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ABSTRACT

Quantum entanglement can enhance the sensitivity of atomic sensors to static or slowly vary-
ing fields. But many important applications in fields such as medicine or navigation require track-
ing fast or transient signals. This presents unique challenges, one of them being that the potential
benefits of entanglement in such cases are still not fully understood. To investigate this, we apply
concepts from continuous quantum measurements and estimation theory to optical atomic mag-
netometers, aiming to accurately model these devices, interpret their measurement data, control
their dynamics, and achieve optimal sensitivity.

Quantifying this optimal performance requires determining a fundamental quantum limit on
sensitivity. The above bound imposed by noise is derived and shown to scale at best linearly with
the sensing time and number of atoms N, ruling out any super-classical scaling. Moreover, this
quantum limit is independent of the initial state, measurement, estimator, and measurement-
based feedback, and depends only on the decoherence model and strength of the field fluctua-
tions. Thus, finding an estimator that attains this limit proves a given sensing strategy optimal.

To approach this bound, we develop a quantum dynamical model scalable w.r.t. /N, based on a
co-moving Gaussian approximation of the stochastic master equation, which includes both mea-
surement backaction and decoherence. This enables the construction of a real-time estimation
and control architecture that integrates an extended Kalman filter (EKF) with a linear quadratic
regulator (LQR).

By simulating the magnetometer with our model and our proposed EKF+LQR strategy, we
show that quantum-limited tracking of constant and fluctuating fields is within reach of current
atomic magnetometers. Strikingly, our sensing strategy can also track biological relevant signals,
such as heartbeat-like waveforms. It can furthermore be used to drive the atomic ensemble into an
entangled state, even when the measurement record is used for feedback but afterwards discarded.
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STRESZCZENIE

Splatanie kwantowe moze zwickszy¢ czuto$é sensoréw atomowych na pola statyczne lub wol-
nozmienne. Jednak wiele istotnych zastosowan w dziedzinach takich jak medycyna czy nawigacja
wymaga $ledzenia sygnatéw szybko lub nagle zmieniajacych sic. Wiaze sie to ze szczegdlnymi
wyzwaniami, biorgc pod uwage brak wystarczajacego zrozumienia potencjalnych korzysci ze spla-
tania w takich przypadkach. Aby to zbadaé, w pracy doktorskiej zastosowano narzedzia z zakresu
kwantowych pomiaréw ciaglych i teorii estymacji do optycznych magnetometréw atomowych,
w celu doktadnego modelowania tych urzadzen, interpretacji danych pomiarowych, kontroli ich
dynamiki oraz osiagni¢cia optymalnej czutosci.

Okreslenie tej optymalnej wydajno$ci wymaga wyznaczenia fundamentalnej kwantowej granicy
czulosci. Powyzsza granica, zdeterminowana przez szum, kto’r% wyznaczamy w pracy, w najlep—
szym wypadku skaluje sie liniowo z czasem pomiaru i liczbg atoméw N, co wyklucza jakiekol-
wiek skalowanie lepsze niz klasyczne. Co wiccej, ta kwantowa granica jest niezalezna od stanu
pocza‘tkowego, pomiaru, estymatora oraz sprzezenia zwrotnego opartego na pomiarze i zaleiy
wylacznie od modelu dekoherenciji oraz sity fluktuacji pola. Zatem znalezienie estymatora osia-
gajacego te granice jest dowodem na optymalno$¢ danej strategii pomiarowej.

Aby zblizy¢ si¢ do tej granicy, opracowujemy kwantowy model dynamiczny dobrze skalu-
jacy si¢ z N, oparty na wspdtporuszajacym si¢ przyblizeniu Gaussowskim kwantowego réwna-
nia “master”, ktéry uwzglednia zaréwno dzialanie pomiaru, jak i dekoherencje. Umozliwia to
stworzenie architektury estymacji i kontroli w czasie rzeczywistym, integrujacej rozszerzony filtr
Kalmana (EKF) z regulatorem liniowo-kwadratowym (LQR).

Poprzez symulacje magnetometru z wykorzystaniem naszego modelu oraz proponowanej strate-
gii EKF+LQR pokazujemy, ze kwantowo-ograniczone sledzenie zaréwno pdl statych, jak i fluk-
tuujacych, jest w zasiegu obecnych magnetometréw atomowych. Co istotne, nasza strategia po-
miarowa umozliwia takze sledzenie sygnatéw istotnych biologicznie, takich jak sygnaty podobne
do tych generowanych przez serce, ale moze by¢ po prostu uzyta do wprowadzenia uktadu ato-
mowego w stan splatany, takze kiedy dane pomiarowe sa wywolane przez sprz¢zenie zwrotne ale
pdiniej zapominane.
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Introduction

METROLOGY — THE SCIENCE OF MEASUREMENT — relies on classical estimation theory to
infer unknown parameters from measurement data and quantify the uncertainty of these esti-
mates. Perhaps most crucially, it also tells us how to identify optimal estimators that minimize
this uncertainty, such as those that saturate the Cramér—Rao bound [1, 2].

Even though classical estimation theory does not require the measurement outcomes to be
probabilistic, we still use probabilities to express our uncertainty about the true value of a pa-
rameter. This uncertainty arises not from the theory itself, but from practical limitations such
as environmental noise, sensor imperfections, or incomplete information about the system. In
contrast, the randomness observed in measurements of quantum states is not due to external fac-
tors, but rather an intrinsic feature of quantum systems arising from the postulates of quantum
mechanics. Even in ideal, noiseless conditions, the outcomes of quantum measurements are fun-
damentally stochastic, with their associated likelihoods dictated by Born’s rule [3]. Quantum
systems, moreover, have non-classical features such as coherence and entanglement, which can

be harnessed to reduce measurement uncertainty beyond classical limits [4, 5, 6, 7]. This reduc-



tion in uncertainty improves estimation accuracy, which typically scales with the number of re-
sources (e.g. the number of particles used, N). In classical strategies using uncorrelated particles,
the estimation error scales as 1/v/N, known as the Standard Quantum Limit (SQL). However,
quantum-enhanced strategies can achieve more favorable scalings, such as 1 /N, typically referred
to as the Heisenberg Limit (HL) [8, 9, 10, 11, 12]. Even though numerous experiments have
demonstrated surpassing the SQL [13, 14, 15, 16, 17], decoherence and other noise sources can
significantly degrade entanglement and prevent achieving super-classical scalings [18, 19].

Much early work in quantum metrology focused on repeated measurements averaged over
many trials [20, 21]. However, many real-world sensing tasks require tracking time-varying sig-
nals [22, 23, 24, 25, 26, 27, 28], where repeated measurements are not possible. In such cases,
estimation must be performed in one shot. One way to achieve this is by employing Bayesian fil-
tering, which continuously updates probabilistic estimates as new, noisy data becomes available
[29, 30]. This real-time process involves two steps: (1) a predictive step, relying on a dynamical
model of the system, and (2) a measurement update step, which refines the estimate based on
incoming measurement outcomes [30]. A classical example is the Kalman filter (KF) [31, 32],
optimal for linear systems with Gaussian noise [30]. For nonlinear quantum systems such as
atomic sensors, methods like the extended Kalman filter (EKF) are better suited [29, 33].

Since Bayesian filtering relies on a model, it is essential to have a reliable description of both the
system and the measurement process to implement any algorithm effectively [29, 30]. However,
how can we model a quantum system that is being continuously monitored, when the very act of
measurement inevitably disturbs its state [34, 35]? Fortunately, this evolution of the state condi-
tional on the measurement outcomes is rigorously captured by the theory of continuous quan-
tum measurements [36, 37, 38, 39]. In particular, the dynamical model is given by a stochastic
master equation (SME), which correctly incorporates measurement backaction. This backaction
can manifest itself as either discrete jumps when measuring photo-counts, or as a continuous, dif-
tusive process when using homodyne detection [40, 41, 42]. Combining Bayesian filtering with
this framework allows for real-time tracking while correctly accounting for measurement back-
action. This has been experimentally implemented in Gaussian systems such as optomechanical
resonators [43, 44, 45, 46, 47, 48] or levitated nanoparticles [49, so].

Atomic sensors, particularly optical atomic magnetometers, can also benefit from these ideas.
These devices rival state-of-the-art superconducting quantum interference devices (SQUIDs) in
sensitivity, yet operate without the need for cryogenic cooling [51, 52] and can potentially be

miniaturized to chip-scale sizes [s3]. Although linear and Gaussian (LG) models are common



for atomic systems (as well as for optomechanical ones), atomic sensors are intrinsically nonlin-
ear systems whose dynamics, including measurement backaction, can be rigorously described us-
ing SMEs [54, 55, 56]. That said, most atomic magnetometry experiments involve large atomic
ensembles, where the sheer size of the Hilbert space makes exact quantum simulations of the
SME intractable. Different approaches exist on how to deal with that: one can straight up ig-
nore [57] or evade [58, 59] the measurement backaction, or instead restrict the analysis to the
Gaussian regime [54, 60, 61, 56] or to low atomic numbers [62]. Despite these modeling chal-
lenges, a recent experiment with unpolarized atomic ensembles demonstrated that continuous
measurement backaction can generate inter-atomic entanglement even without explicitly mod-
eling the backaction [63]. This was possible because the spin dynamics remained within the LG
regime. However, high-sensitivity spin-precession sensors typically use polarized atomic ensem-
bles, whose spins evolve according to nonlinear dynamics [64]. This motivates the need for a
realistic nonlinear model that captures both the measurement backaction and the decoherence
effects in a way that is scalable to systems with large atom numbers.

To address this, we propose an approximate model referred to as the “co-moving Gaussian”
picture. This model reduces the complexity of the full quantum dynamics while still accounting
for dephasing and the measurement backaction that creates spin-squeezing [65, 66]. This model
not only enables the design of an estimation and feedback scheme by combining an EKF with a
linear quadratic regulator (LQR) [29, 55], but also allows us to simulate realistic atomic magne-
tometry experiments. Its accuracy is validated by comparing it against the exact simulation of the
SME for moderate-sized systems [65].

Once the model is validated, the next step is to asses the performance of the sensor when track-
ing fluctuating fields by establishing fundamental limits on the estimation error. This is achieved
by deriving a lower bound on the Bayesian Cramér-Rao bound (BCRB) [2, 67], which we refer
to as classically-simulated (CS) limit or quantum limit [68, 19, 69, 65, 66]. Notably, this limit
depends only on the dephasing rate and the strength of field fluctuations, and scales at best lin-
early with the atom number and sensing time, thereby precluding any possibility of surpassing
the SQL [69, 65, 66]. Remarkably, our magnetometry setup attains this quantum limit, con-
firming that the entire sensing protocol is optimal under the given noise conditions, regardless of
the initial state, measurement, estimator, or measurement-based feedback [66]. Beyond demon-
strating optimal real-time sensing of fluctuating signals, we also apply our method to track signals
commonly found in medicine and biology, such as magneto-cardiograms (MCG) [24, 66], which

requires filtering to extract heartbeat-like signals from noisy backgrounds.



Finally, this framework can also be used for quantum state preparation [65]. Specifically, we
show that the LQR not only enhances estimation accuracy but also steers the atomic ensemble
into an entangled state without the need to store past measurement data. This makes the protocol

a practical method for preparing entangled states in real time.

THIS THESIS IS ORGANIZED INTO SIX CHAPTERS. The first three chapters cover background
material that is important for understanding the rest of the work. In particular, the first part
of Chap. 1 reviews important topics like probability theory, stochastic processes and stochas-
tic calculus. The second part of Chap. 1 introduces basic concepts of quantum mechanics, in-
cluding angular momentum operators, the Wiener function and spin-squeezing. Then, Chap. 2
presents an in-depth discussion of Bayesian filtering, with complete treatments of the KF, EKF
and LQR. In Chap. 3, we derive the SME for both photodetection and homodyne measurement.
While these chapters aim to keep the thesis self-contained, my background in quantum physics in-
evitably influences what I consider to be introductory material, so readers with different expertise
may find some sections more familiar than others. If you are already comfortable with the topics
described above, feel free to skip ahead to Chap. 4 and Chap. 5, where the main results and con-
tributions are discussed. In Chap. 4, we derive the quantum limit or classically-simulated limit
on the estimation error via lower-bounding the BCRB. Finally, Chap. s applies these theoretical
and numerical tools to atomic magnetometry. We introduce the “co-moving Gaussian” model to
capture both the measurement backaction and decoherence in large atomic ensembles, and then
put forward a complete estimation and control protocol. This protocol consists of an EKF com-
bined with LQR, which achieves optimal performance and even enables real-time entanglement
preparation. Finally, Chap. 6 summarizes the results and discusses potential directions for future

research.



Preliminaries

THE MAIN FOCUS OF THIS THESIS is the tracking of quantities that vary randomly over time. In
many complex systems, such as those in physics, finance, or biology, the parameters of interested
are not static but fluctuate continuously due to inherent randomness and external disturbances.
These quantities are referred to as stochastic processes, and to capture their dynamics, it is essential

to combine differential equations with probability theory.

IN THE FIRST PART OF THIS OPENING CHAPTER, we begin by reviewing a bit of probability
theory: random variables, probability density functions, expectation and covariances and the
Gaussian distribution. Next, we explain in Sec. 1.2 what a stochastic process is through some
simple examples, and introduce in Sec. 1.3 the basics of stochastic calculus with topics like Itd’s
Lemma, stochastic differential equations and their corresponding numerical methods.

In the second part of this chapter, i.e. Sec. 1.4, we briefly introduce a few concepts related to
the dynamics and properties of quantum systems, mostly for later reference. These include the

position and momentum operators, the dynamics of open quantum systems, angular momen-



tum operators and coherent spin states. We also cover the Wigner quasiprobability distribution
in Sec. 1.4.5 and how to map the Wigner function onto a sphere in Sec. 1.4.6, followed by a brief

explanation of spin-squeezing in Sec. 1.4.7.

1.1 FUNDAMENTAL CONCEPTS OF PROBABILITY THEORY

1.1.1 RANDOM VARIABLES

In probability theory, a random variable assigns numerical values to the outcomes of a random
process, each with an associated likelihood. Formally, it is a function mapping a sample space
Q to a subset of the real numbers R. For example, when flipping a coin, the sample space Q
representing all possible outcomes of this experiment is QO = {Heads, Tails}. Now, let X" be a

random variable that assigns numerical values to these outcomes, e.g.:
X(Heads) =1 and  X(Tails) = 0, (r.1)

where x = 0 and x = 1 are realizations of the random variable X. Random variables like the one
above, or others such as the outcome of a dice roll, take on specific, countable values. Therefore,
these are referred to as discrete random variables. Additionally, each possible outcome has an
associated probability, the probability mass function (PMF), and these probabilities must sum

to I.

Definition 1.1 (Probability mass function). For a discrete random variable X, let the PMF be
a function p = R — [0,1] that gives the probability of the random variable X taking the specific

value x, i.e.
plx) =PrX =4, (1.2)
where p(x) > 0 Vx and the sum of all probabilities must be equal to 1:

Zp(x) =1, (1.3)

xeX

with X corresponding to the set of all the possible realizations x of the random variable X.

“In mathematics, random variables are typically denoted by a capital letter (e.g. X), and their possible values,
a.k.a. realizations, by the corresponding lowercase letter (x). We will follow this convention here but use lowercase
for both in later chapters.



For example, if X represents the outcome of rolling a fair six-sided dice, the PMF is:
1
p(x):g for xe X =Q=1{1,2,3,4,5,6}. (1.4)

In contrast, a continuous random variable takes values from a continuous range, such as time,
position or temperature. Since a continuous random variable can have infinitely many values,
the probability of it taking any specific value is zero. Therefore, probabilities are determined over
intervals using the probability density function (PDF). The total probability for all values (the

area under the PDF curve) must also sum to 1.

Definition 1.2 (Probability density function). The PDF of a continuous-valued random variable
X is denoted as p(x). Its integration over an interval [a, b) yields the probability of X € [a, b], i.e.

b
Prla < X < 4] :/ 2(x)ds, (15)

and thus, relating the PDF to the PMF. Additionally, the PDF must satisfy the following conditions

plx) >0 Vx, and /p(x) dx = 1.

1.1.2 MULTIVARIATE RANDOM VARIABLES

Additionally, the definitions of PMF and PDF can be extended also to multivariate random vari-
ables, also referred to as random vectors. Formally, a multivariate random variable is a column

vectorX = (Xy, ..., X,)T, whose components are random variables.

Definition 1.3 (Multivariate PMF). Fora multivariate discrete random variable X, let the PMF
be a function p : R* — [0,1] that gives the probability of the random vector X taking the specific

valuex, i.e.

p(x) = Pr[X = ] (1.6)



where p(x) > 0 Vx and the sum of all probabilities must be equal to 1:

D px) =1 (1.7)

xcX

with X corresponding to the set of all the elements x can take.

Definition 1.4 (Multivariate PDF). The multivariate PDF of a continuous-valued random vector
X isdenoted as p(x). Its integration over a domain X in the n-dimensional space of the values of X
yields the probability of X € X, i.e:

PriX € X] = /Xp(x) Dx, (1.8)

where [ Dx is shorthand for | fooo e [ fooo dwy ... dx,. Just like for the single-variable PDE, its

maultivariate counterpart must satisfy the following conditions

plx) > 0Vx, and /p(x) Dx = 1.

1.1.3 JOINT PROBABILITY FUNCTIONS

When working with more than one random variable, their combined behavior is described by
Joint probability functions, which capture the probability of two or more random variables taking

specific values simultaneously.

Definition 1.5 (Joint PMF). For discrete random variables, the joint behavior of X and Y is de-
scribed by the joint PMEF, which yields the probability of X taking the value x and Y taking the value

y, simultaneously:
pley) =PriX =2, Y =)]. (1.9)

Definition 1.6 (Joint PDF). For continuous random variables, the joint bebavior of random vari-
ables X and Y is described by the joint PDFp(x, y), which provides the relative likelibood of X taking

a value near x and Y taking a value neary:

b pd
Pr[aSXSb,cSYSd]:/ /p(x,y)dydx. (1.10)

8



Both definitions can be easily extended to multivariate random variables.

1.1.4 INDEPENDENT AND DEPENDENT RANDOM VARIABLES

Two random variables are independent if neither of their probability functions depends on the
value of the other variable. Their definition is formalized through the use of joint probability

functions. In particular:

Definition 1.7 (Independent discrete random variables). Ler X and Y be two discrete random
variables, with ranges X and Y, respectively. We say that X and Y are independent if forallx € X
andy € ), the joint PMF satisfies

PriX =xY=)|=Pr[X=x«] -Pr[Y=9] Vux,y (r.rz)

In other words, for every pair of possible outcomes x and y, the probability that X takes the value x
and Y takes the value y is the product of the individual probabilities of those events. That can be

extended to multivariate discrete random variables, as
PriXy =xp,...,X, =x,] =Pr[X; =2 - ... - Pr[X, =x,], Vaxi,...,%,. (1.12)

Additionally, a similar definition applies to independent continuous random variables, where
independence is characterized by the joint PDF factoring into the product of their respective

probability functions. Specifically,

Definition 1.8 (Independent continuous random variables). Let X and Y be two continuous ran-
dom variables. We say that X and Y are independent if for all x € [a,b] and y € ¢, d), the joint
PDF satisfies

p(x,y) = p(x) - p(y), (1.13)
such that,
Pl € a8,V € fod] = [ b / " plo.9) dyd = / b / o) dyd
-(/ e &) (/ 5 &) =PX el PYE[d]. (i



In other words, the probability that X falls in the interval |a, b] as well as'Y falls in [c,d] is the
product of the individual probabilities of these events. Just like in the discrete case, this definition

can also be extended to multivariate continuous random variables, as

px) =p(xt, ... x,) = plwr) - oo pln), Vo, ..., %, (r.15)

On the other hand, two random variables are dependent when they have a joint probability
density that cannot be factored into the product of their respective probability functions. Un-
like independent random variables, where knowing the outcome of one variable tells us nothing
about the other, the value of one dependent variable is influenced by the value of the other.

For continuous random variables, this dependency is best described through the use of the
so-called conditional PDFs and marginal PDFs. Marginal PDFs are isolated densities of a single
random variable where we have removed the influence of all the other variables. All these func-
tions are central to the understanding of Bayesian filtering and estimation.

For thatreason, let us start by defining the probability density for X if we were to know nothing

about Y, i.e. the marginal of X, through the law of total probability. Namely,

Property 1.1 (Marginal PDF / The law of total probability / Sum rule). Let X and Y be two
random variables, such thatY € Y, then the law of total probability states that the marginal PDF

reads as:

plx) = plx, y)dy. (1.16)

yeY

Thus, marginalizing over Y is simply integrating over all possible values of Y such that we are
left with a PDF that depends only on X.

Now we have all the tools needed to define the conditional PDF, which in turn yields a very
important property in probability theory: the product rule. A conditional distribution is the
probability distribution of one random variable given that another has taken a specific value. It
is derived from their joint distribution, since p(x, y) with y = a gives the relative probability for
x given that Y = 4. However, p(x, y = 4) is not normalized and therefore, we have to divide it

by the integral over all values of x, i.c., the marginal of Y.

Property 1.2 (Conditional PDF / Product rule). Let X and Y be two random variables with the
joint PDEF, p(x, ). The conditional density function, p(x|y), which reads as the probability density
of x given y, is defined as

p(x.9)

plaly) = ffooop—(x,y)dx’ (1.17)

10



which, since the denominator of Eq. (1.17) is the marginal of Y, it can be rewritten as

X :M 1.1
pxly) 0) (1.18)

The definition of the conditional density function yields the product rule:

Pl y) = plaly)p(y)- (1.19)

Note that p(x[y) should be interpreted as a function of only x since y is a known value, i.ce. we

have no uncertainty in y.

I1.1.5 EXPECTATION AND COVARIANCE

One of the most important distributions for both linear and nonlinear filtering is the Gaussian
distribution, which can be described using only the mean vector (or expected value) and the co-
variance matrix of the Gaussian random variable. And if our results are not Gaussian, we anyway
tend to approximate them using the mean and covariance of this non-Gaussian distribution, even
though these do not fully capture all the facets of our actual distribution. Therefore, let us first

define what is an expected value and a covariance matrix.

Definition 1.9 (Expected value / mean). The expected value (i.e. mean) of a continnous random
variable X is defined as

[e.9]

E[X] ::/_ x p(x) dx. (1.20)

The expectation of X is the integral of x weighted by the probability density of x. Thus, values
of X with high probability density will influence our expected values more than values of X with
low probability density. The expected value of X is also sometimes referred to as the first moment

of X. We can further define higher order moments of X, such as the variance of X as:

Definition 1.10 (Variance). The variance of a random variable X is the expected value of the

squared deviation of X from the mean E[X|:
ViX] =E[(X - EX])’] =E[X*] - E[X]*. (1.21)

Additionally, the definition of the mean and other moments can also be extended to random

vectors. Specifically, the multivariate mean will read as:

II1



Definition 1.11 (Multivariate mean). A random vector X = [Xy,Xa, . .., X,|" has an expected

value (mean) given by
E[X] = / % p(x) Dx. (1.22)
where p(x) is the multivariate PDF of Definition 1.4.

We can also extend the definition of the variance to multivariate random variables by defining
the covariance matrix of X. For a random vector X = (X, Xs, ..., X,,)7, the covariance matrix
encodes how each pair of variables X, and X vary together, revealing patterns of correlation and

dependencies across the components of X. Formally, the covariance matrix is defined as:

Definition 1.12 (Covariance matrix). Lez X be a random vector. Then, the covariance matrix is
covX] =E[X - EX))X-EX])"]. (1.23)

We can view the factor (X — E[X]) as the distance between the random vector X and its mean.
That is, how much does it spread around its mean value. Additionally, note that the diagonal
elements of cov[X], i.e. cov[X];; are the variances of each individual variable X;, while the off-

diagonal elements indicate the correlation between different variables.

1.1.6 LAW OF LARGE NUMBERS

Sometimes we are interested in finding the expected value of a random value, but an analytical
solution is not available. Perhaps we are not able to solve the involved integral explicitly, or more
commonly, because the exact form of the underlying distribution is not known. However, if
instead we have access to a large number of samples from the random variable, we can use the law
of large numbers and estimate the expected value numerically.

In particular, the law of large numbers states that, as the number of independent and identi-
cally distributed samples of a random variable increases, the sample average converges to the true

expected value of that variable. In other words:

Theorem 1.1 (The law of large numbers). Let X, Xs, ..., X, be a sequence of independent and
identically distributed random variables. In other words, they are all distributed according to the
same PDEF, p(x), and thus, bave a finite expected value p = E[X,| Vi =1,... n. Then,

n

lim X, = lim ! ZXZ» = u. (r.24)

n—00 n—00 72
=1
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Or, in other words, the sample average X, converges almost surely' to the expected value .

1.1.7 THE MULTIVARIATE GAUSSIAN DISTRIBUTION

LetX ~ N (x|g, ) denote a Gaussian random vector drawn from a multivariate PDF with mean

 and covariance 2. The PDF of x is known as a Gaussian distribution and defined as:

Definition 1.13 (Multivariate Gaussian distribution). A4 Gaussian random vectorX € R” hasa

probability density
Nl E) = L)tz
(%] g2, )—WCXP ) 2 —p) (1.25)
where | - | denotes the determinant, p = E[X| is the mean of X and Z represents the covariance of

X ie T =coviX] =E[(X - EX])(X - EX])"].

Just as in the case of a Gaussian random variable, the PDF of a Gaussian random vector comes
completely determined by its mean and covariance matrix. Furthermore, one of the most useful

properties of Gaussian random variables is their linear combination property.

Property 1.3 (Linearity of Gaussian random vectors). Let X ~ N (x| g., Z.) be a Ganssian
random vector, as well asY ~ N (| &y, Zy). Then, a linear combination of X and Y yields another

Gaussian random vector Z.:

Z = AX + BY, (1.26)

where Z has a mean and covariance:
. = E[AX + BY| = Au.. + By, (1.27)
=, = cov[4X + BY] = cov[4X] + cov[BY] = 4%=.4" + BZ,B', (1.28)

with A and B being some deterministic matrices specifying the linear combination of X and Y that

gives Z.

TPr{lim, 00 X, = 4] =1
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1.2 STOCHASTIC PROCESSES

A stochastic process is defined as a collection of random variables
{X(t), where t € T}, (1.29)

where each random variable is associated with a distinct point # in a parameter space 7. The
parameter space 7, often interpreted as time, can be any set index, though it is commonly a subset
of the real numbers R.
We can sample the stochastic process X (#) at times £, #1, . . . , ,, ordered such that: 7, < <
. < t,. The evaluation of the stochastic process at these times yields a sequence of random

variables Xy, = {Xo, Xi, . .., X, } with a joint probability density:

P(x0.0) = plo, %1, - - - 5 %,), (1.30)

which can be related to the conditional PDF through the product rule:

P(xO:n) :P<x0:n71; xn) :P<xn ‘xO:nfl)P(xO:nfly (13 I)

1.2.1 MARKOV PROCESS

A stochastic process is called a Markov process if it satisfies the Markov property, which states that
the conditional probability distribution of future states of the process depends only upon the

knowledge of the most recent realization, not on the sequence of events that preceded it.

Property 1.4 (Markov property). A sequence of random variables X, = {Xy}i=o1,.... form a
Markov sequence (or Markov chain) if X, given Xy is independent of all the other variables up to
time k-1:

P(elxo1) = ploceles). (1.32)

14



It follows that the form given in Eq. (1.31) can be simplified as:

P(xO:n) :P<x07x17 cee 7xn) - P(xn |x0:n71)])<x0:n71)

(% |%0-1)p (-1 %n-2) - - - - - plar]wo ) p(a%0), (1.33)

I
>

provided that the stochastic process X(#) is evaluated at times £, 11, . . . , £, fulfilling 7y < #; <
o<y,

Definition 1.14 (Chapman-Kolmogorov Equation). The Chapman-Kolmogorov equation ex-
presses the marginal transition probability between two states of a Markov process in terms of an

intermediate state. Using the Markov property and the product rule, it takes the form

sl 2) = / 1 Pl r) (e 1| 2). (1.34)

where the conditional independence p(xy|xp-1, X4-2) = p(xi|x4-1) follows from the Markov assump-

tion.

Proof. The statement above can be quickly shown using the sum rule, the Markov assumption

and the product rule:

pllos) = [ dovaplsialons) = [ dsspubiesms)plonabi)

_ / 1 (e ) (i 2). (1.35)

1.32

1.2.2 POISSON PROCESS

Definition 1.15 (Poisson process). Let {N(z),z € [0,00)} be a stochastic process that counts the
number of events occurring up to time t. The process N(¢) is said to be a Poisson process with rate

A > 0 if the following conditions are satisfied:

1. Initial condition: The process starts with zero events at time zero, i.e. N(0) = 0.

15



2. The process bas independent increments: For any 0 < s < t, the number of events
occurring in the interval [s, t] is given by AN(t — s) = N(2) — N(s), which is independent

of the number of events occurring prior to s.

3. The process bas stationary increments: For any 0 < s < t, the number of events in [s, t|

depends only on the length of the interval t — s, and not on the specific values of s and t.

4. Continuity in probability: For anye > 0 and t > 0, it holds that
lim Pr[|N(z+4 Az) — N(¢)| > ¢] = 0. (1.36)
At—0

In other words, the Poisson process N(t) has almost surely continuous trajectories. Crucially,
this condition still allows the infinitesimal increments of N(¢) to be finite, i.e. for the process

to jump.

s. Poisson distribution for the increments: Foreacht > 0, the number of events in [t, t+ At

Sfollows a distribution with rates:

Pr[AN(Az) :== N(r + Az) — N(z) = 1] = AAr + o(Ar), (1.37)
Pr[AN(Az) := N(z+ Ar) — N(z) = 0] =1 — 1Az + o(As), (1.38)
Pr[AN(Af) :== N(z 4+ Ar) — N(z) > 1] = o(At), (1.39)

where the probability of a jump occurring between t and t + At vanishes as At — 0. Here,
o(Ar) —0.

At

the little-o notation o(At)* represents a function that fulfills lima, o

Therefore, if we now take the limit of Az — 0, we can define an infinitesimal increment:

dN = N(z+ ds) — N(z), (1.41)

¥The notation o(At) means that the additional terms vanish faster than Az i.e., they become negligible as Az —
0. This differs from Big-O notation, which describes the scaling behavior up to a constant factor. Formally:
A
o(At) = limAHoﬂ—?
AAr) = tA (1.40)
j .
O(At ) A llmA[_>0 T

16



that counts the number of events that occur in the interval [z, # 4 d7|. Namely,

Pr[dN = 1] = Adz + o(de), (1.42)
Pr[dN = 0] =1 — Adz + o(d?), (1.43)
Pr[dN > 1] = o(d?). (1.44)

In other words, in an infinitesimal interval [¢, 74-d¢], there can be either one jump with a vanishing
probability of Ad#, or no jumps, with a probability 1 — Adz. Therefore, since dN can only have
values 0 or 1, it follows that

dN? = dN. (1.45)

Additionally, both the expectation and variance of this increment, dN, are equal to Ad:

E[dN] = "k Pr[dN = k] = Adz + o(d2), (1.46)
k=0

Var[dN] = E[dN?] — E[dN]> = Y " #* Pr[dN = k] — (2ds)* = dz + o(de).  (1.47)

k=0

The distribution above can be shown to be a Poisson distribution by discretizing a total time
evolution [0, 7] by time-steps Az s.t. » = /At and calculating the probability that £ jumps
occur in £ intervals in a total of # intervals. The number of different combinations of £ elements

from a total group of £ < # elements is given by:

n n!
() -mm e

Therefore, in the limit of Az — 0, or equivalently, z — oo, we get

Pr[(N(z) = &] = lim m(lm)k(l — A"

n! (A2)F(1 — 2t/n)”

pu— 1.
wroo (1 — k)it RI(1— Az/n)t
k —At
= Qt)kf , where £=0,1,2,... (1.49)
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where in the last step we have used the following identities:

nli_}rgo(l — At/n)" = e, (1.50)

nlirgo(l —At/n)t =1, (r.51)
) n!  onn—1 n—k+1 ot

P

As stated in the third condition of the definition of a Poisson process N(#), the process has
stationary increments. Therefore, the increment AN(Az) = N(z + Az) — N(#) has the same
distribution as N(A¢). Then,

Pr[AN = k] = Pr[(N(z + Ar) — N(¢)) = k] = Pr[N(A7) = 4]
(AAr)*

:Teflm for £=0,1,2,.... (1.53)

So to sum up, the Poisson increment, AN(Az) ~ Pois(1A¢), is drawn from a Poisson distri-
bution with occurrences &, which in principle can be 0,1, 2, and so on. However, as Az — 0,
dN = lima,—,o AN(A¢), and the probability of dN taking values greater than 1 becomes negligi-
ble. In other words, dN is only either 0 or 1 almost surely’, i.e. Pr[dN € {0,1}] = 1.

These properties describe a discrete process where events occur one at a time, and with the

time between events following an exponential distribution with the parameter 4.

1.2.3 WIENER PROCESS

Definition 1.16 (Wiener process). Let {W(z), ¢ € [0, 00)} be a stochastic process representing the
continnous evolution of a random variable over time. The process W (t) is said to be a Wiener process

if it satisfies the following conditions:
1. Initial condition: W(0) = 0 almost surely.

2. Independent increments: For any 0 < s < t, the increment AW (¢t — 5) == W(z) — W(s)
is independent of the process history up to time s. Thus, evolution over any interval depends

only on that interval, independent of past values.

SAn event happens almost surely when it happens with probability 1.
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3. Stationary increments: For any 0 < s < t, the increment W (t) — W (s) depends only
on the length of the interval t — s and not on the specific values s and t. This means that the
distribution of AW (¢t —s) = W (¢) — W (s) Zs identical to that of W (¢ — s), i.e. the increment

is just another Wiener process.

4. Continuity in probability: The process W (t) is almost surely continuons in t. Specifically,
foranye > 0andt > 0, it holds that

Alir_rgo Pr[|W(z+ Az) = W(2)| > ¢] =0 (1.54)

5. Normally distributed increments: For any 0 < s < t, the increment W (t) — W (s) is

normally distributed with mean zero and variance t — s. Specifically,
AW (t—s5) = W(t) — W(s) ~ N(0,2—3), (1.55)

where N (-, - ) is a Gaussian distribution, introduced in Eq. (1.25), with first and second

moments:

E[AW( — 5)] = 0, (1.56)
E[AW(t —s)*] =t —s. (1.57)

Thus, if we take the limit Az — 0, we can define an infinitesimal increment
dW == W(z+ dz) — W(z) ~ N(0,ds), (1.58)
which represents the change in the Wiener process over the infinitesimal interval [z, # 4 d¢] and
has mean zero and variance d#:
V[dW] = E[dW*] = dz. (1.60)
The paths of the Wiener process are continuous but nowhere differentiable. In other words,

although W(z) has continuous sample paths, it has no well-defined slope at any point.
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1.3 STOCHASTIC CALCULUS WITH GAUSSIAN NOISE

Stochastic calculus is a branch of mathematics that extends traditional calculus to handle systems
driven by randomness. It addresses how to integrate and differentiate functions of stochastic
processes, such as f{X(#)), with respect to other stochastic processes. One possible way of doing
that is with the Itd integral, which integrates a given stochastic process X(#) with respect to the

Wiener process W(z):
T
/ X(r)dW. (1.61)
0

Since W(#) has (random) continuous but nowhere differentiable paths, classical calculus tech-

niques such as Riemann-Stieltjes integration is not applicable.

1.3.1 ITO INTEGRAL

To define the It6 integral, let us consider a function f(#, X(#)) that depends on a time parameter
tand some stochastic process X(#) up to time z. It follows that the function f(z, X(¢)) is in itself
another stochastic process, and we have to further assume that (¢, X(¢)) is a non-anticipating
function (a.k.a. non-anticipating process or adapted process), i.e. f(¢,X(¢)) is independent of
the behavior of X(#) and the Wiener process W(#) in the future of z. More rigorously:

Definition 1.17 (Non-anticipating function). 4 function f(¢, X(t)) is said to be non-anticipating
(or adapred) if, V7 > t, it is statistically independent of the future increment W () — W (¢) of the

W iener process.

Additionally, £(z,X(#)) cannot grow too quickly since the average of its squared value must
be finite. Then,

Definition 1.18 (The Itd integral). The 16 integral of f (¢, X(¢)) with respect to the Wiener process
W () over an interval |0, T'| is defined as

S= /OTf(t,X(t)) dW = ms-lim S, (1.62)

n—0o0

where ms-lim denotes the mean-squared limit of the approximating sum S,:

n

Sn = Zf([i—hX(tifl)) AW(AQ), (1-63)

=1
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Figure 1.1: Discrete evaluation of the functionf(t, X(t)) Visual representation of the partitioning of the time interval
[0, T] to evaluate the functionﬂt, X(#)) and define the It6 integral off(t7 X (#)) with respect to the noise process W ().

with the increment AW (At;) given as AW (At,) == W (t;) — W (t,1) and {t,}"_ being a partition
of the interval [0, T with0 =ty <t < --- <t,, <1, =T.

Note that the limit in Eq. (1.62) is taken in the mean square sense. Therefore, let us define

what we mean by that:

Definition 1.19 (Mean-Squared Limit). Let {S,}°2, be a sequence of random variables and let S

be another random variable. We say that S, converges to S in the mean-squared sense, and write

ms-lim S, =S, (1.64)
n—oo
if
. _ 2] —
nlggoE[(Sn S)’] =o, (1.65)

where E[(S, — S)*] is what we call in statistics the mean squared error (MSE), which will be defined

in more detail in the next chapter.

This type of convergence means that the approximating sum S, will, on average, stay close to
the It6 integral value S as we refine the partition, without requiring every individual path of the
process S, to converge exactly (pathwise) to the integral S. This might remind the reader of how,
in statistics, we seek an estimator for a true quantity that minimizes the MSE. In that case, we
easily recognize that even a good estimator may produce a poor estimate in a particular realization.
What matters is that such deviations become increasingly rare on average as the approximation

improves.

21



Besides the It6 integral, there are other ways to define a stochastic integral w.r.t. the Wiener

process. Another approach, known as the Stratonovich integral, is defined as

7{ F(6,X(2) dW i= mslim >~ ("’1 4 X() +X(t“)) AW(AZ)  (1.66)

, 2 7 2

=1
where we superimpose S over the integral symbol to highlight that this integral is different from
the It6 integral.

Example. (Ité integral of a Wiener process): Let us compute

/TW(t) dw, (1.67)

where, for this stochastic integral, f (¢, X(2)) = f (¢, W(z)) = W(2). Recall the definition of
an Itd integral as given in Eq. (1.62). In our case, S, is of the form:

n

Sy =Y W(t)AW(Ar,) (1.68)

=1

where AW (At;) == W (t;) — W (z.-1). 1o simplify the sum, we can expand the summand as:

W(tm1) AW(AL) = = (W(2,)* — W(t)> — AW(AL)?) (1.69)

D[ =

which makes evaluating the sum easier. In particular, substituting this identity into the sum

S, ytelds:

Sy = ! Z (W(#)* = W(24)%) — %Z (AW (Az)?) . (1.70)

=1 =1

Next, note that the first part of the sum S, forms a so-called telescopic sum. This means that all

intermediate terms cancel out, leaving only the boundary terms:

> (W(w) = W(t)?) = W(T)* = W(0)> = W(T)?, (1.71)

=1

where in the last step we have used the initial condition of a Wiener process, W(0) = 0 (see
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Sec. 1.2.3). Therefore, we can now rewrite S, as:

S, = % <W(T)2 — Z;AW(AI,-)2> : (1.72)

and hence computing the mean-squared limit of S,

- 1
S = ms-lim S, = 5 (W(T) — ms- hmZAW At;) ) (1.73)

n—r0o0 n—ro0
=1

reduces to computing the mean-squared limit of the sum of AW (At;)*:

I=W(T)* - 2S = ms-lim /, —mshmZAW At;)?. (1.74)

n—oo n—o0o
In other words, we have now to find the It6 integral I s.t.

lim E[(Z, —1)*] =0 (1.75)
n—roo
is fulfilled. Our approach to tackle this problem is to give an ansatz to the solution of the It6
integral I and then check that it satisfies the mean-squared limit definition in Eq. (1.75). In

particular, we choose the following ansatz:

~
I
!

(1.76)

which is simply the mean of I,. Namely,

n

ZAW (At,) ] ZE [aw(an)] = ti—ta)=T, (177)

I.
57) pam

where in the last step we have again a telescopic sum. Now that we know the reason bebind onr

“tnspired” ansatz, we just need to check whether I, converges to T in the mean-squared sense:

lim E[(Z, —1)*] = lim E

n—o0 n—0oo

(1.78)

(Z AW(At,)? )2
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The first step is to expand the squared sum in the limit above:

(Z AW (At)* — T) = (Z AW(At,-)2> - szn: AW (Az;)? + T

=1
n n i-1 n
=) AW(AL) +2) ) AW(AL)? AW(AL)® — 2Ty AW(AL)* + T2, (1.79)
=1 =1 ;=1 =1

by employing the following identity:
n 2 n n -1
<le> = fo—l—zzz:x,»xj. (1.80)
1 7=l

i= — =1 j=1

Then, we can take its expected value:

E (Z AW (At,)* — T> = Z E[AW(Az)*] 42 Z Zl E[AW(At;)* AW(At)?]
— ZTEn:E[AW(Ar,-)Z} + 7%, (1.81)

=1
and use the properties of the Wiener process (see Sec. 1.2.3) to calculate the higher moments of

AW (At;) appearing above:

E[AW(A)*] = 3A8 = 3(t; — t:4)?, (1.82)
E[AW(Az;)* AW (Az)*] = E[AW(Ar)?] E[AW(Af)?] = At; A, (1.83)

where the last expression uses the property of independent increments, sincei > j vV i,].

Therefore,

E (i: AW (At,)* — T) =3 zn:(tl- — 1) +2 zn: lz:(tl- — t1) (6 — £11)
=1 =1 =1 j=1
- ZTi(t,« — ) + T°. (1.84)

=1
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If we now simplify the telescopic sums

n

S ti—t)=T, (1.85)

i=1

and employ the identity specified in Eq. (1.80) to roll back the term

ZZ Z(Q = tz’—l)(tj — fjul) = (Z(l‘;’ = t,»1)> — Z(tl, _ tH)z

n

— = Z(ti - Z'z'—1)27 (186)
i=1
we can finally substitute all that into Eq. (1.84) and take its limit to verify that I = T.
Namely,

n

= Znhjgo Z(fz‘ —1:1)? = 0. (1.87)

=1

lim E

n—0o0

(Z AW (Az,)* — T>

Hence, it follows that

I = ms-lim [, = ms-lim Z AW(AL)* =T, (1.88)
=il

n—0oo n—0o0

and thus,

(W(T)2 — ms-lim ]n)

n—roo

N | =

n—oo

S = /TW(t)dW = ms-lim i W(2,) AW (Az;) =
% (W(T)*—T). (1.89)

1.3.2 dW? = dranp dW” = 0 ForR 7z > 2

The differential of a Wiener process, denoted as dW, behaves differently from ordinary differ-

entials. In particular, a key result in stochastic calculus is that the square of dW is equal to the
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differential of time, dz, while higher powers of dW vanish. More precisely, we want to prove that

(dW)HY — dt for N=0, (1.50)
0 for N>0.

To do so, we have to use the It6 integral and show

n—oo

/0 f(,X(2)) (dW)* ™ := ms-lim Zf 1, X(t1)) AW (AL)HN

B fof(t,X(t))dt for N=0, (1.91)
o for N>0 i

To tackle this proof, we need to divide it into two: first show that dW? = drand then, demon-
strate that dW>™ = 0 for N > 2.

Proof. To prove that dW* = dt we have to employ the definition of the Itd integral and show:

mns_;lgom Zf(ti,l, )) AW (At,)* / f,X(z (1.92)
=1

However, to understand this limit, we must recall the definition of convergence in the
mean-square sense, as introduced in Eq. (1.65 ). This means that, for the sequence of

approximating sums S, and the limiting value S, we require

lim E[(S, —$)*] =0, (r.93)

n—oQo

where we define
S = Zf i1, X(t1)) AW (At,)?, (1.94)

and

S= [ pex@) = lim > o, X0 o, (1.95)

26



Therefore, if we substitute the expressions for S, and S, we get:

lim E[(S, —$)’] = lim E

n—oo n—0o0

(Zf 1, X AW(At) Afi)) ] : (1.96)

Note that the squared sum in the limit above can be expanded according to the identity in
Eq.(1.80), i.e.

(Z Fltir, X(t11)) (AW(A%)? )] ZE 7] [ AW(A;;-)Z—A@-)Z}

+2 Z Z E[f1 1] (E[AW(AL)?] — Az,) (E[AW(Az)Y] — Az), (1.97)

i=1 j=I

where we simplify the notation by writing f;- instead of f (t;-1, X(:-1)). Above we also use that
i1 = [ (ti1, X(81)) 75 independent of AW (At;) = W (t;) — W (2,21). This follows from:

1. The function f being a non-anticipating function, i.e. it does not depend on future

values (recall Definition 1.17).

2. The property of stationary increments, fundamental to the definition of Lévy processes,
and in particular, Wiener processes (if needed, refer back to Sec. 1.2.3).

Even though AW (At;) is defined in terms of W (t,-1), its distribution is independent of W (¢,1)
because it is determined solely by the interval At;. Namely, recall from Sec. 1.2.3 that

AW (Az;) = W(2) — W (1) = W(AL) ~ N (0, At;). This lack of dependency on the
actual path of W (t) up to t,.y makes AW (At;) statistically independent of W (¢,_1) despite
being defined as AW (At;) = W (t;) — W (2,-1). Therefore, even if fwas a function of the
process W (¢), i.e. f(£,W(z)), or of a process X(¢) somebow correlated with W (¢), f_; is still
independent of AW (At;). Hence,

E[ £ (aW(As) — As)’] = B[] E[(aW(a5)? - As)?], (1.98)

E[fi1 f1 (AW(AL)* — Ar) (AW(AL)? — At)] = (1.99)
= E[ﬁ,lﬁ,l] (]E [AW(AQ)Z} — At,r) (E[AW(AZJ')Z] — At]-), since 1 >j Vij.
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Note that in the last expression, we have used that
E[AW(AL) AW (AL)] = E[AW(AL)| E[AW(AL)]  since i > j, (1.100)

which holds because the Wiener increments of different time steps are independent (again, see

Sec. 1.2.3). Furthermore, given that each increment AW (At,) is normally distributed, then
E[AW(Az)?] = At (r.101)
E [(AW(AQ-)Z - Az‘,»)z] — E[AW(Az)* — 28W(As)*A; + AZ]

=3AL — 208 + AL = 2A%. (r.102)

When we apply these results to Eq. (1.97) and take the limit of n — 00, we obtain

lim E[(S, — S)Z} = lim ZZ]E[ffl] Atr =0, (1.103)
i=1

n—00 n—0o0

since At; is squared. In other words, the average mean squared error of the difference between
the “Riemann-sum” approximation S, and the limiting stochastic integral S converges to zero

as the partition is refined. Thus, we have shown that

/Of(t,X(t))(dW)Z:: rr;s_—}léomz Flte1, X(21)) AW(At;)? :/Of(t,X(t)) dz, (1.104)

i=1

and bence

dW? = dr. (1.10%)

The proofs of (dW)*™¥ = 0 when N > 2 and dWdz = 0 follow very similar steps to the
previous one, and are provided in App. A.1 and App. A.2. All these results are only valid for
the Itd integral, since we have used that AW, is independent of the non-anticipating function
f-1. However, the integrand in the Stratonovich integral is evaluated at the midpoint of the in-
terval, ie. fi1 = F(3(t1 4+ #), 2(X(%) + X(#-1))), while the increment remains defined as
AW(At;) = W(z;) — W(t1). Hence, AW(Az;) and f;; are not necessarily independent even
though fis non-anticipating. Thus, dW? = dt does not hold in Stratonovich calculus [70].
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1.3.3 ITO’S LEMMA

Let us now introduce It6’s lemma, the stochastic analog of the chain rule. It tells us how to dif-
ferentiate functions of stochastic processes and is essential for formulating and solving stochastic

differential equations (SDEs).

Lemma 1.2 (It6’s lemma). Ler W(2) be a Wiener process and consider a function f (¢, W (¢)), twice
differentiable w.r.t. W (t) and once differentiable with respect to t. Then, It6’s lemma states:

df (s, W(z)) = (3{ 288\7(/'][2)(1 + %de (1.106)

where Of) OW and 0*f] OW? are the first and second partial derivatives of f (¢, W (¢)) w.r.t. W(z),
cvaluated ar (t, W(z)).

In this form, It6’s lemma shows that the differential of f(, W(#)) has an additional term
12 0*f] OW? that accounts for the quadratic variation of the Wiener process W(z).

Proof. Consider the function f(t + At, W (¢ + At)), where At is a finite time-step s.t. At > 0.
Additionally, let us define the Wiener increment over this small interval At as
AW (Ar) = W (r+ Ar) — W(2). Then, if we expand f(t + At, W (¢ + Ar)) using the Taylor

series to second order in W(t) and first in t, we get:

Ae+AeW(t+Ar)) = f(2,W () + ngt—i— ;TfVAW(At) - 53\72(]; (AW(Ar))*, (1.107)

where bigher-order terms in At and AW (At) are ignored since they will vanish as At — 0.
The key difference from ordinary calculus comes from the term including (AW (At))?, since as
shown in the previous section, dW? = dt in the limit of At — 0.

Therefore, by now rearranging the terms above and taking the limit of At — 0, we get

W) = (Lot o0 )+ oW (1.108)

ot 20W? 8\7(7

Additionally, there is also a more general form for Itd’s lemma, providing the differential of a

function f(#, X(#)), where X(¢) is a general stochastic process. Namely,

Lemma 1.3 (General Itd’slemma). Let X (¢) be an It6 process and let f (¢, X (¢)) be a twice-differentiable
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function of time and the process X(t). Then, It6’s lemma states:

df (t,X(z)) = afdl‘ + 8)j; 2 ngZdXdX (1.109)

where dXdX represents the quadratic variation of X (t). For X(t) = W(z), the guadratic variation
Zsde.

Example. (How to apply the Ité lemma (I)): Let us consider now
F(e,W(2)) = ut+ oW (2), where u, oare constant parameters. If now we evaluate the
differential df (¢, W (t)) using the Itd form, we get:

df (£, W(z)) = pdr + odW. (r.110)

Note that a_function of a stochastic process is simply another stochastic process, and thus, we can
rename the function of W (t) as X (¢) = f (¢, W(z)). Then, we can view the It6 differential in
Egq. (1.110) as a stochastic differential equation of the process X (t). Namely,

dX(z) = pdr + odW. (r.rrx)

Example. (How to apply the Ité lemma (I1)): In this second example, let us consider a
different function: f(¢t, W (z)) = W(2). If we apply It6’s lemma to f (¢, W(¢)), we obtain

dF (6, W(2)) = d (W(1)?) = 0 - dr + 2W(2)dW + %za: — dr 4 2W(OAW,  (1.112)

since Of Ot = 0 because f does not depend on t, and

of _

W 2W (z), (r.rr3)
52

a\xj; =2. (1.114)

This result shows how the second derivative term in Itd’s lemma influences the differential of

functions that are at least quadratic in W (t).
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1.3.4 ITO-LEIBNIZ PRODUCT RULE

In ordinary calculus, the Leibniz product rule provides the derivative of a product of two or

more functions. For stochastic processes, however, the corresponding rule for differentiating

the product of two stochastic processes — or two functions of stochastic processes, which are

themselves stochastic processes too — is known as the It6-Leibniz product rule.

Rule. (Ité-Leibniz product rule): Ler X(r) and Y (¢) be two It processes. Then, the differential

of the product Z(t) = X(¢)Y(z) is given by:

dZ(z) = d (X(0)Y(2)) = X(¢)dY(#) + Y(£)dX () + dX(£)dY(2). (1.115)
Proof. 1o derive the Ité-Leibniz product rule, we can start considering the following
increment of Z(t) = X(2)Y(¢):
AZ(Ar) = Z(t + Ar) — Z(¢) = X(¢ + An)Y (2 + Ar) — X(2)Y(2), (1.116)

and then add and subtract the term X (¢)Y (¢ + A¢):

=Y(r+ Ar) (X(z+ Ar) — X(2)) + X(2) (Y(r 4 Ar) — Y(2)) .
Next, we again add and subtract another term, Y (¢) (X(¢r + Az) — X(¢)):

AZ(Ar) = Y(r + Ar) (X (2 + Ar) — X(2)) — Y(2) (X(2 4 Az) — X(2))
+Y(2) (X(2 4 Ar) = X(2)) + X(2) (Y(£ + Ar) = Y(2))
= (Y(e+ Az) — Y(2)) (X(2 + Ar) — X(2))
+Y(2) (X(z + Ar) = X(2) + X(2) (Y(2 + A1) — Y(2))
= AY(AD)AX(A?) + Y()AX(AD) + X(£)AY(As).

A\_/

A/—\

If we now take the limit of At — 0, we derive the It6-Leibniz product rule:

dZ(z) = X()dY(z) + Y(#)dX(z) 4+ dY(#)dX(2).

AZ(Ar) = X(t 4 Ae)Y(r + Ar) + X ()Y (s + Az) — X(2)Y(r + Az) — X(2)Y(2)

(1.117)

(1.118)

(1.119)

31



1.3.5 STOCHASTIC DIFFERENTIAL EQUATIONS

Stochastic differential equations are ordinary differential equations with the right hand side per-
turbed with a random term. To mathematically define SDEs, we use Itd notation. An example of
asimple SDE is given in Eq. (1.111), which its form in It6 notation is derived using It6’s lemma.
More generally though, a differential equation perturbed by white Gaussian noise? can be writ-

ten in [td form as:

dX(2) = u(X(2),2)dr + o(X(2), £)dW, (1.120)

where X(#) is the stochastic process we aim to solve for, i.e. the state of the system at time #, and
dW is the Wiener differential. The terms u(X(z), #) and o(X(2), £) are the drift and diffusion
term, representing the deterministic and random parts of the evolution, respectively.

Solutions to SDEs can be generally classified into two categories: analytical, with closed-form
solutions, and numerical, which approximate the evolution of X(#) through discretized steps. A
simple example of an analytical closed-form solution is given by the SDE in Eq. (1.111), which
has the solution X(7) = p ¢+ oW (z).

Example. (Geometric Brownian motion solution): Another well-known example is the

geometric Brownian motion satisfying the following SDE:
dX(z) = uX(£)dt + o X ()dW, (r.121)
which bas the solution
X(£) = X(0) exp {(ﬂ - %f) - G’W(t)}, (1.122)

where X(0) is the initial value of the process X (¢).

Proof. 1o find the solution of the geometric Brownian motion defined by Eq. (1.121), let us
compute the differential of the natural logarithm of X(¢). In particular, since In(X(¢)) isa
function of the process X(¢), i.e. f(t,X(2)), we bave to use Itd’s lemma (1.109) to compute the

I White Gaussian noise is a random signal with a flat power spectral density and Gaussian amplitude distribution;
it can be informally thought of as the derivative of the Wiener process. Fora more in-depth explanation, see Sec. 1.3.8.
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differential of f (¢, X(2)) = In(X(¢)). Namely,

d (In(X(2))) = % (aa_); ln(X(t)))dXdX + (aix ln(X(t))) dX, (1.123)

where dX dX is the quadratic variation of X (2):
dX dX = @?X?(£)d7 + 20uX?(r) dWdr + ?X2(¢) dW? = ?X2(2) dr + O(dF7). (1.124)

Therefore, we can write the differential of In(X(z)) as

I S ax 1 O
d (In(X(2))) = ZXZ(t)aﬂX (r)de + X0~ zo'zdt—l— X0~
= —%azdrl—‘udtjtadw, (r.125)

where in the last step we used Eq. (1.121). Hence, by now integrating from 0 to t, we get

In(X()) — In(X(0)) = In @((é))) _ (y _ %f)m W (), (1.126)

which, by exponentiating its both sides, yields an analytical form for X(¢):

X() = X(0) exp { (/4 - %f) - aW(t)}. (1.127)

1.3.6 ORNSTEIN-UHLENBECK PROCESS

The Ornstein-Uhlenbeck (OU) process is another process with Gaussian noise that models mean-
reverting behavior, i.e. the system has a tendency to return to an equilibrium state. The dynamics

of the OU process X(¢) are governed by the following SDE:
dX(z) = —0(X(z) — n)dz + odW, (1.128)

where ¢ > 0, # and ¢ are constants and dW is the Wiener differential. The deterministic term
—0X(¢) pulls the process back towards a long-term mean, g, while the stochastic term ¢dW in-

troduces the random kicks.
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Just like in the example of the geometric Brownian motion, the OU process (here we assume

u = 0) also has a formal solution:

X(¢) = X(0)e ™ + O‘/Ot e AW (7). (1r.129)

Proof. Define a function of the stochastic process X (¢) as (X (2), £) == X(¢£)e”, such that

when computing its differential with It6’s lemma we get:
d (X(2)e”) = 6X(r)e”dr + *dX(¢) = cdW(2)e”. (1.130)
Hence, integrating both sides from 0 to t yields:
X(¢)e” = X(0) + a/l e dW(z), (1.131)
0

which can be simplified by taking the exponential term to the r.h.s. to reveal the formal

solution of the process:

X() =X(0)e™™ + & / et dW (7). (1.132)

From this expression, one can derive the mean and the covariance of the process:

E[X(z)] = X(0)e™*, (1.133)

Ccr [ cow [ cowi]

— P20+ / / e E[dW(7) dW ()]

0_2 x+t/ or |:/ 6’05\( )dU:| dr
0 0
min(?, s)
_ a,Ze—ﬁ(x-H)/ eZ&rdT
0

1
_ et L
© 26

(ezémin(t,x) N 1) _ % (e*9|tfx\ _ e*ﬁ(J+t)) (1.134)
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where min(z, 5) appears because e’ is non-zero only when 0 < 7 < s. It follows that the variance

is:

V[X(2)] = cov[X(2)X(z)] = i (1- e_z‘%) ) (r.135)

V[X(2)] =~ . (1.136)

The OU process can also be described in terms of a PDF p(x, #), which describes the likelihood
of the process X () being in a state x at a time £. This probability density evolves according to the
Fokker-Planck equation, a partial differential equation that governs the time evolution of the
probability distribution for a stochastic process. For the zero-mean (¢ = 0) OU process, the
Fokker-Planck equation is given by:

op 0 o> 0%p

= =0— ——. .

5~ (a0 T S 50 (1.137)
Solving the Fokker-Planck equation with the initial condition p(x, #)) = d(x — xy) yields the

following transition probability function:

6 g (x— xoe“g(f‘fo))2
plx, tlxo, ) = \/Wz(l e 2n)) eXp (_ﬁ 1 — o—20(-1) | (1.138)

where # > 1y, x = X(#) and %y = X(#). Note that the mean and variance of the OU process

X(¢), given in Eq. (1.133) and Eq. (1.135), respectively, can be easily inferred from the Gaussian

form of the transition probability by setting the starting time zy = 0 in Eq. (1.138).

1.3.7 NUMERICAL METHODS FOR SDEs

For cases where closed-form solutions of SDEs are not attainable, numerical methods provide
a practical way to approximate the behavior of stochastic processes over time. Numerical solu-
tions to SDEs rely on time discretization and iterative computation of approximate values of the
stochastic process. One of the most widely used methods for numerically solving SDEs is the
Euler-Maruyama (EM) method, a straightforward extension of the classical Euler method for

deterministic differential equations.
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1.3.7.1 THE EULER-MARUYAMA METHOD

Consider a general SDE of the form specified in Eq. (1.120). Namely,
dX(2) = u (X(2),£) dt 4+ o (X(2), ) AW, (1.139)

where X(#) is the stochastic process for which we want to numerically solve the equation above
over a time interval [0, 7']. To implement the EM method, the time interval [0, 7] is divided
into 7 discrete time steps of equal size Az = T/n. Let #;, = kAr denote the discrete time points,
with & = 0,1,2,..., 7. Then, the approximate solution at each time step, X[k] = X(z), is

computed iteratively using the update formula:
X[k +1] = X[k] + u (1, X[k]) At + 7 (1, X[k]) AW, (1.140)

where AW, == W(#41) — W(#) is the increment of the Wiener process over the time step A,

which is simulated by drawing from a Gaussian distribution with mean zero and variance Az:
AW, ~ N (0, Az). (r.141)

The EM method is a first-order method in both the time-step Az and the Wiener increment
AW, Specifically, it converges strongly with order 1/2, meaning that the expected error between
the true solution of X and the numerical solution scales as O(\/A_t) For practical purposes, this
implies that reducing size of the time step improves the accuracy of the method, but its precision
is limited. Higher-order methods exist but they are often more complex and computationally
expensive. In particular, when the drift and/or diffusion coefficients exhibit high nonlinearity or
stiffness, then more sophisticated methods, such as the Milstein method or higher-order Runge-

Kutta methods for SDEs may be necessary to achieve better accuracy.

1.3.8 WHITE NOISE

Ordinary differential equations can be extended to describe the dynamics of stochastic processes

by adding a white noise term, such as:

dx
% =pux+ w(z), (1.142)
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where w(z)! represents the white noise, also sometimes referred as a Langevin term. Even though
we previously mentioned that white Gaussian noise w(#) can be informally viewed as the formal
derivative of a Wiener process, we have yet to rigorously define what we mean by white noise.
White noise processes differ significantly between discrete and continuous time, particularly
in how they are defined and interpreted. In the discrete-time setting, white noise has an intuitive
definition, involving sequences of uncorrelated (or independent) random variables with finite
variance. In contrast, continuous-time white noise cannot be defined as a standard stochastic
process, requiring more complicated mathematical machinery. Thus, we begin by introducing

the simpler notion of discrete white noise and then move to continuous time.

Definition 1.20 (Discrete white noise). Lez {q; ez be a real-valued discrete-time stochastic pro-

cess. We say that it is a wide-sense white noise process if it satisfies [71]:
Elg:] =0, (1.143)
covlgi,4;] = E |q:4;] = Qi 9y, (1.144)

where dy; is the Kronecker delta and Qp > 0 is the variance of q. If, in addition, the random

variables in {q; }rez, are mutually independent, i.e.,

2@, q1) = plqn) - plagr) (1.145)

then {qu }rez, is also strict-sense white noise. Finally, when each element qy of the white process is

Gaussian, one speaks of a discrete Gaussian white noise:

g ~ N(0, Q). (1.146)

Unlike in discrete time, a continuous-time white noise process cannot be defined as a stan-
dard stochastic process that when evaluated point-wise yields a random variable with a finite vari-
ance. Instead, continuous white noise is treated as a generalized stochastic process, defined only

through its action on test functions via integration:

Definition 1.21 (Continuous white noise). A (generalized) continuous-time stochastic process

ITn general, this noise in the so-called Langevin equation does not need to be white [70].
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{w(2),t € [0, 00)} taking values in R” is called white noise if [72]:

Elw(z)] = 0, (1.147)
coviw(z), w(s)] = Elw(2)w(s)] = Q(¢) o(z — s), (1.148)

where d( - ) is the Dirac delta and Q(t) is the (continuons) covariance matrix, also known as the

spectral density matrix [30].

The term “white” in white noise refers to its flat power spectral density S, (w) over an infinite
frequency range. To visualize this, consider the case of a white noise with a constant covariance,

ie. Q(r) = Q. Its power spectral density is given by:

00
Su(w) = / Elw(d)w(t + 7)] ¢ dr = Q. (1.149)
—o0
Thus, this constant power spectral density across an infinite bandwidth implies that the general-
ized process has an infinite variance in the time domain. This is reflected by the Dirac delta 9(0)
in the covariance function of Eq. (1.148) when # = 5. Due to this infinite variance, w(#) cannot
be treated as a standard stochastic process that can be evaluated point-wise yielding random vari-
ables with finite variance. Instead, it is referred to as a generalized process, just like the Dirac delta
is called a generalized function: i.e. it is defined by multiplying it with a test function and then

integrating:
/f(t) I(r)dr = A0) <= /fT(z‘)w(t)dt = (f,w) isawell-defined random vector. (1.150)

In the case where the white noise is also Gaussian, it can be formally related to a Wiener process

{W(z),z € [0,00)} (introduced in Sec. 1.2.3) as:

wlt) = ==, (r.151)

in a distributional sense. This means that for any suitable test function
/ﬂt)w(t)dt: /ﬂt)dW, (r.152)

where the right-hand side is an It6 integral (see Sec. 1.3.1 for more on It6 integrals).
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Another important point we should discuss is how to discretize continuous white noise. Since
w(t) is a generalized stochastic process whose properties are only well-defined under integration
with a test function f{#), we must utilize this and set f{#) = 1in order to generate discrete random

variables. Namely, over an interval (7.1, ) of length A, the discretized white noise reads as
L[ e
= — w(7)dr. (1.153)
1 At J,,

In the case where w(z) is a continuous Gaussian white noise, then its integral over the interval

-1, 2) is simply the Wiener increment AW

174 173
AW, = W(te) — W(te ) = / 4w, — / w(7)dr, (1.154)
fp-1 fp-1
such that AW _—
— 2k _ -
9%="2" =7 /11;1 w(7)dr, (r.155)

where if the covariance of the continuous white Gaussian process is Q, then this discretized white

noise process is drawn from a Gaussian distribution with mean zero and covariance Q/Ar:
g ~ N(0,Q/Az). (1.156)

1.3.9 DISCRETIZATION OF A CONTINUOUS LINEAR AND GAUSSIAN SYSTEM

Now that we know how to discretize white noise, let us explain how to discretize a LG system.

Proposition 1.4 (Discretization of a continuous-time LG system). Let x(t) be the state of the
system, u(t) the control input, and y(t) the measurement, and let w(t) and v(t) be zero-mean white

Gaussian noises with covariances:

E[w(0w9)] = QU3(c 9. (1157)
v(s)"] =R(1)d(t —s), (r.158)
0 (1.159)
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Consider the continuous-time LG model:

F(t)x(t) + B(t) u(t) + G(r) w(2), (1.160)
H(z) x(z) + v(2). (r.161)

* R
—~ ~
~ ~
SN— N—
|l

Then, by discretizing the system above, we get:

Xp =Ap 1% 1+ Biyup s+ Graq, (1.162)
Ve = Hyx, + 1y, (1.163)

wbereqk,l ~ ./\/(0, @,1), v, ~ ./\/’(O,Rk), E [qkfl r/ﬂ = 0, and

A, =1+ F,)At, By =B(t1)Ar, Gy = G(1,) At,

Q(ti1) R, = R(l‘k—l)'

H = H(t/efl)v Q1 = Ar Ar

signal

sampled >

continuous j

time

Figure 1.2: A continuous signal sampled using the zero-order hold assumption. To discretize a signal using zero-order hold,
the time axis is divided in increments of A¢ in order to evaluate the function at these steps: £ZAtz, with £ € Z. The signal is
then further assumed to maintain a constant value f{£A¢) from time £A¢ to time (£ + 1)Az.

Proof. Let us establish the equivalence between the continuous LG system and its discrete

counterpart. The first step is to apply Theorem A.3 to solve Eq. (1.160), focusing on the interval
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between time points tyy = (k-1)Atand t, = kAt
173

x(ty) = O (&g, tr1) %(t4-1) +/tkd>(tk,r)B(r)u(7)dr+/ D (7, 7)G(7)w(7)d7r, (1.164)

17281 -1
where @ (ty., ty-1) is the state-transition matrix that satisfies

dd)(tk, fle—l)

P F)®(t, t51),  ®(tp1,t01) =L (1.165)

and fulfills the following properties for all tiy < t, < T:

Q(Z’/e_l, Z’/e) = (D_l(t/e, tk—l)a (1.166)
(D<T7 t/e—l) = (D(Ta tk)q)(t/ea tk—l)' (1'167)

10 now find an expression for the transition matrix of the state, ® (ty, ty_1), we apply the
zero-order hold approximation. In other words, we assume a small enough time-step At
during which, as depicted in Fig. 1.2, each deterministic continuous signal in Eq. (1.160) and

Eq. (1.161) is constant within the time-step At:
F(r) =~ F(t;.1), B(t) =~ B(t;1), G(¢) = G(t.1), H(t) = H(t;1), u(t) ~u(t;1),

with the only exception being the zero-mean Gaussian noise processes w(t) and v(t), as

explained in Sec. 1.3.8. Then, the solution to Eq. (1.165 ) is simply

@ (1, t5) = Flte)te=te1) — Fltea) At (1.168)

)

and Eq. (1.164) becomes

173 73
x(t) =F )% (1 )+ [/eF(‘k'l)(”"T)B(T)u(T)dz'} +/eF(‘k'1)(t"'T)G(f)w(z')dr (1.169)
172 173

-1 -1

17 173
:eF(”“)A’x(tkl)—i—{ / eF(’“)("kT)dT}B(tkl)u(tkl)—i— / FEDEDG(s, Vw(2)dr. (1.170)
1,

Lp-1 k-1
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If we now compare Eq. (1.170) with Eq. (1.162), we can identify:

3
Xp = x(tk)a Up1 = u(t/e—l)v Bk—l = |:/eF(tk1)(tk_7)d7:|B(t/e—1)a (1'171)
L1
123
A/e—l = CF(Zk’l)At, G/e-l qk—l = /CF(Z’“’I)(%_T)G(t/e_l)w(T)dT, (1.172)
tp-1

where we carefully maintain the order of matrix and vector operations, as they are not
generally commutative. The last three terms can be further simplified by noting that the
continuous equations are equivalent to their discrete counterparts only in the limit when the
time-step At approaches zero (i.e., as ty, — t1). Consequently, we can assume the time-step At

to be infinitesimally small and only keep the terms up to first-order in At:

173
B, — |:/eF(fk1)(lkT)dT:|B(tkl) ~ "AtB(t ), (1.173)
lp-1
Ay = 0N T4 Flr A, (1.174)
17 173
Gy Gi1 = /eF(tkl)(tkT)G(tkl)w(z.)dr ~ TG(tkly w(z’)d'z’. (1.175)
tp-1 le-1

From the last equation we can further identify that
1 %
kal = G(l’/e,l)Al’, and 9i-1 = E/W(T)d'l’, (1176)
fp-1

where the discrete white noise sample qy, comes from averaging the continuous white noise over
the interval [ty t.), as explained in Eq. (1.155). Note that unlike for the state, control term
and other functions in Eq. (1.164), we do not approximate the noise terms w(t) and v(t) using
zero-order hold. In other words, we do not sample these continuous noises and approximate
them with their value at the beginning of the interval, like in Fig. 1.2. The main reason
behind this lays in the definition of continuous white Gaussian noise, which as discussed in
Sec. 1.3.8, bas a delta-correlated covariance. This simply means that the noise is completely
uncorrelated from one time instant to another, but that it has infinite variance. If we try to

approximate the process noise with the zero-order hold, i.e. qy-1 = w(t;.,), and apply the
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definition of the process covariance of Eq. (1.157):

Q. = Elguq;] = E[w(a)w'(1)] = Q(1)3(0), (1.177)

we obtain an unbounded discrete process noise covariance. This clearly illustrates why direct
sampling of the noise, as required by the zero-order hold, is mathematically problematic. If
instead we discretize the continunous process noise by averaging it over the infinitesimally small
time-step At, as suggested by Eq. (1.176), we retrieve a mathematically sound expression
relating Qp and Q(t), which yields a well-behaved process:

Q:=Elaigl] = 37/ [ Blotewe)] dras= 1 [/ Qeste-sieas
_ 1L 1 _ Q%)
— F/tk Q(r)dr ~ A7 Q(#)Ar = A (r.178)

where we have now applied zero-order hold to approximate Q(t) ~ Q(t;) inside the integral
of Q(¢) over an infinitesimal time-step At in the interval [ty, ty11). It then follows that

G.Q\G} = AtG(1)Q(1)G(1) . (1.179)

We can apply the same reasoning to the measurement process noise, since v(t) is a continuous
Gaussian white noise. Namely, the discretized measurement noise is obtained by integrating

v(t) over the interval At:
1=

= v(7)dr. (1.180)

7
Lp-1

Then, since y(t) follows Eq. (1.161) and by applying the zero-hold assumption for the state x(t)

and measurement matrix H(t), we get

1 L1 1 L1

»= L ) y(r)dr = Y. : (H(t)x(z) +v(z)) dz (r.181)
~ H(re(n) + o / O (1.182)

123
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where the relation between the discrete and continuous measurement covariance, R, and

R(l‘k), is:

R, =E[nr{] = /IHIE [v(2)o" ()] dedr = = tkHR(z‘)dt = I%Zf). (1.183)

1 fet1
AP, AP ),

“ [A1)de = fl0)Ar, when Az — 0
PSR w(r)dr ~ f0)fyio(£)ds, when At — 0

x, = x(7) u, = u(,)

A, =1+ F(z,)At B, = B(t;) At
H, = H(y,) G, = G(1,)Ar
re=+ f;’el o(7)dr g =5 Zle(r)d'r
R =3 Q =4

Table 1.1: Table summarizing how to discretize a continuous linear and Gaussian system. This table details how each vector,
white noise component, and matrix defining the continuous LG system of Egs. (1.160-1.161) is transformed to obtain the
corresponding elements of the discrete LG system given in Egs. (1.162-1.163).

1.4 (SOME) FUNDAMENTALS OF QUANTUM MECHANICS

I.4.1 POSITION AND MOMENTUM OPERATORS

The position and momentum operators, X and P, can be written in terms of creation and anihi-

lation operators as

X:\g(;zwzz), P=y %(zﬁ—zz), (1.184)

~

These operators satisfy the canonical commutation relation [X, P] = i, which follows directly

from the algebra [z, 41] = 1.
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1.4.1.1 GROUND WAVEFUNCTION IN THE POSITION EIGENBASIS OF THE HARMONIC Os-

CILLATOR

The ground-state wavefunction of the quantum harmonic oscillator in the position eigenbasis is

a Gaussian function:

1
¥o(x) = (x]0) = meixz/za (1.185%)

which has been normalized, as required from a wavefunction.

Proof. From Eq. (1.184), we can write the annibilation and creation operators w.r.t. the

position and momentum operators as

1

V2

As standard, applying a to the ground state yields zero,

a=—=(X+4iP), and at=-—X—iP). (1.186)

Ny

a|0) = 0. (1.187)
Thus, applying (x| to the equation above, where (x| is an eigenstate of X, will also yield zero:

(x]4]0) = —= (x|(% + P)[0) = 0. (1.188)

V2

By using that the P operator represented in the position basis can be written as

(<1210) = ~i-{xlo) (1.189)

we find a first-order linear differential equation for the wavefunction ¥ (x) = (x[0):
. A d
(x| X|0) + i{x| P|0) = x(x]0)+ a<x|0> =0, (1.190)

which bas a solution
<x|0>:Ae_xz/2; (r.r91)
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1/4

with a normalization constant A = 1/ 7'/*, since

1= [ aloar= [ e do = 4Py )
Therefore, the wavefunction of the ground state in the position eigenbasis reads as:

1 .
<x|0>zme 8 (1.193)

1.4.2 DyNAMICS OF OPEN QUANTUM SYSTEMS
1.4.2.1 THE GORINI-KOSSAKOWSKI-SUDARSHAN—-LINDBLAD GENERATOR

A quantum system interacting with a Markovian environment is governed by a master equation
of the form
dp

i Lp, (1.194)

where the Gorini-Kossakowski—Sudarshan—Lindblad (GKSL) generator of the evolution [73,

74] reads as:
K

Lp=—ilH,p| + ZD[ﬁk]p. (1.195)

k=1

Here, H isa Hermitian operator representing the Hamiltonian of the system and { L, } area collec-
tion of operators, often referred to as Lindblad operators, that characterize the various irreversible

processes via the (dissipative) superoperator:
. o 1 L
D[O]p:OJoOT—E(OTOJojLJoOTO). (1.196)

The formal solution for a general master equation (1.194) with a time-dependent Lindblad form

can be written as

P&) = Nip(0) (1.197)

where the superoperator N, is defined as

N, = T{efolﬁ’df} , (1.198)
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with 7 {exp { - }} denoting the time-ordered exponential. In the special case when £ is time-

independent, the solution is a semigroup:
N; = e, (1.199)

1.4.3 ANGULAR MOMENTUM

The three total angular momentum operators /,, /, and /; obey the commutation relation

[Jj‘a j/e] = igj/eljl (1.200)

where ¢ is the Levi-Civita symbol and the indeces 7, 7, £ = x, y, z. In other words,

[jmjy] =i/, (r.201)
[jy?jz] =i/, (r.202)
[jmjx] = ijy- (1.203)

The collection of these angular momentum operators form a total angular momentum vector

operator:

j: (jxvjyajz)T> (I~2'O4)
whose squared magnitude defines another operator:
Jr =2 —l—];z + J2. (1.205)

The operators /*and /, have acommon eigenbasis with eigenvectors labeled with quantum num-

bers 7 and m:
T jm) = jG+1)|j,m),
jZ|]7m> - Wl|j,m>,

where j € {0, %, 1, %, 2,...}, and for a given j, the value of m rangesas m = —j, —; + 1,

..,J — 1,j,ie. from —j toin steps of unity [75]. Using the operators / and ]}, we define the
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ladder operators for the angular momentum operators as:

]Ai = jx:tz'];,, (1.206)

which fulfill /, = /. These operators act on the eigenstates | 7, 7) by raising or lowering the

eigenvalue 72 by one unit:

Jeljym \/J(/ +1)=mmE1)[jm*+1). (1.207)

If j is the angular momentum vector of an ensemble of N two-level systems, then ; < N/2
and —j < m < j, with j and m integer or half and /i, = 0,1/2 depending whether there is an
even or odd number of two-level systems, i.e. whether Nis even or odd [76]. Then, the collective
angular momentum operators are defined as the sum over the individual contributions:

1 N N N
- Z Z Z&ik), (1.208)
b—1

\S}
\0
[\)IP—‘

where the angular momentum operators for each individual two-level system are 5! = 1 &)

3516) = %&y(k) and ;¥ = %&gk). The collective operators obey the same commutation relations
and eigenvalue equations as those for a single system while encapsulating the macroscopic spin

properties of the entire ensemble.

1.4.4 COHERENT SPIN STATE

As mightbe deduced from the name, coherent spin states [77, 78] (also known as atomic coherent
states) are simply an extension of the coherent states of a field first introduced by Glauber. A
coherent spin state (CSS) is a product state, i.e. the tensor product of N qubits, e.g. spin-1/2, all

aligned in the same direction £ = (sinz cos 8, sin 2 sin 3, cos 2) (see Fig. 1.3):

N
® [cos —10), + ¥ sin = |1> (1.209)
k=1

Asdiscussed in detail in Ref. [78], a CSS can also be written in terms of the angular momentum

basis by rotating the ground state |j, —7) by an angle  about an axis # = (sin 8, — cos 8, 0) with
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CSS convention [78, 79] Standard (physics) convention [80, 12]
< Z

A A

\ 4
=2

S
X
x

Figure 1.3: Spherical coordinates conventions. The choice of rotation angles ﬂ and « (see left sketch) define the rotation
operator R(az7 {8) and thus, the axis along which the CSS is aligned (along £). Given that the rotation operator around axis 7
is applied to the ground state of the ensemble ]j, —]> by convention centered around the south pole, the rotation angle «

is measured off the south pole [78, 79]. Thus, the standard spherical coordinates parametrizing a sphere, (9, @) (see right),
relate to (a,[@) asf = 7 — aand Q= [8 [79]. When we discuss Wigner functions of CSS mapped onto the Bloch sphere, it
is important to note that (ac, ﬂ) simply define the direction of the CSS, whereas (9, ¢) map the Wigner function onto the 3D
sphere.

the operator

R(z,B) = omit(Jrsinf—frcosg) _ egﬁr*?j‘, (1.210)

where £ = %ae_iﬂ. Namely,
‘“aﬂ) = R(ot,{@) Ua _]'> . (1.211)

In Ref. [78] they further show how to rewrite Eq. (1.210) as

R(a,B) =R(y) = It eln (1+\;7\2)j;e—;7*j,7 (1.212)
where
—i8 a
n=c¢e tani. (r.213)

By now applying this form of the rotation operator to the ground state |f, —), as indicated in
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Eq.(1.211), we get

1
L+ |p]?

)= RO = = (- )je'ff* =y (1214)

since

efy*j_ ]]', _]> -1 V? _]> (1-215)
Jn (1+1P) ] =) = & (1+1712) (=) i, —) = on (1+712) i, —7)

() w0

1+ |y

Next, we expand the exponent in Eq. (1.214) as

iF Lk
|77> = R(V) 1]'7 _]> = <1 + |77|2) %]f: V? _]> ) (1-217)
k=0

where the power series expansion of e//+ terminatesat & = 2/, because J* |7, /) = Ofork > 0and
thus, / j |/, —j) = 0 for k > 2;. By shifting # by  and redefining it as £ = m + /, the summation

becomes

1 1 77m+j Fmj . ;
0= (mpr) X (1215)

m=—j

By then applying the relation derived in Proposition A.4:

27 1/2 ' 1 . |
(m i]) ) = (m +j)!]++] I =7 (1.219)

we get the form of a CSS in the eigenbasis of the angular momentum

J LN 1/2
» 2 .
m=sih? Y () s gee s

m=—j

where 7 = tan %‘e“}@ as given in Eq. (1.213). Assuming the CSS of the spin-1/2 ensemble points
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in the x-direction s.t. the angles @ and 8 have values:
=2, a=2, and f=0 (1221)
]—27 “—27 an ‘8— ) 1.221

then, the value of 7 is 1 and the CSS, aligned along x, reads as:

N/2

1 N \"*|N
l7) = e Z (N N m) X m> . (r.222)
m=—N/2 2
A CSS of that form has the following mean and variance:

) . X . .\ [N S

<f>cssx = Tf{ﬁcssxf} = <<]x>CSSx7 <jy>CSSx7 <fz>cssx> = (57 0, 0) (1.223)
) ) . N N NY

(DY )css, = <A2<]x>cssx> A (],)css, A2<Jz>cssx> = (0, e Z) (1.224)

with (A%]) = (J2) — (J;)%, where 7 = x, y, or z. The values for the means and variances are

calculated in Sec. A.4.1.

1.4.5 THE WIGNER QUASIPROBABILITY DISTRIBUTION

Definition 1.22 (Wigner distribution). Let p be a mixed state, and x and p a pair of conjugate

variables representing position and momentum. Then, the Wigner distribution is defined as:

1 [ .
W, (x,p) = —/_ (x — ylplx + y)e*?dy, (1.225)

T 00

where we assume h = 1. Equivalently, for a pure state |), it can be written as:

Wy (x, p) = 71—2_/_ v (x + ) y(x — y)e*Pdy. (1.226)

The Wigner function fulfills the following properties:
1. W,(x, ) is a R-valued function.

2. It may take on negative values. For continuous variables, this is often interpreted as a sign

of nonclassical behavior [12].
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3. It provides proper marginal distributions:

(xelx) :/dp\’%(x,p), (r.227)
(@lelp) :/de@,(x,p)_ (1.228)

4. The state overlap of two pure states |¢) and |@) is calculated as
Aol =27 [ ax [ W p)Wslop) (1229)
5. Operator averages are calculated as

©)=Te{e0) = [ @ [ Wawp folr. (raro)

where

folx,p) = /_Zdy<x_ %’@‘x_ %>CW- (r.231)

Example. (Wigner distribution of the vacuum state): Let us explicitly derive the Wigner
guasiprobability distribution for the vacuum state |0). Its wavefunction in the position

eigenbasis, ¥, (x), is:
1
(x]0) = ¢, (x) = Yy =2, (1.232)

as derived in Sec. 1.4.1.1. Therefore, its Wigner function can be written as:

1 [~ oy 1
Wo(x, p) = 7_r/ dy CZWﬁe*(x*y)z/Ze*(ery)z/Z' (1.233)

The sum of the exponents of the wavefunctions yields:

(= —Zy) B (xJ;)’) = (1.234)
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Therefore,

1 » [ 2 ox
Wo(x,p):ﬂj/ze_x/ dy e e’?. (1.235)

Next we can evaluate the integral above by noting it is a standard Fourier transform of a

Gaussian:

/ dy e Ve = 45 [e_yz} (p) = N (1.236)

[e.9]

Thus, the Wigner function of the vacuum state is

1 oy
24
Wo (x, p) = —e 7. (1.237)
Furthermore, note that the Wigner distribution for the vacuum state Wy (x, p) is invariant
under rotations in the phase space, since the variables x and p define a radial distance
r”=x>+ pz. berefore, if we define new opemtom)f p and ]3(;, rotated in phase space by @

through the following transformations:

X¢:Xcos¢+lssin¢, (1.238)
13¢ = —XsingD + P cos @, (1.239)

we can show that the wavefunction of the rotated eigenket |x¢,> is simply

1 _
(x0]0) = ¢, (%) = Y7 x;/z’ (1.240)
since .
|<x¢,|0>|2 = /d]’gpwo(x;p;]?;p) = ﬁefxé, (1.241)

because x* + p2 = x‘;‘, + p‘;, i.e. the Wigner function of the vacunm state remains invariant

under rotations in the phase space.

1.4.6 THE WIGNER FUNCTION ON A SPHERE

Computing the Wigner distribution and mapping it into the Bloch sphere is very useful for visu-
alizing quantum states and how different operations affect them, specially in the case of atomic

ensembles [12, 79, 8o]. The Wigner quasiprobability distribution, mapped onto the generalized
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Bloch sphere, is parametrized using the standard spherical convention with angles # and ¢ [12]

(see right in Fig. 1.3):

N N k
W00 =/ D0 D, T 0p) (1242

k=0 g=—*F

where Y/ (6, ) are the complex spherical harmonics [81]. These functions are defined on the
surface of a unit sphere, mapping YZ : §2 — C, where S? is the 2D surface of the sphere. Spheri-
cal harmonics provide a complete, orthonormal basis for square-integrable functions defined on
S2. Asaresult, each function on the surface of a sphere can be written as a weighted sum of these
spherical harmonics. In a way, spherical harmonics generalize the Fourier series from periodic
functions on a circle (S') to functions on a sphere (S*). While the Fourier series decomposes a pe-
riodic function into a sum of sines and cosines, spherical harmonics extend this concepts to two
dimensions by employing both azimuthal (@) and polar (¢) angular dependencies. Here, #and ¢
follow the standard convention, with & being the polar angle measured off the +z-axis [79, 80]
(see right in Fig. 1.3).

The coefficients p kg of the spherical harmonic decomposition of the Wigner function,

J
= X Pt (1249

my,mp=—J

are determined by the part of the density matrix supported by the tozally symmetric subspace, in
particular, its elements p, = (], mi|p |/, my), written in the angular momentum basis for

the maximal total spin / = N/2, as well as the coefficients ty " dictating the transformation

from the Dicke space to the £-space [80, 82]:

tZ’qlmZ = (—1)J—M1—‘]<J’ my; ], —mz]/e,q), (1'244)

where (/, my; ], —m;|k, q) are the Clebsch-Gordan coefficients. Note that the exact density ma-

trix is needed to generate the Wigner quasiprobability distribution.

1.4.7 SPIN SQUEEZING

Spin-squeezed states are defined as states in which the variance of one collective spin component

is reduced below that of a CSS, at the expense of increased variance along an orthogonal direction.
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Consider an ensemble of /N two-level atoms described by collective spin operators. The Wineland

spin-squeezing parameter in Ref. [s, 6] is defined as

(1.245)

2o Vi) (VSN )
“O =Gy (<JZ>%SS) ~NVA)

where s is the mean spin direction, and _L is the perpendicular direction along the ensemble is
being squeezed. For an ideal CSS where all atoms are uncorrelated, £7(#) = 1. Hence, when
£ (¢) < 1, thestateis (metrologically) spin squeezed. Itis important to note that the definition of
spin-squeezing is not unique. Another widely used definition, introduced by Kitagawa and Ueda
[83], is inspired by photon squeezing and focuses on the minimum variance of a spin component

orthogonal to the mean spin direction:

4min (A J )?
2 L(AJL
= 246
g = 2mRLOAT (1246
where just like before, £& < 1 defines the spin-squeezing condition. This parameter quantifies
the reduction in quantum noise along a particular spin direction and is directly related to the

metrological spin-squeezing parameter through the following inequality:

£ <& (1.247)

In other words, metrological spin squeezing (£ <1) implies spin squeezing in the sense of Kita-
gawa and Ueda (£2 < 1), but the converse is not necessarily true. That is, while a state with
reduced spin variance (f; < 1) may exhibit quantum correlations, it does not automatically

guarantee an improvement in metrological sensitivity.
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Bayesian estimation and control

BAYESIAN INFERENCE is a statistical framework in which parameters are treated as random vari-
ables [2, 29]. In this approach, probabilities quantify our uncertainty or beliefs about these pa-
rameters or hypothesis, and are systematically updated as new data becomes available [2, 29, 30].
That contrasts with the frequentist approach, where parameters are constant and probabilities
are interpreted as the proportion of outcomes in a large number of repeated identical experi-
ments [1, 2].

How to update our knowledge by incorporating new observations is described by the Bayes’
theorem([84, 30]. It combines prior information, represented by a prior distribution, with the
statistical model of the observations, given by the /ikelzbood distribution, to produce an updated

probability known as the posterior distribution:
p(6ly) < p(8y)p(6) <— posterior  likelihood - prior, (2.1)

where ¢ is the parameter, and y represents the observed data.

Bayesian inference is especially well suited for problems such as optimal filtering, where the
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parameters of the system or state evolve over time, requiring continuous updates as new ob-
servations are performed [30]. Filtering involves estimating the time-varying state of a system
using noisy observations when the true state is not directly observable. This estimation pro-
cess is typically implemented in two stages: a prediction step, which uses a model of the dy-
namics of the system to propagate in time the state distribution, and an update step, which
refines this estimation based on the latest observation [29, 30]. This recursive process ensures
that the state estimate improves as more data becomes available. The Kalman filter (KF) is a
well-known example, providing an optimal solution when the system is linear and the noise is
Gaussian [31, 32, 1, 29, 30]. For nonlinear or non-Gaussian scenarios, extensions like the ex-
tended Kalman filter (EKF) are used, which linearize the system dynamics around the current
estimate to handle mild nonlinearities[33, 29]. In more challenging situations, which are be-
yond the scope of this thesis, more general methods such as particle filtering can be employed,
using a set of particles to approximate the posterior distribution [30].

Besides estimating parameters in real time, we are often also interested in how to optimally
steer the system into a state more advantageous for metrology, e.g. more sensitive to the parameter
of interest or more robust to noise. To define what we mean by optimal control, we must first
specify a control cost, i.e. a function that balances two competing objectives: (1) achieving the
desired control task with high accuracy, and (2) minimizing the cost or effort required by the
actuator [85]. This cost function typically includes adjustable parameters, or “knobs”, that allow
us to trade off estimation performance against control effort[29, 85, 55]. The optimal control
law is then the one that minimizes this total cost. For linear and Gaussian (LG) systems, the
optimal control is given by the linear-quadratic Gaussian (LQG) controller, which combines a
KF with a linear-quadratic regulator (LQR) [29, 85]. A complete and rigorous proof on why
LQG is optimal requires knowledge of dynamical programming and the broader field of optimal
control. To avoid delving into that but still provide convincing arguments, we present simpler
— albeit less rigorous — proofs that show how both LQR and LQG minimize their respective
control costs[29, 85].

The results and derivations presented in this chapter are not original contributions. Rather,
they are re-derivations and explanations in my own words, inspired by and adapted from well-
established treatments in the literature, particularly: Sirkki [30], Crassidis and Junkins [29], Si-
mon [33], and Kolosov [85]. Much of the material on Bayesian filtering and the KF is drawn
from Sirkki [30] and Crassidis and Junkins [29]; the EKF section closely follows the treatment

in Simon [33]; and the discussion on control, including the LQR and LQG controller, is based
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primarily on Crassidis and Junkins [29] and Kolosov [85].

THIS CHAPTER is organized as follows: we begin in Sec. 2.1.1 with a brief overview of Bayesian
inference, introducing Bayes’ rule and common estimators such as the maximum likelihood esti-
mator, the maximum a-priori (MAP) estimator, and the minimum mean squared error (MMSE)
estimator. In Sec. 2.2, we define the Fisher information and introduce the Bayesian Cramér-Rao
bound (BCRB), a lower bound on the average mean squared error (aMSE). We then move to
Bayesian filtering in Sec. 2.3, where we highlight the importance of modeling both the system
dynamics and the measurement process in Sec. 2.3.1. These models define the probability distri-
butions used to track the state of the system over time, and they form the foundation of the two
key steps in any Bayesian filter: the prediction and measurement update, which are detailed in
Sec. 2.3.2.

In Sec. 2.4, we derive the discrete-time KF under the assumption of uncorrelated system and
measurement noise. This is the simplest form of the KF and a particularly clear example of how
Bayesian filtering works when the system is linear and all noise is Gaussian. It provides closed-
form equations for the estimate and its covariance, which correspond to the mean and variance
of the (Gaussian) posterior distributions. This eliminates the need to track full probability dis-
tributions explicitly since updating the mean and covariance is sufficient. Moreover, because the
mean of a Gaussian posterior is the MMSE estimator, the KF yields the optimal estimate in this
setting.

In Sec. 2.5, we extend the KF to the continuous-time setting. To do so, we had address already
in Sec. 1.3.9 how to discretize LG systems with white Gaussian noise, which is not a conventional
Gaussian random variable but the formal derivative of a Wiener process. Properly discretizing this
noise to avoid pathological behavior requires integrating it over a finite time step, which yields a
Wiener increment. With this clear, we then take the continuous-time limit in Sec. 2.5 to arrive at
the continuous-time KF. The same steps are later followed in Sec. 2.6, where we extend the KF
to handle correlated process and measurement noise. This is the form necessary for continuously
monitored atomic magnetometers, where correlations between the system and the measurement
naturally arise due to measurement back-action. Since the systems we are interested in are often
nonlinear, we derive the EKF in Sec. 2.7 by linearizing the dynamics around the current estimate.
Finally, in Sec. 2.8, we turn to optimal control. In Sec. 2.8.1, we study the LQR for systems
where the state is directly accessible. We then combine this with state estimation using the KF to

derive the LQG controller in Sec. 2.8.2, which handles noisy measurements and provides optimal

58



feedback control.

2.1 INTRODUCTION TO BAYESIAN INFERENCE

2.1.1 BAYESIAN STATISTICS

Suppose we want to use Bayesian inference to estimate some quantity of interest, 6, given a mea-

surement y. Any Bayesian method has three key steps:

1. Modelling. Model what we know about & even before making any measurements (using
a prior p(6)), as well as how the measurements y relate to ¢ (using a probability density

2(7]6), also known as a likelihood function).

2. Measurement update. Combine what we know before (the prior) with our measurement
(ie., with the likelihood p(y|6)) in order to get a function of §, i.e. the posterior distri-
bution p(8]y), which takes into account our updated knowledge on & after performing a

measurementy.

3. Decision making. We can now combine what we know about 6, i.e., the posterior p(d]y),

with a cost function, in order to perform an optimal decision.

2.1.2 PRIOR AND LIKELIHOOD

As hinted at in the previous section, Bayesian methods rely on three important components: the
prior, the likelihood and the posterior. For now, let us define and discuss the role of the prior and
the likelihood when analyzing an unknown parameter ¢ € © based on some observed data y. The

posterior, which requires introducing Bayes’ rule, will be discussed in the subsequent section.

Definition 2.1 (The likelihood function). The first key assumption in any Bayesian model is that
the observed data, v, given that the parameter is 9, follows the distribution

¥~ p0l9); (22)

which is referred to as the likelihood. The model given by the likelihood p(y|0) describes how we
expect our observations y to behave when we know that the true value of the parameter of interest is

0. This distribution is often easier to compute than the probability of 9 conditioned w.r.t. y. Since y
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is observed, p(y|0) can be viewed as a function of 6,

1(8y) = p019), (2.3)

where 1(0\y) is also called the likelihood function. Note that the likelihood is not a PDF w.r.t. 6, but
w.r.t. y. In other words, if we integrate p(y|0) w.r.t. 6 € (—o0,00), it does not yield one, unlike

when integrating w.r.t. y € (—00, 00).

Definition 2.2 (Prior). Another fundamental component of many Bayesian methods is the prior

distribution, where the term “prior” simply means earlier or before:

p(0). (2.4)

This probability distribution expresses our a-priori knowledge concerning the parameter 0, i.e., the
knowledge beld before any data y is taken into account.
2.1.3 BAYES’ RULE AND THE POSTERIOR

The Bayes’ rule is the cornerstone of any Bayesian method because it enables us to compute the
posterior p(d]y) from the likelihood p(y|¢) and p(8). It straightforwardly follows from Prop-

erty 1.2 and Property 1.1. Specifically, the product rule implies the following equivalence:

p(6.y) = p(@ly)p(y) = p(r|6)p(6). (2:5)
Then, we can simply write the posterior as:

_ p019)p(9) §

where p(0) is our initial knowledge of the parameter, p(y|9) is given by the model and p(y) is the
marginal PDF given in Property 1.1, i.e. p(y) = [ p(y|8)p(8)dé.
Thus, by employing Bayes’ theorem as derived above to combine the prior and likelihood, we

get the posterior, p(0y), one of the main goals of Bayesian statistics.

Definition 2.3 (Posterior). The posterior distribution describes what we know about 6 after observ-
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ing y, and can be easily derived from the likelihood and prior using Bayes’ rule:

2(8) = f% x I(8y)p(8). (27)

2.1.4 BAYESIAN DECISION THEORY

Next comes the question of how we can use the posterior, p(d]y), to make decisions. Typically,
in Bayesian statistics, the goal is to minimize some function known as the cost, C(, ), where @is
the quantity of interest and « denotes the decision. Since we do not know the true value of &, we
cannot directly minimize the actual cost C(6, 2). Instead, we consider the expected cost under
our current beliefs about &, which are encoded in the posterior distribution p(8|y). Therefore,
an optimal decision « is one that minimizes the average cost we would expect to incur, weighted

by the probabilities given by the posterior:

top: = argmin Eyg,[C(6, )] = arg min / C(8, 2)p(8)y)dé. (2.8)
a a @

where the expectation is taken w.r.t. to the posterior p(d|y), for which yis givenand § € @ isa

random variable. Note that this process follows all the steps outlined in Sec. 2.1.1.

2.1.4.1 COST FUNCTIONS FOR ESTIMATION PROBLEMS

Let us now introduce two commonly used cost functions for estimation problems and then de-
rive their respective estimators. In the context of estimation, choosing a decision « corresponds
to selecting a specific value as our best guess for the unknown parameter ¢. Therefore, the de-
cision « is simply our estimator of ¢, denoted from now on as 6. Importantly, the estimator 7
is a function of the observed measurements y, reflecting how our estimate depends on the data
collected. However, not every choice of estimator 67()/) is guaranteed to be optimal. When an
estimator is optimal with respect to a chosen cost function, we will denote it with a subscript,
such as éopt(y) for a general optimal estimator, or OriisE (y) specifically when it is the optimal

estimator minimizing the mean squared error (MSE).
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QUADRATIC COST AND THE MMSE ESTIMATE  One of the most common cost functions in

estimation theory is the quadratic cost or the squared error:

C(6,6) = (6—6(»))" (6~ 8)) (2.9)

Its corresponding optimal estimator is known as the minimum mean squared error (MMSE)
estimator. To derive it, we need to minimize the posterior expected cost as described in Eq. (2.8)

for the case of a quadratic cost:
Arase () = argmin By, | C(6,6)| = argmin By (9 —00))" (6 —40))|  (210)

~argmin. [ (9—60))"(0— ) plely) (211)

Note that the quantity we are minimizing, i.e. the posterior expected quadratic cost, is precisely
the mean squared error (MSE), a term likely more familiar to the reader. We can formally define
the MSE as follows:

Definition 2.4 (Mean squared error). The MSE of an estimator é(y) for a parameter § € ©,

given observations v, is defined as

By [(6-50))"0=d0))] = [ 0=00)" 6= p00) &0 (212

Here, the “mean” (or average) is taken with respect to the posterior distribution, p(9|y).

Later, we will discuss the average mean squared error (aMSE), which refers to the squared error
or quadratic cost averaged with respect to the joint PDF of the parameter and the data.
The optimal estimatior that solves the above minimization problem can be shown to be the

mean of the posterior, which is therefore referred to as the MMSE estimate. Namely,
brass () = arg min By | (6~ 60))" (6 60)| = 5. (2.13)
where 8 denotes the mean of 8 with respect to the posterior:

gZ/@&])(@b})d&. (2.14)

To visualize the MMSE estimator, see Fig. 2.1, where it is marked as a black dot.
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Proof. Let us show that the optimal estimator of 0 is the mean of the posterior. To do so, let us

[first rewrite the cost function C(8,8) as follows:

C(6,0) = (0 - o) (6—80)) = (0—F +8 - BN (9= F + = 8p)),  (215)

REromean.  [eterministic

where we have added and subtracted the mean of the posterior 8. That splits the factor
g — é(y) into two terms, one still probabilistic but with zero mean, & — 8, and another
completely deterministic, § — 6(y). If we now expand the guadratic term and take the

expectation value w.r.t. to the posterior p(8)y), we obtain:

By [ C(0:8)] = Eyan [(0— 8)T(6 — 9)] + Eyiay [0 — 8)](F — )
+ (8 = 60))" By [(6 = 8)] +Eppay | (6 — 60))7(6 — 60))]
0
I PN (CAT) I B 19) LI 1) R

Thus, it follows that the argument of (y) that minimizes the quantity above can only be 8.
Therefore, the optimal estimator that minimizes the expectation of the squared ervor w.r.t. the

posterior, p(8)y), is the mean of the posterior, i.c. the MMSE estimator given in Egq. (2.13).

THE o-1 cosT AND THE MAP ESTIMATOR  Let us now consider the following cost function:
C(6,6) = —3(6—6(y)), (2.17)

where J( - ) represents the Dirac delta. This cost function, also referred to as the o-1 loss function,
picks only the exact value of ¢ and disregards all the other values of (9~(y) It is an idealized cost
function, since it penalizes any deviation from the true value equally and maximally.

To find the optimal estimator for this cost function, we compute the expected value of C(6, 9)

w.r.t. the posterior:

By [C60)] = = [ 50000 )plepds = —p()loss ()
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Figure 2.1: Comparison of the ML, MAP and MMSE estimates. Visual representation of the maximum likelihood estimator
(ﬁML()/), blue dot), the maximum a-priori estimator (&yap (y) yellow dot) and the minimum mean squared error estimator

Gnmmse(y), black dot).

where in the last step we have used the Dirac delta property: [~ Ax)d(x — 8(y))dx = Ab(y)).

If now we minimize over all possible arguments of 8(y), we get the optimal estimator §(y) :
Guae () = aeg i [-p(8) s = g max (8) (219

As shown by a yellow dot in Fig. 2.1, the optimal estimator for the o-1 cost is the & that maximizes
the posterior distribution, which we call the maximum a-posteriori (MAP) estimator.

While the Bayesian approach allows for the incorporation of prior information through p(9),
sometimes prior knowledge is not available or we ignore it altogether. In that case, the goal is to
directly maximize the likelihood function p(y|¢). This leads to the maximum likelihood (ML)

estimator:
éML(y) = arg max p(]9), (2.20)

which is marked in Fig. 2.1 with a blue dot, i.e. the maximum of the likelihood. The ML esti-

mator can be seen as a method that focuses entirely on the data, with no consideration of prior

beliefs.



2.2 FISHER INFORMATION AND ESTIMATION THEORY

Having established the foundations of classical Bayesian estimation, we now turn our attention
to a quantity crucial for assessing the quality of an estimator: the Fisher information (FI). Besides
quantifying the amount of information that a dataset contains about an unknown parameter, the
FI also lower bounds the variance of unbiased estimators, serving as an estimation benchmark.
This bound, referred to as Cramér-Rao bound, can be extended to a Bayesian setting by incor-
porating prior information. Known as the Bayesian Cramér-Rao bound (BCRB), it establishes
alower bound on the average mean squared error (aMSE) or average quadratic cost of all (biased

or unbiased) estimators, given a well-behaved prior.

2.2.1 FISHER INFORMATION

Let y be a random variable representing our observations, and ¢ an unknown parameter, for

which we can construct the likelihood p(y|6). Then, the so-called FI is defined as:

_ L (9p(n)\*

(a%lnpwm)zl (222)

2

0
— ~Eyn | 7m0 (223)

= Ey(19)

2.2.2 CRAMER-RAO BOUND

Under the conditions of regularity and local unbiasedness, i.e.,

~ 0 0
[egpoinm =1 wd [0 =0 (224)

for any locally unbiased estimator 6, its MSE is lower bounded by the inverse of the FI. Namely,

S0 |2%) 2 25)



where the formula for the FlL is given in Egs. (2.21-2.23) and A*Gis the squared error:
A% = (6 — é()/))z (2.26)

2.2.3 BAYEsSIAN CRAMER-RAO BOUND

In the Bayesian framework, the parameter & is treated as a random variable with a prior distri-
bution p(8), specified before observing any data. Therefore, an optimal estimator in this setting
should not only minimize the MSE with respect to the posterior, but also account for which

values of ¢ are more likely. To reflect this, the average mean squared error (aMSE) is defined as:

Definition 2.5 (Average mean squared error). Let 8 € © be a parameter, 0 its estimate and.y the
observed data with a joint PDFp(8, y). The aMSE of the estimator gis defined as

E[Azé] =K [9 a(y))>? /Y/@& 8(y))* p(6,y) d8dy (2.27)
B /@W@ /dew)w— ). (a8)

The aMSE can be lower bounded by different classes of Bayesian bounds, which are equiv-
alent when working in the LG regime [67]. In this thesis, we focus on the so-called marginal
unconditional BCRB [86, 67]:

~ 1
25l > L
E[A ‘9} A (2.29)
where /3 is the Bayesian information (BI) [2],
I8 = Eysy) [(@logp(ﬁ,y))z} . (2.30)

The BI can be split into two terms, Jz = Jp + /as. The first term, /p, represents the contribution

of our prior knowledge about 4,

Jp = F[p(9)] = Eyp)[(Ds10g ()] - (2.31)
The second term, namely the contribution of the measurement records, or /3, can be understood
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as averaging the FI of the likelihood over the prior distribution, i.e.,

Jar = Bosy) [(D51ogp(y, 6))*] = (2.32)
— [ as 0 Flp019) (2:33)

with
Flp(219)] = Eypis) [(9510gp(5]9))’] (2.34)

being the FI of the likelihood p(y|6) of observing a measurement trajectory y given that the field

(or more precisely, the Larmor frequency) has a value 8, as introduced in Egs. (2.21-2.23).

2.3 BAYESIAN FILTERING

Bayesian filtering provides a recursive framework for estimating the state parameters of a system
based on indirect, noisy measurements over time. To formulate this problem, we begin by dis-
cretizing time s.t. £ = kAt, where Az is the time step and £ € N. With this discretization, the

evolution of parameters and observations can be written as follows:

* x;: the state vector at time £, representing the unknown parameters we aim to estimate.

* y:: the measurement vector at time 4.
All the state parameters and measurements #p fo time k can be collected into:

* X0 = {%0,%1,...,%;}: the state trajectory up to time &,

* Yot = {Yo, )1, - - -, ¥ }: the measurement trajectory up to time £.

2.3.1 STATE SPACE MODEL

An essential step to formulate any filtering problem is to model the system and measurement by
creating a state space model. These models describe how the state vector evolves recursively, as
well as how it relates to the observations. In particular, for a state vector x; and a measurement
vector ¥, where &£ denotes time, their respective dynamics can be modeled with either equations

or probability distributions:

X =foalXen w1, qi] = p(%Xow-1, Yok #ok—1) (2.35)

Y = by lxy, ri) <~ P(}'/e|xo;/e,)'o:/e) (2.36)

67



where #,, is an external known control vector. Furthermore, we assume the state noise g, and the
measurement noise 7 to be zero-mean white noise vectors, with known probability distributions
which are not necessarily Gaussian (see Sec. 1.3.8).

The initial value for the state vector is drawn from a prior distribution xy ~ p(xo). The first
equation describes how the system evolves in time and updates the state vector from time £-1 to
time k. The measurement model given by Eq. (2.36) relates the state vector to the observation
vector and outlines how the measurement updates the state of the system.

Thus far, we have made no assumptions regarding the noise, besides it being white. In what
follows, we assume that the process and measurement noise are uncorrelated. This is an essential
condition to ensure that the state follows a Markov evolution and that the measurements are con-
ditionally independent of past measurements and states. We will later revisit the case of correlated

noise and discuss how to de-correlate it when necessary.

2.3.1.1 UNCORRELATED PROCESS AND MEASUREMENT NOISE

From the system and measurement model in Egs. (2.35-2.36), it follows that the state vector x;
depends solely on the previous state x;_; and control input #;._;, while the measurement y; de-
pends only on the current state ;. Assuming that the process noise g;-; and measurement noise
r; are white (i.e., temporally uncorrelated), as well as mutually uncorrelated, there is no mecha-
nism through which they can introduce dependencies between x;, and earlier states x.;-, or past

measurements ¥o.;-1. 1hus, the probability distributions of Eqs. (2.35-2.36) can be simplified to

X :ﬁ—l[xk—lauk—l7qk—l] < P(x/e %1 #-1) (2.37)
Vi = bplxy, 7] — P elxe) (2.38)
when covigy, ] =0 Vk,s. (2.39)

Note that Eq. (2.37) and Eq. (2.38) fulfill two very important properties: the Markovianity of
states and the conditional independence of measurements. In particular, the system function
fi-1in Eq. (2.35) depends only on x;; and #;_;, and not on any measurement ¥, (not even in-
directly since the system and measurement noise are uncorrelated). Hence, the transition prob-
ability p(x¢|¥o.-1, Yout; #0:4-1) in Eq. (2.35) is conditionally dependent only on x;_; and #;_4, i.c.
P(%4|2-1;%;-1), which means that Eq. (2.37) obeys the Markov property defined in Property 1.4.

Additionally, the likelihood in Eq. (2.38) is conditionally dependent only on x;, and indepen-

dent on other measurements and state vectors. Therefore, it fulfills the following property:
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Property 2.1 (Conditional independence of measurements). 7he current measurement y, given

the current state xy, is conditionally independent of the measurement and state histories:

P(}'/« |x02k7}'0:/e—1) = P()'/e |x/e)- (2.40)

Moving forward we will drop the dependence of the transition probability on the control law

#;.; for brevity.

2.3.2 BAYESIAN OPTIMAL FILTERING

The goal of Bayesian optimal filtering is to compute the posterior density of the state x; given
the history of measurements up to time &, i.e. p(x¢[yo). To do so, we can either use a brute
force approach where we find the posterior by simply applying Bayes’ rule and then marginalizing
W.I.L. X0.4-1, OF use a more efficient recursive approach whose complexity does not grow with 4.
In particular, we can recursively compute the posterior density at time &, i.e. p(x;|yo.¢), from the
posterior density at the previous time, P(x/eflb'O:kJ): as summarized in Fig. 2.2. First, we assume
that in the previous step, £-1, we have computed p(1|o.4-1). Next, we take this density, which
summarizes our knowledge of the state x;_; given the measurement trajectory yo.4-1, and use it
to predict the state at time k given the measurement trajectory up to time k£-1. Namely, we use
the system or process model to predict the probability density p(x|yo.4-1). Then, we update this
probability distribution using the measurement model, which gives us the current measurement
9> and allows us to derive the posterior for the state x: p(x;|yo.). From this posterior, we can
then compute the relevant quantities of interest, such as the estimator of x; that minimizes the
quadratic cost or MSE.

Let us now write a detailed step-by-step guide on how to recursively update the Bayesian filter:

(i) Initialize. The first step of the recursion is the prior p(x).

(ii) Predict. Compute p(x[yo.4-1) from p(x41[y0.4-1). Namely,

P(xkb'ozk—l) = /P(xk7xk-1bo:k-1)dxk-1 (2.41)

LZZ /p(xk ‘xkflayO:k—l)P(xk—l [yo;kfl)dxk,l. (2'42)

However, if now we recall Property 1.4, the probability density p(x|¢-1, ¥0.4-1) can be

simplified to p(x|%;-1) because the current state %, is conditionally independent of the
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X .
Update pleo) - Xpjk

Yk

Predict [+

P yox-1) (e [Yok1)

Figure 2.2: A scheme illustrating the recursive algorithm of a Bayesian filter. In the “Predict” box, a model is used to propa-
gate the update PDF from step £ - 1 to the prediction PDFp(x/e b’O:k—l)' Then, in the “Update” box, a new measurement y;,

is incorporated into the algorithm to update the prediction PDF into a new update PDF for time k: p(x/e b’o:k)‘ Finally, before

repeating this process again, an estimate at time £ is computed from the just-updated posterior: 5‘/e|/e-

(iii)

measurements ¥o.-1. 1 hus, we get

prediction:p(xk[yo;/e_l) = /P(xk|xk—1)P(xk—1 |}'O:k—1)dxk—17 (2.43)

which is also known as the Chapman-Kolmogorov equation, introduced in Definition 1.14.

Update. Compute p(x;|yo.) from p(x[y04-1). To do so, we want to update our knowl-

edge about x;, using the new measurement y;.:

P®e|yor) = p(xelye, Yosk-1) = PO ’x/e:by(oy:{;o::;kb'o:m). (2.44)

This equation can be further simplified if we recall that our measurement model fulfills

Property 2.1: the likelihood of measuring y, is given only by x; and independent of previ-

ous measurements. Namely,

POkl%e, yor-1) = plyelxe). (2.45)

Therefore,
update : p(x|yox) = O b’ )p()'/e!x/e) (% [Your-1). (2.46)

where p(x;|[yo.4-1) is the prediction PDF, and p(y |[yo.-1) is the likelihood of detecting y,
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given a past measurement trajectory ¥o.4-i:
Pooa) = [ meplesboss) = [ drpoulmplubney. ()

Note that these expressions are general and provide a recursive solution to any filtering prob-
lem. In the case of LG systems, these equations can be solved exactly. When the system is non-

linear and/or non-Gaussian, good approximations can also be found.

2.4 THE DISCRETE UNCORRELATED KALMAN FILTER

The Kalman filter (KF) is one of the few filters that, under certain modeling assumptions, yields
an exact solution. Additionally, it is also the foundation of more advanced filters that provide
approximate solutions to the Bayesian filtering equations, enabling them to handle more general
models.

The starting assumption to find a close form solution to the Bayesian filtering equations is that

the system and measurement models are both LG. Namely,

Xp = Ap1 %y + By #y + Gy g, (2.48)
Y =Hyx, + 1y, (2.49)

where x;, is the state vector, y;, the measurement. Assuming the model to be Gaussian implies that
the process noise g;-1 ~ N (0, Q-1) and the measurement noise 7, ~ N (0, R;) are both mutu-
ally uncorrelated white Gaussian noises with zero mean and covariances Q;-; and Ry, respectively.
The dependence of the model and the measurement on the state is clearly linear, and it is guided
by a transition matrix 4;_; and by a measurement model matrix H}, respectively. Then, the model

described by Eqs. (2.48-2.49) can be equivalently written in probabilistic terms as

xp ~ plaplxey) = N (x| di %y + B, G Qi GL ), (2.50)
Vi~ pnlxe) = N (yelHixe, Ry, (2.51)

where the notation V(x| £, £) simply denotes a multivariate Gaussian PDF of a state x with mean
# and covariance Z.

The KF recursively computes the prediction and update probability densities of Eq. (2.43) and
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Eq. (2.46), which now, given that our model is LG, will also be Gaussian:

prediction — Pelyor-1) = N (%6 |Xg-1, Zipi-1) (2.52)
update = Pk yoe) = N (%%, Ziiie) (2.53)

where X ;-1 and X, are their respective means, and Xy and 2y, their covariances. Additionally,
given that X, ; and X, are the means of the prediction and update posterior PDFs, they are also
the optimal estimators of x; that minimize the quadratic cost or MSE, as shown in Sec. 2.1.4.1.

Namely,

Xpjp1 = /xk P(%eyo:-1)dxr = a-priori estimate, (2.54)
Xy = / X p(%e Yo ) dx = a-posteriori estimate. (2.55)

Note that both X and X, are estimates of the same quantity, i.e. &, with the crucial difference
that the a-posteriori estimate incorporates the latest measurement, y, while the a-priori estimate
does not. Therefore, it is to be expected that the a-posteriori estimate is more accurate than the
a-priort one.

In Sec. 2.3.2 we discussed how the posterior distribution of x; conditioned on measurements
up to time &: p(x Yo%), can be computed recursively starting from p(xy ) using recursive Bayesian
optimal filtering. In the case of LG systems, we will show that the posterior, a.k.a. update density
of Eq. (2.53), remains fully Gaussian at all times. Then, given that Gaussian distributions are
uniquely determined by their mean and covariance, the filtering problem reduces to recursively

updating the moments of Egs. (2.52-2.53):

(i) The Prediction step is defined by the following equations

Xppr = Ap1 Xpyjpr + Broasgy, (2.56)

Siir = A1 S 4L + G QG (2.57)
(i) The Update step is given by

Xpp = X1 + KO — HiXjpr) (2.58)
Zpe = (I — KeHp) Zys, (2.59)
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where

K. =% H. T, (2.60)
T/e == HkZ/e‘k_le + R/e. (2.61)

Furthermore, let us highlight that T is not just a handy definition to shorten our notation

but actually is the nnovation covariance. Namely,

T, = E[@k =)0 _jk)T] ; (2.62)

where y, —y, is the so-called innovation, which is the difference between the measurement

and its prediction

Py = Hikyp1- (2.63)

The relationship between Eq. (2.61) and Eq. (2.62) can be established by:

T, = E[(Hw + 7y — Hiy) (Hixe + 7 — Hig)'] (2.64)
= E[(Hk(xk — Xpppr) + 7%) (Hi (%0 — Zppr) + r/e)T} (2.65)
= H,E[(x¢ — Xup) (6 — Zapr)) | Hy + E[rerg ] (2.66)
= H3.H +R,, (2.67)

where the cross terms vanish due to the assumption that the state prediction error and
the measurement noise are uncorrelated: [ (x; — Zy1)7¢ | = E [ (% — %yet) '] = 0.

Additionally, by taking Eq. (2.59):
Zpe1 — Zpppe = KeHpZppi-1, (2.68)
and substituting it into Eq. (2.60) and Eq. (2.61), one can rewrite the Kalman gain:
Syl = KT, = Ky(HiZy H + Ry) = (i — Sy HL + KRy, (2.69)

such that
Kk = Zk‘ngRk_l (2.70)

Let us now show how to derive the prediction and update equations through inductive hy-

73



pothesis.

Proof. The outline of the proof is as follows: we assume that the posterior at time k-1 holds,
and then show that both the prediction and update posteriors are also Gaussians with means

and covariances following the equations given above.

() Predict. 1o find an expression for Eq. (2.52), we assume that the step k-1 holds, i.e. the
posterior at time k-11s a Gaussian PDF of the form:

p(x/e—l b'o:k-1) = N(-xk—l |55/e71\/e71,2k71\k71), (2.71)

Then, we follow the steps of Eq. (2.41) to find an expression for the prediction PDF:

PEeyor1) = / 20, %61 o1 doe

2 / Pt Youe1)po0r1 [York1 ) s

14 / Pk |x1)p (-1 [Yo:4-1) Xt

— /N(xk’Aklxkl + Bitti 1, Gi1 Qi1 GL N (41| oo1p1) Setjpt ) A1

()

13:2 N(xk ‘Akfl&‘/efl\/efl+B/e71u/efl,Ak712k71|/e7114/;f,1 e G/HQ/HG/L) (2-72)

M1, P/el/el) dxy g

where in the last step we computed the marginal of the joint probability density, with

mean and covariance

” Xp-1)k-1
klk-1— - )
A X g1 +Bi_1mp

P o 2:/e—1|/e—1 Ek—l\k-lAZ_l
k1= T I 0 (2-73)
A Zp ey ApiZpapdy +G61Qe Gy
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Therefore, the prediction density at time k is also a Gaussian:

P&k poi-1) = N (%%, Zepe-1) (2.74)
= N (%} rZp1per +Bistp—1, i1 Zirprdfy + GiaQinGry),
(2.75)
such that
Xpp-1 = Ap 1% 11 +Br1i 1, (2.76)
i1 = A DAL, + G QuiGry. (2.77)

(i7) Update. The update density of Eq. (2.53) can be derived by first employing Lemma
B.1 to find an expression for the joint PDF p(xy, Yi|Youk-1)- Then, using Lemma B.z,
one can derive the conditional density xi|yp ~ p(%e|Yi, Youu-1). The joint PDF,

conditioned on the measurement outcomes up to time k-1, is:

P Y you-1) = el You-1)p (e pose-1) zzlp(mxk)])(ka:k_l)
= N (ye|Hyxr, Ry )N (%1, Zhjpn)

Xi\p- PN T H
IVIIES x/i\/e ) [ B ke lTk 7 (2.78)
Ve ) | \Hxper | \HpZppr HZypH, + Ry

where in the last step we have applied Lemma B.1. Now, we can compute the

conditional PDF p(x|yo.) from Eq. (2.78) using Lemma B.2:

P yo:r) = prlyes Y1) = N (8] %ee Zii), (2.79)
Xpe = Xt + KOy — Hip X)), (2.80)
S = Zipr — KT K (2.81)
where
T, = HiZy.H} + Ry, (2.82)
K =Sy H, T, . (2.83)
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Notethat Ty, = T} and (T, )" = (T}) 7. It follows from Eq. (2.81) that the

covariance update equation can also be written as

S = Zppes — KT (Cup LT )T = Zppr — KT T, Hi e

= (I - KH)Zypis (2.84)
Model xp = ApXp—y + By + Geagir, g ~ N(0,Qp)
Yo =Hxp+r., ro~N(0,Ry)
‘s s x(to) = Xo)o
Initial - ~
nitialize So0 = E{ (Fojo — %0) oo —%0)7}
Predict Xpp-1 = Ap 1% 11 + Bty
Zife1 = A/e712/e71|le71AkT,1 + G/HQ/HG/E,I
Gain Kk = Z/e\/e—lHZ (HkZW_IHkT + Rk) -
Xule = Tyt + Ki (yp — HiZopr)
Updat
paate Zipe = (I — KpHy) Zyjes

Table 2.1: Summary of the discrete uncorrelated Kalman filter.

2.5 THE CONTINUOUS UNCORRELATED KALMAN FILTER

To transform the discrete KF to a continuous one, we have to take the limit of Az — 0. Therefore,
we do not need anymore to distinguish between predict and update steps and can combine their
equations for both the estimator and the covariance, summarized in Table 2.1, into a joint a-prior:

recursive form of the KF:

Xy = A% + By, + ALKy (3 — Hix%y) (2.85)
K, =S H! (HSH! + Ry, (2.86)
S = AT ] — AKHZ A + GQG,. (2.87)
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First, let us derive the expression for the continuous Kalman gain starting from its discrete
version in Eq. (2.86) and substituting the first-order approximations for Hj and R; summarized
in Table 1.1:

T T -1 T, T R(%) -
K, = Zka (HkaHk —i—Rk) = H (l‘k) H(zk)ZkH (Zk) + A—t , (2.88)

which, since R(#,) /At > H(t;)Z, H'(#;) when At — 0, then it can be simplified to
K, = ZkHT(l‘k)R<l‘k)_lAl‘. (2.89)

By now dividing the discrete Kalman gain K, by A¢, we define the continuous Kalman gain as

K,
K(n) =" (2.90)
which by taking the limit of Az — 0, yields the following expression:
K() =Z0)H () R7'(2). (2.91)

Next, we turn to the derivation of the Riccati equation, i.e. the continuous differential equa-
tion for the covariance. The first step is to substitute the first-order approximation of 4, =
(I + F(t;;) At) from Proposition 1.4, and note that both terms G,Q, G} and K}, are of order A,
as indicated in Eq. (1.179) and Eq. (2.90), respectively. Then,

Sin = (L4 Fu)A) Z (I + FY(#)At) — (L4 F()Ar) K(2) At H(1)Z4 (L + F (1) Ar)
+ G(l‘k)Q(l‘k)GT(l‘/e)Al‘ = Zk —|—F(l‘/€)2/€Al‘ + Z/e FT(tk)Al‘ — K(Ik)H(tk)zkAl‘
+ G(1,)Q(1)G" (1) At. (2.92)

By now rearranging terms and taking the limit of Az — 0, we retrieve a Riccati equation for the

covariance:

lim i —2 _ dZ(z)

Fracamy - = FOZ@+E(0O F(0)-K(OHOZ(0)+GOQNG(0).  (293)

Similarly, we can derive the so-called Kalman-Bucy equation from Eq. (2.8 5) by substituting the
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corresponding first-order approximations:

X(tiy1) = (I+F(2p) Ar) %(2) +B(2p ) (2y) At+ (I+F(1,) Ar) K(2) At (Yo —H(2:)%(22)),  (2.94)

and then rearranging terms to take the limit Az — 0:

dx . X — X
— = lim ——
dr a0 At

= lim |F(t)%(2;) + B(#)u(z) +K(tk)<i/[;(t)dt —H(tk)fc(tk))]

At—0 At
-1
4

= F(2)x(¢) + B(t)u(r) + K(z) < lim 1 _;'(t)dt — H(t):?(t))

At—0 At e

= "F(£)x(2) + B(t)u(2) + K(2) (y(r) — H()x(2)) .

(2.95)

This yields a differential equation describing the evolution of the continuous-time estimate.

Model x(t) = F(t)x(£) + B(Ou(t) + G(Ow(t), w(z) ~ N(0,0Q(2))
¥(2) = H(t)x(t) +v(2), v(z) ~ N(0,R(2))
o x(29) = %
Initialize 5, = E[(ffo — x0) (o — xo)T}
Gain K(r) =Z()H" (/)R '(2)

Covariance | (¢) = F(O)Z(2)+Z(2) F{(¢) —K(0)H(£)Z(2) + G(£)Q(£)G(¢)

Estimate x(¢) = F(t)%(¢) + B()u(r) + K(2)(y(¢) — H(£)%(z))

Table 2.2: Summary of the continuous uncorrelated Kalman filter.

*limA[HO i fz‘?—At-y(t)dt :y([k).
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2.6 'THE CONTINUOUS CORRELATED KALMAN FILTER

In many systems, the measurement noise is uncorrelated with the process noise. However, in
quantum systems, the measurement can act back onto the system — an effect referred to as mea-
surement back-action — and introduce correlation between the noises. As a result, the standard
KF theory has to be extended to properly account for correlated measurement and process noises
[29]. This requires allowing the zero-mean Gaussian noise processes, w(#) and v(z), present in

the LG model of Egs. (1.160-1.161) to be cross-correlated:
E [w(t)vT(s)] =8(2)0(¢ — s), (2.96)

where the matrix §(¢) is not necessarily symmetric. To derive the KF equations for a system with
correlated measurement and process noises, we proceed in the same way as we did for the case
of uncorrelated noise, with the exception that first we must de-correlate the measurement and
process noise [29, 87].

In Sec. 1.3.9 we established the equivalency between the continuous model in Egs. (1.160-
1.161) and the following discrete model, which now includes correlated process and measure-

ment noise:

Xp=Ap 1 %p 1+ B 1 +Gr1 g,

(2.97)
Ye=Hux,+ry,
E[qkqﬂ = Qilke (2.98)
E[rk rﬂ = R0, (2.99)
E[qk,lrﬂ =S80 (2.100)

Starting from this discrete model, we de-correlate the measurement and process equations by

introducing the measurement term into the process equation:

Xp = Ap Xy + Bty + Geagis + Dy (Y41 — HyaXpy — 741) (2.101)
= (Ap1 — Dy 1Hy ) %41 + Biamy g + Dy 1y + 2y, (2.102)

where Dy, is an arbitrary matrix, since y;.; — Hj-1 %41 — 7.1 = 0. Moreover, we define Z; ; =

Gi-141-1 — D174 to be the effective process noise. In order to ensure that the correlation be-
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tween the measurement 7, and the new process noise Z;_; vanishes, we set
— -1
D, = G.S.R, (2.103)

such that
E[Z/efﬂ;ﬂ = (G/HS/e—l - D/HR/H) = 0. (2.104)

Then, Z,_; can be rewritten as:
VARES G/e—lq/efl - G/e—lsk—le__llrk—l = Gy, (q/e—l - Sk—lkje__llr/e—l) = Gp1Up 1, (2.105)
with U1 = gi-1 — Sp-1R'74-1. This results in an uncorrelated model:

xp = (i1 — GeaSii R Hyt) %y + Biottpr + GisSii R i1 + Gin Uiy (2.106)
o = Hp, + 7, (2.107)

where, in order for the process noise U, to be uncorrelated w.r.t. the measurement noise, the
process must now depend on the measurement ;. Additionally, the variance of the process

noise U, now reads as:

E[UU;] = Qw1 — SRS (2.108)

To derive the prediction and update probability densities, p(x;|yo.-1) and p(x¢[yo.), for the
system described by Egs. (2.106-2.107), we follow the approach of Sec. 2.4. As in that derivation,
both probabilities turn out to be Gaussian, with means and covariances following predict and
update rules. These equations describe the optimal evolution of the estimator and its covariance
over time, since the mean of the posterior is the optimal estimator minimizing the MSE.

Additionally, it is important to note that the de-correlation trick exclusively affects the process
equation, i.e. Eq. (2.106). Thus, we expect only the prediction step to be modified, leaving the
update step unchanged. In particular, the predict step, i.e. Eq. (2.106), now depends on the mea-
surement outcome yy_i. That might seem counter-intuitive, as measurement outcomes typically
only affect the update step, not the prediction. Nonetheless, this is irrelevant for the derivation
of the continuous correlated KF, since the equations for the predict and update step have to be
merged.

With this understanding, let us derive an expression for the Gaussian probability density for

the prediction step, p(x¢[yos-1) = N (% |%ej-1, Zje-1). This derivation essentially mirrors the
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one in Eq. (2.72) with a slight modification:

p(xkb'O:k—l) i /p(xk’xk‘llyO:kd)dxk_l
1.:2 /P<xk|xkl’yozkl)p(x/eILyO:/el)dxkl

= /P(x/e 2681, a-1)p(Fe1 [Yook-1) A (2.109)

Here, p(x;|%¢-1, ¥0.4-1) is simplified to p(x |1, -1 ) instead of p(x; |41 ), since unlike in Eq. (2.72),
the state x;, not only depends on x;_; but also on y;., as evident from Eq. (2.106) [87]. Fortu-

nately, this still fulfills Markovianity and p(x|x;-1, y¢-1) is still a Gaussian distribution:

P(x/e |x/e-17)%-1) =
= Nxi|d), 201+ Bty i+ GrsSii Ry yi1,Gict (Qrt -Si-i RS, ) Gin), (2.110)

where 4} | = A1 — G/e,lSk,lR,:lHk,l. Assuming that the posterior at the previous time step
is Gaussian, as given in Eq. (2.71): p(%-1[Y0:-1) = N (%-1|%-1)4-1, Z-1)4-1)> we can use Lemma

B.1 to write the joint probability distribution p(x, %1 |[Yo.-1) as:

X
P, X1 Vo) = N((; 1> m/e|k—lup/e|/e—1> ; (2.111)
£
where
Xp1)-1
My = i ; (2.112)
A, X iy + Bty + G R, i
and
P o zk—l\k—l 2/6_1|/€_1A’k_T1
kle-1 = ! ! 1T —1¢T N (2.113)
A, Zeaper A Zepr 4+ Gei (Qer— SRS )G

To now obtain the predict probability density p(x; [yo.4-1) from the joint probability p(x;, 241 [¥o:4-1),

81



we compute its marginal following Lemma B.2:

PElyoi1) = N (%elZpe1, Zegpr), (2.114)
X = (Ao — GraSi R Hyr) Beaper + Bioty + GaSii R yr, (20115)

Zper = (Ap1— GerSi iR Hy ) Zpyjpr (A — G/e—IS/e—le_,llHk—l)T
+ Gt (Qr1— SiiRNSEL ) GLy, (2.116)

whose mean also depends on the measurement outcome y;_;.
Since the measurement equation remains unchanged when de-correlating the process and mea-

surement noise, the update probability density matches that of the uncorrelated case in Eq. (2.79):

prlyor) = N (&, Saie) (2.117)
Xy = X1 + K — Hidgjp1) (2.118)
Spe = (I — KpeH ) 241, (2.119)
K = Sy HY (HSy Hy +Re) (2.120)

Let us now merge the predict and update equations for the estimate, i.e. Eq. (2.118) and

Eq.(2.115), into a joint recursive form to derive its continuous counterpart:

T = (A — Ge SR Hy) Xy + By + GL S R i
= (4r — G SR, 'H,) (%ppr + Ki(yi — Hi%iyi1)) + Buwy + G S R
= Ay + By + (4K, — GSIR, (HK, — 1)) (yp — HiZippr) - (2.121)

Next, if we substitute the first-order approximations in Az summarized in Table 1.1 into the equa-

tion above, we retrieve:
(1) = (T+ Ftp)At) %(2) + B(#)u(ty) At + ( / y(r)dr — H(t )% (t/e)) X
(I + F(z,)Ar) K(5,) At — G(tk)AtMR Yz ) At (H(2)K(2) At — ]I))

= x(t;) + F(t,)%(2;) At + B(t)u (2 Al‘+( /}' t)dt — H(t)x (tk))

X (K(t/e) — G(1,)S(t,)R'(¢, )) At + O(A). (2.122)

82



Then, by taking the limit of Az — 0, we derive the Kalman-Bucy equation for a correlated

system:

dﬁ — llm ‘%(t/e-i-l) _‘%(t/@)
dr At—0 At

— F(e)i() + B)u(e) + (K(1) - GOSOR™(0) (y(t) —HOH),  (2123)

leading us to redefine the Kalman gain as
K(1) =K(t) — G()S()R'(r) = (Z(t)H"(t) — G()S(¢)) R7}(2). (2.124)

Next, we substitute Eq. (2.119) into Eq. (2.116) in order to obtain a joint recursive equation

for the covariance Z;:

e = (4e — G SR, Hy) (1 — K Hy) Sy (A — GS, Rlek)T
+ G, (Q: — S:R,'S}) G/ (2.125)

If now we substitute each of its terms by its corresponding first-order approximations:

2(tp1) = (L4 Fle) Ar) (1) (L + F(2) Az)
+ (L + Flte) Ae) Z(t)H" (1) R (1) At H () Z(t) (L + F''(24) At)
G(1)(Q(r) —S(m)R ™ (21)S" (1)) G (1) Ar
S(#:) + Fl(t)Z(t) At 4 Z(1)F' (1) At
2(t)H (1) R0 H (1) Z(01) At
+G(6)(QUer) —S(0R ™ (1)ST(1)) G ) e + O (), (2126

+

(z
(2
where F(2,) = F(t;) — G(#;)S(#,)R ' (t4)H(#;), and take the limit of Az approaching zero, we

retrieve
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which can be rewritten as

=
dr

F(£)Z(r) + Z()F (r) — K()R(0)K'(r) + G(£)Q(1)G (1),

(2.128)

with the Kalman gain being K(¢) = (Z(¢) H' (t) — G(¢)S(t)) R™'(¢), as redefined in Eq. (2.124).

Model y(2) = H(t)x(t) +0(z), v

e s x(t9) = Xo
Initialize 5, = E[(No — x0) (%o — xo)T}
Gain K(r) = (Z(t)H" (1)—G()S(z)) R\(z)

Covariance | 3(¢) =F(t)Z(£) +Z()F () —K()R()K(£) + G(£)Q(£)G(¢)

Estimate x(t) =F(2)%(¢) +B(2)u(t) +K(2) (y(¢) —H(£)%(?))

Table 2.3: Summary of the continuous correlated Kalman filter.

2.6.1 ORTHOGONALITY PRINCIPLE

An important property used later to prove the optimality of the linear-quadratic Gaussian con-

troller is the orthogonality between the MMSE estimate and its error, which also applies to the

KF estimate since its the MMSE estimator for LG systems.

Property 2.2 (Orthogonality Principle of the MMSE estimate). Let x(¢) be the true state of a

system and %(t) its MMSE estimate. Define the estimation error as:

e(z) = x(¢) — x(2).

(2.129)

Then, the orthogonality principle states that the error e(t) is uncorrelated with the estimate %(t),
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expressed by:
E[&'(Z) eT(t)] =0. (2.130)

In other words, the expectation value of the cross-correlation between the estimate and its error is zero.

Proof. 1o start, let us first recall that the optimal estimate minimizing the MSE or
quadratic cost function is the mean of the posterior (2.14), i.e. the MMSE estimator:

%) = / A (2.131)

Therefore, we can rewrite the expectation product of the

E[x(z)e'(r)] = E[x(1)%'(r)] — E[x(z) x'(1)] (2.132)

s(0 o pty=)a)

Note that the estimator % is ultimately a function of y. Therefore,

se<t>( /x<r>p<xw9>dx)T

— [50570ptop) dndye, — [50) T plaly)pr<) dodyes = 0. (213s)

_E — E[#(x)x'(2)] . (2.133)

E[x(z)e'(z)] =E — E[x(z) x'(2)] (2.134)

2.7 EXTENDED KALMAN FILTER

The derivation of the KF so far has relied on the assumption that the model is linear. If that is
not the case and the model is nonlinear, a Gaussian input does not necessarily produce a Gaus-
sian output, unlike in the linear scenario. As a result, the linear KF may no longer be the optimal
estimator, as there might be nonlinear filters that produce a better estimate. There are a wide
range of nonlinear filters one could choose from, but the simplest, most natural step is to con-
sider nonlinear extensions of the KF, such as the linearized or extended Kalman filter (EKF), even

though they are not guaranteed to provide an optimal estimate.
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To derive the linearized KF equations, we must first consider the nonlinear model given by a

set of coupled nonlinear stochastic equations of the form:

x(2) = flu(e), u(2), w(2). 1, (2.136)
)'(t) :h[x<t)7v(t)’t]a (2.137)

where fand b are both continuously differentiable nonlinear functions, x(¢) and #(z) are the
state and control vectors, and w(¢) and v(#) denote Langevin-noise terms, whose noise covari-
ances fulfill the same relations as the ones specified for a linear and correlated system, detailed in
Egs. (1.157-1.158) and Eq. (2.96).

Next, we expand the process and measurement equations around a nominal trajectory:

(xo(t)’uo(t)vwo(t)vvo(t))> (2.138)

i.e. nominal values for the state, control and noises. A nominal trajectory is simply a-priori guess
of what the system trajectory might look like, e.g. either a pre-planned trajectory, such as a flight
trajectory, or the actual KF estimate. Crucially, the nominal trajectory should be as close as pos-

sible to the real trajectory so the following linearization approximately holds:

(1) = flia(0) #0(2). w0(¢). 1 + Viaflo(x() — x0(¢))

Vo Flo(a(e) — #0(2)) + Vi flo(w(s) — wo(0))

= flxo(e). 40(e), wo(e). ] + Viuf odx(0) + Vuflodw(t) + Vaflow(t),  (2.139)
2(0) = blxa(e), 0(2), ] + Viblo(x(t) — 5a(0)) + Vi, blo(0() — 00(1)) =
= blxo(2),v0(¢), 1] + Vi bloAx(z) + V, blodo(?), (2.140)

where V, f|o denotes the Jacobian of the function f [x(z), #(z), w(z), ¢] with respect to the vari-
ablex and evaluated at the nominal values (xo (2), #o(2), wo (2) ), or for the case of the measurement
function b(x(z), v(2)), at (%0 (2), v0(2)). Additionally, note that we have introduced the notation
Ax(r), Au(t), Aw(z), and Av(¢) to represent the deviation of the real trajectory from the nominal
trajectory. Since it is reasonable to assume that the control #(#) is known at all times, we can set
the nominal control to the actual value #o(¢) = #(¢) s.t. Au(z) = 0. Furthermore, we assume
that the nominal noise for the process and measurement are both zero at all times: wp(z) = 0

and vo(¢) = 0, s.t. Aw(z) = w(¢) and Av(z) = v(¢). Thus, from now on, the nominal values
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considered are (% (), #0(2), wo(2),00(2)) = (x0(2),2(2),0,0).
Starting from Egs. (2.139-2.140), we can write an equivalent system of SDEs for the deviation

of the state from its nominal value, Ax(z), as well as the deviation of the measurement, Ay(%):

Ax(r) = x(r) — %0(2) = Viflo Ax(2) + Vi flow(z) = Viflo Ax(2) +4(2), (2.141)
() = 3(2) — 30(¢) = Vublo Ax() + Y, blov(s) = Vbl Ax() +7(),  (2.142)

where we have employed that the nominal trajectory fulfills: %o (2) = flxo(2), #0 (), wo(2), #] and

y0(2) = blxo(2),v0(2), 2]. Moreover, both noise terms have been relabeled as:

q(t) =Vyuflow(), and r() = V,blyv(s), (2.143)

with covariances

Elq(t)q'(s)] = Q(2)3(¢ — s)dz, where Q) = Vuflo Q) Vuf o, (2.144)
E[r(z) T(J)] = R(£)d(z — 5)de, where R(2) = V,b|oR(t)V, b |y, (2.145)
Elg()r'(s)] = S(2)3(t — s5)dt, where  S(2) = V,floS()V,h'|o. (2.146)

Crucially, Egs. (2.141-2.142) are linear with respect to the state deviation Ax, which is now the

state variable. Therefore, we can use the standard KF to find an estimate for Ax(z), i.e. A%(¢):

Ax(r) = F(r)A% + K(2) (Ay — H(2)A%) (2-147)
3(f) = FO)2(2) + Z()F(r) — K(OR()K(2) + Q(2), (2.148)
K(t) = (E(I)HT(t) —5(1‘)) R

(2), (2.149)

where Z(¢) is the covariance matrix defined as 2(¢) = E [(Ax(¢) - Ax(z)) (Ax(z) - A%(¢))"], and

the matrices given by the model which define the KF are:
F() =V.flo, H(t) =V.blp, and G(z) = V,f, (2.150)

with the equations for the covariances Q(2),R(¢) and 8(2), given in Egs. (2.144-2.146). It follows

from the definition of Ax that the estimate of x is simply the nominal state trajectory plus the
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deviation of the estimate from this trajectory:
x(t) = xo(2) + A%(2). (2.151)

Therefore, we can combine the nominal state trajectory with the Kalman-Bucy equation to ob-

tain an update rule for the estimate of x. Namely,

x(2) = Xo(2) + Ax(2)
= Flxo(2), #(2),0, 1]+ Vo floAZ(e) +K(2) (9(£) — Blo (£),0, 1] — Vi bloAR(2)),  (2.152)

where we have used thatxo(2) = flxo(2), #0(2), wo(2), 2], y0(£) = blxo(2),v0(2), 7], and previous
assumptions wo(¢) = vo(#) = 0 and #o(z) = #(z).

A common issue when employing a linearized KF is that finding a nominal state trajectory is
not straightforward. Therefore, a standard workaround is to assume that the KF estimate itself
is the trajectory around which we linearize the system, i.e. %9(¢) := %(¢). Then, the update rule

for the estimate of x(#) becomes:

x(t) = flx(2),(2), 0,4 + K(2) (y(2) — b[%(¢),0,4]) (2.153)

since A%(¢) = 0, due to our redefinition of the nominal state trajectory as the estimate trajec-
tory. The Kalman gain and the covariance £(¢) = E[(x(¢) — (2))(x(z) — x(z))"| follow the

same equations as in Eqgs. (2.148-2.149).

2.8 CONTROL

So far, we have explored how to estimate time-varying parameters in a Bayesian setting, with a
special emphasis on how to update their estimates as more data becomes available. However,
what if we not only aim to estimate the state of our system but also to control it?

When the state of the system is fully observable, then the challenge is to devise an optimal
control law to steer the state towards the desired target. For LG systems, the optimal control
strategy is given by the linear-quadratic regulator (LQR).

If we have no access to the state of the system but only to indirect measurements, then accurate
estimation becomes essential for successful control. For LG systems, the optimal solution is to

combine the LQR with a KF, resulting in the linear-quadratic-Gaussian (LQG) control.
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x(2) = fla(2), u(2), w(2), 4, w(z) ~N(0,Q(2)
Model _y(t) = b[x([)7v(t)a t]a v(t) ~ N(()?R(t))
E[w()o" ()] = S(2)3(z — s)

Initialize

F(2) = V.flo. H(t) == V.hlo, G() == Vuflo
Gradients Q1) = VufloQt)VufTlo, R(t) = V,bloR()V,h" o,
8(t) = VufloS()V, b o

Evaluate Voot o= |G, u(e), w=0,0=0)

Gain K(t) = <Z(t)HT(t) —$()

N
-1
L
—
N

Covariance 2(t) =F(t)Z(¢) + Z()F"(t) — K(2)

=
e
+

Q

Estimate x(t)=f[x(2),(2),0,4 + K(2) (y(¢t) — b[%(¢),0, )

Table 2.4: Summary of the continuous correlated extended Kalman filter.

Complete and rigorous derivations of the LQR and LQG control, as well as proofs of their op-
timality, emerge from Bellman’s equation [29, 85, 88]. However, since dynamical programming
is beyond the scope of this thesis, we instead try to provide simpler yet insightful derivations,
avoiding the need to explore an entirely new mathematical field. Thus, this section is intended as
an introduction to the complex field of optimal control theory, with more comprehensive treat-

ments available in textbooks like Crassidis and Junkins [29] and Kolosov [85].
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2.8.1 THE LINEAR-QUADRATIC REGULATOR

Let us assume we have full access to the state of the system, (). Then, the simplest control law

we can consider is to feed back this state x(#) into the system:

u(1) = —K(1)x(t), (2.154)

where K, () is a gain matrix. Now, the key question is: what is the optimal value of K, (#) such
that the system behaves as desired? This is where the LQR comes in: it provides a systematic
way to find the optimal feedback gain while balancing system performance with control effort.
The first assumption, as suggested by the term /inear in LQR, requires the system to be modeled

using linear equations:

where x(¢) is the state of the system, y(#) the measurement, and #(¢) the control law. For full-state
feedback, we further assume that the output of the system is the state, such that y(z) = x(¢) (i.e.,
H(r) = 1). Therefore, only the matrices F(¢) and B(z) are relevant for this problem.

Controller u(z) . System (2)
u(t) = —K.(2) x(z) i(t) = F(t) x(2) + B(2) u(2) .

y(2) = H(2) x(2)

Figure 2.3: A scheme illustrating the feedback loop of a linear-quadratic regulator. When the full state of the system is acces-
sible, it can be steered using a controller with a control law #(#) proportional to the state x(#) through a control gain K, (¢).
The optimal value of Kf(t) is determined by solving the LQR minimization problem.

The quadratic aspect of the LQR refers to how we assess the quality of our control. Namely,

through a quadratic cost function that we aim to minimize:

J= /Ooo () P(e)x(t) + #" (1) V(£) (1)) de. (2.157)

Here, the integration is carried out over time from zero to infinity, since we want the controller
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to continuously operate, i.e. the control horizon is infinite. In the cost function J, there are
two control “knobs”: the positive semi-definite matrix P(#) > 0, which penalizes deviations
in the state of the system, and V() > 0, a positive definite matrix that penalizes deviations in
the control effort. By minimizing J, the controller aims to balance two competing objectives:
driving the system state as close to zero as possible while minimizing the actuator effort required
to achieve this. There are various methods to solve this minimization problem, including learning
algorithms like gradient descent. However, we can leverage the constraints of the problem, such

as the assumption of linear dynamics and quadratic cost function, to analytically solve it.

Theorem 2.1 (Linear-quadratic regulator). Consider the following minimization problem.:

Jnin = argmin J = argmin /0 N (" (O PO x(2) +a () V() u(z)) de (2.158)
subjectto - x%(t) = F(¢) x(¢) + B(r) u(2), (2.159)

where x(t) is the state vector, P(t) > 0, and V(t) > 0. The optimal control law u(t) that solves this
optimization problem is known as the LQR:

u(t) = —K.(1)x(2), (2.160)
K.(2) =V (©)BY()A(r), (2.161)
—A(t) = F(0)A(2) +A(2) F() +P(t) —A(t) B(r) V' (1) B (1) A(2), (2.162)

where K. (¢) is the control gain, and Eq. (2.162) is a Riccati equation with terminal condition

A(00) = 0 to ensure that the system is continuously controlled over an infinite-time horizon.

Proof. 1o show that the optimal control law given by Egs. (2.160-2.1062) solves the
optimization problem in Egs. (2.158-2.159), let us start by introducing a symmetric matrix

A(t) = A'(¢t) and rewriting the quadratic cost in Eq. (2.158) as:

(x"(2)A(2) 2(2)) +x"(2)P(2) (2) +a ' (£)V(2) u(z)) dz, (2.163)
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where x(0) is the initial state of our system. Furthermore, we assume the state to be stable and

go to zero at infinity. Then, we can bring the term —x(0)A(0) x(0) nto the integral becanse
x () A(2) x(2)|3° = 0 — x(0)A(0) x(0). The derivative in Eq. (2.163) can be expanded

using the state space model as follows:
2 ()A(e) (1)) = & (A ()x(2) + " (OA(2)%(2) + 5 (D) A(D)e(r) (2.164)

= x () A(D)x(r) + (F)x(r) + B()u(2))" A()x(2)
+x(D)A(2) (F(0)x(2) + B(e)u(2)) -

&l
A

(2.165)

If now we plug this into Eq. (2.163) and group thex'(t) - x(t) terms, we get:

(FOAD() + F)) + Be)u(0) Al) x(2
)

J=x"(0)A(0)x(0) + /0 N
+x(O)A(2) (F(0)x(t) + B()u(2)) + x"(1)P(2) x() + uT(t)V(t)u(t)>dz‘ (2.166)
/Ooo (th
(

) Hu
= ) (
+u (V) u(t) + x"(0)A()B()u(r) + u'(t)B (£)A(2) x(t)) dz. (2.167)

(
%T(0)A () x(0) + )(AD) + FOAR) + AGFR) +P(0)) 2(2)
t

Recall that the objective of this optimization task is to find the control u(t) that minimizes the
cost J. Therefore, we focus on the last three terms of Eq. (2.167), since they are the only ones that
depend on u(t). In particular, by completing the square, we can rewrite them as follows:
' ()V () (r)+x"(0) A(2)B(t)u(r) +4'(2)B'(2) A(r) x(2) (2.168)
T
= () +V(0) "B )A () x(1)) V(2) (w(2) + V(1) "B (2)A(2) x(2))

—x(e)(A (1) BV (1) "B (2)A())x(0),

(2.169)

and substitute them back into the cost function J:

J = x'(0)A(0)(0)
+ / (#'0)(A@) + FO)AR) +AOFO)+P (@) - ADBOV " (DBTA() )x(0)

+ (O +V (OB (AD)x(2)) V(&) (1) +V " (2)B () A(2) x(2)) ) dr. (2.170)
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Now, by inspection of the expression above, we can see that the cost function can be minimized

by choosing the control u(¢) to be:
o(0) = —K.(5)x(), i)

where

K.(1) =V ()Bt)A(2), (2.172)

as well as solving for N(t) such that the first term of Eq. (2.170) is also zero, i.e.:
— A(¢) = F(6)A() +A(2) F(t) +P(t) —A(2) B() V' (2)B () A(2). (2.173)

In other words, if we can find a matrix N(t) such that the algebraic Riccati equation in
(2.173) holds, then the optimal control u(t) that minimizes the cost function J is a full-state
feedback term of the form u(t) = =V~ (¢)B(¢) A(¢) x(z).

2.8.2 THE LINEAR-QUADRATIC-GAUSSIAN CONTROLLER

Unfortunately, we often do not have access to the state x(#). While LQR feedback requires full
state knowledge, this assumption might unrealistic due to the presence of noise. In such cases,
we need to infer the state of our system from indirect noisy observations. A natural solution is to
use the KF to provide state estimates, which can be later used instead of the true state to construct
the LQR. For LG systems, the optimal strategy is to combine a KF with a LQR, referred to as the
linear-quadratic-Gaussian (LQG) controller [29, 85].

Theorem 2.2 (Linear-quadratic-Gaussian controller). The objective is to minimize the quadratic

cost function:

J=E { / (x" ()P ()x(z) + 2 (HV()u(2)) de|, (2.174)
0
subject to a linear system driven by white Gaussian noise:

x(t) = F(¢)x(¢) + B(t) u(¢) + G(¢) w(2), (2.175)
y(2) = H(t) x(2) + v(2), (2.176)
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where x(t) is the state vector, u(t) is the control input and y(t) is the measurement output. The
zero-mean Gaussian noise processw(t) ~ N (0, Q(2)) and v(¢) ~ N(0,R(¢)) are cross-correlated
through the matrix S(¢), i.e. E[w(£)o" (s)] = S(£)(t — s). The new cost function is defined as the
expected value of the cost function in Eq. (2.157), and just as in the case of the LQR, P(¢) > 0, and
V(t) > 0. The control law u(t) that minimizes the cost function is

u(t) = _KC(t);c(t)v (2.177)

where now the control is not proportional to the state but rather to its estimate, %(t). The control gain

Controller u(z) System y(2)
 _KNE - x(2) = F(t) x(2) + B(z) u(t) + G(¢) w(2)
vo) = K0 2(6) = H(2)x(2) + o(0)
x(z) Kalman filter

x(r) = F(0)&(r) +B(1)u () + K (1) (y(1) —H(1)x(2))

Figure 2.4: Block diagram of the feedback scheme of a linear-quadratic Gaussian controller. The controller computes the
control input u(t) based on the estimated state 5&(1‘) which is provided by the KF. The system dynamics are influenced by
both a process noise w(#) and a measurement noise v(#), preventing full access to the state of the system. For that reason,
the KF is needed in order to estimate the state from the measurements_y(t). The control law is then generated as #(¢) =
—K_ () %(¢) , where the control gain K(¢) is obtained by solving the LQR problem.

regulating the feedback is given by:

K.(t) =V (t)B'()A(2), (2.178)
—A(2) = F{(OA()+A) FO)+P () —A() B()) VI (2)BY)A(2), (2.179)
A(0) =0, (2.180)

where the matrix A(¢) is the solution to a Riccati equation with an infinite control horizon. The
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estimator of X(t) in Eq. (2.177) is given by the Kalman-Bucy filter:

#(1) = FU)e(2) + B()a (1) +K (1) (p(2) ~ H(03(1)), (2181)
#(0) = E[+(0)'(0)]. (2182)
K() = () H' () ~G()S(0) R™(0). (183)
$(2) = FUOS(0) + Z0F(0) - K(OR(OK () + G()QU)GT1),

5(0) = E[x(0)£(0)]. (.184)

where to compute the Kalman gain K (t) one also needs to solve the dual (estimation) Riccati problem.

Proof. First, let us focus on the term B [x"(¢)P(£)x(2)| in Eq. (2.174) and rewrite it in terms

of the estimation error
e(z) = x(¢) — x(2). (2.185)

Namely,

E[x'(t)P(£)x(r)] = E[(%(r) — e(2))"P () (%(2) — e(2))] = E[%"(&)P(£)(7)]
— 2E[Tt[P(2)e()x'(z)]] + E[Tr[P(s)e(t)e'(£)]] (2.186)

where in the last step we have applied following property of the trace: Tr[Axx"| = x"Ax.
Note that by applying the orthogonality principle, stated in Eq. (2.130), we can simplify the

expression above, since
E[Tt[P(t)e()x'(2)]] = Tr[P(r)E[e(r)x'(2)]] = 0. (2.187)

Additionally, by employing the definition of the covariance Z(t) = E[e(2)e'(z)], we rewrite
Eq. (2.186) as

E[x (6P ()x(r)] = E[x ()P ()x(z)] + Tr[P(£)Z(2)], (2.188)
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such that then, the cost function can be expressed in terms of the estimator %(t) and covariance

matrix Z(t):

J=E { /0 OZkT(t)P(t)a”&(t) +u'(6)V(2)u(z)) dt] + /0 O%r[P(t)E(t)}dt, (2.189)
subject to a new constraint:
x(t) = F()x(z) + B(2)u(?) + K(2) (y(¢) — H(2)%), (2.190)

i.e. the Kalman-Bucy filter. The problem of optimizing the cost J of Eq. (2.189) is equivalent
to minimizing the first term of Eq. (2.189), since the second term, Tt[P(¢)X(z)], does not
depend on u(t). Namely,

Jonin = argmin J = argmin J' (2.191)
where
J =E { / (x ()P (1)x(2) + 2 (H)V()u(2)) de|. (2.192)

Now, instead of the optimization problem being constrained by a differential equation on the
state x(¢), it is subjected to the Kalman-Bucy equation of Eq. (2.190), since we have rewritten
the cost function w.r.t. the KF estimate instead of the state. Then, just like in the case of the

LOR, we can use complete-the-squares to find the control u(t) that minimizes the cost,

J =E[z'(0)A(0)%(0)] — E[x"(0)A(0)%(0)| +E { /0 ?oiT(t)P(t)&(t)+uT(t)V(t)u(t))dt]

= E[%'(0)A(0)%(0)] +E { /0 C;T(icT(t)A(t)ic(z‘)) + /O O&‘T(Z)P(t)i(t)+uT(t)V(t)u(t))dt]

= E[7(0)A(0)2(0)] + / E[d(%'(r)A(1)%(t))]

0

+ /0 Oo(IE [ ()P (0)x(2)] + Eu(0)V()u(z)] ) dz. (2.193)

96




Importantly, the KF estimate is a stochastic process that follows a SDE: the Kalman-Bucy
equation. Therefore, to cvalnate d(x'(¢)A(£)x(2)), we have to use It calculus:

d(Z()A()%(2)) = £'(¢)(dA(2)) 2(2) +dx"() A()%(2) +2 (1) A(2) dx(¢)
+ dx'(£) A (2)dx(2). (2.194)

Then, the KF equation can be written in It6 form as

dx = F(¢)x(¢)ds + B(t)u(¢)ds + K(¢)dI, (2.195)
dI=dy —Hxdt =H(x —x)dt +dv = —Hedr + dv (2.196)

where dv = v(¢)dt ~ N (0,Rd?), s.t. dI ~ N(0,Rdz), with

Eldl] = o, (2.197)
]E[dIdIT} = Rdz, (2.198)
E[zdI"] = o. (2.199)

If we apply these relationships to Eq. (2.194), we get

d(®'()A()x(2)) = x'(¢) (dA(2)x(2) + (& () F'(¢r)de+2 " (£)B () de+dI 'K '(2) ) A(2)x(2)
(F(2)%(2)dz + B(r)u(r)ds + K(r)dI)
+ dIN () K () A () K (2)dI (), (2.200)

the expectation value of which reads as:

E[AFOAWD)] = B0 (AW + FOAW: + AQFL)(0)]
+E[u'()B (1) A(t)%()de] + E[2()A()B(2)u(r)de]
+E[dI"K(£)A()%(2) +xT(t)A(t)K(t)dI] +E[dI (0K () A()K(2)dI(2)] .

(2.201)
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The last two terms of the expansion above can be simplified since x* Az = Tr[dzx"| when x

and z have the same dimensions, which is the case for dI and x(¢). Therefore,

[dITKT( HA(D)x(2) + 2" (1) A()K(2)dI] = E[Tr[K'(£)A(e)x(z)dI"]] (2.202)

+E[Tr[A(r)K(r)dI%(2)]] :Tr[KT A()E [x(¢)dI"]] (2.203)
+ Tr[A(DK(H)E[dIx(2)]] = (2.204)

and
E[dI'())K'(2)A(r)K(t)dI(¢)] = E[Tt[K'(¢)A(r)K(2)dI(£)dI'(2)] ] (2.205)

= Tr[K(O)A(t)K(2)E[dI(r)dI(#)]] = Tr[K(H)A(£)K(£)R(2)] dz. (2.206)
Thus, Eq. (2.201) reduces to

E[d(x"(t)A()%(2))] = E[x"(¢) (dA(2) + F'(¢)A(2)ds + A(2)F(¢)de)%(2)]
+ E[u'(£)B"(t) A()%(¢)de+%" (1) A(£)B(2)u()de] + Tt [K'(t) A()K(£)R(2)de],  (2.207)

which can finally be inserted back into Eq. (2.193):

[e.9]

J =E[z'(0)A(0)x(0)] + /0 E [%(¢) (dA(2)+F () A(¢)de+ A () F(2)de+P(¢)de) x(2)]

+ /0 OO(E [4'(2)B"(£) A(¢)%(¢)de+x (£) A(2)B()u(t)dt+a () V(¢)u(2)dz])

+ /0 OOT r[K'(2)A(£)K(£)R(2)] dr. (2.208)

Given that also the last term, Tr [K'(¢)A(t)K(¢)R(¢)], does not depend on u(t), we can

equivalently write the minimization problem as

Jonin = argmin J = argmin J”, (2.209)

u u
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o)

= E[ﬂo (d%A(r>+FT<r>A<r>+A<r>F<r>+P<r>—A(r)B(r)v-l<r>BT<r>A<r>)5&@] dr

0

fAEUua+v*uw%gmﬁﬂﬁfvaxaa+v*ow%gmgﬂoﬂdL (2.210)

Then, just like in the LQR case, the control function u(t) that minimizes the cost J is

u(r) = —K.(1)x(z), (2.211)
where the control gain is:
K.(2) =V (t)BY()A(r). (2.212)
1o determine N(t), we require the first term of Eq. (2.170) to be zero, resulting in the
following equation:
— A(r) = F())A(t)+ A1) F(r) +P(r) = A(r) B(t) V(1) BT (1) A(2), (2.213)

where A(00) = 0 because the actuator is intended to continuously control the system over an

infinite time horizon.
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Continuously monitored quantum systems

TO LEARN SOMETHING ABOUT A QUANTUM SYSTEM, like where a particle is, how fast it is mov-
ing or how much energy it has, we must perform a measurement. Measurements in quantum me-
chanics are fundamentally different form those in classical systems: instead of simply observing
the system, they interact with it in a way that disturbs its state.

The way quantum measurements are usually introduced in a first Quantum Mechanics course
follows the framework of projective measurements developed in the 1930s by Heisenberg, Dirac
and von Neumann [89, 90, 91]. Von Neumann described measurements using observables, i.e.
mathematical objects called self-adjoint operators that live in the Hilbert space of the system.
When an observable is measured, the possible outcomes correspond to its eigenvalues, and the
quantum state undergoes a discontinuous, probabilistic, and non-unitary transformation, often
referred to as “collapse” or “projection”, into an eigenstate associated with the observed eigen-
value. Once this measurement is performed, there is no ambiguity on what the value of the ob-
servable is, since the state has been projected onto an eigenstate. While this framework works well

for some idealized scenarios: perfect, instantaneous measurements on isolated systems, real-life
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experiments often deviate from these assumptions. For instance, measurements can be imper-
fect, i.e. extract only partial information, and non-instantaneous, as any measurement device
inevitably requires a finite amount of time to detect and output a measurement value.

To model non-ideal measurements, Davies [36] and Kraus [92] extended von Neumann’s
framework to include positive operator-valued measures (POVMs). Unlike the sharp “collapse”
described by von Neumann, POVMs allow for imperfect measurements where the state of the
system only partially collapses upon measurement.

This framework was sufficient for most quantum experiments until the 1980s, when break-
throughs in laser sources as well as trapping and cooling techniques enabled experimentalists to
probe quantum systems in ways that highlighted the need for a continuous description of mea-
surement [93, 94]. In particular, systems like atoms or ions were observed transitioning between
discrete energy levels [95, 96, 97]. In other words, an atom could “jump” between states un-
der continuous observation, and this guantum jump could be influenced by how the system was
being measured [98, 99, 100, 101].

Inspired by the observation of these quantum jumps, a new mathematical theory for continu-
ous measurements was developed [36, 37, 38, 39], describing the evolution of a quantum system
under continuous monitoring, as opposed to instantaneous, projective measurements. In classi-
cal statistical physics, a system is described by an ensemble of noisy trajectories generated by a set
of SDEs. Analogously, in quantum physics, the state of a system conditioned on the measure-
ment record follows a guantum trajectory [38]. The evolution of such a conditional state [38] is
generated by a stochastic master equation (SME) [40, 41, 42]. Furthermore, the trajectory of such
a state can be controlled by feeding back the measurement outcomes (or an appropriate function
of them) as they are registered [102, 103]. A quantum theory of feedback, which naturally arises
from and requires a continuous measurement formalism, can be similarly described using SMEs
[104, 105].

These SMEs, central to the theory of continuous measurement, were shown to connect di-
rectly to quantum stochastic calculus [106, 107, 108, 109, 110] and quantum filtering [111, 112,
113, 114). Quantum stochastic calculus, a non-commutative analogue of Itd’s stochastic calcu-
lus, introduces “white noise” Bose fields, l;t and ZI, satisfying canonical commutation relations.
In quantum optics, these fields approximate the electromagnetic field and serve as the foundation
for a consistent theory of photodetection [110, 115, 116]. Using quantum stochastic calculus,
Belavkin and Barchielli extended Bayesian filtering into the quantum domain to describe how

quantum states are conditioned by continuous measurements, thereby establishing the field of
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quantum filtering [111, 112, 114]. Turns out that the SME is nothing but the representation of

their quantum filter in its adjoint density form [117].

IN THIS CHAPTER, we revisit and adapt established derivations from the literature to the context
of this thesis. In particular, we rederive the SME for an ensemble of two-level systems continu-
ously monitored through the polarization of a probing light field. To do so, we start by assuming
a very general setup: that of a bath (probe) interacting with a system. We first detail in Sec. 3.1
all the relevant approximations as laid out by Gross et al. (2018) [118]. Next, we derive the SME
for both photodetection (in Sec. 3.2.1) and homodyne measurements (in Sec. 3.2.2), following
the steps of Albarelli et al. (2024) [119]. Then, in Sec. 3.2.3, inspired by the work of Deutsch
etal. (2010) [120], we explain how a system monitored with polarization spectroscopy can be
described by the same SME as one measured by homodyne detection. Last but not least, we also
briefly introduce in Sec. 3.3 Markovian and Bayesian feedback, as they will also be of interest in
later chapters. If the reader wants to dive deeper into this topic, many other detailed sources exist,
such as the works of Carmichael [38], Gardiner and Zoller [121], Breuer and Petruccione [122],
Wiseman and Milburn [42], and Jacobs [123]. Those specifically interested in quantum filtering

might find the review by van Handel et al. [117] particularly insightful.

3.1 INTRODUCING THE SYSTEM-BATH SETUP

Consider the case of a system S coupled to a bath B corresponding to a continuum of bosonic
modes, as depicted in Fig. 3.1. The total Hamiltonian describing the evolution of the joint system
and bath is given by

H = Hs + Hp + Hiyy, (3.1)

with H representing the Hamiltonian of the system, and H;,, accounting for the interaction be-
tween the system and the bath, with the bath modeled as an infinite collection of bosonic modes

whose Hamiltonian Hp reads as:

Hg = /OO dw w b (w)b(w), (3-2)

0
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Figure 3.1: Diagram of the setup. The setup consists of a main system (labeled with S) continuously monitored by a probe

(B) that interacts with the system and is later measured by, in this depiction, a homodyne detector. In this section, though,
we consider other types of measurement such as photodetection. The interaction between the system and the probe (also
sometimes referred as bath) is governed by the interaction Hamiltonian Hi,.

where w is the frequency of each bosonic mode, with its corresponding creation and anihilation

operators, 5 () and b(w), fulfilling the commutation relationships
b(0), 5 ()] = 2090 — ) and  [B(w), b(&)] = 0. (33)

This bath, which we label with B, is in our case the probe that the experimenter wants to use
to measure the state of the system. In other words, the probe or bath interacts with the system
and it is later measured. Therefore, in this section we will use interchangeably bath, probe and in
a lesser extend, environment, all referring to the subspace B.

Additionally, the interaction Hamiltonian is assumed to be linear w.r.t. the bosonic operators

b:
Hyo =1 Ooda) @ (ﬁ @ bl(w)— LI ® é(w)) : (3-4)
0 27w
where L corresponds to a given system operator and «() is the coupling strength of the system
to the bath mode with frequency w. Throughout this derivation, we assume the system S to
have only one characteristic frequency €. Additionally, we will assume that when going into the
interaction picture of ﬁo = [:]3 + [:[B, the system operator acquires a time dependent phase
L(t) = Le "), with £, denoting the initial time.
Even then, the interaction Hamiltonian is still too complex and further approximations must
be performed. Throughout this section, each important approximation will be marked with a

dot, for easier identification. The first one relies on the Markovian properties of the bath:

o First Markov approximation: This approximation relies on the timescale of the system’s

dynamics being much slower than the timescale of the bath’s memory, characterized by
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its correlation time 7,. The key idea is that the bath rapidly “forgets” its interaction with
the system system. In other words, any perturbation in the bath caused by its interaction
with the system dissipates quickly by propagating away into the bath. From the system’s
perspective, the excitation it created in the bath has effectively vanished, and the bath has
lost all memory of the initial disturbance. This rapid decay of the bath’s memory often

leads to it being described as “memoryless”.

Furthermore, a bath that forgets its past very quickly indicates that its fluctuations are also
rapid. In particular, they are much faster than the comparatively slow response of the
system, which therefore cannot “resolve” them. In other words, the system “sees” only
the average effect of these fluctuations over longer timescales, i.c., it is no longer sensitive
to specific frequencies w, and therefore, the interaction strength is constant in a (large)
frequency bandwidth YW. Namely, x(w) = xforw € W = [Q — 6, Q + ], and zero

outside of it, where € is the characteristic frequency of the system.

Then, the Hamiltonian becomes:
N 1 “ ~ “ ~
A= ivE [ dos (Lo d(o) -1 o be)). (3.5)
w 27

We can take this Hamiltonian as the starting point [115] or derive it from a standard dipole
coupling by performing a rotating-wave approximation (RWA) and keeping the slow-varying
energy-conserving terms of Eq. (3.5). If the latter is performed, the timescales we consider, i.e.
At, have to be much longer than the characteristic time of the system, 1/Q). Namely, if the RWA
is performed, then

Q' < At (3.6)

Additionally, another assumption intrinsic in the form of Eq. (3.5) is that the system is small
enough, i.e. Ax < cAt, such that the spatial integration has been substituted by a point interac-
tion [118].

If now we go into the interaction frame of Hy = Hs + Hp, then, the interaction Hamiltonian
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in the time domain becomes:

~

H](t) = elﬁo(titO)HAinteii[:[O(tito)

= z'£ d ¢H10(=) (i @b () — LT ® é(w)) e~ Holt=)
27 w

o _ l.\/_7_C dw (Le (t—1t0) ®bT( ) iw(t—to) LT iQ(t—10) ®b< ) —iw(t— to))
27 Jw

= z'zi dw (ﬁ ® ;T(w)ei(“_g)(t_tO) ~I'® l;(w)e_"(“’_m(’_“’)>

— i/x (L“®Zﬁ H-I'e é(r)), (3.7)
where in the last step we have made use of the definition of the so-called input modes b(?)

:_/dwb ¢ em =) (3.8)

which one might notice resembles the Fourier transform of the frequency-domain operators but

with frequencies restricted to the set W = [Q — 6, Q + F].

* Weak coupling: In our simplified treatment, the system has only one characteristic or tran-
sition frequency ) with a decay x due to the interaction with the bath. Hence, it stands
to reason to expect * its spectrum to be centered at Q with a broadening proportional to
x, with its tails going to zero within a few linewidths x of €3, as depicted in Fig. 3.2. Earlier
we defined the interaction bandwidth or the effective bath frequencies that the system sees
asaset W = [Q — 0, Q + 8]. Given that we assume the spectrum of the system to be

centered around ) with a broadening of x, we must then pick & to be much larger than «,

"Given our initial assumption that Hp has the form specified in Eq. (3.2), by using the Baker-Campbell-
Hausdorff formula, it follows that 5 =) j(p)e =5 (t=1) = p(p)e= (=) since Hy is time-independent and
the modes obey the commutation relationships of (3.3). In particular, the key step in this calculation is the deriva-
tion of [Hg, b(w)] = —wb(w). Other work circumvents defining Hp and instead require the field operators to
acquire a time dependence at the frequency of the mode [118].

tEarlier in the definition of  we stated that when going into the interaction picture Hy = Hs + Hp, the system
operator acquires a time dependent phase L(£) = Le™"0=1) with £, denoting the initial time.

*For example, for a signal S(z) ~ cos Qze ™, its power spectral density is a Lorentzian centered around Q and

with a width of &, i.e. o< 1/ ((w — Q)* + £?)
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Figure 3.2: Interaction between the system and the probe in the frequency domain. This figure illustrates how the spectrum
of the system, centered around {2 and broadened by a decay «, aligns with the discretized frequency modes of the probe,

in particular g, @; and w_1, which are spaced by %. As detailed in the main text, an important condition when picking the
Atisthat At <€ &1, or equivalently, l/At >>> «k, ensuring that modes such as () + % are sufficiently detuned from the
spectrum’s core to be negligible in system interactions. The parameter & defines the interaction bandwidth V) for which we
assume constant system-probe interaction, i.e. k(@) = xifw € W = [Q — 8, Q +§]. It is evident also from this depiction
why is necessary that & > «.

i.e. @ > «, to ensure the whole spectrum falls within V. Then, we can extend the integral
of Eq. (3.8) over the whole real axis R. However, for the set W = [Q — 8, Q + 8] to be
properly defined, the following condition must hold: & — ¢ > 0. Thus, since & > «,
then Q >> «. In other words, the system is weakly coupled to the bath, since ¥ < Q.

Now, thanks to the weak-coupling approximation, we can extend WV to the whole real axis R.

In this case, the interaction Hamiltonian has the same form as in Eq. (3.7):
Hi(2) = ivx (ﬁ ® Z;T(t) ~I'® I;(t)) , (3.9)

but with 4(¢) and &' (#) becoming instantaneous temporal input modes, i.e., the Fourier trans-

form of the frequency modes b(w) and b' (). Namely,

) 1 [~ . .
b(t) = ;r/ dw b(w)e_‘(‘”_m(l_lo), (3.10)
following the standard commutation relationship

[b(2), b1 (¢)] = 3 = ). (3.11)
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Figure 3.3: Frequency and time discretization of the probe modes. This illustration depicts the time discretization of the
probe beam into intervals of Az, with discretized times labeled as ¢, withn = —o00,...,00 € Z. At t,, the on-
resonant and first four discrete modes are represented, with their frequencies also discretized asw, = Q + %/e, with

k=-2,-1,0,1,2.

So far we are in the interacting frame and the Hamiltonian governing the dynamics of the joint
state of the system and the probe s given in Eq. (3.9), where the probe modes 4(¢) and 41 (¢) evolve
in time.

To further simplify this description, we now discretize the probe field into time intervals of
duration Az. The time instances are defined as #, = nA¢, with » € Z. Each corresponding
segmented mode is labeled as b, (¢), with n € Z. Consequently, the temporal mode é(t) can be

written as a sum of all the discrete time modes b,(¢) as:

b(t) = VAt i b,()O(t—t,), (3.12)

n——0oo

such that 6(¢) is still continuous but has been structured into (continuous) intervals of size Az,

utilizing the Heaviside function defined as ©(#) = 1for 0 < # < At and zero otherwise. This
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segmentation ensures that each segment, or “discrete time mode”, b,,(#), while being a continuous
mode within its respective time interval [2,,, £, + Az), is distinctly associated with the time index 7.
This index 7 highlights that b,,(¢) contributes to the overall mode only during its specific interval
from¢, to £, + At. The factor v/At has been added in order to maintain the correct commutation
relations among discrete modes, akin to those in continuous modes. This will be demonstrated
in detail later in the section. This factor also ensures that the total energy, expressed in continuous
time modes as [~ b'(£)b(¢)dt, matches that calculated using discrete modes, ) bl b,At.
Additionally, the segmented time modes b, (£) can be expressed as a linear combination of dis-
crete frequency modes ém/e, with the discretized frequencies ranging as: w, = Q + ZA—f/e with
k = —00,...,00 € Z. In particular, we can use the discrete equivalent of the Fourier transform
of Eq. (3.10) to expand b, (2) as:
oo oo
Zn (t) _ i Z Ln,k o2kt N L an efz'Zn'/et/Atz_ﬂ’ (3.13)
27 27 At

k=—00 k=—00

where we have set #, = 0 for simplicity, and Aw = 27/ At is the spacing between consecutive
frequency samples in the discretized frequency domain. Note that Eq. (3.13) is simply the Fourier

series of b,(¢), and b, ;, are its Fourier coefficients defined by the integrals:

At
byp = / b,(t) e i2mnt/Ar gy, (3.14)
0

Note, however, that the integral above defines the Fourier coeflicients in terms of ;,l(t), ie a
segmented version of b(t), rather than é(t) itself.

For practical purposes, we require a direct transformation of the continuous mode l;(t) into
the discrete modes or Fourier coefficients l;n,k. This transformation can be achieved by deriving
the Fourier coefficients from a double series expansion of b(¢) w.r.t. time and frequency.

By applying the Fourier expansion of the mode b, (¢) given in Eq. (3.13) to Eq. (3.12), the
continuous mode b(¢) can be expressed as a series expansion in both frequency and time as follows
[118]:

~

1 o0 e ¢} R . A
b(t) = \/_A_t Z Z bo Ot —1,) e ™ /ar (3.15)

n=—00 k=—00

where the labeling 7 emphasizes that each frequency mode &; is associated with a specific time

interval [¢,, £, + At) indexed by 7. As derived in Proposition C.1, the “Fourier” or discretized

108



modes ;mk for Eq. (3.15) are:

S~

1 tn+Al’ R ]
ok = _—At/ b(r)e®™ /% dt, (3.16)

which one might notice to highly resemble the Fourier series and the integral form for its coeffi-

cients (see Table 3.1).

Type of Series || Windowed Complex Exponential Series Fourier Series
Time-Domain 2t/ At 1 o —i2my
_ 1A )= = »
Signal (o) ”_z;oo k_z;oo ,40(t = 1,)c A9 7;;:202 ©
Frequency-
Domain byp=— ffﬁAfb(,f)ez‘zwkz/m dr ¢, = fTﬂt)efz%d;
Coefficients var ’

Table 3.1: Comparison of Signal Representations

As a sanity check, we make sure that the discretized modes 4, ; obey the discrete canonical

commutation relation:

N . 1 ty+At tm+AL R ] ] ,
[bn,/w b:rmg] _ A_t/ / [b(l’), bT(ﬂ)]ezZﬂkt/AteszﬁEt /Atdtdt/

th+At tm+At
/ zZ?f/et/At —i2mlt /Atdtdt
1 thrAt —+At
— E zZn/et/At/ e—zZﬂZt’/Até\( )dt/ dr
I tm
2 HA — .
ﬁ ff +Ar zant/At 27l At dr if t, <t<t,+ Al‘,
0 otherwise,
1 tha+At
— Egn,m/ ezZﬁ/et/Ate—zZn'Kt/At dr
1
= A_tamm Até\k,ﬂ = 5n,m5k,fa

where in the last line we have used the orthogonality condition of integration over the period A¢

given in Eq. (C.4). Note the analogy with the commutation relationship of Eq. (3.11), which
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holds due to writing the time expansion of 4(¢) in Eq. (3.12) with a factor Az.
As depicted in Fig. 3.3, in each time step, there is an infinite collection of modes b, with
which the system can interact. Let us perform one more approximation in order to ensure that

the system interacts only with the main on-resonant mode 4, o. Namely:

* Quasimonochromatic approximation: Let us pick a time-step Az much smaller than the
time the state of the system and bath take to “couple”, i.e. Az < 1/, so that the system-
probe interaction is weak during this time-step Az. Now, recall that the mode frequencies
are discretized as w, = Q + zA—fk, with £ € Z. Since we have just set the condition that
1/At > «, that means that all probe modes except the on-resonant one will be far away

from the main part of the spectrum of the system (see Fig. 3.2).

Hence, only the on-resonant mode will interact with the system (£ = 0) and thus we can
disregard the rest of the modes (£ # 0) from all our calculations moving forward. Namely, the

mode é(t) can now be expanded as:

o

be) = %A_t S hel—s) (3.17)

n——0oo

where
R R 1 tn—i-At[; d
b, =b,0 = — t) dz, .18
,0 \/A_l‘/[ﬂ () (3 I )

which is obtained by simply setting # = 0 in Eq. (3.16). Note that so far in this derivation,
the mode at time 7 can be correlated with past or future modes. Thus, to further simplify the
treatment, we perform yet another assumption: that the time Az is longer than the correlation

time of the bath 7, such that different segmented modes are uncorrelated with other modes:

* Born-Markov approximation: As explained in the first Markov approximation, the corre-
lation time 7, quantifies how rapidly the bath (a.k.a. the probe) “forgets” its interaction
with the system. In the setup considered so far, the probe is divided into a series of dis-
crete temporal modes b, (r) with n € Z, each interacting with the system over a distinct
time interval [£,, 2, + Az). When the condition 7, < At is satisfied, the memory of the
bath decays much faster than the duration of each probe segment. This means that the
influence of the system on any given probe segment b, (£) does not propagate forward to
affect subsequent probe segments. Importantly, the state of each probe segment after in-

teracting with the system is not “lost”. Instead, each segment leaves the interaction region
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with its new state preserved, i.e. dissipating away from the system, potentially to be mea-
sured later. However, the assumption of memorylessness means that when a new probe
segment I;nﬂ () arrives, it is initialized in the same state as the earlier segments before their
interactions, typically [0)(0]. This ensures that the joint state of the system and the incom-
ing probe prior to interaction is separable and can be written as p[z] ® |0)(0], where p[%]

describes the state of the system before the interaction with the #-th segment.

This discretization of the probe, combined with the Born-Markov approximation, yields a
“conveyor belt”-type interaction [118, 119]: for instance, at time £, = 0, modes én<0 have not
yet interacted with the system and modes ;nZO may be correlated with the system but will not
interact with it ever again. We can view this from the perspective of Hilbert spaces: each of these
discrete modes exist in a distinct Hilbert space l;n (2) € 7—[5 such that the total subspace of the
bath is HB = ®n€Z Hf . Furthermore, the joint system-bath state will live in an even larger
Hilbert space HB = HS X neZ HB. However, at each time ,,, it is not necessary to consider the
whole Hilbert space but rather the reduced space H® @ HE.

At each time, the Hamiltonian living in H® ® H? and describing the interaction between
system and probe at time #, will also be labeled with 7. To derive its expression, we plug in the

expression of the segmented probe field given in Eq. (3.17) into Eq. (3.9):

oo

Z \/7L®19T LT®b) (t—1t,) ZH,(” (t—1t,)

n=—0oo n=—oo

where the interaction Hamiltonian acting from time #, to time #,4 is:

[;f[(”) ::z'«/%([i@él—]:“}bén),

which, importantly, is inversely proportional to v/ Az. It then follows that the unitary evolution

governed by the interaction Hamiltonian from time #, to ¢, + At has the form:
UA(:‘) Upe(2,) = oA exp {—z’ (z’ L <ﬁ ® l;i —I'® én>) At]
:exp[ fo(ieaéL—ﬁT@én)}, (3.10)
with the exponent proportional to /At instead of At. By taking the limit Az — 0, the unitary
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responsible for the evolution of the joint system and probe from # to # + d# can be written as:
Up(f) = e HIOdr exp [ x dt (ﬁ ® /;I -I'® &)], (3.20)

where d# is an infinitesimally small time increment. Note that the input modes are written as 1;,
(not as é(t)) to highlight that 7 is a label identifying a particular input operator in the collection
{[;[}teR, rather than a variable.

The derivation of the unitary in Eq. (3.20) is the main result of this section. Now that we
understand how the probe interacts with the system through a series of “conveyor belt”-like in-
teractions, represented by sequential joint unitaries, we will summarize each approximation per-

formed on the way:

* Rotating-Wave Approximation (when necessary): If the RWA is performed, then it is im-
portant that Az > 1/Q, so that the interaction of the system with the probe is averaged

over many oscillations of the system during the interval Az.

o The First Markov approximation, argues that k(w) = xforw € W = [Q— 0, Q + 0] and
zero elsewhere, since the bath fluctuates so quickly that the system cannot resolve them

and sees a uniform coupling.

* Weak-coupling approximation: the state of the bath is weakly coupled to the system, O >

K.

* Quasimonochromatic approximation: If the system interacts weakly enough with the probe
during a time interval Az, i.e., Ar < 1/, then we can ignore all modes with & # 0 since
their frequencies would fall outside the spectrum of the system and therefore not interact

with it.

* Born-Markov approximation: The correlation time 7, quantifies how quickly the bath (or
probe) “forgets” its interaction with the system. When 7, < Az, where At is the duration
of each probe segment, the effect of the system on one probe segment does not propagate
to subsequent segments. In other words, each discrete temporal mode b, () is uncorrelated
from other modes, both in its past and future. Then, each new probe segment starts in the
same initial state, typically |0)(0|, ensuring that the joint state of the system and probe
before interaction is separable: p[#] © |0)(0|, where p[%] represents the state of the system

before interacting with the corresponding probe segment at time #,. After interaction,
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each probe segment retains its state and is not "lost”, but simply propagates away from the

system, remaining available for future measurements.

To summarize, the conditions that Az has to fulfill are [118]:

Ax < cAt,
7, < At,

! <<At<<1
Q K

3.2 DERIVATION OF THE STOCHASTIC MASTER EQUATION

Until now we have considered a general system interacting solely with a probe in a “conveyor belt”
fashion. This means that the probe is discretized in time so that, at each time step Az, its mode
b, (with z = #/At) interacts with the system and is then measured, yielding an outcome y,,. The
effect of this interaction and subsequent measurement is captured by the following measurement

operator:

E, = (5|0)0), (3.21)

which is obtained by evolving the initial probe state, assumed to be |0)(0] due to the Born-Markov
approximation, via the unitary interaction of Eq. (3.19). Finally, the evolved state is projected
onto the eigenstate associated to the measurement outcome y,.

However, in more general models including, the system may also dissipate into an additional,
unmonitored environment. In this case, its evolution is no longer governed exclusively by a
Hamiltonian but rather by a completely positive and trace-preserving (CPTP) map, @, acting
from ¢,_; to t,,.

Thus, the discretized evolution of the state consists of two alternating processes: (1) its “inter-
nal” evolution as described by the CPTP map @, that accounts for both the Hamiltonian dy-
namics and the coupling to an unmonitored environment, and (2) the measurement update via
the operator Eyn corresponding to the outcome y,, obtained from the probe. Collecting these out-
comes gives a discretised measurement record yo., = {y0, 71, - - -, ¥» }>, with n = £/ Az, which, in
the continuous limit of z — 00 as Az — 0 becomes a continuous measurement record y,. Since
the measurement update at each time step depends on the specific outcome y,, the evolution of
the state is conditional on the measurement record. Thus, different measurement trajectories

lead to different state evolutions. For instance, in photodetection the outcomes are inherently
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stochastic: each time step yields either a photoclick y, = 1 or no click y, = 0. Thus, taking the
continuous-time limit of the discretized evolution results in a (stochastic) master equation, with
its state evolving along a (stochastic) trajectory fully conditioned on the measurement outcomes.

We therefore begin by writing down the full discretized conditional evolution:

A1 ot
o A @B, @l B B £

S P VI (22)

where the brackets -] emphasize that this is the discreze conditional state, which at time z = ¢/ Az

reads as:
Plalyon] =p(tly.) =p (t)- (3.23)

It follows from Eq. (3.22) that any consecutive conditional states are related as:

I o

Plnyo.] = Telplnpon]) Tr{CD EE o] T}} (3.24)

where p denotes the unnormalized state. This iterative rule relating the state at time 7 - 1 with
the one at time 7 can be further split into two steps: first a measurement update and then an

“internal” evolution. Specifically, we can write

©, 1110
A0l = T, o ) (5:23)

where p[7-1[yo.,] is the updated state after performing the measurement but before evolving the

system under the internal map ®,[-], i.e.,

f’[”‘lb'o:n] _ E [71 1b’0n1] T
Tr{p[n-1|y0.n] } Tr{ Mo[n 1o T}

Plr-1yo.] = (3.26)

with
PA:O'n b’o:m) = Trﬂa[ﬂ‘lb'o:n]} (3.27)

representing the probability of obtaining the outcome y, given a state evolved according to a

previous measurement record ¥y.,-1. This two-step procedure: first updating the state by the
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measurement and then evolving it with the internal CPTP map, is analogous to the two-step

process of a discrete KF. Accordingly, we label the states as follows:

update: p[z-1lyo.,] =  state after measurement update but before internal evolution

predict : p(7|yo.,] = state after measurement update and internal evolution.  (3.28)

To explicitly derive the measurement update, let us now examine up to first order in Az the effect
of the probe-system interaction and subsequent measurement. Specifically, we have to expand

the unnormalized post-measurement state to first order in Az:

An-1poa] = E, pln-lyo,E - (3.29)

To do so, we need to write this expression in terms of the unitary interaction of the system and the
p ry Yy
probe, and thus, their joint state. Recalling the form of the measurement operators E,, described

in Eq. (3.21), we can rewritte the expression above as

. - .
Aln-1yon] = E,, pln-1lpon1]E,,

= (3 Op 0%l - 1{y0-1] O TS [9,) (3.30)
= (5| U (pln-1{yo.nt] @ [OXO) T [y,) (3.31)

where the joint system—probe state before measurement is separable under the Born-Markov
approximation. To proceed, we expand the unitary operator UA(;I ) of Eq. (3.19) to first order in
At:

+ —(ﬁ@(&i)z 5 @énég_iﬁT®é12n+(ﬁ)2®(zn)2)KA¢+o(At). (3.32)
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Then, it follows that the joint state after the probe-system interaction reads as:

O (pln-1y0n1] @ [0XO) TS = pln-1[p0,1] @10X0] + & Lp[n-1lyo,1] L @ [1)1] Ar
o (Leln=11y0,1] 2 1X0] + =1 o] £ 2 0)1] ) Ve A
o+ 2(V2L26l1- 1y 1] 212)0] — L Lol =1{y0.0.1] 2 0)(0

+V2p[n-1[y0:0 1] L2 10)2| —pl2-1|y0en 1| LT L& |0>(0]> At + o(A¢). (3.33)

Thus, different SMEs will be obtained depending on our choice of measurement, i.e. the projec-
tor [y, )y, |, where y, can for instance be the number of photons in the case of photodetection,

or a Gaussian photocurrent in the case of homodyne measurement.

3.2.1 PHOTODETECTION

Let us consider the case where the probe is continuously measured with a photodetector, i.e., by
projecting it on the Fock basis |z)(z|. It is obvious from the form of the joint state before the
measurement given in Eq. (3.3 3) that only when projecting the joint state onto the vacuum state
|0)(0] or the single photon state |1)(1], a2 non-zero result will be obtained. Thus, let us consider
each event, no-detection and detection, separately. If no photon is detected, then the unnormal-

ized conditional state is:

An=10,30213] = (01U (pln-1lyo1] @ [0)0)) U 0) (3.34)
:_/O[n_lb'O:n—l] - g{fji 7ﬁ[n_1b'0:n—l]} At+ O(At>’ (335)

where p[7-1|y0.,-1] is the state conditioned by the measurement at the previous time step. Then,

the probability of actually detecting no photons after the state evolves for a time-step Az is:
22:00p0) = Tr{pln-11{0, you-1}]} = 1 = w(LIL) Ar + o(Ar) (336)

where (LTL) = Tr{p[n-1|yo. 1]L1L}. By now expanding the inverse of pa;(0|yo., 1) to first order
At,
Pae(Olyon1) ! =1+ w{LIL)Ar + o(A2), (337)
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we can calculate, to first order A¢, the normalized state conditioned on the measurement outcome

0 w.r.t. the conditional state at the previous time p[7-1|yo.,-1] = p (c)(tn,l):

£r-11{0, yo:n-1}]
2a(01Y0:-1)

K A A s A
= (pofta) = SALTL, g (001)} B+ 0(80))(1+ R{LTL) A+ o(21))
K Ain ApA
= i) = SAEL, p (tn ) YAt + (L )p (602) At +o(8)
K ~una K, ~un Arn
:ﬁ(c)(tnfl) — E{LTL ,ﬂ<c)(tn,1)}Af + 5<LT,L + LTL>/0(C)<tn,1)Af + O(AZ’)

K AL A
:ﬁ@)(t”'l) o EH[LTL]Pu)(t”-I)Af + o(Az), (3.38)

Plr=1{0,001}] =

where we introduce the nonlinear superoperator:

HO]+ =0« + - O =Te{(0+ 01« } +. (3.39)
If instead a photon is detected, the unnormalized conditional state becomes
AL y0n}] = O (1o @ 0XONUZ)1) = Lo (121) L Ar-+0(88), (3.40)

from which we can calculate the associated probability:

Pus(Uost) = Tr{ln-1{1, 30,1} ]} = x(EL) At + o(A0). (3.47)

By dividing the unnormalized updated state by the probability of measuring one photon, we

retrieve:

p|n- 0in-1 L o\n-1 Lf
_/J[n—1|{1,}'o;n-1}] :ﬁ[p;lhl}::;'l) }] = ﬁ(<§;ﬁ>) + O(Al‘). (3.42)

To sum up, at each time step, the photodetector yields either 0 or 1 with probabilities:

Yn =0~ pa(0[yoin1) =1 — x(LTL) At + o(A?) (3.43)
In =1~ par(llyon1) = K<£T£>Af+ o(At) (3.44)

If one recalls the definition of a Poisson increment in Sec. 1.2.2, it comes natural to model the

{0, 1} output within the timestep Az as a Poisson increment AN ~ Pois(1A¢), where as Az —
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0,Pr[AN € {0,1}] — 1. Thus, the Poisson increment we introduce has a mean
E[AN] = 0 pa(Olpons) + 1+ p(lpos) = KT E)A +o(A)  (3.45)

which completely describes AN, as discussed in Sec. 1.2.2. Finally, if we apply the “internal”

evolution map @, we get the unnormalized conditional state at time r = Az

ifty, =1 = pn{Lyon1}] = D, [p[n-1{1, yo:n-1}]] (3.46)
ify, =0 = p[r[{0,90.1} = @, [p[n-1[{0,90.,-1}]] (3.47)

Let us now consider a measurement-based feedback map @,[ - | where the whole history of

measurement results y,., affects the Lindbladian governing the evolution of the state as
q)}’l[ . ] — CAC_?O:nAII: . ] = . + £}’O:n . At+ o(At)) (3.48)
where we assume £, = O(1)". Then, the unnormalized conditional state becomes:

Lp (t,,)L
M + o(At)
(LTL)

+ O(Ar) (3.49)

lf)/n =1 — ﬁ[i’l’{l,_}'O:n—l}] = (Di’l

_ ﬁﬁ(c)(t”‘l)iT
)
ify,=0 = p[n|{0,50:-1}] = D, [p(c)(t,l_l) — gH[[A,T[A,]/o(C)(t,L_I)AL‘ + O(At)]

= ot + Ly p (10208 = SHIE g, (62)80 + o(80),  (3:50)

where for the case of y, = 1, we expand only to zeroth order. Since Tr{?—l[ﬁlzlp} = 0and

Tr{Lp} = 0, the trace of both unnormalized states above is 1. In other words, the states are

"Big-O notation, O(At¢), describes terms that scale at most linearly with A, ie., they may be proportional to
At or smaller (e.g. AB/2 A2, . .). Little-o, 0(A¢), includes only terms that vanish faster than Az as Az — 0. For
instance, AP/? € o(At), while Az € O(A¢) but not in o(At).
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already normalized:
iﬁ(c)(fn_1>iT
(LTL)
X ar A
P{0, 3001} = p (ta1) + Ly, p (ta1) At — E’H[LTLLo(C)(tn,l)At + o(At). (3.52)

Pl Yo} = + O(A?) (3.51)

Since AN indicates whether a particular quantum event within the interval Az has occurred, i.c.,

AN =1 if the event occurs (measurement outcome 1), (3.53)

AN =0 if the event does not occur (measurement outcome 0), (3.54)
then the change on the state when the event occurs v.s. when it does not can be written as

AN (p[7[{1,¥0:1-1}] — pln-1p0:-1]) if the event occurs (outcome 1), (3-55)
(1 — AN) (p[2]{0,¥0.n-1}] — p[7-1[y0:1])  if the event does not occur (outcome 0), (3.56)

where the state p[7 - 1|yp.,1] = p <C>(tn,1) is the conditional state of the system at the previous
step. Note that AN and 1 — AN are included when describing the change in the state because
they indicate which of the outcomes, i.e. 1 or 0, actually occur within the interval Az. Thus, the

overall change in o (#,-1) can be written as:

Aﬁ(c)(tn> :f’@(tn) _ﬁ@(tn*l) (3.57)
— AN (plrH{1, 00 11 = p (1) ) + (1 = AN) (pln{0,30001}] =, (12) o(A2),

where we can disregard any terms AzAN because they represent higher-order infinitesimal con-
tributions that are negligible in this analysis. In particular, for any calculus involving averages
or integrations over time, the terms with A#AN become a second-order small term, akin to AP,

since for a general Poisson increment with a rate 4 > 0:

E[Az AN] = AtE[AN] = At AAt = AAF. (3-58)
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Therefore, when substituting Eq. (3.38) and Eq. (3.42) into Eq. (3.57), it becomes

f’ﬁ(c)(tn—l)iT

_ Karrts
Ap (t,) —AN< B — _p(c>(tn1)> +(1—AN) (ﬁm Pta1) Dt~ EH[L L]p@(tn,l)At)

z}/O(C)<tn_1 )iT
Tr{l;o(c)(tn_l)if}

= 'C}'o:n_p(c)(l‘nfl)At - gH[LAT[;Lo(C)(tnfl)At—i_ __/o(c)(tnfl) AN7 (359)

where H[ « | is the nonlinear operator defined in Eq. (3.39) and the jumps governed by the Pois-
son increment AN are modulated by a nonlinear quantity. As we will also see in the case of
the homodyne measurement, these nonlinearities arise as a consequence of the normalization of
the conditional state after conditioning due to the measurement. By finally taking the limit of

At — 0, we retrieve the SME for photodetection:

X ~y A
dp (¢) = Ly, p (t)dt — EH[LTL]/O(C)(t)dt—l— —po(8) | dN. (3.60)

3.2.2 HOMODYNE MEASUREMENT

Next, we explore monitoring the quantum system S via a homodyne measurement instead of

with photodetection. This method involves the projection of the probe state onto the eigenstates

{

x5, )} of the general quadrature operator X? defined as

P by &? + bl

n " T, (3.61)

which corresponds to the position operatorX defined in Eq. (1.184) when ¢ = 0, and the mo-
mentum operator P when @ = /2. The set of eigenstates {|xf>} related to X7 are known
as quadrature eigenstates and measure the amplitude or phase quadrature when @ = 0 and
@ = /2, respectively. The statistics of the homodyne outcomes xj, depend on both the state
of the probe being measured and the choice of @. For specific quantum states, such as the vac-
uum, coherent and squeezed states, the quadrature distribution is Gaussian, characterized by its
mean and variance. The mean reflects the displacement of the state, while the variance captures
quantum noise, including any squeezing eftects. For example, the vacuum state yields a Gaussian

distribution centered at zero with variance 1/2, representing the fundamental quantum noise, or
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shot noise.
Since the probe segments are initially assumed to be in the vacuum state (recall Eq. (3.21)),
performing a homodyne measurement on the probe before its interaction with the system yields

a Gaussian distribution:

Te] (£108710)p, (1) (0108}
Te{ (5] (o (60) © 0)O]) <)}
1 p2

Tl ()} KOREIP = 0L = e (3.62)

where in the last step we have used the fact that the ground state wavefunction of the 1D har-

o]l 1)

monic oscillator — with its energy eigenstates being the Fock states — in the (rotated) position
representation is a Gaussian function, as derived in Eq. (1.240).

If, instead, we first evolve the joint system-probe state with the interaction unitary before per-
forming the homodyne measurement as described above, the probability distribution of the mea-
surement outcome x., will also be Gaussian, but with a shifted mean and potentially modified
variance due to the system-probe interaction. To derive this result, we need to consider the trace
of the unnormalized state after the measurement, which determines he probability distribution

of the measurement outcome:

pac(xflag,, ) = Tr{pln-1jxf,] } (3.63)
where

Aln-1xl,] = (2| U2 (p[n 1], @ [0X0)) OV ?)
= plr-1]ad,, J(0x2) + x Lp[n-1]x5,, ) LT[(1[xP) A
+(iﬁ[n—1|x§m-1]<xfrlxmxf>+Jo[n—uxé’m-lw<xf|oxuxf>) x At
K ~ PN
+g(mw—1|xz;’m-1]<xf;erO|xf>—L*LJo[n—1rx§m-1]\<0|xz>|2

+v/2p[n-1lg,, 1 L)X |0)2[f)—pl - LG, ] LTLI(O ] >\2> At + o(Ar). (3.64)
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The terms{x, |1)and (x5 |2) can be written in terms of (x}, |0

Z}n e? + Z}jze*@
V2
= Vel (x7]0), (3.65)
V2(xf|2) = (2577 — 1) |0), (3.66)
b, &? + bie i b, e? + blei?

V3 NG °>

= SO 45, 10) = S(Vae )+ 510 6.6)

(L) = (]B1]0) = V2 <’“zf

0> = V27 (x7|X7|0)

which we derived using the fact that the second identity follows from:

2 (x2]0) = (2 X2°]0) = <xfi

By now substituting Eq. (3.65) and Eq. (3.66) into Eq. (3.64), and recalling that (af [0)? =

po(xh|x5., ), then the unnormalized updated state becomes

Alr-11x5,,] = po(«f |xg:n1){j’(c)(tﬂ_1)+ (ﬁﬁ<c)(tn-l)ei¢ +ﬁ<c)(t”‘1)ﬁe_i¢) 2rAexf+

K

+ xlpl! 25700 4+ (ﬁzjo(c)(zn,l) (2487 — 1)e¥? — LiLp, (£,1)

o) D g (6 EIL) o) + o), (3.68)

By now taking the trace of the unconditional state as described in Eq. (3.63), we get the prob-

ability of obtaining the measurement outcome x after the system and probe interact for a time
At:

PaloE 16 1) = polo ot o) (LHf (LeP + Le#)VarBi0(a),  (3:69)

which, up to order v/ At, follows a Gaussian distribution, since any Gaussian function can be

expanded as:
o(f) = Ae= 6V 1D = (o) {1 +xp2+ O(t)} . (3.70)

Thus, the probability of the homodyne measurement yielding an outcome x, at time ¢ is given,
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up to leading order in Az, by the following Gaussian distribution:

2
1 o .
Pfled ) = = exp {— <xzf — (Le? +L*e-@>\/’“7“> } L0, ()

with a mean \/xAz/2(Le'? + Lie™?) = \/xAr/2Tr{(Le? + LATe’ip)Jo(c>(tn_1)} and variance
1/2. We can now introduce a new stochastic increment Ay, by multiplying x5 by V2At:

Ay, = x2V2At, (3.72)
which, therefore, has a mean v/x(Le?? 4+ Lfe ™) Az and a variance Az, Namely,
Ay, = x0V2At = VE(Le? + LTe™®) Ar + AW, (3.73)

where AW ~ N (0, At) denotes the Wiener increment introduced in Sec. 1.2.3. Physically, the
derivative /(¢) := lima, o Ay,/At corresponds to the stochastically fluctuating photocurrent
being measured in real time in a homodyne setup. Next, by using X220t = Ay, and fozAt =

Ayi = At + o(At), we can rewrite Eq. (3.68) it into the following, more familiar, form:
ﬁ[ﬂ _1|xg:n] = po (xfz) |xg:n—1) {_P(C)(tnl) + \/;([A’ﬁ(c)(tnfl)eisp +Jo(c)<t7l*1)LATeii¢) Ay” + KLAJOLATAt
K [apn ap A
-2 (Pp o) o DEIL) 814 o8] = ol ) o)

+ xD[ﬁ]p(c)(tn_l)At + ﬁ([}o(c)(tn_l)ei? +ﬁ(c)(tn_1)ife—i¢)Ayn + o(Az‘)}, (3.74)

where the superoperator representing the measurement-induced decoherence has the same form

as the one defined in Eq. (1.196). To normalize this state, we divide it by pa, (x5 |}, ;) whilst
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keeping terms to first order in Az and lower:

- P
oln-1al,] = % - (ﬁ(c>(t,,,1) + «DI[L]p, (1)t
+ \/;(LAJO@(tn,l)eig’ —i-Jo(C)(t,L,l)LATe*i?’) Ay,,) (1 —Vx(Le?+LTe7?) Ay,
Vrlle? ﬁe—wym) +0(Ar) = p(ta1) + ¥D[L]p, (t,1)At
+ \/;(ﬁﬁ<c)(tn_1)ei¢ +J0<C)(tn_1)LATe_i¢)Ayn — ﬁ(ﬁe“p+LATe_i¢>f>(c)(tn_1)Ayn
—x (LAJo(C)(tn,l)eip Pt )LTe7?)(Le'?+Lie ) Ar+x(Le®
+LTe )2 Ar 4 o(Af). (3.75)

where we have used that the inverse of the conditional probability to leading order Az is:

1 ( . P -1
— 1+ x2(Le? + Lle )/ 2xAr + o(At)>
Parilag, 1) polilag, )
1 ( . a -1
= (14+ Vx(Le? + LTe7?) Ay, + o(At))
P()(XZ ‘xgznfl)
1

= — 5 (1 — ﬁ(iei‘” + ﬁTe_i¢>Ayn + K<£Ci¢ + ﬁTe_i¢>2At + o(At)) . (3.76)
Po (xn |x0:n71)

By now inserting the expression of Ay, definedin Eq. (3.73), we can simplify the state in Eq. (3.75)
and get

.P[n_llxg:n] :_/O(c)(tﬂfl) + KD[‘E]P(C)(t”*I)At + \/;H[ﬁeigp]p(c)([n*l)AW + O(At) (377)

with the nonlinear superoperator modulating the stochastic (Gaussian) kicks defined in Eq. (3.39).
Then, if we evolve the state with the “internal” map @, we get the conditional state at time

t = nAt

olnlx?
Pofta) = plnlg.,] = %

@, [o (600) + KDLl () At + VRHILES ] (521) AW +o()| .
) Telilnls, ) X

which, when the CPTP map @,,[ - | has the same form as the one considered in Eq. (3.48), the
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conditional state at time ¢, becomes

Pftn) =p (ta1) + Ly o (tn1) At +xD [ﬁlp<c)(tn,1)At+ VxH [ﬁei¢]p(c>(tn,1)AW+o(At), (3.79)

since Tr{p[n|x},]} = 1. Finally, to wrap up this derivation, we just need to identify the change
in the conditional state as dp (2,) = g, (¢:) —p(t2-1) and keep the terms up to first order in d¢
to get the final form of the SME:

de (¢) = Ly.p ()dt + xD[Llp (£)dt + v/xH[Le?]p (£)AW, (3.80)
with an associated measurement:
dy = Vx(Le'? + Lle7®)dr + dW. (3.81)

Note here that the Lindbladian depends only on the measurement results y, and not, importantly,

L . d . Ayn
on the derivatives of the measurement results, i.e., [(z) = % = limp, A%.

3.2.3 POLARIMETRIC MEASUREMENT

Consider a quasimonochromatic probe beam propagating in the y-direction, such that a general
quantized multi-mode electric field [124] can be approximated as a single traveling-wave spacial
mode with two orthogonal polarizations {4y, 2y} [120, 125]. Then, the positive frequency com-

ponent for the monochromatic quantized electric field is [120, 125]:

. 27h
E(+) =/ AZA&; (eram+evay), (3.82)

and E &) _ E (+)T, A is the area of the beam and ¢ the speed of light. Thus, to describe the

beam it is sufficient with the photon annihilation operators {4y, 21}, associated with horizontal

and vertical polarizations, respectively. Similarly as before, for each polarization component, the
beam has been divided into a train of modes of duration Az, each segment interacting for a time
At with an atomic cloud of length Ax such that cAz > Ax [125].

After the segmented electric field at time #, = £At has interacted with the cloud for a time
At, we perform a measurement of the transmitted light using a polarimeter: a polarization beam

splitter and a differential photo detector [126, 127] made up of two photodiodes counting the
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number of horizontal polarized photons (Nj) and the number of vertical ones (N;/), respec-
tively [128]. The difference between the number of horizontal photons and the vertical ones is
the expected value of the first Stokes vector. The Stokes operators are defined using the polariza-
tion modes {@y, a1}, and the position of their vector § = (31, S’z, S’3> on the Poincaré sphere
represents the polarization state of the field. These operators can be introduced from the classical

Stokes parameters [129] by changing intensities to photon-number operators:

. 1/~ A 1 /.4 . At oA

§i= L (0= 4) = L (il alar 6:5)
S . L/ . At Lis . s

S =5 (N = Np) =3 (ahoiw =l i) =5 (ahav+alan) G4
- 1/ 1 1

S= (N -N) =2 (dha—ala )= (ahav—alan),  Gs5)

which satisfy the SU(2) algebra [S, S ] = e S}. We define the total photon number opera-
tor as §0 = ZzL ag+ 2;21V. The Stokes operator 5'1 represents linearly polarized light in either
the horizontal or vertical direction, quantified through the annihilation and creation operators
{4y, av} and {4}, 4},}. Thus, note how the expected value of S yields the difference between
the number of horizontal v.s. vertical photons. The operator 3’2 measures the difference in pop-
ulation of linearly polarized modes rotated in the £45 degree direction, and 3}, of left and right

circularly polarized light:

. I . . 1 . .
apr = 7 (ay +ar), ayr = 2 (—an+ar), (3.86)
NS = (Can—ia
ay = NG (apy — iay), a- = ﬁ (—an —iay) . (3.87)

Two polarizations perpendicular in real space will be represented by two vectors pointing in the
opposite directions in the Poincaré sphere, and for example, measuring |H) or | ) with S will
yield +1 and —1, respectively (see Fig. 3.4).

In general, the Hamiltonian governing the interaction of the atomic cloud with a monochro-

matic probe detuned off-resonance is given by:

. (=) Ry, o~
= ZE( Vo B g (3.88)

where A, . is the detuning of the probe from the ¢ — ¢ transition (e.g. for a cloud of Rubidium
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Figure 3.4: Stokes vectors on the Pointcaré sphere. (left) Definition of the +45° polarization basis { ', V" } w.r.t. the linear
polarization {H, V}. (right) Pointcaré sphere, a graphical representation describing the polarization of light. Points on the
sphere correspond to different polarization states, with the equator representing linear polarization, and the poles repre-
senting circular polarization. Note that the rotation of linear polarization is confined to the equatorial plane of the Poincaré
sphere. A rotation of the polarization by an angle @/2 corresponds to a rotation of © in the Poincaré sphere. This can be
observed from the state A, which can be generated from H by rotating the polarization by 45 degrees; as a result, in the
Poincaré sphere, H' lies at a 90-degree angle from H.

7Rb, that would be the transition of the D, line [130]). The term &, is the atomic polarizability

tensor of that same transition and has the form:
a,, = P,d edTPg, (3.89)

where d corresponds to the vector of dipole operators, and j)g and P, are the projectors for the
ground and excited states, respectively [120]. Ultimately, the Hamiltonian in Eq. (3.88) describes
the interaction and eventual transmission of the light through the sample: a photon is annihilated
from the probe field through E (+), which brings the atom from its ground state to its excited
state via the dipole raising operator d'. Then the excited atom returns to a ground state viad by
emitting a photon into a transmitted probe mode throughﬁ' =) [125].

The atomic polarizability tensor of Eq. (3.89) can be decomposed under the group of rotations

into three irreducible components: 2,, = (é?g) + agg) + ag), and thus, so can the Hamiltonian:
A =0 +8"+A7, (3.90)

127



where each term corresponds to a scalar, vectorial and tensorial component, respectively [125,
130, 131, 120]. The scalar or rank-o component is invariant under the group of SO(3) rotations,
and since it is state independent, it can be dropped. The vectorial term transforms like a rank-1
vector, and hence, it can be written as a linear combination of components of some vector like
the spin S Finally, the tensorial term, a rank-2 tensor, can also be neglected by further increasing

the probe detuning [130, 131]. Therefore, the Hamiltonian reduces to:
[:]]:[;[(1) :XZ/§37 (391)

where the light, which propagates along the y-direction, couples to the y component of the an-
gular momentum of the atoms through the linear Stokes component .§'3, since a rotation of the
linear polarization by an angle ©® /2 corresponds to a rotation on the Pointcaré sphere of an angle
® about S; (see Fig. 3.4).

Thus, thanks to Hamiltonian engineering [131, 132], the continuous non-demolition mea-
surement required to monitor a system is implemented through a rotation of the polarization
of the off-resonant probe beam proportional to the collective angular momentum of the atoms
at an angle © ~ y( j;,) (¢) [133, 120, 63], 2 magneto-optical effect known as Faraday rotation
[134, 120].

Similarly to the approximation of the generalized Bloch sphere as a phase-plane in the linear-
Gaussian (or Holstein-Primakoft) approximation, the Poincaré sphere can also be approximated
as a plane under the conditions of a large photon number, an initial polarization aligned with
31, and small-angle Faraday rotation during transmission through the atomic cloud [120]. Then,

the Stokes vectors can be approximated as:

~ ~ N Nb N A Nb
Si~ AN 2, Xy = S,/ TP, Ppbzsg/\/TP, (3.92)

where N, is the number of photons in the probe. Now, the interaction Hamiltonian becomes,

Hy = y\/Np/2 ], Py, (3.93)

and a rotation of the polarization along the axis S5 becomes a displacement along X,;,. Hence,

measurement of the Faraday rotation of the probe is fully characterized by the eigenvectors of
pe >.
-ph

A~

AX:D;,, ie.
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Therefore, if now we discretize the system-probe evolution just like in Sec. 3.1, the interaction

Hamiltonian for a segment At is:

~(n . Nl? > 7 7
A" =iy Tgtfy (bl — bn) : (3-94)

where we have written the momentum operator P, in terms of creation and annihilation opera-
tors (see Eq. (1.184)) and then discretized the modes according to Eq. (3.18). Hence, the unitary

evolution operator taking the state of the system from ¢, to z,, + A¢ reads as
~(n - 5 (n) A A A
) — e Al‘:exp< xAz ], (bl—bn», (3.95)

where x = y*N,;,/4. Since angular momentum operators are Hermitian, the unitary form above
matches Eq. (3.19) for L= ]Ay Furthermore, since the measurement of the Faraday rotation
of the polarization in the Holstein-Primakoft approximation corresponds to a measurement of
the displacement along Xpb, which is equivalent to Eq. (3.61) but with ¢ = 0, then this type of
polarimetric measurement is equivalent to a homodyne measurement. And thus, we can write

the conditional state evolution as:

de (£) = Lyp ()de + &D[]]e (O)dt + VEH [ ]p (£)dW, (3.96)

with a continuous measurement output:
dy = 2ﬁ<j),>dt+ dw. (3.97)

3.3 MEASUREMENT-BASED FEEDBACK

There are two types of measurement-based feedback one might consider. The first is feedback
that utilizes the entire history of measurement outcomes, often referred to as state-based or Bayesian
feedback [119]. The second is Markovian feedback [104], where we feed back in an instanta-
neous measurement signal, e.g. a photocurrent, modeled at each time step as a stochastic incre-

ment.
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3.3.1 BAYESIAN FEEDBACK

In the previous sections, we derived the SME for homodyne and photodetection measurements,
accounting for the possibility of measurement-based feedback. In particular, we considered a spe-
cific class of feedback in which the entire history of measurement outcomes y<, enters the dynam-
ics only through terms proportional to dz, such that £, S[dz‘ = O(dr), and not through stochastic
contributions like dW or the photocurrent dy. We refer to this subclass of measurement-based
feedback as Bayesian feedback following the terminology of Ref. [119].

Because the GKSL generator appears at order d, the corresponding feedback-modified evo-
lution map can be expanded as shown in Eq. (3.48). This leads directly to the final form of the
SME for homodyne detection with Bayesian feedback, given in Eq. (3.80). If now we consider

the case where the GKSL generator takes the form

‘C]t.lo(c>(t) = —i |:[:] + %(tb'f)ﬁuo(c)(t)] ) (398)

where the control function #(z]y,) depends on the measurement history y, but not on its deriva-

tive, then the SME becomes
do (1) = —i [H +ultly) E, Jo@(t)} dr + xDI[Llp, (1)de + VEH[L]p ()dW.  (3.99)

3.3.2 MARKOVIAN FEEDBACK

We now contrast Bayesian feedback with another common class of measurement-based control:
Markovian feedback. In Bayesian control, the feedback appears only at order dz, as part of a
Lindbladian contribution £,_ dr = O(d¢). In contrast, Markovian feedback modifies the SME
through stochastic terms, with the feedback entering directly through the homodyne signal dy.
As a result, the evolution now includes terms of order v/d# and the feedback cannot be described
asa GKSL map at order dz. In other words, to include Markovian feedback, the map in Eq. (3.48)
has to be modified as:

O, = exp {LoAr + LyAy,}, (3.100)

where now the dependence on the measurement outcomes is limited to the term LyAy,, with
Ay, being the discretized photocurrent dy at time 7z = #/Ar and Ly its associated Lindbladian.

The other term, £y At¢, contains the internal dynamics of the atoms, e.g. Larmor precession and
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dephasing. Expanding the map above yields:

1
®, =L+ LoAr+ LyAy, + - (Ly)* (Ay,)” + o(A¢)
1
= (]I + L()AZ' + O(Al')) (]I + Aynﬁy + z (A_)/n)z (ﬁy)z + O(AZ'))
= 5,05, (3.101)

where the last two expressions correspond to the lowest-order Suzuki-Trotter decomposition

into deterministic and stochastic components, with
Zo =exp{LoAt} and F, :=exp{LyAy,}. (3.102)

Thus, similarly to Eq. (3.24), the conditional state evolves from time ¢,.;, = ¢t — drtot, = ¢

according to:

—~ [z ~f
gn [‘:0 [Eyﬂ_/o( )(tn—l) y”i| ]
Jo(c)(t”) = = ~t ) (3-103)
Sl 2]
where E,, is a general operator representing the weak measurement. In the case of a photocount
measurement, the operators read £, = (y,| Uy, |0), where y, = 0,1. For a homodyne mea-
surement, the measurement operators are £, = <xf Ua: |0), where ‘xf> is the eigenstate of

Eq. (3.61). As shown in Sec. 3.2.2, the eigenvalue x5 is a Gaussian random variable, which de-

fines the homodyne signal Ay, o pr

In the formulation introduced by Wiseman [104, 105], Markovian feedback is realized via a

unitary Hamiltonian evolution driven by the instantaneous measurement record:
Hy = Fdy, (3.104)

where F is a fixed Hermitian feedback operator and dy is given by Eq. (3.81). Therefore, the

feedback map 3§, is actually an unitary evolution that reads as:

5, = lzf . (A]J:r = exp{—iﬁAyn} - exp {iﬁAyn}, (3.10%)
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where Ay, follows Eq. (3.73). Furthermore, this map can be expanded to first order in Az as
Sn:f]f : lA]j}L:]I—iAyn [ﬁ, } + D[F] - At+ o(ds). (3.106)

Therefore, to derive a SME which accounts for Markovian feedback, we simply have to apply the

feedback unitary to the continuous measurement map, where we have set ¢ = 0:

poltr) = G B 0
(\'7 fTr{E [EAWO( )(tn,l)ﬁ”} !
— U [pftn1) + Lap (ta1) At + #DILp (6,1 A+ V/&H[L]p, (1,1)8W] O]
= p(ta1) + Lop (ta1) At + €D[Llp (t,1)At + D[ Flp (t,1) At — i AW[F p (£,1)]
_ﬂ¢;FJﬁ4%g+ﬂ4%Q}AHW&HuyMQJNW+4AA (3.107)

The expression above can be reformulated using the following identities:

«D{Llp (&) + DIFle () ik [FoLp (o) +p (OL] =

LYF + FL A
= —iy/x —,Jo(c)(t) + D[VxL — iFlp (1), (3.108)
v@H@V&ﬂ—d[ﬁﬂJﬂ}:?ﬂJﬂﬂ%ﬁyJﬁ. (3.100)
Namely,
. |LTF+ FL
./o(c)(tﬂ) :Jo(c)(tﬂ-l) + ‘C}'O:nlo(c)(tﬂ‘l)At - lﬁ T’ﬁ(q(tﬂ-l) At
+ D[VxL — 1F]p taa) At + H[VxL — 11:"]p(c>(tn,1)AW + o(dz). (3.110)

Finally, if the internal evolution represented by the Lindbladian £y is of the form:

Lop () = =i [Hop (1) (3.111)
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then, Eq. (3.110) in the limit of Az — 0, can be written as

dp<c)<l) = —i [ﬁeﬁ’ﬁ(c)(t)} dt+ D[‘ECE]P(C)(t) + H[LAEE],/O(C)<t)dW7 (3'112’)

where
[—f[eg:[:]—i-?(ﬁﬁ—i-ﬁﬁ) : (3.113)
L = +/xL —iF. (3.114)
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Ultimate precision limits in noisy systems

IN QUANTUM METROLOGY, finding the fundamental limits to precision is essential for verify-
ing optimal sensing strategies. Thus, this chapter focuses on the derivation and analysis of a
lower bound on the BCRB introduced in Sec. 2.2.3 for frequency estimation in the presence of
atomic dephasing and field fluctuations. This bound is referred throughout this thesis as either
the classically-simulated (CS) limit or the quantum limit. The term dassically-simulated stems
from its derivation via the decomposition of quantum channels as a convex mixture of unitaries,
while the term guantum limit highlights that, given a particular form and strength of noise, no
strategy involving any possible quantum effects may surpass it.

Importantly, as will become clear through the derivation, this bound is entirely independent
of the choice of initial quantum state, measurement, or measurement-based feedback. It depends
only on the noise model of the system (in our case, local and collective dephasing along the field
direction) and the fluctuating strength of the signal we aim to track. As such, attaining this limit
would certify that the entire sensing protocol is optimal, i.e. that our particular choice of initial

state, measurement, estimator and measurement-based control yields the best possible sensitivity.
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THIS CHAPTER, which one can view as an extended derivation or proof, is organized as follows:
we begin in Sec. 4.1 by introducing the most general discrete-time evolution of a quantum state,
alternating between internal system dynamics and measurement updates, which is connected to
the conditional evolution of Chap. 3. Next, we specify the types of quantum channels used in
our model: the feedback map, and the collective and local dephasing maps.

In Sec. 4.2.1, we turn to the central step of this proof: the convex decomposition of the likeli-
hood p(¥o.¢|@o:x), which describes the probability of observing measurement outputs ¥, given
a signal trajectory @g.;. This likelihood is rewritten as a mixture of two other conditional proba-
bilities: one that contains the w-dependence via a classical mixing distribution, and another “fic-
titious” likelihood encoding all the measurement record, independent of the signal. To enable
this decomposition, both collective and local dephasing channels must be expressed as Gaussian-
weighted integrals over unitary operations (see Sec. 4.2.2 and Sec. 4.2.3). This allows us to refor-
mulate p(yo.4|@o:x) accordingly, which in turn enables us to upper-bound the FI of the marginal
likelihood p(yo.4|wi) in Sec. 4.2.5.

This upper-bound on the FI can be analytically derived (see Sec. 4.2.7), since it ultimately in-
volves computing the FI of several Gaussian distributions, each given by the inverse of their vari-
ance. In the case of fluctuating fields, finding such a variance requires solving a recursive relation,
which can be done explicitly for the problem at hand. Taking the continuous-time limit of the
resulting expression in Sec. 4.2.8, yields the CS limit or quantum limit. Finally, in Sec. 4.2.9 we
extend the analysis to account for scenarios where the number of atoms N fluctuates between

experimental runs, and show how the bounds can be appropriately modified.

4.1 DISCRETE-TIME PICTURE OF MEASUREMENT-BASED FEEDBACK SCHEME

Consider the discrete evolution of a quantum state that alternates between its intrinsic dynamics
and measurement updates, as shown in Eq. (3.22). In this picture, each measurement is modeled
by a set of measurement Kraus operators Eyk, which form a POVM {E;kfyk} ¢ whose elements
fulfill >, EALEM = I'and whose outcome y; forms part of the discretized measurement record
Yo = {0, 1, - -, }. The quantum channel governing the evolution of the state in between

measurements is a generic map
(Dk = CDAtO'O:/ea w/e)v (41)

which acts on the state for a time Az and depends on a parameter wy, as well as, potentially, on

all previous measurement records yo.x = {y0, %1, - - - , Y& }. The frequency wy is itself also a time-
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discretized element from a frequency trajectory o, = {wo, 1, ..., @}, whose elements will
later be assumed to be drawn from a probability distribution at each time-step. Therefore, the
state at time # = kA¢, conditional on the measurement outcomes Yo.. = {90, %1, - - - , Y& }» reads

as

- - A1 # 15
O£, @B, @B, | gy By || B |E

ﬁ[kb'o:/e] - p(}'o:k|@0:/e)

: (4-2)

where we have used a similar notation to Eq. (3.23), plklyox] = p (kAL) = p(kAtlyea), to
refer to the discretized conditional state at time # = kAz. Note that p, denotes the initial state
of the atoms before any operation is applied, and hence, is different from the state p[0|y,], which
is obtained after getting the first outcome y, and evolving the state with the map @, dependent
on the measurement y, and the frequency w,. The denominator is the discretized version of the
likelihood p(y;|@,), i.c. the probability of measuring yo.x = {0, %1, - .., %} given field inputs

wox = {wo, w1, . .., o }. Namely,

- . - P st 1t
Povalons) = TH{@U B, @i By 0B, |Bup By || BB, )

which will later play a crucial role when bounding the aMSE, introduced in Definition 2.5.
If we now focus on a single time interval Az in the discrete evolution described above, we can

relate the two time-consecutive conditional states, p[£-1|yo.-1] and p[k|yo.¢] as:

o[ ] -
Tr{q)k[ ywo[k Lyos-1] H} |

PlEpor] =

with the first time step defined as

Do [ %0 Lo AyTo]
P£l0lyo] = Tr{CDO[ i ] } (4.5)

}’0./00 Yo

As discussed in Sec. 3.3.1, we focus here on Bayesian feedback’, in which case, with E;’O:kAt =

“Nonetheless, our analysis can be straightforwardly generalized to also Markovian feedback or any other form of
measurement-based feedback, even with general Lévy processes [65].
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@o w1 @D

ﬁOO_EY0_®0_£y1_®1_ —EA'),k—CDk—

Yo = {0} »n = {yo.n} Ve = {1, i}

Figure 4.1: Quantum circuit representation of conditional evolution via sequential measurements. Scheme depicting a quan-
tum circuit representing a sequential measurement on a system of /N atoms with an initial density matrixpo. Each step in-

volves a POVM E},k,

This map depends on an input parameter w;, and all prior measurement outcomes .., which are progressively collected as

which depends on a measurement outcome y;, followed by an evolution through a quantum channel O,.

the system evolves.

O(At):
O, = s, (4.6)

The overall dynamical generator 'C;)o; . depends on all previous outcomes . through the measurement-
based feedback, as well as accounting for w-encoding but also importantly, decoherence. Nonethe-
less, it can always be decomposed into two parts: one corresponding to the dynamics generated
by the w-encoding, and the other corresponding to the feedback based on previous measurements

by Trotter-Suzuki arguments as Az — 0:

f f
q)k = e(£“k+£yo:k)At = eE{”’/eA[ (@) el:)'O:/eAt + O(AZ‘Z) (4‘7)

= E‘w/e © S)’O:k + O(Atz)

where Z,, represents the portion of the evolution due to the w-encoding and decoherence (i.e.
the intrinsic, noisy dynamics), while §,, accounts for the measurement-based feedback.
As a result, the discrete conditional evolution given in Eq. (4.2) can be equivalently written in

a form that explicitly separates the state evolution into three parts: the measurement update, the
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feedback and the remaining internal dynamics:

~ L . Lo o o
:wk[gyo:kFyk R [Syo:l[Eyl o [gyo [EywooEyoH o ‘Eylﬂ o 'Eka
P(yo:/e|w0:k)

Plklyos] = L (48)

with its likelihood now being:

POoil@or) =
- Tr{Ewk [s,ojk{fsyk B, [3,[@ 0 [gﬁ, [Eyo ﬁOEjOH . E;H . Eij } (4.9)

Hence, the proof that follows, which is fully based on the form of the map Z,, responsible for

noisy w-encoding, applies to any form of measurement-based feedback.

4.2 PRECISION BOUND FOR ANY PROTOCOL WITH LOCAL AND GLOBAL NOISE

We may further assume that the internal dynamics of the system consists of an w-encoded unitary
evolution, collective dephasing and local dephasing. The map representing this internal evolu-

tion, Z,, can therefore be decomposed into two additional maps,
Z,=QoA,, (4.10)

where Q denotes the non-unitary evolution arising in between measurements due to the collec-
tive decoherence (of strength «), and the channel A, accounts for both the unitary frequency-
encoding and the non-unitary local decoherence (of strength x;). Even for non-commuting maps,
we can apply the Suzuki-Trotter expansion to first order in Az and split up the map Q and A, as

required. Then, Eq. (4.8) becomes

plRYor] =

_ ol i ol Bl £

: PYok|@ok) ; (4.11)




such that

Poilwo) =

nfolu il ol o B 2] Al e
wo w1 Wy,
l | |

JOOo—EyO—Syo—Awo—Q—Eyl—gyotl—Awl—Q_..._Eyk—syozk—Awk—Q_
7 ~_—~ ~_—~

Yo = {)’0} Yo = {70;}’1} Yo = {)’O:/e—la}’k}

Figure 4.2: Scheme illustrating a quantum circuit with sequential measurements, feedback and dephasing on a multi-qubit
system. The state evolves step-by step through a repeating sequence of operations: a measurement operator E),j, a feedback
map 3}0:}' conditioned on past outcomes, and an internal dynamics channels () and Aw]. Here, () represents a collective
dephasing map, while Awk encodes both local dephasing and the unitary w;-dependent evolution. Measurement outcomes
Yo: are collected progressively and used to inform future feedback steps, allowing the system to evolve adaptively under
both unitary and non-unitary processes.

4.2.1 CONVEX DECOMPOSITION OF THE LIKELIHOOD

As in our earlier work [69], which dealt only with collective decoherence, our motivation is to
find a convex decomposition of the effective noisy w-encoding map [65, 66], ie. Q [A, | -] in

Eq. (4.10), so that the discretised likelihood (4.12) can be decomposed as follows:

ponstans) = [ DEv g Zoslons) ponsl 2o (+13)
where Zo, = {£,41, ..., 4} is a sequence of sets, each containing IV auxiliary frequency-like
random variables. For instance, {; = {Q(l), 4(2), . ZZ(N)} indicates that within the /th step, the
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first probe undergoes the Larmor precession for Az with frequency ¢ (1), the second probe with
7@ etc (65, 66].

While g(Z0.4|@o.¢) in Eq. (4.13) represents the mixing distribution, which contains all the de-
pendence on the frequency trajectory @, the term p(yo.t|Z0.) can be interpreted as a fictitiouns
likelihood of obtaining the measurement record y,., = {)’j}fzo- Here, the sequence 2., specifies
a series of unitary maps that encode the frequency information in between discretized measure-

ments and feedback operations:

P00l Zos) =
- Tr{bl;k [s”[Eﬂ U, [3, [Eylugo [@0 [Eyo JOOE;)H Ej” . .Eﬂ ]} (4.14)

To justify the form of the convex decomposition in (4.13), we seek to represent the overall noisy
encoding channel Q [A,[ - ] as a probabilistic mixture of unitaries. Rather than decomposing
the full channel all at once, we handle its components separately: the collective map Q[-], which
acts globally, and the local channel, which describes local dynamics and exhibits a tensor prod-
uct structure with local dephasing and unitary evolution acting independently on each two-level

system.

4.2.2 THE MAP ) AS A CONVEX MIXTURE OF UNITARIES

The channel Q, which represents the evolution of the atomic state under collective dephasing,
admits a representation as a convex mixture of unitaries. This follows from the following result
established in [69]:

Theorem 4.1 (Map as a convex mixture of unitaries). Given a unitary evolution governed by a

Hamiltonian EH Yy i£A7
Uso -] =07 o7, (4.15)

whose scalar encoding £ € R (frequency) is randomly distributed according to a Gaussian proba-

bility density

E o) = N(a(e), 2(9) = ————exp {M} (+16)

2702(7) 25%(7)
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then, the quantum map Q) can be written as a convex mixture of these unitaries as:

P(7) = Qlp(0)] = Eyp) U |p(0)]] = / d£ py.(£) e 7p(0) 5, (4.17)

if p(7) corresponds to the solution of the following master equation:

L) — ot pto] + 1) (Al = U 4@)) (a9
= —iw(2)[H,p(7)] ~ 5T(=) [B, B, p(=)] (o19)

with the time-dependent frequency and decay parameters being

w(t) =u(r) +7i(z)  and T(z7) =25 (7)7 (1 + —T) . (4.20)

Proof. Available in App. D.1.

Now consider a system of N spin—1/2 particles evolving for a time Az under the dynamics of

Eq.(D.s):
o) — 2l [ptan]. (+21)

with frequency w(A7) = 0, T(Af) = x.and H = J,. This particular choice of H = J,
anticipates the structure of the SME considered in the next chapter, where the atomic sensor
undergoes collective dephasing along the z-axis.

Then, the effective map Q describing the evolution from p(0) to p(Az) can be written as a

mixture of unitary channels. Specifically, it takes the form:

al-1= [dp) et i (422
where the mixing probability of Eq. (D.2) is a Gaussian distribution p.(£) = N(0, V) with zero

mean and variance:
V. = &/ At. (4.23)
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4.2.3 THE MAP A, AS A CONVEX MIXTURE OF UNITARIES

On the other hand, the overall map associated with the local dephasing is given by
A, = etﬁ’ (42'4)

where L is the GKSL generator defined in Eq. (1.195), i.c.:

N

Y~ Lp= o) + Y DILI) (325)

=1

If we choose the Hamiltonian as ' = o/, with J, = 5 ZZ 10 z belng the collective angular mo-
mentum operator in the z-direction, and define the local collapse operators as L; = +/x/26\",

then the master equation becomes

P (4.26)

where the subscript (7) denoting the position of 7 in the tensor-product structure. Just as in the
previous section, the choice of H and L, reflects our atomic sensor model, where both the field
and dephasing occur along the z-axis. More details regarding this model will be presented in the

next chapter, i.e. Chap. 5. We then define the local generator for each spin as

£ 8 )+ S o

®
2
so that the overall map £ is simply the direct sum of the individual contributions L9, The formal

solution to the master equation above is given by the collective map A, which can be written as

a tensor product of individual CPTP maps acting on each atom:

N
() () 4
o @~ @ (429)
=1
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with the semigroup map AY) = 't defined by the GKSL generator L) representing the un-
conditional evolution of the 7th atom, i.e.:
de,(2)

FeL — il (1)) + 26D o, (0), (4:29)

where 3, = 15, and p,(¢) = Try{p(#)} is the reduced state of the ith atom, i.e. the state after
tracing out all atoms except the 7th one. Applying again the result from Theorem 4.1, each local

map AY) can be expressed as a convex mixture of unitary channels:
2911 = [ &9 pi10) Uy -] (430

where the auxiliary variable »”) is distributed according to p, () |w) = N (w, V;), i.e. a Gaussian
with mean w and variance
Vy = 2%/ At. (4.31)

['he corresponding unitary channel U, 4,[ - | is also parametrized w.r.t. the auxiliary variable
().
o

()40 ()40
Uy ol -] = 000 0 (432)

Putting everything together, the overall local map A, defined in Eq. (4.24) is equivalent to a

convex combination of tensor products of unitary maps:

Al)= @AY )= [Pouolo) @il ] = [Doonellhl . (433

wherev = (oW, ..., 0@ ... s™) the integration measure is Dy = Hfil do®, and the joint
product distribution is g (2|w) = [[, p¢(¢1?|). Note that since exp(A)@exp(B) = exp(4 & B),

then the overall unitary channel takes the explicit form:
N () ()
) Zine SN 050 iAr SN (050
U] = QU ol -] = T4 Zm T eibrain (4.34)
=1

where 1) = T® - @ I®3Y ® [® -+ ® I denotes the appropriately embedded single-site

N—i

i—1
spin operator ;) = 15 () in the full tensor-product Hilbert space.
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4.2.4 THEJOINT MAP () 0 A, AS A CONVEX MIXTURE OF UNITARIES

The overall evolution of the system under w-encoding, including both collective and local deco-
herence effects, is described by the combined map Q[A,[ - ]]. Both the collective map Q[ - | and
the local channel A,[ - | have already been represented as a convex combination of unitaries in
Eq. (4.22) and Eq. (4.33), respectively. To now represent the overall map Q[A,[ - ]| as a convex

mixture of unitaries, the first step is to combine the collective and local channels as:

QA = /dfpc(f) / Do (o)) Us, | - | (435)

where
; )49 ; )40
Z/{f,z)[ . ] — e_ZA[ Zf\il (st“'y( >)]z . eZAt Zf\il (ét'H’( ))Jz . (436)

Here, p.(£) is the Gaussian probability density associated with the collective dephasing, while
oo(v|w) = Hf.ilpg(v(i) |w) is the product of local densities.

In the above expression, the unitary operator depends on the sum £+ 29, meaning that the
collective parameter £and the local variables »”) appear together. To recast the overall map into a

form that is more amenable to classical simulation, we redefine the integration variables by setting

o = 70 g, (437)

for each 7. This change of variables incorporates the contribution of £into a new effective vari-
able £ for each particle. Consequently, the unitary operator becomes solely a function of @,
thereby simplifying the overall map into a convex combination of tensor products of local uni-
taries:

afnl-1) - | D:[ [z TLpe? - o) |14

1 1 £ Z]Vj;“(" —{—w)?
pr— D —_— —_— —_—_— .
/ 4 (27IVC)1/2 (ZWVg)N/Z/df exp { V. } exp { 2 2V, Z/{;‘[ ]
(4-38)
where the vector = (2, ... 29 .. &%) collects the N auxiliary frequencies acting on each
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particle. The corresponding unitary map is defined as:

. () 5(2) : () 5(2)
R (4-39)

By evaluating theintegral in Eq. (4.38) using standard results for Gaussian integrals (see Lemma

D.2 in Appendices), we obtain the final expression for the overall map:

o e | O
‘Q’[Aéu[ ) H = \/ZW(VC —}—Vg/]\]) /D:f(;) exp{ Z(VC —I-Vg/]\]) }Z/{;[ ] (4.40)

where (is the average (mean) of the components of £,

o1 N
==Y ¢ (4.41)

and

f) = WCXP{—%\Q (Z(Z([))Z—Nfz)}- (4-42)

4.2.5 UPPER-BOUNDING THE FISHER INFORMATION

The main goal of this chapter is to find an analytical lower bound for the aMSE of the estimator
for w at the time-step ¢ = kAtz. To achieve this, we rely on a family of BCRBs [2, 67], and, in
particular, choose the one that lower bounds the aMSE of the estimator at the last step & [67]:

1
= Fp(o0)] 1 ] donpln) Fploaion)] (+.43)

E[A%a;]
where p(w;) represents the prior knowledge about the frequency at time # = kA¢, and p(yo.|wy)

is the probability of observing a measurement trajectory ¥, given that the frequency at time
t = kdtis w;. Here, the FI F| - | is defined just like in Sec. 2.2.1:

F[P(}'o:k@k)] = EPUO:klwk) [(aw/e logp(}'o:dwk))z} (4.44)
= Tp0okler) [—Q%k logp(yo:klwk)} : (4.45)

145



However, for our problem there is no analytical solution for F[p(yo.t|wi)]. Therefore, to avoid the
computationally demanding task of calculating F[p(yo.¢|wr)], we opt to derive an upper bound
by using another probability for which the FI can be analytically determined. To do so, we begin

by rewriting the conditional probability of interest p(¥o.|w;) using the Bayes’ rule:

_ P 1 [ Y
Por|o) = (eop) —p(wk)/D 0:k-1 2 (Yo:kes @o:k)

_ @ /Dwm D@0 )p(olwos). (4.46)

which allows us to establish a connection between p(yo.¢|@y ), i.e. the probability of observing the
vector of outcomes ¥, conditioned on the last parameter wy, and p(yo.4[@o:1 ), .. the probability
of detecting a measurement trajectory ¥,.; given that the parameter to estimate has followed a tra-
jectory ... Then, it is possible to apply Eq. (4.13) to Eq. (4.46), which reveals a decomposition
analogous to Eq. (4.13) but now for p(yo.¢|wy):

Porlon) = / DZos p(ox|Zo4) L@ / Dwot1 p(@0:)9(Z okl @or)

= /DZO:/e P(}'o:k|30:le> Pwk (ZO:/e> = ‘SZO%H}'QIK, [Pwk (Z():k)] (447)

where we identify Sz, ,,,[ ¢ ] = D24 p(¥o:k| Zo4) * asastochastic map independent
of the parameter w, and the probability distribution P, (Z.;) as

B, (Zos) = @ /Dwo;k-l 2(@ow)q(Zowloos). (4.48)

which contains the information on wy. As the FI is always nonincreasing under the action of any

stochastic map, we can now upper-bound Fp(yo.¢|wi)] as

F[p(}'o;k|wk)] - FI:SZO:/eHyO:/e [P‘Uk (ZO:/e>H < F[Pwk (ZO:k)]' (4-49)

Thus, the problem of lower-bounding the BCRB in Eq. (4.43) now reduces to evaluating the
FI Of]]:’Dwk (Z():/e).



4.2.6  ANALYTICAL FORM OF P, (Z0.)

The probability distribution in Eq. (4.48) is made up of three different probability components:
the marginal probability distribution p(ay), the prior p(wo.) and the CS likelihood or mixing
distribution g(Z.4|@.). To find an analytical expression for Eq. (4.48), we first need to elaborate
on the exact forms of each probability component, which, in turn, depend on the stochastic
process governing w(z). Specifically, throughout this chapter, we assume that w(z) follows an

OU process.

4.2.6.1 PRIOR CONTRIBUTION

As mentioned in the beginning of this section, we wish to track the trajectory of a parameter or
frequency @, = {@wo, @1, . . ., wp }, with each element w;, drawn from a probability distribution
plw):

ploy) = / Dwoi1 p(@o:t) (4.50)

If we choose wy, to be the time-discretized version of the process w(z) following the OU equa-
tion

dw(z) = —yw(r)ds + dW, (4-51)

where y > 0andg, > 0 parametrize the decay and volatility of the process, and dW,, denotes the

Wiener differential with mean E[dW],] = 0 and variance E[dW>| = ¢,,dz, then the probability

of the process transitioning from wy_; at time (k-1)A# to wy, at kAt is given by

1 _ B —yAt)2
plwplwi) = 4/ = exp {_ (@ c;/;f;e ) } (4-52)

V= Z—w(l — e ), (4-53)
X

We choose to consider the OU process in Eq. (4.51) instead of the more general process dw(z) =
—x (w(2) — @) dt-+dW, because the constant shift & preserves the aMSEE [A%3(z)| = E[A%a(¢)]

[66], so that the simplified OU process is sufficient for our purposes.

with variance

Since the OU process is a Markov process (see Sec. 1.2.1), the probability of the process w(z)
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of following a discrete trajectory @o., = {@wo, @1, . . ., w; } is given by

k
pwoi) = | [ plwilwi)p(w0), (4.54)

i=1
where we assume p(wy) to be a Gaussian prior with mean zero and variance 73, i.e. p(wy) =
N (0, 5). From that, we can compute the probability of the frequency taking the value w;, at

time kA¢, irrespective of the previous values of w:

ploy) = ——— ( g (4:55)
wy) = eXp _W ) 455
ZWVIEk) 2Vp
with variance
VIg/e) _ Uéelee;(m + %{(1 _ efZ/e;(At). (4.56)

4.2.6.2. CLASSICALLY-SIMULATED CONTRIBUTION

If now we substitute the CS form of the joint map Q[A,[ - |] of Eq. (4.40) into the likelihood
P0ok|wox) in Eq. (4.12), we retrieve the desired decomposition of Eq. (4.13). Namely,

_ - 1 G — o)
pondons) = [P0 [116) s e"p{_m} PoiEnd
_ / DZox g(Zoxlwon) p(osl Zon). (4.57)

with p(0.4|Z0.4) consistent with the form given in Eq. (4.14). Thus, we identify the conditional

distribution (2.4 |@o:x) as a product of independent likelihood terms:

T T ! G-
Q(ZO:k|w0:/e> - Hq@”fdj) - Hf(zj) \/ZW(VC T VZ/M €xp {_m}

/=0 /=0
k
= Hf(é“j)Q(éilw,) :f(ZO:k)Q(ZO:/e|w0:/€)a (4-58)



where we define the prefactor (Zy,) = Hj/f‘:() (&) as the product of normalization constants

(which do not depend on @), and

k

Q(lot|wos) = H Q(fflwy) =

7=0

(éj‘_"—’j)z
H\/ZWVJFW/N) p{_—2<vc‘|—vg/]\[)} (4.59)

is a product of £ + 1 Gaussians Q({;[w;) each centered around w; with a common variance

Vo Ke 2%y

Vo = V. — i
QT +N Ar | NAZ

(4.60)

which uses the definitions of the collective and local variances in Eq. (4.23) and Eq. (4.31), re-

spectively.

4.2.6.3 INTEGRATED FORM OF P, (Z)

Once each contribution to P, (Z.) has been established, we can bring them all together and
rearrange its integral form in Eq. (4.48) as a set of nested integrals:
: )Q(Z():k|w0:k)

Py (Zos) = g Eorlans) =1

Z”/D o“Hp w1, QL) p(e0) Q)

f(ZOIe

~ o) Qi /d‘% 1 (k1) Q| @r1) - /dwop w1|wo) Q(Lo|@o)p(wo). (4.61)

Since all functions within the integrals are Gaussian, this set of nested integrals admits a closed-
form recursive solution, as established in Lemma D.3 in Appendices. In particular, by identifying
the variances Vp and Vg in Eq. (D.29) with those defined in Eq. (4.5 3) and Eq. (4.60), respectively,
we can directly state that:

Poy(Zow) =L 2% O(F i Py, (4.62)
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where P, (w;) is a Gaussian distribution of the form

Pr(wp) = Cpexp {— (%) } (4.63)

with a variance that evolves recursively according to

VoV

VP =W+ —S
Vo + Vi3

(4.64)

starting from an initial value Vo = o5.

4.2.7 FISHER INFORMATION OF P, (Z,)

Now that we have a closed-form expression for P, (Z..), as given in Eq. (4.62), we can move to

computing its FI using the definition provided in Eq. (4.45). Namely,

FIP,. (Z0s)] = / DZou P, (Zos) {—85,6 log (f(zm

Qo)) |

pwr)
- / DZoi P, (Zox) [~ log f(Zos)] (4.65)
- /DZOkPwk(ZOk) [_aik log]’(w/e)} (466)
+ / DZ0i P, (Zos) [~ log Q(Fi|wy)] (4.67)
+/DZM P, (Z04) [—0;, log Pi(ws)] (4.68)
_ 1 1 1 ‘
__@JF\TQJF\?’ (4.69)

where in Eq. (4.65) we have used that /(Z) is independent of wy, and therefore, does not con-
tribute to the FI. Meanwhile, the non-zero contributions arising from Egs. (4.66-4.68) follow

from the identity:

FUN (V)] = 02 ogep { ~ 2 — v, (470

where we have used the definition of a Gaussian distribution and the FI of Eq. (4.45). While we

already have a closed-form expression for both Vlgk) and Vg, obtaining V§* requires solving the
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recursive relation in Eq. (4.64). Fortunately, despite being somewhat lengthy, an explicit expres-

sion for V/SS exists:

w.vk+w_rt
UVE+UVE

Vit = (4.71)

with terms W, V., Uy, W_, V_, and U_ given by

Wy =2V%Vq + a3 Ve + a1/ Vo(4Vg + Vp) (4.72)
W_ = —2VpVq — ouVb + 051/ Vo (4Vq + Vo (4.73)
Up = —Vo + 205 + 1/ Vo(4Vq + W) (4-74)
Ve =2Vq+ Vo +1/V(4Vq + V) (4.76)
V_ =2V + Vo — 1/ Ve(4Vq + Vp) (4.77)

where Vg is the variance given in Eq. (4.60) and Vp is the variance of the process when transition-

ing from wy_; to wy, i.e. Eq. (4.53).

4.2.8 THE CONTINUOUS-TIME LIMIT

If now we take the continuous-time limit of Az — 0, the term 1/Vq in Eq. (4.69) goes to zero

since Vy, is inversely proportional to Az. The other terms become,

O _ k) _ 2. 20 Qo4 _ 2
\'A AligoVP oge +2)((1 e ) (4.78)

and

\/9.%0(IN) a5 cosh (f« /Kgqﬁ) + g.xo(IN) sinh <t, /Kgqﬁ)
VO (t) = Jim VS =
t— . »
V/4.%0(N) cosh <t qu(b}v)) + o sinh (t qu(N)>

(4.79)




where ko(N) = & + 2x¢/N. Therefore, the BCRB of Eq. (4.43) in the continuous-time limit

can be now bounded as follows:

. 1
E[A%0] > o [ dw pl(a(2) E[p(y|(2))]
1
> F[p(&)(l‘))] + fdwp(a)(t))F[Pw<Zt>]
=— 11 Y .

R — _|_ -
v v V()

wherey, = {y(7) : 0 < 7 < ¢} is the realization of the measurement process, and we have
used Eq. (4.70) to write F[p(w(2))] =1/ Vlgt). Hence, in its most general form, the aMSE in the

continuous limit of Az — 0 is lower bounded by

Vquxo( azcosh< A )—l—quQ(]\]) smh( ./ Q(N))
\/9.x0(N) cosh (t qu(§\[)> + o sinh <t qu(&}v))

E[A%6()] > V3 (2) =

, (4.81)

which in the limit of # — o0, i.e. the steady-state, simplifies to:

E[AZ ( )} > V;S t — 00) w/quQ 9o (Kc—i-%) (4.82)

since coth x = 1 when x — 00. The general form of Eq. (4.8 1) can be simplified when consider-
ing different regimes: (1) an infinitely wide prior, (2) no field fluctuations and (3) a combination

of both cases. In particular, when oy — 00, then Eq. (4.81) reduces to

= 1/9 (Kc+2—;\c;) coth t\/ 5 <KC+2_]’\C;) 1)' (4.83)




Figure 4.3: 3D Plot of the CS limit with finite ) w.r.t. N and . Log-log plot of the CS limit in Eq. (4.81) as a function of N
and ¢, showcasing the behavior of the function over several orders of magnitude. The color gradient indicates the magnitude
of the function, transitioning from high (bright) values to low (dark) values. The parameters used to generate this figure:

o9 = 10rads™", g, = 10*rad*s™3, x. = 0, xy = 100 Hz.

If instead we take the limit of ¢, — 0 of Eq. (4.81), it becomes

—_
—

E[A%(1)] = V3 (.90 = 0) = — =7 — (4-84)
J— J— + J—
‘7(% KQ(]\]) a% K. + %

N

which exhibits the standard quantum limit (SQL) when considering an infinitely wide prior:

2%
E[A2()] > VS (t.q, — 0 _ %) _xe 2w 3
[A%a(2)] > VS (t,9. — 0) ; —+ (4.85)

As briefly hinted at in the introduction, we refer to this lower bound on the BCRB, V(fjs (¢, N),
as either the CSlimit or the quantum limit. After going through its derivation, itis hopefully clear
that the term “classically-simulated” is used because the bound is derived by expressing the noisy
quantum evolution as a convex combination of unitary channels (recall Eq. (4.22) or Eq. (4.33)),
which can be efficiently simulated using classical methods. At the same time, we also call it the
“quantum limit” because it represents the general bound on sensitivity that cannot be surpassed

by any strategy involving any quantum effects. Although this limit sets a lower bound on the
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Figure 4.4: 3D Plot of the CS limit with infinitely wide prior w.r.t. /N and ¢. Log-log plot of the CS limit in Eq. (4.83) as a func-
tion of N and ¢ over several orders of magnitude showing its convexity over this specific range. The color gradient indicates

the magnitude of the function: bright is high, and dark is low. The parameters used are: g, = 104rad2573, ke =0, kg =
100 Hz.

aMSE, it is not guaranteed to be tight; that is, there is no guarantee that there exists an estimator
can attain this bound. However, the CS limit still disproves the possibility of attaining super-
classical scalings of N* and #* in the presence of dephasing [54, 69, 65].

Perhaps most crucially, this quantum limit serves as a powerful benchmark. Since it depends
solely on the noise model and field fluctuations and is entirely independent on the initial state,
measurement and measurement-based feedback, attaining this bound would demonstrate that
the chosen sensing strategy is optimal; namely, that the state preparation, measurement, estima-

tion and control all collectively yield the best possible precision in estimating the fluctuating field.

4.2.9 ATOM NUMBER FLUCTUATIONS AND THE CONVEXITY OF THE CS LIMIT

In practice, the exact number of atoms /N in the ensemble may vary from shot to shot. We model
this uncertainty by assuming N ~ p(IN) = N'(N, o). Asa result, the bound given in Eq. (4.80)
must be averaged over the distribution p(IN), yielding

By [B[A%0(0)]] 2 By [Vir (6 N)] (4.86)

where we emphasize the dependence of V3 (2, N) w.r.t N.
Importantly, we focus on the CS limit for an infinitely wide prior (see Eq. (4.83)) such that
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the influence of the prior is effectively negligible, allowing us to isolate the effects of the noise
model on the estimation process. In this case, V3 (2, N) is a convex function of N, which we
verify by evaluating the second derivative of Eq. (4.83) w.r.t. /N and checking that it is positive
foral N > 0, > 0,and g, ¢, k. > 0" (see also Fig. 4.4 for a more graphical confirmation).
Then, by applying Jensen’s inequality we obtain

By [V (6 N)| > VO (2, By [N]) = VO(2, N). (4.87)

Hence, for an uninformative prior and a system with fluctuating atomic number, the aMSE of

the estimate  is lower bounded by:

E, [E[A%(2)]] > \/q.x0(N) coth (t KQq(a])\_[)) (4.88)

where xo(N) = x. + 2x¢/N.

"We omit the second derivative with respect to N in the CS limit with an infinitely wide prior due to its length,
but it can be readily computed using a symbolic algebra tool such as Mathematica.
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Models for Noisy Real-Time Atomic

Magnetometry

TRACKING A TIME-VARYING MAGNETIC FIELD IN REAL TIME WITH HIGH SENSITIVITY is es-
sential for applications ranging non-invasive medical diagnostics like magnetocardiography [22,
23, 24, 25, 26] or magnetoencephalography [27, 135], to navigation in GPS-denied environ-
ments [28]. Since in these situations the field varies over time (sometimes even randomly), we
cannot rely on repeated runs to lower the estimation error; and instead, we must explore other
strategies. Besides classical methods, such as boosting signal strength or reducing noise, quan-
tum resources offer another way to enhance sensor performance [8, 1o]. In particular, inter-
atomic entanglement in the form of spin-squeezing can improve their sensitivity beyond the
SQL [13, 14, 15, 16, 17].

While quantum enhancement has been demonstrated in repeated measurements using spin-
squeezing [14, 16, 17], its application to single-shot estimation of time-varying signals [136] re-

quires further investigation, particularly for atomic magnetometers. Specifically, having an accu-
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rate model of the system dynamics thatincorporates measurement backaction [34, 35, 112, 40] is
essential for understanding how spin-squeezing can enhance real-time estimation. This has been
achieved for mechanical oscillators using quantum Gaussian stochastic models, enabling accurate
state estimation [44], even at the quantum limit [43], as well as cooling and controlling of both
optomechanical resonators [45, 46, 48, 47, 137] and levitated nanoparticles [49, s0]. Notably,
experiments on unpolarized atomic ensembles with Gaussian unconditional spin dynamics have
also shown that continuous quantum backaction can be used to generate multipartite entangle-
ment [63], even without a fully explicit conditional dynamical model.

In contrast, high-sensitivity spin-precession sensors used in optical magnetometry rely on po-
larized atomic ensembles [64], which generally require a nonlinear (and thus non-Gaussian) de-
scription.  This more complex description is given by a stochastic master equation (SME), as
derived in Chap. 3, which we now apply in Sec. 5.1 to the particular case of an optical atomic
magnetometer, detailing both the model and its dynamics. The SME automatically provides a
rigorous model of continuously monitored atomic ensembles 55, 56], incorporating both the
measurement backaction [34, 35, 112, 40] and environmental decoherence due to the unavoid-
able noise present in these magnetometers [51, 15,138, 57, 139, 63]. However, solving it becomes
infeasible for the typical sizes of high-performance magnetometers, where N ~ 10 — 10%, as
explained in Sec. 5.2.1. As a result, most approaches either (1) ignore [57] or (2) evade [58, 59]
the measurement backaction, (3) simulate the SME for moderately sized ensembles [62] or (4)
adopt approximate linearized Gaussian models [s4, 60, 61, 56, 69], as discussed in Sec. 5.2.2.1.

Instead, we address this challenge by developing a nonlinear dynamical model for a continu-
ously measured atomic spin-1/2 ensemble that includes both measurement-based feedback and
dephasing, without relying on linear approximations [65, 66] in Sec. 5.2.2.2. This nonlinear
model, referred to as the co-moving Gaussian (CoG) approximation, allows us to simulate large
ensembles N ~ 10° — 10". We validate this dynamical model by comparing it to the exact SME
solution for moderate-sized ensembles (N ~ 100), demonstrating its accuracy and scalability.
Besides having a reliable and scalable quantum model for the atomic magnetometer, we also ad-
dress the problem of optimally estimating the field and controlling the sensor in Sec. 5.3. To this
end, we propose combining an extended Kalman filter (EKF) with a linear-quadratic regulator
(LQR), both introduced in Chap. 2, which are designed using the CoG nonlinear model. The
optimality of the entire sensing protocol, which includes the initial state, measurement, estimate
and control, is verified by deriving and attaining bounds on precision applicable to any sensing

scheme involving measurement-based feedback, as established in Chap. 4.
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Figure 5.1: Geometry of the atomic magnetometer. (a) The magnetometry scheme involves an atomic ensemble optically
pumped along the x-direction (red arrow) into a coherent spin-state (CSS). The magnetic field being sensed is directed along
%, while the Faraday-rotation-based continuous measurement is performed by using the light-probe propagating along z (blue
arrow), which yields a photocurrent signaly(t) being recorded. (b) Bloch sphere representation of the angular momentum of
the ensemble prepared in a CSS along x (with red and blue arrows indicating the pumping and probing directions, respectively).

First, we demonstrate how to reach the quantum limit in the Gaussian regime (i.c., the weak-
field regime) in Sec. 5.4.1. We then focus on the more general—and practically important—case
of precession-inducing fields. These field can be (1) constant (see Sec. 5.4.2.1), (2) fluctuating
stochastically (see Sec. 5.4.2.2), or (3) determined by a continuously varying waveform, a mag-
netocardiogram (MCG) (see Sec. 5.4.2.3), which is distorted by stochastic noise that should be
filtered out rather than tracked. The two last signals are tracked by an optical atomic magnetome-
ter with realistic parameters taken from the experimental setting of Ref. [63] but ignoring spin-
exchange atomic collisions [140, 141]. For both constant and fluctuating fields, we show that the
magnetometer operates at the quantum limit, and that it generates conditional spin-squeezing.

Finally, in Sec. 5.4.3, we resort back to the exact SME in order to demonstrate that the pro-
posed sensing scheme steers the atomic ensemble into a state that exhibits unconditional spin-

squeezing [12], i.e. the state is entangled even when not recording the measurement data.

5.1 ATOMIC MAGNETOMETER MODEL

5.1.1 SETUP AND ITS DYNAMICS

At its core, an optical atomic magnetometer extracts information about a field from light that
is scattered after interacting with a collection of N atoms (as depicted in Fig. 3.1). Importantly,

these atoms should be sensitive to the time-varying and/or stochastic magnetic field B(#) we aim
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to sense.

Thus, to monitor the changes in the atomic state caused by the interaction with the magnetic
field, the magnetometer must: (1) prepare the atoms into a suitable initial state, (2) allow their
state to evolve due to its interaction with the magnetic field, and (3) simultaneously probe that
state with a continuous non-demolition measurement [138]. Additionally, one might devise a

control law that (4) steers the atoms towards a state optimized for magnetometry.

5.1.1.1 PREPARATION

The ensemble of N atoms is initialized by pumping it with circularly polarized light along the x-
direction (see Fig. 5.1) such that only two energy levels of each atom contributes to the field and
probing interactions [142, 134]. Thus, we treat the ensemble as a collection of N spin-1/2 parti-
cles. Then, the evolution of the total spin can be described through collective angular momentum

operators:

z

N o0
o .
Z?’ with 2 =x,y,2, (5.1)

defining a vector of collective angular momentum operators J= ( T, ];,, ];,)T Optical pumping
of the atoms along the x-direction initializes a coberent spin state (CSS) along the same direc-
tion [143] (see also Sec. 1.4.4), so that the initial mean and variance of the ensemble angular mo-
mentum operators, denoted by the vector J(#) = (J,(2), J,(2), J.(2)) T in the Heisenberg picture,
read (J(0))css = (/,0,0)T and (A%J(0))css = (0, J/2, J/2)T, respectively, where / = N/2. As
shown in Fig. 5.2a, one may visualize the distribution of the angular momentum of a CSS with

the help of the Wigner distribution, which is mapped onto the Bloch sphere (see Sec. 1.4.6).

5.1.1.2 EVOLUTION

Once pumped, the total spin of the polarized atoms starts to precess around the magnetic field
axis (see Fig. 5.2a), assumed hereafter to be the z-axis, at a Larmor frequency w(z) = yB(¢), with
y being the effective (constant) gyromagnetic ratio. This translates into a unitary evolution of the

state of the atoms:
dplr) = —iar) | . pl0)] a, (5.2)

where p(z) is the density matrix of the atoms. Thanks to this Zeeman term, it becomes clear how

the atomic state can be monitored to indirectly track the magnetic field, which is the main goal of

159



(b)

Figure 5.2: Bloch sphere representation of a CSS and phase representation of a coherent state. (a) Visual representation onto
a generalized Bloch sphere of the Wigner function of a CSS of 100 spin—1/2. Warmer colors near the center represent higher
values of the Wigner distribution, while cooler colors farther away indicate its gradual decay. To generate this figure, we have
used the spherical harmonic expansion described in Sec. 1.4.6. (b) Depiction of a coherent state in the phase space.

any magnetometer. In this thesis, we consider the signal to track, i.e. B(¢) (or equivalently, »(z)),

to follow three different profiles:

1. Constant: The Larmor frequency does not change in time, i.e. @(¢) = ws.t.,
dw(2) = 0. (5-3)

2. Fluctuating: The stochastic field we consider is an OUP (see Sec. 1.3.6), whose evolution

is governed by the following SDE:

dw(t) = —y(w(t) — @)dr + \/g,dW,, (5-4)

where dW,, is a Wiener differential, with mean zero and variance E [de] = dz. The drift
and volatility parameters: y > 0 and g,, > 0, are constant. The long-term mean towards

which the process reverts, @, is also positive.

3. Time-varying: The last magnetic field profile we aim to track is a time-varying but deter-

ministic signal resembling a heartbeat, i.e. a MCG. This MCG-like signal can be modeled
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using the dynamics of a filtered Van der Pol (VdP) oscillator:

dole) = —pale) dr (5.5)
do(r) = %V(t) dr + z;(l — () w(t) dr (5.6)
do(t) = |V<’)’2; ) g ”(7{) dr, (5.7)

where the frequency of interest, (z), is part of a larger state vector describing the signal
evolution: x,(¢) = (¥(¢), @(¢), v(¢)). The parameters specifying the MCG-like signal are
all positive constants: p, k, m, ¢, T > 0. Additionally, we distort the time-varying signal
(t) by adding white noise. This noise is nota feature we aim to track and therefore, should

be filtered out without resorting to time-averaging [22, 144].

5.1.1.3 MEASUREMENT

In order to track the magnetic field in real time, we must continuously measure the state of the
atoms. There are various continuous measurements that can be implemented, but here we con-
sider a continuous polarimetric measurement [133, 13, 130, 125, 120, 63] (see Sec. 3.2.3). As
depicted in Fig. 5.1, a probe beam traveling along y with linearly polarized light is transmitted
through an atomic cloud. The interaction with the atoms rotates the polarization of the probe
by angle ® o < j;(t) >(C>, due to the Faraday effect [134]. This change in polarization, and thus,
the variation in < ];(t) >(c), is later measured with a polarizing beam splitter and two photodetec-
tors [130]. The effect of such a measurement on the state of the atoms can be described through
a SME, as derived in detail in Sec. 3.2.3. Hence, the master equation in Eq. (5.2) becomes a SME
of the form:

do,(t) = —iw(?) [ 7 Jo@(z)] dr + MD[Jlp (O)dt + /7MH[f o (AW, (5.8)
with an associated measurement:
dy = 29V M( /(1)) dt + \/7dW, (5.9)

where M is the measurement strength, 7 € [0, 1] the detection efficiency, dW is the Wiener
differential (see Sec. 1.2.3) and < ];(t) >(C) =Tr { P (c)(t) ];} Note that throughout this thesis, the

detection efficiency is assumed to be perfect (i.e. 7 = 1), and thus, in Sec. 3.2 we have not derived
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the SME for inefficient detection as given in Eq. (5.8). A detailed derivation yielding the SME
of Eq. (5.8) can be found in Ref. [119]. The sub-(c) notation simply indicates that the density
matrix of the atoms is now dependent, i.e. conditional, on the recorded measurement trajectory
% = ()} <. Namely,

£ole) = plel.). (5.10)

which is simply Eq. (3.23) but written in continuous time. The two terms in Eq. (5.8) describing
the measurement back-action arise naturally when discretizing the interaction of the system with
a conveyor-belt like probe (see Sec. 3.2). The first term is a dissipative one, with the superoperator
D[ - | « givenby Eq. (1.196). The second term is stochastic as well as nonlinear w.r.t. p (#),
where the superoperator H[ « | « isdefined in Eq. (3.39), and is correlated with the measure-
ment outcomes dy through the Wiener differential dW. This last term is the one responsible for

the creation of conditional spin squeezing [125, 69].

5.1.1.4 MODELING NOISE

Noise in quantum systems arise from the interaction of the system with an unmonitored envi-

ronment. In our work, we incorporate local and global dephasing terms into Eq. (5.8):

do (1) = — iw(? [ Joup (t } de+ Xt ZD A)de + D[ Llp (£)de
—i—MD[;]p(C)tdt—i— V7 'H]y]p(c)t ) (s5.11)
dy = 29V M(J,) o (O)de + /7AW, (5.12)

which model effects such as collisions, stray fields, and laser instabilities occurring along the 2-
direction, i.e. the direction along which the B-field is applied. Local dephasing, as its name sug-
gests, acts independently on each individual atom at a rate xy [145]. Similar mechanisms affect-

ing the entire ensemble uniformly can instead be modeled with collective dephasing, at a rate x.

[146, 147].

5.1.1.5 FEEDBACK

Finally, we also consider controlling the system by feeding back estimates constructed from the
measurement record through, for instance, coils placed around the atomic ensemble (see Fig. 5.1).

In particular, by applying the control law #(z) := #(y(z)) along the direction of the field B(z),
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the Larmor frequency at time # will be modified to w(¢) — w(z) + #(¢). Importantly, because
of the addition of a control field which depends on the whole measurement record y(#) up to
time ¢, the dynamics of the atomic ensemble at each time step are now dependent on the entire
measurement history, instead of the last measurement increment. Since the control is applied as

a magnetic field along z, it comes up in the SME of Eq. (5.11) as a unitary term:

dp (1) = — i (w(2) + u(2)) [ g ﬁ@(t)} dt + % Z D[]p, (1)dr + xDL L], ()de

+MD[lp (£)dt + /7MH[])]p (£)dW, (5.13)
y(r)de = 277\/]_1/[<]}(t) >(C)dt +4/7dW. (5.14)

This is the final form of the SME that we consider throughout this chapter. One important
question that remains to be answered is how to design the control law #(#). As hinted earlier
and also depicted in Fig. 5.1, the control #(z) will be a function of estimates constructed from
the measurement record y(¢) = {y(7) }o<.<,» applied back into the system through a closed-loop
structure of the form shown in Fig. 5.3. The exact form of the controller and estimator will be

discussed later.

Atomic ensemble | 2(#) ] x(2)
Estimator
(System)

Record

Controller

Figure 5.3: Block diagram of the optical atomic magnetometer. Structure of a closed-loop control feeding back to the atoms
a control function #(#) devised from estimators computed from measurement datay(t) provided by a system (in this case,
an atomic ensemble). The control law at time # is constructed from the whole measurement history because the estimator

at time ¢ depends on the estimator at the previous time step and the measurement at time ¢. The photocurrent}/(t) is com-
puted following Eq. (5.14), with the conditional mean of ];, provided either by the conditional state evolved according to

Eq. (5.13) or by an approximate dynamical model containing first and second order moments. Assessing the accuracy of such
an approximation in replicating the evolution of the system can be done at two different stages: comparing the estimator @
w.r.t. the real Larmor frequency @ (output of dashed box v.s. input), or comparing comparing the first and second moments
given by the approximation v.s. the moments provided by the evolution of the conditional density matrix (output of dashed
box depending on how we evolve the system).
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5.2 SIMULATING THE SYSTEM

In the absence of an experiment providing us with real-time measurements y(z), the next best
thing is simulating Eqs. (5.13-5.14) to generate the measurement trajectories y(z). To explic-
itly simulate this SME, we adapt recent numerical methods [148] to incorporate estimation and
feedback. However, a direct numerical simulation is feasible only for atomic ensembles of small
to moderate size. This limitation motivates us to develop an effective model for the dynamics
that applies to relevant experiments [13, 15, 63]. Moreover, this effective dynamical model can
be then used to design the building blocks of an estimation+control scheme. Nevertheless, nu-
merical simulations remain crucial for validating our approach and studying unconditional spin-
squeezing (see Sec. 5.4.3 for more details). In particular, by benchmarking against “brute-force”
numerics, we ensure that our model can be extrapolated to larger ensemble sizes beyond the reach

of direct simulation.

5.2.1 EXACT NUMERICAL SOLUTION OF THE SME

Simulating the full ensemble dynamics of a typical optically pumped magnetometer, with sizes
ranging in between N ~ 10° — 108 [13, 14, 15, 16, 17, 63], is computationally prohibitive, since
the dimension of the underlying Hilbert space scales exponentially with N, i.e. as 2N for two-level
systems such spin-1/2 atoms. Fortunately, the size of the density matrix can be reduced to scale
only polynomially with NV when the system maintains permutational invariance throughout its
evolution, i.e., when any two atoms in the ensemble are indistinguishable. In particular, the com-
plexity of a collection of spin-1/2 atoms scales as O(N?) [149, 150, 76], since the density matrix
is now a block-diagonal matrix with each block corresponding to a spin-number 7 ranging from
0 (%) to N/2 for even (odd) N. Additionally, if the evolution is exclusively governed by collective
operators, which are themselves also permutationally invariant, any state initially living within
the totally symmetric subspace (with j = N/2), e.g. CSS, evolves within it, further reducing the
complexity to O(N) [149, 150, 76].

Turns out, that the SME in Eq. (5.13) preserves the permutational symmetry and, for the case
of kg = 0, itis even sufficient to study the evolution of the density matrix supported by the totally
symmetric subspace (with j = N/2). Although this symmetry greatly simplifies the simulation
of the SME, it still cannot be solved for ensembles with N ~ 10°—10"3 but rather for ensembles of
more moderate sizes of around /N =~ 100 [76, 62]. For these type of systems, we employ the code

of Rossi et al. [148] to numerically integrate the SME by exploiting the symmetries described
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above. In particular, it constructs Kraus operators of the weak measurement at each time-step,
while also guaranteeing the positivity of the density matrix [151, 152]. We extend it to perform

estimation and control tasks in order to implement the closed-open loop described in Fig. 5.3.

5.2.2 GAUSSIAN APPROXIMATIONS

Since the exploitation of permutational symmetry is not sufficient to simulate the system in the
experimentally relevant values of N, an alternative approach is to derive from Eq. (5.13) a system
of SDEs of the moments of the collective angular momentum operators Je, ]; and J,. Although
the density matrix p (C)(z‘) encodes all the statistical information about the system, one may alter-
natively focus on the evolution of the moments of the system’s observables [38, 153, 121]. By
taking expectation values and higher-order correlations from the SME, it is possible to derive a
set of SDEs for these moments (or cumulants). In general, the evolution of a lower-order mo-
ment (such as the mean value of an observable) depends on higher-order moments (such as the
variance), resulting in an infinite hierarchy of coupled SDEs. To manage this complexity, one can
approximate the higher-order products by neglecting correlations beyond a certain order, effec-
tively truncating the hierarchy [154]. In certain special cases, such as when the state of the system
is Gaussian, the hierarchy closes; that is, all higher-order moments can be expressed in terms of
the first and second moments. Consequently, only a finite number of equations are required to

capture the system’s dynamics completely [54, 155].

5.2.2.1 LINEAR AND GAUSSIAN REGIME

Itis evident from Eq. (5.13) that the evolution of the state is not inherently linear, meaning that
the atomic state is not guaranteed to remain Gaussian over time. However, under certain approx-
imations, the SME in Eq. (5.13) can be reduced to a closed, linear system of SDEs of the first and
second moments. Specifically, by neglecting feedback and local noise effects, and assuming the
magnetic field B is sufficiently small, then at short enough timescales, # < 1/(M + ), we can
approximate ( Ju(2) ) o, Withits unconditional average value {/,(¢)) = Je~M+%)/2 [69], where
J = N/2. If the B—field is not constant and instead follows an OU process like in Eq. (5.4),
one must ensure that the process obeys the constraints y# < 1and ¢,2 < 1 for any time

t < (M + x.)"" (see App. E.1 for a detailed derivation ).

“In it we also discuss why the system is unaftected by dephasing acting along the x or y directions
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Figure 5.4: Bloch sphere representation of the atomic state: Linear and Gaussian and co-moving Gaussian approximations.
The 3D-plot on the left shows the Wigner function of a CSS aligned along the x-axis, represented on a generalized Bloch
sphere for N = 100 particles. When the atomic ensemble is large (N > 1), the local curvature of the sphere near the
peak of the CSS can be approximated by a tangent plane, often referred to as the LG-plane or Holstein-Primakoff plane (in
light blue or light pink), in which the effective phase-space quadraturesX and I3 are defined as in Eq. (5.15). The continuous
measurement of the y spin-component induces spin-squeezing of the atomic state, which in this planar approximation, cor-
responds to the (anti)squeezing of the (P)X quadrature (see right side). To preserve this Gaussian approximation over longer
timescales, the LG-plane is allowed to co-rotate with the spin at the Larmor frequency @, an approach referred to as the as
the CoG approximation.

Under these approximations, the collective angular momentum vector J(£) remains predomi-
nantly aligned with the x-axis, with only small deviations. In that case, and for sufficiently large
N, the surface of the generalized Bloch sphere can thus be approximated by a two-dimensional
phase-plane perpendicular to the vector j (£) [54> 56, 69] (see Fig. 5.4 for a depiction). This plane

then defines an effective phase space with position and momentum operators given by:

X =}/ )], and P = J/\IL0)], (s.15)

which satisfy the canonical commutation relation [X, P] = 7, as long as J, ~ )( ]Xt))) I for
sufficiently large N [60, 61] and (M+x.)t < 1,4,£ < 1,and yz < 1. With these approximations
in place, the SME (5.13) reduces to a linear set of SDEs for the first and second moments of the
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quadratures (5.15), as well as in the magnetic field B [60, 61]:

y(O)de = 27V M(J(2)) et + \/7dW, (5.16)
da(t) = —yw(t)dt + \/7,dW,, (5.17)

d<]y ), = @(t)Je” I de 12 /5 MV ( (5.18)
V(1) = —4pMV,())dt + x. e P fdr, (s5.19)

where we have dropped the sub-index (c) because the variance is no longer conditional on the
measurement outcomes. In fact, Eq. (5.19) is completely decoupled of other state variables and
can, therefore, be solved independently (see App. E.2). Therefore, Egs. (5.16-5.18) define a con-
tinuous state-space model that describes both the evolution of the state vector and its relationship

to observations (i.e., the measurement vector y<,. In this case, the state vector is constructed from

the variables ( ];,(t) >(C) and w(?) as follows:

<]y ><c)’ ()" (5.20)

Following the framework of state-space models provided in Sec. 2.3.1, we identify the state and
measurement noise vectors as dw(z) = (dW,dW,, )" and do(r) = /7 dW, respectively. Using
these definitions, the system of SDEs given by Eqgs. (5.16-5.18) can be expressed as:

dx(z) = F(¢) x(¢) dr + G(¢) dw(z), (5.21)
dy(r) = H(z) x(¢) dr + do(2), (5.22)

where the matrices are defined as:

efrr/z
F(t) = (8 ]—;z ) Glr) = (2\/’77()”}("‘) \/Z_) H) =2/ (1 0), (5:23)

with the noise correlations defined as E [dw(z)dw" (s)] = Q(¢) 3(z — 5) dz, E[do(r)do" (5)] =
R(2) 8(t — 5) dr and E[dw(¢)dv" (s)] = S(¢) 3(¢ — ) dz. Based on the noise vector definitions,
the covariance matrix for the system noise is Q(#) = I, the measurement noise has a scalar
variance R(#) = 7, and the cross-correlation matrix between the system and measurement is
S(r) = (7, 0)". Notably, the field and atomic noises are uncorrelated: E[dW,dW] =
E[dWdW,] = 0. Furthermore, since E[dW?] = E[dW.] = dr > 0, the covariance matrix
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Q(?) satisfies semi-positivity (i.e., Q > 0). Finally, observe that both dw(z) and do(¢) are partially-
correlated Gaussian noises and F(#) x(¢) and H(¢) %(¢) are both linear functions w.r.t. the state
vector. This is consistent with Egs. (5.16-5.18), which involve Gaussian stochastic terms and are
linear with respect to one another. Therefore, a state-space model of the form in Egs. (5.21-5.22)

(or Egs. (5.16-5.19)) is referred to as linear and Gaussian (LG) [69].

ANALYTICAL SOLUTION OF THE SPIN-SQUEEZING PARAMETER IN THE LG REGIME ~ The dy-
namics of V,(¢) can be found analytically by solving Eq. (5.19), since it is a differential equation
tully decoupled from the rest. Due to its complexity, the complete analytical solution is presented
in detail in App. E.2 [69]. However, the expression for the variance of ]; greatly simplifies when

dividing it into a short-time and long-time regime:

_ S YV arireg2

Veps(t) == if 0<rg¢ .
- < (?) 21+ 2ty , B 0SEK (5-242)
W) =

V>,*(¢)=§‘/77K7°4e—<ﬂ4+xc>f/2, if > (5.24b)

where initially V,(0) = J/2, and #* = (2]\/Mx.y)~" is the transition time between the two
regimes. Importantly, note that # < #* implies 2/tx. < /xc/(7M). Then, if also x. < M, we
may infer 2/tx. < 1and approximate 1 + 2/tx. =~ 1in (5.24a). As a result, we then recover the

known noiseless (k. = 0) solution for the variance within the short-time regime [54]:

V() = L TEE g T

= RS (5.25)
2 1+ 2JtMy 2 + 4JtMy

despite collective dephasing being present, i.e. x. > 0. In fact, we prove also in App. E.2 that
V,(#) is a non-decreasing function at # ~ 0 if x. > 7M. Hence, the noise may be considered
negligible at small times only if x. < y/M.

Finding an analytical solution for the variance V,(#) is crucial because of its close relationship
with the spin-squeezing parameter of the atomic ensemble [143] introduced by Wineland ez 4.
[6]. In the experimental setup of Fig. 5.1, a continuous measurement performed along y squeezes
the variance of ];, V,(2), in detriment of the variance of J... Given that we want to use this state
to sense small variations in w, it follows that the state should have maximal polarization along
x and minimal variance along y (or maximal squeezing). How closely such a state resembles a

CSS pointing along x is therefore quantified by the spin-squeezing parameter fyz [83, 6, 12] (see
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Figure 5.5: Strong and weak dephasing regimes for the squeezing parameter. Both figures plot the squeezing parameter fyz (z‘)
as defined in equation (5.26) as a function of scaled time £, = (M + )¢, for the case of x. = 10 mHz < M = 100 kHz
(right) and . = 100 MHz > M = 100 kHz (left). The exact function ,fyz (t) (solid, blue) is compared with its two different

regimes fil* (t) and fit* (t) (dashed, yellow and green, respectively), as well as the noiseless solution when k. < M
(dashed, red). The gray dash-dot line indicates the inflection point £*, where the transition between the two regimes occurs.
The other parameters used to generate the plots are / = 10°, y = lkHZ/mG, and # = 1. The time has been rescaled to
ts = (M + &)t so that its range is therefore limited to 5 € [0, 1], where the LG approximation holds.

Sec. 1.4.7):

o V0 (<V§“ )‘I_vao)

2O =Ger \Un) = Gy (526

since f},z(z‘) < lindicates a gain in squeezing relative to the CSS [6], whereas fyz (r) > 1implies
the absence of spin squeezing and, consequently, the inability to certify multi-particle entangle-
ment [12].
Next, given that V,(#) has two distinct regimes, as presented in Eq. (5.24), the spin-squeezing
parameter can be similarly split as
14 2/tx.

2 _ (M+xc)t/2 p *
)= ——— , if 0<r .
2V, (1) S =17 My = (5272)

%Z(Z’) %m e , X . ,
f>t* (6) = \/ ;77146( e ) it > (s.27b)

In Fig. 5.5 we present explicitly the exact dynamics of the squeezing parameter (5.26) in the LG
regime for the two important cases: (right), when k. < »M and the spin-squeezing (fyz (1) <1)
occurs within a finite-time window (see Fig. 5.5 (7ight)); and (left), when x. > »M for which
spin-squeezing is forbidden (i.e. é"yz (£) > 1,asshown in Fig. 5.5 (lef?)). In both cases, it is evident

that the exact solution for fyz (¢) very closely follows the two-regime behavior in (5.27), with a
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clear transition at £ = £*. Moreover, as seen explicitly from the two-regime solution (5.27) (and
the exact solution that can be straightforwardly derived based on the explicit variance evolution
of App. E.2), the dynamics of the squeezing parameter are specified solely by the properties of

the continuous measurement (7 and M), collective decoherence (x.), and the number of atoms

(J=N)/2).

5.2.2.2 C0-MOVING GAUSSIAN APPROXIMATION

In practical magnetometers [13, 14, 15, 16, 17, 63], the atomic spin must precess multiple times
during detection to collect a sufhicient signal. Since the LG approximation assumes that the an-
gular momentum vector does not precess, it is no longer applicable. To then maintain an ap-
proximately Gaussian description of the system at all times, we allow the LG-plane (see Fig. 5.4)
to precess with the mean angular-momentum vector (j (#)) at the frequency w [156]. This ap-
proach is referred to as the co-moving Gaussian (CoG) approximation [65], and it holds under
the following conditions: (1) the ensemble size is large, i.e., N > 1; and (2) the squeezing arising
from the continuous measurement is not strong enough to wrap the Wigner function around
the Bloch sphere.

Specifically, by analyzing the conditional evolution in the Heisenberg picture for the mean

angular momenta (/,(¢)) , a = x,7,%, and their corresponding covariance matrix Cfxz(t) =

()’
L (L), 0}, — 20100, (Jr(e)),) with diagonal elements VI (s) = CL(1) (e £ =
x, 9, 2), we derive a set of coupled SDEs based on the SME (5.13) (details in App. E.3). For sim-
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plicity, the explicit time dependence of all the quantities is omitted below:

d( /o), =—( () () de= 5 <Kc+zm+M (Je),de4+2/pMC AW (5.28a)
d( /), = (a( <]x>()dt xc+2xg )( ), dt+21/7MV Y dW (5.28b)
N
4V = —2(0(r) + (1)) CYdr-+ xe (VO + ()] — V) de-t 0 (E = zv;@) dr
~|—]l/1’<V(C> 4;7C<“ )dt (5.28¢)

N N
4V =2(0(0) +(0)CYdr+x (VO + ()7~ V) de-txs (5 = zv;>> dr

—4;7MV}(,°)2dt (5.28d)
dve :M<V§j) +(Je), —V?) d (5.28¢)
dCY = (w(t)+u(2)) (v}(g —V;O) dt—x, (ZC;;) (o) () (C)> dr—2x,C{)dz

1

— EMC’(W) (1 + 8;7V;c))dt (5.28f)

dw=—yw(t)dt + /g, dW,, (5.28g)

where we have ignored all the (stochastic) contributions that involve the third-order moments (as
discussed in App. E.3).
This system of SDE gives us a state-space model, a continuous-time version of the discrete-time

state-space model introduced in Sec. 2.3.1. If we write Eq. (5.28) in Langevin form instead of It6,

then:
x(t) :f<x(t)7 ”(l‘)ﬂ(l‘)> t) ) (5-29)
(8) = hlx(2), r(2), 1), (5-30)
where x(z) = (( ]x> { ]7>(c>’ Vo, VP, Ve, CY, )" is the state vector, #(¢) is the control field,

and ¢(z) and 7(¢) are the state and measurement noises. The function f(x(z), «(z),4(2),¢) is
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nonlinear w.r.t. ¥(¢) and given by the SDE system in Eq. (5.28):

Sf(x(2),u(2),q(2), f) = (5.31)
<] >(c) KC+2K€+M <~/x>()+2\/_c<c
( )<]x>() (k25 <]y>()+2\/_

—Z(w(t)—l—u(t))Cffy)—f—KC( 4 () = V) w3 - 2V<°)+M<V V<° 40y
Z(a)(t)+u(t))C(°)+7cc(V(“>—|—<]x>() (C>)+x (N 2V<°)) 4y MV
M(V“+<]x> —V(°>>
() +u(t)) (Vj;‘) —V<c>) ” <2C<°> + (e ), )) 26,C — LMCY (1 + 877V;°)>
—xo(t) + /1.4,

On the other hand, h(x(z), 7(¢), £) is actually a linear function, since the measurement model in

Eq. (5.14) is linear w.r.t. the state x(¢):

(1) = VM) (1)) + /7€ = blx(0), r(r), 1) = Hx(2) + r(2) (5:32)

where H = 27v/M (010 0 0 0 0) and the state and measurement noises are:

q(t) = (;) 7 and (1) = /7, (5-33)

where £and £ are Langevin noises defined as £ :== dW/drand £, := dW,,/dz, respectively.

In order to validate the CoG approximation, we compare it against the exact SME solution for
simulatable ensemble sizes. Our results indicate that while the first and second moments of the
system (e.g., < ]Ax>(c), < ];>(C), and V}C)) show good agreement between the exact and approximate
approaches, the real-time estimation of the Larmor frequency &(¢) using the CoG-based dynam-
ics aligns even more closely with the one generated by the exact SME. This accurate generation of
an estimate of w(z) without having to resort to a full SME simulation, reinforces the usefulness
of the proposed CoG approximation, especially in the experimentally relevant regimes of large

N. A comprehensive error analysis is presented in App. E.4.
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5.3 ESTIMATION AND CONTROL

So far, we have outlined both the physical dynamics and numerical solution of the system—that
is, the atomic ensemble within the optical atomic magnetometer. In particular, we discussed two
complementary simulation strategies: one that exploits the permutational symmetry of the en-
semble to numerically solve the SME for moderate system sizes, and another based on Gaussian
approximations that captures the essential dynamics in larger, experimentally relevant regimes.
However, as illustrated in Fig. 5.3, this represents only part of the complete picture. Our next
goal is to explore state estimation and control methods that use the real-time measurement data
to monitor and steer the system continuously, thereby enhancing the performance of the mag-

netometer in tracking the magnetic field.

5.3.1 KALMAN FILTER

For an atomic magnetometer operated in the LG regime, like the one in Sec. 5.2.2.1, the optimal

estimator X (¢ < Jy(t ><c), (¢) )7 is given by the correlated Kalman filter (KF) [29] (see also
Sec. 2.6):
x(r) = F)x(2) +K (1) (y(0) ~H(1)%(1)) , (5-34)
K(1) = (Z(0) H' (1)~ G(1)S()) R™'(2), (5-35)
2(r) = F(t)2(0) +Z(0)F () -K()R(K () +G()Q(1)G (1), (5-36)

where the differential equation for the covariance matrix 2(z) = E[x(z) — (2)) (x(2) — %(2))"],
the Riccati equation, yields the (minimal) estimator error of x(#), with initial conditions Z(0) =
Diagonal [0, 3], where oj is the variance of the prior distribution p(«y). The rest of the matri-
ces, F(¢), G(z), H(z), Q(¢), S(¢) and R(¢) are provided by the model in Eq. (5.23), and the
photocurrent y(z) is given by Eq. (5.22).

SOLUTION IN THE ABSENCE OF DECOHERENCE AND FIELD FLUCTUATIONS In the absence

of dephasing and field fluctuations (x. = x, = 0,and ¢, = y = 0), the Ricatti equation in
(5.36) can be explicitly solved [54] by redefining the covariance matrix as Z(¢z) = ¥(#)X(#) ™', and
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thus decoupling the Riccati equation as:

T

X(r) = — (F¢) = GOSOR (DH() ) X(2) + H()R™ (DH()Y12) (5.37)
¥10) = (F(9) - G)S(OR () H(0) () +G(2)(Q() ~S(OR (4S9 BIX(x),  (5.39)

with initial conditions X(0) = I'and ¥(0) = X(0). Since x. = 0, the solution to the variance

differential equation in Eq. (5.19) is

__J
2—1—4]\/[;7]1"

V,(2) (5-39)
as shown in App. E.2. Moreover, since no fluctuations of the field are being considered, the
volatility matrix is now simply G(¢) = Diag[2,/7MV,(z),0]. Under these conditions, the de-
coupled system of differential equations introduced in Eqs. (5.37-5.38), given initial conditions
X(0) = I'and ¥(0) = Diag[0, s3], can be analytically solved. The solution for 2, ,, which for a
LG system matches the aMSE, E [Azcb(t)} ) is:

2~ HS _ (1+ 2/ Mty)
BT m)] = A a0t 4)g) e T 0 (5.40)
where

A =M*/(167]), (5.41)
a(t) = —=(1+ 29/ (4 + Mz)), (5-42)

M? Mt
b(t) = 16772 + $)2 + (Mt —3) + 2y ] (Mr — 4) (5-43)

o Mt
= e, Y, = + c(2), (5-44)

with the subscript HS highlighting the super-classical scaling of the error in both #and N (Heisen-
berg scaling). Note that for 73 — 00, the functions b(¢) and ¢(z) are equal and E [A*&™(#, 00) ]

matches consistently the solution of Geremia ez 4/. [54]. In order to highlight its non-classical
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scaling with #and NN, the aMSE can be approximated as
1 P .
]\? M, ort K (NM) s

E[AZ(Z)HS(Z’, OO)] ~ 4 3 . . (545)
ﬁm, fOf(NM) <<Z'(<M ),

when assuming no initial knowledge of the field (¢ — 00). The first term in (5.45) is derived
by Taylor expanding to leading order in time the solution E [AZcDHs (¢, oo)] . The second term is
obtained by expanding E [A%%™ (¢, 00)] to leading order around (NAz) ™.

STEADY STATE SOLUTION OF THE KALMAN FILTER ~ The KF of Egs. (5.34-5.36) which tracks
an OU process has an analytical steady solution, both in the case of y = 0 and y # 0. Below we
discuss the steady-state solution for the case of a pure Wiener noise (i.e. y = 0), with the general
solution for y # 0 presented in App. E.s.

To find the steady-state solution of the Riccati differential equation one must set dX(z) = 0,
which is greatly simplified by noting that the variance of ]; att > " is Vo« (¢) (5.24b). Then,
the steady-state solution for %, ,, which in the case of a KF coincides with the minimal aMSE
E[A%a(¢)], can be shown to be:

1/2
N 2 4 (e
ool (s 3 Ee) e

where second term, which survives in the x. — 0 limit, had been derived previously in Ref. [55].
By accounting for collective dephasing in our analysis, an additional and important term appears,

which dominates for large /N. Namely, for

2 /q
N> = o (M2 .
- —}7 7E (5.47)

the steady-state solution of the Riccati equation simplifies to

2
E[A%%(0)] = ygur: for N> = ;7“’44””"6”/2 (5.48)
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which coincides with the form of the CS limit for an OU process (4.82) when # 2 \/x./g., 1.

. : [ Ke 2 /9.
E[A%%(7)] = tlggoyfs(;) = \/q.k., fort 2> q—w and N > oy ;77/[ (5-49)

Hence, this proves that the chosen set of measurements and initial state, i.e. a continuous ho-
modyne measurement and CSS, give us the best possible precision in the steady state when the

atomic ensemble is large (i.e. NV > 1, which is also required for the LG approximation to hold).

5.3.2 EXTENDED KALMAN FILTER

When our system is no longer LG but rather described by a nonlinear dynamical model like the
one in Sec. 5.2.2.2, we need an estimator capable of handing nonlinearities, such as an extended
Kalman filter (EKF). As discussed in Sec. 2.7, an EKF estimates the state vector x(#) in real time
from the noisy measurement record using a state-space model defined by nonlinear state and mea-
surement functions, fand b, as well as their associated noise vectors. Namely, at each time ¢, the
EKF produces the state estimate %(¢) and its error covariance Z(#) by integrating the differential

equations along the photocurrent record y(¢) = {y(¢) } <, [29]:

x(t) = flx(e), u(2),0,) + K(2) ()(2) — h(%(),0, 1)) (5-50a)
3(£) = (F(£) — G(t)SRH)Z(2) + 2(£)(F(z) — G())SR™'H) "+
+G(2)(Q —SR'SNG(r)" — =(t)H'R'HZ(z), (5.50b)

where in the state update-predict equation for the estimate (5.50a), the term

represents the innovation, i.e. the difference between the actual measurement (provided by the
model in Eq. (5.32)) and the predicted measurement based on the current state estimate. This

innovation is scaled by the Kalman gain
K(t) == (E()H" — G(£)S)R ™, (5-52)

which couples the state and covariance Z(¢) in Eq. (5.50b). The matrices F(¢), G(¢), and H are the

Jacobians of the nonlinear functions, determined by the dynamical model in Eq. (5.28). Specifi-
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cally, we have:
F(t) = Vifl@uo, G(t)=Veflz and H:= V,h, (5-53)

with their exact form provided in Sec. E.8. Because the entries of these matrices depend on the
current state estimate (), they must be recomputed at each EKF iteration (see Sec. 2.7 for an

introduction to the EKF). In contrast, the noise matrices are predetermined:

Q=E[g(t)g'(1)] =1, R =E[#(2)] =7, and S:=Elg(t)r(t)] = (7. 0)".  (5.54)

The initial estimates, £(0), and its error covariance, 2(0) = E [Azfc(O)] , are chosen based on the

assumed prior distribution [29].

5.3.3 LINEAR-QUADRATIC REGULATOR

A naive approach to controlling the state of the atoms is to directly compensate the estimated
frequency by setting
u(t) = —a(t), (5-55)

which we refer to as fzeld compensation. In principle, this should cancel the precession; however,
as the EKF estimate &(¢) is only approximate, small errors accumulate over time and the resulting
control becomes suboptimal, leading to residual precession that degrades overall performance. To
build upon the frequency cancellation achieved by the initial control, we design a more refined
control law using linear-quadratic regulator (LQR) theory (introduced in Sec. 2.8.1). In our

approach, the overall control input is expressed as

u(t) = —a(2) = o(?) (5-56)

where the term &(z) provides the primary compensation for the rapid Larmor precession, and
the additional correction »(¢) is determined via LQR to minimize a prescribed quadratic cost
function. Once the frequency-cancellation part of the control counteracts the rapid Larmor pre-
cession, which is responsible for driving the state away from the x-axis, the system dynamics slow

down and become nearly linear. Then, we can assume that the system resides in the LG regime
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and describe the system with a reduced state vector

2(r) = (), @), (5:57)

which simplifies the dynamics and allows us to apply the optimal control strategy derived from
LQR theory. Under a linearization of the full dynamical model at short timescales 54, 69], the

state vector evolves according to Egs. (5.21-5.23), which can be further approxmated as:

2(t) = Az(t) + Bu(t) + G(2)q(2), (5.58)
where
a() = (8 _J;{), 6lo) = (2@”‘) j;_> B(o) = (g) (5:59)

withg = (£, £,)" being the same stochastic term as in Eq. (5.33), such that dW = £dz. Notably,
in the LG regime, the variance of ];, Vy(t), is a deterministic function and can be computed
analytically [55, 69] (see App. E.2). The LQR design is based on minimizing a guadratic cost

function [29, 55]:

I(u) = / dr [2"(£)Pz(t) + u(t) V()] (5.60)
0
- / dr [Pf<j7><2c) +pww2+vu2(t)] : (s.61)
0
where, following Ref. [55], we choose the cost matrices 2 > 0 and /> 0 to take the form
0
P= (P] ) and V' =y, (5.62)
0 pu

with p;, p, > 0and » > 0. This cost function not only penalizes deviations of (z) from zero
(thereby counteracting the Larmor precession) but also drives the angular-momentum compo-
nent < ];>(C) towards zero.

Since the dynamics in Eq. (5.58) are linear, the optimal control law can be obtained by neglect-
ing the stochastic terms, which only increase the attainable minimal cost (5.60) on average [29].
Moreover, when the state-space model is linear, as in Egs. (5.21-5.22), the optimal control design

can be decoupled from the state estimation [29] (see also Sec. 2.8.2). The resulting LQR solution
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takes the form:

”(t) = _KCE(I)a (5-63)
K. = V'BYA, (5.64)
0=A"A+AA4+P—-ABV'B'A (5.65)

where the optimal control field #(z) is linearly related to the state estimator 2(z) by the gain matrix
K, and the gain, defined in Eq. (5.64), couples to the control “covariance” A, the steady-state
solution of the algebraic Ricatti equation in Eq. (5.65). Since the matrices 4 and B in Eq. (5.58)
are time-independent, A (and consequently K¢ and #(z)) can be determined analytically [55s].
A detailed derivation, as provided in App. E.6, shows that the gain matrix simplifies so that the

control law can be recast as 3
u(e) = —ale) - 2 (1), (5.66)

where 1 = \/M is a constant parameter functioning like a control “knob”. Notably, by setting
A = 0, then Eq. (E.75) we recover the field compensation strategy considered initially. In order to
apply this result to the setting of Sec. 5.2.2.2, one has to simply combine the EKF that estimates
the full state x(r) = (( jx>(c), { ];>(c), Vo,V Ve, CY, w)" with the LQR, along the lines of
the linear-quadratic Gaussian controller discussed in Sec. 2.8.2. In particular, to apply the LQR

strategy in this broader context, we generalize the control law of Eq. (5.63) to

u(t) = —KcEx(t) (5:67)

~ {010 .00 (6.65)
" \looo ... 01 >

is just a matrix that extracts the relevant state components of x(#) that appear in 2(z), while ¥(¢)

where

is now the EKF estimator provided by Eq. (5.502) [65].

5.4 RESULTS

In the previous sections, we detailed the model of the optical atomic magnetometer and its nu-
merical simulation, including its atomic ensemble dynamics, simulation methods, and the esti-

mation and control strategies that enhance its performance. We now present our main results,
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which we organize as follows: in Sec. 5.4.1, we begin by examining the response of the magne-
tometer under weak-field sensing conditions, where it exhibits LG dynamics. Sec. 5.4.2 then de-
tails the real-time sensing of a precession-inducing field, with separate analyses for constant, fluc-
tuating, and nonlinear MCGe-like field profiles. Finally, Sec. 5.4.3 demonstrates the generation

of multiparticle entanglement by evaluating conditional as well as unconditional spin squeezing.

5.4.1 WEAK-FIELD SENSING

When employing large ensembles to track weak fields, which is the relevant regime when dis-
cussing detection limits, one can safely assume that the system is LG for times within the co-
herence time of the system and measurement (i.e. # < (M + x.) " (see Sec. 5.2.2.1). In this
regime, the KF provides an optimal, recursive strategy (see Sec. 5.3.1). By continually incorpo-
rating new measurement data, the filter updates both the state estimate and its error covariance,
ensuring that the mean-squared error is minimized at every step. Crucially, the KF not only pro-
vides a real-time estimate of the magnetic field but also yields a guantifiable metric of its precision
through the covariance matrix, which for the case of a KF, coincides with the aMSE (see Sec. 2.6).

In Fig. 5.6 we show the minimal averaged error (solid, red) for the estimator of the Larmor
frequency (the squared root of the aMSE, \/M = /Z..). The top plots display the
error as a function of time for two atomic ensembles of different sizes: N = 10” (a) and N = 10°
(b), and the bottom plots show the error as a function of the number of atoms for two different
time slices: # = 107 *s (c) and # = 107 %s (d). In all cases, the error is obtained by numerically
solving the Riccati equation of Eq. (5.36), with the model matrices defined in Eq. (5.23) and
the exact form for the variance of ];, provided in Eq. (E.26). In Fig. 5.6 we further analyze the
different behaviors of the error of the KF (solid, red), by comparing it to the analytical solutions
of the KF derived in Sec. 5.3.1 for (1) the steady state (dashed, green) and (2) the noiseless regime
(dashed, blue). In particular, for short times or low atomic numbers, the error of @ behaves like
in the ideal case of negligible dephasing and field fluctuations, revealing a non-classical scaling of

the estimation error with both time and the number of atoms:

1

E[A%(t)] o o

(5.69)

highlighting the quantum-enhanced sensitivity achievable in our setup[s4]. Over time, however,

the precision scaling deteriorates, as shown in the two top plots. This occurs either when the

180



v 10? | N |
107 N=10 —-s§ (a) ; N=10 I — 59 (b)
= I — -Noiseless 10 3 I — -Noiseless
3 10° L | —CS limit |  —CS limit
o | —KF solution | —KF solution
o .
g 10'E |
F |
1 u S
o i - - %
‘ |
10 't > o 10°F Ly N
S Eas St SR e E eSS
107 10°% 10° 10* 10?* 001 01 10° 0.01 0.1
time (s) time (s)
1072 E 4 2L —9
=107t S (c)| 107 Ft=10 | _gs  (d)
=, 10° I — -Noiseless 103k I — - Noiseless
- ! —C limit ' ! —C limit
3 1074k I — KF solution 4 I — KF solution
8 107'E .
> ' !
q_? 1075 "!\
= o f — R
: Ll I E e e
N
Ll I P 1077 Ll | oGS \I L [T
10* 10° 10° 107 10° 107 10° 10° 10"
number of atoms (N) number of atoms (N)

Figure 5.6: The minimal estimation error as a function of time. Subplots (a) and (b) show the time evolution of the averaged
error of estimating w(z), VIE[A*@(z)], for large (N = 10°) and small (N = 10°) ensembles, respectively. Subplots (c) and
(d) present the dependence of the error on the number of atoms at short (¢ = 10™%s, (c)) and long (t = 10725, (d)) mea-
surement times. Other parameters used to generate this figure are: A = 100 kHz, ¢, = 10%rad?s73, x, = 100 mHz,
x=0andy = 1. Colored dashed lines serve as references, representing different scaling behaviors of the Riccati solution:
dashed green corresponds to the steady-state (SS) solution of the KF, dashed blue represents the analytical solution obtained
in an ideal noiseless scenario, and finally, solid black corresponds to the quantum limit imposed by dephasing and field fluctu-
ations, i.e. the CS limit. This quantum limit is attained for large N when ¢ > #cg, proving in this regime the optimality of our
measurement and initial state.

system reaches a steady state (Fig. 5.6 (b)) at time

4
R SV

or by first attaining the CS limit of Eq. (4.83) (see Fig. 5.6 (a)) at time

2 3
fee = — .
s N ;7MKC’ (s:71)

which also later coincides with the KF steady state after # = #5s. One might therefore realize that
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the CS bound in the limit of an infinitely wide prior, as presented in Eq. (4.83), has two distinct

regimes:
Y forr<t
— for
V() = o (1 [2) =4 7 » (5.72)
Ke \/Gukc fort > ss
where
Ke
Isg = —. (573)

@

Fig. 5.6 (c) and (d) illustrate that while small ensembles may achieve a precision scaling of 1/ N* in
estimating w(z), this advantage diminishes as the system size increases. As a result, larger atomic

ensembles do not provide a net gain in precision. That occurs at

2 3 2 /4.
Nes ==, d Nig==, /2, .
CS Z’ }7M7Cc, an SS Kc 77M (S 74)

For a certain range of ensemble sizes, i.e. [Nss, N¢|, where

232/3
(5.75)

and for short times, the KF error follows the steady-state solution (dashed, green) of Eq. (5.46),
which scales as o< 1/N'/2 (and thus, the error displayed in Fig. 5.6 (c) scales as oc 1/N/*).

The most important message that Fig. 5.6 aims to convey is that for large ensembles (i.e. N =
10%) the aMSE of the KF attains the lower bound on the error dictated by dephasing and fluctua-
tions, referred throughout this thesis as Classical Simulation (CS) limit. Even though we already
know that for a LG system, the KF is the optimal estimator, Fig. 5.6 (a) also confirms that for
large atomic ensembles, our choice of measurement and initial state are also optimal, since the CS
limit is independent of our choice of measurement and initial state (see Chap. 4). In summary,
applying the KF to a system initialized in a CSS and continuously monitored through homodyne
measurement not only resolves the estimation error in real time but also establishes an optimal

framework for high-precision sensing of weak magnetic fields.
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5.4.2 REAL-TIME SENSING OF A LARGER FREQUENCY

We now turn our attention to the practical task of real-time sensing of a precession-inducing mag-
netic field. As before, our main goal is to estimate the Larmor frequency and benchmark the per-
formance of our proposed EKF+LQR strategy against other estimation and control approaches
as well as the quantum limit dictated by dephasing and field fluctuations derived in Chap. 4. To
explore the role of quantum effects in enhancing estimation, we go beyond analyzing the aver-
age error of the frequency estimate, \/M , and also examine the averaged evolution of the
spin-squeezing parameter E[fyz (#)] (defined in Sec. 1.4.7), along with the averaged ensemble po-
larization, E[< JAG >(C)].

5.4.2.1 CONSTANT FIELD

In what follows, we investigate the real-time tracking of the simplest type of field: a constant
magnetic field. First, we do so by using the full SME of Eq. (5.13) to model the evolution of the
system. Using this “brute-force” approach we perform two important tasks: (1) benchmarking of
the EKF+LQR strategy against alternative methods and (2) validation of the CoG approximation
introduced in Sec. 5.2.2.2. Once validated, we employ this approximation to study larger atomic
ensembles, determining whether our approach reaches the quantum limit imposed by dephasing,

and hence, testing the optimality of our magnetometry setup.

Low AToMIC NUMBERS Fig. 5.7 (top) presents the real-time estimation of a constant mag-
netic field, simulated via the full SME of Eq. (5.13) for a system of N = 200 atoms. As time
progresses, the continuous incorporation of measurement data reduces the error (green shaded
area), while the estimate (solid, red) converges towards the true value (solid, blue). The middle
panel illustrates that spin squeezing (solid, blue) quickly emerges and is maintained throughout
the experiment, which can be correctly estimated with the EKF (dashed, red) for times within
the LG region. Finally, the bottom plot shows that the averaged error approaches the quantum
limit dictated by dephasing (i.c., the CS limit, in solid, black):
1

E[Azg)([)] > T, (5-76)
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Figure 5.7: Quantum-enhanced tracking of a constant magnetic field with NV = 200. Top: Constant field (solid, blue) tracked
in real time by the EKF estimate (solid, red). The shaded area represents the confidence band limited by the averaged error,
ie. X2V E[Aza)(t)]. Middle: Averaged evolution of the spin-squeezing parameter (solid, blue), compared with its real-time
EKF prediction (dashed, red). When the parameter is below the dashed black line of fyz)(c) (t) = 1, it indicates squeezing
and thus, the presence of multipartite entanglement. Bottom: Evolution of the average error (solid, green) in estimating the
fluctuating field, Vv E[Azﬁ)(t)], which attains the quantum limit imposed by dephasing (solid, black), as correctly predicted

by the EKF covariance (dashed, yellow), which matches the averaged error within the LG regime. In all plots, averaging was
performed over 1000 atom stochastic trajectories, and the parameters used are: N = 200, k. = 0.02,xp = 0,M = 0.3,
w=1%=1andoy = 0.5.

where ¢y is the standard deviation of the initial prior of the Larmor frequency. As expected, the
EKF covariance (its squared root in dashed yellow) provides a good estimate of the error within
the LG regime, although it becomes slightly optimistic beyond the (4 + x.) ™! mark.

We further compare the performance of the EKF+LQR strategy againstless sophisticated meth-
ods, including the KF with field compensation (green), the EKF without control (yellow), and
the EKF with field compensation (blue). In the left column of Fig. 5.8, we keep the estimator as
the EKF and switch the type of controller: none (yellow), frequency compensation (blue) and
LQR (red). In contrast, in the right column we fix the control as LQR and compare different
estimators: either KF (green) or EKF (red). This comparison in Fig. 5.8 (a)-(b) under controlled

conditions, e.g. no local dephasing such that we can simulate for larger /N, highlights the supe-
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Figure 5.8: Performance of different estimation and control strategies. The top row shows the averaged estimation error,
the middle row displays the spin-squeezing parameter (as defined in (5.26)), and the bottom row illustrates the ensemble
polarization, <jx>(c). In the left column (subplots (a), (c), and (), the estimator is fixed as the EKF while three control methods
are compared: no control (yellow), field compensation (blue), and LQR (red). In the right column (subplots (b), (d), and (f)), the
control method is fixed to LQR while two different estimators are considered: KF (green) and EKF (red). In both subplot (a)
and (b), the EKF+LQR strategy (red) is benchmarked against the CS limit (black), which sets the quantum limit imposed by
dephasing on the attainable error. Notably, the EKF+LQR approach outperforms the other methods by achieving the lowest
estimation error, which continues to decrease even beyond the LG regime (shaded grey). Subplots (c)-(f) demonstrate that
only the combination of an EKF with an LQR maintains both spin squeezing and polarization throughout the experiment.
Additionally, in subplot (d), the black dashed line indicates the overoptimistic predictions from the EKF, as shown already in
Fig. 5.7. The parameters used in the SME (5.13) for simulations are: N = 200, x. = 0.02,x, = 0, M = 0.3, = 1 and
7 = 1. The KF and EKF estimators are initialized with the mean £(0) = (NN/2,0, 0, N/4, N/4,0,u,)" and covariance
2(0) = Diag[O, 0,0,0,0,0, 0’%] dictated by the initial CSS state of the atoms, and the Gaussian prior distribution for

w ~ ./\/(/,40, 0’%) All results are obtained after averaging over » = 1000 measurement trajectories, whereas w-averaging is
avoided by choosing its true value = 1 for a prior with ¢, = @ + g9 = 1.5and oy = 0.5.
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riority of combining an EKF with an LQR, since it yields the lowest average error (red) closest
to the quantum limit dictated by dephasing (i.e. the CS limit in black of Eq. (5.76)). The other
estimation and control approaches also fail to yield both spin-squeezing and a non-vanishing po-
larization for the full duration of the experiment (7"= 30s > (M + x.) ! ~ 35), as illustrated
in Fig. 5.8 (c)-(d) for squeezing and (e)-(f) for the polarization.

Lastly, simulating the full SME of Eq. (5.13) allows us to verify the accuracy of the CoG ap-
proximation in simulating our system. As briefly discussed in Sec. 5.2.2.2 and extensively in
App. E.4, we compare the Larmor frequency estimates obtained using two methods: one by
solving the full SME and the other by solving a system of SDEs given by the CoG approximation
(see Sec. 5.2.2.2). In both cases, the estimation and control is carried out using an EKF com-
bined with an LQR, since Fig. 5.8 established it as the best known strategy. The results, shown
in the first column of Fig. E.3, demonstrate that the relative error remains below 1% at all times
and decreases with increasing N. This confirms that the CoG approximation is valid and can be

confidently used in the subsequent analysis.

HigH ATOMIC NUMBERS  For larger ensembles (N ~ 10° — 10" c.f. [157, 158]), simulating
the exact SME becomes computationally prohibitive. In this regime, we rely on the CoG approx-
imation, which accurately captures the conditional evolution of the first and second moments of
the angular-momentum operators.

The rop row of Fig. 5.9 demonstrates that, for N = 10° atoms, the EKF+LQR strategy achieves
optimal performance when its averaged estimation error (solid, red) reaches the quantum limit
imposed by dephasing Eq. (4.84) (solid, black). This optimal behavior is observed under both col-
lective (a) and local (b) decoherence. Although the quantum limit is reached only briefly within
the LG regime under local dephasing, using an EKF is essential, as the KF is not applicable in
this scenario (see Sec. 5.2.2.1). For collective dephasing, the EKF+LQR still outperforms the
KF (solid, green), even within the LG regime (shaded grey area). Attaining the quantum limit
ensures that the measurement, feedback, and initial state are optimal during that period, thereby
addressing the open question posed in Ref. [62]. Moreover, the EKF covariance (its squared root
in dashed, blue) closely tracks the averaged estimation error (solid, red), confirming that, despite
the nonlinearity of the CoG model (5.28), the EKF provides reliable trajectory-dependent error
estimates.

The middle row of Fig. 5.9 shows the averaged spin-squeezing parameter in decibels, while the

bottom row displays the averaged ensemble polarization. In all cases, the EKF predictions (dashed,

186



only collective dephasing only local dephasing

~ (a) (b)
3
3 1 _

= 10 107 b

o o E

£ ¥ £

) [ —error KF+LQR -

50 | —CS limit e —CS limit

% error EKF+LQR F error EKF+LQR

10*2 L — -EKF covariance t — -EKF covariance
E Y T BT M MY, 1074 E T e Y] E ST |

a 9 ' ® uncond. KF+LQR 10 F @ uncond. EKF+LQR (d)
= b uncond. EKF+LQR I —cond. EKF+LQR
~— 6 F —cond. EKF+LQR t — -estimator of cond. EKF+LQR

s 3E” -estimator of cond. EKF+LQR (0 Gt — 5 ]
N i

I e —8 10 b

- :

& SF —20 |

iy m— T |
10 ——— ey 1.0 f———

Ll — @] =T (1)
= ™N - N

= \ i D

s [ \\ i \\
=05 Nl 0T \

a0 I R ™ I R \

> I real (J) EKF+LQR I real (J,) EKF+LQR N

© | — -estimator (J,) EKF+LQ | — -estimator (J,) EKF+LQ N~

00 el 2ol 2ol Lo 00 sl sl 2ol Lo
0.01 0.1 1 10 100 0.01 0.1 1 10 100
time (s) time (s)

Figure 5.9: Performance in estimation and spin-squeezing extrapolated to large atomic ensembles (N = 105). Subplots (a)
and (b) (upper row) depict the case of pure collective decoherence x. = 0.005, whereas subplots (c) and (d) (lower row) deal
with pure local decoherence xy = 0.05. Left column: (a) and (c) show the error (aMSE) attained by the EKF+LQR strategy
(red dots) when estimating w and its average prediction by the EKF (blue line), E[EM,], both being lower-bounded by the

CS limit (5.76) (black line). For collective decoherence, the performance of KF+LQR strategy is also included (grey dots) to
emphasize its failure beyond the LG regime (pink shading in all subplots). Right column: (b) and (d) illustrate the evolution of
the spin-squeezing parameter (5.26) for conditional (blue line) and unconditional (red dots) dynamics, as compared with its
classical threshold (horizontal dash-dotted line). The evolution of the ensemble polarization <];> = ]E[<]Ax>(c>] (green line)

is also shown in both cases in extra lower plots. Both the conditional spin-squeezing and the polarization in (b) and (d) are
estimated very accurately by the EKF on average (superimposed dashed black lines). The above data is simulated employing
the CoG model (5.28) with other parameters set to: M4 = 0.05,» = 1 and 7 = 1. Asiin Fig. 5.8, the KF and EKF estimators
are initialized with the mean %(0) = (N/2,0,0, N/4, N/4, O,yO)T and covariance £(0) = Diag|0, 0,0, 0,0, 0, 73]
dictated by the initial CCS state and the Gaussian prior distribution forw ~ /\/(/LO, 0'20) All results are obtained after
averaging over » = 20000 measurement trajectories, while w-averaging is avoided by choosing the prior with g = 0.5 and
Yy =w+ao =15



black) closely match the simulation results: the averaged conditional spin squeezing (solid, blue)
and the polarization or averaged < ];>(C) (¢) (solid, yellow). This excellent agreement holds as long
as the CoG approximation is reliable, and contrasts with our earlier findings in Fig. 5.8(d), where
the EKF predictions overestimated the spin-squeezing parameter. Moreover, subplots (c) and
(d) confirm that the EKF+LQR strategy not only generates conditional spin-squeezing, as al-
ready shown in Fig. 5.8(c) and (d) for N = 200, but also yields significant unconditional spin-
squeezing (red dots) above the classical limit (horizontal dash-dot black line). Additionally, sub-
plot (c) demonstrates that the EKF outperforms the KF (green dots) in preserving an uncondi-
tional multiparticle entangled state beyond the LG regime, though it also eventually degrades

after approximately ~50ss.

5.4.2.2 FLUCTUATING FIELD

In this subsection, we extend our discussion to the case where the Larmor frequency fluctuates

as an Orstein-Uhlenbeck process (OUP) [55, 159] (see Sec. 1.3.6):

dw(r) = —yw(z)dr + /4,dW,, (5:77)

where dW,, is a (new) Wiener increment, y > 0 is the decay rate, and g,, > 0 sets the strength
of fluctuations, which are chosen to be y = 0.01 s~ and 9o = 10%rad?s~3 for the simula-
tions presented throughout this section. The results discussed here and in the following sections
are obtained using experimentally realistic parameters, chosen to reflect conditions achievable in
state-of-the-art setups. These parameter values are inspired by Ref. [63], though their adaptation
to our setting required interpreting experimental quantities such as the measurement strength,
which are not directly provided but must be inferred from various experimental parameters. A
detailed explanation is given in App. E.7. Given these parameters, the standard deviation of the
fluctuations over the magnetometer coherence time 75 (here 10 ms) is approximately 0.1% of
the initial Larmor frequency w, = 10*rad s~ (recall from Eq. (1.136) that the variance of an OU
process can be approximated as g,, zat short times # S 1/y). Fig. 5.10 (t0p) illustrates how the pro-
posed EKF+LQR strategy is capable of tracking the OUP-induced fluctuations in real time for
an experiment with realistic parameters (with the EKF equations explicitly written in App. E.8).

Additionally, the EKF also provides an accurate estimate of the atomic spin-squeezing parame-
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Figure 5.10: Quantum-enhanced tracking of a fluctuating magnetic field. Top: Efficiently tracking in real time of field fluc-
tuations (solid, blue) by its corresponding EKF estimate (solid, red) after gathering only = 0.01 ms of photocurrent data.

The shaded area represents the confidence band limited by =2V E[Asz(t)], i.e. the error obtained upon averaging. Mid-
dle: Evolution of the (average) spin-squeezing parameter (solid, blue) in dB, compared with its real-time prediction by the EKF
(dashed, red). Bottom: The averaged error (solid, green) in estimating the fluctuating field, V E[Azg)(t)}, which stabilizes at

=~ 0.21 rads_l, as correctly predicted by the EKF covariance (grey). The quantum limit imposed by local dephasing (a.k.a. CS
limit, in dashed, black) is not attained due to insufficient measurement strength (M = 10~8Hz [63], see also Fig. E.4) [65].
Averaging was performed over 1000 field+atom stochastic trajectories.

ter [143] (middle) that reaches 213 dB " ataround 0.5 ms, being induced purely by the measure-
ment backaction emerging at = 0.01 ms. The magnetometer reaches its best resolution at times
0.01ms < ¢ < T, where it tracks field fluctuations in real time with an error of 0.21rad s™*
(bottom). The minimal averaged error (solid, green) is correctly predicted by the EKF covari-
ance (its squared root in dashed, yellow). While the quantum limit imposed by local dephasing
(Eq. (4.81) with x. = 0) sets a fundamental lower bound of 0.021 rad s (solid, black), this limit
is not reached under the current measurement strength. However, increasing A can, in princi-
ple, allow the system to attain this bound [65] (see Fig. E.4), though the required measurement

strengths may not be experimentally feasible.

"The value of ~2 dB reached in Ref. [63] should not be directly compared, as therein an unpolarised ensemble
in the spin-exchange relaxation-free regime was considered.
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Figure 5.11: Tracking field fluctuations at the quantum limit (4.81). As in the bottom plot of Fig. 5.10, the true average error,
Y, E[Azi)(t)] (solid, green), is compared against the error predicted by the EKF (dashed, yellow), i.e. the covariance, and the
quantum limit imposed by dephasing, as given in Eq. (4.81), now including collective dephasing x. = 1 p.Hz. Remarkably,
the magnetometer operates at the quantum limit regardless of whether the EKF is provided with the exact OUP dynamics
(5.77) (a-b) or a mismatched version (c-d). In the latter case, despite the EKF assuming a fluctuation strength that is half as
large (gx = qw/Z) and much faster decay (;(K = 10;(), the average error (solid, green) still reaches the quantum limit (solid,
black), while the EKF covariance (dashed, yellow) underestimates the error. Both plots were obtained by averaging over 1000
field+atom stochastic trajectories. Additionally, subplots (a) and (c) show a representative field trajectory (blue) alongside its
EKF real-time estimate (red), which remains well within the confidence interval 2V E[Azg)(t)] (shaded green).

Another scenario where the magnetometer operates at the quantum limit, i.e. the CS limit
of Eq. (4.81), is when a small amount of collective dephasing is present. In Fig. s.11, we add
k. = 1 uHz (1/x.~11 days) alongside the local dephasing of x, = 100 Hz. As shown in Fig. 5.11
(b), while collective dephasing worsens the estimation error and raises the quantum limit, it also
leads to a favorable outcome: the averaged estimation error (solid, green) saturates the quantum
limit at & 0.32 rad s™! (solid, black), indicating that the magnetometer operates in an optimal
regime. This holds true even though spin-squeezing is no longer present, as collective dephas-
ing dominates over measurement-induced correlations (k. > 7M), preventing the generation
of spin-squeezed states [69] (see also Fig. 5.5). Additionally, the quantum limit (solid, black)
is not only reached when the EKF is provided with the exact OU field dynamics (subplot (b)),
i.e. the parameters defining Eq. (5.77), but also when the field decay and fluctuating strength

190



are mismatched (subplot (d)). In this later case, the EKF operates assuming that the fluctuation
strength is half as strong, gx = ¢,,/2, and the field decay is ten times faster, Xx = 10y. Although
under these mismatched conditions the EKF covariance (dashed, yellow) is no longer reliable, the
averaged error (solid, green) remains unaftected and still attains the quantum limit. This result
confirms that even with imperfect knowledge of the OU process parameters, the magnetometer
can still operate optimally and yield field estimates at the quantum limit of precision, even though

the EKF covariance in each realization no longer provides an exact measure of the error.

5.4.2.3 NONLINEAR MCG-LIKE FIELD

Similarly to electrocardiography, atomic magnetocardiography (MCG) [23, 24, 25, 26] is a non-
invasive technique for imaging the magnetic fields generated by the electrical activity of the heart [22].
The goal in MCG is to reconstruct in real time the full magnetic waveform produced by the
heart, capturing the characteristic P-wave, QRS-complex and T-wave [160], while filtering out
unwanted stochastic noise [144] without resorting to extensive time-averaging [22].

As in previous sections, we use the EKF+LQR feedback loop to estimate in real time the car-
diac magnetic signal from the homodyne photocurrent, since this type of recurrent estimation
and control is well suited for tracking such complex, time-varying signals. To simulate a realistic
MCG signal, we use a filtered VAP oscillator [161, 162] as defined in Eq. (5.5):

dv(r) = —pw(z) dr (5.78)
do(t) = %(r) de + 2;(1 — o(t)) w(2) dt (5.79)
do(t) = ’V(t)‘z; ) g ”(7‘:) dr, (5.80)

with parameters p, &, m,¢, T > 0. The VAP model effectively reproduces the P-wave and QRS
complex, though it does not fully capture the T-wave. We then superimpose white noise onto the
VdP-generated signal to mimic the stochastic disturbances observed in practice. The simulation
parameters are adapted from Ref. [63] for our setting, as discussed in App. E.7, with the EKF
parameters for the VAP estimate matching the ones used to generate the clean VdP signal. Namely,
p=px=10%k = kx = 1,m = mxg = 0.00098,¢c = cx = land 7' = Tx = 0.003, with initial
values: »(0) = w(0) = v(0) = 0.0045. The exact expressions for the EKF gradients F(z), G(¢)
and H(z) needed to construct the EKF, are given in App. E.o.

Fig. s.12 (left) displays a cyclic MCG-like signal with a period of approximately 20 ms and a
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Figure 5.12: Tracking a MCG-like signal. Under the same conditions as in Fig. 5.11, the magnetometer tracks a MCG signal

in the pT range [23, 25]. Although the atoms sense the noisy raw signal (blue), our goal is to recover the clean, noise-free
waveform (black). The EKF, configured to expect a VdP-type signal [161, 162], produces an estimate (red) that converges to
the clean waveform after one MCG cycle (= 20 ms), as shown in the left subplot. In it, the green-shaded area represents

the £3V E[Aza?(z‘)] confidence band, obtained after averaging over 1000 trajectories. Notably, at the R-wave in the third
cycle, this band spans approximately 40 pT, implying an average error of roughly 6.6 pT. The subplot on the right displays
the difference (gray) between the clean waveform and the EKF estimate, with the same confidence bounds clearly delineating
the error magnitude (green).

field B(¢) ranging over [-14.2 pT, 42.6 pT|, compatible with human-heart fields [23, 25] (where
we have used the Rb-87 ground state hyperfine gyromagnetic ratio, 2z x 7 GHz T™"). After an
initial transient, the EKF estimate (red) closely follows the true waveform (black), despite the raw
signal that the magnetometer actually senses (blue) being contaminated by white noise with a
strength of g, = 2.5 x 10° rad® s .

In Fig. s.12 (7ight), we further assess the tracking performance by plotting the difference be-
tween the true Larmor frequency and its EKF estimate (grey). This error is bounded by +3VE[A%5(7)]

(green), confirming that the estimation remains robust under noisy conditions.

5.-4.3 MULTIPARTICLE ENTANGLEMENT: CONDITIONAL V.S. UNCONDITIONAL SPIN SQUEEZ-

ING

So far, our primary focus has been estimation, where conditional spin-squeezing, i.e. squeezing
of the atomic state dependent on the measurement record o (#) = p(#|y<:), has potential for en-
hancing precision beyond classical limits. However, instead of viewing the magnetometer solely
as a sensing device, we can ask whether it can also function as a mechanism for preparing the
system in a multipartite entangled state independent of the measurement trajectory.

In that case, evaluating the spin-squeezing parameter along a specific measurement trajectory
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(i.e. conditional), is no longer sufhicient. Instead, we should quantify the entanglement of the
state independent of our observations (i.e. #nconditional). While the conditional state of the sys-
temp (¢) = p(#y<) is understood as the one most closely describing the state given a particular
measurement record y<,, an unconditional state p(r) describes the system when we discard, or
do not have access to, the measurement outcomes, what formally corresponds to averaging the

conditional state over all the possible past measurement trajectories:

£(8) =Epy.) [P(c)(f)] : (5.81)

Without feedback, the only effect experienced by the unconditional state p(z) is a collective
dephasing induced by the continuous measurement. For example, in the SME of Eq. (5.13) with
u(r) = 0, averaging over measurement records simply introduces an extra MD]| ]Ay}—term. How-
ever, once feedback is turned on, determining an effective master equation for the unconditional
dynamics is far less straightforward. In general, feedback-driven evolution relies on Markovianity
assumptions [104, 163], which are notsatisfied in our LQR-based control scheme (see Sec. 5.3.3).
Nevertheless, as in Markovian feedback scenarios where the system is unconditionally driven
into a spin-squeezed state [104, 164], we demonstrate that this is also the case under the non-
Markovian LQR control considered here.

Already in Fig. 5.9 we showed that an EKF combined with a LQR generates unconditional
spin-squeezing, even in the presence of collective dephasing (red dots in Fig. 5.9(c)) or local de-
phasing (red dots in Fig. 5.9(d)). However, these results rely on the CoG approximation and
the solution of the SDE system in Eq. (5.28) to compute the unconditional moments of angular
momentum, and thus, the unconditional spin squeezing. Since the CoG approximation circum-
vents the need for the full density matrix, it does not allow direct visualization of how continuous
measurement and feedback squeeze the atoms. To obtain the Wigner function and map it into
the generalized Bloch sphere, a full numerical solution of the SME in Eq. (5.13) is required. For
this reason, in Fig. 5.13 we present results from the exact SME (5.13) under purely collective de-
coherence (N = 100, x. = 0.005) to compare the EKF+LQR strategy (left column) with the
naive field compensation (7ight column) in generating conditional as well as unconditional spin-
squeezing. As in Fig. 5.9(c-d), Fig. 5.13 shows the average conditional spin-squeezing parameter
(solid, blue) alongside the unconditional spin-squeezing of the average state (red, dots). Notably,
only the EKF+LQR strategy generates an averaged state with unconditional squeezing that con-

sistently breaches the classical value (dash-dot black horizontal line). This is further confirmed
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Figure 5.13: Conditional v.s. unconditional spin-squeezing. The exact (N = 100) spin-squeezing dynamics with collective
decoherence is shown depending on the control strategy: LQR (left column) vs (naive) field compensation (right column). Top
row: Subplots (a) and (c) depict evolution of angular momentum components in jx (red) and j}, (blue) directions, in particular
their conditional and unconditional means that consistently match. Middle row: Subplots (b) and (d) compare the dynamics
of the average unconditional (in red) and conditional (in blue) spin-squeezing parameters (5.26), also verifying whether they
surpass the classical value (horizontal black line). Vertical dashed grey lines mark the relevant times for which we explicitly
plot the spherical Wigner functions (bottom row) representing the instantaneous unconditional state. Note that for the LQR
control (left), even though the width anngy of the distribution progressively narrows with time, the amplitude of the Wigner
function also decays. The other parameters used in the SME (2?) for simulations read: x. = 0.005,xy = 0,M = 0.1,
w = 1,7 = 1. The EKF is initialized with the mean (0) = (N/2,0,0, N/4, N/4, O,yO)T and covariance 2(0) =
Diag[O, 0,0,0,0,0, 0’20] dictated by the initial CCS state, and the Gaussian prior distribution for & ~ N(yo, 0’%) All
results are obtained after averaging over v = 500 measurement trajectories, while w-averaging is avoided by choosing the
prior with op = 0.5 and ;) = @ + 09 = 1.5.

by the (spherical) Wigner distribution plots (snapshots at # = 0.5, 3), where the EKF+LQR
strategy maintains steady squeezing along the y-direction over time. In contrast, under the naive
field-compensation strategy, the Wigner distribution begins to lose its structure as early as t = 3
within the LQ regime.

As the w-estimate of the EKF is initially set in Fig. 5.13 to @(0) > w, the control initially over-
compensates for the Larmor precession and rotates the spin in the counter-clockwise direction

when viewed along z. This is reflected in the spin components, with ( ];,> = E[< ];,>(C)] acquir-
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ing negative values in both zop plots, and in the corresponding Wigner function being shifted
leftward at &~ ¢ = 0.1. A similar effect would occur when choosing #(0) < w, in which case
the control operation would initially undercompensate the Larmor precession, causing an initial
clockwise spin rotation around z (Wigner function shifts to the right). Over time, the LQR con-
trol corrects the counter-rotation and stabilizes the spin along x (/eft), whereas under naive field

compensation (7ight), stability is eventually lost.
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Conclusions

In this thesis, we have studied how to track fluctuating or time-varying signals with optical atomic

magnetometers at the quantum limit of precision. A key result of our work is the derivation of
this quantum limit by establishing a lower bound on the BCRB [2, 67, 69]. Notably, the bound

scales at best linearly with the number of atoms and sensing time, thus precluding any super-

classical scaling [65, 66]. Also sometimes referred to as the classically-simulated limit, the quan-

tum limit is independent of the choices of initial state, measurement, estimator, or measurement-

based feedback, relying solely on the decoherence model and strength of field fluctuations. Thus,

by developing a measurement, estimation, and control strategy that saturates this limit, we demon-
strate that the sensing protocol is optimal.

But how can we develop an optimal sensing protocol? First, we need to be able to simulate
the optical atomic magnetometer under typical experimental conditions using a quantum dy-
namical model that is scalable w.r.t. N. This model must rigorously incorporate both the mea-
surement back-action and the environmental decoherence [57, 58, 63]. Second, we must select
an estimator and controller that, when combined with the typical measurement (polarization

spectroscopy [128, 126, 125, 120]) and initial state (coherent spin state) used in optical atomic
P Py p p
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magnetometers, will enable us to attain the quantum limit.

The dynamics of an optical atomic magnetometer are rigorously described by a stochastic mas-
ter equation [40, 55, 56], but it is not scalable w.r.t. N. To overcome this, we introduce the co-
moving Gaussian approximation, which yields a nonlinear dynamical model that scales with N
while accurately capturing the effects of measurement backaction and dephasing [65]. To vali-
date this approximation, we compared it to the solution of the exact SME, which is numerically
tractable for up to NV =~ 100 atoms [65]. Building on this model, we have designed an inte-
grated estimation and control scheme that couples an extended Kalman filter (EKF) with a linear
quadratic regulator (LQR) [55, 65, 66].

We show that this sensing protocol achieves real-time tracking of constant and fluctuating
fields at the quantum limit of precision [65, 66]. It also can track more complex waveforms
such as those encountered in magneto-cardiography [66]. Furthermore, we also demonstrate
that the continuous measurement and feedback generate inter-atomic entanglement, manifest as
conditional spin-squeezing [65, 66]. Remarkably, even if the measurement data is not stored, the
sensor is driven by the LQR feedback into an entangled state [65].

In this work, we have aimed to bridge the gap between mathematical formulations of con-
tinuous quantum measurement and estimation theory, and experiments in optical atomic mag-
netometry. Our results mark a significant step towards real-time quantum-limited metrology,
even in the presence of decoherence, by leveraging continuous measurement, feedback, and spin-
squeezing. To apply our framework to experiments with orientation-based magnetometers in the
Bell-Bloom configuration [165, 58, 59], or alignment-based magnetometers [166, 167, 168], the
dynamical model must be extended to incorporate spin-exchange collisions [140, 141] and other
relevant sources of atomic decoherence [169]. These additions would require more general tech-

niques to bound the Fisher information [170], beyond those used in this thesis.
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Appendix for Chap. 1

A.1 Proor oF (dW(z))*™ =0

Proposition A.1 (Proof of (dW(2))**" = 0). Consider a standard Wiener process W (t), then
forany N > 0, we bhave:
(dW(2))*™ = 0. (A.1)

1o interpret this rigorously, we need to write it in terms of the Itd stochastic integral. Specifically, let

A2, X(2)) be a non-anticipating function of time and X(t), a stochastic process. Then, the following
holds

/Tf(t,X(z‘)) dW(r)*N = ms_—)lz'm if(t“,X(tl‘l)) AWN =0 for N> 0. (A.2)

‘ Proof. 1o prove Eq. (A.2), we have to start with the definition of the mean-squared limit and
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show:

lim E[(S, — $)*] = lim E[S?] =0, (A.3)
n—00 n—00
where S = 0 and
8, = Z Flte, X(e1)) AW (A.4)

Thus, let us start by expanding S} using Eq. (1.80):

(o]

lim E[Sz = lim E

n—0o0 n—r00
n i—1
= lim E Z (fiaBW2HN)? 1 2> N fa AWV AW
=1 =1 j=1
n i—1
= nll)n;.lo ZE[f;zl AWZZ)2+N] + ZZZE[ﬁ,l jfl} WZJFN} [ W2+N]

=1 j=1

Let us now recall that the higher order moments of a Gaussian random variable can be

written as:

E|(aW2)™] = g+, (As)
for N odd,

0
E[AW; ] = Ny (A.6)
(N+1!N Az for N even.

Note that for any value of N; the expectation values of AN and (AW?)*N will be either
zero or at least Atf. Therefore, VN, in the limit of n — oo, E[S 2] goes to zero:

lim E[S;] =0, (A7)
and thus .
/f(t,X(t)) dW()*™N =0 for N> 0, (A.8)
st
dW(r)*™ = 0. (A.9)
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A2 Proor ordW(z)ds =0

Proposition A.2 (Proof of dW(z)dr = 0). Consider a standard Wiener process W (¢), then we

have:
dW(z)dr = 0. (A.10)

Similarly as before, we write this it in terms of the It stochastic integral:
T n
/ F6,X(0) dW()de = msdim S flti, X(62)) AW, A5, =0, (Axn)
0 n—00 pam

where At, X(t)) is a non-anticipating function of time and X (t) is a general a stochastic process.
) 14 g

Proof. 1o prove Eq. (A.11), we have to follow the same steps as in App. A.1. Since the stochastic
integral S is defined as the mean-square limit of the Riemann sum S,,, we have to start from

the definition of convergence in the mean-squared sense:

lim E[(S, — S)Z] =0, (A.12)

n—roo

and identify S and S,,. It is straightforward to see that for Eq. (A.11), S = 0 and

Sp = Zf(fz‘—la X(t-1)) AW, At;. (A.13)
=1
Then, it follows that Eq. (A.12) is simply

lim E[Snz] =0, (A.14)

n—oo
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which we can easily show by expanding its L.h.s. using Eq. (1.80):

lim ]E[S = lim E

n—0oo n—o0

(e

n n i—1

= lim B> (fadW; A)* +2) > fir fudW; ALAW, Aty

n—ro0
i=1 i=1 j=1

n i—1

— lim Z E(f2) E[(AW))] AZ +2) ) "Elfiyf] E[AW,) E[AW,] AzAy

n— 00

=1 j=1
= 132021@[;5%1} Al +0 = 0. (A.1s)
Thus .
| rexe)awia=o (419
s.L.
dW(z)dz = 0. (A.17)

A.3 SOLUTION TO FORCED LINEAR STOCHASTIC SYSTEMS

Theorem A.3 (General solution of time-varying inhomogeneous linear stochastic differential

equations). Consider the following time-varying inhomogeneous stochastic differential equation

x(¢) = F(2) x(¢) + B(¢) u(2) + G(¢) w(z) (A.18)

where F(t) is the system matrix, %(t) is the state vector, B(t) is the control matrix, u(t) is the control
vector, G(¢) is the time-varying matrix modifying the stochastic term, and w(t) is the white noise

with mean zero and covariance E[w(t)w(s)"] = Q(£)0(t — s). The solution is

() = ®(r,10) x(10) / O (¢, 2)B(u(r)dr + / O IGAw(dr, (A1)

to
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where (¢, 1) is the state-transition matrix that satisfies

d®(z,29)

& F1)®(t,10), ®(to.10) =1L (A.20)

and fulfills the following properties for all ty <t < T:

®(10,1) = O (1, 10), (A2r)
D(T,2) =O(T,1)®(2,1). (A.22)

Proof. The standard approach to solving any forced linear system is to first derive the

homogeneous solution. Namely, solving the homogeneous system of the form

dx
P =F(t)x(z), x(z0) = xo. (A.23)

Let us assume then that the system’s response in the absence of external forces is given by
x(2) = ®©(¢,10)x(t0), (A.24)

where @ (¢, ty) is a so-called transition matrix. By substituting this solution into the
homogeneous differential equation in (4.23), we obtain a differential equation for the

transition matrix with its corresponding initial conditions:

d®(z, 1)

o =F0®(0), O n) =1 (A.25)

Let us now consider the full dynamical model
x(2) = F(r) x(¢) + B(2) u(z) + G(z) w(z), (A.26)
for which, following the method of variation of parameters, we assume a solution of the form:
x(t) = ®(1,20)2(2), 2(t0) = x(t0), (A.27)

where 2(t) is a vector of unknown functions that modifies the homogeneous solution to account
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for the non-homaogeneous terms in the full differential equation. If now we differentiate
Eq. (A.27) we will get

#(1) = ©(1,10) &(t) + @ (2, 10) 2(2) = @(1,10) #(r) + F1)@(1,10) 2(r).  (A.28)
Let us now substitute Eq. (A.27) and in the lbs and rbs of Eq. (A.26):
D(z,10) 2(¢) + F(2)®(z,0) 2(2) = F(z) @(t,10) 2(¢) + B() u(t) + G()w(r)  (A29)
such that
8(z) = @ (z,20)B(r) w(r) + @ (1, 20)G(r) w(2). (A.30)

By now integrating this expression and recalling that z(ty) = x(t), we obtain

[ 400 = 50 = 5(0) = 20) = a(6) = © .20 x() =5t
:/mtq) \(z,1,)B d7+/ Oz, 0)G(Dw(x)dr  (As)
such that
(1) = O(e)s(0) +0() [ O )B@u()dr  (A2)
+ Dz, to)/totq)_l(r, 10)G(7) w(7) dz. (A.33)

By now using Eq. (A.22), and first multiplying from the right ® (7, ty) and then from the
left @1 (2, 1)

D (2,20)®(£, 1)@ ' (7,2) = ® (2, 20)®(t, 7)®(7, 1)@ (7, 1) (A.34)

we obtain

®'(z.1) = O (1. 00)®(t,7) (A35)
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which when substituted into Eq. (A.3 1) yields the final expression of Eq. (A.19):

x(2) = D(2,20) x(20) + /tq)(t, 7)B(7)u(7)dr + /tt(D(t, 7)G(7)w(7)d7. (A.36)

A.4 (SOME) ANGULAR MOMENTUM PROPERTIES

Proposition A.4 (Generation of angular momentum eigenstates via the raising operator). The
angular momentum eigenstate |j, m) where j is the total angular momentum quantum number
and m the magnetic quantum number, can be generated from applying the raising operator J, to

the lowest eigenstate |j, —j) as follows [78]:

1 2 71/2%‘

where [ is the angular momentum raising operator, defined as | = J. + i},

Proof. Recall how ] actson |j, m):

Jeliom) = il +1) = m(m+1) |, m +1) (A.38)
Note that the factor inside the square root can be rewritten as:
JG+1) —mm+1)=(G+m+1)(j—m). (A.39)

Therefore, applying the operator ]y, j -+ m times, in order to raise the state |j, —) to |, m), as
sketched in Table A. 1, yields:

j+m+j Ij? _]‘> = \/(/ + m)' (](_2];),}/'1)| V: m) ) (A.40)
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which can be rewritten using a binomial notation, since

<,-+m)!( —(tm \/wm,(] - \/(;+ ) (A41)

Hence,

. \—1/2 '
l]'a m> = ;( 2] ) j—:H_] Uv _J> . (A'42')

(+m)t\m +7

T
~.
~
|
]
—~
o
~—

. 7 1-2
s m) + 1 2027 — 1)
—j+2 3(2/ - 2)

/\J+m
Jr

s =)=

Table A.1: Raising and lowering operators for the angular momentum. (a) Scheme depicting the transition from state []', —j>

to J]', m) by applying the raising operator j+]' -+ m times. (b) Table summarizing the factors that appear every time we apply
the /4 operator to state [j, —j> and subsequent states.

A.4.I COHERENT SPIN STATE MEANS AND VARIANCES
A.4.1.1  MEANS

First, we will compute the term (/,)css,. To do so, let us write /. in terms of the ladder operators,

jx = %(]:r + j_), such that:

e, = bkl = 5 (Gl Fba) + ol 1)) (A43)
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Then, the expected value of /, w.r.ta CSS can be computed to be N/4:

(ol Jxl7) =
1 i/: NN NI N NN
S ) \Fam) (22 NG PR
N/ 1/2 1/2
1 N N N (N
- — “(E 1) - 1
2N+1mZ_N/Z<%Z+m—I—1) (%[—1—7}1) \/2 (2+> mlm +1)
1 LN N 1 N
41 N A.28& A.4 N1 Y
N+ _ZN/ (2 m) (%l + m) - 2N+1N2 - (A.44)
and similarly for I
(7l J-ly) =
1 Z/: N NN N NN
S o \Fen) \Fam) (22 R ANG) P
N/2 1/2 1/2
1 N N N (N
- Y R ) 1
2N+1mZ_N/Z(%[—|—m—1) <%’—|—m) \/2 (2+ ) mim—1)
1 L& /N N 1 N
4.1 N A2& A4 N1 Y
2N _ZN/ (2 +m> (g— m) = o= (A.45)
Hence, N
<jx>CSSx = 5 (A-46)

The other terms ( ./;)CSSx and (/,)css, are straightforward:

Uess. = 5l elg) = Gl 1nb) = o, (A47)
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and

N/2  N)2

A 12, ar \/2 NIN
(Je)ess. = (7l Jely) = Z Z ( ) ( +m> m<n,3 3’m>

n*—N/Z m=—N/2
N/2

2N d>om ( ) 120, (A.48)

m=—N/2

A.4.1.2 VARIANCES

Let us start with <A2jx>CSSx = (;7\];2\@ - <;7]jx];7)2. Note that,

2

(8% Fdcss, = (A1) — (Ll = ol 2ly) — (A.49)

Thus, it only remains to compute the term (7] ,/2|7), i.e.,
o 1 A A PN A A P
2l = 2 (Gl Teln) + Gl T-lg) + LT Telg) + Gl T 1) (A.50)

To calculate the variances of a CSS polarized along the x-axis, the first term, when evaluated for a

CSS as defined in Eq. (1.222), reads as:

1/2 N\ Nl .
<|j+j+|77 ZNZ ( —i—n) (N—i-m) <n,3

J+J+
m=—Nj 2

N
E,WZ>. (ASI)

Note that /; applied to the bra representing the angular state with magnetic quantum number
n, can be rewritten as:

(3= (o 5= o)) = (5 (o) o ‘%v,nl»T
S NI G B o
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Therefore,

<77\f+f+\77>=2iN %N/(gfn) (? M) < >:
:zN Z ( +n12 m \/%[ = —n(n—l)x

n,m=—N/

()i dfien)-

=% Z ( +m+2> (%zfmj/z\/g(%l)—(m+2)(m+1)><

_71\[/

X\/%[e[“)_ ZNZ (4+ )v(Z\;—m—z)!:

m=—N/»

B E -

m=—N/2

]+]+

X

N/;_

Np
1 N 1 (N
= 7NN =2) ) (% + m) TN _ZN/m N m) -

m=—N/>

=NN—-2)22+N2*=N(N—-2+1)2"7%= %N—n. (A.53)

The rest of the terms are:

N/2 1/2 1/2
PO 1 N N NN
i =5 2 (o1,) («3,) \/E(EJFI)—”(”—UX
n=—N/2 2 2
NN N|N
X(l=|=4+1)—mm—-1){(n—1,—|—,m—1)=
2\ 2 212
N/2
1 N NN
-3 2 (44) (53 1) -mn-n) -
m=—N/2 2
1 _ 1 _ N
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which yields the same value as:

N/2

o 1 N 1/2 N 1/2 N
i i =L 8 w (Y)Y
n=—NJ/2 2

1 N/2

N
= Z<N+ 1)7

with the expected value of J? being:

Nf2 1/2
. 1 N
arin =5 Y (51,) (

n=—N/>

(%[H) —n(n+1)x

N (m+1) +1NN +1)=
2 m(m n ,zz,m =

—N/2 (%V f’”) (Z%[(%[ * 1) —m(m + 1)) _

X \/]%[(%[—l—l) — m(m —
zN Z ( +m — 2)1/2(%V fm)l/z\/%[@[

N \? IN/N

1) +1NN
n ,22,7}’1

1)-

+1>—(m—2)(m—1)><

1 & NON(N NN )
T L\ )\ N_m)

N/
1
- 2N+2N(N_ 2) Z (

m=—N/

=N(N—-2)27* 4+ N2

) S
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=N(N—2+1)27=

%N—n.

(A.56)



Hence, the second moment of /, w.r.t. |») is:

2l = §(§<N+ D+ SN 1)) - (As57)

We know from previous calculations that (7| /.|7) = &. Hence,

. . . N [N\’
(@ hes. = ) = Gl =75 - (§) =0 (A58)
The variances for the rest of the components are,

(8 e, = Gli2l) — Gl = ol B2 ) = =26l = F) U = Tl

1 A A A A A A A A
= = (O Jelg) = Gl J-ln) = =T ln) + (ol J-J-17))
1 /N N N N N
=—(—(N—-1)——(N+1)——(N+1)+—(N—-1)) = — A.
(G- Joven - Joven s fov-n) =5, aso)
and,
N/2 N/2 1/2 1/2
. 1 N N N| . N
<A2]z>CSSx =N Z Z <N ) (N > <717 5 fzz 7_> =
2 n=—N/2 m=—NJ2 \2 Tt 2T 2 2
N/2 N/2 1/2 1/2
1 N N N| N
QN Z Z (N—i-n) (N+m> nm<n,2‘m,2>—
n=—N/2m=—N/2 2 2
N/2
1 ,( N 1 N N
m=—N/2 2

A.s BINOMIAL IDENTITIES

Theorem A.s (Binomial theorem). The expansion of the binomial x + y to the power n, where n

is any nonnegative integer, is given by

(x+y) = (Z)x"y”, (A.61)

k=
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which in the case of y = 1, reads as

(14 2)" = g (Z)xk (A.62)

Identity A.1.
N 1/2 N \/2
(g—i-mzl:l) (g—i-m) - \/zg(
2

Proof. It is straightforward to show using factorial notation:

N 1/2 N \/2
(%]ﬂLmj:l) (%[—I—W) -

(557

+1) —m(m+1) (%v

S1P4

VEEmt1) Exm GEEFm-1)

- \/Af (& J(r%vl;:_m; (m+1) <%’ ]ivm)

2 \2

Identity A.2. Follows straightforwardly from the binomial formula of Eq. (4.62) by setting x = 1
and changing the summand index k to g + m:

N/2

N ) N
> = 2N (A.64)
N
m=—N/2 <E +m
Identity A.3.
N/2
N N Nt
> (Nim) (Eim) = N2V, (A.65)
m=—N/2 2
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Proof. The closed forms for the above sums can be found using the derivative of the binomial
formula given in Eq. (4.62). Namely,

d d N N
N __ N—-1 __ _ k—1
d—x(x—I— )Y = Nx+1)M! = dx; (gx’e = ; (2’)/” : (A.66)

Then, Eq. (A.65) is obtained by setting x = 1 and changing the summation limits.

Identity A.4.

N/2

N ) N-1 N-1
m| =N2"" — N2 =0, (A.67)

m=—N/2
which follows trivially from Identity A.z and Identity A.3.

Identity A.s.
N/2

oo <N f m) = N2V2, (A.68)

k=—N/2 2

Proof. 1o find the close form expression of Identity A.s, we take the second order derivative of
the binomial of Eq. (A.62) multiplied by x:

x(x+ 1N = Z (IZ> Prand (A.69)
k=0

10 do so, we first compute the second derivative of the l.b.s. is

d2

2 (v(x 4+ 1Y) = 2N(x + 1) + Nx (N — 1) (x + 1)V, (A.70)
and of the r.b.s.:
% ; (ijﬁq = ; (]/:I> (k+ 1)k (A1)

If we now set x = 1 and change the summation limits by redefining the index k as
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k= %[ + m, then, Eq. (A.69) can be written as

N/2

1f now we massage the l.b.s. a bit more:

N/2

Z (‘%[ o+ 1) (%[ + m) (]_\, fm> = N2V + N(N—-1)2"%2  (A72)
m=—N/2 2

2 (Geme) (5om) (41) -
—+m
2 2
m=—N/2
L (N(N N
Z — = +1)+m*+m(N+1) || 5
2\ 2 > +m
m=—N/2 2
N/2 N/2
N N
_ = 2
= N(N+2)27 ) (A,er) +> m (N+m>
m=—N/2 m=—N/2 2
N/2 N
_ N-2 2
= N(N+2)2"2 + > (N+m>’ (A.73)
m=—N/2 2
we can finally rewrite Eq. (A.72) as
N/2 N
NN+22"2+ Y w? (N ) = N2V + N(N —1)2"2% (A.74)
5 Tm
m=—N/2 2
and thus, reach the final form of Eq. (A.68):
N/2
> (N ) N2V 4+ N(N —1)287%2 — N(N 4 2)282
St m
m=—N/2 2
=N(4+ (N—1) = (N+2))2V %= N2, (A.75)
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Appendix for Chap. 2

B.1  GAUSSIAN PROPERTIES I

Property B.1 (Inversion of a 2x2 Block matrix). Consider a Block matrix partitioned into four

blocks where A and D are square blocks of arbitrary size. Then,
(A B) - <A1 +A'B(D—CA'B)'CA” —A'B(D - CAIB)1> 5
= . I

cC D) —(D—C47'B)'c4™! (D—C47'B)™"

Property B.2 (Determinant of a 2x2 Block matrix). Consider the following Block matrix

A B
(C D) . (B.2)

If 4 is invertible, then the determinant is given by:

A
det (C £> = det [4] det [D — CA~'B] (B.3)
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Lemma B.x1 (The joint distribution of Gaussian variables). Letx € R” andy € R™ be two

Gaussian random variables such that:

x ~ p(x) = N(x|g,%), (B.4)
ylx ~ p(ylx) = N'(yl4x + Bu, GQG") (B.s)

where A is a transition matrix, B is the control input matrix, u is an external control, and Z and

Q are positive-definite covariance matrices. Then, the joint distribution of (x,y) is a multivariate
Gaussian given by:

x _ x ¢ )3 AT
<_y> ~rEy) =N ( (_y) (Ay + Bu) ’ (AZ ASAT + GQGT> ) (B.6)

Proof. The joint distribution of (x,y) can be expressed using the product rule (Property 1.2):

p(x.9) = pOylx)p(x) = N (yldx + Bu, GQG') N (x|, Z). (B.7)

Let us now work backwards by assuming that Eq. (B.6) holds and see if we can split the joint
distribution into the following two explicit forms of the Gaussian distributions of x and y|x:

T — ! ex —l—x—uT T l(y-Ax-Bu .
N (yl4x,GQG" ) = 27)"]GOG"| p(z(y Ax-Bu) (GQG" ) (y-Ax-B )), (B.8)
1 1 Ts 1 (4 _
N(x][z,z)—mexp<—z(x—p) >3, ‘u)) (B.9)
Namely, if
p(x.y) :N<<x> m,P) (B.10)
J

() (5 mter))
) \/(ZW)”+WI|ZIIGQGT| = (é ((;)@ﬁﬁ)”((;)@pi}s)))

215




where we have used Property B.1 and Property B.z to compute the inverse and determinant of

P since X is a positive-definite symmetric matrix and thus, invertible:

i (T EAT \(Z74+47(6QG6T) 4 —4(GQGN)”
Tz azamieeen) T\ —(ceen U (6eeN)T )

(B.12)

det P = det = det [Z] det [GQGT] . (B.13)

> >A4T
A3 ASA" + GQG"

1f now we expand the exponent of Eq. (B.10), we get

Cc —u )T (2—1 + A47(GQG") "4 —AT(GQGT)—1> (,x —u >

—ap) \ —Goeh 4 (66 ) \y—

_ ((Vx —u >T <(2_1 +4"(GQG")'4)(x — p) — A" (GQG")'(y _Al‘)>
—(GQG")'A(x — p) + (GQG")\(y — 4p)

)T <<2—1<x — ) + A7(GQGY) " (dx —y>>

—(GQG") ' (4x — y)

= (x—p) "= (x—p) + (x—)"4"(GQG") '(4x—y) + (y—4p)"(GQG") ' (y—4x)

= (x—p)' = (x—p) + (4" —x"4" +y" —p'4")(GQG") " (y—4x)

= (x—p) "= (x—p) + ()—4x)"(GQG") " (y—dx). (B.14)

1t follows then that Eq. (B.10) can indeed be split into the two Gaussian densities of Eq. (B.4)
and Eq. (B.5 ):

e cxp[3 (== e+ -47(6QG") -4

b ewEew) ! ¢ (0-427(6Q6") ~ (r—4))
27)"[2] (27)"|GQG"|

— N (x| g, )N (yl4x, GQG). (B.15)

p(xv)') = \/

Lemma B.2 (Marginal and conditional distributions of a joint Gaussian probability density). Let
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two random variables x and y have the joint Gaussian probability density

G- OR )
Y Y &y 20 Zyy

where Zz’y =2, .. Then, the marginal and conditional probability densities of x and y are

x~plx) = N(xle, Z..), (B.17)
y~ply) = N(}"/‘}" %) (B.18)
xly ~ plaly) = Nelee + 20,2000 — ), S0 — 2,5, %), (B.19)
e~ plyle) = Nyl + 20,200 (x — yx),zw —ZLE05) (B.20)
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Appendix for Chap. 3

C.1  FOURIER COEFFICIENTS OF A DOUBLE SERIES EXPANSION

Proposition C.1 (Double time-frequency Fourier series expansion of a continuous mode). Let
b(t) be a continuous mode defined over time t. By segmenting time into intervals of duration At and
applying a Fourier expansion, the continuous mode b(t) can be written as a double series expansion

in both time and frequency:

7 1 - - 7 —i27wk t] At
b<t> = \/_A_t Z Z bn,ke)(t_ [,L)C Zrke/A ) (CI)

n=—00 k=—00

where t, = nlAt is the discretized time step, © (t —t,,) is the Heaviside function defined as © (n) = 1
for0 < u < At and zero otherwise, and b, are the “Fourier” coefficients of the double series, given
by:

by = —— / tﬁml;(t)eiz”kt/m dr. (C.2)
' VAt J,,
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Proof. Let us start the proof by multiplying both sides of Eq. (C.1) by €27/, a5 well as
integrating them w.r.t. time from ty,tot,, + At

tm—i-AtA 01/ tm—l-Atl 0 0 . b/ 01/
b(t)eiz” t/At dr = bn,/e @(t . tn) e—i27z t Atei27r t/ At dz. (C-3)
| M= X

n=—00 k=—00

Since ©(t — t,,) is nonzero only fort, < t < t, + At, and considering that the integration is
specifically performed over the interval t,, tot,, + At, ©(t — t,,) can be replaced with 1 within
the integration interval [t,,, t,, + At) and zero otherwise. This allows for the removal of the
summation over n in the expression, as the only non-zero contribution comes from the term
when n = m, i.c., when the interval picked by the Heaviside function coincides with the

integration interval. Then, the rbs of Eq. (C.3) reduces to

tm+AL ' oo 1 . twtdr '
/ b(t)e’zzg t/At 4y — Z bt / e i2mkt/Argidmle/Ar g,
! k:—oo At tm

m

1t can be further simplified by using the orthogonality of the exponential functions, i.e.,
meaning that for terms with k # {, the integral over the interval At will be zero due to
periodicity of the exponents over that time period, and for k = {, the integral will yield the

interval At:
tmtAL ;
/ ¢ 2kt Arg2mte /A qp — Ap gy, o)
£

m

where 0y ¢ denotes the Kronecker delta. Therefore,

tm+At
m A « 1 7 — 7
B )20t 3y — E ——bpuk A0 = by oV At,
[ ( ) o \/ AZ’ ) i s

m

such that we can easily isolate the discretized modes b, , as:

N 1 tnt AL .
bp = T / b(£)e>™1/8 ds. (C.s)
tn
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Appendix for Chap. 4

D.1  WRITING A QUANTUM MAP AS A CONVEX MIXTURE OF UNITARIES
Theorem D.1 (Quantum map as a convex mixture of unitaries). Given a unitary evolution gov-
erned by a Hamiltonian EH Ul Sighr | ith

T ] = ¢ y (D I)
whose scalar encoding £ € R (frequeé;zcy) is randomly distributed according to a Gaussian proba-

bility density
~Y = T T fry ; ex _w 2,
3 P{hﬂ’(f) N(/‘( )a 02( )) (T) p { }7 (D.2)

2wo? 25°(7)

then, the quantum map € can be written as a convex mixture of these unitaries as:

£(7) = Qlp(0)] = Eye) Uz [o(0)]] = / dE p(£) e EHTp(0)e 17, (D.3)
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if p(7) corresponds to the solution of the following master equation:

dp(7)
dr

= A+ T6) (R - U A0)) (D4
= —i(2)[H,p(7)] ~ 5T(2) [, 1H4(2)] (D5)

with the time-dependent frequency and decay parameters being

w(7) =u(7) + 7i(z)  and  T(z) = 25 (7)7 (1 + %7) : (D.6)

Proof. The first step is to differentiate p(7), as defined in Eq. (D.3), with respect to :

e ( Pw@))“af[p( I+ [ ) g UedoO) (@)

which, in turn, requires the differentiation of the Gaussian probability distribution,

d _d 1 (£-p())
d_Tp#,a(St) - d_T [\/Wexp{ 20’2<7’) }]
£-pu(7))?

o ] L A f (e

~dr \/W] P{ 202 (7) }+\/Wdr[ { 20%(7) H

)1 {_(f—#(f))z} {_(f— ¢()’ } d (Ep(0)
(D) /2m () T 22() \/m 22(7) [dr 20%(7)

_punl®) (_38_202( okl el TG i o )

_ a(7)  —4(7) (& — )) () (£ —u(7))*4o(7 ff(f

= Puol?) (_a = 404 (7)

= 2uo(E) ((f — u(7))o(7)i(7) + ;3((57) #(7))? 02(7))0“(7)) 7 (D)
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and the unitary map,

1= [ e = L oo Lo

— (—iEH U Jp(0)] + Us Jp(O)]EH) = —i [H, £ Ue ()] . (Do)

Therefore, the derivative of the density matrix with respect to v becomes,

PO 1 [ n) (- o) + () = 210) o)) U lO)
~i [ d20al®) [ £U1p(0)]
= By [(E(0) )l (Rie) + (-0 olr)-)o()) U]

— i [B, By, o) U (0)])] = %EW [£o(2) iU [o(O)]

— 757 ) A MU O] + B [(E— (5) ) s O]
— 7 [P U O] =i [ B0 O]

— B By 6o O)) - EDE00) + S, (6~ ) U]
- 29506) = A By £ U (0] (D.10)

1o continue our proof, we must then explicitly evaluate the averaged expressions

Epﬁyf(f) (£ Uz [p(0)]] and E,,., [(£— [u(r))z Uz, [p(0)]]. To do so we will employ the trick of
taking the derivative of the Gaussian probability distribution with respect to u(7). Namely,

ad o d [ (o)
02( )d‘u(f)pﬂﬂ(f) 02( )dy(T) [ 271,0,2(7) p{ 20.2(7> }]
= Epus(§) = () pus(§) (D.11)
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and

4 dz _ T d _
) g Poelf) = PO (€= )
d
= 20) (Purkt) + (=1 g4 Af))
= 26 lf) + (E= M) 5Pl
() o) + (E = (D) 0ol E). (D.12)

Then, we can move to evaluating the averages, i.c.,

By EUs o (O] = [ A 22l Us o)
" [ o (ﬂr)%pﬂ,y(f) ) puoE)) U]
=20 [ & Zpuel) Us O] + 2ol
= i ()7 |[H.p()| + () (), (D.13)
and
By, [(6 ~ #(6) UslplO)] = [ A (¢~ 4(5)) ool Us Lo O)
019 / £ (ﬁ(r)%pﬂ,a(f) + 2 (5)0eld) ) UscllO)
) [ & s PO U O]+ (0000
L @2 |8, [ p(5)|| + 24 (D.14)

where in the last step of both expressions we have used the change of variable of € — £+ u(7) to
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calculate

d d
o [aenate ) 0] = 27 [ uclt + 09 s (0]

d;j /dfPo (&) Ust (o), [p(0)] = /dfpoﬂ(r)(f) %uf‘h“(f)ﬁ[ﬁ(o)]
) / A& oo (&) [H, 7 Us Jp(0)]] = =iz |H,p(7)] (D.15)

which then implies that

s [ OV 0 = 1[4 [azn o0

—ie [t 2p00)] = e 1. 355 [ npt0)]
== | [ P9

Armed now with the explicit form of the expected values given in Eq. (D.13) and Eq. (D.14),
we can complete our derivation of Eq. (D.10). Namely,

'()

oo | (€ — (7)) U [p(0)]]
#(T)ﬂ(f) 57(7)
- ( 2(7) + ))ﬁ(r) —1 [ By, o) [E Ue[p(0 )H}

T o(7
= £0 (<2r [f150)] + #(e10t)) - (U2ED + X0
(7

which is then in the desired form of Eq. (D.s).
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D.2 GAUSSIAN PROPERTIES I

Lemma D.2 (The integral of N + 1 Gaussians). The integral of N + 1 Gaussians can be written

1 ! -£ - N,l(é’(i);#
(27 V)12 (ZWW)N/Z/dfe W 2= :
N : f(&)ex _Gmep D1s)
vV N P\ 2+ /) :

where { = = Zf\il 7D and

=1

f&) = W exp{_ziV[ <Z(?(i))2 —Nf_2>} (D.19)

Proof. Let us first start by expanding the exponent of the local term,

(9 = (F+w)? = (V) —2(5+ o)l + (£+ w)? (D.20)

such that when summing overi =1, ..., N, we can it as

>0 — o) = 3 (€Or -2 e+ (1))

=D @2+ )Y (O+NERe)?  (Da)

Next, we introduce the average of auxiliary frequencies experienced by N atoms,

T
{= NZZ(Z) (D.22)
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which will be employed to reformulate Eq. (D.21):

S Y= (F+w)? =) () -2(5+ w)NCHN(E+w)?
= NP2=2(£+ 0)NE+N(E+o)? + (79 — NZ2
= N(— (E+ ) + @) - N2, (D23)

i=1

where in the penultimate step we have added and subtracted N, Crucially, the local

exponential in Eq. (D.18) can now be divided into two terms

N @D —gw)? (= (¢10))? N (5 =
e Yim e*We*i(E:l@())Z*Nfz)

: (D.24)

leaving the first exponential as the only one depending on & and w and the second term as a
Sfunction of exclusively {.
Therefore, we have reduced the problem of integrating N + 1 Gaussian functions with respect

to 5 to integrating only two Gaussians, i.e.,
2 s 0-rw? _ L (SN (Y2 N2 2 _ (—(+a)?
/dfe_”ce Lim I = g (T -e) dfe e /N (D.25)

which bas a known result:

L2 _G-(a)? AN (- w)?
dée 27 W/N T =, [ Qp—— —_—— 5. D.26
/ Fe e M ﬂVchVg/NeXp{ 2+ VN (D.26)

Therefore,

1 1 R N
(27 V)12 (ZWVZ)N/Z/ dee tte T
({—w)?

1

= g O {—Z(K T V/N) } (P27)
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where

=1

Lemma D.3 (Set of nested integrals of Gaussian functions). Consider the following recurrence
relation defining P/(w;) in terms of Piy(w4) forj = 0,1,2,...:

_ 1 (0 — wj1)? 1 (&1 — wj)?
e e T 2

which involves a generalized convolution of Gaussian distributions with variances Vp and Vp, re-

}le(wjl) (D.29)

spectively. The initial condition for the recursive relation is given by a Gaussian of the form

Pulan) = Coesp {1011 (D30)

where Cy is a constant, Vo > 0 and u, € R. Then, Vj > 1, the solution to the recurrence relation is

(v~ )’
Pj(a)]) = Ciexp {_12—%6}7 (D.31)

with parameters C,, %, and V; given in turn by the following coupled recurrence relations:

VPVQ»‘I/2 (@1 — )
C=Cql2z| Vp+ Vo + ex - D.32
Vot + Vi .
& Vo+ Via '
VoV
QVj1
V.=Vp+ ————. D.
J P VYQ—F V},l ( 34)

Proof. As with many recursive problem, it is sufficient to use mathematical induction to prove
that the proposed solution in Eq. (D.3 1) holds. This involves verifying the base case forj = 0,
and then showing that the relation (D.29) is fulfilled by Eq. (D.3 1) for anyj > 1. The base
case is trivially satisfied by the definition. For the inductive step, we assume that Py (w;-1)
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takes the form given in Eq. (D.3 1), and we show that substituting this into the recurrence
relation in Eq. (D.29) yields the correct form for P;(w;). This is done by performing the
integral in Eq. (D.29) explicitly:

_ ! (@-;1)%| 1 (G-wp1)? (@1-.)"
7)](60])7 da)f’l /27TVP CXP{ 2%) /277VQ CXp ZV;) Q’lexp ZVj,l

Ciy w? — 2aw;+ B
= 4 expq — / V;Vj_l (D-3 S)

\/27r<VQ—|— V])‘i_I/;VQ> 2<VP+VQ+V,>1>

with a and B fulfilling:
V ‘u,f + V‘*l _,1
g Q%1 J15j :‘uj’ (D.36)
VQ + V]‘—l

B VQ[Z]{I + V}’lggl + VP(Q‘—I - Iuj,l)z (D )
- VQ + Vj_l 9 37

which are both independent of w; and w;.\. If now we complete the square;, i.e., split the
exponent of Eq. (D.31) into 0} — 2aw; + B = (v; — @)* — & + f, and substitute the

expressions for a and B, we get,
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which, since a = K, and

7 Viadh + Vol — 1)
—a +f =P+ oty + Vindh i1 B

(VYQluj—l Vi- 15; 1) VQ/"]%l + V}*légl + V}’(;’*l - /"jfl)z
(Vo + Vi)? Vo+ Via
— V3 = 2Vou Vingn = VEGA + Vaud, + Vi Vot
(Vo + Vi)
VEGH + VoViadh + VeV + Vi) (5 — 25}—1‘“]-_1 +47,)
(Vo =+ Via)?
_ZVQzujl 1;;1+ VQK‘ 1+VQV;1Z +VPVQZ _ZVPVQQ 144
(Vo + Vi)
VoVit? s + VoVl — 2VpViafp,  + VoV
(Vo + Vi)
(VoW1 + VeV + VaVi1)gh — 2(VpVj + VeV + VeV ),
(Vo + Vi)?
(Vi + Volo + VeVi)ury (VoW + VoV + VoVj)

4 Vo + Via)? - (Vo + Via)? (51 /‘]:1)2

(51 i )2
= <V})+ VQ > / /1 ) (D.39)
ot Vi) Vot Vi

+

yields the expected form of Eq. (D.31), with C, K, and V; as specified by Eqs. (D.32-D.34).
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Appendix for Chap. 5

E.1 UNCONDITIONAL DYNAMICS IN THE PRESENCE OF A FLUCTUATING FIELD IN THE LG

REGIME

Consider the most general dephasing evolution possible:

do () = —iwl?) [ 7 Jo(c)(t)}dt—i— 3" kDo ()de+ MD[f e, (e, (Ex)

a=x,y,%

where collective dephasing occurs along the three directions x, y and z at rates «., x, and «, re-

spectively. From this master equation, a set of differential equations describing the evolution of
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the corresponding observables e, ];, and /, can be derived:

dw = —yo(e)de + /7,dW,,, (E.2)
AU = ()t — S (M + 1 + ) (e (Es)
AU = ()t — 5+ w2) ) (k.4
d(Je) = =5 (M+x,+ x) (L)dr, (E.5)

Given that Eqs. (E.2-E.4) form a closed set of coupled differential equations, they can be nu-
merically solved in order to yield the unconditional evolution of J.(£)). However, since we
would rather find an approximate analytical expression, we focus on short timescales such that
@(t) t < 1. Then, by substituting the random variable »() by its time average &() into Eqs. (E.3-
E.5):

a(f) = % /0 dra(z), (E.6)

the system of differential equations yields,

7 j - Kxtxy+2k
(L:(2)) = 26 ¢ (Mt +26:40) £/4 (M—Kx‘l—Ky—f—@—Ct@/z(M—Kx—l—Ky—@)) ., (Ez)

where © = /(M — x, + «,)> — 164%(¢) and the initial conditions set were to the CSS state:
(J.(0)) = Jand ( ];(0)) = 0. By expanding the unconditional evolution of J, to first order in

@(z), we obtain

A

(fu0)) me Jem Htmtm)if2
2 — 2eW=Rt®)2 4 f(M — 1, + xy)

9 Jo— (Mtwetn,) /2,52, E.8
r2Je 20 T (£3)
Hence, he unconditional evolution of /, can be approximated as
(Ju(2)) me Jem Mtttz (E.9)
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when the first term of E.8 dominates over the second. In other words, when the time average of

w(¢) fulfills

atl < X2, (E.10)
where we have approximated the exponent e ~%+%)4/2 in (E.8) as its Taylor expansion up to
second order. Namely, ™)/ ~ 1 4 (M — i, + &)t + (M — x, + x,)**. Addition-
ally, note that within the linear-Gaussian regime, the approximation Eq. (E.9) is independent of
the decoherence rate x,. Therefore, the decoherence rate «, is redundant and disappears from
Egs. (5.16-5.19) when performing the Holstein-Primakoff transformation of the SME accord-
ing to the X and P quadratures of Eq. (5.15). Mathematically, one can check that the dissipa-
tive terms disappear, since Tr{]sD[X' lp (C)} = Tr{X D[P)p @)} = 0. This is can be intuitively
explained—deviations of J(£) from the x-direction are then too small for the collective noise man-
ifested via D| jx] in equation Eq. (E.1) to have any effect on the quadratures Eq. (5.15).

Next, we would like to find the mean and variance of the time average of w(z),

Ela(s)] = /0 "Elo()] dr, (E.11)
Via(z)] = E[(a(z) — E[a(2)])?] - (E.12)

As discussed in Sec. 1.3.6, the mean of a random variable w(#) driven by an OU process of the
form in Eq. (E.2) reads
Elo(f)] = «(0) ™ = 0, (E.13)

where we have taken w(0) = 0, while its covariance (as shown in Eq. (1.134)) is:

Clw(s),0(?)] = Elw(s)w(2)] = Z—;{ (6‘7;(‘1‘7:‘ - efﬂ((t“)) . (E.x4)
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Figure E.1: Validity of the LG approximation for <];(t)> at different field fluctuation strengths The parameters used to gen-
erate the plots are M/ = 100kHz, x, = x. = 1Hz,/ = 107,57 = lLandy = 0,withzg = (M + & )¢ being the
scaled time such thatzg = 1whent = (M + KC)*I. Plots (a), (c), and (d) (left column) have been generated with a field

fluctuation strength of g, = 10%rad s—3

, and plots (b), (d), (f) (right column) with g,, = 10%rad s 3. The first row (plots (a)

and (b)) show the fluctuating field in solid blue juxtaposed with the confidence interval of(E(t) (9) as well as the upper bound
for |&(¢)| which stems from the Taylor expansion of ( /,(¢)). The plots in the second row (subfigures (c) and (d)), compare
the exact solution of (/,(¢)) with its approximation Je = (M+%)%/2 Finally, in the bottom row, plots (€) and (f) show the error

percentage of the approximation of <]x(t)>

Hence, E[&(#)] = 0 and its variance:

Va(r)] = E[@(1)?] =E E / dr ) % / [dfzw(fz)]

= /dTl/de

(71+Tz)>

/ dTl de—( 7)('71 7’2\

1 1 _ —X[ 2
_ wz / d'Z'1 (/ d'Z’2 e—;((n 72) +/ d'Z’z e;((n—rz)) i ( € )
le‘ 0 0 7 X

_ g |1 [ o NP b el
= 22(1‘2 2(/0 dTl (1 e ¥ et 2‘%'31) P

9

= T2 (4e ¥ + 2yt — e ¥ — 3).
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If y < 3%, we can correctly approximate the variance as:

Via(e)] = %t. (E.20)

So, using the 68-95-99.7 rule and taking the confidence interval for @(#) to be

]E[a(r)] + zm‘ - 2\/?, (E.21)

we can define an inequality that ensures (E.10) to hold with high (95%) probability:

2

2
vEd < g (E.22)

3

~

Asshown in figure Fig. E.1, the inequality in (E.22) correctly assures the approximation ( /,(¢)) ~

]ef(MJ”‘C)’/ 2 to hold. Moreover, it gives an upper bound to the value of g,,,

3
In summary, the unconditional evolution of J. can be taken to be
(Ju(0)) mo Jem 112, (E.24)

if y < 3% andg, S % Note that we have renamed x, =: x. and dropped «,, since it is unnec-
essary. Namely, by transforming the parameters of the continuous measurement in Eq. (5.16) as
follows: M — M — x,, 5 — M /(M — x,) and y(¢) — y(£)\/M /(M — x,); we retrieve the
conditional dynamics Eqs. (5.16-5.18) with x,, = 0. Hence, the impact of the collective noise in-
troduced via D| ];,] in Eq. (E.1) can always be interpreted and incorporated into a modified form

of the continuous measurement Eq. (5.16).

E.2 CONDITIONAL DYNAMICS OF THE VARIANCE V,(¢) IN THE LG REGIME

When taking into account possible decoherence mechanisms along the same direction of the mag-

netic field, the differential equation for the conditional variance of V,(¢) is shown to be,
dV,(2) = —4MyV,(£)ds + x Jre” M) dy, (E.25)
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whose solution exists and can be given in terms of modified Bessel functions of first and second

kind (Zg[-] and KCg[-]), and regularized confluent hypergeometric functions (, £ [-]). Namely,
V() = Vo(t) = Je~ (1Hx)e/2 (L [zﬂ} (« Sy MKo[24] — 5K [m]) +
+ Ky [2‘8] (KC Ti[2a] + \/nxM (F]1, a2]>>

/ (2 LA ( /7 kMK (2] — My Ko [204])

29pM

_l’_
M+ x.

Ko[28] <(M+ xe) oFi[l, @] 4 2xc ] B [2, “2]>) ) (E.26)

where 2 = 2]\ /7 xM/(M + x.) and f = ae™MF%)1/2_ The behavior of the solution in E.26

can be better understood when broken down into different regimes.

e 1 |m _ 1 [z
Ti[28) = N Ko[2a] ~ 5\/% 2 Ki[24] ~ 5\/% 2

28 1 T 20
2 S KCo[28] = =, | = % PO
JEILE ~ 28~ 5[5 | Rk

Table E.1: Series expansions of the Bessel functions for 1 /2 and 1/8around 1 /29 = 0 and1/8, = 0, to leading order.

In order to do so, the first step is to expand the modified Bessel functions and the regularized
confluent hypergeometric functions around infinity and only keep the first order, since 2 > 1
and 8 > 1. The relevant expansions are shown in Table E.1.

By then substituting the leading order expansions of Table E.r to solution E.26 and approxi-
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Figure E.2: Strong and weak dephasing regimes for the variance. In the subfigure on the left (x. = 10 mHz < ), the
exact variance solution Vy(t) is compared to the approximated functions V <« (¢) and V'« () (dashed green and yellow,
respectively). The transition time ¢* between these two regimes is marked with a dotted black vertical line. In the second
graph (on the right, with x, = 100 MHz > M), the two different regimes V.« (¢) (dashed green) and V<« (¢) (dashed
yellow) are superimposed with the exact solution of Vy(t) (in solid blue). Notation # refers to a scaled time, £, = #(M + ).
All plots have been generated with A4 = 100 kHz, 7= 1,andJ = 10°.

2a(—2+41(M+x.

mating e* as e~ ), the variance of /,(¢) simplifies to

() ~ l]e*(M*HCc)l‘/Z /Mx.y cosh (2]t /Mrx.y) + «.sinh (2]t /Mx.7)
2 /Mxy cosh (2]t\/Mry) + My sinh (2]t /Mx.y)

Note thatif 2/t /Mrxy > 1, then, cosh (2/t/Mrxy) ~ L'V andsinh (2]t /Mry) ~
%ezﬁ VM quch that,

vy

(E.27)

Ke

\Y% )
nM

¥ (E.28)

1
(6) m Vi () = S Je 2

If 2Jt\/Mx.y < 1, then, cosh (2]t /Mx.y) ~ 1and sinh (2]t /Mx.y) = 2Jtr/Mxy such

that,
_ 1+ 2Jtx.)
Vo (£) & Ve (£) = Jo MHxei/2 1+ 2exc) . E.
)2 Vel e Orvez L) (E.9)
Moreover, note that since 2/¢,/M¥x.y < 1, we can then derive the condition
tL _ = k. < | | (E.30)
= KC 5 .30
2/\/Mx.y My 3
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for which E.29 holds. From it, it also follows that if x. < A, then (1 4 2/¢x.) ~ 1and,

A\ (L‘) ~ J e—(M+xc)t/2 ~ J (E.}I)
! 2 + 4/tMy 2+ 4/tMy’

where in the last step we used the short-time condition # < #* < (M + x.) .

Next, by showing that V},(t) is a non-decreasing function at # &~ 0 if x. > M, we can prove
that (E.3 1) will hold 7f and only if k. < yM tor]>> 1. Namely, that we can consider the global
decoherence . to be insignificant for small times # < #* only when x. < 7M. In order to do so,
we take the derivative with respect to time of the function E.29 and then compute the limit for
time approaching zero:

d

lim — [V (¢)] =

—0 dz ]<M+ ke — 4K + 4]M}7) (E-32)

1
4
By then setting the solution above equal to zero, we find the value of «. for which the derivative

changes signs,

M + 4/My My+1) My+1) 17’
= ————— &M o |-, E
" 41 Tty T Y7 (E:33)

which can be correctly approximated as . = 744 when /> 1. Hence,

. d .

}gr& P Ve (2)] > 0 if k. > pM, (E.34)
and

. d .

}13(1) I Ve (2)] < 0if . < 7M. (E:35)

Thus proving that the variance of ]Ay can be approximated as (E.3 1) only when x. < 7M.

E.3 DEerivaTION OF THE COG DYNAMICAL MODEL OF EQ. (5.28)

The set of stochastic differential equations (5.28) can be derived by carefully applying the rules
of It6 calculus, e.g., by noting that the differential of any two functions of time and a stochastic
process, fand g, reads d(fg) = fdg + gdf + dfdg. In our case, these functions are the means,
variances and covariances of some quantum observable ) , whose dynamical evolution can then

be computed by substituting the conditional dynamics (5.13) of dp into d(0) = Tr{ O dp <c>}.
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In particular, considering Joy VO and C;Z witha, 8 = x,y, zappearingin Eq. (5.28), which satisfy

d<j“>(c) = TI‘UZ dﬁ(c)], (E362.)
dve = d(j2), - d ((L)7) (E.36b)

= d(2),, = 2 d ((),,) = ), 4l
1. ,. . 1., .4 A A
dCY = Sd(fule), + 58U, = d (e, (s
1.,. 4 1., 4 . N
= Ed<]“]/g>(c) + Ed<]ﬁ]"‘>(c) o <]/3>(c)d<]“>(c)
B <j"‘>(c)d<j/3>(c) - d<j”‘>(c)d<jg>(c)’ (E36C)

with the initial conditions set to the mean, variances and co-variances of a CSS along x (see Sec. 1.4.4):

(0, = (L) (o), (o)) = (5 0.0) (E37)
Vi2(0) CH0) CL(0) 0 0 0
(€)= [y © Voo cyo]=|o s o | (E)
CE"(0) CH(0) VL(0) 0 0 N/4
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By carefully working to the relevant order O(d#*/?):

d(fe), = —(@(@)+u())(]), dr= > xc+2x5+M (Jo),, dt-+2+/7MCE) dW
d(f), = (£) (o), de— (HZW (), di+2/73V 0 W
d<jz>(c) - _£M<.[z>(c>df+2\/i77wcgl) dw

C C Cc 7 2 C N C
AV = —2(w(¢) +u(2))CE de+x. (V;Ur(]y (C>—V;>> dr+1x¢ (E—ZVQ) dr

(E.393)
(E.39b)

(E-39¢)

1 PN 1 N
—I—M(V;c) —Ve _4;7(332) dr +2+/9M <5C0V(c) (]j]},) + zcov(c) (]},]xz)) dW (E.39d)

. N
4V = 2(w(0)+u(1)Cldr-+r (VO + (17— V) de+x (3 - 2V§°’) dr
4;7MV ©2dy 4 2/ M covy (/. ) dw
4V = M(VE+(J) ~ V) de
+ 2/9M ( cov()]]}, covU(]y] ))dW
dCY) = (w(2)+u(2)) (V(C) VM) dr—x. <2C(C)+<Jx>< (B >)
—2#,Cl)de— lMC@ (1 + 8}7"@) ds
+ 2+/9M (—cov © ]x] C0V<c> () + C0V<c (f fx>)
i = it <xc () e
1
+24/7 ( cov, ]z oV ( ]y ]z_/}/) COV(c) ¥ fz))
dCy) = —(w(2)+u(r))CYdr — l ¢+ 2% + 4M) C)dr — M<jz><c> <jx><c>dt

5 (F
N 1 PN
— 4;7MC;;)C§;>dt +24/7 ( cov<c y) + ZCOV(C) (]y]x_[z)

1 1 I
Lcong i) + Seovo (7 x>)dw

dow = —yw(r)dr + \/%dww
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where for any three operators A s Band C , we define

cov(y(4BC) = (dBC) — (d) (BC)  — (B) (AC)

N <é>(C) <AAB >(c) + 2<AA>(C)<B >(c)< é>(c) : (E'4O)

We simplify the full dynamical model given in Eq. (E.39) by applying a cut-off approximation
that discards the third-order moments and higher. This step is crucial for two reasons: it allows
us to construct an EKF and provides a self-contained set of stochastic differential equations de-
scribing our sensor. Importantly, the impact of neglecting third-order moments on the CoG
model is limited, as these moments appear only within the stochastic terms of the second-order
moment dynamics.

Additionally, we omit the differential equations for < ]; o’ CY, and C;;) in the main text be-
cause these quantities remain consistently zero throughout the time evolution. This is due to
their initial values being zero (CSS-state conditions: ( 7.(0) >(C) = C(0) = C{)(0) = 0)and
their exclusively decaying dynamics. By disregarding these irrelevant terms, we arrive at the dy-
namical equations presented in the main text as Eq. (5.28).

Finally, in order to solve the system of SDE numerically, is also convenient to normalize the
state and hence the system of SDEs w.r.t. V/N. Namely,

X :=J/VN Y = ];/\/]Tf, (E.41)

with new variances and covariances being:

(WX) =V N (¥Y) =V,/N (¥Z) =V./N (A(XY)) =Cy/N (E42)
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Then, the system of SDE simulating the system in the co-moving approximation is:

4(X), = (o) +(e) (7), de— %(KC+2W+M) (X, dr
+24/7MN (A(XY)),_dW (E.43)
d(Y) = (@(&)+u(2)(X) de— %(KC +21c)(Y) de+2/pMN (°Y) AW (E.44)
d(@2X), = ~2(w(0)+u() (AET)) de+rx(@2F) + (D))~ (X)) de
x G ) <A2X>(C> M (8 2) () —apN (AT )b (Eas)

A7) =20(0) +ul0) (BOD)), drr (X)X, @7), )de

g G —2 (N°Y) (c)) dr—4pMN (N T de (E.46)

d(@2), =M(@X) +(X)] - @2),)dr (E.47)
d(AXT)), = (w(0)+u(2)) (@2@@ — f%) dt—x. (z (A(XT)), + <;z>(c)<ff>@) dr

~ 2k (MET)) de— s MBI, (14 8N @T), Yo (E.48)

dw=—yo(t) dt + /7, AW, (E.49)

with the initial values for the means: <<X (O)>(c), <)A’ (0)>(C)) = (v/N/2,0), the variances and
co-variances: <<A2X(O)>(C>, <A2f/(0)>(c), <A22(0)>(C), <A(ﬁ’)(0)>(c)> = (0,1/4,1/4,0) and the

Larmor frequency w(0) = p. <A (X Y )><C)

E.4 VERIFiICATION OF THE COG APPROXIMATION

In this section, we simulate the exact dynamics of the density matrix for low values of N using the
SME of Eq. (5.13) in order to verify that the approximate evolution of the lowest moments given
by Eq. (5.28) correctly captures the system behavior for moderate dephasing and measurement-
strength parameters. We observe that the agreement between the full model and the approximate
equations improves with increasing atomic number at short timescales, and because the experi-
mental regimes involve large N ~ 10°—10" [13, 14, 15, 16, 17, 63], we subsequently use Eq. (5.28)
to simulate the dynamics of the atomic sensor with sufficient accuracy.

Fig. 5.3 shows the architecture of the feedback loop employed in our atomic magnetometry
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Figure E.3: Performance of the CoG approximation: Larmor frequency estimation and moment error analysis. (Left column)
Evolution of the relative error in estimating the Larmor frequency when comparing the exact model (SME, Eq. (5.13)) with
the approximate CoG model of Eq. (5.28). Each graph shows the relative error (in %) for three different noise scenarios
(from top to bottom): dephasing induced solely by continuous measurement; combined measurement-induced and collec-
tive dephasing; and combined measurement-induced, collective, and local dephasing. For the first two cases, system sizes
N = 50, 100, 150 (blue, red, and green, respectively) are considered, while for the case including local decoherence,

N = 10, 20, 30 are used. In all cases, the error remains below 1% and decreases with increasing /N. (Center and right
columns) Comparative error analysis of the moments <jx(t) >(c) and V}c) (#) between the exact SME solution and the CoG
model. Here, the relative error (in %) is defined in Eq. (E.50). The analysis is performed for the same three decoherence sce-
narios: (top row) continuous measurement only (M4 = 0.05,x. = xy = 0); (middle row) measurement-induced and
collective decoherence (M = 0.05, x. = 0.005, x; = 0); and (bottom row) measurement-induced and local decoherence
(M = 0.05,x. = 0,x¢ = 0.05). In each plot, increasing system sizes (either N = 50, 100, 150 or N = 10, 20, 30
for the local case) demonstrate that the CoG approximation becomes more accurate at short times as /N increases. All error
values are obtained by averaging over v = 1000 measurement trajectories. Figure adapted from Ref. [65].

scheme. In each round, the measurement data y(¢) is generated by simulating the “Aromic en-
semble” either exactly — evolving its full conditional density matrix p (o Vvia the SME (5.13) — or
approximately, through the dynamics of its relevant first and second moments, ( jx><c)’ ¢ ];>(c)
and V}?, according to the CoG model (5.28). The measurement record generated by the system

is then processed by the “Estimator” (i.e., the EKF), which provides in real time not only an esti-
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mate of the Larmor frequency, &(¢), but also estimates of the dynamical parameters, ¥(¢). These
estimates are used by the “Controller” (i.e., the LQR) to adjust the system dynamics on the fly by
modifying «(z).

To assess the accuracy of the CoG approximation of Eq. (5.28) when simulating the system
dynamics, we benchmark it against the exact SME solution for moderate atomic numbers, where
the exact simulation is computationally feasible. This comparison is carried out at two levels: (1)
we focus solely on the estimation task by computing the average error in the real-time estimate
@(t) (large box in Fig. 5.3), and (2) we adopt a stricter criterion by requiring that the relevant
moments, < ]Ax>(c>, < jy > o’ and V;C), are accurately reproduced when compared to their exact values
obtained from evolving o (#) with the SME(smaller box in Fig. 5.3).

In the left column of Fig. E.3, we present in percentage the average relative error between the

real-time estimate &(#) of w obtained using the exact model (full SME solution) and the approx-

|

=100 x/dwp(a)) /D)'<zP(>'<r\w)

imate model (CoG), i.e.

WSME — #CoG

WSME

E[3;] (%) = 100 x ]E{

&SME - g)CoG (E SO)

WSME

where the expectation is taken over the realizations of the experiment. In the left column of
Fig. E.3, three plots corresponding to a different noise scenario are showcased. From top to bot-
tom: only measurement decoherence (k. = x;, = 0), combined measurement and collective
decoherence (M = 0.05, x. = 0.005 and x, = 0), and combined measurement and local
decoherence (M = x;, = 0.05 and x. = 0.005). Each plot shows the averaged relative er-
ror for increasing system sizes — specifically, N = 50,100, 150 for the first two scenarios, and
N = 10, 20, 30 for thelocal case. In each case the average relative error decreases as the system size
increases, reaching below 1% error, which indicates that for large ensembles (N ~ 10° — 10") the
CoG approximation is sufficiently accurate for generating the measurement data used to estimate
the Larmor frequency.

We further assess the CoG model by comparing the evolution of key dynamical moments
(< jx> o’ < ];,> o’ and Vy)) to their exact values computed from the full density matrix p © (via the

SME, Eq. (1)). In this comparison, the error is quantified as

EHXSME - XCOGH

E[5,] = 100 x
1 Efxone]

for xe {(A), (B), V) (Esy)
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where x stands for any of the moments. As illustrated in the center and right columns of Fig. E.3,
for short times the error in simulating these moments decreases with increasing system size, and
remains below approximately 10% for times # S 1/(M + x. + 2x;). This supports the validity
of using the CoG approximation to predict quantities such as the spin-squeezing parameter in

large atomic ensembles.

E.s STEADY-STATE SOLUTION OF THE KALMAN FILTER FOR ¥ # 0 IN THE LG REGIME

Let us consider the covariance differential equation introduced in (5.3 6), with matrices F(¢), G(),

and H(¢) defined in (5.23) and noise covariance matrices being Q = Diagonal[l, g,], R = 7, and

=(y7 O)".

Next, for simplicity in the upcoming analysis, we will rename the elements of the covariance
matrix X as A%(J,), = x(2), A(J, @), = A(@J,): = y(¢), and A%, = 2(z). Then, the system of

equations in the steady state (dZ, = 0) can be written as,

—8My Vs (£) x(£) — 4My 22 (2) — 2]~ P2 y(1) = 0, (E.s2)
—x(8) — &My Ve () y(2) — &Myx(2)y(2) — Je~ M 24(2) = 0, (E-s3)
g, — &My’ (£) — 2xz(t) = 0,

where the variance (A” ];(t) >(C) in the steady state (£ > #*) is (A” ];,(t) >(c) = Vop(2) (5.24b). It

follows that the solution for z(#) is

)(3 (Mxc)t V4 (Mxc)t/2
4 ¢ ‘ w c
2(t) ek 4]2M;7€ ]\/]7;7 1 T

1 ;{26 (MAxc)e/2
oy Ve TR (VM BN T

% \/ZZC(MJFKC)I + 4] (KCJMV + eMxc)/2 \/MV(%) + KcZZ)) , (E:ss)

which, when expanded in powers of 1// around zero and truncated at first order, can be approx-

imated as

NO¥ =2(t) ® —xey + Vxego T K22 (E-56)
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Moreover, when y = 0, the term (E.55) becomes,

1/2
N 1 [ 8 e
A?&™(t)| =0 = <qw Ke +] ]%e(m MZ) ; (E;s7)

matching the solution introduced in (5.46).

E.6 DeRrivATION OF THE LQR CONTROL LAW

In this section we present a detailed derivation, along the lines of Ref. [5 5], of the optimal control

law used in our LQR design. The final control law is given by

~

w() = () = 1 (J, (), (E:s8)

where the constant parameter A = A /'zj is determined by the weights in the quadratic cost func-

Y
tion. Our starting point is the linearized system dynamics in the LG regime. In this regime the

state of interest is the reduced vector

dﬂ—(“@%), (E.s59)
0

which evolves according to

2(t) = Az(t) + Bu(t) + G() q(¢), (E.60)

A:<° f), B:(f). €61
0 —xy 0

The performance of the controller is measured by the quadratic cost function

with

I(u) = /OOO [zT(t) Pz(r) + Vuz(t)} ds, (E.62)

p:(pf 0)20, » > 0.
0 pu

245

where



For such alinear system with cost (E.62), the optimal state feedback control law takes the form
u(t) = —Kc#(1), (E.63)
with the gain matrix computed as
Kc=v"'BTA, (E.64)
where A is the unique positive semidefinite solution of the algebraic Riccati equation (ARE)
A"A+AAd+P—-ABv'B"A=0. (E.65)
We now parameterize A as a symmetric 2 X 2 matrix:
A= <A“ A”) (E.66)
Ay Ay

in order to solve the ARE Eq. (E.65) component by component. Focusing first on the (1, 1) entry,

we obtain
0+p]—]72A121:0:>A11: ‘;JV. (E.67)
Next, the (1, 2) entry of Eq. (E.65) yields
JAy — y Ay —]72 AnAp =0= Ap = ]A2“ _ VP (E.68)

2{+]7Au x+7 p;]

where in the last step we substituted the expression from Eq. (E.67) into Eq. (E.68). The (2, 2)
entry of Eq. (E.65) is
]2

2(/A12 —;(Azz) +pw - 7 A%Z = 0, (E69)
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which can be rearranged to solve for A;:

1 2
A22 p— 2— (ZjAIZ +pw - A%Z) 3 (E.70)
X v

which fully determines the explicit form of A,,, even though itis not required for the final control
law. Having determined the components of A in the steady state, we now compute the gain
matrix K¢ from Eq. (E.64). Given the form of B of Eq. (E.61), we have

1

KC = —BTA == Z <A11 AIZ) . (E7I)
v v

Thus, the state feedback control law (E.63) can be written as

u(t) = —Kcz(2)

Ay oz A
:_] 11<_/}/(t)>(c)_] 12

v

w(2). (E.72)

14

It is straightforward to verify that using Eq. (E.67) and Eq. (E.68) we obtain

fAu_Z.@_\/ZJ_
=2 =B =2, (E73)

y
The L _ 1 oy (E74)
Y X
v 1+ 212 1+ Pl
A J

where the second term has been approximated to 1 since under typical experimental conditions,

 is small compared to /. Thus, the control law Eq. (E.72) reduces to the desired form:
u(e) = —a(e) = 2 (J,(0),.. (E75)

E.7 EXPERIMENTALLY REALISTIC PARAMETERS

Sec. 5.4.2.2 and Sec. 5.4.2.3 analyze the estimation of a fluctuating and time-varying magnetic
field, respectively, in experimentally realistic conditions, using parameters inspired by Ref. [63].
Most parameters are straightforward to define: we take the atomic ensemble size as N = 10"
and set the coherence time to 7, = 10 ms, which implies a local dephasing rate of x, = 1/7) =

100 Hz. We further consider frequencies on the order of kHz, specifically w, = 10%rad s™%. The
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Figure E.4: Tracking a fluctuating magnetic field with a strong continuous measurement. The top plot illustrates how the

EKF estimate (solid, red) closely follows the true field OUP dynamics (solid, blue), staying well within the error bounds

of £24/ E [Azi)(t)] , which are so small compared to the fluctuating field that they are nearly imperceptible. The mid-

dle plot shows the conditional spin squeezing (solid, blue) induced by the strong continuous measurement of strength

M = 1mHz > x. = 1nHzand the LQR feedback, along with its real-time estimation by the EKF (dashed red). In

the bottom plot, the estimation error of a)(z‘) (solid, green) reaches a sensitivity of ~ 0.066 rad s~ ! that matches the square-
root of the EKF covariance (dashed, yellow). While the stronger measurement significantly enhances precision, the quantum
limit dictated by dephasing (solid, black) at roughly 0.056 rad s lisnot perfectly saturated. A further increase in M could
bring the error closer to this optimal limit [65]. The results in the bottom two plots are obtained by averaging over 1000
stochastic field-atom trajectories.

one parameter that is trickier to determine is the measurement strength parameter M. To es-
tablish A1, we compare the equation for the photocurrent of Eq. (5.14) with Equation 18 from

Ref. [63]. Namely, since the Wiener differential in Eq. (5.14) has a variance of dz, then Equation

18 from Ref. [63] should be normalized by 4/ ;7qZ,N . Expressing it in our notation, the measure-

ment equation of Ref. [63] can be then rewritten as:

(5)de = 7\ &N (o (1)), dr + /7AW, (E.76)

where E [dWZ] = d¢, and we write /, instead of /; to account for the different experimental

geometry. By directly comparing this to Eq. (5.14), we identify the measurement strength pa-
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rameter as:

M= g% (E.77)

Here, N represents the photon flux, given by:

P
N —
2zhvy

(E.78)

where P is the probe power, varying between 0.5 mW and 2 mW, and » is the frequency of the
probe light, detuned by Ay = vp,g;, — v from the Rb D transition at vp,z, = ¢/Ap,rs of
794.8 nm. The coupling constant g in Eq. (E.77) is defined in Ref. [63] as:

¢ VC osc 1
~

& — (E.79)
Agﬁf AV

where c is the speed of light, 7, = 2.82 X 107" cm is the classical electron radius, f,,, = 0.34 is
the oscillator strength for the Rb D, transition, and 4 o = 0.0503 cm? is the effective beam area.
As a result, M is expected to lie within the range of 1 x 107 Hz and 1 x 1078 Hz, depending
on the probe power P and optical detuning A, which can vary from Av ~ 24 GHz to 64 GHz
when off-resonance.

Physically, the measurement strength A1 characterizes the balance between the light-atom in-
teraction to the photon shot-noise in the detection process of Eq. (E.76). However, quantum
backaction from continuous measurement unfolds on a timescale dictated by M’ = M N, rather
than A alone. This arises because in the quantum model of Eq. (5.13), the variance of the relevant
spin operators decays with an effective rate 1/A1". This behavior has been rigorously established
in both decoherence-free cases [54] and scenarios with collective noise [69, 65], and is further

corroborated here (see Fig. 5.10), as well as experimentally [63].
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E.9 EXACT FORMS OF GRADIENT MATRICES F(#), G(T) AND H(T) FOR AN VDP OSCILLATOR
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