb repulsion

where m and e is the electron mass and charge, respectively, M,, is the mass of the a-th ion,
and N = ) Z, to have charge neutrality. This Hamiltonian provides a description of a
material by explicitly accounting for all contributions from its atomic constituents. In this
formulation, both the individual effects of electrons and nuclei and their mutual interactions
are incorporated, ensuring that every microscopic interaction within the material is taken
into consideration.

In the following, we treat this Hamiltonian with a series of assumptions and approxima-
tions to ultimately obtain a tractable Hamiltonian that describes the systems of interest.
For example, when we are only interested in the electronic properties of the system, we as-
sume the ions are too heavy and their motion is slow, so the electrons see them as a static
background potential in the Born-Oppenheimer approximation. However, ions’ motion can
happen and also be induced by the presence of itinerant electrons, making the study of

27
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phonons and electron-phonon interactions important. This chapter aims to derive a quan-
tum Hamiltonian that considers strong electron-electron and electron-phonon interactions in
a lattice. Starting with the classical description of lattice vibrations, we obtain the quan-
tum Hamiltonian of free phonons, we then second-quantize the electronic part of Eq. 3.1
disregarding the ionic motion, obtaining the celebrated Hubbard, tJ, and Heisenberg models;
finally, we show that expanding the electron-ion interaction term up to first order gives rise
to a strong electron-phonon interaction, ultimately leading to the famous Holstein model.

3.1 From classical to quantum vibrations

Many physical systems exhibit oscillatory behavior when displaced slightly from equilibrium.
Near an energy minimum, the potential energy can be approximated by a quadratic function,
leading to a restoring force that is linear in the displacement—which is often a good enough
approximation. This phenomenon appears in various contexts, such as a mass on a spring,
molecular vibrations, or oscillations in RLC circuits. Figure 3.1 illustrates this idea for
a diatomic molecule. Although the actual potential energy (blue curve) may be complex,
the parabolic approximation (red curve) accurately describes the restoring force for small
deviations from equilibrium, as used in the simple harmonic oscillator model.

%V

V(x) = Vol ()% = 2(3)°]

Potential V(x)

: 0
—Vg Aeeeees S/

Figure 3.1: Potential energy of a diatomic molecule, described by the Lennard-Jones pair potential,
as a function of distance. The blue curve shows the actual potential well, while the red parabola
approximates the linear response near the equilibrium position for small oscillations.

This section focuses on how the motion of ions in a crystal lattice can be described as
a collective harmonic motion. By considering small displacements from equilibrium, the
interactions among ions can be modeled as a collection of harmonic oscillators. Upon quan-
tization, these oscillatory modes manifest as phonons—the quanta of vibrational energy in
the lattice. The discussion in this section serves as a bridge between the intuitive classical
picture of small oscillations and the formal quantized description of vibrational modes [86].
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3.1.1 Equilibria and Oscillations

Let us give the formal description of what was described above. First of all, the Lagrangian
of a free particle is given by L = mgq?*/2. In the presence of a conservative force, F = —VV,
the Lagrangian is written as L = T — V| where V' is a function of coordinates ¢ only, and
T must be quadratic in ¢. We want to find the most general Lagrangian that is consistent
with the existence of an equilibrium point defined as a point g, where a particle at rest
¢ = 0 stays at this point ¢ = 0. To find this Lagrangian, we can Taylor expand around the
equilibrium point (set geq = 0 for convenience),

L[q,4,t) = A+ Bq+ Cq + Dq* + Eqj + F¢* + higher order terms in ¢, ¢, and G(t). (3.2)

where A, B,C, D, E, and F are constants, and G(t) is a time-dependent one that may depend
of ¢ and ¢. From Euler-Lagrange equations, looking for an equilibrium solution such that
q(t) =0, ¢=0, and § = 0 we obtain

L{q,q,t] = Dg* + F¢* + higher order terms in g, g, (3.3)

and if we compare with Hooke’s Law, we obtain the correspondence D — —k/2 and F —
m/2. That way, we derived the Hooke’s law and simple harmonic motion with these simple
assumptions/constraints. Higher order terms play the role of anharmonicities, which we
neglect since we are considering small g. The Euler-Lagrangian equation, in scaled time

t — /|D|/Ft, reads
d?q
— +q= 3.4
dt2 q 0’ ( )

with straightforward solutions:

{q(t) = Re(qe*™) for D <0 (stable), (3.5)

q(t) = Re(qet’) for D >0 (unstable).

The first equation gives linear oscillations around equilibrium, while the second solution is
unstable. It means that the equation of motion that gives stable equilibrium is ¢ 4+ ¢ = 0,
corresponding to the Lagrangian (in scaled units) L = (¢* — ¢*)/2.

3.1.2 Normal modes

We found that the Lagrangian that admits oscillations around equilibrium is of the form
L = (¢ + w?q)/2. Let us expand this knowledge to an ensemble of particles. For a given
system with N degrees of freedom!, we have a set of generalized coordinates {¢;}. For a
time-independent Lagrangian L, the energy H = T+ V' is conserved. The stable equilibrium
condition is that the potential energy is a minimum, and we set the minimum at ¢; = 0 for
convenience. Expanding the Lagrangian to quadratic order in ¢; and ¢; around equilibrium

!N < 3M Newtonian degrees of freedom, with M the number of particles in three dimensional space.
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gives, in matrix notation,

1 2T

T=-q"-T-¢q with Tij:L , (3.6)
2 06190 1(q,3-0.44,)=0
1 2

V=-q" -V-q with mjza—v . (3.7)
2 94:94; | (g;3=0.445)=0

Both T and V are positive-definite? symmetric N x N matrices with T}; and Vj; constant
matrix elements.

Let us obtain the equations of motion. The Lagrangian is given by L = %qT -T-q— %qT .
V - q, so the Euler-Lagrange equations reads

T-§+V-q=0. (3.8)

We look for an oscillatory solution q(t) = ®e™!, where ® is a vector of amplitudes for
each coordinate ¢;. Plugging it to the Euler-Lagrange equations, we obtain a generalized
eigenvalue problem?,

(V—-w’T) & =0, (3.9)
whose solution is given by det(V — w?T) = 0. This term has a N-th order polynomial in w?,
so there are N solutions w?, the eigenvalues, which give the normal mode frequencies, with
corresponding eigenvectors &Y the normal modes. They have a few interesting properties,
namely: w? are real and may be degenerate; & may be chosen real, they form a complete

set (the uncoupled basis), they can be chosen orthonormal as @ . T.8® — 0ap, with T
playing the role of the metric; Symmetries lead to no change in V' giving a zero frequency
mode w, = 0.

We can write the general solution in the normal mode basis as

qt) =D pa®)®@ o q(t) = pa(t)L, (3.10)

(@)

where p,(t) are the normal mode coordinates. We define R;, = ®,”’ and write

q(t) =R p(t). (3.11)
The aforementioned orthogonality condition, written in terms of R reads

R - T-R=1, (3.12)

or, equivalently, R” - T = R~!. Using the equations above, we can obtain
p(t) =R"-T-q(t) or a(t) =2 T-qlt), (3.13)

where p(0) is given by the initial conditions for q. Interestingly, Eq. 3.12 shows how to diag-
onalize T. We can use this result to obtain the normal modes and normal mode frequencies.
From Eq. 3.9 we can apply the normal mode frequency row vector from the left,

@ . V. 3® = 206@" . T.50 = W200s, (3.14)

2T must be positive and V is positive due to the equilibrium conditions.
31t is called generalized because T # 1.
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but @ V.¢® = (RT-V-R),3, so that R diagonalizes both T' and V', where RT-V-R = Q
with Q = diag(w?)?. Thus, we learned that it suffices to diagonalize the matrix V to obtain
the normal modes of the system.

Finally, we want to write both Lagrangian and Hamiltonian of the system in the new
coordinates. First, note that

1. R
T=34"-T-a=3p"p, (3.15)
1 1
V=3d"-V-a=5p -Q-p, (3.16)
so that the Lagrangian is obtained
1 -2 2 2
L= 5 Z(pa - waﬂa)‘ (317)

[e%
Defining the momentum conjugate to the normal mode coordinates,

oL :
Poa = a = Pa (318)

we write the Hamiltonian, H = ) pp — L, as

1 2 2 2
H=3 > (Do +wip2): (3.19)

«

Both 3.17 and 3.19 are the sum of N independent harmonic oscillators.

3.1.3 Phonons

Having established the classical framework for lattice vibrations, we have found that the
normal modes of the system correspond to a set of independent harmonic oscillators, each
characterized by a well-defined frequency. While this classical approach is sufficient for de-
termining the vibrational spectrum of the crystal, it does not fully capture the behavior of
these modes at low temperatures, where thermal energy becomes comparable to or smaller
than the quantum scale set by hAw. In this regime, a purely classical treatment fails to ex-
plain the observed deviations from the Dulong-Petit law in the heat capacity of solids, as
described by the Debye theory. To address these quantum effects, we now transition to a
quantum mechanical description, where the vibrational degrees of freedom are quantized,
leading to discrete energy levels and the emergence of phonons as the elementary excitations
of the lattice. Mathematically, this transition follows naturally by mapping the normal mode
coordinates and conjugate momenta to quantum operators that satisfy the fundamental com-
mutation relation [z, p] = ih, leading to a second-quantized formulation of lattice vibrations.
The procedure is similar to the one given in Chapter 2, where we recall that alternatively

4Here, the congruence transformation R” - O - R diagonalizes both 7" and V. In QM, if R is a unitary
operator, it would mean that 7" and V' commute. However, the equivalence is not true since R” # R.
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we can write H in terms of the Bosonic creation and annihilation operators that satisfy
[a,a’] = 1, so that the quantum Hamiltonian for each oscillator is given by

Hy = hw, (a (o + %) . (3.20)

An equivalent approach, following Bissbort et. al. [16] is to write the Hamiltonian in
the so-called local phonon picture. In our previous derivations, the index « relates to the
number of degrees of freedom N, which can be smaller than 3M. Now, we go back to the
3M coordinates and write the harmonic matrix D as the matrix of second derivatives in V'
(similar to Vj;). This representation is interesting to obtain a good picture of the role of the
interactions in the harmonic approximation. We can rewrite the phonon Hamiltonian, in the
harmonic approximation, as

H= Z + Z Up i DYty (3.21)

n,m,i,j

Z + Z unzDU umﬂénm(gz] +; Z UTHDZ U’m»] (322)

n,i n,m,i,j n,m,t,j
(n,)#(m.5)
TLZ ZZ 1 Z
_ —Z( D 2 ) b5 Y wn D (3.23)
n,m,i,j
(n,2)#(m.5)

In second quantization, we define

[ 1

Unid 2M, Qi (b ). (3:24)
[2M,Q

Poi=i ’; LY — b)), (3.25)

where D}, = M, ;. The first term is a collection of local harmonic oscillators

TL’L 1
: Z ( + M, Q2 u n) =3 > QB b + baibl ). (3.26)

The second term represents the interaction part of the Hamiltonian,

_ DY L= nm ' . ' t t ; ;
2 n;j u”ﬂDnmumJ B 2 n;j 2Mn Qn,iQmJ‘ <b"’lbm7] + bn,zbm,j + bn,zb P+ bn zbm ])
(n,d)#(m.) (n,d) #(m. )

(3.27)
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The full Hamiltonian can be written in a more convenient way,

1
H=3 2 l(s 6103 (B b + b bl ) (3.28)
n,m,i,j
(L 8unbi) Difn o o
N /T 0 (Bu,ibim,j + bl + bl by + BL 00 ) (3.29)
1
=3 2 [Wm(bbbmd+bmbl@,j)+9rfm<bn,ib +bLszn,J)} (3.30)
n,m,t,}

where

iy (1 — 5nm5ij)D

= 3.31
G = T (3.31)

Thus the interaction strength is encoded in the matrix ¢g. In the next chapters, we will use
the information contained in the matrix g to study the properties of the phononic systems
of interest.

3.2 Electrons in a Lattice

In this section, we are interested in obtaining the electronic properties of strongly correlated
materials. As discussed in the beginning of this chapter, in this case we can assume that the
ions” motion is much slower than the electronic, and employ the Born-Oppenheimer approx-
imation by ignoring the nuclear dynamics in the electronic problem, so the ions’ positions
are treated as classical fixed parameters. The electrons then feel a fixed background static
lattice potential Uiy, (r). The Hamiltonian in the second quantized form reads

H= Z / Brwl (¢ {——VMUM( )| W, (r)
+ Z / d3r / Ul ()T, () Voo (r = v) W0 (r) U, (1), (3.33)

This general Hamiltonian describes electrons interacting with a static potential, and interact-
ing with each other via Coulomb repulsion V.. We now employ a series of approximations to
reach a more tractable Hamiltonian. First, we assume that the lattice potential is periodic,

Uion(r + Rl) = Uion(r), with Ri = i1a1 + igag + i3a3. (334)

The Bloch theorem states that the solution of the Schrodinger equation for a periodic po-
tential is given by the Bloch wavefunctions wuy ,(r) and energies in electronic bands of the
form ey . We prefer to work with the Wannier functions, which are equivalent to the Bloch
functions, given by the inverse Fourier transform,

¢ia(r) = gba(r - i \/— Z 'U a . (3.35)
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We define creation operators for electrons in a Wannier state as
= [ @ronu) = i = 2 bt (3.36)

obeying, being Fermions, {c¢iae, ¢ Jﬁa} — 05008000, {Ciaos Cipor} = {c]
Wannier basis, the Hamiltonian becomes:

H= Ztlj CiaoCiac + Z Z Sﬁﬁ: Iaa J,Ba/chUICmHU7 (337)

ijac ijmn afuv

.} = 0. In the

iao? J,Bcr

with .
= / d®ref, (r) {—%vz + Uion(r)] Pia(T) (3.38)
and

gt = [ @1 [ @G0Vl = )b )m). (3.39)

This is a general Hamiltonian for electrons in a lattice. In the following, we make some
assumptions to obtain the Hubbard model.

3.2.1 Hubbard Model

Let us simplify the Hamiltonian by making some extra assumptions: 1- all bands, but the
lowest, have very high energies, and thus are electronically unavailable — in this case we drop
the band index and work only with the lowest band; 2- the lower band is a s-band, so it has
rotational symmetry — so that the hopping elements depends only on the distance between
sites i and j. Therefore, we assume that the matrix elements of both ¢ and v decrease fast
with |R; — R;|, so we can restrict to nearest-neighbor sites only, arriving at the generalized

Hubbard model
=t Z Z Clotio + Cloio) + U D nigmiy +V Y min
i (i3
+ X Z Z CisCjo + C;GCiU)(ni_U + nj_g) + JZ Si . Sj
(id)

+Y Z chlichcJT + CN Tcchli) (3.40)
(i)

) _ _ 1
where ni, = ¢ Cio, N = Ny + Niy, Si = 5 Y, CicO o0’ Cior, and

t = —t;; the hopping between neighboring sites,
U = vy the on-site Hubbard repulsion,
V =v;;  the Coulomb repulsion between between neighboring sites,
X = vyy;  the bond-charge interaction,
J = —2v;5; the Heisenberg exchange interaction between neighboring sites,

Y = vy the hopping between pairs of electrons.
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The symmetries of the Hamiltonian are in N' = )" n; number of electrons, M = N; — N
magnetization, and total spin S = ). S;. Hubbard [66] noticed, for some transition metals,
that one can neglect all terms apart from ¢ and U, leaving the well-known Hubbard model

HHubbard = —t Z (CIUCjo + HC) +U Z NNy . (341)

(i,j)o i
3.2.2 t—J and Heisenberg Models

Schrieffer—Wolff transformation

In quantum mechanics, the Schrieffer—Wolff (SW) transformation is used to obtain an
effective Hamiltonian that describes the low energy physics of the system. Consider
the Hamiltonian,

H=Hy+V. (3.42)

The unitary transformation can be written as H' = e*He™®, so that ST = —S. If H
is Hermitian, so is H’. They share the same eigenvalues and [¢)) — e [)) does not
change the expectation values. We can expand H' via BCH formula,

H' = H+[S,H] + 5[S, [, H] + -

1 1
= Ho+V + (8, Ho] +[3, V] + 5[5, [S, Holl + 5[5, [S, V] + -+ (3.43)
The idea is to make the Hamiltonian diagonal to first order in V. We choose the
generator S such that V + [S, Ho] = 0. It also implies that 3[S,[S, Ho]] = —3[S, V], so
1
H' = Hy + 5[8, V]+0O(V?). (3.44)

This is the standard form of the SW transformed Hamiltonian. Neglecting O(V?), it
describes the low energy physics.

The Hubbard model describes the behavior of conduction band electrons and itinerant
magnetism for arbitrary filling. The large Hilbert space is still tractable numerically for
small enough system sizes. We now turn to the problem where we want to describe strongly
interacting localized spins on a lattice. That is, at half-filling, when the ground state is
described by one electron per site we can obtain the Heisenberg model. Additionally, there
is an intermediate model between these two, the t-J model, that is related to the low energy
physics of the Hubbard model. The Schrieffer—Wolff transformation can be used to extract
the low-energy physics of strongly interacting systems if the energy scales is chosen such
that the higher energy states are unavailable in a given subset. Let us work in the case of
near half-filling N./N < 1 to understand the role of the transformation in this system. For
example, considering two sites, we can have N, = 0, 1,2, 3,4 electrons, so that there are 16
possible states. Schematically, half of the processes are shown in Fig. 3.2 (the other half are
their spin flipped counterparts). In (a) and (b) the number of doubly occupied sites remain
unchanged, while in (¢) and (d) it increases or decreases the number of doubly occupied sites.
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Thus, only processes (c¢) and (d) contribute to the on-site energy U. This is the information
that we need for the SW transformation: the hopping Hamiltonian can be split into two parts
H, = Ht(o) + Ht(i), with Ht(i) = H; 4y + H; 4 where H; 4y increases (decreases) the number
of doubly occupied sites, and Ht(o) is the hopping to empty sites.

L l=11 1 =11

Figure 3.2: Schematic representation of the possible states of a two-site system.

The goal is to eliminate the high-energy contributions Ht(i) from the Hubbard Hamilto-
nian to obtain an effective low energy description, as

H =eS(HY + HY + Hy)e s = H” + Hy + O(2/U). (3.45)

We have to find the generator S, to obtain the terms of the order O(t?/U). Following the
usual procedure, we write

1
H’:H+[S,H]+§[S, (S, H]| +--- (3.46)
= Hy + H" + H + (S, Hy] + [S, H"] + [3, H”) (347)
1 1 1
+ 5818, Hyll + 5[S. 18, BN + 5 [S. 18, H ) + - (3.48)

We want to find S such that Ht(i) + [S, Hy] = 0 so, to lowest order, the operator does
not change the number of doubly occupied sites. We note that [H; gy, Hy] = FUH; 4x, s0
S = (Hay — Hyq—)/U, which greatly simplifies H’,

H' = Hy+ H® — 2[5,15, Hol) + 8, B") + 5[5, (5, B + 5[, [5, H +- . (3.9
We now want to remove higher order terms and any high energy term remaining. Let us check
the order of magnitude of the remaining terms. First, we observe that [S, Ht(o)] = O(t?/U),
and thus [, [S, H”]] = O(3/U?) is neglected. Secondly, [S, [S, H™]] = =[S, [S,[S, Hy]]] =
O(t3/U?) is also neglected. Lastly, the term [, H”] involves changing the number of doubly
occupied sites, but can be easily removed via a second-order correction S — S 4+ S®). The
term —3[S, [S, Hy]] is obtained via [S, Hygx] = [Hyay, Hia-]/U. The effective low energy
Hamiltonian becomes

1
H =Hy +H" + FlHrae Hya) (3.50)
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In the last term, the product H; 4y H; 4 does not contribute, as we are interested in the low
energy regime near half-filling. That way, for the same reason, Hy; is also neglected. We are
left with a term that creates and destroys one doubly occupied site H; 4 H; 44. Finally, after
some algebra, we obtain the t-J Hamiltonian

4¢2 1
H,;=—t Z (cjgcjg + H.c.) + 7 ; (Si : Sj - é_lninj) ) (3-51)
1,J

(g

where the first term comes from Ht(o). The possibility to doubly occupy a site is excluded,
so the hopping term corresponds to hopping of empty sites, as we are working in a reduced
Hilbert space now®. Hubbard and t-J models agree in the U > t limit, as the strong on-site
repulsion forbids (strongly penalizes) double occupancy.

At half-filling, N./N = 1, the system’s ground state is characterized by exactly one
electron per site, such that the hopping does not contribute in the t-J model. We are left
with a pure antiferromagnetic (J > 0) Heisenberg Hamiltonian,

Hpyeisenberg = JZ Si - S;j. (3.52)
(i.J)

A more detailed discussion of the derivations can be found in the book by Eckle [37].

3.3 Electron-phonon interactions

In the last part of this chapter, we aim to obtain the electron-phonon interactions. We start
from the Hamiltonian 3.1 and study the electron-ion term, which can be written as

N Ny

Hel—ion - Z Z ‘/el—ion(rn - Rma)a (353>

nm=1 a=1

where N, is the number of cells and N, the number of basis atoms in the unit cell, with
R..(t) = R, + p, + Upa(t) = R2 + u,,(t). This can be expanded in power series in ion
displacements u, providing

Hel—ion = Z Z V;)l-ion(r - R’?na - uma)

~ Z Z ‘/fil-iOH(rn - Rgma) - Z Z Umq VRma V:el—ion(rn - Rma)
n m,x n m,x RJ..
= HY ) + Hillow, (3.54)

where we neglected higher order terms, O(u?). The constant term He(E zon is incorporated

in the periodic potential for the electrons, while the electron-phonon interaction is encoded

5 Alternatively, one can explicitly write the hopping term in a way that only hopping of empty sites can
happen: c}a — c;ro(l — Mg ).



38 CHAPTER 3. ELECTRON-PHONON SYSTEMS

in the first order term. The gradient can be straightforwardly evaluated writing Vi ion in
reciprocal space

1 .
%l_ion(r — Rna) = V Z eZQ'(rfR"O‘)VQ, (355)
Q

VRma Vvel—ion (rn - Rma)

0
Rmoc

- _VZ Y Qe R, (3.56)
Q

Thus, we can write the second quantized electron-phonon Hamiltonian as

el ph = Z Z b k 0| el ion |b/ kl >Cbkocb’ ko’ (357)

bk,o b ko
where

(b, ko HO L 0 K o'y = — / dr¥;, (0> W - Vi, Verion(t = Rua) | Ty or(¥)

n,o R%a
:% Z Q : unOC@_iQ.R%O‘VQ/dr\I’;’;,kﬂ(I‘)GiQ.r\I’b/7k/7J/(I‘), (358)
n,a,Q

where the displacement operator is written as

3Ny 6iq~Rn
ZZ 2M S(j (a)( ]7q+b}:,—q) N (3.59)
q j=1

Note that ¢ QRua = ¢=QRne=QPa and in Eq. 3.58 will appear Y ¢4 QRn — N§_ .
The electron-phonon Hamiltonian reads

Mo = = 55 3 | 0@ Vel 1, o)l
q,j,a bk,o b Kk o
=> > ) \/— My jbkop k. ’(qu+bt,7q)cz,k,acb’7k’70” (3.60)
q,j bk,o b k' o’

where we defined the overlap integral

1 * iq-
Agbhatt Ko = & / drWy o, (r)e " Wy g o (1), (3.61)
and the coupling strength
1 h ) ,
M, v bob ko = — " - &Y —iqapa o ko 3.62
R aa Q; Moo () &) (a)e aQlg,b k.ol K " (3.62)

with Q = V/N. The imaginary unit is removed via a global phase transformation. This is the
most general Hamiltonian that considers electron-phonon interactions. In the following, we
make a series of approximations and assumptions to obtain the celebrated Holstein model,
the most basic and paradigmatic model for electron-phonon interactions.
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3.3.1 Holstein model

Let us evaluate the overlap integral above in terms of the Wannier functions whitin some
. . : . 1 . . o . o
approximations. First, consider H; , is independent of spin, implying ¢ = ¢, and then

the overlap integral is also independent of the spin. In terms of the Wannier functions, we
evaluate o as

Qaq7b7k7b/7k/ = /dr\I/Z’k(r)eiq'r\Ilb/7k/(r)

1 : N .
= Z e KRR /dre“"rgbz (r—R)oy(r —R). (3.63)
RR/

Within the tight-binding approximation, the overlap between distinct sites is extremely small,
and terms like R # R/ are vanishing

1 -y .
Qamb’k’b/’k/ = N Z el(k —k)'R / dre’q'rqbz (]f' — R)¢b’ (I‘ — R) (364)
R

As we have done in the Hubbard model, we consider the case where all bands, but the lowest,
are very high in energy, so that they are unavailable. We fix to the lower Bloch band and
drop the band indices,

1 .y .
Qo pp = ~ Z !k —k)-R / dre@™|p(r — R)[?
R
1 o . .
_ i(k'—k)-R _iq-R iqr 2
_ NZR:Q i /dreq ()2, (3.65)

but + > g @R — 5 and define py = [ dre’®”|¢(r)[>. We also consider that the
all eigenmode frequencies of the phonon Hamiltonian w;, but the lowest, lie in a very high
energy band, so that they are effectively frozen out at the energy scales of interest. We
thus fix eigenmode to the lowest and drop the index. In the Einstein approximation, the
dispersion relation w(q) is disregarded, which is a valid assumption when the dispersion
is weak. Additionally, the remaining factors (the polarization vectors, phase factors, and
potentials) vary weakly with q, so My ~ M. Having the momentum space dependence only
on the operators, we can Fourier transform the Hamiltonian back to real space, obtaining
the Holstein model

HHolstein =g Z(bj + bi)cjgci0'7 (366)

10

where ¢ contains M, and normalization factors. This is the most basic model describing
electron-phonon systems, where an electron at a site ¢ interacts with a local phonon at the
same site. We observe that many assumptions and approximations made here were also taken
into account to obtain the Hubbard model. This shows that both models are compatible in a
sense that they describe the system in similar energy scales. The combination of these models
is called the Hubbard-Holstein model, which is central to our study on strongly interacting
electron-phonon systems.
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Gaussian and non-Gaussian states

Gaussian and non-Gaussian states are both central to understanding quantum many-body
systems, each contributing distinct insights into the underlying physics. Gaussian states,
due to their simplicity and broad applicability, provide a natural starting point for analyzing
systems governed by quadratic Hamiltonians and are essential for clarifying quantum correla-
tions and entanglement in bosonic systems. Although non-Gaussian states occupy a relatively
niche area, they are vital to our approach, as they introduce critical features necessary for
capturing complex quantum phenomena that extend beyond the Gaussian framework. In
this chapter, we begin by outlining the fundamental properties of quadratic Hamiltonians
and presenting the tools for constructing and analyzing Gaussian states. We then exam-
ine the transformations that connect Gaussian and non-Gaussian states, highlighting their
importance in describing the ground states of interacting systems. By the chapter’s end,
readers will have developed a robust foundation in both types of states, setting the stage for
the advanced methods and applications discussed in later chapters.

4.1 Quadratic Hamiltonians

The use of quadratic Hamiltonians to model quantum dynamics is widespread, particularly
when higher-order terms are insignificant or negligible, which is frequently true for quantum
light fields. Moreover, quadratic Hamiltonians provide a reliable approximation in various
experimental scenarios of significant interest, including ion traps, optomechanical systems,
and several other systems. The quantum harmonic oscillator is a classical example in quantum
mechanics, and the second quantized description of light reveals that photons behave as
quantum harmonic oscillators.

A quadratic Hamiltonian is defined as a Hamiltonian with polynomial of order two in the
canonical operators, z and p. In general, this class of Hamiltonians can be written as

1
H= §(Ax2+Bp2+C(xp+px))—I—Dm+Ep (4.1)
the terms 22, p?, xp, and px represent quadratic operators in phase space. In quantum optics,
x and p are seen as continuous non-commuting variables. The position and momentum of

a photon are not well defined, and  and p may represent multiple positions and momenta

41
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in systems with multiple degrees of freedom. Therefore, x and p are usually referred as
quadrature operators.

4.1.1 Quadrature parametrization

The quadrature parametrization is done by defining the quadrature notation R = (z,p)’.
Let us obtain the canonical commutation relations (CCR) in terms of the quadrature vector,

= (G §l) = (% )= 4
0

with Q = (_1 (1)> Note that Q is anti-symmetric Q7 = —Q and Q? = —1, so it is also a

real orthogonal transformation, Q72 = 1.

Generally, we have a finite set of canonical degrees of freedom represented by pairs of
self-adjoint canonical operators x, and p, that obeys [z,,pm] = dum (A = 1). In quantum
optics, the canonical degrees of freedom are called modes, and we will borrow this terminology
from now on. The question that may arises comes from the way we define the quadrature

vector in multimode systems. Let us construct R = (21,p1,..., %0, pn)! = (R1,..., Ry), s0
the CCR is given by

n
R, R =iHa=iQ (4.3)
n=0
Equivalently, we can re-order the canonical operators as R = (21, T, . .., Tp, P1, D2 - - - s Pn) . =

(z,p)T, with 2 = (21,29, ...,2,)T and p = (p1,p2,...,pn)T, that yields

(R, RT] = io, (4.4)

On 1n
o (_ . on) | (4.5)

where 1,, and 0,, are, respectively, the n x n identity and null matrices. As 2 and Q, 0 is an
anti-symmetric, real orthogonal matrix, and 02 = 1,,. In this study, we adopt the ordering
convention R = (Z1,%a,...,Tpn,P1,P2,---,Pn). . Finally, in terms of R, a general quadratic
Hamiltonian can be written as

with

H = R"hR+ R, (4.6)

where h is a positive-definite symmetric real matrix and « is a vector of real numbers.

4.1.2 The Symplectic Group

The linear term in the quadratic Hamiltonian [conf. Eq. 4.6] can be absorbed in the first
term by a simple change of variables. Let us then consider the Heisenberg evolution of the
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quadratic Hamiltonian H = RThR,

R=i[H R = %[RThR, R

o ([a:Thm:I? + 2" hayp + p" Rz + pT hypp, :1:])

— 2 \[#"haaw + 3T hyypp + pThE 2 + pThypp, p)

_( hapr A hpp

_ (_hmx b ) = ohr (4.7)
where Ny, hyp, hap are nxn symmetric blocks of the symmetric matrix b, r = (21, 22, ..., z,)7,

and p = (p1,p2,...,pn)T. The solution is straightforward, given by R(t) = e’"R(0). The
transformation e’ must preserve the CCR given that the result represents the action of a
unitary operation. This can be rephrased by stating that e“" is part of the group of lin-
ear canonical transformations, a concept well-established in classical Hamiltonian mechanics.
This group is commonly referred to as the real symplectic group in 2n-dimensional space,
denoted by Sp(2n,R). A matrix S is in the symplectic group if it satisfies

SToS =0, (4.8)

where the so defined ¢ is the symplectic matrix which encodes the CCR in the quadrature
notation formalism. This condition means that S preserves the “symplectic form” of phase
space, that is, preserves the CCR, ensuring that the geometry of the Hamiltonian flows
remains consistent under transformation. Additionally, the operators z?, p? and (zp +
pz) relate to the symplectic group Sp(2n,R), which is the group of transformations that
preserve the symplectic structure. In phase space, the symplectic structure is preserved by
transformations that keep the fundamental commutation relations intact i.e., [z,p] = ¢ in
quantum mechanics or the Poisson bracket {z,p} = 1 in classical mechanics.

In general, the symplectic group Sp(2n, R) is defined as the group of 2n x 2n matrices that
preserve the symplectic form in a 2n—dimensional phase space. Here, n would correspond to
the number of degrees of freedom or particle pairs in the system. For a one-dimensional phase
space (i.e., one degree of freedom), Sp(2,R) applies, while for a system with two degrees of
freedom (e.g., two particles), the appropriate group would be Sp(4,R).

4.1.3 Diagonalizing Quadratic Hamiltonians

The relationship between quadratic Hamiltonians and symplectic algebra comes from the
structure of quadratic forms in classical and quantum mechanics. This quadratic form can
often be simplified using symplectic transformations, which preserve the canonical structure
of the phase space. Symplectic transformations can rotate and scale the coordinates x and
p in phase space, which allows us to find a new coordinate system where the Hamiltonian
is diagonal. This is particularly useful in systems like oscillators, where diagonalization cor-
responds to finding the normal modes. The symplectic transformation that removes the
cross-term in a quadratic Hamiltonian is essentially a rotation in phase space, often rep-
resented by a squeeze transformation or a canonical transformation. This transformation
changes the phase-space coordinates R = (z,p) to new coordinates R = (%, ) where the
Hamiltonian takes a diagonal form without cross-terms.
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For example, for a single-mode quadratic Hamiltonian of the form H = RThR, we can
apply a symplectic transformation that rescales and rotates R by a matrix in Sp(2,R) to
remove terms like (zp + px). One specific transformation is

T coshf sinh@ T
(ﬁ) - (sinh@ cosh@) (p) ’ (4.9)

where the parameter 6 (often related to the "squeeze" factor) is chosen based on the coef-
ficients in the original Hamiltonian. The right value of € will turn the Hamiltonian into a
simpler form like

H= %(532 +p?) = %RTR, (4.10)
where ¥ and p are transformed variables. This diagonalization is equivalent to finding the
eigenvalues and eigenvectors of the Hamiltonian matrix and allows the Hamiltonian to de-
scribe independent harmonic oscillators.

This transformation preserves the symplectic structure of the phase space, meaning that
it retains the fundamental commutation or Poisson relations between T and p. By selecting
the appropriate parameters for the transformation, the Hamiltonian is diagonalized, which
simplifies the analysis of the system’s dynamics. Thus, the operators 2%, p?, and (zp + pr)
indeed relate to symplectic groups in that they generate transformations in phase space that
preserve its symplectic structure. These transformations are crucial for simplifying and di-
agonalizing quadratic Hamiltonians by symplectic methods, making the system’s dynamics
easier to analyze. These symplectic transformations are widely used in fields like quantum op-
tics and classical mechanics, where phase-space methods are crucial for simplifying quadratic
Hamiltonians through diagonalization.

4.1.4 The Squeeze Operators

The term “squeeze” mentioned above comes from the behavior of the transformation in phase

space. The matrix
coshf sinh@
S0) = (Sinh9 cosh 9) (411)

is known as a squeezing transformation because it scales x and p differently. Specifically:

e When 6 > 0, coshf > 1 and sinh# > 0, one of the variables is “stretched” while the
other is “compressed” or squeezed;

e This is a canonical transformation, meaning it preserves the phase-space volume (the
symplectic structure), but it redistributes the spread of x and p.

In classical mechanics, squeezing can relate to changing the shape of an ellipse in phase
space, representing different momentum and position distributions. In quantum optics and in
quantum mechanics in general, the squeezing transformations are represented by unitary op-
erators and are crucial for altering uncertainties in x and p without violating the uncertainty
principle. The standard definition of the single-mode squeeze operator is

1
Us = exp<§[z*a2 — zaTQ]). (4.12)
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where z = |z[e*?. The action on the ladder operators is written as

UlaUs = a cosh |z| — e*#al sinh |2], (4.13a)
Ula'Us = af cosh |z] — e7*af sinh |z]. (4.13b)

Therefore, its action on x and p is given by

1| A } T
UlzUg = 7 al (cosh |z| — €'? sinh |z|) + a(cosh |z| — e sinh |z|) , (4.14a)
UlpUs = % al (cosh |z| + €' sinh |z|) — a(cosh |z| + e " sinh |z|) . (4.14b)

A special case happens when we choose z to lie in the real axis of the complex plane. For

example, fixing ¢ = 7, so e = —1, we obtain,
UlzUs = ez, (4.15a)
UlpUs = e~ *p. (4.15D)

We now observe more clearly that the squeeze operator squeezes or stretches x and p de-
pending on the squeeze parameter z. This shows a clear relationship with the aforementioned
squeeze matrix.

Let us now introduce a general squeeze operator for an arbitrary number of modes
and expanded degrees of freedom. We define a operator acting on R = (z,p)’, with
= (11,29,...,2,)" and p = (p1,p2, ..., pn)"

Y

Us = exp (—%RTgR), (4.16)
where £ is a symmetric 2n x 2n matrix. Thus, the action of Ug on R reads

UlRUs = ¢ R = SR, (4.17)
with S = e belonging to the symplectic group Sp(2n,R), where ST0S = ¢ and ¢ is the
symplectic matrix.

Note that if the diagonal terms in £ vanish, we obtain, in the single-mode case, —iRT¢R/2 =

z:(aT2 —a?)/2, showing the correspondence between standard and general photon squeeze uni-
tary operators, when a single parameter simplification is chosen.

4.2 Gaussian states

In section 4.1.3, a brief introduction to the diagonalization of general quadratic Hamiltonians
were shown. To recap, consider a general quadratic Hamiltonian for n modes

H= %RThR, (4.18)
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where R = (z1,%2,...,%pn,P1,P2,---,Pn)’ is the quadrature vector and h is a symmetric

2n x 2n matrix. The CCR are given by Eq. 4.4.

The Williamson theorem states that any positive-definite symmetric matrix h can be
written as h = STvS, where S is a symplectic matrix (SoST = o) and v is a diagonal matrix
of eigenvalues (positive, corresponding to normal modes) [147]. Under the symplectic trans-
formation S, the quadratures transform as R — SR. Substituting this into the Hamiltonian
gives

1 1 1o =
H= 5RThR = §(SR)TV(SR) = 5RTVR, (4.19)

in terms of the transformed quadratures R = SR. This is now diagonal in the transformed
basis. Each term corresponds to a decoupled mode with eigenfrequency r;. The symplectic
transformation associated with h can be implemented by a squeezing operator. Specifically,
the symplectic matrix acts on the quadratures, modifying their variances and correlations
according to the squeezing parameters. The unitary operator Ug = eXp(—%RTg R) in Hilbert
space generates this action. Thus, the diagonalization of h corresponds to a squeezing trans-
formation in the phase space of the quadratures.

To describe all pure Gaussian states, displacement is necessary in addition to squeezing.
A general quadratic Hamiltonian can include linear terms of the form RT«, where «a is a
vector representing a shift in phase space,

H = %RThR + RTa. (4.20)

The linear term R’ « is eliminated by a displacement operator Ug(Ag) (defined in Eq. 2.38),
where Ag corresponds to the shift Us(Ag)TRU4(Ag) = R+ Ag, with Ag = (A,, 4,), where
A, and A, being N-dimensional displacement vectors. After applying the displacement, the
Hamiltonian becomes quadratic in the new phase-space coordinates, leaving the diagonaliza-
tion by the squeeze operator intact. Thus, the most general pure Gaussian state is generated
by

|GS) = UyUs |0) . (4.21)

This is consistent with the fact that all pure Gaussian states are generated by unitary
operations derived from quadratic Hamiltonians acting on the vacuum state. More generally,
Gaussian states are all the the ground and thermal states of quadratic Hamiltonians with a
positive definite Hamiltonian matrix.

A Gaussian state can be fully specified by

e The displacement vector
(Ag); = (GS| R; |GS), (4.22)

representing the first moments (mean values) of the quadratures. Since the displace-
ment operator modifies the mean values of R, the first moments of the state directly
encode the displacement vector.

e The covariance matrix I', which encodes second-order moments,

r, — %<G5|{5Ri, SR;YIGS), (4.93)
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where 0R = R — (R) are the fluctuations of the quadratures around their mean values
and {A, B} = AB + BA is the anticommutator. Diagonal elements I';; represent the
variances of the quadratures, e.g., ((dz;)?), while off-diagonal elements I';; represent
the correlations between different quadratures, e.g., (dz;0p;). The covariance matrix I
thus provides a complete description of the spread and correlations of the quadrature
fluctuations in a Gaussian state. For pure states, which is our case, the covariance
matrix can be written in terms of a symplectic transformation S acting on the vacuum
state,

I =5s". (4.24)

This is analogous to how a multivariate normal distribution is specified by its mean vector
and covariance matrix in probability theory.

In summary, the Gaussian state is a coherent squeezed state, so the unitary Gaussian
operator is a combination of squeeze and displacement,

Uas = UgUs = exp(iR" 0 AR) exp (—%RTgR). (4.25)

It transforms R as,

UlgRUgs = SR+ Ap. (4.26)

4.3 Unitary Dressing Transformations

This section introduces unitary dressing transformations as a key tool for handling two dis-
tinct interaction regimes. In the weak-coupling limit, the Hamiltonians are well-approximated
as quadratic, making Gaussian states accurate, as detailed in the previous sections. However,
when interactions become strong, this approximation fails and methods like the Lang-Firsov
transformation become essential. We outline these transformations and explain how they
enable a more accurate description of the system, thereby preparing us for the construction
of non-Gaussian states in the next section.

4.3.1 Lang-Firsov transformation

Let us consider the popular Holstein model, defined in Chapter 3, which assumes an on-site
coupling of spinless electrons with a dispersionless lattice vibration mode,

H= —tZ(czcj + H.c.)+ wagbi + an@-(bZT + b;), (4.27)
(i.7) g g

Our task is to diagonalize the Hamiltonian. If the electron-phonon interaction is strong,
the hopping term can be treated as a perturbation. In this case, the Hamiltonian would
be diagonalizable if we get rid of the coupling term. It can be done via the Lang-Firsov
canonical transformation. Before carrying out the formal transformation, we first motivate
its results with a few intuitive arguments. The harmonic oscillator potential in the presence
of a external force is written as

1
V(z) = §mw2m2 — Fz. (4.28)
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For the electron-phonon coupling, the external force depends on the occupation n.; of the
electronic state and the coupling constant g, giving F' = —+v/2gny. To diagonalize this
classical potential, complete the square

1
V(z) = =mw’z? + V2gny

2
2
1 2 ﬁgnel (\/ignel)z
=—-mw" |z + — .
2 mw? 2mw?
2
1, (2 V2 g
= §hw (7 + End) - angl, (429)
where in the last line the equation was rewritten using the oscillator length scale | = \/h/mw.
Thus, we obtain a shifted harmonic-oscillator potential, by xgie = —%, and an additional
negative energy shift —%nﬁl corresponding to the energy gain due to polaron formation.

Now we turn to the explicit Lang-Firsov canonical transformation H = ¢SHe . The
transformation must be unitary to preserve the Hermiticity of the Hamilton operator, so the

transformation’s generator S must be anti-Hermitian, ST = —S. The appropriate choice for
S to eliminate the electron-phonon coupling is

9 i

mBCRL) (4.30)

Using the BCH formula, the transformed operators become

w

& = cie— 2010, (4.31D)
This physically reflects a shift of the ions’ equilibrium position,

(Ti) = (i) — %

as expected from our semi-classical observations. The rotated Hamiltonian after the Lang-
Firsov transformation is written as

_ 2
H=—t>"(cleAlny + He) vy ol — L5 02, (4.33)
w
(i5) i i

(ni), (4.32)

where A; = exp{—%(b;r — bz)} After applying the Lang-Firsov transformation to the Hol-

stein model, the electron-phonon coupling term is eliminated, and the phonon operators
instead appear in the modified hopping term. This introduces phonon-assisted processes into
the hopping dynamics. However, in the limit of strong electron-phonon coupling, these pro-
cesses can be treated perturbatively. To leading order, this results in a simplified Hamiltonian
where the electron hopping is renormalized, effectively decoupling the phonon contributions
from the electronic degrees of freedom.
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4.3.2 The dressing transformation

The Lang-Firsov canonical transformation is useful in the strong coupling perturbation the-
ory, where the modification in the hopping term is seen as a exponentially decaying effective
nearest-neighbor hopping. However, away from the limiting regimes, we are still left with a
electron-phonon coupling in the kinetic term, so the Hamiltonian is not diagonalized in this
basis. Generally, we can construct an operator U, with a tunable variable .

We define the unitary operator U, inspired by the Lang-Firsov transformation, where it
depends on a set of arbitrary variables {\;}. The specific form of Uy strongly depends on the
system of interest. Our main focus is in light-matter and electron-phonon systems, we will
define the respective operators in the following.

Transformation in electron-phonon systems

Consider the aforementioned Holstein Hamiltonian,

- fe: v 24 ) 44 ;
H= —t;(cic] +H.c)+ 5 Z(:pl +pi)+g anml. (4.34)
2y 7 (2

The dressing transformation is written as

g
_ 7\ i 4.
U, exp{z(/u % n;p } (4.35)

Similarly to the LF transformation, the transformed operators become

g/
w
G = ¢t (4.36D)

Thus, the rotated Hamiltonian, up to constant terms, reads

2
¥ T T w 2, .2 ' g 2
H = —tE (cichiAj+H.c.)+§ E (7 +p;i)+g (1—=N) EZ nixi+—2w()\—2))\ EZ n;, (4.37)

(i) i

where A; = exp{i%/\pi}.

The transformation offers decoupling of electrons and phonons in the potential energy
term, while adds electron-phonon coupling in the kinetic term. The kinetic part of the
Hamiltonian is decoupled when A = 0, while the potential part has no interaction when
A = 1. That way, in variational approaches, which will be introduced in the next chapter, A
is treated as a variational parameter in the range [0, 1].

Generalizations

In the simple example given above, the dressing transformation considers a single parameter
A. However, even for the standard Holstein model, it would be more accurate to consider
a set of parameters {)\;;} due to the multi-mode phononic nature of the system. For more



50 CHAPTER 4. GAUSSIAN AND NON-GAUSSIAN STATES

complex systems, where interactions appear in distinct forms that would involve not only z,
we can also consider A = (A%, \?)T. Finally, a more general dressing transformation is written
as

g
Uy = = ioc(Nij - ) ¢, 4.38
\ exp{zwg;n oy »} (438)

Transformation in light-matter systems

The most paradigmatic model for light-matter interactions, the Dicke model, defined in Eq.
1.1 and widely studied in this work, is given by

N N
1 Wo g

H=uw aTa—i-—)—i——E af—i——g of(a+al

( 2 24 VN o ( )

= %(xz +p?) + wes® + ¢'s"w, (4.39)
where z = (af +a)/v2, p =i(al — a)/V2, s¢ =", 08/2, and ¢’ = 2g/+/j with j = N/2.
The dressing transformation is written as

Uy = exp{i)\g—sxp}. (4.40)
w

It transforms x as,
/

A
UlaUy = 2 — —gsx, (4.41)
w

where we used esBPAe™*P = A + s[B, A]. The unitary operator also transforms the spin

operators. We can use the properties of the spin Lie algebra to calculate the spin rotations.

Let us first consider a single spin system, we obtain the rotation for the given transformation
20 _x

U=¢€"27 as

—ilge

e 27 (u- J)eig"z = u,0° + 0¥ (uy cos — u, sinf) + o*(u, cos 6 + u, sin b)), (4.42)

where u = (u,, uy, u,) and o = (0%, 0%, 07). In our case, the dressing transformation is given
by the collective spin s* =3, 0%'/2. Defining,

U, = exp{u%swp} _ exp{ﬁ(;) 3 g;:} . Hexp{i@af} (4.43)

J J

with O(A) = A\¢'p/w. Let us inspect the rotation of a spin at a given site i,

(oo 2207} oo (e 220

J J

U;[(ll . O'i)U)\

e 2% (uoy)e’2% L eh2% L e'2N

¢ ..e2

N

0w —
=¢ 27 ¢!

= u,0f + 0! (uy, cosl — u,sinf) + o7 (u, cos O + u, sin ). (4.44)
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That way, for u = &,, with a = z, v, z, we have!

Ulo®Uy = 07, (4.45a)
Ulo¥U, = 05’0050 + 07 sind
o/ (cosf + iof sinf)
= gleii (4.45Db)
UTO' Uy = 0} cosf — g/ sinf

= 07 (cos @ + io] sin )

= gZei, (4.45c¢)

Finally, the transformation of s* is obtained:
Uls*Uy = = ZO’ exp{ ( p) } (4.46)

g g
= 5% cos (—gp) + is” sin (—gp) , (4.47)
w w

where we used 0/o* = §;;1 + ig;po’ and %" = cosa + ic®sina. Note that both forms
are useful in distinct problems, such as averaging over the phonon or spin base states. The
operators p and s are invariant through the U, transformation.

The Dicke Hamiltonian under the transformation is written as,

H= 22?4 p? +—ZUZA +g(1—)\)sx+2—()\ 2) As"? (4.48)

with A; = exp{i%’lafp}. The transformation offers partial decoupling of spins and photons,

adding an extra all-to-all spin-spin interaction, while also introduces spin-photon coupling in
the free spin term.

Generalizations

For systems with more complex spin-photon and spin-spin interactions, and inhomogeneous
coupling strengths or multiple modes, a more general transformation is written as

q
_ _E { N LR 4.4
U, exp{zw 5% (Nija R])}, (4.49)

7/,‘77&

with )\ija = ()\:r )\p

ijo? z]a) and a = x, Y,z

IThe same conclusion is achieved via BCH formulas.
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4.4 Non-Gaussian States

The Gaussian state ansatz, discussed in Section 2, provides an efficient framework for di-
agonalizing and understanding systems described by quadratic bosonic Hamiltonians. How-
ever, systems with more complex interactions, such as electron-phonon coupling or non-
linear terms, require going beyond Gaussian states. Consider, for instance, the Hamiltonian
H = p? + 2% + 257, where s* is a spin operator coupled to the bosonic quadrature z. In
this case, Gaussian states alone cannot fully diagonalize the system because of the explicit
coupling between bosonic and spin degrees of freedom.

To address this challenge, we construct the non-Gaussian state ansatz (NGS), which
combines Gaussian states with dressing transformations to introduce controlled entanglement
between bosonic and fermionic degrees of freedom. The non-Gaussian state is defined as

) = UA(IGS) ®9)), (4.50)

where |GS) = Ugg |0) is the Gaussian state in the Fock basis, as described in Section 2, |¢) is
the many-body fermionic state (e.g., describing ions or spins), and Uy, described in Section
3, is the dressing transformation, which entangles the bosonic and fermionic subsystems.

The operator Uy, inspired by the Lang-Firsov transformation, is crucial for capturing the
effects of bosonic-fermionic interactions. By modifying the basis states of the system, U,
enables a variational approach to diagonalize Hamiltonians that go beyond purely quadratic
forms.

Example: Dicke model

The Dicke model, discussed in Chapter 2, is a paradigmatic model that involves spin-photon
interactions. By completing squares, we observe that this Hamiltonian is quadratic in the
photon degrees of freedom:

/ 2 /2
H= gpz + %} (x + %sm) + (wosz - g—wsﬂ) : (4.51)

We then observe that the spin-photon interaction adds an effective photon-mediated all-to-all
spin interaction, similar to the polaron-shifting in the Holstein model. For this Hamiltonian,
the Gaussian ansatz can effectively describe the bosonic subsystem alone, but it cannot
capture the spin-photon correlations induced by the coupling term ¢'s®. In this case, the
dressing transformation U, generates a new basis where the resulting states are entangled in
a non-Gaussian way. The new basis states accounts for both the quadratic bosonic system
and the spin-photon interaction, providing a more accurate representation of the system’s
ground and possibly excited states.

The NGS is given by a combination of the aforementioned approaches: a Gaussian state
and a dressing transformation. The new basis states that aim to diagonalize the system is
then called non-Gaussian states,

[¥) = UA(IGS) ®9)), (4.52)

where |¢) is the many-body state of the ions and |GS) = Ugg |0) in the Fock basis.



The Hybrid Method

There are only a handful of quantum mechanical problems for which exact analytical solutions
are known. Classic examples include the particle-in-a-box, harmonic oscillator, rigid rotor,
and the hydrogen atom, where the Schrodinger equation can be solved precisely. However,
as the number of interacting particles increases—especially in systems involving more than
two particles—analytical solutions become practically impossible, requiring the development
and use of approximate methods. Variational methods play a central role in addressing such
complex problems in classical and quantum mechanics. These methods, deeply rooted in the
calculus of variations, have historical origins in surveying and optics. The rope stretchers of
ancient Egypt measured distances by stretching corded ropes between two points to determine
the shortest path. In Geographia (Bk 1, Ch 2), Claudius Ptolemy emphasized correcting de-
viations from a straight course. In ancient Greece, Euclid stated in Catoptrica that the angle
of incidence equals the angle of reflection, and Hero of Alexandria later demonstrated that
this corresponds to the shortest path and least time. The first explicit variational principles
emerged in the 17th and 18th centuries: Fermat’s principle of least time (1662) described
the path of light in optics, while Maupertuis’ principle of least action (1744) extended such
ideas to mechanics. Euler and Lagrange formalized variational calculus in the 18th century,
culminating in Hamilton’s formulation, which provided a unifying framework for classical
mechanics. Originally employed by Lord Rayleigh in 1873 to compute vibration frequencies
in mechanical systems, variational methods have since found profound applications in quan-
tum mechanics. From Feynman’s path integral formulation to the Hartree-Fock method and
beyond, variational approaches have become indispensable for calculating approximate wave
functions [87, 76].

In many-body physics, where exact solutions are hard to find, variational methods provide
a powerful framework. Systems such as multi-electron atoms, molecules, and the theory of
superconductivity exemplify scenarios where these techniques can shine. Variational Monte
Carlo exemplifies a powerful variational method, employing stochastic sampling to optimize
a trial wavefunction and approximate ground states of quantum systems. The density matrix
renormalization group (DMRG), widely used in this work, exemplifies a variational method,
employing a matrix product state (MPS) ansatz to efficiently approximate ground states of
quantum systems. Variational methods, based solely on the variational principle—which is
the foundation of our hybrid approach—provide a powerful framework for approximating

23
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ground states by optimizing a trial wavefunction to minimize energy. While these methods
are both important and effective, their accuracy and applicability strongly depend on the
choice of the trial wavefunction, which must be carefully designed to capture the essential
correlations of the system. While these methods have achieved remarkable success, they
also encounter limitations when applied to strongly interacting systems. DMRG, despite its
efficiency in one-dimensional systems, faces challenges in higher dimensions and for systems
with long-range correlations. Similarly, purely variational approaches can falter when the
ansatz fails to adequately capture the complexities of the system. Exact method, such as the
exact diagonalization (ED), addresses some of these issues, but struggles with scalability due
to the exponential growth of the Hilbert space.

To address these limitations, this chapter introduces a hybrid method that combines the
strengths of a variational non-Gaussian state (NGS) optimization with either DMRG or ED
solvers. The NGS-DMRG /ED method is designed to overcome the specific challenges posed
by strongly correlated systems, such as hybrid spin-photon and electron-phonon interactions,
by leveraging an ansatz that entangles photonic and atomic components through a controlled
variational approach. This method not only bridges the gap between purely variational
techniques and many-body solvers but also provides a flexible framework that can adapt to
the demands of different systems. This chapter is split into three parts: a quick recap about
the variational principle, followed by a discussion about time-dependent variational principles
and the geometrical formulation adopted in our work; finally, we present our hybrid numerical
approach.

5.1 The variational principle

To estimate the ground state of a given system, we can try to establish an upper bound for
the ground state energy. Suppose that the (unknown) set of eigenstates of the Hamiltonian
H is given by H [¢;) = Ej |1;). If we take a normalized trial wavefunction |¢), how close can
we get to the ground state? To define this limit, we can write the energy £ = (¢| H |¢) in
terms of the true basis set as

£ = sz (Wil H |y) (1hs]9) = Zwmw Eo+ > (ol P(E: — Eo),  (5.1)
1#0

but both | {¢|1;) |* and (E; — Ey) should be positive, thus

£ = Bol (5.2)

So it makes an upper bound of the ground state energy. The lower we can make the energy
&, the closer it will be to the actual ground state energy, and |¢) to |1y).

The variational method explores that upper bound limit by choosing a clever trial wave-
function, the ansatz, |¢(«)), and minimizing £(«) over the variational parameter ov. We
know from calculus that when the first derivative equals to zero we obtain an extreme point,
while the sign of the second derivative being positive or negative denotes if it is a maximum
or a minimum. Thus, next step to obtain the best approximation is to calculate

2
08 _ =0 and oe > 0. (5.3)

da da? .
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Note that in this example [i)(«)) is a family of wavefunctions of a single parameter . This
is usually not the case, as in general a set of variational parameters form the wavefunction
ansatz, and a simple analytical minimization is not possible. In strongly-correlated many-
body systems, which is the main interest of this work, the wavefunction ansatz can have a level
of complexity that makes the use of numerical optimization methods necessary. However,
the key for obtaining a good approximation is the first step, as a perfect choice of the trial
wavefunction leads to the true ground state. On the other hand, if you guess poorly, the
upper bound is too large, and the result is not helpful. The error & — Ej can be obtained
by writing the trial wavefunction in terms of the true ground state and a small wavefunction
orthogonal to it as |¢) = |1g) + |9),

£ = (8| H|6) = Eo+ (6| H|6) = Eo + O(6?), (5.4)

which means the error is quadratic. Here, we used H [i)g) = FEy (with Fy real) and the
orthogonality condition (d|¢)g) = 0. It is of major importance to choose a wavefunction that
is motivated by the physics of the system, preserves important symmetries, has a convergent
integral, asymptotes correctly, and so on.

5.2 Time-dependent variational principles

In the traditional (time-independent) variational approach, one chooses a family of trial
wavefunctions {|¥V(a))} that depend on a set of variational parameters ac. By minimizing
the expectation value of the Hamiltonian, (¥ ()| H |¥(ax)), one obtains an approximate
ground state. While this method is extremely useful for stationary problems, many physical
processes require a fully time-dependent treatment governed by the Schrédinger equation

., 0
thoy [W(t) = H[¢(1)) . (5.5)

For complex or many-body systems, solving this equation directly can become prohibitively
expensive. Time-dependent variational methods address this challenge by extending the
variational principle to dynamics.

5.2.1 The Dirac—Frenkel-McLachlan Variational Principle: Geomet-
rical Formulation

A particularly elegant formulation of the time-dependent variational method is given by the
Dirac-Frenkel-McLachlan variational principle [115, 12, 79]. In essence, one restricts the
wavefunction to lie on a (possibly high-dimensional) submanifold M of the full Hilbert space
H. A point u € M may represent, for instance, a Slater determinant for fermionic systems,
a Gaussian wave packet, or a tensor-network state; the key is that u must remain in M
throughout the time evolution.

Let M C H be a smooth manifold of trial states. For each u € M, its tangent space
is denoted T, M'. We are interested in approximating the solution () of the Schrédinger

IThe tangent space consists of the derivatives of all differentiable paths on M passing through w.
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equation with a path u(f) on the manifold M, assuming that initially «(0) = (0) € M.
The path t — u(t) € M is chosen such that the time derivative u(t) € T, M is as closest
as possible to (1/ih)Hu. In other words, the residual in the Schrodinger equation must be
orthogonal to the tangent space [33],

— — ,—Hu> =0 YveTl,M. (5.6)

Interestingly, following the equation above, one observes that if H = L*(R3*") describes N
spinless fermions without pairing, and M is the set of all N-particle Slater determinants, it
yields what is known today as the time-dependent Hartree—Fock equations.

An equivalent alternative definition, that lies on the fact that the path can be also deter-
mined by choosing its derivative as the orthogonal projection of (1/ih)Hu onto the tangent
space, was derived by Frenkel [47|. Defining Pr, ¢ as an orthogonal projection operator onto

T, M, one can write
du 1

However, these approaches were criticized by McLachlan [94] who instead proposed the a
least-squares approach alternative where one has to minimize || — (1/¢h)Hu||?, which ends
up with a similar condition to Dirac’s,

Im <v

Both variational principles were investigated by several authors, showing that these are equiv-
alent if both v and v* are possible variations. Thus, in the Dirac—Frenkel-McLachlan varia-
tional principle, the condition T, M is a complex linear space holds, with v,v* € T, M.

du 1
— — —Hu) = T, M. .
e u> 0 Yvel, M (5.8)

Figure 5.1: Vectors and manifolds for the Dirac-Frenkel-MacLachlan variational method. At a
point u we obtain the tangent space to the manifold M. The standard evolution has to be projected
back to the tangent space via P(u). Adapted from [11].

This succinctly encodes the principle’s geometric character: at each instant, the system
evolves in the “best possible direction” within the chosen manifold, as close as possible (in
the Hilbert space norm) to the exact direction Hu/ih. Figure 5.1 illustrates that the true
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Schrodinger evolution is tilted out of M so, at every time step, it gets projected back onto
the tangent space to remain on M. This geometric viewpoint is particularly useful for many-
body systems. In general, one can choose sophisticated ansétze, such as quasifree states with
pairing, tensor network states, or correlated Gaussian states—for which the tangent space
is still substantially smaller than the full Hilbert space. This is why the time-dependent
variational method is so powerful, it replaces the full wavefunction evolution problem with a
set of ordinary (or low-dimensional partial) differential equations for the time dependence of
the variational parameters that define the ansatz |u(«(t))).

With this geometric perspective in hand, we are now prepared to describe how the
imaginary-time variant of the time-dependent variational method can be used to obtain
ground-state wavefunctions efficiently.

5.2.2 Imaginary-time evolution

For a time-independent Hamiltonian H, the time-dependent Schrodinger (TDSE) in one
dimension has a straightforward solution. We first solve the eigenvalue problem, i.e. the
time-independent Schrédinger equation, H |¢,) = E, |1,), write |¥(¢)) in the eigenstates
basis (at ¢t = 0), and solve the equation. Thus, one can obtain its time dependence as

(U(1)) =Y cne™ P ). (5.9)

n

By a simple change of variables, 7 = it, Eq. 5.5 becomes
0
~ho |W(7)) = H|¥(7)), (5.10)

which has solution

(W) =D cne™ T ) (5.11)

While the TDSE shows a oscillatory solution with a frequency proportional to the eigenenergy
E, [conf. Eq. 5.9|, we observe in Eq. 5.11 that in an imaginary time 7, the system shows an
exponential decay with a rate proportional to F,,.

The important takeaway from the imaginary-time representation is its asymptotic behav-
ior. For a large enough 7 > 1, the dominant term in the sum, i.e. the slowest decaying, is
n = 0, that is,

[T (73> 1)) & coe B0/ |yhg) . (5.12)

Therefore, by evolving the system in “imaginary time”, we can obtain the ground state of the
Hamiltonian as the long imaginary time limit. This will only work if in the initial state there
is some overlap with the ground state. If not, the long imaginary time evolution will instead
lead to the lowest energy state present in the initial expansion.

In practice, the eigenbasis is unknown, and one can rely on the imaginary-time evolution
of the variational state ansatz |U(7)) = |V(a(7))) knowing that the lowest state whitin the
variational manifold will be achieved. This is usually a less expensive and more physically
driven way to minimize the variational parameters, which substitutes the trivial minimization
(Eq. 5.3) from basic calculus. The most direct approach is to simply follow Eq. 5.10 and



o8 CHAPTER 5. THE HYBRID METHOD

then renormalize |W(7)) after each step to keep its norm finite. This procedure progressively
filters out higher-energy components until only the ground-state component remains (up to an
overall norm). An alternative (but equivalent) method is to explicitly shift the Hamiltonian
by some reference energy (H — E) |¥(7)). If E were exactly the ground-state energy, |¥(7))
would remain at fixed norm rather than decaying or blowing up exponentially. In practice,
E is replaced by the instantaneous variational energy (¥ (7)| H |¥(7)), which serves as a
self-consistent guess for the current state’s energy and stabilizes the algorithm. Another
possibility is to work with |U'(a, k,¢)) = e |¢)(a)), where the evolution of x(7) will
ensure normalization and ¢ here works just as a global phase but in the context of combining
multiple |¥) it becomes also necessary. In this work, we did not use |¥’) and take advantage
of the geometric formulation of the method instead. In the left hand side of Eq. 5.10, we
obtain the tangent vectors |v,) via 2 |¥(a,)) = 9 |v,), shortly described in the previous
subsection. However, two Hilbert space vectors can represent the same variation on |¥) if
they differ by |v) — |[0) = ¢|V¥). Instead, we choose a unique representative by requiring
(v|¥) = 0, so that the tangent vectors are given by |V,) = Qu32: [¥(a)). In that way, we
can identify the tangent space at each point with a Hilbert space Hg, = spang{|V,,)}. Indeed,
one has to identify the tangent space vectors and project the right hand side onto the tangent
space as

Qud; [¥(7)) = =Py (H — E(1)) [¥(1)). (5.13)

obtaining the imaginary equations of motion 0.a(7) = ®(7), where ®(7) is the flow map.
Here, Py is defined as the projection onto the tangent space.

This procedure guarantees the monotonic decrease of energy while maintaining the nor-
malization of the wave function. The tangential plane projection leads to a set of imaginary
equations of motion for the variational parameters in 7, the flow equations.

5.3 Density matrix renormalization group

The density matrix renormalization group (DMRG) is a powerful numerical method designed
to study strongly correlated one-dimensional quantum systems [143, 144]. It works by itera-
tively building up the system in a controlled way and retaining only the most relevant states
at each step. By partitioning the system into a system block and an environment block,
DMRG uses the eigenvalue spectrum of the reduced density matrix to select the optimal
subspace that best approximates the target state, usually the ground state. Mathematically,
if the full system is in a pure state |¢)), the reduced density matrix for the system block is
defined as pg = Trg |¢) (¢|, where the S and E subscripts denote system and environment,
respectively, which can be diagonalized as pg |a) = w, |«). The states with the largest eigen-
values w,, are retained to form an optimal truncated basis. In practice, one keeps M states
such that the truncation error e = 1 — Zi/lzl W, 1s minimized. In terms of the Schmidt
decomposition, the wave function can be written as

[0) =" Vg o) gla)y . (5.14)

and the approximation made by retaining only the M dominant terms is variationally opti-
mal. This approach is equivalent to optimizing over a class of matrix-product states, which
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naturally capture the entanglement structure of one-dimensional systems. The success of
DMRG relies on the typically rapid decay of the eigenvalues in many gapped systems, al-
lowing for high accuracy with a small number of retained states. For further details, see
Schollwock’s review [125].

5.4 The hybrid approach

The methods described in this chapter are extremely useful to numerically obtain a good
approximation of the ground state properties of a multitude of strongly correlated systems,
and can be easily applied to study dynamics as well. However, hybrid systems, such as elec-
trons and phonons or atoms and light, combine distinct components, fermions and bosons,
each with unique nature and demand, that pose significant challenges to these traditional
methods. Bosonic systems belong to an infinite-dimensional Hilbert space with possibly large
occupation numbers, which means that variationally working on a much narrow Hilbert space
denoted by e.g. non-Gaussian states can be much more efficient [58, 24] than exact numerical
methods where the Hilbert space must be truncated to a given small occupation number. On
the other hand, fermionic degrees of freedom exhibit strong correlations that require many-
body techniques [143, 144, 146, 83|, such as DMRG, or quantum computational approaches
[39, 27, 21]. While these methods have proven effective in certain classes of systems, they
are limited when applied to hybrid systems. Introducing correlations between components
can be done using efficient techniques such as the Lang-Firsov (LF) transformation [41], as
shown in chapter 4, and Jastrow wavefunctions |72, 106]. For instance, an initial attempt to
circumvent these numerical challengies on electron-phonon models was proposed by Takada
et al. [132|. Building a non-Gaussian variational ansatz (without squeeze) they obtained
an effective electronic Hamiltonian which has a analytical approximate solution. The mini-
mized variational parameters from the average energy are plugged into the energy expression
giving a good approximation of the ground state energy of the Hubbard-Holstein model.
This procedure is limited to systems where the effective Hamiltonian has an analytic solu-
tion. Along these lines, Wang et al. developed a hybrid method that treats the effective
Hamiltonian with an exact numerical method while the bosonic component is described by
a non-Gaussian state which is treated via variational optimization as well. The so-called
non-Gaussian exact diagonalization (NGSED) method iteratively refines the solution at each
step until convergence [138, 139].

In chapter 6, we apply the hybrid method for electron-phonon systems, in special the
Hubbard-Holstein model, to investigate its critical phenomena. Moreover, as shown in chap-
ter 7, we developed an adaptation of this method for light-matter systems enabling the in-
vestigation of the phases with strong spin interactions. However, in both cases, we swapped
ED by DMRG. In short, through the NGS-type of wavefunctions, the ground state of the
Hamiltonian can be obtained by minimizing the variational energy given by,

E(AR, &\ |0)) = (H)xas = (| (pn| UTHU [hpn) |0)
= (¢| Het |9) - (5.15)

There are two types of variational parameters to optimize, corresponding to the self-consistent
iterations of two solvers: the variational parameters Ag, &, A determine the NGS transforma-
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variational parameters
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Figure 5.2: Flow diagram of the NGS-DMRG method. Starting with an initial guess we minimize
the variational energy, obtaining the optimal variational parameters. We then feed them back into
the effective Hamiltonian which is solved via DMRG giving the particle correlations. The workflow
is repeated until convergence.

tion and the bosonic state, optimized through the imaginary-time equations of motion; the
many-body state |¢) is represented by the MPS variational states and the tensor coefficients
are obtained with DMRG. In the latter step, all other variational parameters are fixed and
|¢) can be obtained by solving the effective fermionic Hamiltonian given by

Heg(Agr, &, \) = (Wpu| ULHU, [9hpn) - (5.16)

The effective Hamiltonian, obtained after tracing out the bosonic degrees of freedom, is useful
for understanding the nature of the induced effective fermionic interactions. Additionally,
the ground state of the many-body fermionic subsystem |¢) is related to the ground state of
the effective Hamiltonian. Note that since the H.g does not include the unbounded bosonic
Hilbert space, there is no necessity to traversing and truncating the bosonic Hilbert space. As
shown in Fig. 5.2, these two iterations optimize all variational parameters in the wavefunction
in a self-consistent manner, ensuring the energy decrease.

In the following chapters, we examine the ground-state properties of various multi-component
systems. When these systems involve distinct, interacting components, a method able to span
the entire Hilbert space becomes essential. Although developing such a framework is a sig-
nificant work, it ultimately proves worthwhile, as demonstrated by the results presented in
this thesis.



Simulations of electron-phonon coupling models

A number of theoretical proposals for quantum simulation of electron-phonon models using
molecules as well as ions exists [113, 108, 59, 68]. However, they have stringent requirements
and can lack versatility. For example, in order to crystallize the molecules one needs extremely
low temperatures, while in ion-atom systems the relevant energy scales are quite separated.
Here we focus on a different type of mixture involving an array of Rydberg atoms and a
ground state gas. In most experimental realizations, the Rydberg states are repelled by
optical traps and the laser field must be turned off during experiments. However, recent
developments allow for keeping the tweezer array on as well as to achieve state-insensitive
traps [148, 95|, leading to long lifetimes and opening the door towards a new simulation
platform.

In our recent work [96], we extended this notion providing a scheme for quantum simu-
lation of strongly correlated many-body systems. To begin, we study the phonon spectrum
of a Rydberg chain showcasing its tunability. Then we argue that the array can be seen as
a periodic potential for the neutral atoms (see Fig. 6.1(a)). Following that, we derive and
study the full system Hamiltonian which contains atom-phonon coupling. Finally, we discuss
further prospects for quantum simulation in this setup.

6.1 Quantum simulations in a Rydberg—neutral atom setup

The simplest and widely used Hamiltonian that takes into account both electron-electron
and electron-phonon interactions is the Hubbard-Holstein (HH) model,

H=—t Z (c}acjg +He)+ Uannu +w szbi + anw(bZT +b;),

<i1j>0 i i

obtained in chapter 3 under a series of approximations. The model features surprisingly
rich physics as phonon-induced interactions compete with the Hubbard term [81], leading to
emergence of two insulating orders with a metallic phase possibly appearing at their inter-
play [142, 132, 26, 63, 133, 150, 138]. The model can be easily extended which considerably
increases its complexity. For instance, one could modify the last term of Eq. (6.1) by in-
troducing nonlocal electron-phonon couplings. The extended version of the model is written
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Figure 6.1: (a) Top: Red-detuned optical tweezers generating the Rydberg lattice; bottom: state-
insensitive trap for the ground state atomic cloud. (b) The proposed platform. Strongly interacting
Rydberg atoms (black balls) are trapped in an array of tweezers (red circles). The cloud of neutral
atoms (small blue balls) is placed in a periodic lattice potential due to the Rydberg chain. The
lines are to guide the eyes. (c¢) The unit cells generating two lattice geometries with the base atoms
labeled as A and B; the interactions shown here are strong (weak) for the trivial (topological)
scenario, respectively.

as

Hepn = Z gq(qu + b-q)Pq; (6.1)

q

where pq = > ni-e "% is the electron density. While retaining a simple form, this term
is rather general due to the set of free parameters g4 and can describe long-range couplings
with nontrivial structure.

Furthermore, the phonon as well as electron dispersion can feature a richer and more
realistic structures. To showcase this, here we use a zig-zag configuration of Rydberg atoms
with anisotropic interactions instead of a more standard linear (1D), square (2D), or cubic
arrangement (3D). This choice is motivated by a recent experiment [30] which emulated the
physics of the Su-Schrieffer-Heger model with topological edge states in a similar setup.

6.1.1 Topological Rydberg lattice

In our approach, the Rydberg atoms are constantly individually trapped by an array of
harmonic potentials (optical tweezers) and interact with each other via dipolar interactions,
which can be induced by an external field. That way, the potential energy is written as

1 — 2 %d A A 2
Vgl Rl b 3 g N[t dm Ruana] (62
’ (n,0)#(m,B)

where M, is the Rydberg atomic mass, Vyq is the dipole-dipole interaction constant, and
f{m’m/g = ﬁm — Rmﬁ. The first term represents the collection of harmonic traps (optical
tweezers) with frequency v, that are located at fixed positions R,., = R,,+p,,, with R,, = naz
the cell position and p,, the basis coordinates, forming a zig-zag chain in the x—2z plane, while
the second term represents the dipole-dipole interaction, where h = m/m is the magnetic
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dipole moment direction that is fully defined by its polar 6 and azimuthal ¢ angles. As shown
in Fig. 6.1(b)-(c), there are two zig-zag configurations, defined via: p, 5 = FA/2X F d/22
and py p = FA/2% £ d/22, the length A sets the distance between the two legs, while
d is the spacing between the atoms in the same leg. While for h = (0,1,0)7 (out of
the plane), the interactions are isotropic, when m - Rna,m,@ = cosf,, these two geometric
configurations correspond, respectively, to the trivial and topological configurations [30, 130]
[see Fig. 6.1(c)]. The trivial geometry corresponds to to forming pairs of dimers, while the
topological one corresponds to leaving out two unpaired atoms at the chain edges. The
dimerization happens because the trivial lattice is formed by a sequence of strong and weak
bonds between neighboring atoms in legs A and B, while in the topological case the first (and
last) weak bonds leaves two uncoupled atoms at the edges. We set 6,, = cos’l(l / \/3) such
that there is no interaction along z, so that atoms in the same subchain do not interact. For
simplicity, we fix v,, = v with v, , ., = v and choose M, = M.

Current stat-of-the-art experiments enable an arbitrary 3D setting of the tweezer traps
with separations of the order of single yum. The trap frequencies can be varied as well and
are typically in the ~kHz regime. The interactions between the atoms depends on the choice
of Rydberg states and can remain strong over the typical trap separation. Furthermore, it
can be precisely tuned by using external electromagnetic fields, for instance by inducing and
orienting the dipole moments [141].

6.1.2 Phonon spectrum
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Figure 6.2: The phonon dispersion relation for (a) the translationally invariant case, (b) the
topological band structure of the finite chain for N = NyN. = 14,d =2,A =1,a = 2d,0 = 6,,,, and
¢ = 0. The edge states are highlighted as yellow stars in the panel (b).

We now turn to the phonon structure of the Rydberg chain. In the harmonic approxi-
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mation, the normal modes are obtained from diagonalizing the harmonic matrix D, whose
elements are given by all second derivatives of the potential energy at equilibrium [see Chap-
ter 3|. Interestingly, there is only one relevant interaction length scale 5 = 3V;q/Mv? within
this approximation, which is widely tunable by means of the trap frequencies as well as the
choice of the Rydberg level, as the dipole-dipole interaction strength scales as n*. We further
express all other length scales describing the array geometry in units of ¢ and energies in
the corresponding characteristic units Mv2¢%. Assuming an alkaline earth atom and 10°Hz
trapping frequency, we obtain ¢ ~ 10* Bohr radii.

The trivial geometry allows us to invoke translational invariance, such that D’/ (|R,, —
R..|) = D?(R,) and one can reduce the problem in the quasimomemtum space to the 3N x
3N, dynamical matrix [86] D2 (q) = 3, D% (R,,)e’d®». Here, for each of the N = N,N,
allowed q there are 3V, normal modes with frequencies w;(q) and corresponding eigenvectors
€9 (q) obeying PN ¢V (q) ¢V (q) = d;j, where j=1,--- [ 3Nyand a =1,--- , N}, with IV,
the number of cells and N, = 2 the number of basis atoms. Due to the chosen geometry, in
our example the quasimomentum is q = ¢z as the system is quasi-1D. Figure 6.2(a) shows
its exemplary dispersion relation in the quasimomentum space.
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Figure 6.3: (top) Phonon spectrum of the three highest bands highlighting band crossings with a
blue circle. As an example, we show for (a) d = 1.5 and (b) d = 2.5, with N = N,N, = 14, A =
1l,a =2d,6 = 0,,, and ¢ = 0. (bottom) Phonon spectrum of the (c) first band and (b) last band for
d = 1.65,1.85. We can see that there is a concavity change by varying d between the values shown.
Here we set N = NyN. =14,A =1,a =2d,0 = 0,,, and ¢ = 0.

For the topological configuration, the translational invariance can no longer be assumed.
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In Figure 6.2(b) we show the dispersion relation calculated from direct diagonalization of the
harmonic matrix. We observe three points which are disconnected from the bands: one in
the first and two in the fifth band, which we associate with the edge states. It is important
to note that even for larger N, we still see only these three disconnected points.

The system is widely tunable in terms of band geometry and shows a rich behavior which
exhibits concavity changes and multiple band crossings, as shown in Fig. 6.3 for d = 1.5 and
d = 2.5 for the three highest phonon modes. Furthermore, both highest and lowest bands
are changing their concavity with varying the distance d. We show in Fig. 6.3 two examples
of such concavity change. It is demanding to find numerically the critical value at which
the concavity changes, as one encounters instabilities in the atom equilibrium positions. As
demonstrated in the figure, it is located between d = 1.65 and = 1.85 for both the first and
the last band.

6.1.3 Local phonon couplings

To gain more insight into the phonon mode structure, we write the second quantized Hamil-
tonian in the local phonon picture as [see chapter 3|

1 i i
H= 5 3 Wb it ) + i + 4000|039

nmaij

with g4 = (1 = 0pm0i;) D% J2M /iy and B = 0,040 + g% and n,m € [0, N]
being the overall atom index where N = N,N,, as defined in chapter 3.
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Figure 6.4: Elements of the interaction matrix g for trivial (left) and topological (right) config-
urations. We saturated the colors for a better visualization. The interactions for [n — m| = 1 are
alternating between strong and weak. Here we fixed N = 14,d = 2,A = 1,a = 2d,60 = 6,,, and

¢ =0.

The ¢ matrix has 9N? elements describing nine possible couplings between each pair of
lattice sites in all directions, that is, for a given pair n and m there are 9 interactions to
consider: xx, Xy, yX, yy, and so on. We show in Fig. 6.4 the elements of the interaction
matrix ¢ in a grid. Each box shows the nine matrix elements of g,,,. In this figure, it is
possible to see the staggered nature of the interactions between cells. The main difference
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between topological and trivial is whether the edges are weakly or strongly interacting with

the bulk.
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Figure 6.5: (a) Couplings between local phonons as a function of d for different pairs n,m for
N=14,d =2,A =1,a = 2d,0 = 0,,, and ¢ = 0 and (b) trivial and topological geometries where
the lines depict the strong (red thick line) and weak (black dashed line) links (see text).

For visualization, we show in Fig. 6.5(c) the quantity J(|n —m|) = 37 g7, for distinct
values of [n—m/| and d. The terms with odd |[n—m/| describe the overall coupling between two
different legs for two cases corresponding to the majority of weak or strong bonds between
the sites. Such staggered nature can be directly associated with the SSH model. Even
|n — m| values provide the interactions along the same sublattice [see Fig. 6.5(d)| which do
not vanish even at the magic angle 6,, due to displacements of atoms from equilibrium. As the
trap separation d decreases, interactions in general become stronger. However, the intracell
couplings feature a maximum near d ~ 1.8, which is related to the system geometry and
coincides with the concavity change of the lowest band, indicating the presence of geometric
frustration.

We have so far demonstrated that phonons in Rydberg atom arrays are capable of sim-
ulating complex solid state systems with highly tunable band structure. Extension to a
two-dimensional setup would enable the occurrence of chiral edge states. Implementation of
driving into the system with lasers can induce additional nonequilibrium dynamics [51].

6.1.4 The atom-phonon Hamiltonian

The atom-phonon Hamiltonian comes from the general electron-phonon Hamiltonian ob-
tained in Chapter 3. It is written in terms of a overlap integral for which we evaluate in
terms of the Wannier functions within some approximations. First, consider the potential is
independent of the spin, so ¢ = ¢’ and then « is independent of the spin. Secondly, within
the tight-binding approximation, terms R # R’ are vanishing. Thirdly, for our neutral atom
system, we restrict to the lowest Bloch band and tight-binding approximation as well. Lastly,
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Figure 6.6: Interaction strength M; , for d = 1.5 and d = 2.5. We show two examples where there
is a clear distinction between multi-band and two-band regimes. The corresponding phonon spectra
and eigenvector component in z direction are shown in the bottom panels. Here N = 14, A =1,a =
2d,0 = 0,0 = 0.

in a zig-zag chain where q = ¢Z, the dot product in Mjq restricts the couplings and, as a
result, transverse states without a z component do not interact with the atoms. The neutral
atom-phonon Hamiltonian becomes

Hapn = Z Mjq(bjq + b )Cqu,UCk,cr, (6.4)
@.k.5,0
with
Mjg =3 960 (@)™ po(q) (6.5)
1 > QMqu &z ’

where a Fermi pseudopotential with magnitude g., was taken into account for V,. Here we
used Ortner et al. approximation for the lattice Wannier functions [108], which for composite
lattices may need to be modified [89, 54, 101| but does not qualitatively impact our results.

Thus,
: 82 sin(qd/2)
1qz 2
po(q) = /dre #|o(r)|” ~ An2qd — Pd3’ (6.6)

Therefore, we aim to study the interactions described by

2M _apolyq -
. 5 apg 6.7
M= 2 'S e (6.7)
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The interaction strength inversely depends on the eigenvalues w; and directly depends on
the 2 component of the eigenvectors Y2, while py and e~ will just shape the interaction
pattern. In other words, to understand the interaction behavior, one needs both w; and fc(f, )Z

If we change fé] N —5}3 ) (for all j), the orthonormality condition still holds. That is why
there is a modulus in Eq. 6.7.

In Fig. 6.6 we show two exemplary situations in which the coupling term crosses over from
a two-band to multi-band structure. Its overall magnitude can be easily controlled indepen-
dently by manipulating the Rydberg-atom interaction strength. For a better understanding,
we show in the bottom panels of Fig. 6.6 the phonon spectrum and the z component of the
corresponding states. As we can see, when d is big compared with the other lengths, only
the first and 4th band are generating noticeable oscillations in z—direction. Decreasing the
distance between the Rydberg atoms, other bands also acquire vibrational components along
the z axis. This is the limitation of the quasi-1D platform as only longitudinal phonons can
contribute. In addition, the atom-phonon coupling to the first phonon band shows a non-
monotonic behavior with d due to the change in the band shape. As we can see in Fig. 6.7,
from d = 1.5 to 1.65 the band is flattening, which increases the interaction strength due to
the phonon energy being in the denominator. After the concavity changing transition, the
band starts to widen and increase in amplitude again.
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Figure 6.7: Phonon spectrum of the first band and for many values of d. In the left panel, the
phonon frequency is decreasing with an increasing d, while in the right panel it is the opposite case.
Here N =14,A =1,a =2d,0 = 0,,, and ¢ = 0.

6.1.5 Discussion

To obtain the full Hamiltonian we proceed to adding the second subsystem composed of
ground state atoms. Their van der Waals interaction with the Rydberg atoms can be
described by a Fermi pseudopotential with tunable magnitude g.,, omitting off-diagonal
terms which are small due to low dipole moment of the ground electronic state [145, 141].
Viy-a(Tn — Rina) and Viyry(Rpa — Ring) can be expanded in power series in Rydberg dis-
placements u, providing the periodic potential for the atoms. Within the tight-binding ap-
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proximation, the bare atomic Hamiltonian without phonons is described by the Hubbard
model.
The whole system is described by an extended Hubbard-Holstein model

Hean = — ¢ Z (choCmo +He) +U Z Mt Tim,, + Z ﬁwj’qb;qu’q

(n,m)o m Ja
1
—+ Z ﬁMj7Q(bj7q + b;["fq)CL_l_q’UCk,aa (68)
q;k.j,0

with nontrivial phonon structure including the possibility for topological bands and nonlocal
couplings. The summations in n and m relate to the site index while in j accounts for the
phonon bands. Phonon-induced interactions can induce long-range attraction between the
fermions and enhance the formation of pairs and conductivity. While one can study the
limiting cases of weak or very strong coupling analytically, e.g. by means of a generalized
Lang-Firsov transformation [81, 63, 108, 150], we stress that due to the competition of terms
the problem calls for a thorough numerical study in order to verify and interpret the quantum
simulator output.

We observe that the interaction strength is highly dependent on the phonon energy and
structure. Indeed, the other functions appearing in Eq. 6.5 will mostly affect the overall
strength the coupling profile. In order to design the desired interaction between ground state
atoms and phonons one thus needs to focus on the phonon part. The proposed Rydberg
lattice setup turns to be perfect for such situation since it is a rich and highly controllable
platform as discussed earlier.

6.1.6 Experimental feasibility and simulation prospects

We now argue that each quantity in (6.8) can be tuned with some degree of independence and
can reach several kHz, providing sufficiently fast dynamics to operate within the Rydberg
atom lifetime. Let us first discuss the parameter values achievable in current experiments.
For simplicity, here we work with a quasi-one-dimensional chain with linear configuration of
Rydberg atoms of equidistant separation d. The van der Waals Cy coefficient between the
ground state and Rydberg atom grows with the principal quantum number as ~ n’ [57],
in contrast to n!!' scaling for both atoms excited [1]. Still, this leads to the characteristic
range of the potential R = (2uCs/h?)Y/* [23] being widely tunable. Assuming Rb*-Li pair
one obtains Rg ~ 300nm already for n ~ 50, meaning that interactions within the lattice are
strong.

One can then proceed with estimation of the extended Hubbard-Holstein Hamiltonian
parameters. Assuming tight-binding approximation, we obtain the tunneling coefficient [108]
t =~ 4E3d/ 7ngcp where E, = ©°1” and m is the atomic mass. Note that in order to make t

2md?
appropriately large, using light atoms such as lithium seems to be the most convenient option.

Meanwhile, M, o o< ;fffu with M being the mass of the Rydberg atoms. Even though the
coupling term o g., while ¢ x 1/g.,, tuning the spacing and tweezers trap frequency allows for
manipulating the parameters independently. The Hubbard U term is independently tunable
using a magnetic Feshbach resonance [23]. Assuming d ~ 1um and g., ~ 10*Hz, we obtain

M,_pn in the same range and ¢ ~ 3kHz, comparable to other energy scales. For high enough
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n all parameters will exceed the Rydberg level decay rate I', as highly excited states can
reach lifetimes of the order of a millisecond.

A reliable quantum simulator requires initializing the system with high fidelity. This may
require some optimization steps. For instance, direct excitation of a chain of atoms trapped
in tweezers to a Rydberg state at small separation is a nontrivial task due to the Rydberg
blockade phenomenon [13|. In order to circumvent it, one can either utilize optimal control
protocols [99, 92|, or excite the atoms further away from each other and then bring them to
the designated positions. For alkali atoms, this protocol can be challenging [9], but alkaline
earth-based setups [148] can offer an advantage here. Similarly, loading the lattice efficiently
is desired due to the finite lifetime of the system. Here we would suggest to prepare the
ground state atoms in a separate set of optical tweezers and subsequently release them into
the lattice. Experimentally, the system provides a number of possible measurements such
as time-of-flight and in situ imaging of atoms, as well as phonon state tomography of the
chain. Studying the dynamics after a quench or under driving should does not impose any
additional challenge.

We also notice that a class of extended Hubbard-Holstein models could also be studied
with a possibly simpler system in the spirit of variational quantum simulation |78, 97|. In
this scenario one would use an ansatz for the phonon part in order to calculate the effective
fermionic Hamiltonian classically, and then find the ground state of the reduced system by
implementing it in experiment and obtaining a new candidate phonon state for the next
iteration.

6.2 Hybrid numerical approach for el-ph systems

In the first part of this chapter, we show that extended-Hubbard-Holstein (EHH) models
can be quantum simulated with Rydberg atoms coupled to neutral atoms. We showed that
in such platform the electron-phonon coupling strength may strongly depend on the phonon
dispersion characteristics of the Rydberg atom chain. We now turn to the numerical analysis
of electron-phonon models through the hybrid method described in chapter 5. Before studying
such complex scenario, we need to first understand how the method is applied to the basic
one-dimensional Hubbard-Holstein model. In the following, we give a short analysis of this
model, obtaining results that agree well with the literature.

6.2.1 General setup

Let us consider the Hubbard-Holstein model in one-dimension which assumes on-site electron-
electron and electron-phonon couplings, where the phonons are assumed as dispersionless
lattice vibration modes,

_ T o 2 2 ’
H= —t;; (ciyCje + H.c.) + UZ”Z’T”% + 5 Z(azz +pi)+g anxz (6.9)
o i i i

where n,;, = clocia. The non-Gaussian state ansatz is given by

(W) = Ux(|¢pn) @ [thar)), (6.10)
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where [1)q) is the many-body state of the electrons, |,n) = Ugs |vac), and
g/
U = ) — i0'>\i' i (- 611
R e 1)
The effective electronic Hamiltonian obtained from Heg = (¢pn| Ul HU [1bpy) reads

Heg=— Y [tihel,cio + Hel + Tr{f‘} + = ATAR — Z pignic + Y Vidnignje, (6.12)

(ij)o i.j,0,0'

where we defined the effective chemical potential
U
= o (0 = d)AL+ 3, (6.13)

the effective spin-spin interaction strength

i wU
Vi = zw[ZAmAm 2)\i; + 7 iy

and the effective hopping strength
g\’
£ = texp{ (AEW) }exp — (%) WTTW),; ¢, (6.15)

WTPW Z w,]kSpiSﬁfLwiﬂ + Z wiij,ff;anﬁwiﬂ, (616)
kml kml
and similarly for (ALW);;, where w;j, = \ix — A\jr and T' = SS7T.

, (6.14)

with

6.2.2 Homogeneous parametrization

Considering a homogeneous parametrization, such that A, A,, I', and A are defined by a
single parameter each, we can greatly simplify not only the effective Hamiltonian, but also
the variational optimization. Note that I' = SST with S = e°¢, so the symmetric matrix &
is defined such that it only has anti-diagonal elements (all equals to the scalar £). In this
scenario, the effective electronic Hamiltonian becomes a shifted /distorted Hubbard-Holstein
model, it reads

Hyg = —teg <Z> cwc](7 + H.c.) + U Z NNy + — (A2 + A2)N + 3 cosh (28) — fheft Z Nig,
i,j)o
(6.17)

where we defined the effective hopping

9//\ —¢ ?
teg = texpq — 95 ¢ , (6.18)
w
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Figure 6.8: (a) Average energy and (b) Effective electron-electron interaction as a function of the
Hubbard interaction for distinct ¢ with fixed ¢ = 1.0 and N = 6.

the effective chemical potential,

72

o = 9 (A= 1A, = TAA —2), (6.19)
and the effective on-site electron-electron (Hubbard) interaction
J*\  9”
Ueg = <U — —) —+ —()\ — 1)2. (6.20)
w w

As one can see, the presence of electron-phonon interactions renormalizes the hopping, cre-
ating a smaller effective hopping. The two competing interactions, electron-electron and
electron-phonon, generates an effective electron-electron interaction that can be either re-
pulsive (Ug > 0) or attractive (Usg < 0) depending on ¢’*/w, U, and A. In the rotated
Hamiltonian, obtained from the canonical Lang-Firsov transformation (A = 1), the effective
Hubbard interaction is U = U — ¢’*/w. In the anti-adiabatic limit, U = 0 is the transition
point from two regions that are known to correspond to charge-density wave (CDW) and
spin-density wave (SDW) phases, which we will characterize below. Additionally, an effective
chemical potential takes place.

We begin the numerical analysis calculating the ground state energy as a function of
the Hubbard interaction U and distinct hopping strengths ¢ = 0.1,0.2,0.4 for g = 1.0 [see
Fig. 6.8]. We observe that close to the anti-adiabatic regime, ¢t = 0.1w, the average energy,
defined as Ey = (Emin — w/2)/N, is well approximated by Ey = U/2 — ¢*/w if U < ¢*/w
and Ey = —¢'?/2w otherwise, when U is away from ¢'*/w, deep in the CDW/SDW phases.
We show in Fig. 6.8 that the effective electron-electron interaction is well approximated by
Ust ~ U when U < ¢'* Jw, and the CDW-SDW phase boundaries are easy to define. We set
t = 0.2w from now on, since in the low-frequency regime w < t the phase boundaries are not
easy to define and the numerical calculations are reportedly hard to converge [138|.
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Figure 6.9: Charge and spin structure factors at ¢ = 7 for ¢ = 0.4 and 1.0 with N = 10 and
t = 0.2 as a function of the Hubbard repulsion.

6.2.3 Charge- and spin- density wave phases

A large U tends to localize electrons and, at half-filling, favors magnetic (typically antifer-
romagnetic) correlations. In one-dimensional systems, these magnetic correlations are often
described in terms of a spin density wave (SDW), because of the Mermin—Wagner theorem,
long-range magnetic order is strictly absent at finite temperature in 1D. What one finds
instead are quasi-long-range spin correlations with a characteristic wave vector (¢ = ),
hence the term spin density wave. This description emphasizes the spatial modulation of
the spin correlations. Essentially, SDW and AFM describe the same underlying physics, be-
cause the dominant spin correlations are antiferromagnetic in nature. The Holstein part of
the model couples the electrons to local lattice distortions (phonons). A sufficiently strong
electron—phonon coupling can lead to an effective attraction between electrons. This effec-
tive attraction may result in the formation of charge order, such as a charge density wave
(CDW), where the electronic density modulates periodically. The competition between these
two phases is often characterized by the sign of the effective interaction parameter Ugg. If
U.g becomes negative, the system tends to favor CDW order, while a positive U.g supports
magnetic (SDW/AFM) correlations. Udg is a function of A which varies with U, but for a
small ¢, as described above, it is well approximated by U.g =~ U for U < q 2 Jw, since A
approaches unity.

To characterize the aforementioned phases, we compute the corresponding charge and spin
structure factors. These structure factors provide quantitative measures of how correlations
decay in space and help distinguish between the competing phases in the model. The charge
structure factor S.(q), is the Fourier transform of the charge-charge correlation function that
measures how the electron density at one site is correlated with that at another. It reads

Su(g) = % S i) (i), (6.21)

ij
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Figure 6.10: Effective hopping integral t.g and its derivative in terms of ¢ for various U and g. teg
approaches t for a increasing U. Parameters: t = 0.2 and N = 6.

A pronounced peak at ¢ = 7 indicates the presence of charge ordering, supporting a CDW
phase. Similarly, the spin structure factor Ss(q) is obtained from the spin—spin correlation
function. It is given by

1 o
Sila) = D eI (S7SE) (6.22)
ij

where the spin operator is defined as S7 = %(nﬁ —n;;). A dominant peak at ¢ = 7 signals
strong antiferromagnetic correlations, typical of the SDW (or AFM) phase.

We show in Fig. 6.9 the structure factors at ¢ = 7 as a function of U. For an interaction
U < ¢ Jw the charge (spin) structure factor tends to a large (vanishing) value characteristic
of the CDW phase. On the other hand, for a large U, the charge (spin) structure factor
tends to a vanishing (large) value, as expected by the SDW phase. However, close to the
transition U.g ~ U, the structure factors do not sharply change but instead show distinct
features. This is related to an intermediate phase that exists in the CDW-SDW crossover
region.

6.2.4 Possibility of a metallic phase in the crossover region

In addition to the phases of small and large Hubbard repulsion, a phase between the two
regimes arises away from the anti-adiabatic limit. A transient change of behavior is pro-
nounced in the effective hopping strength, which is transmitted to the relevant observables.
We see in Eq. 6.15 that t.g/t < 1, since g, A, and £ are positive. From a tight-binding
limit point of view, the effective mass is inversely proportional to the effective hopping. That
way, a small t.g relates to a large effective mass of polarons, which suggests an immobile
bipolaron state or CDW. We show in Fig. 6.10 that the effective hopping .4 is indeed much
smaller than t specially for U < ¢ Jw and we only reach t.g = t for a large U. Around
the CDW-SDW crossover region, we observe kinks in ¢.¢ which can be better seen from its
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Figure 6.11: Local moment and its derivative versus U for a fixed N = 10 and ¢t = 0.2 with ¢ = 0.4
and g = 1.0. Around the U corresponding to Ly = 3/8, we observe a distinct behavior that indicates
the existence of a possible intermediate phase.

derivative. We show that dt.q/dU peaks in the two sides of the crossover region, indicating
a possible intermediate phase. This indication becomes less and less visible for a decreasing
g, as shown in Fig. 6.10.

Several authors have indicated that such intermediate phase is a metallic phase [132, 80,
40]. In a metallic phase, the local moment operator, defined as

1 s 3 3
Lo= & > (sh= 1 o 2o tmmi), (6.23)

1

should equal 3/8 as in the non-interacting electron gas. We observe in Fig. 6.11 that this
value is achieved at U =~ ¢'*/w. The derivative of Ly shows a similar behavior compared to
teg: the kinks around U = ¢ 2 Jw reflects an intermediate region where Ly =~ 3/8 and its first
derivative with respect to U shows a deceleration around U = ¢’*/w that increases for an
increasing g (or N). While this is useful to have some initial insights, the characterization of
this intermediate phase requires extra effort. For example, in Ref. [138] the authors calculate
multiple observables in the 2D EHH model to show that this phase is way more involved.

In the first section we have shown a promising platform for quantum simulation in which
the coupling strength strongly depends on the phononic characteristics of the Rydberg atom
lattice. It shows us that one can obtain some even more interesting interactions by tuning
the atomic system into more complex phonon behavior. In the last section, we turn to the
numerical analysis of a simpler model, not only showing the capabilities of the numerical
method but also benchmarking it against the literature. The clear next step is to, in parallel,
develop realistic quantum simulation setups with complex phonon structure and to extended
the numerical calculations to the full ansatz given by Eq. 6.10 to work for any EHH model
of the form of Eq. 6.8. This study is still an on-going project, and thus is not shown in this
thesis.
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Cavity QED with strongly interacting emitters

We consider a chain of N possibly interacting two-level systems embedded in a single-mode
cavity field [see Fig. 7.1|. In principle, there are multiple possible sources of loss causing
dissipation, but we focus on the regime where light-matter coupling is strong enough and
dominates. The two-level system can be experimentally implemented in multiple ways be-
yond the classical examples of ions or electrons, namely superconducting circuits [29], color
centers [152], trapped ions [122|, quantum dots [88], ultracold atoms [10, 119, 28, 110], and
even organic molecules [43]. Throughout this work, we represent the two-level systems as
1/2 spins. In principle, the s = 1/2 spins could be arranged in arbitrary geometry and
connectivity. The spins couple to the photons via the standard minimal coupling scheme.
Additionally, short-range interactions between emitters induce Heisenberg-like spin-spin in-
teractions in the effective description. The Hamiltonian is then composed of the sum of
the free Hamiltonians of the cavity and of the spins, and the interacting spin-photon and
spin-spin Hamiltonians as

H = Hgavity + Hspin + H;pin—photon + H;pin—spin
— HDicke + HXYZ’ (71)

where, in the absence of spin-spin interactions, the system is governed by the Dicke Hamil-
tonian given by

N N
_ 1 € g
Hchke — W<CLTCL + _> + — O'f + — U;'B(a + aT)

(2% + p?) +es” + ¢'s"m. (7.2)

RS

In this setup, each two-level qubit is represented by a local spin operator s* = 0% /2, while
the photonic operators are given by x = (a! + a)/v/2 and p = i(a’ — a)/v/2, with a and a!
denoting the photon annihilation and creation operators, respectively. Here, w designates the
cavity frequency and ¢ the atomic transition frequency, both set as w = ¢ = 1. Moreover, g
represents the collective coupling strength, and ¢’ = 2¢/+/N/2 accounts for the mode volume,
with N the number of emitters. In the Dicke model, the spin interactions are absent, and
the spin-photon interaction is site-independent, the spatial coordinates are irrelevant and one

7
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Figure 7.1: Sketch of the considered model. The system is composed of an ensemble of two-
level quantum systems (TLSs) in an optical cavity. They can anisotropically interact with their
nearest-neighbors with an exchange rate J = (J;, Jy, J;). The cavity can exhibit photon loss with
a rate k. The TLSs can also spontaneously decay, causing dissipation at a rate . Each TLS has
a separation € between the two states and is interacting with the cavity field with a interaction
strength g. Although all these processes are present, the condition g2/2vk > 1 guarantees that the
dissipation happens at a much slower rate compared to the light-matter interaction.

can define a collective spin operator s* = ) ;iS5 Additionally, the Hamiltonian commutes
with the total spin s? = (s%)%?+ (s¥)?+ (s*)?, meaning that one can greatly reduce the number
of states involved. The Hilbert space in this case is spanned by a collective spin {|j, m),m =
—j,—j+1,---,7—1,7}, with j = N/2, such that there are only N + 1 atomic degrees of
freedom instead of 2. The spin-spin interaction breaks this symmetry and prevents using the
collective spin approach. In this work, short-range Coulomb interactions between atoms are
not neglected in the second quantization, leading to nearest-neighbor Heisenberg-type spin-
spin interactions, which are unavoidable in reality. This generalization can be described by the
addition of the spin-spin interaction term HXY%. In the homogeneous scenario and considering
nearest-neighbor interactions, this term is described by the Heisenberg Hamiltonian, which
reads

Y= =% 0 37 Jas™ 5, (73)

J
(i,3) a=z,y,2

where (7, j) depicts nearest-neighbor sites ¢ and j. It contains a family of models depending
on the choice of the exchange parameters J,, J,, and J,. To study the effect of coupling spins
to light, we focus on two particular examples: J, = J, = 0 and J, = 4.J, the Dicke-Ising
model, and J, = J, with varying J,, which we call Dicke-XXZ model. We note that ¢ can
also be interpreted as a classical longitudinal field which breaks the degeneracy between the
spin projections.

While the large Hilbert space of the spin part can still be handled numerically truncating
the maximum number of photons allowed n,., to a small number, with ED or DMRG, the
photonic state in principle requires an infinite-dimensional wavefunction. Truncating this
space to a finite number of Fock states cannot ensure convergent results and requires a more
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robust approach.

7.1 The Hybrid Numerical Method

We now turn to the description of the numerical approach used in this work. In short, we
treat the photonic space variationally using a Gaussian state. Then, tracing out the photonic
degrees of freedom leads to an effective spin Hamiltonian for which we obtain the ground
state via DMRG. The procedure is repeated iteratively, minimizing the photonic variational
parameters and updating the effective spin Hamiltonian at each step until convergence. We
are going to split the analysis into two distinct ansétze: the Gaussian state (GS) and the
non-Gaussian state (NGS) ansatz. We will scrutinize the method in these two scenarios in
the following.

In the first scenario, we consider the wave function of the system to be separable. This sim-
ple assumption is justified by the known result for the Dicke model stating that in the strong
coupling regime and in the thermodynamic limit the photonic subspace is well described
by a coherent state [75]. In addition, coherent states and the semi-classical approximation
are intertwined, since they can provide a quantum-classical connection. The semi-classical
approximation is often used to describe the behavior of the field in the limit of large photon
numbers. In this case, the coherent state becomes very close to a classical wave, and the
behavior of the field can be approximated by classical wave equations. However, despite
this similarity to classical waves, the coherent states still retain certain quantum features,
such as the fluctuations in the number of photons and the Heisenberg uncertainty princi-
ple. A straightforward generalization is to use a GS. The Gaussian representation provides
a robust framework for examining photonic states in systems where interactions are accu-
rately approximated by quadratic Hamiltonians [conf. chapter 4|, which is the case here in
the weak-coupling limit. It is written as |G\S) = Ugg |0) where |0) is the photonic vacuum
and [127]

Ugs = UaUs = exp(iR" o AR) exp (—%R%R), (7.4)

with R = (2,p)7, z = (a' + a)/Vv2, and p = i(a’ — a)/v/2. This transformation comprises
two unitary operators: the displacement operator U, and the squeezing operator Ug, where
Ar = (A;,Ay)T denotes the photon displacement vector and £ stands for the symmetric
squeezing matrix. For simplicity, here we chose & to be a single parameter, anti-diagonal
matrix, reflecting the symmetry of the spin-photon interaction. The vector R transforms as
UéSRUGS = SR 4+ Ag with S being a symplectic matrix S = e?¢ and STo S = 0.

As stated above, the Gaussian ansatz considers the spin and photonic degrees of free-
dom to be separable. Therefore, in strongly interacting systems, its effectiveness is naturally
constrained since it fails to capture the complex correlations emerging from the interplay
between bosonic and many-body degrees of freedom. For instance, explicit spin-photon
couplings in hybrid quantum systems can generate entanglement that extends beyond the
Gaussian regime. The NGS ansatz tackles this issue by merging Gaussian states with a dress-
ing unitary transformation Uy, which enables controlled entanglement between photonic and
atomic elements, thereby offering a thorough characterization of hybrid quantum systems.
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The NGS ansatz reads,
) = Ux(|GS) @ |9)) (7.5)

with |¢) being the spin state (for now unspecified) and where U, is given by

/
Uy = exp{i% Z Sga)kz(?)pj}. (7.6)
1,7,

This approach draws inspiration from the Lang-Firsov transformation [81], which is typically
utilized in strong coupling perturbation theory to decouple interactions. U, extends this
concept by incorporating adjustable parameters {\}, allowing for a variational treatment
of spin-photon coupling. This transformation offers partial decoupling of the spin-photon
term. In the Dicke model, the kinetic part of the Hamiltonian is decoupled when A = 0,
while the potential part has no interaction when A\ = 1 [see Eq. 7.7|. That way, A is treated
as a variational parameter in the range [0, 1] on top of the previous set of GS parameters.
Additionally, for a single-mode cavity with Dicke-like spin-photon couplings, \;; = 0;;€,\ is
sufficient. The procedure to obtain the ground state is split in two steps, the minimization
of the variational energy, given by E(Ag, & A, |¢)) = (Y| H |¢), and DMRG treatment of
the effective spin Hamiltonian. That way, in the first step, we optimize {Ag, &, A}, where
the spin averages and correlations are obtained from an initial random spin state |¢). With
this set of variational parameters we construct the effective spin Hamiltonian by tracing out
the photonic degrees of freedom via Hey = (GS| UL HU, |GS). Explicitly, the effective spin
Hamiltonian is given by

Heg = HF™ + HR'”, (7.7)
where
HE = 2 cosh(26) + 5 (A2 + A7) + (1= A)g'A,s”
12
—(2- /\))\“;]—sx2 + wo{sz cos 3 — Y sinﬂ}e‘a/Q. (7.8)
w
and

XYZ __ T T
Hg —_E {chsisi—l-l

i

+ s/sY e7® {Jy(cosh a cos® 8+ sinh asin® 3) + J.(cosh asin® B + sinh a cos? ﬁ)]

+ 5757, e {Jy(cosh asin? 3 + sinh a cos® 3) + J.(cosh a cos® B + sinh a sin? ﬁ)]

+ (sisty +sYsi ) (Jy — J.)e > cosﬁsinﬁ}, (7.9)

with
IR NAVAR
B =ADy w. (7.11)
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This Hamiltonian can be minimized using a plethora of established numerical methods for
spin systems since it does not contain the unbounded photonic Hilbert space anymore. Here,
we proceed to obtain the ground state energy, and the necessary spin correlations from
DMRG. The procedure is then repeated: we insert the |¢), state back into the full Hamil-
tonian in order to optimize {Ag, &, A};11 and continue the process until convergence. The
workflow diagram of the hybrid method, which we call NGS-DMRG for short, is shown in
Fig. 7.2.

variational parameters

DMRG of the effective
spin Hamiltonian

variational
optimization

converged E?
Tl L )

spin correlations

Figure 7.2: Flow diagram of the hybrid numerical method. Starting with a initial guess we minimize
the variational energy, obtaining the optimal variational parameters. We then plug them into the
effective spin Hamiltonian which is solved via DMRG giving the spin averages and correlations. The
workflow is repeated until convergence of the energy, reaching a good approximation of the true
ground state energy.

7.1.1 Benchmarking: The Dicke model

To illustrate the simplest case, consider when the interactions vanish, i.e., J, = J, = J, = 0.
In this scenario, the system reduces to the Dicke model, as previously discussed. This model
is renowned for its superradiant phase transition in the thermodynamic limit [see Fig. 7.3(a)].

We first consider the GS ansatz (A = 0). In this case, the minimization can be performed
analytically under the following assumptions. With no spin-spin interactions, all spins are
equivalent under permutation and only the total spin couples to the photon mode. Therefore,
we rewrite the many-body state vector as a coherent state represented by [§],

[¢) = e XLy = e |j—j) (7.12)

where ¢ is treated as another variational parameter describing the orientation of the total
spin and j = N/2. We then minimize the expectation value of energy under the wavefunction
ansatz. In this approach, we obtain Ar = (—¢'(s%)/w,0) and £ = 0, with ¢ = cos™'((g./9)?)
for g > g. and ¢ = 0 for g < g., as a solution of the imaginary-time evolution equations,
with g. = y/we/2. Thus, the cavity field is in the vacuum state and spins are ferromagnetic
for g < g. until it goes to a coherent state of both photons and spins. Therefore, the average
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Figure 7.3: The Dicke model and its quantum phases. (a) The system consists of a spin chain
coupled to a quantum light field within an optical cavity. The atom-cavity coupling parameter g
controls the quantum phases of the composite system. For g < g., the spins form a ferromagnetic
configuration, and the photonic field has a vanishing mean photon number. As ¢ increases, the
system undergoes a second-order phase transition to the superradiant phase at ¢ = g.. This phase
is characterized by a significantly large mean photon number and a paramagnetic spin order that
goes towards a full alignment in z. This result is depicted by (b) the ground state energy, (c)
absolute magnetization in the z direction (red), and mean photon number (blue) as a function of
g. Solid lines are the result for the NGS-DMRG method in the Gaussian ansatz (N-independent),
dashed lines are the result for the NGS-DMRG method in the non-Gaussian ansatz for several
N =4,5,6,8,10,12,40, 100 (from light to dark colors), and dots are pure DMRG results for N = 100

and npmax = 120.
energy obtained is

1
Ey= —
N —(g* +98)/wg®, 9> ge,

<5min - Cﬁ) = {_8/27 9= e (7.13)
where g, is the critical coupling indicating a second-order phase transition [see Fig. 7.3(b)].
The two phases separated by g. can be characterized by the magnetization along the z axis,
i.e., M, = (s*)/N, and the average photon number, (n)/N. As shown in Fig. 7.3(c), we find
the magnetization plateau at M, = —1/2, when ¢ < g¢., indicating a ferromagnetic order
with all spins pointing down. As g increases beyond g¢., the magnetization approaches zero,
where the spins are aligned along z in a paramagnetic manner by the light field. On the
other hand, the mean photon number is zero for ¢ < g., indicating the normal phase, and
increases significantly for g > g., as expected by the superradiant phase, where the photon
number (n) o< N when the spin-photon coupling decays with 1/ V/N. At g = g,, the system
undergoes a well-known second-order phase transition from ferromagnetic-normal (FM-NP)
to paramagnetic-superradiant (PM-SP) phase. Notably, while the variational ansatz allows
both the coherent and squeezed states of photons, the ground-state solutions in both phases
correspond to coherent states with & = 0. Additionally, it is interesting to note that the
observables (per number of spins) are independent of the number of spins.
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By including the dressing transformation Uy, we further investigate the full NGS-DMRG
method with the general ansatz for the Dicke model. In Fig. 7.3(b) we show the average
energy for multiple N. The NGS energies consistently lie below those of the GS case (solid
line). However, as N increases, the difference between the two approaches diminishes. This
trend is also observed in other measurable quantities. The smoothed transitions for both
M, and (n)/N stem from the finite-size effects (in number of spins) well represented by our
hybrid method in the NGS case.
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Figure 7.4: Convergence of the main observables in the Dicke model. We observe a quick conver-
gence at g = 0.25 via O[i + 1] — O[i], stabilizing below 1072 for energy and 10~® for photon number
and magnetization. The number of spins here is N = 200.

We find that the GS ansatz accurately describes the system in the thermodynamic limit,
whereas the NGS ansatz effectively captures the finite-size behavior. This conclusion is
supported by the observation that as /N increases, the NGS curve approaches the GS one.
Moreover, the ground state observables in the GS case remain N-independent, and our Gaus-
sian results align with the well-established thermodynamic results of the Dicke superradiant
quantum phase transition [75]. Therefore, a coherent state ansatz would appropriately rep-
resent the system’s behavior in the limit of a large number of emitters.

As another layer of benchmarking, a pure DMRG approach for both spins and photons
was taken for comparison. The DMRG results are very close to NGS-DMRG within the
non-Gaussian ansatz for a fixed N. However, the necessary truncation n,., to achieve this
match was large. For example, for N = 100, we observed convergent results (in 7n,.y) for a
truncation n., = 120. Our method is both reliable and more efficient, since we do not need
to play with photon Hilbert space truncation for distinct N.

Therefore, we have benchmarked the hybrid NGS-DMRG method for the simplest light-
matter system, the Dicke model, accurately describing the well-established thermodynamic
limit where the system is in a coherent separable state |75], and the finite-size behavior in
the non-Gaussian ansatz is reproduced by full DMRG results.
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7.2 Dicke-Ising model

Interactions between neighboring qubits are unavoidable in realistic quantum systems, irre-
spective of their realization. For instance, dipole-dipole interactions between molecules or
Rydberg atoms lead to couplings that decay with distance as a power law; similar conclusions
apply to circuit QED setups, where dipolar interactions are strongly modified by conducting
plates forming the setup [29]. These interactions between spatially adjacent two-level quan-
tum systems can be mapped to the nearest-neighbor exchange interactions between spins
in the Dicke model. In this section, we consider the simplest form of these interactions by
setting J, = J, = 0 and J, = 4J, resulting in the Dicke-Ising model. A more general case of
interactions will be discussed in Sec. 7.3.

In the pure Ising model, there are two two-fold degenerate phases separated by the critical
interaction strength J.. For J > J., the interaction tends to align the spins, resulting in
ground states |}l ... |l) and [1171 ... 11). For J < J., the spins prefer to anti-align, leading
to |T41) ... ) and [{1)1 ... I1). Thus, we refer to the J > J. as a ferromagnetic interaction
and J < J. as an antiferromagnetic one. The term in Eq. 7.2 proportional to £ works as
a classical longitudinal field. In a longitudinal field, the degeneracy of the ferromagnetic
phase is lifted and J. = —¢/4. In the classical transverse-field Ising model (TFIM), the
phase transition at J = J. is destabilized by the external field, creating a paramagnetic
phase between the two ordered phases. We found similar characteristics in its quantum
counterpart, the Dicke-Ising model, but with unique superradiant-driven quantum effects.

Beyond the longitudinal magnetization M, discussed in Sec. 7.1, which properly charac-
terizes the uniform polarization of all spins, we further consider the staggered magnetization
defined as M = Yo.(=1)"(s2)/N to characterize the antiferromagnetic state with the
presence of nearest spin interactions. Still, for a finite number of spins, both standard and
staggered magnetizations can be misleading due to finite-size fluctuations. The spin corre-
lations are a more convenient signature of the long-range order of the system. As we no
longer expect perfect uniform polarization of all spins, we are also interested in the spatial
distribution of spin configurations or correlations

Crim = (s05m), (7.14)
Crm = (1" (shsm) - (7.15)

To avoid edge issues, we calculate the correlations in the bulk, i.e. for a fixed n far enough from
the edges we focus on m = n + r with 0 < r < N/2. A ferromagnetic (antiferromagnetic)
order will give |C2? | = 1/4 (|C%,| = 1/4). The spin structure factor is an even more
convenient observable, encapsulating all correlations between the spins. We define it as

Sas(q) ( ) anﬁ ig(n—m) (7.16)

The normalization is chosen such that the maximum value of S,,(q), which is reached at the
nesting wavevector for a classical magnetic order, is one. A peak in S,.(¢) at ¢ =0 (¢ = 7)
means that the spin configuration is ferromagnetic (antiferromagnetic). When the system is
fully uncorrelated in a given direction «, we obtain C39, = 0 for n # m and = 1 for n = m.
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This means that the spin structure factor S,(q) = 1/N. Therefore, we will be mainly focused
on analyzing correlations and spin structure factors as a tool to define the spin ordering. For
the photon degrees of freedom, we can distinguish the normal and superradiant phases by
analyzing the mean photon number and its scaling with the number of spins.

7.2.1 Ferromagnetic coupling
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Figure 7.5: Observables of the ferromagnetic Dicke-Ising model (J = 0.5 > J.). (a) The GS
average energy (solid line) follows Eq. 7.18 until the second order phase transition at g. where it
starts decreasing; and the N-dependent NGS results are given by dashed lines. (b) The GS and
NGS phonon number. The NGS curves (dashed) strongly deviate from the GS one (solid) around
the critical point. The magnetization in z is enough to show the transition from FM to PM. Dashed
lines N = 4,5,6,8,10, 20,50 from light to dark colors, and dots are pure DMRG results for N = 50
and nmax = 80.

We first consider the case of the ferromagnetic Ising interaction. Since the spins tend to
align, the ground state of this Dicke-Ising model coincides with the FM-NP phase of the Dicke
Hamiltonian. Within the GS case, using the spin ansatz as in Eq. 7.12, we can analytically
obtain the modified critical coupling for the transition to the paramagnetic-superradiant
phase as (¢ # 0)

0el) = gy 1~ - (7.17)
where ¢, is the critical coupling of the pure Dicke model (J = 0). Note that J. is negative,
so the critical coupling is increased by both J and €. The normal phase ground state energy
is merely shifted by the exchange interaction J as

£
Ey=—-J (7.18)
2
This shows that the ferromagnetic Ising interaction further stabilizes the FM-NP phase show-
ing the role of spin-spin and spin-photon competitions shifting the transition point to larger

couplings (see Fig. 7.5). The spin state is not well represented by Eq. 7.12 outside the
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FM-NP regime. Thus, the analysis is done with the full numerical method for both GS and
NGS ansitze.

Now that we have obtained analytical intuition, we turn to the numerical results. In
Fig. 7.5 we show the relevant observables of the system. They behave rather similarly to
the J = 0 case. As we can see in the average energy |Fig. 7.5(a)|, photon number, and
magnetization [Fig. 7.5(b)|, the critical coupling strength is shifted to a larger value due
to the ferromagnetic Ising interaction. The modified critical spin-photon coupling and the
normal phase average energy match the analytical prediction. When g < g. the system is
in the normal phase, characterized by a vanishing photon number, while for an increasing
g the system undergoes a second order phase transition to the superradiant phase where
(ny > 0, as shown in Fig.7.5(b). Since the zz (xx) correlations are maximized in the normal
(superradiant) phase, this set of observables is enough to characterize this interaction regime.
As in the Dicke model, we show the result from both GS (N-independent) and NGS in our
numerical approach, and compare against DMRG. The non-Gaussian curves approach the
Gaussian one for increasing N, showing the connection to the thermodynamic limit. The
DMRG result for N = 50 and ny,. = 80 follows a similar behavior to the NGS case.

Interestingly, Kai et al. [120] predicted that in the thermodynamic limit the observables
collapse to their analytical perturbative limiting results, given by Fy = —J for g < g. and
Ey = —¢*/w for g > g. (¢ = 0). This leads to the conclusion that the QPT here is of
first order. However, these analytical energies are only valid away from the critical coupling
ge(J), i.e. in the limits of large and small g. Moreover, the symmetry breaking nature of
the system is not altered by the ferromagnetic Ising interaction, so we do not expect such a
tremendous change with respect to the Dicke model. Indeed, our results show a second order
phase transition from FM-NP to PM-SP phase, with the photon ground state corresponding
to a coherent state.

7.2.2 Antiferromagnetic coupling

For J < J., the Ising interaction favors the anti-alignment of the spins, where now the stag-
gered magnetization reaches M E = 1 /2 in the thermodynamic limit when g is sufficiently
small. In addition, assuming periodic boundary conditions, the system can become geomet-
rically frustrated for an odd number of spins. For instance, for the Gaussian ansatz, the
minimized variational energies in the normal phase of the system are highly dependent of the
number of particles for odd N, but do not change for even N. We focus the current analysis
on the even N case.

The antiferromagnetic interaction creates a competition between the ferromagnetic con-
figuration present in the Dicke normal phase and the antiferromagnetic configuration of the
pure Ising model. Unlike the J > J. case, for A = 0, here we observe that the ground
state energy for small g equals J [see Fig. 7.6(a)], the mean photon number is zero, and
the spin structure factor S,.(¢ = 7) is maximized [cf. Fig. 7.6(c)|]. This indicates that the
antiferromagnetic configuration is the ground state in the normal phase. On the other hand,
Srz(q) = 1/N, as expected. Increasing g the system undergoes a quantum phase transition
to a paramagnetic-superradiant phase where the quantum light field tends to align the spins
along the x direction, so S..(¢ = 0) — 1 and S..(¢) — 1/N [see Fig. 7.6(d)]. The photon
number in the PM-SP grows with g, as expected. In Figs. 7.6(a)-(b) we observe a discontinu-



7.2. DICKE-ISING MODEL 87

—1.0 pro=o=0-0=9 —oc

|
[
=

T

|
=
N

T

|
=
>

T

average energy
I
-
w
T
photon number

== NGS-DMRG: NGS

—1.5 F = NGS-DMRG: GS
e DMRG
—16 1 1 I 1 1
0.6 0.7 0.8 0.9 1.0 1.1 1.2
9 9

Figure 7.6: Observables of the antiferromagnetic Dicke-Ising model (J = —1.0 < J.). We observe
a distinct behavior where the QPT changes from second order (J > J.) to a first order QPT.
Order parameters show a discontinuity at the critical point and, therefore, a divergence in their first
derivative. (a) Ground state energy starts from J in the AFM-NP until it reaches the critical value
where it jumps and starts to decrease. (b) Photon number starts zero until it jumps to a certain
value and then increases with g. Lines depict the hybrid method solutions in GS (solid) and NGS
(dashed) ansatz, while dots correspond to DMRG with truncation at nmax = 50. (c-d) The xx (dark
red) and zz (red) spin structure factors for ¢ = 0.2 (¢) and g = 1.4 (d) in the NGS-DMRG. Here
N = 14.

ity in the observables in the GS case. The discontinuity reveals the point where the system
changes from one phase to another, indicating a possible first-order phase transition. The
first-order phase transition in extended Dicke models has also been predicted in Ref.[20],
appearing as a result of optical bi-stability. Note that first order QPT in multiqubit cavity
QED systems has also been found in slightly different settings [84, 53, 52].

We note a related analysis of the AFM Dicke-Ising model performed by Zhang et at. [151]
considering a separable mean field ansatz where the photons are in a coherent state while the
spins are aligned in the xz plane with |¢;) = [cos(m/4 — ¢;/2),sin(7/4 — ¢;/2)]T. According
to our more general ansatz, these assumptions turn out to be valid only in the limits of either
small spin-photon coupling or zero spin exchange interaction, which makes sense due to the
coherent nature of the Dicke model and the staggered alignment of the spins in the AFM
Ising model in the thermodynamic limit. However, their limited treatment leads to a phase
where both spin AFM order and photon superradiance coexist, while we were not able to
observe such phenomenon. This shows that treating the spin part variationally can be tricky,
demonstrating the need of a full treatment of the spin Hilbert space, as is the case in our
method.

7.2.3 Phases summary

We have identified three distinct phases of the system: ferromagnetic-normal (FM-NP),
antiferromagnetic-normal (AFM-NP), and paramagnetic-superradiant (PM-SP). We sum-
marize these results in Fig. 7.7 by presenting the phase diagram in the .J—g parameter space
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Figure 7.7: Phase diagram of the Dicke-Ising model. The three phases of the system are shown,
where the lines separate the ordered-disordered(normal-superradiant) spin(photon) phases. Solid
line depicts the second order quantum phase transition, while dashed line depicts the first order
quantum phase transition. The FM-NP to PM-SP transition line matches the analytical result
given by Eq. 7.17.

obtained by the our hybrid numerical method with A = 0 (GS ansatz), for which the results
are independent of the number of spins, corresponding to the thermodynamic limit. The
phase boundaries where obtained by careful analysis of the photon and spin order param-
eters: the spin structure factors S, .(¢) and the mean photon number (n)/N. Note that
for J > J. we have a second order phase transition from FM-NP to PM-SP similarly to the
Dicke model with the critical coupling g. modified by J in a nonlinear fashion. In contrast, in
the antiferromagnetic case J < J, there is a first order transition from AFM-NP to PM-SP.
The longitudinal field ¢ influences the shape and position of the transition boundaries, the
analytic form for the FM-NP to PM-SP transition is given by Eq. 7.17. Figs. 7.5 and 7.6
also show the case where the ground state can be a non-separable state of the NGS form for
several values of N. In all cases the energy is below the GS one, showing that the NGS is a
better solution in the context of the variational principle; the results converge to the GS one
for increasing N.

To characterize the spin phases in this model, we focus on correlations in the z direc-
tion. In the normal phase, S..(¢) is maximal (minimal) at ¢ = 0 and minimal (maximal)
at ¢ = 7 due to perfect alignment (anti-alignment) of spins. Increasing the spin-photon
coupling strength g, the system goes to the paramagnetic-superradiant regime. However,
to properly characterize the photon phases it is necessary to study the scaling of the of the
mean photon number with the number of emitters. As noticed by Hepp and Lieb [62], to
obtain a meaningful thermodynamic limit in the Dicke model, the spin-photon coupling has
to decay with the square root of the number of spins, as in our model, which leads to a
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Figure 7.8: Mean photon number (n)/N scaling. For a small g < . we observe (n) o ¢ while for
a large enough g > g. we observe a superradiant scaling (n) oc N.

change in the superradiant scaling to (n) o< N, while (n) should not grow with N in the
normal phase. We show in Fig. 7.8, (n)/N vs N in the log-log scale. We observe that in
both FM or AFM interacting regimes (n)/N decays polynomially with an exponent ~ 1,
(ny/N =~ 1/N, meaning (n) does not grow with N. In the superradiant regime, we indeed
observe a superradiant scaling where (n) oc N.

7.3 Dicke-XXZ model

Considering interactions between spins in all directions leads to the Dicke-XYZ model. When
J. = Jy, = J., the spin exchange term becomes the well known XXX model, which is an ex-
actly solvable model that respects SU(2) symmetry. However, anisotropies play a key role in
spin-interacting systems. We keep J, = J,, but vary J, as an anisotropy parameter. Without
the light field, this corresponds to the celebrated XXZ model realizable via dipolar interac-
tions of Rydberg atoms [124] which is integrable in 1D and can be studied via the coordinate
Bethe ansatz [102]. It has three distinct quantum phases: the Ising-like ferromagnetic phase,
the antiferromagnetic phase, and the XY phase lying in between them. With a vanishing
longitudinal field case, e = 0, the phases are separated by |.J,| = 1, where the phase transi-
tion at J, = —1 is of infinite order, of the Berezinsky—Kosterlitz—Thouless (BKT) type. If
J., = 0, the system reduces to the free Fermion model. In general, however, the critical values
depend on e. For our chosen longitudinal field ¢ = 1 we expect the ferromagnet to occur at
J. > 0 and antiferromagnet at J, < JA'M ~ —2.8 |71]. However, the number of spins also
affects the critical interaction strength for the XY to the antiferromagnetic phase transition,
thus we can only reach the analytical JA*™ in the thermodynamic limit. In the J,—¢ phase
diagram, the ferromagnetic and XY phases are delimited by the line JIM = 1 — ¢, while
the antiferromagnetic and XY phase boundary is more involved [71]. From J, < JA'™M the
ground state configuration is given by a combination of states with N/2 excited spins. The
total magnetization (s*) climbs unit by unit from zero to —N/2 as J, grows, corresponding
to the given number of excitations allowed. By adding spin-photon interactions, the effective
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long-range spin interaction mediated by photons has the potential to destabilize the QPTs
seen in the pure XXZ model. In the next subsections, we show the most interesting features
of the system for the three distinct interaction regimes.

7.3.1 Ferromagnetic phase
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Figure 7.9: Dicke-XXZ model observables as a function of ¢ in the ferromagnetic parameter region
(J; = 0.5). (top) The average energy, (bottom) photon number, and zz spin structure factor for
fixed ¢ = 0. In the GS case (solid lines), the observables as a function of g are in plateau until
crossing the critical spin-photon coupling strength. NGS energy curves (dashed lines) lie below the
Gaussian one. Parameters: N = 4,8,16 (NGS, dashed), and N = 16, npax = 40 (DMRG, dots).

For J, > JI'M the effect of the spin-photon interaction on this phase looks similar to the
ferromagnetic Dicke-Ising model. As shown in Fig. 7.9, the system undergoes a second order
phase transition from ferromagnetic-normal to paramagnetic-superradiant for an increasing
g. In the GS, the normal to superradiant QPT is observed as before. For instance, one can
see the mean photon number being zero until it reaches a critical coupling and then increases
with g. We also show in Fig. 7.9 the spin structure factor S,.(q = 0) as a function of g, attains
maximum value in the normal phase, corresponding to the ferromagnetic configuration, and
decreases reaching 1/N, which we interpret as being fully uncorrelated in z. In the NGS
case, the energy lies below the GS one, as it better captures the entanglement between the
two subsystems for the finite chain. However, all observables converge in the limiting cases
of large and small g.

7.3.2 Antiferromagnetic phase

In the parameter space regime where J, < JAFM and g is small enough, the system is in the

antiferromagnetic-normal phase. Let us restrict to the case of four spins, for which we can
write the spin ground state as [103]

6) = G80) [AF M) + ] AFM)] (7.19)
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Figure 7.10: Main observables of the Dicke-XXZ model in the antiferromagnetic parameter region
(J, = —5.0). (a) average energy, (b) photon number, and spin structure factor in z for fixed
q = m. Dashed lines depict NGS-DMRG results, while dots correspond to DMRG with truncation
at Mmax = 40. (c-d) show the spin structure factors, in the NGS-DMRG, in xx (dark red) and zz
(red), for ¢ = 0.6 (c) and g = 1.0 (d), horizontal gray dashed line equals 1/N. Here N = 12.

where N is a normalization factor, 3 is the weight, and

|AFM) = %(|0101> +]1010)), (7.20a)
|AF My) = %(|0011> +]0110) 4 |1001) + |1100)) (7.20D)

are states with exactly two spin excitations. The factor f(J,) is inversely dependent of
J,, thus for a J — —oo, it is vanishing and we reach the Néel antiferromagnetic phase.
This is also true for any N, where we have |¢) oc [AFMy) + |AFM), with |AFMy)s)
a state vector containing all possible states with N/2 excited spins apart from the Néel
state. As a result, strong finite-size effects arise in the Dicke-XXZ model, and are observed
in all numerical methods utilized in this work. That way, since both GS and NGS are size-
dependent, there is no advantage in the GS: the NGS ansatz is a better choice as the resulting
smaller energy shows NGS to be a more accurate description. In the XY phase discussed
next, the dependency with N is also strong. We thus restrict further calculations to the full
method only.

As in the previous cases, the effective long-range spin-spin interaction given by the trans-
verse photon field produces a paramagnetic phase of spins aligning to the field direction for
a large enough spin-photon coupling strength. We show in Fig. 7.10 the aforementioned
behavior, where in the normal phase the z spin structure factor is not maximum at ¢ = T,
unlike the Néel AFM in the Dicke-Ising, for a finite J, < JAF™ and N. The true Néel
AFM phase is only achieved for J, — —o0, and thus S,,(¢ = 7) grows towards unit for an
increasing —.J,. This supports our intuition given by the analytical solution of the pure XXZ
model [Eq. 7.19|, where we infer that the spin phase is qualitatively similar in the normal
phase. DMRG solutions differ slightly only around the transition point, which is not well
defined for a finite number of emitters.
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DMRG treatment of the full Hamiltonian converged with a tolerance of 107! for a bond
dimension m below 120, which is twice as large as the maximum bond dimension required
when solving the effective spin Hamiltonian (in both GS and NGS), for N = 12 and 1., = 40.
In this parameter regime, even with a much smaller bond dimension, DMRG calculations of
Heg for A = 0 (GS ansatz) displayed surprisingly slower convergence compared to both full
NGS-DMRG method and DMRG of the full Hamiltonian.

7.3.3 XY phase
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Figure 7.11: Absolute longitudinal (red, squares) and transverse (blue, circles) magnetizations
as a function of J, for multiple values of spin-photon coupling strength (from top to bottom) g =
0,0.1,0.2,0.25. The spin-photon coupling strongly destabilizes the XY order, especially in the
vicinity of the magnetization plateau transitions. Here we set N = 12.

In the XY phase of the XXZ model, with a longitudinal field ¢, the spin correlations in z
are suppressed while in-plane correlations dominate. As J, goes from the FM to AFM regime,
the number of spin excitations (with respect to the longitudinal field z) climbs from 0 (FM) to
N/2 (AFM). As a result, we observe plateaus in the longitudinal magnetization for a finite N.
Increasing the spin-photon coupling g, the effect of the transverse quantum field is manifested
in the vicinity of the transition points between each plateau, unlike the classical transverse-
field scenario. This destabilization resembles the Dicke-Ising model discussed above, where
a paramagnetic phase appears between the FM/AFM-NP to PM-SP phase transition and
broadens up for increasing g. Here, however, it happens not only at the critical quantum phase
transition points, but also within the XY phase, as shown in Fig. 7.11. Intuitively, increasing
the number of spins, the system becomes more susceptible to the spin-photon coupling: the
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more plateaus, the more transition points will be destabilized to a point where the XY phase
is totally suppressed for any g # 0. However, it may also happen that an intermediate phase
shows up. We indeed observe that when M, peaks, (n) also does. Furthermore, the mean
photon number remains of the same order in other regions, indicating a possible coexistence
between XY spin order and superradiance.
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Figure 7.12: Photon number and spin correlations of the Dicke-XXZ model in the XY parameter
region. (a) photon number as a function of g for N = 12. Both NGS-DMRG (solid line) and
full DMRG (dots), with npax = 40, are shown, while the dashed line depicts the critical coupling
strength. (b) spin-spin correlations in x; for small g, we observe a polynomial decay characteristic
of the quasi-long-range order in the XY phase; for large g, the spins are polarized towards the same
direction, generating a long-range order in the direction of the field. A larger N was chosen so that
the decay laws are visible (N = 24 and ¢ = 5). The anisotropy exchange was set to J, = —0.8.

We show in Fig. 7.12 the mean photon number (n)/N and spin-spin correlations. The
photon number is non-vanishing even for a small g. The result is also supported by DMRG for
the full Hamiltonian. Dashed line depicts the critical spin-photon coupling, measured as the
g value in which M, abruptly jumps and starts increasing towards 1/2. Spin-spin correlations
CZ i, show a polynomial decay in r for a small g, due to the quasi-long-range order in the
XY phase. While, after the critical coupling strength, we observe a true long-range order
characterized by a saturation in the correlations. Indeed, below the critical coupling strength,
we found a phase where spin order (XY) coexists with a finite (n)/N.

As discussed above, the superradiant phase is characterized by the scaling of the mean
photon number (n) o« N. We show in Fig. 7.13 its scaling in all parameter regimes. The
superradiant scaling is observed for a large enough ¢ for any J,. For J, < JAFM ' J > JFM,
and ¢ small, the system is in the photon normal phase where (n)/N o« 1/N. This means
that, even if (n) # 0 for a given N, in the normal phase, it should not grow with N for
an increasingly large N. We show the case where g is below its critical value for a given
JAEM < J < JEM_ Interestingly, the mean photon number grows with N, but not in a
superradiant fashion. We observe a sublinear growth of the form (n) oc N'=% with 0 < a < 1
instead. Incrementing g towards the critical strength, o continuously goes to zero, achieving
the superradiant scaling. The spin-spin correlations in x also continuously move from a
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Figure 7.13: Scaling of (n)/N with N € [8,50] in all regimes. The FM/AFM-normal phases
exhibit a power-law decay with exponent ~ 1 (dark and light red). The superradiant phase shows
a nearly flat scaling, indicating (n) o< N (blue). In the regime of moderate negative J,, a sublinear
scaling (n) oc N1~ emerges (yellow).

polynomial decay to saturation, as shown in Fig. 7.14.
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Figure 7.14: Spin-spin correlations in x continuously go towards saturation, starting from a poly-
nomial decay in the XY phase regime. Parameters: J, = —1.6 and N = 24.



Conclusions

In this thesis, we explored the field of strongly correlated hybrid quantum systems, with an
emphasis on light-matter and electron-phonon systems. This study touches multiple research
topics such as condensed matter physics, solid state physics, atomic, molecular, and optical
(AMO) physics, materials science, and quantum optics. The interplay between competing
interactions leads to a plethora of emergent phenomena, which we were deeply interested in.

We learned that a classical electromagnetic field trapped inside a microcavity can be de-
composed into its Fourier modes, corresponding to a collection of simple harmonic oscillations.
In second quantization formalism, the discrete energies of the quantum harmonic oscillators
corresponds to a given number of photons. Quantum mechanically, we observed that even
when the electromagnetic field is turned off, there are still vacuum fluctuations inside the
cavity which is a pure quantum effect that has many physical consequences like the Casimir
effect. When a particle is placed inside the cavity, its classical Hamiltonian is modified by
the presence of a external field. Under the Coulomb gauge and the dipole approximation,
we obtained the quantum Hamiltonian describing the interaction between photons and an
ensemble of particles. This understanding lead us to the interest of the interplay between
light-matter and matter-matter interactions. The so described light-matter interactions gives
rise to emergent phenomena like superradiance, and the matter-matter interactions lead to
intricate phases such as charge and spin density waves, (anti-)ferromagnetism, and Mott
insulators. The question that have arisen is: how strong competing interactions affect the
phases landscape? As a starting point, we focused on extending the Dicke model incorporat-
ing spin exchange interactions. This study culminated in two scientific papers: The role of
exchange interactions in the superradiance phenomena (2024, submitted) and A wvariational
non-Gaussian approach to cavity QED with strongly interacting emitters (In preparation).
In summary, we systematically studied the impact of spin-spin interactions to the phases
of the Dicke model in a one-dimensional chain. Using a hybrid many-body method which
captures both the strong coupling and strong correlations, we found that the Ising-type in-
teractions shift the superradiant phase boundary, exhibiting both first- and second-order
transitions, and notably enhance the mean photon number in the PM-SP phase compared
to the conventional Dicke model. When considering anisotropic interactions representing
tunneling effects, our results revealed a complex interplay between anisotropy and photon
coupling. A unique intermediate phase emerges from anisotropic interactions, where the XY

95
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spin order and superradiant photon phase coexist. These results reveal that incorporating
spin-spin interactions not only dramatically enhances the superradiant response, but also
critically tunes the phase transitions, providing a framework for future experiments and ap-
plications in engineered light-matter quantum devices. In the development of the hybrid
non-Gaussian numerical framework for spin-photon systems, we have benchmarked the re-
sults against known (mean-field) analytical solutions as well as brute-force DMRG treatment
of the full Hamiltonian. In particular, we observe that the required bond dimension m of the
effective Hamiltonian DMRG calculations was much smaller than when dealing with the full
Hamiltonian, as expected. For small N, the bond dimension in the full DMRG calculations
was more than twice as large compared to the NGS-DMRG method, and we expect that this
difference would become even worse for increasing N. Indeed, the superradiant scaling of
light makes the necessary Hilbert space truncation n,,., increasingly large, making its size
much larger than its effective spin counterpart. Surprisingly, even with a much smaller m,
the convergence of the NGS-DMRG in the Gaussian ansatz is much slower than the other
methods in some parameter regimes. However, the Gaussian states shown to be useful only
when they represent the thermodynamic limit of the system. In such cases, the observables
per spin are independent of number of emitters. Additionally, the effective spin Hamiltonian
matrix for the Gaussian case is expected to be very sparse thus, the use of ED, instead
of DMRG, for the Gaussian case is very beneficial and the hybrid method converges much
faster. However, for more complex models involving anisotropic interactions the Gaussian
ansatz produces inconclusive solutions. Non-Gaussian states, on the other hand, allow to ob-
tain the ground state properties of the systems of interest with high precision and efficiency,
agreeing well with DMRG. Our approach does not rely on specific system geometry or inter-
action range and can be easily applied to study more exotic models including e.g. long-ranged
interactions, topological phenomena, and inhomogeneous couplings resulting from the light
mode structure. Due to this flexibility, this study has branched into several other on-going
projects, showing how beneficial it was for the research career of the author.

In the realm of electron-phonon systems, we considered a realistic material consisting
of many ions and electrons. The ions, much heavier than the electrons, move at a much
slower rate than the electrons, for which are seem as a background potential by the itinerant
electrons. Under these assumptions, we learned how to second quantize the Hamiltonian to
obtain, under a series of approximations, the paradigmatic Hubbard model, in which can
be approximated, at half-filling, to the t-J and AFM Heisenberg models. However, the ionic
motion cannot be completely disregarded in many realistic materials. Tons’ motion, up to sec-
ond order in the ion displacements, can be seem as a collection of harmonic oscillators. This
collective motion is quantum mechanically represented by the bosonic quasi-particle called
phonon. Moreover, we learned that in a polarizable medium the presence of an electron po-
larizes the atoms around it, which means that the electronic motion disturbs the system and
creates phonons. We observed that this behavior is represented by the polaron quasiparticle,
and its size depends on the characteristics of the electron-phonon interactions—which can
be short or long ranged. We rigorously obtain the electron-phonon interaction Hamiltonian
from second quantization of the electron-ion classical Coulomb interaction, up to first or-
der in the ions’ displacements, leading to the celebrated Holstein model that considers local
electron-phonon interactions. When learning how to obtain the Holstein model, it became
clear the possibility to explore extended versions of this model by taking a few steps back in
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the approximations. We also observed that some approximations taken into consideration to
obtain the Hubbard model, connects to the ones in the Holstein model, showing that theses
two models belong to similar energy scales and can be combined to study the interplay be-
tween strong electron-electron and electron-phonon interactions. However, due to the distinct
nature of the bosonic and fermionic subsystems, both traditional approximate analytical and
numerical methods fail to capture the emergent phenomena of this composite system. In
order to circumvent this issue, we focused on two distinct approaches: hybrid quantum sim-
ulation and novel hybrid numerical techniques. The term “hybrid” here is coined from two
different perspectives but both touches in the same idea of using two distinct approaches or
systems to tackle the difficulties of strongly correlated hybrid quantum systems. These two
ideas ended up in two distinct projects, in which one was published in the early PhD studies
of the author: Quantum simulation of extended electron-phonon-coupling models in a hybrid
Rydberg atom setup (Physical Review A 107 3, 032808) and Applications of Novel Numerical
Techniques to Extended Electron-Phonon Models (on-going project). In the first, we have
proposed a highly tunable experimental platform for simulation of compound quantum sys-
tems. It can be utilized for exploration of phase diagrams of extended Hubbard models in
various geometric arrangements, possibly to study the onset of bipolaronic superconductivity.
In the future, extensions to 2D and 3D structures and designing the system to exhibit flat
bands and edge states seems particularly promising [126, 116, 123, 77, 32, 130], with exciting
prospects for nonequlibrium dynamics and phonon driving related to recent breakthrough re-
sults on transient superconductivity [22, 7]. In the latter, the project goal is to return to the
study of extended electron-phonon models, building on the quantum simulation frameworks
introduced and the numerical techniques learned during the light-matter projects. We are
applying these techniques to capture the intricacies of electron-phonon and electron-electron
interactions with high precision. The project primarily represents a continuation of the orig-
inal objectives, bringing forward the author’s work in adapting and improving the numerical
methods to handle complex, hybrid quantum systems.

In conclusion, this thesis encapsulates a comprehensive exploration of strongly correlated
phases in hybrid, multicomponent systems, ranging from electron-phonon interactions to
light-matter couplings. The research demonstrates the capability of advanced quantum sim-
ulation and numerical methods to uncover intricate behaviors in systems that defy classical
simulation, ultimately contributing to the broader field of quantum technologies that mainly
combines theoretical condensed matter physics, quantum optics, and AMO physics.
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7.6 Observables of the antiferromagnetic Dicke-Ising model (J = —1.0 < J.). We
observe a distinct behavior where the QPT changes from second order (J > J.)
to a first order QPT. Order parameters show a discontinuity at the critical
point and, therefore, a divergence in their first derivative. (a) Ground state
energy starts from J in the AFM-NP until it reaches the critical value where
it jumps and starts to decrease. (b) Photon number starts zero until it jumps
to a certain value and then increases with g. Lines depict the hybrid method
solutions in GS (solid) and NGS (dashed) ansatz, while dots correspond to
DMRG with truncation at np,, = 50. (c-d) The xx (dark red) and zz (red)
spin structure factors for g = 0.2 (c¢) and g = 1.4 (d) in the NGS-DMRG. Here
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7.7 Phase diagram of the Dicke-Ising model. The three phases of the system are
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7.10 Main observables of the Dicke-XXZ7 model in the antiferromagnetic parameter
region (J, = —5.0). (a) average energy, (b) photon number, and spin structure
factor in z for fixed ¢ = 7. Dashed lines depict NGS-DMRG results, while
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7.11 Absolute longitudinal (red, squares) and transverse (blue, circles) magnetiza-
tions as a function of J, for multiple values of spin-photon coupling strength
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Photon number and spin correlations of the Dicke-XXZ model in the XY
parameter region. (a) photon number as a function of g for N = 12. Both
NGS-DMRG (solid line) and full DMRG (dots), with np., = 40, are shown,
while the dashed line depicts the critical coupling strength. (b) spin-spin
correlations in x; for small g, we observe a polynomial decay characteristic of
the quasi-long-range order in the XY phase; for large g, the spins are polarized
towards the same direction, generating a long-range order in the direction of
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and ¢ = 5). The anisotropy exchange was set to J, = —0.8. . . . ... .. ..
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