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Abstract

Quantum entanglement can enhance the sensitivity of atomic sensors to static or slowly vary-
ing fields. Butmany important applications in fields such asmedicine or navigation require track-
ing fast or transient signals. This presents unique challenges, one of thembeing that the potential
benefits of entanglement in such cases are still not fully understood. To investigate this, we apply
concepts fromcontinuousquantummeasurements and estimation theory to optical atomicmag-
netometers, aiming to accurately model these devices, interpret their measurement data, control
their dynamics, and achieve optimal sensitivity.

Quantifying this optimal performance requires determining a fundamental quantum limit on
sensitivity. The above bound imposed by noise is derived and shown to scale at best linearly with
the sensing time and number of atomsN, ruling out any super-classical scaling. Moreover, this
quantum limit is independent of the initial state, measurement, estimator, and measurement-
based feedback, and depends only on the decoherence model and strength of the field fluctua-
tions. Thus, finding an estimator that attains this limit proves a given sensing strategy optimal.

To approach this bound, we develop a quantumdynamical model scalable w.r.t. N, based on a
co-movingGaussian approximation of the stochasticmaster equation, which includes bothmea-
surement backaction and decoherence. This enables the construction of a real-time estimation
and control architecture that integrates an extended Kalman filter (EKF) with a linear quadratic
regulator (LQR).

By simulating the magnetometer with our model and our proposed EKF+LQR strategy, we
show that quantum-limited tracking of constant and fluctuating fields is within reach of current
atomic magnetometers. Strikingly, our sensing strategy can also track biological relevant signals,
such as heartbeat-likewaveforms. It can furthermore beused todrive the atomic ensemble into an
entangled state, evenwhen themeasurement record is used for feedbackbut afterwards discarded.
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Streszczenie

Splątanie kwantowe może zwiększyć czułość sensorów atomowych na pola statyczne lub wol-
nozmienne. Jednakwiele istotnych zastosowańwdziedzinach takich jakmedycyna czy nawigacja
wymaga śledzenia sygnałów szybko lub nagle zmieniających się. Wiąże się to ze szczególnymi
wyzwaniami, biorąc poduwagę brakwystarczającego zrozumienia potencjalnych korzyści ze splą-
tania w takich przypadkach. Aby to zbadać, w pracy doktorskiej zastosowano narzędzia z zakresu
kwantowych pomiarów ciągłych i teorii estymacji do optycznych magnetometrów atomowych,
w celu dokładnegomodelowania tych urządzeń, interpretacji danych pomiarowych, kontroli ich
dynamiki oraz osiągnięcia optymalnej czułości.

Określenie tej optymalnejwydajnościwymagawyznaczenia fundamentalnej kwantowej granicy
czułości. Powyższa granica, zdeterminowana przez szum, którą wyznaczamy w pracy, w najlep-
szym wypadku skaluje się liniowo z czasem pomiaru i liczbą atomów N, co wyklucza jakiekol-
wiek skalowanie lepsze niż klasyczne. Co więcej, ta kwantowa granica jest niezależna od stanu
początkowego, pomiaru, estymatora oraz sprzężenia zwrotnego opartego na pomiarze i zależy
wyłącznie od modelu dekoherencji oraz siły fluktuacji pola. Zatem znalezienie estymatora osią-
gającego tę granicę jest dowodem na optymalność danej strategii pomiarowej.

Aby zbliżyć się do tej granicy, opracowujemy kwantowy model dynamiczny dobrze skalu-
jący się z N, oparty na współporuszającym się przybliżeniu Gaussowskim kwantowego równa-
nia ”master”, który uwzględnia zarówno działanie pomiaru, jak i dekoherencję. Umożliwia to
stworzenie architektury estymacji i kontroli w czasie rzeczywistym, integrującej rozszerzony filtr
Kalmana (EKF) z regulatorem liniowo-kwadratowym (LQR).

Poprzez symulacjęmagnetometru zwykorzystaniemnaszegomodeluorazproponowanej strate-
gii EKF+LQR pokazujemy, że kwantowo-ograniczone śledzenie zarówno pól stałych, jak i fluk-
tuujących, jest w zasięgu obecnych magnetometrów atomowych. Co istotne, nasza strategia po-
miarowa umożliwia także śledzenie sygnałów istotnych biologicznie, takich jak sygnały podobne
do tych generowanych przez serce, ale może być po prostu użyta do wprowadzenia układu ato-
mowego w stan splątany, także kiedy dane pomiarowe są wywołane przez sprzężenie zwrotne ale
później zapominane.
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0
Introduction

Metrology — the science of measurement — relies on classical estimation theory to
infer unknown parameters from measurement data and quantify the uncertainty of these esti-
mates. Perhaps most crucially, it also tells us how to identify optimal estimators that minimize
this uncertainty, such as those that saturate the Cramêr–Rao bound [1, 2].
Even though classical estimation theory does not require the measurement outcomes to be

probabilistic, we still use probabilities to express our uncertainty about the true value of a pa-
rameter. This uncertainty arises not from the theory itself, but from practical limitations such
as environmental noise, sensor imperfections, or incomplete information about the system. In
contrast, the randomness observed inmeasurements of quantum states is not due to external fac-
tors, but rather an intrinsic feature of quantum systems arising from the postulates of quantum
mechanics. Even in ideal, noiseless conditions, the outcomes of quantummeasurements are fun-
damentally stochastic, with their associated likelihoods dictated by Born’s rule [3]. Quantum
systems, moreover, have non-classical features such as coherence and entanglement, which can
be harnessed to reduce measurement uncertainty beyond classical limits [4, 5, 6, 7]. This reduc-
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tion in uncertainty improves estimation accuracy, which typically scales with the number of re-
sources (e.g. the number of particles used,N). In classical strategies using uncorrelated particles,
the estimation error scales as 1/

√
N, known as the Standard Quantum Limit (SQL). However,

quantum-enhanced strategies can achieve more favorable scalings, such as 1/N, typically referred
to as the Heisenberg Limit (HL) [8, 9, 10, 11, 12]. Even though numerous experiments have
demonstrated surpassing the SQL [13, 14, 15, 16, 17], decoherence and other noise sources can
significantly degrade entanglement and prevent achieving super-classical scalings [18, 19].

Much early work in quantum metrology focused on repeated measurements averaged over
many trials [20, 21]. However, many real-world sensing tasks require tracking time-varying sig-
nals [22, 23, 24, 25, 26, 27, 28], where repeated measurements are not possible. In such cases,
estimation must be performed in one shot. One way to achieve this is by employing Bayesian fil-
tering, which continuously updates probabilistic estimates as new, noisy data becomes available
[29, 30]. This real-time process involves two steps: (1) a predictive step, relying on a dynamical
model of the system, and (2) a measurement update step, which refines the estimate based on
incoming measurement outcomes [30]. A classical example is the Kalman filter (KF) [31, 32],
optimal for linear systems with Gaussian noise [30]. For nonlinear quantum systems such as
atomic sensors, methods like the extended Kalman filter (EKF) are better suited [29, 33].

Since Bayesian filtering relies on amodel, it is essential to have a reliable description of both the
system and the measurement process to implement any algorithm effectively [29, 30]. However,
how canwemodel a quantum system that is being continuouslymonitored, when the very act of
measurement inevitably disturbs its state [34, 35]? Fortunately, this evolution of the state condi-
tional on the measurement outcomes is rigorously captured by the theory of continuous quan-
tum measurements [36, 37, 38, 39]. In particular, the dynamical model is given by a stochastic
master equation (SME),which correctly incorporatesmeasurement backaction. This backaction
canmanifest itself as either discrete jumpswhenmeasuring photo-counts, or as a continuous, dif-
fusive process when using homodyne detection [40, 41, 42]. Combining Bayesian filtering with
this framework allows for real-time tracking while correctly accounting for measurement back-
action. This has been experimentally implemented in Gaussian systems such as optomechanical
resonators [43, 44, 45, 46, 47, 48] or levitated nanoparticles [49, 50].

Atomic sensors, particularly optical atomic magnetometers, can also benefit from these ideas.
These devices rival state-of-the-art superconducting quantum interference devices (SQUIDs) in
sensitivity, yet operate without the need for cryogenic cooling [51, 52] and can potentially be
miniaturized to chip-scale sizes [53]. Although linear and Gaussian (LG) models are common
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for atomic systems (as well as for optomechanical ones), atomic sensors are intrinsically nonlin-
ear systemswhose dynamics, includingmeasurement backaction, can be rigorously described us-
ing SMEs [54, 55, 56]. That said, most atomic magnetometry experiments involve large atomic
ensembles, where the sheer size of the Hilbert space makes exact quantum simulations of the
SME intractable. Different approaches exist on how to deal with that: one can straight up ig-
nore [57] or evade [58, 59] the measurement backaction, or instead restrict the analysis to the
Gaussian regime [54, 60, 61, 56] or to low atomic numbers [62]. Despite these modeling chal-
lenges, a recent experiment with unpolarized atomic ensembles demonstrated that continuous
measurement backaction can generate inter-atomic entanglement even without explicitly mod-
eling the backaction [63]. This was possible because the spin dynamics remained within the LG
regime. However, high-sensitivity spin-precession sensors typically use polarized atomic ensem-
bles, whose spins evolve according to nonlinear dynamics [64]. This motivates the need for a
realistic nonlinear model that captures both the measurement backaction and the decoherence
effects in a way that is scalable to systems with large atom numbers.

To address this, we propose an approximate model referred to as the ”co-moving Gaussian”
picture. This model reduces the complexity of the full quantum dynamics while still accounting
for dephasing and the measurement backaction that creates spin-squeezing [65, 66]. This model
not only enables the design of an estimation and feedback scheme by combining an EKF with a
linear quadratic regulator (LQR) [29, 55], but also allows us to simulate realistic atomic magne-
tometry experiments. Its accuracy is validated by comparing it against the exact simulation of the
SME for moderate-sized systems [65].
Once themodel is validated, the next step is to asses the performance of the sensor when track-

ing fluctuating fields by establishing fundamental limits on the estimation error. This is achieved
by deriving a lower bound on the Bayesian Cramér-Rao bound (BCRB) [2, 67], which we refer
to as classically-simulated (CS) limit or quantum limit [68, 19, 69, 65, 66]. Notably, this limit
depends only on the dephasing rate and the strength of field fluctuations, and scales at best lin-
early with the atom number and sensing time, thereby precluding any possibility of surpassing
the SQL [69, 65, 66]. Remarkably, our magnetometry setup attains this quantum limit, con-
firming that the entire sensing protocol is optimal under the given noise conditions, regardless of
the initial state, measurement, estimator, or measurement-based feedback [66]. Beyond demon-
strating optimal real-time sensing of fluctuating signals, we also apply ourmethod to track signals
commonly found inmedicine and biology, such asmagneto-cardiograms (MCG) [24, 66], which
requires filtering to extract heartbeat-like signals from noisy backgrounds.
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Finally, this framework can also be used for quantum state preparation [65]. Specifically, we
show that the LQR not only enhances estimation accuracy but also steers the atomic ensemble
into an entangled statewithout the need to store pastmeasurement data. Thismakes the protocol
a practical method for preparing entangled states in real time.

This thesis is organized into six chapters. The first three chapters cover background
material that is important for understanding the rest of the work. In particular, the first part
of Chap. 1 reviews important topics like probability theory, stochastic processes and stochas-
tic calculus. The second part of Chap. 1 introduces basic concepts of quantum mechanics, in-
cluding angular momentum operators, theWiener function and spin-squeezing. Then, Chap. 2
presents an in-depth discussion of Bayesian filtering, with complete treatments of the KF, EKF
andLQR. InChap. 3, we derive the SME for both photodetection and homodynemeasurement.
While these chapters aim tokeep the thesis self-contained,mybackground inquantumphysics in-
evitably influenceswhat I consider to be introductorymaterial, so readers with different expertise
may find some sections more familiar than others. If you are already comfortable with the topics
described above, feel free to skip ahead to Chap. 4 and Chap. 5, where the main results and con-
tributions are discussed. In Chap. 4, we derive the quantum limit or classically-simulated limit
on the estimation error via lower-bounding the BCRB. Finally, Chap. 5 applies these theoretical
and numerical tools to atomicmagnetometry. We introduce the “co-movingGaussian”model to
capture both the measurement backaction and decoherence in large atomic ensembles, and then
put forward a complete estimation and control protocol. This protocol consists of an EKF com-
bined with LQR, which achieves optimal performance and even enables real-time entanglement
preparation. Finally, Chap. 6 summarizes the results and discusses potential directions for future
research.
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1
Preliminaries

Themain focus of this thesis is the tracking of quantities that vary randomly over time. In
many complex systems, such as those in physics, finance, or biology, the parameters of interested
are not static but fluctuate continuously due to inherent randomness and external disturbances.
These quantities are referred to as stochastic processes, and to capture their dynamics, it is essential
to combine differential equations with probability theory.

In the first part of this opening chapter, we begin by reviewing a bit of probability
theory: random variables, probability density functions, expectation and covariances and the
Gaussian distribution. Next, we explain in Sec. 1.2 what a stochastic process is through some
simple examples, and introduce in Sec. 1.3 the basics of stochastic calculus with topics like Itô’s
Lemma, stochastic differential equations and their corresponding numerical methods.

In the second part of this chapter, i.e. Sec. 1.4, we briefly introduce a few concepts related to
the dynamics and properties of quantum systems, mostly for later reference. These include the
position and momentum operators, the dynamics of open quantum systems, angular momen-
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tum operators and coherent spin states. We also cover the Wigner quasiprobability distribution
in Sec. 1.4.5 and how tomap theWigner function onto a sphere in Sec. 1.4.6, followed by a brief
explanation of spin-squeezing in Sec. 1.4.7.

1.1 Fundamental concepts of probability theory

1.1.1 Random variables

In probability theory, a random variable assigns numerical values to the outcomes of a random
process, each with an associated likelihood. Formally, it is a function mapping a sample space
Ω to a subset of the real numbers R. For example, when flipping a coin, the sample space Ω
representing all possible outcomes of this experiment is Ω = {Heads,Tails}. Now, let X* be a
random variable that assigns numerical values to these outcomes, e.g.:

X(Heads) = 1 and X(Tails) = 0, (1.1)

where x = 0 and x = 1 are realizations of the random variable X. Random variables like the one
above, or others such as the outcome of a dice roll, take on specific, countable values. Therefore,
these are referred to as discrete random variables. Additionally, each possible outcome has an
associated probability, the probability mass function (PMF), and these probabilities must sum
to 1.

Definition 1.1 (Probability mass function). For a discrete random variable X, let the PMF be
a function p : R → [0, 1] that gives the probability of the random variable X taking the specific
value x, i.e.

p(x) = Pr[X = x] , (1.2)

where p(x) ≥ 0 ∀x and the sum of all probabilities must be equal to 1:∑
x∈X

p(x) = 1, (1.3)

withX corresponding to the set of all the possible realizations x of the random variable X.

*In mathematics, random variables are typically denoted by a capital letter (e.g. X), and their possible values,
a.k.a. realizations, by the corresponding lowercase letter (x). We will follow this convention here but use lowercase
for both in later chapters.
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For example, if X represents the outcome of rolling a fair six-sided dice, the PMF is:

p(x) =
1
6

for x ∈ X = Ω = {1, 2, 3, 4, 5, 6}. (1.4)

In contrast, a continuous random variable takes values from a continuous range, such as time,
position or temperature. Since a continuous random variable can have infinitely many values,
the probability of it taking any specific value is zero. Therefore, probabilities are determined over
intervals using the probability density function (PDF). The total probability for all values (the
area under the PDF curve) must also sum to 1.

Definition 1.2 (Probability density function). The PDF of a continuous-valued random variable
X is denoted as p(x). Its integration over an interval [a, b] yields the probability of X ∈ [a, b], i.e.

Pr[a ≤ X ≤ b] =
∫ b

a
p(x)dx, (1.5)

and thus, relating the PDF to the PMF.Additionally, the PDFmust satisfy the following conditions

p(x) ≥ 0 ∀x, and
∫

p(x) dx = 1.

1.1.2 Multivariate random variables

Additionally, the definitions of PMF andPDF can be extended also tomultivariate random vari-
ables, also referred to as random vectors. Formally, a multivariate random variable is a column
vectorXXX = (X1, . . . ,Xn)

T, whose components are random variables.

Definition 1.3 (Multivariate PMF). For amultivariate discrete random variableX, let the PMF
be a function p : Rn → [0, 1] that gives the probability of the random vectorXXX taking the specific
value xxx, i.e.

p(xxx) = Pr[XXX = xxx] (1.6)
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where p(xxx) ≥ 0 ∀xxx and the sum of all probabilities must be equal to 1:∑
xxx∈XXX

p(xxx) = 1 (1.7)

withXXX corresponding to the set of all the elements xxx can take.

Definition 1.4 (Multivariate PDF). Themultivariate PDF of a continuous-valued random vector
XXX is denoted as p(xxx). Its integration over a domainXXX in the n-dimensional space of the values of XXX
yields the probability of XXX ∈ XXX , i.e:

Pr[XXX ∈ XXX ] =
∫
XXX
p(xxx)Dxxx, (1.8)

where
∫
Dxxx is shorthand for

∫∞
−∞ · · ·

∫∞
−∞ dx1 . . . dxn. Just like for the single-variable PDF, its

multivariate counterpart must satisfy the following conditions

p(xxx) ≥ 0 ∀xxx, and
∫

p(xxx)Dxxx = 1.

1.1.3 Joint probability functions

When working with more than one random variable, their combined behavior is described by
joint probability functions, which capture the probability of two ormore random variables taking
specific values simultaneously.

Definition 1.5 (Joint PMF). For discrete random variables, the joint behavior of X and Y is de-
scribed by the joint PMF, which yields the probability of X taking the value x andY taking the value
y, simultaneously:

p(x, y) = Pr[X = x,Y = y] . (1.9)

Definition 1.6 (Joint PDF). For continuous random variables, the joint behavior of random vari-
ablesXandY is described by the joint PDFp(x, y), which provides the relative likelihood of X taking
a value near x and Y taking a value near y:

Pr[a ≤ X ≤ b, c ≤ Y ≤ d] =
∫ b

a

∫ d

c
p(x, y) dy dx. (1.10)
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Both definitions can be easily extended to multivariate random variables.

1.1.4 Independent and dependent random variables

Two random variables are independent if neither of their probability functions depends on the
value of the other variable. Their definition is formalized through the use of joint probability
functions. In particular:

Definition 1.7 (Independent discrete random variables). Let X and Y be two discrete random
variables, with rangesX andY , respectively. We say thatX andY are independent if for all x ∈ X
and y ∈ Y , the joint PMF satisfies

Pr[X = x,Y = y] = Pr[X = x] · Pr[Y = y] ∀ x, y (1.11)

In other words, for every pair of possible outcomes x and y, the probability that X takes the value x
and Y takes the value y is the product of the individual probabilities of those events. That can be
extended to multivariate discrete random variables, as

Pr[X1 = x1, . . . ,Xn = xn] = Pr[X1 = x1] · . . . · Pr[Xn = xn] , ∀ x1, . . . , xn. (1.12)

Additionally, a similar definition applies to independent continuous random variables, where
independence is characterized by the joint PDF factoring into the product of their respective
probability functions. Specifically,

Definition 1.8 (Independent continuous random variables). LetX andY be two continuous ran-
dom variables. We say that X and Y are independent if for all x ∈ [a, b] and y ∈ [c, d], the joint
PDF satisfies

p(x, y) = p(x) · p(y), (1.13)

such that,

Pr[X ∈ [a, b],Y ∈ [c, d]] =
∫ b

a

∫ d

c
p(x, y) dy dx =

∫ b

a

∫ d

c
p(x)p(y) dy dx

=

(∫ b

a
p(x) dx

)(∫ d

c
p(y) dy

)
= Pr[X ∈ [a, b]] · Pr[Y ∈ [c, d]] . (1.14)
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In other words, the probability that X falls in the interval [a, b] as well as Y falls in [c, d] is the
product of the individual probabilities of these events. Just like in the discrete case, this definition
can also be extended to multivariate continuous random variables, as

p(xxx) = p(x1, . . . , xn) = p(x1) · . . . · p(xn), ∀ x1, . . . , xn. (1.15)

On the other hand, two random variables are dependent when they have a joint probability
density that cannot be factored into the product of their respective probability functions. Un-
like independent random variables, where knowing the outcome of one variable tells us nothing
about the other, the value of one dependent variable is influenced by the value of the other.

For continuous random variables, this dependency is best described through the use of the
so-called conditional PDFs andmarginal PDFs. Marginal PDFs are isolated densities of a single
random variable where we have removed the influence of all the other variables. All these func-
tions are central to the understanding of Bayesian filtering and estimation.

For that reason, let us start by defining the probability density forX ifwewere to knownothing
about Y, i.e. the marginal of X, through the law of total probability. Namely,

Property 1.1 (Marginal PDF / The law of total probability / Sum rule). Let X and Y be two
random variables, such that Y ∈ Y , then the law of total probability states that the marginal PDF
reads as:

p(x) =
∫
y∈Y

p(x, y)dy. (1.16)

Thus, marginalizing over Y is simply integrating over all possible values of Y such that we are
left with a PDF that depends only on X.

Now we have all the tools needed to define the conditional PDF, which in turn yields a very
important property in probability theory: the product rule. A conditional distribution is the
probability distribution of one random variable given that another has taken a specific value. It
is derived from their joint distribution, since p(x, y) with y = a gives the relative probability for
x given that Y = a. However, p(x, y = a) is not normalized and therefore, we have to divide it
by the integral over all values of x, i.e., the marginal of Y.

Property 1.2 (Conditional PDF / Product rule). LetX and Y be two random variables with the
joint PDF, p(x, y). The conditional density function, p(x|y), which reads as the probability density
of x given y, is defined as

p(x|y) = p(x, y)∫∞
−∞ p(x, y) dx

, (1.17)
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which, since the denominator of Eq. (1.17) is the marginal of Y, it can be rewritten as

p(x|y) = p(x, y)
p(y)

. (1.18)

The definition of the conditional density function yields the product rule:

p(x, y) = p(x|y)p(y). (1.19)

Note that p(x|y) should be interpreted as a function of only x since y is a known value, i.e. we
have no uncertainty in y.

1.1.5 Expectation and covariance

One of the most important distributions for both linear and nonlinear filtering is the Gaussian
distribution, which can be described using only the mean vector (or expected value) and the co-
variancematrix of the Gaussian random variable. And if our results are not Gaussian, we anyway
tend to approximate themusing themean and covariance of this non-Gaussian distribution, even
though these do not fully capture all the facets of our actual distribution. Therefore, let us first
define what is an expected value and a covariance matrix.

Definition 1.9 (Expected value / mean). The expected value (i.e. mean) of a continuous random
variableX is defined as

E[X] :=
∫ ∞

−∞
x p(x) dx. (1.20)

The expectation of X is the integral of xweighted by the probability density of x. Thus, values
of X with high probability density will influence our expected values more than values of X with
lowprobability density. The expected value ofX is also sometimes referred to as the firstmoment
of X. We can further define higher order moments of X, such as the variance of X as:

Definition 1.10 (Variance). The variance of a random variable X is the expected value of the
squared deviation ofX from the meanE[X]:

V[X] := E
[
(X− E[X])2

]
= E

[
X2]− E[X]2 . (1.21)

Additionally, the definition of the mean and other moments can also be extended to random
vectors. Specifically, the multivariate mean will read as:
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Definition 1.11 (Multivariate mean). A random vectorXXX = [X1,X2, . . . ,Xn]
T has an expected

value (mean) given by

E[XXX] :=
∫

xxx p(xxx) Dxxx, (1.22)

where p(xxx) is the multivariate PDF of Definition 1.4.

We can also extend the definition of the variance to multivariate random variables by defining
the covariance matrix ofXXX. For a random vectorXXX = (X1,X2, . . . ,Xn)

T, the covariance matrix
encodes how each pair of variables Xi and Xj vary together, revealing patterns of correlation and
dependencies across the components ofXXX. Formally, the covariance matrix is defined as:

Definition 1.12 (Covariance matrix). LetXXX be a random vector. Then, the covariance matrix is

cov[XXX] := E
[
(XXX− E[XXX])(XXX− E[XXX])T

]
. (1.23)

We can view the factor (XXX−E[XXX]) as the distance between the random vectorXXX and its mean.
That is, how much does it spread around its mean value. Additionally, note that the diagonal
elements of cov[XXX], i.e. cov[XXX]ii are the variances of each individual variable Xi, while the off-
diagonal elements indicate the correlation between different variables.

1.1.6 Law of large numbers

Sometimes we are interested in finding the expected value of a random value, but an analytical
solution is not available. Perhaps we are not able to solve the involved integral explicitly, or more
commonly, because the exact form of the underlying distribution is not known. However, if
instead we have access to a large number of samples from the random variable, we can use the law
of large numbers and estimate the expected value numerically.

In particular, the law of large numbers states that, as the number of independent and identi-
cally distributed samples of a random variable increases, the sample average converges to the true
expected value of that variable. In other words:

Theorem 1.1 (The law of large numbers). LetX1, X2, . . . ,Xn be a sequence of independent and
identically distributed random variables. In other words, they are all distributed according to the
same PDF, p(x), and thus, have a finite expected value μ = E[Xi] ∀i = 1, . . . , n. Then,

lim
n→∞

X̄n = lim
n→∞

1
n

n∑
i=1

Xi = μ. (1.24)
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Or, in other words, the sample average X̄n converges almost surely† to the expected value μ.

1.1.7 The multivariate Gaussian distribution

LetXXX ∼ N (xxx|μμμ,ΣΣΣ)denote aGaussian randomvector drawn fromamultivariate PDFwithmean
μμμ and covariance ΣΣΣ. The PDF of xxx is known as a Gaussian distribution and defined as:

Definition 1.13 (Multivariate Gaussian distribution). AGaussian random vectorXXX ∈ Rn has a
probability density

N (xxx|μμμ,ΣΣΣ) = 1
(2π)n/2|ΣΣΣ|1/2

exp
(
− 1
2
(xxx− μμμ)TΣΣΣ−1(xxx− μμμ)

)
(1.25)

where | · | denotes the determinant, μμμ = E[XXX] is the mean ofXXX andΣΣΣ represents the covariance of
XXX, i.e. ΣΣΣ := cov[XXX] = E

[
(XXX− E[XXX])(XXX− E[XXX])T

]
.

Just as in the case of a Gaussian random variable, the PDF of a Gaussian random vector comes
completely determined by its mean and covariance matrix. Furthermore, one of the most useful
properties of Gaussian random variables is their linear combination property.

Property 1.3 (Linearity of Gaussian random vectors). Let XXX ∼ N (xxx|μμμx,ΣΣΣx) be a Gaussian
random vector, as well asYYY ∼ N (yyy|μμμy,ΣΣΣy). Then, a linear combination ofXXX andYYY yields another
Gaussian random vectorZZZ:

ZZZ = AAAXXX+ BBBYYY, (1.26)

whereZZZ has a mean and covariance:

μμμz = E[AAAXXX+ BBBYYY] = AAAμμμx + BBBμμμy, (1.27)

ΣΣΣz = cov[AAAXXX+ BBBYYY] = cov[AAAXXX] + cov[BBBYYY] = AAAΣΣΣxAAAT + BBBΣΣΣyBBBT, (1.28)

withAAA andBBB being some deterministic matrices specifying the linear combination ofXXX andYYY that
givesZZZ.

†Pr[limn→∞ X̄n = μ] = 1
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1.2 Stochastic processes

A stochastic process is defined as a collection of random variables

{X(t), where t ∈ T}, (1.29)

where each random variable is associated with a distinct point t in a parameter space T. The
parameter spaceT, often interpreted as time, can be any set index, though it is commonly a subset
of the real numbersR.

We can sample the stochastic process X(t) at times t0, t1, . . . , tn, ordered such that: t0 ≤ t1 ≤
. . . ≤ tn. The evaluation of the stochastic process at these times yields a sequence of random
variablesXXX0:n = {X0,X1, . . . ,Xn}with a joint probability density:

p(xxx0:n) = p(x0, x1, . . . , xn), (1.30)

which can be related to the conditional PDF through the product rule:

p(xxx0:n) = p(xxx0:n91, xn) = p(xn|xxx0:n91)p(xxx0:n91). (1.31)

1.2.1 Markov process

A stochastic process is called aMarkov process if it satisfies theMarkov property, which states that
the conditional probability distribution of future states of the process depends only upon the
knowledge of the most recent realization, not on the sequence of events that preceded it.

Property 1.4 (Markov property). A sequence of random variablesXXX0:n = {Xk}k=0,1,...,n form a
Markov sequence (orMarkov chain) ifXk givenXk91 is independent of all the other variables up to
time k91:

p(xk|xxx0:k91) = p(xk|xk91). (1.32)
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It follows that the form given in Eq. (1.31) can be simplified as:

p(xxx0:n) = p(x0, x1, . . . , xn) =
1.19

p(xn|xxx0:n91)p(xxx0:n91)

=
1.32

p(xn|xn91)p(xxx0:n92, xn91)

=
1.19

p(xn|xn91)p(xn91|xxx0:n92)p(xxx0:n92)

= p(xn|xn91)p(xn91|xn92) · . . . · p(x1|x0)p(x0), (1.33)

provided that the stochastic process X(t) is evaluated at times t0, t1, . . . , tn fulfilling t0 ≤ t1 ≤
. . . ≤ tn.

Definition 1.14 (Chapman-Kolmogorov Equation). The Chapman-Kolmogorov equation ex-
presses the marginal transition probability between two states of a Markov process in terms of an
intermediate state. Using theMarkov property and the product rule, it takes the form

p(xk|xk92) =
∫

dxk91 p(xk|xk91) p(xk91|xk92), (1.34)

where the conditional independence p(xk|xk91, xk92) = p(xk|xk91) follows from theMarkov assump-
tion.

Proof. The statement above can be quickly shown using the sum rule, theMarkov assumption
and the product rule:

p(xk|xk92) =
1.16

∫
dxk91 p(xk, xk91|xk92) =

1.19

∫
dxk91 p(xk|xk91, xk92)p(xk91|xk92)

=
1.32

∫
dxk91 p(xk|xk91)p(xk91|xk92). (1.35)

1.2.2 Poisson process

Definition 1.15 (Poisson process). Let {N(t), t ∈ [0,∞)} be a stochastic process that counts the
number of events occurring up to time t. The process N(t) is said to be a Poisson process with rate
λ > 0 if the following conditions are satisfied:

1. Initial condition: The process starts with zero events at time zero, i.e. N(0) = 0.
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2. The process has independent increments: For any 0 ≤ s < t, the number of events
occurring in the interval [s, t] is given by ΔN(t− s) := N(t)−N(s), which is independent
of the number of events occurring prior to s.

3. The process has stationary increments: For any 0 ≤ s < t, the number of events in [s, t]
depends only on the length of the interval t− s, and not on the specific values of s and t.

4. Continuity in probability: For any ε > 0 and t ≥ 0, it holds that

lim
Δt→0

Pr[|N(t+ Δt)−N(t)| > ε] = 0. (1.36)

In other words, the Poisson processN(t) has almost surely continuous trajectories. Crucially,
this condition still allows the infinitesimal increments ofN(t) to be finite, i.e. for the process
to jump.

5. Poisson distribution for the increments: For each t ≥ 0, the number of events in [t, t+Δt]
follows a distribution with rates:

Pr[ΔN(Δt) := N(t+ Δt)−N(t) = 1] = λΔt+ o(Δt), (1.37)

Pr[ΔN(Δt) := N(t+ Δt)−N(t) = 0] = 1− λΔt+ o(Δt), (1.38)

Pr[ΔN(Δt) := N(t+ Δt)−N(t) > 1] = o(Δt), (1.39)

where the probability of a jump occurring between t and t + Δt vanishes as Δt → 0. Here,
the little-o notation o(Δt)‡ represents a function that fulfills limΔt→0

o(Δt)
Δt = 0.

Therefore, if we now take the limit of Δt→ 0, we can define an infinitesimal increment:

dN := N(t+ dt)−N(t), (1.41)
‡The notation o(Δt)means that the additional terms vanish faster than Δt, i.e., they become negligible as Δt→

0. This differs from Big-O notation, which describes the scaling behavior up to a constant factor. Formally:

f(Δt) =


o(Δtk) ⇐⇒ limΔt→0

f(Δt)
Δtk

= 0

O(Δtk) ⇐⇒ limΔt→0
f(Δt)
Δtk

= const
(1.40)
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that counts the number of events that occur in the interval [t, t+ dt]. Namely,

Pr[dN = 1] = λdt+ o(dt), (1.42)

Pr[dN = 0] = 1− λdt+ o(dt), (1.43)

Pr[dN > 1] = o(dt). (1.44)

In otherwords, in an infinitesimal interval [t, t+dt], there canbe either one jumpwith a vanishing
probability of λdt, or no jumps, with a probability 1 − λdt. Therefore, since dN can only have
values 0 or 1, it follows that

dN2 = dN. (1.45)

Additionally, both the expectation and variance of this increment, dN, are equal to λdt:

E[dN] =
1∑

k=0

k Pr[dN = k] = λdt+ o(dt), (1.46)

Var[dN] = E
[
dN2]− E[dN]2 =

1∑
k=0

k2 Pr[dN = k]− (λdt)2 = λdt+ o(dt). (1.47)

The distribution above can be shown to be a Poisson distribution by discretizing a total time
evolution [0,T] by time-steps Δt s.t. n = t/Δt and calculating the probability that k jumps
occur in k intervals in a total of n intervals. The number of different combinations of k elements
from a total group of k ≤ n elements is given by:(

n
k

)
=

n!
k!(n− k)!

. (1.48)

Therefore, in the limit of Δt→ 0, or equivalently, n→∞, we get

Pr[(N(t) = k] = lim
n→∞

n!
k!(n− k)!

(λΔt)k(1− λΔt)n−k

= lim
n→∞

n!
(n− k)! nk

(λt)k(1− λt/n)n

k!(1− λt/n)k

=
(λt)ke−λt

k!
, where k = 0, 1, 2, . . . (1.49)
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where in the last step we have used the following identities:

lim
n→∞

(1− λt/n)n = e−λt, (1.50)

lim
n→∞

(1− λt/n)k = 1, (1.51)

lim
n→∞

n!
(n− k)!nk

= lim
n→∞

n
n
n− 1
n
· . . . · n− k+ 1

n
= lim

n→∞

nk

nk
= 1. (1.52)

As stated in the third condition of the definition of a Poisson process N(t), the process has
stationary increments. Therefore, the increment ΔN(Δt) = N(t + Δt) − N(t) has the same
distribution as N(Δt). Then,

Pr[ΔN = k] = Pr[(N(t+ Δt)−N(t)) = k] = Pr[N(Δt) = k]

=
(λΔt)k

k!
e−λΔt for k = 0, 1, 2, . . . . (1.53)

So to sum up, the Poisson increment, ΔN(Δt) ∼ Pois(λΔt), is drawn from a Poisson distri-
bution with occurrences k, which in principle can be 0, 1, 2, and so on. However, as Δt → 0,
dN = limΔt→0 ΔN(Δt), and the probability of dN taking values greater than 1 becomes negligi-
ble. In other words, dN is only either 0 or 1 almost surely§, i.e. Pr[dN ∈ {0, 1}] = 1.
These properties describe a discrete process where events occur one at a time, and with the

time between events following an exponential distribution with the parameter λ.

1.2.3 Wiener process

Definition 1.16 (Wiener process). Let {W(t), t ∈ [0,∞)} be a stochastic process representing the
continuous evolution of a random variable over time. The processW(t) is said to be aWiener process
if it satisfies the following conditions:

1. Initial condition: W(0) = 0 almost surely.

2. Independent increments: For any 0 ≤ s < t, the increment ΔW(t− s) := W(t)−W(s)
is independent of the process history up to time s. Thus, evolution over any interval depends
only on that interval, independent of past values.

§An event happens almost surelywhen it happens with probability 1.
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3. Stationary increments: For any 0 ≤ s < t, the increment W(t) − W(s) depends only
on the length of the interval t − s and not on the specific values s and t. This means that the
distribution ofΔW(t− s) = W(t)−W(s) is identical to that ofW(t− s), i.e. the increment
is just anotherWiener process.

4. Continuity in probability: The processW(t) is almost surely continuous in t. Specifically,
for any ε > 0 and t ≥ 0, it holds that

lim
Δt→0

Pr[|W(t+ Δt)−W(t)| > ε] = 0 (1.54)

5. Normally distributed increments: For any 0 ≤ s < t, the increment W(t) − W(s) is
normally distributed with mean zero and variance t− s. Specifically,

ΔW(t− s) := W(t)−W(s) ∼ N (0, t− s), (1.55)

whereN ( · , · ) is a Gaussian distribution, introduced in Eq. (1.25), with first and second
moments:

E[ΔW(t− s)] = 0, (1.56)

E
[
ΔW(t− s)2

]
= t− s. (1.57)

Thus, if we take the limit Δt→ 0, we can define an infinitesimal increment

dW := W(t+ dt)−W(t) ∼ N (0, dt), (1.58)

which represents the change in the Wiener process over the infinitesimal interval [t, t + dt] and
has mean zero and variance dt:

E[dW] = 0, (1.59)

V[dW] = E
[
dW2] = dt. (1.60)

The paths of the Wiener process are continuous but nowhere differentiable. In other words,
althoughW(t) has continuous sample paths, it has no well-defined slope at any point.

19



1.3 Stochastic calculus with Gaussian noise

Stochastic calculus is a branch ofmathematics that extends traditional calculus to handle systems
driven by randomness. It addresses how to integrate and differentiate functions of stochastic
processes, such as f(X(t)), with respect to other stochastic processes. One possible way of doing
that is with the Itô integral, which integrates a given stochastic process X(t) with respect to the
Wiener process W(t): ∫ T

0
X(t)dW. (1.61)

Since W(t) has (random) continuous but nowhere differentiable paths, classical calculus tech-
niques such as Riemann-Stieltjes integration is not applicable.

1.3.1 Itô integral

To define the Itô integral, let us consider a function f (t,X(t)) that depends on a time parameter
t and some stochastic process X(t) up to time t. It follows that the function f (t,X(t)) is in itself
another stochastic process, and we have to further assume that f (t,X(t)) is a non-anticipating
function (a.k.a. non-anticipating process or adapted process), i.e. f (t,X(t)) is independent of
the behavior of X(t) and theWiener process W(t) in the future of t. More rigorously:

Definition 1.17 (Non-anticipating function). A function f(t,X(t)) is said to be non-anticipating
(or adapted) if, ∀τ > t, it is statistically independent of the future incrementW(τ)−W(t) of the
Wiener process.

Additionally, f (t,X(t)) cannot grow too quickly since the average of its squared value must
be finite. Then,

Definition 1.18 (The Itô integral). The Itô integral of f (t,X(t))with respect to theWiener process
W(t) over an interval [0,T ] is defined as

S =
∫ T

0
f (t,X(t)) dW := ms-lim

n→∞
Sn (1.62)

wherems-lim denotes the mean-squared limit of the approximating sum Sn:

Sn =
n∑
i=1

f (ti91,X(ti91))ΔW(Δti), (1.63)
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t

f(t,X(t))

. . .

t0 t1 t2 t3 t4 t5 t6 tn93 tn92 tn91 tn = T

Figure 1.1: Discrete evaluation of the function f(t,X(t)). Visual representation of the partitioning of the time interval
[0,T ] to evaluate the function f(t,X(t)) and define the Itô integral of f(t,X(t)) with respect to the noise processW(t).

with the increment ΔW(Δti) given as ΔW(Δti) := W(ti)−W(ti91) and {ti}ni=0 being a partition
of the interval [0,T ] with 0 = t0 ≤ t1 ≤ · · · ≤ tn91 ≤ tn = T.

Note that the limit in Eq. (1.62) is taken in the mean square sense. Therefore, let us define
what we mean by that:

Definition 1.19 (Mean-Squared Limit). Let {Sn}∞n=1 be a sequence of random variables and let S
be another random variable. We say that Sn converges to S in the mean-squared sense, and write

ms-lim
n→∞

Sn = S, (1.64)

if
lim
n→∞

E
[
(Sn − S)2

]
= 0, (1.65)

whereE[(Sn − S)2] is whatwe call in statistics themean squared error (MSE), whichwill be defined
in more detail in the next chapter.

This type of convergence means that the approximating sum Sn will, on average, stay close to
the Itô integral value S as we refine the partition, without requiring every individual path of the
process Sn to converge exactly (pathwise) to the integral S. This might remind the reader of how,
in statistics, we seek an estimator for a true quantity that minimizes the MSE. In that case, we
easily recognize that even a good estimatormayproduce a poor estimate in a particular realization.
What matters is that such deviations become increasingly rare on average as the approximation
improves.
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Besides the Itô integral, there are other ways to define a stochastic integral w.r.t. the Wiener
process. Another approach, known as the Stratonovich integral, is defined as

∫
S

T

0
f (t,X(t)) dW := ms-lim

n→∞

n∑
i=1

f
(
ti91 + ti

2
,
X(ti) + X(ti91)

2

)
ΔW(Δti) (1.66)

where we superimpose S over the integral symbol to highlight that this integral is different from
the Itô integral.

Example. (Itô integral of aWiener process): Let us compute∫ T

0
W(t) dW, (1.67)

where, for this stochastic integral, f (t,X(t)) = f (t,W(t)) = W(t). Recall the definition of
an Itô integral as given in Eq. (1.62). In our case, Sn is of the form:

Sn =
n∑
i=1

W(ti91)ΔW(Δti) (1.68)

where ΔW(Δti) := W(ti)−W(ti91). To simplify the sum, we can expand the summand as:

W(ti91)ΔW(Δti) =
1
2
(
W(ti)2 −W(ti91)2 − ΔW(Δti)2

)
, (1.69)

which makes evaluating the sum easier. In particular, substituting this identity into the sum
Sn yields:

Sn =
1
2

n∑
i=1

(
W(ti)2 −W(ti91)2

)
− 1

2

n∑
i=1

(
ΔW(Δti)2

)
. (1.70)

Next, note that the first part of the sum Sn forms a so-called telescopic sum. This means that all
intermediate terms cancel out, leaving only the boundary terms:

n∑
i=1

(
W(ti)2 −W(ti91)2

)
= W(T )2 −W(0)2 = W(T )2, (1.71)

where in the last step we have used the initial condition of aWiener process,W(0) = 0 (see
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Sec. 1.2.3). Therefore, we can now rewrite Sn as:

Sn =
1
2

(
W(T )2 −

n∑
i=1

ΔW(Δti)2
)
, (1.72)

and hence computing the mean-squared limit of Sn

S = ms-lim
n→∞

Sn =
1
2

(
W(T )2 −ms-lim

n→∞

n∑
i=1

ΔW(Δti)2
)

(1.73)

reduces to computing the mean-squared limit of the sum of ΔW(Δti)2:

I = W(T )2 − 2S = ms-lim
n→∞

In = ms-lim
n→∞

n∑
i=1

ΔW(Δti)2. (1.74)

In other words, we have now to find the Itô integral I s.t.

lim
n→∞

E
[
(In − I )2

]
= 0 (1.75)

is fulfilled. Our approach to tackle this problem is to give an ansatz to the solution of the Itô
integral I and then check that it satisfies the mean-squared limit definition in Eq. (1.75). In
particular, we choose the following ansatz:

I = T, (1.76)

which is simply the mean of In. Namely,

E[In] = E

[
n∑
i=1

ΔW(Δti)2
]
=

n∑
i=1

E
[
ΔW(Δti)2

]
=

(1.57)

n∑
i=1

(ti − ti91) = T, (1.77)

where in the last step we have again a telescopic sum. Now that we know the reason behind our
“inspired” ansatz, we just need to check whether In converges to T in the mean-squared sense:

lim
n→∞

E
[
(In − I )2

]
= lim

n→∞
E

[(
n∑
i=1

ΔW(Δti)2 − T

)2 ]
. (1.78)
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The first step is to expand the squared sum in the limit above:(
n∑
i=1

ΔW(Δti)2 − T

)2
=

(
n∑
i=1

ΔW(Δti)2
)2
− 2T

n∑
i=1

ΔW(Δti)2 + T 2

=
n∑
i=1

ΔW(Δti)4 + 2
n∑
i=1

i91∑
j=1

ΔW(Δti)2 ΔW(Δtj)2 − 2T
n∑
i=1

ΔW(Δti)2 + T 2, (1.79)

by employing the following identity:(
n∑
i=1

xi

)2
=

n∑
i=1

x2i + 2
n∑
i=1

i−1∑
j=1

xi xj. (1.80)

Then, we can take its expected value:

E

[(
n∑
i=1

ΔW(Δti)2 − T

)2 ]
=

n∑
i=1

E
[
ΔW(Δti)4

]
+ 2

n∑
i=1

i91∑
j=1

E
[
ΔW(Δti)2 ΔW(Δtj)2

]
− 2T

n∑
i=1

E
[
ΔW(Δti)2

]
+ T 2, (1.81)

and use the properties of theWiener process (see Sec. 1.2.3) to calculate the higher moments of
ΔW(Δti) appearing above:

E
[
ΔW(Δti)4

]
= 3Δt2i = 3(ti − ti91)2, (1.82)

E
[
ΔW(Δti)2ΔW(Δtj)2

]
= E

[
ΔW(Δti)2

]
E
[
ΔW(Δtj)2

]
= Δti Δtj, (1.83)

where the last expression uses the property of independent increments, since i > j ∀ i, j.
Therefore,

E

[(
n∑
i=1

ΔW(Δti)2 − T

)2 ]
= 3

n∑
i=1

(ti − ti91)2 + 2
n∑
i=1

i91∑
j=1

(ti − ti91)(tj − tj91)

− 2T
n∑
i=1

(ti − ti91) + T 2. (1.84)
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If we now simplify the telescopic sums

n∑
i=1

(ti − ti91) = T, (1.85)

and employ the identity specified in Eq. (1.80) to roll back the term

2
n∑
i=1

i91∑
j=1

(ti − ti91)(tj − tj91) =

(
n∑
i=1

(ti − ti91)

)2
−

n∑
i=1

(ti − ti91)2

= T 2 −
n∑
i=1

(ti − ti91)2, (1.86)

we can finally substitute all that into Eq. (1.84) and take its limit to verify that I = T.
Namely,

lim
n→∞

E

[(
n∑
i=1

ΔW(Δti)2 − T

)2 ]
= 2 lim

n→∞

n∑
i=1

(ti − ti91)2 = 0. (1.87)

Hence, it follows that

I = ms-lim
n→∞

In = ms-lim
n→∞

n∑
i=1

ΔW(Δti)2 = T, (1.88)

and thus,

S =
∫ T

0
W(t)dW = ms-lim

n→∞

n∑
i=1

W(ti91)ΔW(Δti) =
1
2

(
W(T )2 −ms-lim

n→∞
In
)

=
1
2
(
W(T )2 − T

)
. (1.89)

1.3.2 dW2 = dt and dWn = 0 for n > 2

The differential of a Wiener process, denoted as dW, behaves differently from ordinary differ-
entials. In particular, a key result in stochastic calculus is that the square of dW is equal to the

25



differential of time, dt, while higher powers of dW vanish. More precisely, we want to prove that

(dW)2+N =

 dt for N = 0,

0 for N > 0.
(1.90)

To do so, we have to use the Itô integral and show

∫ T

0
f (t,X(t)) (dW)2+N := ms-lim

n→∞

n∑
i=1

f (ti91,X(ti91))ΔW(Δti)2+N

=


∫ T
0 f (t,X(t)) dt for N = 0,

0 for N > 0
. (1.91)

To tackle this proof, we need to divide it into two: first show that dW2 = dt and then, demon-
strate that dW2+N = 0 forN > 2.

Proof. To prove that dW2 = dt we have to employ the definition of the Itô integral and show:

ms-lim
n→∞

n∑
i=1

f (ti91,X(ti91))ΔW(Δti)2 =
∫ T

0
f (t,X(t)) dt. (1.92)

However, to understand this limit, we must recall the definition of convergence in the
mean-square sense, as introduced in Eq. (1.65). This means that, for the sequence of
approximating sums Sn and the limiting value S, we require

lim
n→∞

E
[
(Sn − S)2

]
= 0, (1.93)

where we define

Sn =
n∑
i=1

f (ti91,X(ti91))ΔW(Δti)2, (1.94)

and

S =
∫ T

0
f (t,X(t)) dt = lim

n→∞

n∑
i=1

f (ti91,X(ti91))Δti. (1.95)
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Therefore, if we substitute the expressions for Sn and S, we get:

lim
n→∞

E
[
(Sn − S)2

]
= lim

n→∞
E

[(
n∑
i=1

f (ti91,X(ti91)) (ΔW(Δti)2 − Δti)

)2 ]
. (1.96)

Note that the squared sum in the limit above can be expanded according to the identity in
Eq. (1.80), i.e.:

E

[(
n∑
i=1

f (ti91,X(ti91)) (ΔW(Δti)2 − Δti)

)2 ]
=

n∑
i=1

E
[
f 2i91
]
E
[(
ΔW(Δti)2 − Δti

)2]
+ 2

n∑
i=1

i−1∑
j=1

E
[
fi91 fj91

] (
E
[
ΔW(Δti)2

]
− Δti

) (
E[ΔW(Δtj)2]− Δtj

)
, (1.97)

where we simplify the notation by writing fi91 instead of f (ti91,X(ti91)). Above we also use that
fi91 = f (ti91,X(ti91)) is independent of ΔW(Δti) = W(ti)−W(ti91). This follows from:

1. The function f being a non-anticipating function, i.e. it does not depend on future
values (recall Definition 1.17).

2. The property of stationary increments, fundamental to the definition of Lévy processes,
and in particular,Wiener processes (if needed, refer back to Sec. 1.2.3).

Even though ΔW(Δti) is defined in terms ofW(ti91), its distribution is independent ofW(ti91)
because it is determined solely by the interval Δti. Namely, recall from Sec. 1.2.3 that
ΔW(Δti) = W(ti)−W(ti91) = W(Δti) ∼ N (0,Δti). This lack of dependency on the
actual path ofW(t) up to ti91 makes ΔW(Δti) statistically independent ofW(ti91) despite
being defined as ΔW(Δti) := W(ti)−W(ti91). Therefore, even if f was a function of the
processW(t), i.e. f (t,W(t)), or of a processX(t) somehow correlated withW(t), fi91 is still
independent of ΔW(Δti). Hence,

E
[
f 2i91
(
ΔW(Δti)2 − Δti

)2]
= E

[
f 2i91
]
E
[(
ΔW(Δti)2 − Δti

)2]
, (1.98)

E
[
fi91 fj91

(
ΔW(Δti)2 − Δti

) (
ΔW(Δtj)2 − Δtj

)]
= (1.99)

= E
[
fi91 fj91

] (
E
[
ΔW(Δti)2

]
− Δti

) (
E[ΔW(Δtj)2]− Δtj

)
, since i > j ∀ i, j.
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Note that in the last expression, we have used that

E
[
ΔW(Δti)ΔW(Δtj)

]
= E[ΔW(Δti)]E

[
ΔW(Δtj)

]
since i > j, (1.100)

which holds because theWiener increments of different time steps are independent (again, see
Sec. 1.2.3). Furthermore, given that each increment ΔW(Δti) is normally distributed, then

E
[
ΔW(Δti)2

]
= Δti, (1.101)

E
[(
ΔW(Δti)2 − Δti

)2]
= E

[
ΔW(Δti)4 − 2ΔW(Δti)2Δti + Δt2i

]
= 3Δt2i − 2Δt2i + Δt2i = 2Δt2i . (1.102)

When we apply these results to Eq. (1.97) and take the limit of n→∞, we obtain

lim
n→∞

E
[
(Sn − S)2

]
= lim

n→∞
2

n∑
i=1

E
[
f 2i91
]
Δt2i = 0, (1.103)

since Δti is squared. In other words, the average mean squared error of the difference between
the “Riemann-sum” approximation Sn and the limiting stochastic integral S converges to zero
as the partition is refined. Thus, we have shown that

∫ T

0
f (t,X(t))(dW)2 := ms-lim

n→∞

n∑
i=1

f (ti91,X(ti91))ΔW(Δti)2 =
∫ T

0
f (t,X(t)) dt, (1.104)

and hence

dW2 = dt. (1.105)

The proofs of (dW)2+N = 0 when N > 2 and dWdt = 0 follow very similar steps to the
previous one, and are provided in App. A.1 and App. A.2. All these results are only valid for
the Itô integral, since we have used that ΔWi is independent of the non-anticipating function
fi91. However, the integrand in the Stratonovich integral is evaluated at the midpoint of the in-
terval, i.e. fi91 = f

( 1
2(ti91 + ti), 1

2(X(ti) + X(ti91))
)
, while the increment remains defined as

ΔW(Δti) = W(ti) − W(ti91). Hence, ΔW(Δti) and fi91 are not necessarily independent even
though f is non-anticipating. Thus, dW2 = dt does not hold in Stratonovich calculus [70].
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1.3.3 Itô’s lemma

Let us now introduce Itô’s lemma, the stochastic analog of the chain rule. It tells us how to dif-
ferentiate functions of stochastic processes and is essential for formulating and solving stochastic
differential equations (SDEs).

Lemma 1.2 (Itô’s lemma). LetW(t) be aWiener process and consider a function f (t,W(t)), twice
differentiable w.r.t. W(t) and once differentiable with respect to t. Then, Itô’s lemma states:

df (t,W(t)) =
(
∂f
∂t

+
1
2

∂2f
∂W2

)
dt+

∂f
∂W

dW, (1.106)

where ∂f/∂W and ∂2f/∂W2 are the first and second partial derivatives of f (t,W(t)) w.r.t. W(t),
evaluated at (t,W(t)).

In this form, Itô’s lemma shows that the differential of f (t,W(t)) has an additional term
1/2 ∂2f/∂W2 that accounts for the quadratic variation of the Wiener process W(t).

Proof. Consider the function f(t+ Δt,W(t+ Δt)), where Δt is a finite time-step s.t. Δt > 0.
Additionally, let us define theWiener increment over this small interval Δt as
ΔW(Δt) := W(t+ Δt)−W(t). Then, if we expand f(t+ Δt,W(t+ Δt)) using the Taylor
series to second order inW(t) and first in t, we get:

f(t+Δt,W(t+Δt)) ≈ f (t,W(t)) +
∂f
∂t
Δt+

∂f
∂W

ΔW(Δt) +
1
2

∂2f
∂W2 (ΔW(Δt))2, (1.107)

where higher-order terms in Δt and ΔW(Δt) are ignored since they will vanish as Δt→ 0.
The key difference from ordinary calculus comes from the term including (ΔW(Δt))2, since as
shown in the previous section, dW2 = dt in the limit of Δt→ 0.
Therefore, by now rearranging the terms above and taking the limit of Δt→ 0, we get

df (t,W(t)) =
(
∂f
∂t

+
1
2

∂2f
∂W2

)
dt+

∂f
∂W

dW. (1.108)

Additionally, there is also a more general form for Itô’s lemma, providing the differential of a
function f (t,X(t)), where X(t) is a general stochastic process. Namely,

Lemma1.3 (General Itô’s lemma). LetX(t)be an Itô process and let f (t,X(t))be a twice-differentiable
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function of time and the processX(t). Then, Itô’s lemma states:

df (t,X(t)) =
∂f
∂t
dt+

∂f
∂X

dX+
1
2
∂2f
∂X2dXdX, (1.109)

where dXdX represents the quadratic variation ofX(t). ForX(t) = W(t), the quadratic variation
is dt.

Example. (How to apply the Itô lemma (I)): Let us consider now
f (t,W(t)) = μ t+ σW(t), where μ, σ are constant parameters. If now we evaluate the
differential df (t,W(t)) using the Itô form, we get:

df (t,W(t)) = μ dt+ σ dW. (1.110)

Note that a function of a stochastic process is simply another stochastic process, and thus, we can
rename the function ofW(t) asX(t) := f (t,W(t)). Then, we can view the Itô differential in
Eq. (1.110) as a stochastic differential equation of the processX(t). Namely,

dX(t) = μ dt+ σ dW. (1.111)

Example. (How to apply the Itô lemma (II)): In this second example, let us consider a
different function: f (t,W(t)) = W(t)2. If we apply Itô’s lemma to f (t,W(t)), we obtain

df (t,W(t)) = d
(
W(t)2

)
= 0 · dt+ 2W(t)dW+

1
2
2dt = dt+ 2W(t)dW, (1.112)

since ∂f/∂t = 0 because f does not depend on t, and

∂f
∂W

= 2W(t), (1.113)

∂2f
∂W2 = 2. (1.114)

This result shows how the second derivative term in Itô’s lemma influences the differential of
functions that are at least quadratic inW(t).
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1.3.4 Itô-Leibniz product rule

In ordinary calculus, the Leibniz product rule provides the derivative of a product of two or
more functions. For stochastic processes, however, the corresponding rule for differentiating
the product of two stochastic processes — or two functions of stochastic processes, which are
themselves stochastic processes too— is known as the Itô-Leibniz product rule.

Rule. (Itô-Leibniz product rule): Let X(t) and Y(t) be two Itô processes. Then, the differential
of the product Z(t) = X(t)Y(t) is given by:

dZ(t) = d (X(t)Y(t)) = X(t)dY(t) + Y(t)dX(t) + dX(t)dY(t). (1.115)

Proof. To derive the Itô-Leibniz product rule, we can start considering the following
increment of Z(t) = X(t)Y(t):

ΔZ(Δt) = Z(t+ Δt)− Z(t) = X(t+ Δt)Y(t+ Δt)− X(t)Y(t), (1.116)

and then add and subtract the termX(t)Y(t+ Δt):

ΔZ(Δt) = X(t+ Δt)Y(t+ Δt) + X(t)Y(t+ Δt)− X(t)Y(t+ Δt)− X(t)Y(t)

= Y(t+ Δt) (X(t+ Δt)− X(t)) + X(t) (Y(t+ Δt)− Y(t)) . (1.117)

Next, we again add and subtract another term, Y(t) (X(t+ Δt)− X(t)):

ΔZ(Δt) = Y(t+ Δt) (X(t+ Δt)− X(t))− Y(t) (X(t+ Δt)− X(t))

+ Y(t) (X(t+ Δt)− X(t)) + X(t) (Y(t+ Δt)− Y(t))

= (Y(t+ Δt)− Y(t)) (X(t+ Δt)− X(t))

+ Y(t) (X(t+ Δt)− X(t)) + X(t) (Y(t+ Δt)− Y(t))

= ΔY(Δt)ΔX(Δt) + Y(t)ΔX(Δt) + X(t)ΔY(Δt). (1.118)

If we now take the limit of Δt→ 0, we derive the Itô-Leibniz product rule:

dZ(t) = X(t)dY(t) + Y(t)dX(t) + dY(t)dX(t). (1.119)
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1.3.5 Stochastic differential equations

Stochastic differential equations are ordinary differential equations with the right hand side per-
turbedwith a random term. Tomathematically define SDEs, we use Itô notation. An example of
a simple SDE is given in Eq. (1.111), which its form in Itô notation is derived using Itô’s lemma.
More generally though, a differential equation perturbed by white Gaussian noise¶ can be writ-
ten in Itô form as:

dX(t) = μ(X(t), t)dt+ σ(X(t), t)dW, (1.120)

where X(t) is the stochastic process we aim to solve for, i.e. the state of the system at time t, and
dW is the Wiener differential. The terms μ(X(t), t) and σ(X(t), t) are the drift and diffusion
term, representing the deterministic and random parts of the evolution, respectively.

Solutions to SDEs can be generally classified into two categories: analytical, with closed-form
solutions, and numerical, which approximate the evolution of X(t) through discretized steps. A
simple example of an analytical closed-form solution is given by the SDE in Eq. (1.111), which
has the solution X(t) = μ t+ σW(t).

Example. (Geometric Brownian motion solution): Another well-known example is the
geometric Brownian motion satisfying the following SDE:

dX(t) = μX(t)dt+ σX(t)dW, (1.121)

which has the solution

X(t) = X(0) exp
{(

μ− 1
2
σ2
)
t+ σW(t)

}
, (1.122)

whereX(0) is the initial value of the processX(t).

Proof. To find the solution of the geometric Brownian motion defined by Eq. (1.121), let us
compute the differential of the natural logarithm ofX(t). In particular, since ln(X(t)) is a
function of the processX(t), i.e. f (t,X(t)), we have to use Itô’s lemma (1.109) to compute the

¶WhiteGaussian noise is a random signal with a flat power spectral density andGaussian amplitude distribution;
it canbe informally thought of as thederivative of theWiener process. For amore in-depth explanation, see Sec. 1.3.8.
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differential of f (t,X(t)) = ln(X(t)). Namely,

d (ln(X(t))) =
1
2

(
∂2

∂X2 ln(X(t))
)
dXdX+

(
∂

∂X
ln(X(t))

)
dX, (1.123)

where dXdX is the quadratic variation ofX(t):

dXdX = μ2X2(t)dt2+ 2σμX2(t) dWdt+ σ2X2(t) dW2 = σ2X2(t) dt+O(dt3/2). (1.124)

Therefore, we can write the differential of ln(X(t)) as

d (ln(X(t))) = − 1
2

1
X2(t)

σ2X2(t)dt+
dX
X(t)

= − 1
2
σ2dt+

dX
X(t)

=

= − 1
2
σ2dt+ μ dt+ σdW, (1.125)

where in the last step we used Eq. (1.121). Hence, by now integrating from 0 to t, we get

ln(X(t))− ln(X(0)) = ln
(
X(t)
X(0)

)
=

(
μ− 1

2
σ2
)
t+ σW(t), (1.126)

which, by exponentiating its both sides, yields an analytical form forX(t):

X(t) = X(0) exp
{(

μ− 1
2
σ2
)
t+ σW(t)

}
. (1.127)

1.3.6 Ornstein-Uhlenbeck process

TheOrnstein-Uhlenbeck (OU)process is anotherprocesswithGaussiannoise thatmodelsmean-
reverting behavior, i.e. the systemhas a tendency to return to an equilibrium state. The dynamics
of the OU process X(t) are governed by the following SDE:

dX(t) = −θ (X(t)− μ)dt+ σ dW, (1.128)

where θ > 0, μ and σ are constants and dW is the Wiener differential. The deterministic term
−θX(t) pulls the process back towards a long-term mean, μ, while the stochastic term σdW in-
troduces the random kicks.
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Just like in the example of the geometric Brownian motion, the OU process (here we assume
μ = 0) also has a formal solution:

X(t) = X(0)e−θt + σ
∫ t

0
e−θ(t−τ)dW(τ). (1.129)

Proof. Define a function of the stochastic processX(t) as f (X(t), t) := X(t)eθt, such that
when computing its differential with Itô’s lemma we get:

d
(
X(t)eθt

)
= θX(t)eθtdt+ eθtdX(t) = σ dW(t)eθt. (1.130)

Hence, integrating both sides from 0 to t yields:

X(t)eθt = X(0) + σ
∫ t

0
eθτdW(τ), (1.131)

which can be simplified by taking the exponential term to the r.h.s. to reveal the formal
solution of the process:

X(t) = X(0)e−θt + σ
∫ t

0
e−θ(t−τ) dW(τ). (1.132)

From this expression, one can derive the mean and the covariance of the process:

E[X(t)] = X(0)e−θt, (1.133)

cov[X(t)X(s)] = E[(X(t)− E[X(t)])(X(s)− E[X(s)])]

= σ2e−θ(s+t)E
[∫ t

0
eθτ dW(τ)

∫ s

0
eθυ dW(υ)

]
= σ2e−θ(s+t)

∫ t

0

∫ s

0
eθτeθυ E[dW(τ) dW(υ)]

= σ2e−θ(s+t)
∫ t

0
eθτ
[∫ s

0
eθυ δ(τ− υ)dυ

]
dτ

= σ2e−θ(s+t)
∫ min(t, s)

0
e2θτdτ

= σ2e−θ(s+t) 1
2θ
(
e2θmin(t, s) − 1

)
=

σ2

2θ
(
e−θ|t−s| − e−θ(s+t)) (1.134)
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wheremin(t, s) appears because eθτ is non-zero only when 0 ≤ τ ≤ s. It follows that the variance
is:

V[X(t)] = cov[X(t)X(t)] =
σ2

2θ
(
1− e−2θt) , (1.135)

which for small θ can be approximated as

V[X(t)] ≈ σ2t. (1.136)

TheOUprocess can also be described in terms of a PDF p(x, t), which describes the likelihood
of the process X(t) being in a state x at a time t. This probability density evolves according to the
Fokker-Planck equation, a partial differential equation that governs the time evolution of the
probability distribution for a stochastic process. For the zero-mean (μ = 0) OU process, the
Fokker-Planck equation is given by:

∂p
∂t

= θ
∂

∂x
(x p) +

σ2

2
∂2p
∂x2

. (1.137)

Solving the Fokker-Planck equation with the initial condition p(x, t0) = δ(x− x0) yields the
following transition probability function:

p(x, t|x0, t0) =

√
θ

πσ2(1− e−2θ (t−t0))
exp

(
− θ
σ2

(
x− x0e−θ (t−t0)

)2
1− e−2θ (t−t0)

)
, (1.138)

where t > t0, x = X(t) and x0 = X(t0). Note that the mean and variance of the OU process
X(t), given in Eq. (1.133) and Eq. (1.135), respectively, can be easily inferred from the Gaussian
form of the transition probability by setting the starting time t0 = 0 in Eq. (1.138).

1.3.7 Numerical methods for SDEs

For cases where closed-form solutions of SDEs are not attainable, numerical methods provide
a practical way to approximate the behavior of stochastic processes over time. Numerical solu-
tions to SDEs rely on time discretization and iterative computation of approximate values of the
stochastic process. One of the most widely used methods for numerically solving SDEs is the
Euler-Maruyama (EM) method, a straightforward extension of the classical Euler method for
deterministic differential equations.
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1.3.7.1 The Euler-Maruyama method

Consider a general SDE of the form specified in Eq. (1.120). Namely,

dX(t) = μ (X(t), t) dt+ σ (X(t), t) dW, (1.139)

where X(t) is the stochastic process for which we want to numerically solve the equation above
over a time interval [0,T ]. To implement the EM method, the time interval [0,T ] is divided
into n discrete time steps of equal size Δt = T/n. Let tk = kΔt denote the discrete time points,
with k = 0, 1, 2, . . . , n. Then, the approximate solution at each time step, X[k] := X(tk), is
computed iteratively using the update formula:

X[k+ 1] = X[k] + μ (tk,X[k])Δt+ σ (tk,X[k])ΔWk, (1.140)

where ΔWk := W(tk+1) −W(tk) is the increment of the Wiener process over the time step Δt,
which is simulated by drawing from a Gaussian distribution with mean zero and variance Δt:

ΔWk ∼ N (0,Δt). (1.141)

The EM method is a first-order method in both the time-step Δt and the Wiener increment
ΔWk. Specifically, it converges strongly with order 1/2, meaning that the expected error between
the true solution of X and the numerical solution scales asO(

√
Δt). For practical purposes, this

implies that reducing size of the time step improves the accuracy of the method, but its precision
is limited. Higher-order methods exist but they are often more complex and computationally
expensive. In particular, when the drift and/or diffusion coefficients exhibit high nonlinearity or
stiffness, then more sophisticated methods, such as theMilstein method or higher-order Runge-
Kutta methods for SDEs may be necessary to achieve better accuracy.

1.3.8 White noise

Ordinary differential equations can be extended to describe the dynamics of stochastic processes
by adding a white noise term, such as:

dx
dt

= μ x+ w(t), (1.142)
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wherew(t)‖ represents the white noise, also sometimes referred as a Langevin term. Even though
we previously mentioned that white Gaussian noise w(t) can be informally viewed as the formal
derivative of a Wiener process, we have yet to rigorously define what we mean by white noise.

White noise processes differ significantly between discrete and continuous time, particularly
in how they are defined and interpreted. In the discrete-time setting, white noise has an intuitive
definition, involving sequences of uncorrelated (or independent) random variables with finite
variance. In contrast, continuous-time white noise cannot be defined as a standard stochastic
process, requiring more complicated mathematical machinery. Thus, we begin by introducing
the simpler notion of discrete white noise and then move to continuous time.

Definition 1.20 (Discrete white noise). Let {qqqk}k∈Z be a real‑valued discrete‑time stochastic pro-
cess. We say that it is a wide‑sense white noise process if it satisfies [71]:

E[qqqk] = 0, (1.143)

cov[qqqk,qqqj] = E
[
qqqk qqqj

]
= QQQk δkj, (1.144)

where δkj is the Kronecker delta and QQQk > 0 is the variance of qqqk. If, in addition, the random
variables in {qqqk}k∈Z are mutually independent, i.e.,

p(qqq1, . . . ,qqqk) = p(qqq1) · · · · · p(qqqk) (1.145)

then {qqqk}k∈Z is also strict‑sense white noise. Finally, when each element qqqk of the white process is
Gaussian, one speaks of a discrete Gaussian white noise:

qqqk ∼ N (0, QQQk). (1.146)

Unlike in discrete time, a continuous-time white noise process cannot be defined as a stan-
dard stochastic process that when evaluated point-wise yields a random variable with a finite vari-
ance. Instead, continuous white noise is treated as a generalized stochastic process, defined only
through its action on test functions via integration:

Definition 1.21 (Continuous white noise). A (generalized) continuous-time stochastic process
‖In general, this noise in the so-called Langevin equation does not need to be white [70].
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{www(t), t ∈ [0,∞)} taking values inRn is called white noise if [72]:

E[www(t)] = 0, (1.147)

cov[www(t),www(s)] = E[www(t)www(s)] = QQQ(t) δ(t− s), (1.148)

where δ( · ) is the Dirac delta and QQQ(t) is the (continuous) covariance matrix, also known as the
spectral density matrix [30].

The term “white” in white noise refers to its flat power spectral density Sw(ω) over an infinite
frequency range. To visualize this, consider the case of a white noise with a constant covariance,
i.e. Q(t) = Q. Its power spectral density is given by:

Sw(ω) =
∫ ∞

−∞
E[www(t)www(t+ τ)] eiωτdτ = Q. (1.149)

Thus, this constant power spectral density across an infinite bandwidth implies that the general-
ized process has an infinite variance in the time domain. This is reflected by the Dirac delta δ(0)
in the covariance function of Eq. (1.148) when t = s. Due to this infinite variance,www(t) cannot
be treated as a standard stochastic process that can be evaluated point-wise yielding random vari-
ables with finite variance. Instead, it is referred to as a generalized process, just like theDirac delta
is called a generalized function: i.e. it is defined by multiplying it with a test function and then
integrating:∫ ∞

−∞
f(t)δ(t)dt = f(0)⇐⇒

∫ ∞

−∞
fff T(t)www(t)dt = ⟨fff,www⟩ is a well-defined random vector. (1.150)

In the casewhere thewhite noise is alsoGaussian, it can be formally related to aWiener process
{W(t), t ∈ [0,∞)} (introduced in Sec. 1.2.3) as:

w(t) =
dW(t)
dt

, (1.151)

in a distributional sense. This means that for any suitable test function∫
f(t)w(t)dt =

∫
f(t)dW, (1.152)

where the right-hand side is an Itô integral (see Sec. 1.3.1 for more on Itô integrals).
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Another important point we should discuss is how to discretize continuouswhite noise. Since
w(t) is a generalized stochastic process whose properties are only well-defined under integration
with a test function f(t), wemust utilize this and set f(t) = 1 in order to generate discrete random
variables. Namely, over an interval [tk91, tk) of length Δt, the discretized white noise reads as

qqqk =
1
Δt

∫ tk

tk91
www(τ)dτ. (1.153)

In the case where www(t) is a continuous Gaussian white noise, then its integral over the interval
[tk91, tk) is simply the Wiener increment ΔWk:

ΔWk = W(tk)−W(tk91) =
∫ tk

tk91
dWτ =

∫ tk

tk91
www(τ)dτ, (1.154)

such that
qqqk =

ΔWk

Δt
=

1
Δt

∫ tk

tk91
www(τ)dτ, (1.155)

where if the covariance of the continuouswhiteGaussian process isQQQ, then this discretizedwhite
noise process is drawn from a Gaussian distribution with mean zero and covarianceQQQ/Δt:

qqqk ∼ N (0,QQQ/Δt). (1.156)

1.3.9 Discretization of a continuous linear and Gaussian system

Now that we know how to discretize white noise, let us explain how to discretize a LG system.

Proposition 1.4 (Discretization of a continuous‐time LG system). Let xxx(t) be the state of the
system, uuu(t) the control input, and yyy(t) the measurement, and letwww(t) andvvv(t) be zero-mean white
Gaussian noises with covariances:

E
[
www(t)www(s)T

]
= QQQ(t)δ(t− s), (1.157)

E
[
vvv(t)vvv(s)T

]
= RRR(t)δ(t− s), (1.158)

E
[
www(t)vvv(s)T

]
= 0. (1.159)
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Consider the continuous-time LGmodel:

ẋxx(t) = FFF(t)xxx(t) + BBB(t)uuu(t) +GGG(t)www(t), (1.160)

yyy(t) = HHH(t)xxx(t) + vvv(t). (1.161)

Then, by discretizing the system above, we get:

xxxk = AAAk91 xxxk91 + BBBk91 uuuk91 +GGGk91 qqqk91, (1.162)

yyyk = HHHk xxxk + rrrk, (1.163)

where qqqk−1 ∼ N (0,QQQk−1), rrrk ∼ N (0,RRRk), E
[
qqqk−1 rrrTk

]
= 0, and

AAAk91 = I+ FFF(tk91)Δt, BBBk91 = BBB(tk91)Δt, GGGk91 = GGG(tk91)Δt,

HHHk91 = HHH(tk91), QQQk91 =
QQQ(tk91)
Δt

, RRRk91 =
RRR(tk91)
Δt

.

time

signal

continuous

sampled

Figure 1.2: A continuous signal sampled using the zero‐order hold assumption. To discretize a signal using zero‐order hold,
the time axis is divided in increments of Δt in order to evaluate the function at these steps: kΔt, with k ∈ Z. The signal is
then further assumed to maintain a constant value f(kΔt) from time kΔt to time (k+ 1)Δt.

Proof. Let us establish the equivalence between the continuous LG system and its discrete
counterpart. The first step is to apply Theorem A.3 to solve Eq. (1.160), focusing on the interval
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between time points tk91 = (k91)Δt and tk = kΔt:

xxx(tk) = ΦΦΦ(tk, tk91)xxx(tk91)+
∫ tk

tk91
ΦΦΦ(tk, τ)BBB(τ)uuu(τ)dτ+

∫ tk

tk91
ΦΦΦ(tk, τ)GGG(τ)www(τ)dτ, (1.164)

whereΦΦΦ(tk, tk91) is the state-transition matrix that satisfies

dΦΦΦ(tk, tk91)
dt

= FFF(t)ΦΦΦ(tk, tk91), ΦΦΦ(tk91, tk91) = I. (1.165)

and fulfills the following properties for all tk91 ≤ tk ≤ T:

ΦΦΦ(tk91, tk) = ΦΦΦ−1(tk, tk91), (1.166)

ΦΦΦ(T, tk91) = ΦΦΦ(T, tk)ΦΦΦ(tk, tk91). (1.167)

To now find an expression for the transition matrix of the state,ΦΦΦ(tk, tk91), we apply the
zero-order hold approximation. In other words, we assume a small enough time-step Δt
during which, as depicted in Fig. 1.2, each deterministic continuous signal in Eq. (1.160) and
Eq. (1.161) is constant within the time-step Δt:

FFF(t) ≈ FFF(tk91), BBB(t) ≈ BBB(tk91), GGG(t) ≈ GGG(tk91), HHH(t) ≈ HHH(tk91), uuu(t) ≈ uuu(tk91),

with the only exception being the zero-mean Gaussian noise processes www(t) and vvv(t), as
explained in Sec. 1.3.8. Then, the solution to Eq. (1.165) is simply

ΦΦΦ(tk, tk91) = eFFF(tk91)(tk−tk91) = eFFF(tk91)Δt, (1.168)

and Eq. (1.164) becomes

xxx(tk)=eFFF(tk91)Δtxxx(tk91)+
[∫ tk

tk91
eFFF(tk91)(tk9τ)BBB(τ)uuu(τ)dτ

]
+

∫ tk

tk91
eFFF(tk91)(tk9τ)GGG(τ)www(τ)dτ (1.169)

=eFFF(tk91)Δtxxx(tk91)+
[∫ tk

tk91
eFFF(tk91)(tk9τ)dτ

]
BBB(tk91)uuu(tk91)+

∫ tk

tk91
eFFF(tk91)(tk9τ)GGG(tk91)www(τ)dτ. (1.170)
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If we now compare Eq. (1.170) with Eq. (1.162), we can identify:

xxxk = xxx(tk), uuuk91 = uuu(tk91), BBBk91 =

[∫ tk

tk91
eFFF(tk91)(tk9τ)dτ

]
BBB(tk91), (1.171)

AAAk91 = eFFF(tk91)Δt, GGGk91 qqqk91 =
∫ tk

tk91
eFFF(tk91)(tk9τ)GGG(tk91)www(τ)dτ, (1.172)

where we carefully maintain the order of matrix and vector operations, as they are not
generally commutative. The last three terms can be further simplified by noting that the
continuous equations are equivalent to their discrete counterparts only in the limit when the
time-step Δt approaches zero (i.e., as tk → tk91). Consequently, we can assume the time-step Δt
to be infinitesimally small and only keep the terms up to first-order in Δt:

BBBk91 =

[∫ tk

tk91
eFFF(tk91)(tk9τ)dτ

]
BBB(tk91) ≈ *ΔtBBB(tk91), (1.173)

AAAk91 = eFFF(tk91)Δt ≈ I+ FFF(tk91)Δt, (1.174)

GGGk91 qqqk91 =
∫ tk

tk91
eFFF(tk91)(tk9τ)GGG(tk91)www(τ)dτ ≈ †GGG(tk91)

∫ tk

tk91
www(τ)dτ. (1.175)

From the last equation we can further identify that

GGGk91 = GGG(tk91)Δt, and qqqk91 =
1
Δt

∫ tk

tk91
www(τ)dτ, (1.176)

where the discrete white noise sample qqqk comes from averaging the continuous white noise over
the interval [tk91, tk), as explained in Eq. (1.155). Note that unlike for the state, control term
and other functions in Eq. (1.164), we do not approximate the noise termswww(t) and vvv(t) using
zero-order hold. In other words, we do not sample these continuous noises and approximate
them with their value at the beginning of the interval, like in Fig. 1.2. The main reason
behind this lays in the definition of continuous white Gaussian noise, which as discussed in
Sec. 1.3.8, has a delta-correlated covariance. This simply means that the noise is completely
uncorrelated from one time instant to another, but that it has infinite variance. If we try to
approximate the process noise with the zero-order hold, i.e. qqqk91 ≈ www(tk91), and apply the
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definition of the process covariance of Eq. (1.157):

QQQk = E
[
qqqk qqqTk

]
= E

[
www(tk)wwwT(tk)

]
= QQQ(tk)δ(0), (1.177)

we obtain an unbounded discrete process noise covariance. This clearly illustrates why direct
sampling of the noise, as required by the zero-order hold, is mathematically problematic. If
instead we discretize the continuous process noise by averaging it over the infinitesimally small
time-step Δt, as suggested by Eq. (1.176), we retrieve a mathematically sound expression
relatingQQQk andQQQ(t), which yields a well-behaved process:

QQQk = E
[
qqqk qqqTk

]
=

1
Δt2

∫ tk+1

tk

∫ tk+1

tk
E
[
www(τ)wwwT(s)

]
dτ ds =

1
Δt2

∫ tk+1

tk

∫ tk+1

tk
QQQ(τ)δ(τ9s)dτ ds

=
1
Δt2

∫ tk+1

tk
QQQ(τ)dτ ≈ 1

Δt2
QQQ(tk)Δt =

QQQ(tk)
Δt

, (1.178)

where we have now applied zero-order hold to approximateQQQ(t) ≈ QQQ(tk) inside the integral
ofQQQ(t) over an infinitesimal time-step Δt in the interval [tk, tk+1). It then follows that

GGGkQQQkGGGT
k = ΔtGGG(tk)QQQ(tk)GGG(tk)T. (1.179)

We can apply the same reasoning to the measurement process noise, since vvv(t) is a continuous
Gaussian white noise. Namely, the discretized measurement noise is obtained by integrating
vvv(t) over the interval Δt:

rrrk =
1
Δt

∫ tk

tk91
vvv(τ)dτ. (1.180)

Then, since yyy(t) follows Eq. (1.161) and by applying the zero-hold assumption for the state xxx(t)
and measurement matrixHHH(t), we get

yyyk :=
1
Δt

∫ tk+1

tk
yyy(t)dt =

1
Δt

∫ tk+1

tk
(HHH(t)xxx(t) + vvv(t)) dt (1.181)

≈ HHH(tk)xxx(tk) +
1
Δt

∫ tk+1

tk
vvv(t)dt, (1.182)
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where the relation between the discrete and continuous measurement covariance, RRRk and
RRR(tk), is:

RRRk = E
[
rrrkrrrTk

]
=

1
Δt2

∫ tk+1

tk

∫ tk+1

tk
E
[
vvv(t)vvvT(τ)

]
dt dτ =

1
Δt2

∫ tk+1

tk
RRR(t)dt =

RRR(tk)
Δt

. (1.183)

a∫ Δt
0 f(t)dt ≈ f(0)Δt, when Δt→ 0

b∫ Δt
0 f(t)w(t)dt ≈ f(0)

∫ Δt
0w(t)dt, when Δt→ 0

xxxk = xxx(tk) uuuk = uuu(tk)

AAAk = I+ FFF(tk)Δt BBBk = BBB(tk)Δt

HHHk = HHH(tk) GGGk = GGG(tk)Δt

rrrk = 1
Δt

∫ tk
tk91

vvv(τ)dτ qqqk = 1
Δt

∫ tk
tk91

www(τ)dτ

RRRk =
RRR(tk)
Δt QQQk =

QQQ(tk)
Δt

Table 1.1: Table summarizing how to discretize a continuous linear and Gaussian system. This table details how each vector,
white noise component, and matrix defining the continuous LG system of Eqs. (1.160‐1.161) is transformed to obtain the
corresponding elements of the discrete LG system given in Eqs. (1.162‐1.163).

1.4 (some) Fundamentals of quantummechanics

1.4.1 Position and momentum operators

The position andmomentum operators, X̂ and P̂ , can be written in terms of creation and anihi-
lation operators as

X̂ =

√
1
2
(
â† + â

)
, P̂ = i

√
1
2
(
â† − â

)
, (1.184)

These operators satisfy the canonical commutation relation [X̂ , P̂ ] = i, which follows directly
from the algebra [â, â†] = 1.
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1.4.1.1 Ground wavefunction in the position eigenbasis of the Harmonic Os-
cillator

The ground-state wavefunction of the quantum harmonic oscillator in the position eigenbasis is
a Gaussian function:

ψ0(x) =⟨x|0⟩=
1

π1/4 e
−x2/2, (1.185)

which has been normalized, as required from a wavefunction.

Proof. From Eq. (1.184), we can write the annihilation and creation operators w.r.t. the
position and momentum operators as

â =
1√
2
(X̂ + iP̂), and â† =

1√
2
(X̂ − iP̂). (1.186)

As standard, applying â to the ground state yields zero,

â |0⟩ = 0. (1.187)

Thus, applying ⟨x| to the equation above, where ⟨x| is an eigenstate of X̂ , will also yield zero:

⟨x|â|0⟩ = 1√
2
⟨x|(X̂ + iP̂)|0⟩ = 0. (1.188)

By using that the P̂ operator represented in the position basis can be written as

⟨x|P̂ |0⟩ = −i d
dx
⟨x|0⟩, (1.189)

we find a first-order linear differential equation for the wavefunction ψ0(x) =⟨x|0⟩:

⟨x|X̂ |0⟩+ i⟨x|P̂ |0⟩ = x⟨x|0⟩+ d
dx
⟨x|0⟩= 0, (1.190)

which has a solution
⟨x|0⟩= Ae−x2/2, (1.191)
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with a normalization constant A = 1/π1/4, since

1 =
∫ ∞

−∞
|⟨x|0⟩|2 dx =

∫ ∞

−∞
|A|2e−x2 dx = |A|2

√
π. (1.192)

Therefore, the wavefunction of the ground state in the position eigenbasis reads as:

⟨x|0⟩= 1
π1/4 e

−x2/2. (1.193)

1.4.2 Dynamics of open quantum systems

1.4.2.1 The Gorini–Kossakowski–Sudarshan–Lindblad generator

A quantum system interacting with a Markovian environment is governed by a master equation
of the form

dρ
dt

= L ρ, (1.194)

where the Gorini–Kossakowski–Sudarshan–Lindblad (GKSL) generator of the evolution [73,
74] reads as:

Lρ = −i[Ĥ , ρ] +
K∑
k=1

D[L̂k]ρ. (1.195)

Here, Ĥ is aHermitianoperator representing theHamiltonianof the systemand{L̂j} are a collec-
tionof operators, often referred to asLindblad operators, that characterize the various irreversible
processes via the (dissipative) superoperator:

D[Ô ]ρ = Ô ρÔ † − 1
2
(Ô †Ô ρ+ ρÔ †Ô ). (1.196)

The formal solution for a general master equation (1.194) with a time-dependent Lindblad form
can be written as

ρ(t) = Nt ρ(0) (1.197)

where the superoperatorNt is defined as

Nt = T
{
e
∫ t
0 Lτdτ

}
, (1.198)
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with T {exp { · }} denoting the time-ordered exponential. In the special case when L is time-
independent, the solution is a semigroup:

Nt = eLt. (1.199)

1.4.3 Angular momentum

The three total angular momentum operators Ĵx, Ĵy and Ĵz obey the commutation relation

[ Ĵj, Ĵk] = iεjkl Ĵl (1.200)

where εjkl is the Levi-Civita symbol and the indeces i, j, k = x, y, z. In other words,

[ Ĵx, Ĵy] = i Ĵz (1.201)

[ Ĵy, Ĵz] = i Ĵx (1.202)

[ Ĵz, Ĵx] = i Ĵy. (1.203)

The collection of these angular momentum operators form a total angular momentum vector
operator:

ĴJJ = ( Ĵx, Ĵy, Ĵz)T, (1.204)

whose squared magnitude defines another operator:

Ĵ 2 := Ĵ 2x + Ĵ 2y + Ĵ 2z . (1.205)

Theoperators Ĵ 2 and Ĵz have a commoneigenbasiswith eigenvectors labeledwithquantumnum-
bers j andm:

Ĵ 2 | j,m⟩ = j(j+ 1) | j,m⟩ ,

Ĵz | j,m⟩ = m | j,m⟩ ,

where j ∈ {0, 1
2 , 1,

3
2 , 2, . . . }, and for a given j, the value of m ranges as m = −j,−j + 1,

. . . , j − 1, j, i.e. from−j to j in steps of unity [75]. Using the operators Ĵx and Ĵy, we define the
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ladder operators for the angular momentum operators as:

Ĵ± = Ĵx ± i Ĵy, (1.206)

which fulfill Ĵ+ = Ĵ †−. These operators act on the eigenstates | j,m⟩ by raising or lowering the
eigenvaluem by one unit:

Ĵ± | j,m⟩ =
√

j(j+ 1)−m(m± 1) | j,m± 1⟩ . (1.207)

If ĴJJ is the angular momentum vector of an ensemble of N two-level systems, then j ≤ N/2
and−j ≤ m ≤ j, with j andm integer or half and jmin = 0, 1/2 depending whether there is an
even or odd number of two-level systems, i.e. whetherN is even or odd [76]. Then, the collective
angular momentum operators are defined as the sum over the individual contributions:

Ĵx =
1
2

N∑
k=1

σ̂(k)x , Ĵy =
1
2

N∑
k=1

σ̂(k)y , Ĵz =
1
2

N∑
k=1

σ̂(k)z , (1.208)

where the angular momentum operators for each individual two-level system are ŝ(k)x = 1
2 σ̂

(k)
x ,

ŝ(k)y = 1
2 σ̂

(k)
y and ŝ(k)z = 1

2 σ̂
(k)
z . The collective operators obey the same commutation relations

and eigenvalue equations as those for a single system while encapsulating the macroscopic spin
properties of the entire ensemble.

1.4.4 Coherent spin state

Asmight be deduced from thename, coherent spin states [77, 78] (also knownas atomic coherent
states) are simply an extension of the coherent states of a field first introduced by Glauber. A
coherent spin state (CSS) is a product state, i.e. the tensor product ofN qubits, e.g. spin-1/2, all
aligned in the same direction kkk = (sin α cos β, sin α sin β, cos α) (see Fig. 1.3):

|α, β⟩ =
N⊗
k=1

[
cos

α
2
|0⟩k + eiβ sin

α
2
|1⟩k
]
. (1.209)

Asdiscussed indetail inRef. [78], aCSS can alsobewritten in termsof the angularmomentum
basis by rotating the ground state |j,−j⟩ by an angle α about an axisnnn = (sin β,− cos β, 0)with
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CSS convention [78, 79]

x

y

z

kkk
nnn

α

β

Standard (physics) convention [80, 12]

x

y

z

θ

φ

Figure 1.3: Spherical coordinates conventions. The choice of rotation angles β and α (see left sketch) define the rotation
operatorR(α, β) and thus, the axis along which the CSS is aligned (along kkk). Given that the rotation operator around axisnnn
is applied to the ground state of the ensemble |j,−j⟩, by convention centered around the south pole, the rotation angle α
is measured off the south pole [78, 79]. Thus, the standard spherical coordinates parametrizing a sphere, (θ, φ) (see right),
relate to (α, β) as θ = π − α and φ = β [79]. When we discuss Wigner functions of CSS mapped onto the Bloch sphere, it
is important to note that (α, β) simply define the direction of the CSS, whereas (θ, φ) map the Wigner function onto the 3D
sphere.

the operator
R(α, β) = e−iα( Ĵx sin β− Ĵy cos β) = eξ Ĵ+−ξ∗ Ĵ− , (1.210)

where ξ = 1
2αe

−iβ. Namely,
|α, β⟩ := R(α, β) |j,−j⟩ . (1.211)

In Ref. [78] they further show how to rewrite Eq. (1.210) as

R(α, β) = R(η) = eη Ĵ+eln (1+|η|2) Ĵze−η∗ Ĵ− , (1.212)

where
η = e−iβ tan

α
2
. (1.213)

By now applying this form of the rotation operator to the ground state |j,−j⟩, as indicated in
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Eq. (1.211), we get

|η⟩ := R(η) |j,−j⟩ =
(
− 1
1+ |η|2

)j

eη Ĵ+ |j,−j⟩ , (1.214)

since

e−η∗ Ĵ− |j,−j⟩ = I |j,−j⟩ (1.215)

eln (1+|η|2) Ĵz |j,−j⟩ = eln (1+|η|2)(−j) |j,−j⟩ = eln (1+|η|2)
−j

|j,−j⟩

=

(
1

1+ |η|2

)j

|j,−j⟩ . (1.216)

Next, we expand the exponent in Eq. (1.214) as

|η⟩ := R(η) |j,−j⟩ =
(

1
1+ |η|2

)j 2j∑
k=0

η k

k!
Ĵ k+ |j,−j⟩ , (1.217)

where the power series expansion of eη Ĵ+ terminates at k = 2j, because Ĵ k+ |j, j⟩ = 0 for k > 0 and
thus, Ĵ k+ |j,−j⟩ = 0 for k > 2j. By shifting k by j and redefining it as k = m+ j, the summation
becomes

|η⟩ =
(

1
1+ |η|2

)j j∑
m=−j

ηm+j

(m+ j)!
Ĵ m+j
+ |j,−j⟩ . (1.218)

By then applying the relation derived in Proposition A.4:

(
2j

m+ j

)1/2

|j,m⟩ = 1
(m+ j)!

Ĵm+j
+ |j,−j⟩ , (1.219)

we get the form of a CSS in the eigenbasis of the angular momentum

|η⟩ = (1+ |η|2)−j
j∑

m=−j

(
2j

m+ j

)1/2

ηm+j |j,m⟩ , η ∈ C, (1.220)

where η = tan α
2e

−iβ as given in Eq. (1.213). Assuming the CSS of the spin-1/2 ensemble points
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in the x-direction s.t. the angles α and β have values:

j =
N
2
, α =

π
2
, and β = 0, (1.221)

then, the value of η is 1 and the CSS, aligned along x, reads as:

|η⟩ = 1
2N/2

N/2∑
m=−N/2

(
N

N
2 +m

)1/2 ∣∣∣∣N2 ,m
〉
. (1.222)

A CSS of that form has the following mean and variance:

⟨ ĴJJ ⟩CSSx = Tr
{
ρCSSx ĴJJ

}
=
(
⟨ Ĵx⟩CSSx , ⟨ Ĵy⟩CSSx , ⟨ Ĵz⟩CSSx

)T
=

(
N
2
, 0, 0

)T
(1.223)

⟨Δ2ĴJJ ⟩CSSx =
(
Δ2⟨ Ĵx⟩CSSx , Δ2⟨ Ĵy⟩CSSx , Δ2⟨ Ĵz⟩CSSx

)T
=

(
0,

N
4
,
N
4

)T
(1.224)

with ⟨Δ2 Ĵi⟩ = ⟨ Ĵ 2i ⟩ − ⟨ Ĵi⟩2, where i = x, y, or z. The values for the means and variances are
calculated in Sec. A.4.1.

1.4.5 TheWigner quasiprobability distribution

Definition 1.22 (Wigner distribution). Let ρ be a mixed state, and x and p a pair of conjugate
variables representing position and momentum. Then, theWigner distribution is defined as:

Wρ(x, p) :=
1
π

∫ ∞

−∞
⟨x− y|ρ|x+ y⟩e2ipydy, (1.225)

where we assume ℏ = 1. Equivalently, for a pure state |ψ⟩, it can be written as:

Wψ(x, p) :=
1
π

∫ ∞

−∞
ψ∗(x+ y)ψ(x− y)e2ipydy. (1.226)

TheWigner function fulfills the following properties:

1. Wρ(x, p) is aR-valued function.

2. It may take on negative values. For continuous variables, this is often interpreted as a sign
of nonclassical behavior [12].
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3. It provides proper marginal distributions:

⟨x|ρ|x⟩ =
∫

dpWρ(x, p), (1.227)

⟨p|ρ|p⟩ =
∫

dxWρ(x, p). (1.228)

4. The state overlap of two pure states |ψ⟩ and |φ⟩ is calculated as

|⟨ψ|φ⟩|2 = 2π
∫ ∞

−∞
dx
∫ ∞

−∞
dpWψ(x, p)Wφ(x, p) (1.229)

5. Operator averages are calculated as

⟨Ô ⟩ = Tr
{
ρ Ô
}
=

∫ ∞

−∞
dx
∫ ∞

−∞
dpWρ(x, p) fÔ (x, p), (1.230)

where

fÔ (x, p) :=
∫ ∞

−∞
dy
〈
x− y

2

∣∣∣Ô ∣∣∣x− y
2

〉
eipy. (1.231)

Example. (Wigner distribution of the vacuum state): Let us explicitly derive theWigner
quasiprobability distribution for the vacuum state |0⟩. Its wavefunction in the position
eigenbasis, ψ0(x), is:

⟨x|0⟩= ψ0(x) =
1

π1/4 e
−x2/2, (1.232)

as derived in Sec. 1.4.1.1. Therefore, itsWigner function can be written as:

W0(x, p) =
1
π

∫ ∞

−∞
dy e2ipy

1√
π
e−(x−y)2/2e−(x+y)2/2. (1.233)

The sum of the exponents of the wavefunctions yields:

− (x− y)2

2
− (x+ y)2

2
= −x2 − y2. (1.234)
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Therefore,

W0(x, p) =
1
π3/2

e−x2
∫ ∞

−∞
dy e−y2e2ipy. (1.235)

Next we can evaluate the integral above by noting it is a standard Fourier transform of a
Gaussian: ∫ ∞

−∞
dy e−y2e2ipy = Fy

[
e−y2
]
(p) =

√
πe−p2 . (1.236)

Thus, theWigner function of the vacuum state is

W0(x, p) =
1
π
ex2+p2 . (1.237)

Furthermore, note that theWigner distribution for the vacuum stateW0(x, p) is invariant
under rotations in the phase space, since the variables x and p define a radial distance
r2 = x2 + p2. herefore, if we define new operators X̂ φ and P̂ φ rotated in phase space by φ
through the following transformations:

X̂ φ = X̂ cos φ + P̂ sin φ, (1.238)

P̂ φ = −X̂ sin φ + P̂ cos φ, (1.239)

we can show that the wavefunction of the rotated eigenket
∣∣xφ〉 is simply

⟨xφ|0⟩= ψ0(xφ) =
1

π1/4 e
−x2φ/2, (1.240)

since
|⟨xφ|0⟩|2 =

∫
dpφW0(xφ, pφ) =

1√
π
e−x2φ , (1.241)

because x2 + p2 = x2φ + p2φ, i.e. theWigner function of the vacuum state remains invariant
under rotations in the phase space.

1.4.6 TheWigner function on a sphere

Computing theWigner distribution andmapping it into the Bloch sphere is very useful for visu-
alizing quantum states and how different operations affect them, specially in the case of atomic
ensembles [12, 79, 80]. TheWigner quasiprobability distribution, mapped onto the generalized
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Bloch sphere, is parametrized using the standard spherical convention with angles θ and φ [12]
(see right in Fig. 1.3):

Wρ(θ, φ) =
√

N+ 1
4π

N∑
k=0

k∑
q=−k

ρkqY
q
k (θ, φ) (1.242)

where Y q
k (θ, φ) are the complex spherical harmonics [81]. These functions are defined on the

surface of a unit sphere, mapping Y q
k : S2 → C, where S2 is the 2D surface of the sphere. Spheri-

cal harmonics provide a complete, orthonormal basis for square-integrable functions defined on
S2. As a result, each function on the surface of a sphere can be written as a weighted sum of these
spherical harmonics. In a way, spherical harmonics generalize the Fourier series from periodic
functions on a circle (S1) to functions on a sphere (S2). While the Fourier series decomposes a pe-
riodic function into a sum of sines and cosines, spherical harmonics extend this concepts to two
dimensions by employing both azimuthal (φ) and polar (θ) angular dependencies. Here, θ and φ
follow the standard convention, with θ being the polar angle measured off the +z-axis [79, 80]
(see right in Fig. 1.3).

The coefficients ρkq of the spherical harmonic decomposition of the Wigner function,

ρkq =
J∑

m1,m2=−J

ρm1,m2
tm1m2
kq , (1.243)

are determined by the part of the density matrix supported by the totally symmetric subspace, in
particular, its elements ρm1,m2

:= ⟨ J,m1| ρ | J,m2⟩, written in the angular momentum basis for
the maximal total spin J = N/2, as well as the coefficients tm1m2

kq dictating the transformation
from the Dicke space to the k-space [80, 82]:

tm1m2
kq := (−1) J−m1−q⟨ J,m1; J,−m2|k, q⟩, (1.244)

where ⟨ J,m1; J,−m2|k, q⟩ are the Clebsch-Gordan coefficients. Note that the exact density ma-
trix is needed to generate the Wigner quasiprobability distribution.

1.4.7 Spin squeezing

Spin-squeezed states are defined as states in which the variance of one collective spin component
is reducedbelow that of aCSS, at the expense of increased variance along an orthogonal direction.
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Consider an ensemble ofN two-level atoms described by collective spin operators. TheWineland
spin-squeezing parameter in Ref. [5, 6] is defined as

ξ 2(t) :=
V⊥(t)
⟨ Ĵs(t)⟩2

(
VCSS
⊥

⟨ Ĵs⟩2CSS

)−1

=
⟨ Ĵs(t)⟩2

N V⊥(t)
, (1.245)

where s is the mean spin direction, and ⊥ is the perpendicular direction along the ensemble is
being squeezed. For an ideal CSS where all atoms are uncorrelated, ξ 2(t) = 1. Hence, when
ξ 2(t) < 1, the state is (metrologically) spin squeezed. It is important to note that the definition of
spin-squeezing is not unique. Anotherwidely used definition, introduced byKitagawa andUeda
[83], is inspired by photon squeezing and focuses on theminimumvariance of a spin component
orthogonal to the mean spin direction:

ξ 2S =
4min⊥(Δ Ĵ⊥)2

N
, (1.246)

where just like before, ξ 2S < 1 defines the spin-squeezing condition. This parameter quantifies
the reduction in quantum noise along a particular spin direction and is directly related to the
metrological spin-squeezing parameter through the following inequality:

ξ 2S ≤ ξ 2. (1.247)

In other words, metrological spin squeezing (ξ 2 < 1) implies spin squeezing in the sense of Kita-
gawa and Ueda (ξ 2S < 1), but the converse is not necessarily true. That is, while a state with
reduced spin variance (ξ 2S < 1) may exhibit quantum correlations, it does not automatically
guarantee an improvement in metrological sensitivity.
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2
Bayesian estimation and control

Bayesian inference is a statistical framework in which parameters are treated as random vari-
ables [2, 29]. In this approach, probabilities quantify our uncertainty or beliefs about these pa-
rameters or hypothesis, and are systematically updated as new data becomes available [2, 29, 30].
That contrasts with the frequentist approach, where parameters are constant and probabilities
are interpreted as the proportion of outcomes in a large number of repeated identical experi-
ments [1, 2].

How to update our knowledge by incorporating new observations is described by the Bayes’
theorem[84, 30]. It combines prior information, represented by a prior distribution, with the
statistical model of the observations, given by the likelihood distribution, to produce an updated
probability known as the posterior distribution:

p(θ|y) ∝ p(θ|y)p(θ) ←→ posterior ∝ likelihood · prior, (2.1)

where θ is the parameter, and y represents the observed data.
Bayesian inference is especially well suited for problems such as optimal filtering, where the

56



parameters of the system or state evolve over time, requiring continuous updates as new ob-
servations are performed [30]. Filtering involves estimating the time-varying state of a system
using noisy observations when the true state is not directly observable. This estimation pro-
cess is typically implemented in two stages: a prediction step, which uses a model of the dy-
namics of the system to propagate in time the state distribution, and an update step, which
refines this estimation based on the latest observation [29, 30]. This recursive process ensures
that the state estimate improves as more data becomes available. The Kalman filter (KF) is a
well-known example, providing an optimal solution when the system is linear and the noise is
Gaussian [31, 32, 1, 29, 30]. For nonlinear or non-Gaussian scenarios, extensions like the ex-
tended Kalman filter (EKF) are used, which linearize the system dynamics around the current
estimate to handle mild nonlinearities[33, 29]. In more challenging situations, which are be-
yond the scope of this thesis, more general methods such as particle filtering can be employed,
using a set of particles to approximate the posterior distribution [30].
Besides estimating parameters in real time, we are often also interested in how to optimally

steer the system into a statemore advantageous formetrology, e.g. more sensitive to the parameter
of interest or more robust to noise. To define what we mean by optimal control, we must first
specify a control cost, i.e. a function that balances two competing objectives: (1) achieving the
desired control task with high accuracy, and (2) minimizing the cost or effort required by the
actuator [85]. This cost function typically includes adjustable parameters, or “knobs”, that allow
us to trade off estimation performance against control effort[29, 85, 55]. The optimal control
law is then the one that minimizes this total cost. For linear and Gaussian (LG) systems, the
optimal control is given by the linear-quadratic Gaussian (LQG) controller, which combines a
KF with a linear-quadratic regulator (LQR) [29, 85]. A complete and rigorous proof on why
LQG is optimal requires knowledge of dynamical programming and the broader field of optimal
control. To avoid delving into that but still provide convincing arguments, we present simpler
— albeit less rigorous — proofs that show how both LQR and LQG minimize their respective
control costs[29, 85].

The results and derivations presented in this chapter are not original contributions. Rather,
they are re-derivations and explanations in my own words, inspired by and adapted from well-
established treatments in the literature, particularly: Särkkä [30], Crassidis and Junkins [29], Si-
mon [33], and Kolosov [85]. Much of the material on Bayesian filtering and the KF is drawn
from Särkkä [30] and Crassidis and Junkins [29]; the EKF section closely follows the treatment
in Simon [33]; and the discussion on control, including the LQR and LQG controller, is based
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primarily on Crassidis and Junkins [29] and Kolosov [85].

This chapter is organized as follows: we begin in Sec. 2.1.1 with a brief overview of Bayesian
inference, introducing Bayes’ rule and common estimators such as the maximum likelihood esti-
mator, themaximum a-priori (MAP) estimator, and theminimummean squared error (MMSE)
estimator. In Sec. 2.2, we define the Fisher information and introduce the Bayesian Cramér-Rao
bound (BCRB), a lower bound on the average mean squared error (aMSE). We then move to
Bayesian filtering in Sec. 2.3, where we highlight the importance of modeling both the system
dynamics and the measurement process in Sec. 2.3.1. These models define the probability distri-
butions used to track the state of the system over time, and they form the foundation of the two
key steps in any Bayesian filter: the prediction and measurement update, which are detailed in
Sec. 2.3.2.

In Sec. 2.4, we derive the discrete-time KF under the assumption of uncorrelated system and
measurement noise. This is the simplest form of the KF and a particularly clear example of how
Bayesian filtering works when the system is linear and all noise is Gaussian. It provides closed-
form equations for the estimate and its covariance, which correspond to the mean and variance
of the (Gaussian) posterior distributions. This eliminates the need to track full probability dis-
tributions explicitly since updating the mean and covariance is sufficient. Moreover, because the
mean of a Gaussian posterior is the MMSE estimator, the KF yields the optimal estimate in this
setting.

In Sec. 2.5, we extend the KF to the continuous-time setting. To do so, we had address already
in Sec. 1.3.9 how to discretize LG systemswithwhiteGaussian noise, which is not a conventional
Gaussian randomvariable but the formal derivative of aWiener process. Properly discretizing this
noise to avoid pathological behavior requires integrating it over a finite time step, which yields a
Wiener increment. With this clear, we then take the continuous-time limit in Sec. 2.5 to arrive at
the continuous-time KF. The same steps are later followed in Sec. 2.6, where we extend the KF
to handle correlated process andmeasurement noise. This is the form necessary for continuously
monitored atomicmagnetometers, where correlations between the system and themeasurement
naturally arise due to measurement back-action. Since the systems we are interested in are often
nonlinear, we derive the EKF in Sec. 2.7 by linearizing the dynamics around the current estimate.
Finally, in Sec. 2.8, we turn to optimal control. In Sec. 2.8.1, we study the LQR for systems
where the state is directly accessible. We then combine this with state estimation using the KF to
derive the LQGcontroller in Sec. 2.8.2, which handles noisymeasurements and provides optimal
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feedback control.

2.1 Introduction to Bayesian inference

2.1.1 Bayesian statistics

Suppose we want to use Bayesian inference to estimate some quantity of interest, θ, given a mea-
surement y. Any Bayesian method has three key steps:

1. Modelling. Model what we know about θ even before making any measurements (using
a prior p(θ)), as well as how the measurements y relate to θ (using a probability density
p(y|θ), also known as a likelihood function).

2. Measurement update. Combinewhatwe knowbefore (the prior) with ourmeasurement
(i.e., with the likelihood p(y|θ)) in order to get a function of θ, i.e. the posterior distri-
bution p(θ|y), which takes into account our updated knowledge on θ after performing a
measurement y.

3. Decision making. We can now combine what we know about θ, i.e., the posterior p(θ|y),
with a cost function, in order to perform an optimal decision.

2.1.2 Prior and likelihood

As hinted at in the previous section, Bayesianmethods rely on three important components: the
prior, the likelihood and the posterior. For now, let us define and discuss the role of the prior and
the likelihoodwhen analyzing anunknownparameter θ ∈ Θbased on someobserved data y. The
posterior, which requires introducing Bayes’ rule, will be discussed in the subsequent section.

Definition 2.1 (The likelihood function). The first key assumption in any Bayesianmodel is that
the observed data, y, given that the parameter is θ, follows the distribution

y ∼ p(y|θ), (2.2)

which is referred to as the likelihood. The model given by the likelihood p(y|θ) describes how we
expect our observations y to behave when we know that the true value of the parameter of interest is
θ. This distribution is often easier to compute than the probability of θ conditioned w.r.t. y. Since y
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is observed, p(y|θ) can be viewed as a function of θ,

I(θ|y) = p(y|θ), (2.3)

where I(θ|y) is also called the likelihood function. Note that the likelihood is not a PDF w.r.t. θ, but
w.r.t. y. In other words, if we integrate p(y|θ) w.r.t. θ ∈ (−∞,∞), it does not yield one, unlike
when integrating w.r.t. y ∈ (−∞,∞).

Definition 2.2 (Prior). Another fundamental component of many Bayesian methods is the prior
distribution, where the term “prior” simply means earlier or before:

p(θ). (2.4)

This probability distribution expresses our a-priori knowledge concerning the parameter θ, i.e., the
knowledge held before any data y is taken into account.

2.1.3 Bayes’ rule and the posterior

The Bayes’ rule is the cornerstone of any Bayesian method because it enables us to compute the
posterior p(θ|y) from the likelihood p(y|θ) and p(θ). It straightforwardly follows from Prop-
erty 1.2 and Property 1.1. Specifically, the product rule implies the following equivalence:

p(θ, y) = p(θ|y)p(y) = p(y|θ)p(θ). (2.5)

Then, we can simply write the posterior as:

p(θ|y) = p(y|θ)p(θ)
p(y)

, (2.6)

where p(θ) is our initial knowledge of the parameter, p(y|θ) is given by the model and p(y) is the
marginal PDF given in Property 1.1, i.e. p(y) =

∫
p(y|θ)p(θ)dθ.

Thus, by employing Bayes’ theorem as derived above to combine the prior and likelihood, we
get the posterior, p(θ|y), one of the main goals of Bayesian statistics.

Definition 2.3 (Posterior). The posterior distribution describes what we know about θ after observ-
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ing y, and can be easily derived from the likelihood and prior using Bayes’ rule:

p(θ|y) = p(y|θ)p(θ)
p(y)

∝ I(θ|y)p(θ). (2.7)

2.1.4 Bayesian decision theory

Next comes the question of how we can use the posterior, p(θ|y), to make decisions. Typically,
in Bayesian statistics, the goal is tominimize some function known as the cost,C(θ, α), where θ is
the quantity of interest and α denotes the decision. Since we do not know the true value of θ, we
cannot directly minimize the actual cost C(θ, α). Instead, we consider the expected cost under
our current beliefs about θ, which are encoded in the posterior distribution p(θ|y). Therefore,
an optimal decision α is one that minimizes the average cost we would expect to incur, weighted
by the probabilities given by the posterior:

αopt = argmin
α

Ep(θ|y)[C(θ, α)] = argmin
α

∫
Θ
C(θ, α)p(θ|y)dθ. (2.8)

where the expectation is taken w.r.t. to the posterior p(θ|y), for which y is given and θ ∈ Θ is a
random variable. Note that this process follows all the steps outlined in Sec. 2.1.1.

2.1.4.1 Cost functions for estimation problems

Let us now introduce two commonly used cost functions for estimation problems and then de-
rive their respective estimators. In the context of estimation, choosing a decision α corresponds
to selecting a specific value as our best guess for the unknown parameter θ. Therefore, the de-
cision α is simply our estimator of θ, denoted from now on as θ̃. Importantly, the estimator θ̃
is a function of the observed measurements y, reflecting how our estimate depends on the data
collected. However, not every choice of estimator θ̃(y) is guaranteed to be optimal. When an
estimator is optimal with respect to a chosen cost function, we will denote it with a subscript,
such as θ̃opt(y) for a general optimal estimator, or θ̃MMSE(y) specifically when it is the optimal
estimator minimizing the mean squared error (MSE).
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Quadratic cost and the MMSE estimate One of the most common cost functions in
estimation theory is the quadratic cost or the squared error:

C(θ, θ̃ ) = (θ− θ̃(y))T(θ− θ̃(y)). (2.9)

Its corresponding optimal estimator is known as the minimummean squared error (MMSE)
estimator. To derive it, we need to minimize the posterior expected cost as described in Eq. (2.8)
for the case of a quadratic cost:

θ̃MMSE(y) = argmin
θ̃

Ep(θ|y)

[
C(θ, θ̃ )

]
= argmin

θ̃
Ep(θ|y)

[
(θ− θ̃(y))T(θ− θ̃(y))

]
(2.10)

= argmin
θ̃

∫
Θ
(θ− θ̃(y))T(θ− θ̃(y)) p(θ|y) dθ. (2.11)

Note that the quantity we are minimizing, i.e. the posterior expected quadratic cost, is precisely
themean squared error (MSE), a term likely more familiar to the reader. We can formally define
the MSE as follows:

Definition 2.4 (Mean squared error). The MSE of an estimator θ̃(y) for a parameter θ ∈ Θ,
given observations y, is defined as

Ep(θ|y)

[
(θ− θ̃(y) )T(θ− θ̃(y) )

]
=

∫
Θ
(θ− θ̃(y))T(θ− θ̃(y)) p(θ|y) dθ (2.12)

Here, the “mean” (or average) is taken with respect to the posterior distribution, p(θ|y).

Later, wewill discuss theaveragemean squared error (aMSE),which refers to the squared error
or quadratic cost averaged with respect to the joint PDF of the parameter and the data.

The optimal estimatior that solves the above minimization problem can be shown to be the
mean of the posterior, which is therefore referred to as the MMSE estimate. Namely,

θ̃MMSE(y) = argmin
θ̃

Ep(θ|y)

[
(θ− θ̃(y))T(θ− θ̃(y))

]
= θ , (2.13)

where θ denotes the mean of θwith respect to the posterior:

θ =

∫
Θ
θ p(θ|y)dθ. (2.14)

To visualize the MMSE estimator, see Fig. 2.1, where it is marked as a black dot.
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Proof. Let us show that the optimal estimator of θ is the mean of the posterior. To do so, let us
first rewrite the cost function C(θ, θ̃ ) as follows:

C(θ, θ̃ ) = (θ− θ̃(y))T(θ− θ̃(y)) = (θ− θ + θ − θ̃(y))T( θ− θ︸ ︷︷ ︸
zero mean

+θ − θ̃(y)︸ ︷︷ ︸
deterministic

), (2.15)

where we have added and subtracted the mean of the posterior θ . That splits the factor
θ− θ̃(y) into two terms, one still probabilistic but with zero mean, θ− θ , and another
completely deterministic, θ − θ̃(y). If we now expand the quadratic term and take the
expectation value w.r.t. to the posterior p(θ|y), we obtain:

Ep(θ|y)

[
C(θ, θ̃ )

]
= Ep(θ|y)

[
(θ− θ )T(θ− θ )

]
+

0︷ ︸︸ ︷
Ep(θ|y)

[
(θ− θ )T

]
(θ − θ̃(y))

+ (θ − θ̃(y))T Ep(θ|y)
[
(θ− θ )

]︸ ︷︷ ︸
0

+Ep(θ|y)

[
(θ − θ̃(y))T(θ − θ̃(y))

]
= Ep(θ|y)

[
(θ− θ )T(θ− θ )

]
+ (θ − θ̃(y))T(θ − θ̃(y)). (2.16)

Thus, it follows that the argument of θ̃(y) that minimizes the quantity above can only be θ .
Therefore, the optimal estimator that minimizes the expectation of the squared error w.r.t. the
posterior, p(θ|y), is the mean of the posterior, i.e. theMMSE estimator given in Eq. (2.13).

The 0-1 cost and theMAP estimator Let us now consider the following cost function:

C(θ, θ̃ ) = −δ(θ− θ̃(y) ), (2.17)

where δ( · ) represents theDirac delta. This cost function, also referred to as the 0-1 loss function,
picks only the exact value of θ and disregards all the other values of θ̃(y). It is an idealized cost
function, since it penalizes any deviation from the true value equally and maximally.

To find the optimal estimator for this cost function, we compute the expected value ofC(θ, θ̃ )
w.r.t. the posterior:

Ep(θ|y)

[
C(θ, θ̃ )

]
= −

∫
θ∈Rn

δ(θ− θ̃(y) )p(θ|y)dθ = −p(θ|y)|θ=θ̃, (2.18)
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θ̃ML θ̃MAP θ̃MMSE θ

PD
F Likelihood

Posterior

Figure 2.1: Comparison of the ML, MAP and MMSE estimates. Visual representation of the maximum likelihood estimator
( θ̃ML(y), blue dot), the maximum a‐priori estimator ( θ̃MAP(y), yellow dot) and the minimum mean squared error estimator
(θ̃MMSE(y), black dot).

where in the last step we have used the Dirac delta property:
∫∞
−∞ f(x)δ(x − θ̃(y))dx = f(θ̃(y)).

If now we minimize over all possible arguments of θ̃(y), we get the optimal estimator θ̃(y) :

θ̃MAP(y) = arg min
θ̃

[−p(θ|y)|θ=θ̃] = arg max
θ

p(θ|y). (2.19)

As shown by a yellow dot in Fig. 2.1, the optimal estimator for the 0-1 cost is the θ thatmaximizes
the posterior distribution, which we call the maximum a-posteriori (MAP) estimator.

While the Bayesian approach allows for the incorporation of prior information through p(θ),
sometimes prior knowledge is not available or we ignore it altogether. In that case, the goal is to
directly maximize the likelihood function p(y|θ). This leads to the maximum likelihood (ML)
estimator:

θ̃ML(y) = arg max
θ

p(y|θ), (2.20)

which is marked in Fig. 2.1 with a blue dot, i.e. the maximum of the likelihood. The ML esti-
mator can be seen as a method that focuses entirely on the data, with no consideration of prior
beliefs.
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2.2 Fisher information and estimation theory

Having established the foundations of classical Bayesian estimation, we now turn our attention
to a quantity crucial for assessing the quality of an estimator: the Fisher information (FI). Besides
quantifying the amount of information that a dataset contains about anunknownparameter, the
FI also lower bounds the variance of unbiased estimators, serving as an estimation benchmark.
This bound, referred to as Cramér-Rao bound, can be extended to a Bayesian setting by incor-
porating prior information. Known as the Bayesian Cramér-Rao bound (BCRB), it establishes
a lower bound on the average mean squared error (aMSE) or average quadratic cost of all (biased
or unbiased) estimators, given a well-behaved prior.

2.2.1 Fisher information

Let y be a random variable representing our observations, and θ an unknown parameter, for
which we can construct the likelihood p(y|θ). Then, the so-called FI is defined as:

F[p(θ|y)] =
∫

dy
1

p(θ|y)

(
∂p(θ|y)
∂θ

)2

(2.21)

= Ep(y|θ)

[(
∂

∂θ
ln p(θ|y)

)2
]

(2.22)

= −Ep(y|θ)

[
∂2

∂θ2
ln p(θ|y)

]
. (2.23)

2.2.2 Cramér-Rao bound

Under the conditions of regularity and local unbiasedness, i.e.,∫
θ̃(y)

∂

∂θ
p(y|θ)dy = 1, and

∫
dy

∂

∂θ
p(y|θ) = 0, (2.24)

for any locally unbiased estimator θ̃, its MSE is lower bounded by the inverse of the FI. Namely,

Ep(θ|y)

[
Δ2θ̃

]
≥ 1

F[p(θ|y)]
, (2.25)
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where the formula for the FI is given in Eqs. (2.21-2.23) and Δ2θ̃ is the squared error:

Δ2θ̃ := (θ− θ̃(y))2. (2.26)

2.2.3 Bayesian Cramér-Rao bound

In the Bayesian framework, the parameter θ is treated as a random variable with a prior distri-
bution p(θ), specified before observing any data. Therefore, an optimal estimator in this setting
should not only minimize the MSE with respect to the posterior, but also account for which
values of θ are more likely. To reflect this, the average mean squared error (aMSE) is defined as:

Definition 2.5 (Average mean squared error). Let θ ∈ Θ be a parameter, θ̃ its estimate and y the
observed data with a joint PDF p(θ, y). The aMSE of the estimator θ̃ is defined as

E
[
Δ2θ̃

]
:= Ep(θ,y)

[
(θ− θ̃(y))2

]
=

∫
Y

∫
Θ
(θ− θ̃(y))2 p(θ, y) dθ dy (2.27)

=

∫
Θ
dθ p(θ)

∫
Y
dy p(y|θ)(θ− θ̃(y))2. (2.28)

The aMSE can be lower bounded by different classes of Bayesian bounds, which are equiv-
alent when working in the LG regime [67]. In this thesis, we focus on the so-called marginal
unconditional BCRB [86, 67]:

E
[
Δ2θ̃

]
≥ 1

JB
, (2.29)

where JB is the Bayesian information (BI) [2],

JB = Ep(θ,y)
[
(∂θ log p(θ, y))2

]
. (2.30)

The BI can be split into two terms, JB = JP + JM. The first term, JP, represents the contribution
of our prior knowledge about θ,

JP = F[p(θ)] = Ep(θ)
[
(∂θ log p(θ))2

]
. (2.31)

The second term, namely the contribution of themeasurement records, or JM, can be understood
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as averaging the FI of the likelihood over the prior distribution, i.e.,

JM = Ep(θ,y)
[
(∂θ log p(y, θ))2

]
= (2.32)

=

∫
dθ p(θ) F[p(y|θ)], (2.33)

with
F[p(y|θ)] = Ep(y|θ)

[
(∂θ log p(y|θ))2

]
(2.34)

being the FI of the likelihood p(y|θ) of observing a measurement trajectory y given that the field
(or more precisely, the Larmor frequency) has a value θ, as introduced in Eqs. (2.21-2.23).

2.3 Bayesian filtering

Bayesian filtering provides a recursive framework for estimating the state parameters of a system
based on indirect, noisy measurements over time. To formulate this problem, we begin by dis-
cretizing time s.t. t = kΔt, where Δt is the time step and k ∈ N. With this discretization, the
evolution of parameters and observations can be written as follows:

• xxxk: the state vector at time k, representing the unknown parameters we aim to estimate.

• yyyk: the measurement vector at time k.

All the state parameters and measurements up to time k can be collected into:

• xxx0:k = {xxx0,xxx1, . . . ,xxxk}: the state trajectory up to time k,

• yyy0:k = {yyy0, yyy1, . . . , yyyk}: the measurement trajectory up to time k.

2.3.1 State space model

An essential step to formulate any filtering problem is to model the system and measurement by
creating a state space model. These models describe how the state vector evolves recursively, as
well as how it relates to the observations. In particular, for a state vector xxxk and a measurement
vector yyyk, where k denotes time, their respective dynamics can be modeled with either equations
or probability distributions:

xxxk = fffk91[xxxk91,uuuk91,qqqk91] ⇐⇒ p(xxxk|xxx0:k91, yyy0:k;uuu0:k−1) (2.35)

yyyk = hhhk[xxxk, rrrk] ⇐⇒ p(yyyk|xxx0:k, yyy0:k) (2.36)
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whereuuuk is an external known control vector. Furthermore, we assume the state noise qqqk and the
measurement noise rrrk to be zero-meanwhite noise vectors, with known probability distributions
which are not necessarily Gaussian (see Sec. 1.3.8).

The initial value for the state vector is drawn from a prior distribution xxx0 ∼ p(xxx0). The first
equation describes how the system evolves in time and updates the state vector from time k91 to
time k. The measurement model given by Eq. (2.36) relates the state vector to the observation
vector and outlines how the measurement updates the state of the system.

Thus far, we have made no assumptions regarding the noise, besides it being white. In what
follows, we assume that the process andmeasurement noise are uncorrelated. This is an essential
condition to ensure that the state follows aMarkov evolution and that themeasurements are con-
ditionally independent of pastmeasurements and states. Wewill later revisit the case of correlated
noise and discuss how to de-correlate it when necessary.

2.3.1.1 Uncorrelated process and measurement noise

From the system and measurement model in Eqs. (2.35-2.36), it follows that the state vector xxxk
depends solely on the previous state xxxk91 and control input uuuk91, while the measurement yyyk de-
pends only on the current state xxxk. Assuming that the process noise qqqk91 and measurement noise
rrrk are white (i.e., temporally uncorrelated), as well as mutually uncorrelated, there is no mecha-
nism through which they can introduce dependencies between xxxk and earlier states xxx0:k92 or past
measurements yyy0:k91. Thus, the probability distributions of Eqs. (2.35-2.36) can be simplified to

xxxk = fffk91[xxxk91,uuuk91,qqqk91] ⇐⇒ p(xxxk|xxxk91;uuuk91) (2.37)

yyyk = hhhk[xxxk, rrrk] ⇐⇒ p(yyyk|xxxk) (2.38)

when cov [qqqk, rrrs] = 0 ∀ k, s. (2.39)

Note that Eq. (2.37) and Eq. (2.38) fulfill two very important properties: the Markovianity of
states and the conditional independence of measurements. In particular, the system function
fffk91 in Eq. (2.35) depends only on xxxk91 and uuuk91, and not on any measurement yyy0:k (not even in-
directly since the system and measurement noise are uncorrelated). Hence, the transition prob-
ability p(xxxk|xxx0:k91, yyy0:k;uuu0:k91) in Eq. (2.35) is conditionally dependent only on xxxk91 and uuuk91, i.e.
p(xxxk|xxxk91;uuuk91), whichmeans that Eq. (2.37) obeys theMarkov property defined in Property 1.4.

Additionally, the likelihood in Eq. (2.38) is conditionally dependent only on xxxk, and indepen-
dent on other measurements and state vectors. Therefore, it fulfills the following property:
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Property 2.1 (Conditional independence of measurements). The current measurement yyyk given
the current state xxxk is conditionally independent of the measurement and state histories:

p(yyyk|xxx0:k, yyy0:k91) = p(yyyk|xxxk). (2.40)

Moving forward we will drop the dependence of the transition probability on the control law
uuuk91 for brevity.

2.3.2 Bayesian optimal filtering

The goal of Bayesian optimal filtering is to compute the posterior density of the state xxxk given
the history of measurements up to time k, i.e. p(xxxk|yyy0:k). To do so, we can either use a brute
force approachwherewe find the posterior by simply applyingBayes’ rule and thenmarginalizing
w.r.t. xxx0:k91, or use a more efficient recursive approach whose complexity does not grow with k.
In particular, we can recursively compute the posterior density at time k, i.e. p(xxxk|yyy0:k), from the
posterior density at the previous time, p(xxxk91|yyy0:k91), as summarized in Fig. 2.2. First, we assume
that in the previous step, k91, we have computed p(xxxk91|yyy0:k91). Next, we take this density, which
summarizes our knowledge of the state xxxk91 given the measurement trajectory yyy0:k91, and use it
to predict the state at time k given the measurement trajectory up to time k91. Namely, we use
the system or process model to predict the probability density p(xxxk|yyy0:k91). Then, we update this
probability distribution using the measurement model, which gives us the current measurement
yyyk, and allows us to derive the posterior for the state xxxk: p(xxxk|yyy0:k). From this posterior, we can
then compute the relevant quantities of interest, such as the estimator of xxxk that minimizes the
quadratic cost or MSE.

Let us nowwrite a detailed step-by-step guide on how to recursively update the Bayesian filter:

(i) Initialize. The first step of the recursion is the prior p(xxx0).

(ii) Predict. Compute p(xxxk|yyy0:k91) from p(xxxk91|yyy0:k91). Namely,

p(xxxk|yyy0:k91) =
1.1

∫
p(xxxk,xxxk91|yyy0:k91)dxxxk91 (2.41)

=
1.2

∫
p(xxxk|xxxk91, yyy0:k91)p(xxxk91|yyy0:k91)dxxxk91. (2.42)

However, if now we recall Property 1.4, the probability density p(xxxk|xxxk91, yyy0:k91) can be
simplified to p(xxxk|xxxk91) because the current state xxxk is conditionally independent of the
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yyyk Update

Predict

p(xxxk|yyy0:k)
x̃xxk|k

p(xxxk|yyy0:k91) p(xxxk91|yyy0:k91)

Figure 2.2: A scheme illustrating the recursive algorithm of a Bayesian filter. In the “Predict” box, a model is used to propa‐
gate the update PDF from step k9 1 to the prediction PDF p(xxxk|yyy0:k91). Then, in the “Update” box, a new measurement yyyk
is incorporated into the algorithm to update the prediction PDF into a new update PDF for time k: p(xxxk|yyy0:k). Finally, before
repeating this process again, an estimate at time k is computed from the just‐updated posterior: x̃xxk|k.

measurements yyy0:k91. Thus, we get

prediction : p(xxxk|yyy0:k91) =
∫

p(xxxk|xxxk91)p(xxxk91|yyy0:k91)dxxxk91, (2.43)

which is also knownas theChapman-Kolmogorov equation, introduced inDefinition1.14.

(iii) Update. Compute p(xxxk|yyy0:k) from p(xxxk|yyy0:k91). To do so, we want to update our knowl-
edge about xxxk using the newmeasurement yyyk:

p(xxxk|yyy0:k) = p(xxxk|yyyk, yyy0:k91) =
p(yyyk|xxxk, yyy0:k91)p(xxxk|yyy0:k91)

p(yyyk|yyy0:k91)
. (2.44)

This equation can be further simplified if we recall that our measurement model fulfills
Property 2.1: the likelihood of measuring yyyk is given only by xxxk and independent of previ-
ous measurements. Namely,

p(yyyk|xxxk, yyy0:k91) = p(yyyk|xxxk). (2.45)

Therefore,
update : p(xxxk|yyy0:k) =

1
p(yyyk|yyy0:k91)

p(yyyk|xxxk)p(xxxk|yyy0:k91), (2.46)

where p(xxxk|yyy0:k91) is the prediction PDF, and p(yyyk|yyy0:k91) is the likelihood of detecting yyyk
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given a past measurement trajectory yyy0:k91:

p(yyyk|yyy0:k91) =
∫

dxxxk p(yyyk,xxxk|yyy0:k91) =
∫

dxxxk p(yyyk|xxxk)p(xxxk|yyy0:k91). (2.47)

Note that these expressions are general and provide a recursive solution to any filtering prob-
lem. In the case of LG systems, these equations can be solved exactly. When the system is non-
linear and/or non-Gaussian, good approximations can also be found.

2.4 The discrete uncorrelated Kalman filter

The Kalman filter (KF) is one of the few filters that, under certain modeling assumptions, yields
an exact solution. Additionally, it is also the foundation of more advanced filters that provide
approximate solutions to the Bayesian filtering equations, enabling them to handle more general
models.

The starting assumption to find a close form solution to the Bayesian filtering equations is that
the system and measurement models are both LG. Namely,

xxxk = AAAk91 xxxk91 + BBBk91 uuuk91 +GGGk91 qqqk91, (2.48)

yyyk = HHHk xxxk + rrrk, (2.49)

wherexxxk is the state vector, yyyk themeasurement. Assuming themodel to beGaussian implies that
the process noise qqqk91 ∼ N (0,QQQk91) and the measurement noise rrrk ∼ N (0,RRRk) are both mutu-
ally uncorrelatedwhiteGaussian noiseswith zeromean and covariancesQQQk91 andRRRk, respectively.
The dependence of the model and the measurement on the state is clearly linear, and it is guided
by a transitionmatrixAAAk91 andby ameasurementmodelmatrixHHHk, respectively. Then, themodel
described by Eqs. (2.48-2.49) can be equivalently written in probabilistic terms as

xxxk ∼ p(xxxk|xxxk91) = N (xxxk|AAAk91xxxk91 + BBBk91uuuk91,GGGk91QQQk91GGGT
k91), (2.50)

yyyk ∼ p(yyyk|xxxk) = N (yyyk|HHHk xxxk,RRRk), (2.51)

where thenotationN (xxx|μμμ,ΣΣΣ) simply denotes amultivariateGaussianPDFof a statexxxwithmean
μμμ and covariance ΣΣΣ.

TheKF recursively computes the prediction andupdate probability densities of Eq. (2.43) and
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Eq. (2.46), which now, given that our model is LG, will also be Gaussian:

prediction =⇒ p(xxxk|yyy0:k91) := N (xxxk|x̃xxk|k91,ΣΣΣk|k91) (2.52)

update =⇒ p(xxxk|yyy0:k) := N (xxxk|x̃xxk|k,ΣΣΣk|k) (2.53)

where x̃xxk|k91 and x̃xxk|k are their respectivemeans, andΣΣΣk|k91 andΣΣΣk|k, their covariances. Additionally,
given that x̃xxk|k91 and x̃xxk|k are the means of the prediction and update posterior PDFs, they are also
the optimal estimators of xxxk that minimize the quadratic cost or MSE, as shown in Sec. 2.1.4.1.
Namely,

x̃xxk|k91 =
∫

xxxk p(xxxk|yyy0:k91)dxxxk = a-priori estimate, (2.54)

x̃xxk|k =
∫

xxxk p(xxxk|yyy0:k)dxxxk = a-posteriori estimate. (2.55)

Note that both x̃xxk|k91 and x̃xxk|k are estimates of the same quantity, i.e. xxxk, with the crucial difference
that the a-posteriori estimate incorporates the latest measurement, yyyk, while the a-priori estimate
does not. Therefore, it is to be expected that the a-posteriori estimate is more accurate than the
a-priori one.

In Sec. 2.3.2 we discussed how the posterior distribution of xxxk conditioned on measurements
up to time k: p(xxxk|yyy0:k), can be computed recursively starting from p(xxx0) using recursive Bayesian
optimal filtering. In the case of LG systems, wewill show that the posterior, a.k.a. update density
of Eq. (2.53), remains fully Gaussian at all times. Then, given that Gaussian distributions are
uniquely determined by their mean and covariance, the filtering problem reduces to recursively
updating the moments of Eqs. (2.52-2.53):

(i) The Prediction step is defined by the following equations

x̃xxk|k91 = AAAk91 x̃xxk91|k91 + BBBk91uuuk91, (2.56)

ΣΣΣk|k91 = AAAk91ΣΣΣk91|k91AAAT
k91 +GGGk91QQQk91GGGT

k91. (2.57)

(ii) TheUpdate step is given by

x̃xxk|k = x̃xxk|k91 +KKKk(yyyk −HHHkx̃xxk|k91), (2.58)

ΣΣΣk|k = (I−KKKkHHHk)ΣΣΣk|k91, (2.59)
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where

KKKk = ΣΣΣk|k91HHHT
kTTT−1

k , (2.60)

TTTk = HHHkΣΣΣk|k91HHHT
k +RRRk. (2.61)

Furthermore, let us highlight thatTTTk is not just a handy definition to shorten our notation
but actually is the innovation covariance. Namely,

TTTk = E
[
(yyyk − ỹyyk)(yyyk − ỹyyk)

T] , (2.62)

whereyyyk−ỹyyk is the so-called innovation, which is the difference between themeasurement
and its prediction

ỹyyk = HHHkx̃xxk|k91. (2.63)

The relationship between Eq. (2.61) and Eq. (2.62) can be established by:

TTTk = E
[
(HHHkxxxk + rrrk −HHHkx̃xxk|k91)(HHHkxxxk + rrrk −HHHkx̃xxk|k91)T

]
(2.64)

= E
[
(HHHk(xxxk − x̃xxk|k91) + rrrk)(HHHk(xxxk − x̃xxk|k91) + rrrk)T

]
(2.65)

= HHHk E
[
(xxxk − x̃xxk|k91)(xxxk − x̃xxk|k91))T

]
HHHT

k + E
[
rrrkrrrTk

]
(2.66)

= HHHkΣΣΣkHHHT
k +RRRk, (2.67)

where the cross terms vanish due to the assumption that the state prediction error and
the measurement noise are uncorrelated: E

[
(xxxk − x̃xxk|k91)rrrTk

]
= E

[
rrrk(xxxk − x̃xxk|k91)T

]
= 0.

Additionally, by taking Eq. (2.59):

ΣΣΣk|k91 − ΣΣΣk|k = KKKkHHHkΣΣΣk|k91, (2.68)

and substituting it into Eq. (2.60) and Eq. (2.61), one can rewrite the Kalman gain:

ΣΣΣk|k91HHHT
k = KKKkTTTk = KKKk(HHHkΣΣΣk|k91HHHT

k +RRRk) = (ΣΣΣk|k91 − ΣΣΣk|k)HHHT
k +KKKkRRRk, (2.69)

such that
KKKk = ΣΣΣk|kHHHT

kRRR−1
k . (2.70)

Let us now show how to derive the prediction and update equations through inductive hy-
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pothesis.

Proof. The outline of the proof is as follows: we assume that the posterior at time k91 holds,
and then show that both the prediction and update posteriors are also Gaussians with means
and covariances following the equations given above.

(i) Predict. To find an expression for Eq. (2.52), we assume that the step k91 holds, i.e. the
posterior at time k91 is a Gaussian PDF of the form:

p(xxxk91|yyy0:k91) = N (xxxk91|x̃xxk91|k91,ΣΣΣk91|k91), (2.71)

Then, we follow the steps of Eq. (2.41) to find an expression for the prediction PDF:

p(xxxk|yyy0:k91) =
1.1

∫
p(xxxk,xxxk91|yyy0:k91)dxxxk91

=
1.2

∫
p(xxxk|xxxk91, yyy0:k91)p(xxxk91|yyy0:k91)dxxxk91

=
1.4

∫
p(xxxk|xxxk91)p(xxxk91|yyy0:k91)dxxxk91

=

∫
N (xxxk|AAAk91xxxk91 + BBBk91uuuk91,GGGk91QQQk91GGGT

k91)N (xxxk91|x̃xxk91|k91,ΣΣΣk91|k91)dxxxk91

=
B.1

∫
N

((
xxxk91
xxxk

)∣∣∣∣∣mmmk|k91,PPPk|k91

)
dxxxk91

=
B.2
N (xxxk|AAAk91x̃xxk91|k91+BBBk−1uuuk−1,AAAk91ΣΣΣk91|k91AAAT

k91 +GGGk91QQQk91GGGT
k91) (2.72)

where in the last step we computed the marginal of the joint probability density, with
mean and covariance

mmmk|k91=

(
x̃xxk91|k91

AAAk91x̃xxk91|k91+BBBk−1uuuk−1

)
,

PPPk|k91=

(
ΣΣΣk91|k91 ΣΣΣk91|k91AAAT

k91

AAAk91ΣΣΣk91|k91 AAAk91ΣΣΣk91|k91AAAT
k91+GGGk91QQQk91GGGT

k91

)
. (2.73)
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Therefore, the prediction density at time k is also a Gaussian:

p(xxxk|yyy0:k91) := N (xxxk|x̃xxk|k91,ΣΣΣk|k91) (2.74)

= N (xxxk|AAAk91x̃xxk91|k91+BBBk−1uuuk−1,AAAk91ΣΣΣk91|k91AAAT
k91 +GGGk91QQQk91GGGT

k91),

(2.75)

such that

x̃xxk|k91 = AAAk91x̃xxk91|k91+BBBk−1uuuk−1, (2.76)

ΣΣΣk|k91 = AAAk91ΣΣΣk91|k91AAAT
k91 +GGGk91QQQk91GGGT

k91. (2.77)

(ii) Update. The update density of Eq. (2.53) can be derived by first employing Lemma
B.1 to find an expression for the joint PDF p(xxxk, yyyk|yyy0:k91). Then, using Lemma B.2,
one can derive the conditional density xxxk|yyyk ∼ p(xxxk|yyyk, yyy0:k91). The joint PDF,
conditioned on the measurement outcomes up to time k91, is:

p(xxxk, yyyk|yyy0:k91) = p(yyyk|xxxk, yyy0:k91)p(xxxk|yyy0:k91) =
2.1

p(yyyk|xxxk)p(xxxk|yyy0:k91)

= N (yyyk|HHHkxxxk,RRRk)N (xxxk|x̃xxk|k91,ΣΣΣk|k91)

= N

((
xxxk
yyyk

)∣∣∣∣∣
(

x̃xxk|k91
HHHkx̃xxk|k91

)
,

(
ΣΣΣk|k91 ΣΣΣk|k91HHHT

k

HHHkΣΣΣk|k91 HHHkΣΣΣk|k91HHHT
k +RRRk

))
, (2.78)

where in the last step we have applied Lemma B.1. Now, we can compute the
conditional PDF p(xxxk|yyy0:k) from Eq. (2.78) using Lemma B.2:

p(xxxk|yyy0:k) = p(xxxk|yyyk, yyy0:k91) = N (xxxk|x̃xxk|k,ΣΣΣk|k), (2.79)

x̃xxk|k = x̃xxk|k91 +KKKk(yyyk −HHHk x̃xxk|k91), (2.80)

ΣΣΣk|k = ΣΣΣk|k91 −KKKkTTTkKKKT
k (2.81)

where

TTTk = HHHkΣΣΣk|k91HHHT
k +RRRk, (2.82)

KKKk = ΣΣΣk|k91HHHT
kTTT−1

k . (2.83)
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Note that TTTk = TTTT
k and (TTT−1

k )T = (TTTT
k )

−1. It follows from Eq. (2.81) that the
covariance update equation can also be written as

ΣΣΣk|k = ΣΣΣk|k91 −KKKkTTTk(ΣΣΣk|k91HHHT
kTTT−1

k )T = ΣΣΣk|k91 −KKKkTTTkTTT−1
k HHHkΣΣΣk|k91

= (I−KKKkHHHk)ΣΣΣk|k91 (2.84)

Model xxxk = AAAk91xxxk−1 + BBBk91uuuk91 +GGGk91qqqk91, qqqk ∼ N (0,QQQk)
yyyk = HHHkxxxk + rrrk, rrrk ∼ N (0,RRRk)

Initialize x̃xx(t0) = x̃xx0|0
ΣΣΣ0|0 = E

{
(x̃xx0|0 − xxx0)(x̃xx0|0 − xxx0)T

}
Predict x̃xxk|k91 = AAAk91x̃xxk91|k91 + BBBk91uuuk91

ΣΣΣk|k91 = AAAk91ΣΣΣk91|k91AAAT
k91 +GGGk91QQQk91GGGT

k91

Gain KKKk = ΣΣΣk|k91HHHT
k
(
HHHkΣΣΣk|k91HHHT

k +RRRk
)−1

Update x̃xxk|k = x̃xxk|k91 +KKKk
(
yyyk −HHHk x̃xxk|k91

)
ΣΣΣk|k = (I−KKKkHHHk)ΣΣΣk|k91

Table 2.1: Summary of the discrete uncorrelated Kalman filter.

2.5 The continuous uncorrelated Kalman filter

To transform thediscreteKF to a continuousone,wehave to take the limit ofΔt→ 0. Therefore,
we do not need anymore to distinguish between predict and update steps and can combine their
equations for both the estimator and the covariance, summarized inTable 2.1, into a jointa-priori
recursive form of the KF:

x̃xxk+1 = AAAkx̃xxk + BBBkuuuk +AAAkKKKk (yyyk −HHHkx̃xxk) , (2.85)

KKKk = ΣΣΣkHHHT
k
(
HHHkΣΣΣkHHHT

k +RRRk
)−1
, (2.86)

ΣΣΣk+1 = AAAkΣΣΣkAAAT
k −AAAkKKKkHHHkΣΣΣkAAAT

k +GGGkQQQkGGGT
k . (2.87)
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First, let us derive the expression for the continuous Kalman gain starting from its discrete
version in Eq. (2.86) and substituting the first-order approximations forHHHk andRRRk summarized
in Table 1.1:

KKKk = ΣΣΣkHHHT
k
(
HHHkΣΣΣkHHHT

k +RRRk
)−1

= ΣΣΣkHHHT(tk)
(
HHH(tk)ΣΣΣkHHHT(tk) +

RRR(tk)
Δt

)−1

, (2.88)

which, sinceRRR(tk)/Δt≫ HHH(tk)ΣΣΣkHHHT(tk)when Δt→ 0, then it can be simplified to

KKKk = ΣΣΣkHHHT(tk)RRR(tk)−1Δt. (2.89)

By now dividing the discrete Kalman gainKKKk by Δt, we define the continuous Kalman gain as

KKK(tk) :=
KKKk

Δt
, (2.90)

which by taking the limit of Δt→ 0, yields the following expression:

KKK(t) = ΣΣΣ(t)HHHT(t)RRR−1(t). (2.91)

Next, we turn to the derivation of the Riccati equation, i.e. the continuous differential equa-
tion for the covariance. The first step is to substitute the first-order approximation of AAAk =

(I+ FFF(tk)Δt) from Proposition 1.4, and note that both termsGGGkQQQkGGGT
k andKKKk are of order Δt,

as indicated in Eq. (1.179) and Eq. (2.90), respectively. Then,

ΣΣΣk+1 = (I+ FFF(tk)Δt)ΣΣΣk
(
I+ FFFT(tk)Δt

)
− (I+ FFF(tk)Δt)KKK(tk)ΔtHHH(tk)ΣΣΣk

(
I+ FFFT(tk)Δt

)
+GGG(tk)QQQ(tk)GGGT(tk)Δt = ΣΣΣk + FFF(tk)ΣΣΣkΔt+ ΣΣΣk FFFT(tk)Δt−KKK(tk)HHH(tk)ΣΣΣkΔt

+GGG(tk)QQQ(tk)GGGT(tk)Δt. (2.92)

By now rearranging terms and taking the limit of Δt→ 0, we retrieve a Riccati equation for the
covariance:

lim
Δt→0

ΣΣΣk+1−ΣΣΣk

Δt
=

dΣΣΣ(t)
dt

= FFF(t)ΣΣΣ(t)+ΣΣΣ(t)FFFT(t)−KKK(t)HHH(t)ΣΣΣ(t)+GGG(t)QQQ(t)GGGT(t). (2.93)

Similarly, we can derive the so-called Kalman-Bucy equation from Eq. (2.85) by substituting the
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corresponding first-order approximations:

x̃xx(tk+1) =(I+FFF(tk)Δt) x̃xx(tk)+BBB(tk)uuu(tk)Δt+(I+FFF(tk)Δt)KKK(tk)Δt (yyyk−HHH(tk)x̃xx(tk)), (2.94)

and then rearranging terms to take the limit Δt→ 0:

dx̃xx
dt

= lim
Δt→0

x̃xxk+1 − x̃xxk
Δt

= lim
Δt→0

[
FFF(tk)x̃xx(tk) + BBB(tk)uuu(tk) +KKK(tk)

(
1
Δt

∫ tk

tk91
yyy(t)dt−HHH(tk)x̃xx(tk)

)]
= FFF(t)x̃xx(t) + BBB(t)uuu(t) +KKK(t)

(
lim
Δt→0

1
Δt

∫ tk

tk91
yyy(t)dt−HHH(t)x̃xx(t)

)
= *FFF(t)x̃xx(t) + BBB(t)uuu(t) +KKK(t)(yyy(t)−HHH(t)x̃xx(t)) . (2.95)

This yields a differential equation describing the evolution of the continuous-time estimate.

Model ẋxx(t) = FFF(t)xxx(t) + BBB(t)uuu(t) +GGG(t)www(t), www(t) ∼ N (0,QQQ(t))
yyy(t) = HHH(t)xxx(t) + vvv(t), vvv(t) ∼ N (0,RRR(t))

Initialize x̃xx(t0) = x̃xx0
ΣΣΣ0 = E

[
(x̃xx0 − xxx0)(x̃xx0 − xxx0)T

]
Gain KKK(t) = ΣΣΣ(t)HHHT(t)RRR−1(t)

Covariance Σ̇ΣΣ(t) = FFF(t)ΣΣΣ(t)+ΣΣΣ(t)FFFT(t)−KKK(t)HHH(t)ΣΣΣ(t)+GGG(t)QQQ(t)GGGT(t)

Estimate ˙̃xxx(t) = FFF(t)x̃xx(t) + BBB(t)uuu(t) +KKK(t)(yyy(t)−HHH(t)x̃xx(t))

Table 2.2: Summary of the continuous uncorrelated Kalman filter.

*limΔt→0
1
Δt
∫ tk
tk9Δt yyy(t)dt = yyy(tk).
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2.6 The continuous correlated Kalman filter

In many systems, the measurement noise is uncorrelated with the process noise. However, in
quantum systems, the measurement can act back onto the system— an effect referred to as mea-
surement back-action— and introduce correlation between the noises. As a result, the standard
KF theory has to be extended to properly account for correlatedmeasurement and process noises
[29]. This requires allowing the zero-mean Gaussian noise processes, www(t) and vvv(t), present in
the LGmodel of Eqs. (1.160-1.161) to be cross-correlated:

E
[
www(t)vvvT(s)

]
= SSS(t)δ(t− s), (2.96)

where the matrix SSS(t) is not necessarily symmetric. To derive the KF equations for a system with
correlated measurement and process noises, we proceed in the same way as we did for the case
of uncorrelated noise, with the exception that first we must de-correlate the measurement and
process noise [29, 87].

In Sec. 1.3.9 we established the equivalency between the continuous model in Eqs. (1.160-
1.161) and the following discrete model, which now includes correlated process and measure-
ment noise: xxxk=AAAk91 xxxk91+BBBk91 uuuk91+GGGk91 qqqk91,

yyyk=HHHkxxxk+rrrk,
(2.97)

E
[
qqqk qqqTℓ

]
= QQQkδkℓ, (2.98)

E
[
rrrk rrrTℓ

]
= RRRkδkℓ, (2.99)

E
[
qqqk91rrrTℓ

]
= SSSkδkℓ. (2.100)

Starting from this discrete model, we de-correlate the measurement and process equations by
introducing the measurement term into the process equation:

xxxk = AAAk91xxxk91 + BBBk91uuuk91 +GGGk91qqqk91 +DDDk91 (yyyk91 −HHHk91xxxk91 − rrrk91) (2.101)

= (AAAk91 −DDDk91HHHk91)xxxk91 + BBBk91uuuk91 +DDDk91 yyyk91 +ZZZk91, (2.102)

whereDDDk91 is an arbitrary matrix, since yyyk91 −HHHk91 xxxk91 − rrrk91 = 0. Moreover, we defineZZZk91 :=

GGGk91 qqqk91 −DDDk91rrrk91 to be the effective process noise. In order to ensure that the correlation be-
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tween the measurement rrrk and the new process noiseZZZk91 vanishes, we set

DDDk := GGGk SSSkRRR−1
k (2.103)

such that
E
[
ZZZk91rrrTk

]
= (GGGk91SSSk91 −DDDk91RRRk91) = 0. (2.104)

Then,ZZZk91 can be rewritten as:

ZZZk91 = GGGk91qqqk91 −GGGk91SSSk91RRR−1
k91rrrk91 = GGGk91

(
qqqk91 − SSSk91RRR−1

k91rrrk91
)
= GGGk91UUUk91, (2.105)

withUUUk91 := qqqk91 − SSSk91RRR−1rrrk91. This results in an uncorrelated model:

xxxk =
(
AAAk91 −GGGk91SSSk91RRR−1

k91HHHk91
)
xxxk91 + BBBk91uuuk91 +GGGk91SSSk91RRR−1

k91yyyk91 +GGGk91UUUk91 (2.106)

yyyk = HHHkxxxk + rrrk, (2.107)

where, in order for the process noise UUUk to be uncorrelated w.r.t. the measurement noise, the
process must now depend on the measurement yyyk91. Additionally, the variance of the process
noiseUUUk now reads as:

E
[
UUUkUUUT

k
]
= QQQk91 − SSSk91RRR−1

k91SSS
T
k91. (2.108)

To derive the prediction and update probability densities, p(xxxk|yyy0:k91) and p(xxxk|yyy0:k), for the
system described by Eqs. (2.106-2.107), we follow the approach of Sec. 2.4. As in that derivation,
both probabilities turn out to be Gaussian, with means and covariances following predict and
update rules. These equations describe the optimal evolution of the estimator and its covariance
over time, since the mean of the posterior is the optimal estimator minimizing the MSE.

Additionally, it is important to note that the de-correlation trick exclusively affects the process
equation, i.e. Eq. (2.106). Thus, we expect only the prediction step to be modified, leaving the
update step unchanged. In particular, the predict step, i.e. Eq. (2.106), now depends on themea-
surement outcome yyyk91. That might seem counter-intuitive, as measurement outcomes typically
only affect the update step, not the prediction. Nonetheless, this is irrelevant for the derivation
of the continuous correlated KF, since the equations for the predict and update step have to be
merged.

With this understanding, let us derive an expression for the Gaussian probability density for
the prediction step, p(xxxk|yyy0:k91) := N (xxxk|x̃xxk|k91,ΣΣΣk|k91). This derivation essentially mirrors the
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one in Eq. (2.72) with a slight modification:

p(xxxk|yyy0:k91) =
1.1

∫
p(xxxk,xxxk91|yyy0:k91)dxxxk91

=
1.2

∫
p(xxxk|xxxk91, yyy0:k91)p(xxxk91|yyy0:k91)dxxxk91

=

∫
p(xxxk|xxxk91, yyyk91)p(xxxk91|yyy0:k91)dxxxk91. (2.109)

Here, p(xxxk|xxxk91, yyy0:k91) is simplified to p(xxxk|xxxk91, yyyk91) insteadof p(xxxk|xxxk91), sinceunlike inEq. (2.72),
the state xxxk not only depends on xxxk91 but also on yyyk91, as evident from Eq. (2.106) [87]. Fortu-
nately, this still fulfills Markovianity and p(xxxk|xxxk91, yyyk91) is still a Gaussian distribution:

p(xxxk|xxxk91, yyyk91) =

= N(xxxk|AAA′
k91xxxk91+BBBk91uuuk91+GGGk91SSSk91RRR−1

k91yyyk91,GGGk91
(
QQQk919SSSk91RRR−1

k91SSS
T
k91
)
GGGk91), (2.110)

where AAA′
k91 = AAAk91 − GGGk91SSSk91RRR−1

k91HHHk91. Assuming that the posterior at the previous time step
is Gaussian, as given in Eq. (2.71): p(xxxk91|yyy0:k91) = N (xxxk91|x̃xxk91|k91,ΣΣΣk91|k91), we can use Lemma
B.1 to write the joint probability distribution p(xxxk,xxxk91|yyy0:k91) as:

p(xxxk,xxxk91|yyy0:k91) = N

((
xxxk91
xxxk

)∣∣∣∣∣mmmk|k91,PPPk|k91

)
, (2.111)

where

mmmk|k91 =

(
x̃xxk91|k91

AAA′
k91x̃xxk91|k91 + BBBk91uuuk91 +GGGk91SSSk91RRR−1

k91 yyyk91

)
, (2.112)

and

PPPk|k91 =

(
ΣΣΣk91|k91 ΣΣΣk91|k91AAA′T

k91

AAA′
k91ΣΣΣk91|k91 AAA′

k91ΣΣΣk91|k91AAA′T
k91 +GGGk91

(
QQQk91− SSSk91RRR−1

k91SSSTk91
)
GGGT

k91

)
. (2.113)

Tonowobtain thepredict probability density p(xxxk|yyy0:k91) fromthe joint probability p(xxxk,xxxk91|yyy0:k91),
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we compute its marginal following Lemma B.2:

p(xxxk|yyy0:k91) = N (xxxk|x̃xxk|k91,ΣΣΣk|k91), (2.114)

x̃xxk|k91 =
(
AAAk91−GGGk91SSSk91RRR−1

k91HHHk91
)
x̃xxk91|k91 + BBBk91uuuk91 +GGGk91SSSk91RRR−1

k91 yyyk91, (2.115)

ΣΣΣk|k91 =
(
AAAk91−GGGk91SSSk91RRR−1

k91HHHk91
)
ΣΣΣk91|k91

(
AAAk91−GGGk91SSSk91RRR−1

k91HHHk91
)T

+GGGk91
(
QQQk91− SSSk91RRR−1

k91SSS
T
k91
)
GGGT

k91, (2.116)

whose mean also depends on the measurement outcome yyyk91.
Since themeasurement equation remainsunchangedwhende-correlating theprocess andmea-

surementnoise, theupdateprobability densitymatches that of theuncorrelated case inEq. (2.79):

p(xxxk|yyy0:k) = N
(
xxxk|x̃xxk|k,ΣΣΣk|k

)
, (2.117)

x̃xxk|k = x̃xxk|k91 +KKKk(yyyk −HHHkx̃xxk|k91), (2.118)

ΣΣΣk|k = (I−KKKkHHHk)ΣΣΣk|k91, (2.119)

KKKk = ΣΣΣk|k91HHHT
k
(
HHHkΣΣΣk|k91HHHT

k +RRRk
)−1

. (2.120)

Let us now merge the predict and update equations for the estimate, i.e. Eq. (2.118) and
Eq. (2.115), into a joint recursive form to derive its continuous counterpart:

x̃xxk+1|k =
(
AAAk −GGGk SSSkRRR−1

k HHHk
)
x̃xxk|k + BBBkuuuk +GGGk SSSkRRR−1

k yyyk
=
(
AAAk −GGGk SSSkRRR−1

k HHHk
) (

x̃xxk|k91 +KKKk(yyyk −HHHkx̃xxk|k91)
)
+ BBBkuuuk +GGGk SSSkRRR−1

k yyyk
= AAAkx̃xxk|k91 + BBBkuuuk +

(
AAAkKKKk −GGGkSSSkRRR−1

k (HHHkKKKk − I)
) (

yyyk −HHHkx̃xxk|k91
)
. (2.121)

Next, ifwe substitute the first-order approximations inΔt summarized inTable 1.1 into the equa-
tion above, we retrieve:

x̃xx(tk+1) = (I+ FFF(tk)Δt) x̃xx(tk) + BBB(tk)uuu(tk)Δt+
(

1
Δt

∫ tk

tk91
yyy(t)dt−HHH(tk)x̃xx(tk)

)
×

×
(
(I+ FFF(tk)Δt)KKK(tk)Δt−GGG(tk)Δt

SSS(tk)
Δt

RRR−1(tk)Δt (HHH(tk)KKK(tk)Δt− I)

)
= x̃xx(tk) + FFF(tk)x̃xx(tk)Δt+ BBB(tk)uuu(tk)Δt+

(
1
Δt

∫ tk

tk91
yyy(t)dt−HHH(tk)x̃xx(tk)

)
×

×
(
KKK(tk)−GGG(tk)SSS(tk)RRR−1(tk)

)
Δt+O(Δt). (2.122)
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Then, by taking the limit of Δt → 0, we derive the Kalman-Bucy equation for a correlated
system:

dx̃xx
dt

= lim
Δt→0

x̃xx(tk+1)− x̃xx(tk)
Δt

= FFF(t)x̃xx(t) + BBB(t)uuu(t) +
(
KKK(t)−GGG(t)SSS(t)RRR−1(t)

)
(yyy(t)−HHH(t)x̃xx(t)) , (2.123)

leading us to redefine the Kalman gain as

KKK(t) := KKK(t)−GGG(t)SSS(t)RRR−1(t) =
(
ΣΣΣ(t)HHHT(t)−GGG(t)SSS(t)

)
RRR−1(t). (2.124)

Next, we substitute Eq. (2.119) into Eq. (2.116) in order to obtain a joint recursive equation
for the covariance ΣΣΣk:

ΣΣΣk+1|k =
(
AAAk −GGGk SSSkRRR−1

k HHHk
)
(I−KKKkHHHk)ΣΣΣk|k91

(
AAAk −GGGk SSSkRRR−1

k HHHk
)T

+GGGk
(
QQQk − SSSkRRR−1

k SSSTk
)
GGGT

k . (2.125)

If now we substitute each of its terms by its corresponding first-order approximations:

ΣΣΣ(tk+1) = (I+ FFF ′(tk)Δt)ΣΣΣ(tk)
(
I+ FFF ′T(tk)Δt

)
+ (I+ FFF ′(tk)Δt)ΣΣΣ(tk)HHHT(tk)RRR−1(tk)ΔtHHH(tk)ΣΣΣ(tk)

(
I+ FFF ′T(tk)Δt

)
+GGG(tk)

(
QQQ(tk)−SSS(tk)RRR−1(tk)SSST(tk)

)
GGGT(tk)Δt

= ΣΣΣ(tk) + FFF ′(tk)ΣΣΣ(tk)Δt+ ΣΣΣ(tk)FFF ′T(tk)Δt

+ ΣΣΣ(tk)HHHT(tk)RRR−1(tk)HHH(tk)ΣΣΣ(tk)Δt

+GGG(tk)
(
QQQ(tk)−SSS(tk)RRR−1(tk)SSST(tk)

)
GGGT(tk)Δt+O(Δt), (2.126)

where FFF ′(tk) = FFF(tk) − GGG(tk)SSS(tk)RRR−1(tk)HHH(tk), and take the limit of Δt approaching zero, we
retrieve

dΣΣΣ
dt

= lim
Δt→0

ΣΣΣ(tk+1)− ΣΣΣ(tk)
Δt

=
(
FFF(t)−GGG(t)SSS(t)RRR−1(t)HHH(t)

)
ΣΣΣ(t)

+ ΣΣΣ(t)
(
FFF(t)−GGG(t)SSS(t)RRR−1(t)HHH(t)

)T
+ ΣΣΣ(t)HHHT(t)RRR−1(t)HHH(t)ΣΣΣ(t)

+GGG(t)
(
QQQ(t)−SSS(t)RRR−1(t)SSST(t)

)
GGGT(t), (2.127)
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which can be rewritten as

dΣΣΣ
dt

= FFF(t)ΣΣΣ(t) + ΣΣΣ(t)FFFT(t)−KKK(t)RRR(t)KKKT(t) +GGG(t)QQQ(t)GGGT(t), (2.128)

with theKalman gain beingKKK(t) =
(
ΣΣΣ(t)HHHT(t)−GGG(t)SSS(t)

)
RRR−1(t), as redefined inEq. (2.124).

Model

ẋxx(t) = FFF(t)xxx(t)+BBB(t)uuu(t)+GGG(t)www(t), www(t) ∼ N (0,QQQ(t))

yyy(t) = HHH(t)xxx(t)+vvv(t), vvv(t) ∼ N (0,RRR(t))

E
[
www(t)vvvT(s)

]
= SSS(t)δ(t− s)

Initialize x̃xx(t0) = x̃xx0
ΣΣΣ0 = E

[
(x̃xx0 − xxx0)(x̃xx0 − xxx0)T

]
Gain KKK(t) =

(
ΣΣΣ(t)HHHT(t)−GGG(t)SSS(t)

)
RRR−1(t)

Covariance Σ̇ΣΣ(t)=FFF(t)ΣΣΣ(t)+ΣΣΣ(t)FFFT(t)−KKK(t)RRR(t)KKKT(t)+GGG(t)QQQ(t)GGGT(t)

Estimate ˙̃xxx(t)=FFF(t)x̃xx(t)+BBB(t)uuu(t)+KKK(t)(yyy(t)−HHH(t)x̃xx(t))

Table 2.3: Summary of the continuous correlated Kalman filter.

2.6.1 Orthogonality principle

An important property used later to prove the optimality of the linear-quadratic Gaussian con-
troller is the orthogonality between the MMSE estimate and its error, which also applies to the
KF estimate since its the MMSE estimator for LG systems.

Property 2.2 (Orthogonality Principle of the MMSE estimate). Let xxx(t) be the true state of a
system and x̃xx(t) its MMSE estimate. Define the estimation error as:

eee(t) = x̃xx(t)− xxx(t). (2.129)

Then, the orthogonality principle states that the error eee(t) is uncorrelated with the estimate x̃xx(t),
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expressed by:

E
[
x̃xx(t) eeeT(t)

]
= 0. (2.130)

In otherwords, the expectation value of the cross-correlation between the estimate and its error is zero.

Proof. To start, let us first recall that the optimal estimate minimizing theMSE or
quadratic cost function is the mean of the posterior (2.14), i.e. theMMSE estimator:

x̃xx(t) =
∫

xxx(t) p(xxx|yyy≤t)dxxx. (2.131)

Therefore, we can rewrite the expectation product of the

E
[
x̃xx(t) eeeT(t)

]
= E

[
x̃xx(t) x̃xxT(t)

]
− E

[
x̃xx(t)xxxT(t)

]
(2.132)

= E

[
x̃xx(t)
(∫

xxx(t) p(xxx|yyy≤t)dxxx
)T ]
− E

[
x̃xx(t)xxxT(t)

]
. (2.133)

Note that the estimator x̃xx is ultimately a function of yyy. Therefore,

E
[
x̃xx(t) eeeT(t)

]
= E

[
x̃xx(t)
(∫

xxx(t) p(xxx|yyy≤t)dxxx
)T ]
− E

[
x̃xx(t)xxxT(t)

]
(2.134)

=

∫
x̃xx(t)xxxT(t) p(xxx, yyy≤t) dxxx dyyy≤t −

∫
x̃xx(t)xxxT(t)p(xxx|yyy≤t)p(yyy≤t) dxxx dyyy≤t = 0. (2.135)

2.7 Extended Kalman filter

The derivation of the KF so far has relied on the assumption that the model is linear. If that is
not the case and the model is nonlinear, a Gaussian input does not necessarily produce a Gaus-
sian output, unlike in the linear scenario. As a result, the linear KFmay no longer be the optimal
estimator, as there might be nonlinear filters that produce a better estimate. There are a wide
range of nonlinear filters one could choose from, but the simplest, most natural step is to con-
sider nonlinear extensions of the KF, such as the linearized or extendedKalman filter (EKF), even
though they are not guaranteed to provide an optimal estimate.
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To derive the linearized KF equations, we must first consider the nonlinear model given by a
set of coupled nonlinear stochastic equations of the form:

ẋxx(t) = fff [xxx(t),uuu(t),www(t), t], (2.136)

yyy(t) = hhh[xxx(t),vvv(t), t], (2.137)

where fff and hhh are both continuously differentiable nonlinear functions, xxx(t) and uuu(t) are the
state and control vectors, and www(t) and vvv(t) denote Langevin-noise terms, whose noise covari-
ances fulfill the same relations as the ones specified for a linear and correlated system, detailed in
Eqs. (1.157-1.158) and Eq. (2.96).
Next, we expand the process and measurement equations around a nominal trajectory:

(xxx000(t),uuu000(t),www000(t),vvv000(t)), (2.138)

i.e. nominal values for the state, control and noises. A nominal trajectory is simply a-priori guess
of what the system trajectory might look like, e.g. either a pre-planned trajectory, such as a flight
trajectory, or the actual KF estimate. Crucially, the nominal trajectory should be as close as pos-
sible to the real trajectory so the following linearization approximately holds:

ẋ̇ẋx(t) ≈ fff [x0x0x0(t),u0u0u0(t),w0w0w0(t), t] +∇xxx fff |000(xxx(t)− x0x0x0(t))

+∇uuu fff |000(uuu(t)− u0u0u0(t)) +∇www fff |000(www(t)−w0w0w0(t))

= fff [x0x0x0(t),u0u0u0(t),w0w0w0(t), t] +∇xxx fff |000Δxxx(t) +∇uuu fff |000Δuuu(t) +∇www fff |000Δwww(t), (2.139)

yyy(t) ≈ hhh[x0x0x0(t),v0v0v0(t), t] +∇xxx hhh|000(xxx(t)− x0x0x0(t)) +∇vvv hhh|000(vvv(t)− v0v0v0(t)) =

= hhh[x0x0x0(t),v0v0v0(t), t] +∇xxx hhh|000Δxxx(t) +∇vvv hhh|000Δvvv(t), (2.140)

where∇xxx fff |000 denotes the Jacobian of the function fff [xxx(t),uuu(t),www(t), t] with respect to the vari-
ablexxx and evaluated at the nominal values (x0x0x0(t),u0u0u0(t),w0w0w0(t)), or for the case of themeasurement
function hhh(xxx(t),vvv(t)), at (x0x0x0(t),v0v0v0(t)). Additionally, note that we have introduced the notation
Δxxx(t), Δuuu(t), Δwww(t), and Δvvv(t) to represent the deviation of the real trajectory from the nominal
trajectory. Since it is reasonable to assume that the control uuu(t) is known at all times, we can set
the nominal control to the actual value u0u0u0(t) = uuu(t) s.t. Δuuu(t) = 0. Furthermore, we assume
that the nominal noise for the process and measurement are both zero at all times: w0w0w0(t) = 0
and v0v0v0(t) = 0, s.t. Δwww(t) = www(t) and Δvvv(t) = vvv(t). Thus, from now on, the nominal values
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considered are (x0x0x0(t),u0u0u0(t),w0w0w0(t),v0v0v0(t)) = (x0x0x0(t),uuu(t), 0, 0).
Starting from Eqs. (2.139-2.140), we can write an equivalent system of SDEs for the deviation

of the state from its nominal value, Δxxx(t), as well as the deviation of the measurement, Δyyy(t):

Δẋ̇ẋx(t) = ẋ̇ẋx(t)− ẋ0ẋ0ẋ0(t) = ∇xxx fff |000 Δxxx(t) +∇www fff |000www(t) = ∇xxx fff |000 Δxxx(t) + qqq(t), (2.141)

Δyyy(t) = yyy(t)− y0y0y0(t) = ∇xxx hhh|000 Δxxx(t) +∇vvv hhh|000 vvv(t) = ∇xxx hhh|000 Δxxx(t) + rrr(t), (2.142)

where we have employed that the nominal trajectory fulfills: ẋxx000(t) = fff[x0x0x0(t),u0u0u0(t),w0w0w0(t), t] and
y0y0y0(t) = hhh[x0x0x0(t),v0v0v0(t), t]. Moreover, both noise terms have been relabeled as:

qqq(t) := ∇www fff |000www(t), and rrr(t) := ∇vvv hhh|000 vvv(t), (2.143)

with covariances

E
[
qqq(t)qqqT(s)

]
= Q̃QQ(t)δ(t− s)dt, where Q̃QQ(t) := ∇www fff |000QQQ(t)∇www fffT|000, (2.144)

E
[
rrr(t)rrrT(s)

]
= R̃RR(t)δ(t− s)dt, where R̃RR(t) := ∇vvv hhh|000RRR(t)∇vvv hhhT|000, (2.145)

E
[
qqq(t)rrrT(s)

]
= S̃SS(t)δ(t− s)dt, where S̃SS(t) := ∇www fff |000 SSS(t)∇vvv hhhT|000. (2.146)

Crucially, Eqs. (2.141-2.142) are linear with respect to the state deviation Δxxx, which is now the
state variable. Therefore, we can use the standard KF to find an estimate for Δxxx(t), i.e. Δx̃xx(t):

Δ ˙̃xxx(t) = FFF(t)Δx̃xx+KKK(t) (Δyyy−HHH(t)Δx̃xx) , (2.147)

Σ̇ΣΣ(t) = FFF(t)ΣΣΣ(t) + ΣΣΣ(t)FFFT(t)−KKK(t)R̃RR(t)KKKT(t) + Q̃QQ(t), (2.148)

KKK(t) =
(
ΣΣΣ(t)HHHT(t)− S̃SS(t)

)
R̃RR−1

(t), (2.149)

where ΣΣΣ(t) is the covariance matrix defined as ΣΣΣ(t) = E
[
(Δxxx(t)9Δx̃xx(t))(Δxxx(t)9Δx̃xx(t))T

]
, and

the matrices given by the model which define the KF are:

FFF(t) := ∇xxx fff|000, HHH(t) := ∇xxx hhh|000, and GGG(t) := ∇www fff|000, (2.150)

with the equations for the covariances Q̃QQ(t), R̃RR(t) and S̃SS(t), given in Eqs. (2.144-2.146). It follows
from the definition of Δx̃xx that the estimate of xxx is simply the nominal state trajectory plus the
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deviation of the estimate from this trajectory:

x̃xx(t) = x0x0x0(t) + Δx̃xx(t). (2.151)

Therefore, we can combine the nominal state trajectory with the Kalman-Bucy equation to ob-
tain an update rule for the estimate of xxx. Namely,

˙̃xxx(t)= ˙̃xxx000(t) + Δ ˙̃xxx(t)

= fff [x0x0x0(t),uuu(t),0, t]+∇xxx fff |000Δx̃xx(t)+KKK(t)(yyy(t)−hhh[xxx000(t),0, t]−∇xxx hhh|000Δx̃xx(t)), (2.152)

where we have used that ẋxx000(t) = fff[x0x0x0(t),u0u0u0(t),w0w0w0(t), t], y0y0y0(t) = hhh[x0x0x0(t),v0v0v0(t), t], and previous
assumptionswww000(t) = vvv000(t) = 0 and uuu000(t) = uuu(t).

A common issue when employing a linearized KF is that finding a nominal state trajectory is
not straightforward. Therefore, a standard workaround is to assume that the KF estimate itself
is the trajectory around which we linearize the system, i.e. x0x0x0(t) := x̃xx(t). Then, the update rule
for the estimate of xxx(t) becomes:

˙̃xxx(t) = fff [x̃xx(t),uuu(t), 0, t] +KKK(t) (yyy(t)− hhh[x̃xx(t), 0, t]) , (2.153)

since Δx̃xx(t) = 0, due to our redefinition of the nominal state trajectory as the estimate trajec-
tory. The Kalman gain and the covariance ΣΣΣ(t) = E

[
(xxx(t)− x̃xx(t))(xxx(t)− x̃xx(t))T

]
follow the

same equations as in Eqs. (2.148-2.149).

2.8 Control

So far, we have explored how to estimate time-varying parameters in a Bayesian setting, with a
special emphasis on how to update their estimates as more data becomes available. However,
what if we not only aim to estimate the state of our system but also to control it?

When the state of the system is fully observable, then the challenge is to devise an optimal
control law to steer the state towards the desired target. For LG systems, the optimal control
strategy is given by the linear-quadratic regulator (LQR).

If we have no access to the state of the systembut only to indirectmeasurements, then accurate
estimation becomes essential for successful control. For LG systems, the optimal solution is to
combine the LQRwith a KF, resulting in the linear-quadratic-Gaussian (LQG) control.
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Model

ẋxx(t) = fff [xxx(t),uuu(t),www(t), t], www(t) ∼ N (0,QQQ(t))

yyy(t) = hhh[xxx(t),vvv(t), t], vvv(t) ∼ N (0,RRR(t))

E
[
www(t)vvvT(s)

]
= SSS(t)δ(t− s)

Initialize x̃xx(t0) = x̃xx0
ΣΣΣ0 = E

[
(xxx0 − x̃xx0)(xxx0 − x̃xx0)T

]

Gradients

FFF(t) := ∇xxx fff|000, HHH(t) := ∇xxx hhh|000, GGG(t) := ∇www fff|000
Q̃QQ(t) := ∇www fff|000QQQ(t)∇www fff T|000, R̃RR(t) = ∇vvv hhh|000RRR(t)∇vvv hhhT|000,

S̃SS(t) = ∇www fff|000 SSS(t)∇vvv hhhT|000

Evaluate ∀ . . . : . . . |000 := . . . |(x̃xx(t),uuu(t),www=0, vvv=0)

Gain KKK(t) =
(
ΣΣΣ(t)HHHT(t)− S̃SS(t)

)
R̃RR−1

(t)

Covariance Σ̇ΣΣ(t)=FFF(t)ΣΣΣ(t) + ΣΣΣ(t)FFFT(t)−KKK(t)R̃RR(t)KKKT(t) + Q̃QQ(t)

Estimate ˙̃xxx(t)=fff [x̃xx(t),uuu(t), 0, t] +KKK(t) (yyy(t)− hhh[x̃xx(t), 0, t])

Table 2.4: Summary of the continuous correlated extended Kalman filter.

Complete and rigorous derivations of the LQRandLQGcontrol, as well as proofs of their op-
timality, emerge from Bellman’s equation [29, 85, 88]. However, since dynamical programming
is beyond the scope of this thesis, we instead try to provide simpler yet insightful derivations,
avoiding the need to explore an entirely newmathematical field. Thus, this section is intended as
an introduction to the complex field of optimal control theory, with more comprehensive treat-
ments available in textbooks like Crassidis and Junkins [29] and Kolosov [85].
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2.8.1 The linear-quadratic regulator

Let us assume we have full access to the state of the system, xxx(t). Then, the simplest control law
we can consider is to feed back this state xxx(t) into the system:

uuu(t) = −KKKc(t)xxx(t), (2.154)

whereKKKc(t) is a gain matrix. Now, the key question is: what is the optimal value ofKKKc(t) such
that the system behaves as desired? This is where the LQR comes in: it provides a systematic
way to find the optimal feedback gain while balancing system performance with control effort.
The first assumption, as suggested by the term linear in LQR, requires the system to bemodeled
using linear equations:

ẋxx(t) = FFF(t)xxx(t) + BBB(t)uuu(t), (2.155)

yyy(t) = HHH(t)xxx(t), (2.156)

wherexxx(t) is the state of the system, yyy(t) themeasurement, anduuu(t) the control law. For full-state
feedback, we further assume that the output of the system is the state, such that yyy(t) = xxx(t) (i.e.,
HHH(t) = 1). Therefore, only the matrices FFF(t) andBBB(t) are relevant for this problem.

Controller
uuu(t) = −KKKc(t)xxx(t)

System
ẋxx(t) = FFF(t)xxx(t) + BBB(t)uuu(t)

yyy(t) = HHH(t)xxx(t)

uuu(t) yyy(t)

Figure 2.3: A scheme illustrating the feedback loop of a linear‐quadratic regulator. When the full state of the system is acces‐
sible, it can be steered using a controller with a control lawuuu(t) proportional to the state xxx(t) through a control gainKKKc(t).
The optimal value ofKKKc(t) is determined by solving the LQR minimization problem.

The quadratic aspect of the LQR refers to how we assess the quality of our control. Namely,
through a quadratic cost function that we aim to minimize:

JJJ =
∫ ∞

0

(
xxxT(t)PPP(t)xxx(t) + uuuT(t)VVV(t)uuu(t)

)
dt. (2.157)

Here, the integration is carried out over time from zero to infinity, since we want the controller
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to continuously operate, i.e. the control horizon is infinite. In the cost function JJJ, there are
two control “knobs”: the positive semi-definite matrix PPP(t) ≥ 0, which penalizes deviations
in the state of the system, and VVV(t) > 0, a positive definite matrix that penalizes deviations in
the control effort. By minimizing JJJ, the controller aims to balance two competing objectives:
driving the system state as close to zero as possible while minimizing the actuator effort required
to achieve this. There are variousmethods to solve thisminimizationproblem, including learning
algorithms like gradient descent. However, we can leverage the constraints of the problem, such
as the assumption of linear dynamics and quadratic cost function, to analytically solve it.

Theorem 2.1 (Linear-quadratic regulator). Consider the following minimization problem:

JJJmin = argmin
uuu

JJJ = argmin
uuu

∫ ∞

0

(
xxxT(t)PPP(t)xxx(t) + uuuT(t)VVV(t)uuu(t)

)
dt (2.158)

subject to ẋxx(t) = FFF(t)xxx(t) + BBB(t)uuu(t), (2.159)

where xxx(t) is the state vector,PPP(t) ≥ 0, andVVV(t) > 0. The optimal control lawuuu(t) that solves this
optimization problem is known as the LQR:

uuu(t) = −KKKc(t)xxx(t), (2.160)

KKKc(t) = VVV−1(t)BBBT(t)ΛΛΛ(t), (2.161)

−Λ̇ΛΛ(t) = FFFT(t)ΛΛΛ(t)+ΛΛΛ(t)FFF(t)+PPP(t)−ΛΛΛ(t)BBB(t)VVV−1(t)BBBT(t)ΛΛΛ(t), (2.162)

where KKKc(t) is the control gain, and Eq. (2.162) is a Riccati equation with terminal condition
ΛΛΛ(∞) = 0 to ensure that the system is continuously controlled over an infinite-time horizon.

Proof. To show that the optimal control law given by Eqs. (2.160-2.162) solves the
optimization problem in Eqs. (2.158-2.159), let us start by introducing a symmetric matrix
ΛΛΛ(t) = ΛΛΛT(t) and rewriting the quadratic cost in Eq. (2.158) as:

JJJ = xxxT(0)ΛΛΛ(0)xxx(0)− xxxT(0)ΛΛΛ(0)xxx(0)

+

∫ ∞

0

(
xxxT(t)PPP(t)xxx(t) + uuuT(t)VVV(t)uuu(t)

)
dt = xxxT(0)ΛΛΛ(0)xxx(0)

+

∫ ∞

0

(
d
dt
(
xxxT(t)ΛΛΛ(t)xxx(t)

)
+xxxT(t)PPP(t)xxx(t)+uuuT(t)VVV(t)uuu(t)

)
dt, (2.163)
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where xxx(0) is the initial state of our system. Furthermore, we assume the state to be stable and
go to zero at infinity. Then, we can bring the term−xxx(0)ΛΛΛ(0)xxx(0) into the integral because
xxxT(t)ΛΛΛ(t)xxx(t)|∞0 = 0− xxxT(0)ΛΛΛ(0)xxx(0). The derivative in Eq. (2.163) can be expanded
using the state space model as follows:

d
dt
(
xxxT(t)ΛΛΛ(t)xxx(t)

)
= ẋxxT(t)ΛΛΛ(t)xxx(t) + xxxT(t)Λ̇ΛΛ(t)xxx(t) + xxxT(t)ΛΛΛ(t)ẋxx(t) (2.164)

= xxxT(t)Λ̇ΛΛ(t)xxx(t) + (FFF(t)xxx(t) + BBB(t)uuu(t))TΛΛΛ(t)xxx(t)

+ xxxT(t)ΛΛΛ(t) (FFF(t)xxx(t) + BBB(t)uuu(t)) . (2.165)

If now we plug this into Eq. (2.163) and group the xxxT(t) · xxx(t) terms, we get:

JJJ = xxxT(0)ΛΛΛ(0)xxx(0) +
∫ ∞

0

(
xxxT(t)Λ̇ΛΛ(t)xxx(t) + (FFF(t)xxx(t) + BBB(t)uuu(t))TΛΛΛ(t)xxx(t)

+ xxxT(t)ΛΛΛ(t) (FFF(t)xxx(t) + BBB(t)uuu(t)) + xxxT(t)PPP(t)xxx(t) + uuuT(t)VVV(t)uuu(t)
)
dt (2.166)

= xxxT(0)ΛΛΛ(t)xxx(0) +
∫ ∞

0

(
xxxT(t)

(
Λ̇ΛΛ(t) + FFFT(t)ΛΛΛ(t) +ΛΛΛ(t)FFF(t) +PPP(t)

)
xxx(t)

+ uuuT(t)VVV(t)uuu(t) + xxxT(t)ΛΛΛ(t)BBB(t)uuu(t) + uuuT(t)BBBT(t)ΛΛΛ(t)xxx(t)
)
dt. (2.167)

Recall that the objective of this optimization task is to find the control uuu(t) that minimizes the
cost JJJ. Therefore, we focus on the last three terms of Eq. (2.167), since they are the only ones that
depend on uuu(t). In particular, by completing the square, we can rewrite them as follows:

uuuT(t)VVV(t)uuu(t)+xxxT(t)ΛΛΛ(t)BBB(t)uuu(t)+uuuT(t)BBBT(t)ΛΛΛ(t)xxx(t) (2.168)

=
(
uuu(t)+VVV(t)−1BBBT(t)ΛΛΛ(t)xxx(t)

)TVVV(t)(uuu(t)+VVV(t)−1BBBT(t)ΛΛΛ(t)xxx(t)
)

− xxxT(t)
(
ΛΛΛ(t)BBB(t)VVV(t)−1BBBT(t)ΛΛΛ(t)

)
xxx(t), (2.169)

and substitute them back into the cost function JJJ:

JJJ = xxxT(0)ΛΛΛ(0)xxx(0)

+

∫ ∞

0

(
xxxT(t)

(
Λ̇ΛΛ(t) + FFFT(t)ΛΛΛ(t)+ΛΛΛ(t)FFF(t)+PPP(t)−ΛΛΛ(t)BBB(t)VVV−1(t)BBBT(t)ΛΛΛ(t)

)
xxx(t)

+
(
uuu(t)+VVV−1(t)BBBT(t)ΛΛΛ(t)xxx(t)

)TVVV(t)(uuu(t)+VVV−1(t)BBBT(t)ΛΛΛ(t)xxx(t)
))

dt. (2.170)
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Now, by inspection of the expression above, we can see that the cost function can be minimized
by choosing the control uuu(t) to be:

uuu(t) = −KKKc(t)xxx(t), (2.171)

where
KKKc(t) = VVV−1(t)BBBT(t)ΛΛΛ(t), (2.172)

as well as solving forΛΛΛ(t) such that the first term of Eq. (2.170) is also zero, i.e.:

− Λ̇ΛΛ(t) = FFFT(t)ΛΛΛ(t)+ΛΛΛ(t)FFF(t)+PPP(t)−ΛΛΛ(t)BBB(t)VVV−1(t)BBBT(t)ΛΛΛ(t). (2.173)

In other words, if we can find a matrixΛΛΛ(t) such that the algebraic Riccati equation in
(2.173) holds, then the optimal control uuu(t) that minimizes the cost function JJJ is a full-state
feedback term of the formuuu(t) = −VVV−1(t)BBBT(t)ΛΛΛ(t)xxx(t).

2.8.2 The linear-quadratic-Gaussian controller

Unfortunately, we often do not have access to the state xxx(t). While LQR feedback requires full
state knowledge, this assumption might unrealistic due to the presence of noise. In such cases,
we need to infer the state of our system from indirect noisy observations. A natural solution is to
use theKF to provide state estimates, which can be later used instead of the true state to construct
the LQR. For LG systems, the optimal strategy is to combine a KFwith a LQR, referred to as the
linear-quadratic-Gaussian (LQG) controller [29, 85].

Theorem 2.2 (Linear-quadratic-Gaussian controller). The objective is to minimize the quadratic
cost function:

JJJ = E
[∫ ∞

0

(
xxxT(t)PPP(t)xxx(t) + uuuT(t)VVV(t)uuu(t)

)
dt
]
, (2.174)

subject to a linear system driven by white Gaussian noise:

ẋxx(t) = FFF(t)xxx(t) + BBB(t)uuu(t) +GGG(t)www(t), (2.175)

yyy(t) = HHH(t)xxx(t) + vvv(t), (2.176)
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where xxx(t) is the state vector, uuu(t) is the control input and yyy(t) is the measurement output. The
zero-mean Gaussian noise process www(t) ∼ N (0,QQQ(t)) and vvv(t) ∼ N (0,RRR(t)) are cross-correlated
through the matrix SSS(t), i.e. E

[
www(t)vvvT(s)

]
= SSS(t)δ(t − s). The new cost function is defined as the

expected value of the cost function in Eq. (2.157), and just as in the case of the LQR,PPP(t) ≥ 0, and
VVV(t) > 0. The control law uuu(t) that minimizes the cost function is

uuu(t) = −KKKc(t)x̃xx(t), (2.177)

where now the control is not proportional to the state but rather to its estimate, x̃xx(t). The control gain

Controller
uuu(t) = −KKKc(t) x̃xx(t)

System
ẋxx(t) = FFF(t)xxx(t) + BBB(t)uuu(t) +GGG(t)www(t)

yyy(t) = HHH(t)xxx(t) + vvv(t)

Kalman filter
˙̃xxx(t)=FFF(t)x̃xx(t)+BBB(t)uuu(t)+KKK(t)(yyy(t)−HHH(t)x̃xx(t))

uuu(t) yyy(t)

x̃xx(t)

Figure 2.4: Block diagram of the feedback scheme of a linear‐quadratic Gaussian controller. The controller computes the
control input uuu(t) based on the estimated state x̃xx(t), which is provided by the KF. The system dynamics are influenced by
both a process noisewww(t) and a measurement noise vvv(t), preventing full access to the state of the system. For that reason,
the KF is needed in order to estimate the state from the measurements yyy(t). The control law is then generated as uuu(t) =
−KKKc(t) x̃xx(t) , where the control gainKKKc(t) is obtained by solving the LQR problem.

regulating the feedback is given by:

KKKc(t) = VVV−1(t)BBBT(t)ΛΛΛ(t), (2.178)

−Λ̇ΛΛ(t) = FFFT(t)ΛΛΛ(t)+ΛΛΛ(t)FFF(t)+PPP(t)−ΛΛΛ(t)BBB(t)VVV−1(t)BBBT(t)ΛΛΛ(t), (2.179)

ΛΛΛ(∞) = 0, (2.180)

where the matrix ΛΛΛ(t) is the solution to a Riccati equation with an infinite control horizon. The
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estimator of xxx(t) in Eq. (2.177) is given by the Kalman-Bucy filter:

˙̃xxx(t) = FFF(t)x̃xx(t)+BBB(t)uuu(t)+KKK(t)(yyy(t)−HHH(t)x̃xx(t)), (2.181)

x̃xx(0) = E
[
xxx(0)xxxT(0)

]
, (2.182)

KKK(t) =
(
ΣΣΣ(t)HHHT(t)−GGG(t)SSS(t)

)
RRR−1(t), (2.183)

Σ̇ΣΣ(t) = FFF(t)ΣΣΣ(t)+ΣΣΣ(t)FFFT(t)−KKK(t)RRR(t)KKKT(t)+GGG(t)QQQ(t)GGGT(t),

ΣΣΣ(0) = E
[
xxx(0)xxxT(0)

]
, (2.184)

where to compute theKalmangainKKK(t) onealso needs to solve thedual (estimation)Riccati problem.

Proof. First, let us focus on the termE
[
xxxT(t)PPP(t)xxx(t)

]
in Eq. (2.174) and rewrite it in terms

of the estimation error
eee(t) = x̃xx(t)− xxx(t). (2.185)

Namely,

E
[
xxxT(t)PPP(t)xxx(t)

]
= E

[
(x̃xx(t)− eee(t))TPPP(t)(x̃xx(t)− eee(t))

]
= E

[
x̃xxT(t)PPP(t)x̃xx(t)

]
− 2E

[
Tr
[
PPP(t)eee(t)x̃xxT(t)

]]
+ E

[
Tr
[
PPP(t)eee(t)eeeT(t)

]]
(2.186)

where in the last step we have applied following property of the trace: Tr
[
AAAxxxxxxT

]
= xxxTAAAxxx.

Note that by applying the orthogonality principle, stated in Eq. (2.130), we can simplify the
expression above, since

E
[
Tr
[
PPP(t)eee(t)x̃xxT(t)

]]
= Tr

[
PPP(t)E

[
eee(t)x̃xxT(t)

]]
= 0. (2.187)

Additionally, by employing the definition of the covarianceΣΣΣ(t) = E
[
eee(t)eeeT(t)

]
, we rewrite

Eq. (2.186) as

E
[
xxxT(t)PPP(t)xxx(t)

]
= E

[
x̃xxT(t)PPP(t)x̃xx(t)

]
+ Tr[PPP(t)ΣΣΣ(t)], (2.188)
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such that then, the cost function can be expressed in terms of the estimator x̃xx(t) and covariance
matrixΣΣΣ(t):

JJJ = E
[∫ ∞

0

(
x̃xxT(t)PPP(t)x̃xx(t) + uuuT(t)VVV(t)uuu(t)

)
dt
]
+

∫ ∞

0
Tr[PPP(t)ΣΣΣ(t)]dt, (2.189)

subject to a new constraint:

˙̃xxx(t) = FFF(t)x̃xx(t) + BBB(t)uuu(t) +KKK(t) (yyy(t)−HHH(t)x̃xx), (2.190)

i.e. the Kalman-Bucy filter. The problem of optimizing the cost JJJ of Eq. (2.189) is equivalent
to minimizing the first term of Eq. (2.189), since the second term,Tr[PPP(t)ΣΣΣ(t)], does not
depend on uuu(t). Namely,

JJJmin = argmin
uuu

JJJ = argmin
uuu

JJJ ′ (2.191)

where

JJJ ′ = E
[∫ ∞

0

(
x̃xxT(t)PPP(t)x̃xx(t) + uuuT(t)VVV(t)uuu(t)

)
dt
]
. (2.192)

Now, instead of the optimization problem being constrained by a differential equation on the
state xxx(t), it is subjected to the Kalman-Bucy equation of Eq. (2.190), since we have rewritten
the cost function w.r.t. the KF estimate instead of the state. Then, just like in the case of the
LQR, we can use complete-the-squares to find the control uuu(t) that minimizes the cost,

JJJ ′ = E
[
x̃xxT(0)ΛΛΛ(0)x̃xx(0)

]
− E

[
x̃xxT(0)ΛΛΛ(0)x̃xx(0)

]
+E
[∫ ∞

0

(
x̃xxT(t)PPP(t)x̃xx(t)+uuuT(t)VVV(t)uuu(t)

)
dt
]

= E
[
x̃xxT(0)ΛΛΛ(0)x̃xx(0)

]
+E
[∫ ∞

0
d
(
x̃xxT(t)ΛΛΛ(t)x̃xx(t)

)
+

∫ ∞

0

(
x̃xxT(t)PPP(t)x̃xx(t)+uuuT(t)VVV(t)uuu(t)

)
dt
]

= E
[
x̃xxT(0)ΛΛΛ(0)x̃xx(0)

]
+

∫ ∞

0
E
[
d
(
x̃xxT(t)ΛΛΛ(t)x̃xx(t)

)]
+

∫ ∞

0

(
E
[
x̃xxT(t)PPP(t)x̃xx(t)

]
+ E

[
uuuT(t)VVV(t)uuu(t)

])
dt. (2.193)
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Importantly, the KF estimate is a stochastic process that follows a SDE: the Kalman-Bucy
equation. Therefore, to evaluate d

(
x̃xxT(t)ΛΛΛ(t)x̃xx(t)

)
, we have to use Itô calculus:

d
(
x̃xxT(t)ΛΛΛ(t)x̃xx(t)

)
= x̃xxT(t)(dΛΛΛ(t)) x̃xx(t)+dx̃xxT(t)ΛΛΛ(t)x̃xx(t)+x̃xxT(t)ΛΛΛ(t)dx̃xx(t)

+ dx̃xxT(t)ΛΛΛ(t)dx̃xx(t). (2.194)

Then, the KF equation can be written in Itô form as

dx̃xx = FFF(t)x̃xx(t)dt+ BBB(t)uuu(t)dt+KKK(t)dIII, (2.195)

dIII = dyyy−HHHx̃xx dt = HHH(xxx− x̃xx)dt+ dvvv = −HHHeee dt+ dvvv (2.196)

where dvvv := vvv(t)dt ∼ N (0,RRRdt), s.t. dIII ∼ N (0,RRRdt), with

E[dIII] = 0, (2.197)

E
[
dIIIdIIIT

]
= RRRdt, (2.198)

E
[
x̃xx dIIIT

]
= 0. (2.199)

If we apply these relationships to Eq. (2.194), we get

d
(
x̃xxT(t)ΛΛΛ(t)x̃xx(t)

)
= x̃xxT(t)(dΛΛΛ(t))x̃xx(t)+

(
x̃xxT(t)FFFT(t)dt+uuuT(t)BBBT(t)dt+dIIITKKKT(t)

)
ΛΛΛ(t)x̃xx(t)

+ x̃xxT(t)ΛΛΛ(t)(FFF(t)x̃xx(t)dt+ BBB(t)uuu(t)dt+KKK(t)dIII)

+ dIIIT(t)KKKT(t)ΛΛΛ(t)KKK(t)dIII(t), (2.200)

the expectation value of which reads as:

E
[
d
(
x̃xxT(t)ΛΛΛ(t)x̃xx(t)

)]
= E

[
x̃xxT(t)

(
dΛΛΛ(t) + FFFT(t)ΛΛΛ(t)dt+ΛΛΛ(t)FFF(t)dt

)
x̃xx(t)
]

+ E
[
uuuT(t)BBBT(t)ΛΛΛ(t)x̃xx(t)dt

]
+ E

[
x̃xxT(t)ΛΛΛ(t)BBB(t)uuu(t)dt

]
+ E

[
dIIITKKKT(t)ΛΛΛ(t)x̃xx(t) + x̃xxT(t)ΛΛΛ(t)KKK(t)dIII

]
+ E

[
dIIIT(t)KKKT(t)ΛΛΛ(t)KKK(t)dIII(t)

]
.

(2.201)

97



The last two terms of the expansion above can be simplified since xxxTAAAzzz = Tr[AAAzzzxxxT] when xxx
and zzz have the same dimensions, which is the case for dIII and x̃xx(t). Therefore,

E
[
dIIITKKKT(t)ΛΛΛ(t)x̃xx(t) + x̃xxT(t)ΛΛΛ(t)KKK(t)dIII

]
= E

[
Tr
[
KKKT(t)ΛΛΛ(t)x̃xx(t)dIIIT

]]
(2.202)

+ E
[
Tr
[
ΛΛΛ(t)KKK(t)dIII x̃xxT(t)

]]
= Tr

[
KKKT(t)ΛΛΛ(t)E

[
x̃xx(t)dIIIT

]]
(2.203)

+ Tr
[
ΛΛΛ(t)KKK(t)E

[
dIII x̃xxT(t)

]]
= 0, (2.204)

and

E
[
dIIIT(t)KKKT(t)ΛΛΛ(t)KKK(t)dIII(t)

]
= E

[
Tr
[
KKKT(t)ΛΛΛ(t)KKK(t)dIII(t)dIIIT(t)

]]
(2.205)

= Tr
[
KKKT(t)ΛΛΛ(t)KKK(t)E

[
dIII(t)dIIIT(t)

]]
= Tr

[
KKKT(t)ΛΛΛ(t)KKK(t)RRR(t)

]
dt. (2.206)

Thus, Eq. (2.201) reduces to

E
[
d
(
x̃xxT(t)ΛΛΛ(t)x̃xx(t)

)]
= E

[
x̃xxT(t)

(
dΛΛΛ(t) + FFFT(t)ΛΛΛ(t)dt+ΛΛΛ(t)FFF(t)dt

)
x̃xx(t)
]

+ E
[
uuuT(t)BBBT(t)ΛΛΛ(t)x̃xx(t)dt+x̃xxT(t)ΛΛΛ(t)BBB(t)uuu(t)dt

]
+Tr

[
KKKT(t)ΛΛΛ(t)KKK(t)RRR(t)dt

]
, (2.207)

which can finally be inserted back into Eq. (2.193):

JJJ ′ = E
[
x̃xxT(0)ΛΛΛ(0)x̃xx(0)

]
+

∫ ∞

0
E
[
x̃xxT(t)

(
dΛΛΛ(t)+FFFT(t)ΛΛΛ(t)dt+ΛΛΛ(t)FFF(t)dt+PPP(t)dt

)
x̃xx(t)
]

+

∫ ∞

0

(
E
[
uuuT(t)BBBT(t)ΛΛΛ(t)x̃xx(t)dt+x̃xxT(t)ΛΛΛ(t)BBB(t)uuu(t)dt+uuuT(t)VVV(t)uuu(t)dt

])
+

∫ ∞

0
Tr
[
KKKT(t)ΛΛΛ(t)KKK(t)RRR(t)

]
dt. (2.208)

Given that also the last term,Tr
[
KKKT(t)ΛΛΛ(t)KKK(t)RRR(t)

]
, does not depend on uuu(t), we can

equivalently write the minimization problem as

JJJmin = argmin
uuu

JJJ = argmin
uuu

JJJ ′′, (2.209)
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where

JJJ ′′=
∫ ∞

0
E
[
x̃xxT(t)

(
d
dt
ΛΛΛ(t)+FFFT(t)ΛΛΛ(t)+ΛΛΛ(t)FFF(t)+PPP(t)−ΛΛΛ(t)BBB(t)VVV91(t)BBBT(t)ΛΛΛ(t)

)
x̃xx(t)
]
dt

+

∫ ∞

0
E
[(
uuu(t)+VVV−1(t)BBBT(t)ΛΛΛ(t)xxx(t)

)TVVV(t)(uuu(t)+VVV−1(t)BBBT(t)ΛΛΛ(t)xxx(t)
)]
dt. (2.210)

Then, just like in the LQR case, the control function uuu(t) that minimizes the cost JJJ is

uuu(t) = −KKKc(t)x̃xx(t), (2.211)

where the control gain is:
KKKc(t) = VVV−1(t)BBBT(t)ΛΛΛ(t). (2.212)

To determineΛΛΛ(t), we require the first term of Eq. (2.170) to be zero, resulting in the
following equation:

− Λ̇ΛΛ(t) = FFFT(t)ΛΛΛ(t)+ΛΛΛ(t)FFF(t)+PPP(t)−ΛΛΛ(t)BBB(t)VVV−1(t)BBBT(t)ΛΛΛ(t), (2.213)

whereΛΛΛ(∞) = 0 because the actuator is intended to continuously control the system over an
infinite time horizon.
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3
Continuously monitored quantum systems

Tolearn somethingaboutaquantumsystem, like where a particle is, how fast it ismov-
ing or howmuch energy it has, wemust perform ameasurement. Measurements in quantumme-
chanics are fundamentally different form those in classical systems: instead of simply observing
the system, they interact with it in a way that disturbs its state.

Theway quantummeasurements are usually introduced in a firstQuantumMechanics course
follows the framework of projective measurements developed in the 1930s byHeisenberg, Dirac
and von Neumann [89, 90, 91]. Von Neumann described measurements using observables, i.e.
mathematical objects called self-adjoint operators that live in the Hilbert space of the system.
When an observable is measured, the possible outcomes correspond to its eigenvalues, and the
quantum state undergoes a discontinuous, probabilistic, and non-unitary transformation, often
referred to as “collapse” or “projection”, into an eigenstate associated with the observed eigen-
value. Once this measurement is performed, there is no ambiguity on what the value of the ob-
servable is, since the state has been projected onto an eigenstate. While this frameworkworkswell
for some idealized scenarios: perfect, instantaneous measurements on isolated systems, real-life
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experiments often deviate from these assumptions. For instance, measurements can be imper-
fect, i.e. extract only partial information, and non-instantaneous, as any measurement device
inevitably requires a finite amount of time to detect and output a measurement value.

To model non-ideal measurements, Davies [36] and Kraus [92] extended von Neumann’s
framework to include positive operator-valued measures (POVMs). Unlike the sharp “collapse”
described by von Neumann, POVMs allow for imperfect measurements where the state of the
system only partially collapses upon measurement.

This framework was sufficient for most quantum experiments until the 1980s, when break-
throughs in laser sources as well as trapping and cooling techniques enabled experimentalists to
probe quantum systems in ways that highlighted the need for a continuous description of mea-
surement [93, 94]. In particular, systems like atoms or ions were observed transitioning between
discrete energy levels [95, 96, 97]. In other words, an atom could “jump” between states un-
der continuous observation, and this quantum jump could be influenced by how the systemwas
being measured [98, 99, 100, 101].
Inspired by the observation of these quantum jumps, a newmathematical theory for continu-

ous measurements was developed [36, 37, 38, 39], describing the evolution of a quantum system
under continuous monitoring, as opposed to instantaneous, projective measurements. In classi-
cal statistical physics, a system is described by an ensemble of noisy trajectories generated by a set
of SDEs. Analogously, in quantum physics, the state of a system conditioned on the measure-
ment record follows a quantum trajectory [38]. The evolution of such a conditional state [38] is
generatedby a stochasticmaster equation (SME) [40, 41, 42]. Furthermore, the trajectory of such
a state can be controlled by feeding back themeasurement outcomes (or an appropriate function
of them) as they are registered [102, 103]. A quantum theory of feedback, which naturally arises
from and requires a continuous measurement formalism, can be similarly described using SMEs
[104, 105].

These SMEs, central to the theory of continuous measurement, were shown to connect di-
rectly to quantum stochastic calculus [106, 107, 108, 109, 110] and quantumfiltering [111, 112,
113, 114]. Quantum stochastic calculus, a non-commutative analogue of Itô’s stochastic calcu-
lus, introduces “white noise” Bose fields, b̂t and b̂†t , satisfying canonical commutation relations.
In quantumoptics, these fields approximate the electromagnetic field and serve as the foundation
for a consistent theory of photodetection [110, 115, 116]. Using quantum stochastic calculus,
Belavkin and Barchielli extended Bayesian filtering into the quantum domain to describe how
quantum states are conditioned by continuous measurements, thereby establishing the field of
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quantum filtering [111, 112, 114]. Turns out that the SME is nothing but the representation of
their quantum filter in its adjoint density form [117].

In this chapter, we revisit and adapt established derivations from the literature to the context
of this thesis. In particular, we rederive the SME for an ensemble of two-level systems continu-
ously monitored through the polarization of a probing light field. To do so, we start by assuming
a very general setup: that of a bath (probe) interacting with a system. We first detail in Sec. 3.1
all the relevant approximations as laid out by Gross et al. (2018) [118]. Next, we derive the SME
for both photodetection (in Sec. 3.2.1) and homodyne measurements (in Sec. 3.2.2), following
the steps of Albarelli et al. (2024) [119]. Then, in Sec. 3.2.3, inspired by the work of Deutsch
et al. (2010) [120], we explain how a system monitored with polarization spectroscopy can be
described by the same SME as one measured by homodyne detection. Last but not least, we also
briefly introduce in Sec. 3.3 Markovian and Bayesian feedback, as they will also be of interest in
later chapters. If the reader wants to dive deeper into this topic, many other detailed sources exist,
such as the works of Carmichael [38], Gardiner and Zoller [121], Breuer and Petruccione [122],
Wiseman andMilburn [42], and Jacobs [123]. Those specifically interested in quantum filtering
might find the review by van Handel et al. [117] particularly insightful.

3.1 Introducing the system-bath setup

Consider the case of a system S coupled to a bath B corresponding to a continuum of bosonic
modes, as depicted in Fig. 3.1. The totalHamiltonian describing the evolution of the joint system
and bath is given by

Ĥ = ĤS + ĤB + Ĥint, (3.1)

with ĤS representing theHamiltonian of the system, and Ĥint accounting for the interaction be-
tween the system and the bath, with the bath modeled as an infinite collection of bosonic modes
whose Hamiltonian ĤB reads as:

ĤB =

∫ ∞

0
dω ω b̂†(ω)b̂(ω), (3.2)
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Figure 3.1: Diagram of the setup. The setup consists of a main system (labeled with S ) continuously monitored by a probe
(B) that interacts with the system and is later measured by, in this depiction, a homodyne detector. In this section, though,
we consider other types of measurement such as photodetection. The interaction between the system and the probe (also
sometimes referred as bath) is governed by the interaction Hamiltonian Ĥint.

where ω is the frequency of each bosonic mode, with its corresponding creation and anihilation
operators, b̂†(ω) and b̂(ω), fulfilling the commutation relationships

[b̂(ω), b̂†(ω′)] = 2πδ(ω − ω′) and [b̂(ω), b̂(ω′)] = 0. (3.3)

This bath, which we label with B, is in our case the probe that the experimenter wants to use
to measure the state of the system. In other words, the probe or bath interacts with the system
and it is later measured. Therefore, in this section we will use interchangeably bath, probe and in
a lesser extend, environment, all referring to the subspace B.

Additionally, the interactionHamiltonian is assumed to be linear w.r.t. the bosonic operators
b̂:

Ĥint = i
∫ ∞

0
dω
√

κ(ω)
2π

(
L̂⊗ b̂†(ω)− L̂† ⊗ b̂(ω)

)
, (3.4)

where L̂ corresponds to a given system operator and κ(ω) is the coupling strength of the system
to the bath mode with frequency ω. Throughout this derivation, we assume the system S to
have only one characteristic frequency Ω. Additionally, we will assume that when going into the
interaction picture of Ĥ0 := ĤS + ĤB, the system operator acquires a time dependent phase
L̂(t) = L̂e−iΩ(t−t0), with t0 denoting the initial time.

Even then, the interaction Hamiltonian is still too complex and further approximations must
be performed. Throughout this section, each important approximation will be marked with a
dot, for easier identification. The first one relies on the Markovian properties of the bath:

• First Markov approximation: This approximation relies on the timescale of the system’s
dynamics being much slower than the timescale of the bath’s memory, characterized by
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its correlation time τc. The key idea is that the bath rapidly “forgets” its interaction with
the system system. In other words, any perturbation in the bath caused by its interaction
with the system dissipates quickly by propagating away into the bath. From the system’s
perspective, the excitation it created in the bath has effectively vanished, and the bath has
lost all memory of the initial disturbance. This rapid decay of the bath’s memory often
leads to it being described as “memoryless”.

Furthermore, a bath that forgets its past very quickly indicates that its fluctuations are also
rapid. In particular, they are much faster than the comparatively slow response of the
system, which therefore cannot “resolve” them. In other words, the system “sees” only
the average effect of these fluctuations over longer timescales, i.e., it is no longer sensitive
to specific frequencies ω, and therefore, the interaction strength is constant in a (large)
frequency bandwidthW . Namely, κ(ω) = κ for ω ∈ W = [Ω − θ,Ω + θ ], and zero
outside of it, where Ω is the characteristic frequency of the system.

Then, the Hamiltonian becomes:

Ĥint = i
√
κ
∫
W
dω

1
2π

(
L̂⊗ b̂†(ω)− L̂† ⊗ b̂(ω)

)
. (3.5)

We can take this Hamiltonian as the starting point [115] or derive it from a standard dipole
coupling by performing a rotating-wave approximation (RWA) and keeping the slow-varying
energy-conserving terms of Eq. (3.5). If the latter is performed, the timescales we consider, i.e.
Δt, have to be much longer than the characteristic time of the system, 1/Ω. Namely, if the RWA
is performed, then

Ω−1 ≪ Δt (3.6)

Additionally, another assumption intrinsic in the form of Eq. (3.5) is that the system is small
enough, i.e. Δx≪ cΔt, such that the spatial integration has been substituted by a point interac-
tion [118].

If nowwe go into the interaction frame of Ĥ 0 = ĤS+ĤB, then, the interactionHamiltonian
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in the time domain becomes:

ĤI(t) := eiĤ 0(t−t0)Ĥinte−iĤ 0(t−t0)

= i
√
κ

2π

∫
W
dω eiĤ 0(t−t0)

(
L̂⊗ b̂†(ω)− L̂† ⊗ b̂(ω)

)
e−iĤ 0(t−t0)

*† = i
√
κ

2π

∫
W
dω
(
L̂e−iΩ(t−t0) ⊗ b̂†(ω)eiω(t−t0) − L̂†eiΩ(t−t0) ⊗ b̂(ω)e−iω(t−t0)

)
= i
√
κ

2π

∫
W
dω
(
L̂⊗ b̂†(ω)ei(ω−Ω)(t−t0) − L̂† ⊗ b̂(ω)e−i(ω−Ω)(t−t0)

)
= i
√
κ
(
L̂⊗ 1

2π

∫
W
dω b̂†(ω) ei(ω−Ω)(t−t0) − L̂† ⊗ 1

2π

∫
W
dω b̂(ω)e−i(ω−Ω)(t−t0)

)
= i
√
κ
(
L̂⊗ b̂†(t)− L̂† ⊗ b̂(t)

)
, (3.7)

where in the last step we have made use of the definition of the so-called input modes b̂(t)

b̂(t) =
1
2π

∫
W
dω b̂(ω)e−i(ω−Ω)(t−t0), (3.8)

which onemight notice resembles the Fourier transform of the frequency-domain operators but
with frequencies restricted to the setW = [Ω − θ,Ω + θ ].

• Weak coupling: In our simplified treatment, the system has only one characteristic or tran-
sition frequency Ω with a decay κ due to the interaction with the bath. Hence, it stands
to reason to expect * its spectrum to be centered at Ω with a broadening proportional to
κ, with its tails going to zero within a few linewidths κ of Ω, as depicted in Fig. 3.2. Earlier
we defined the interaction bandwidth or the effective bath frequencies that the system sees
as a setW = [Ω − θ,Ω + θ ]. Given that we assume the spectrum of the system to be
centered around Ωwith a broadening of κ, we must then pick θ to be much larger than κ,

*Given our initial assumption that ĤB has the form specified in Eq. (3.2), by using the Baker-Campbell-
Hausdorff formula, it follows that eiĤB(t−t0)b̂(ω)e−iĤB(t−t0) = b̂(ω)e−iω(t−t0), since ĤB is time-independent and
the modes obey the commutation relationships of (3.3). In particular, the key step in this calculation is the deriva-
tion of [ĤB, b̂(ω)] = −ωb̂(ω). Other work circumvents defining ĤB and instead require the field operators to
acquire a time dependence at the frequency of the mode [118].

†Earlier in the definition of L̂we stated that when going into the interaction picture Ĥ0 := ĤS+ĤB, the system
operator acquires a time dependent phase L̂(t) = L̂e−iΩ(t−t0), with t0 denoting the initial time.

*For example, for a signal S(t) ∼ cosΩt e−kt, its power spectral density is a Lorentzian centered around Ω and
with a width of k, i.e. ∝ 1/ ((ω −Ω)2 + k2)
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Figure 3.2: Interaction between the system and the probe in the frequency domain. This figure illustrates how the spectrum
of the system, centered aroundΩ and broadened by a decay κ, aligns with the discretized frequency modes of the probe,
in particular ω0, ω1 and ω−1, which are spaced by

2π
Δt . As detailed in the main text, an important condition when picking the

Δt is that Δt ≪ κ−1, or equivalently, 1/Δt ≫ κ, ensuring that modes such asΩ ± 2π
Δt are sufficiently detuned from the

spectrum’s core to be negligible in system interactions. The parameter θ defines the interaction bandwidthW for which we
assume constant system‐probe interaction, i.e. κ(ω) = κ if ω ∈ W = [Ω−θ,Ω+θ]. It is evident also from this depiction
why is necessary that θ≫ κ.

i.e. θ≫ κ, to ensure the whole spectrum falls withinW . Then, we can extend the integral
of Eq. (3.8) over the whole real axis R. However, for the setW = [Ω − θ,Ω + θ ] to be
properly defined, the following condition must hold: Ω − θ > 0. Thus, since θ ≫ κ,
then Ω≫ κ. In other words, the system is weakly coupled to the bath, since κ≪ Ω.

Now, thanks to the weak-coupling approximation, we can extendW to the whole real axisR.
In this case, the interaction Hamiltonian has the same form as in Eq. (3.7):

ĤI(t) = i
√
κ
(
L̂⊗ b̂†(t)− L̂† ⊗ b̂(t)

)
, (3.9)

but with b̂(t) and b̂†(t) becoming instantaneous temporal input modes, i.e., the Fourier trans-
form of the frequency modes b̂(ω) and b̂†(ω). Namely,

b̂(t) =
1
2π

∫ ∞

−∞
dω b̂(ω)e−i(ω−Ω)(t−t0), (3.10)

following the standard commutation relationship

[b̂(t), b̂†(t′)] = δ(t− t′). (3.11)
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Figure 3.3: Frequency and time discretization of the probe modes. This illustration depicts the time discretization of the
probe beam into intervals of Δt, with discretized times labeled as tn with n = −∞, . . . ,∞ ∈ Z. At tn, the on‐
resonant and first four discrete modes are represented, with their frequencies also discretized as ωk = Ω + 2π

Δt k, with
k = −2,−1, 0, 1, 2.

So farwe are in the interacting frame and theHamiltonian governing the dynamics of the joint
state of the system and the probe is given inEq. (3.9), where the probemodes b̂(t) and b̂†(t) evolve
in time.

To further simplify this description, we now discretize the probe field into time intervals of
duration Δt. The time instances are defined as tn = nΔt, with n ∈ Z. Each corresponding
segmented mode is labeled as b̂n(t), with n ∈ Z. Consequently, the temporal mode b̂(t) can be
written as a sum of all the discrete time modes b̂n(t) as:

b̂(t) =
√
Δt

∞∑
n=−∞

b̂n(t)Θ(t− tn), (3.12)

such that b̂(t) is still continuous but has been structured into (continuous) intervals of size Δt,
utilizing the Heaviside function defined as Θ(u) = 1 for 0 ≤ u < Δt and zero otherwise. This
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segmentation ensures that each segment, or “discrete timemode”, b̂n(t), while being a continuous
modewithin its respective time interval [tn, tn+Δt), is distinctly associatedwith the time indexn.
This index n highlights that b̂n(t) contributes to the overall mode only during its specific interval
from tn to tn+Δt. The factor

√
Δt has been added in order tomaintain the correct commutation

relations among discrete modes, akin to those in continuous modes. This will be demonstrated
in detail later in the section. This factor also ensures that the total energy, expressed in continuous
time modes as

∫∞
−∞ b̂†(t)b̂(t)dt, matches that calculated using discrete modes,

∑
n b̂†nb̂nΔt.

Additionally, the segmented timemodes b̂n(t) can be expressed as a linear combination of dis-
crete frequency modes b̂n,k, with the discretized frequencies ranging as: ωk = Ω + 2π

Δtk with
k = −∞, . . . ,∞ ∈ Z. In particular, we can use the discrete equivalent of the Fourier transform
of Eq. (3.10) to expand b̂n(t) as:

b̂n(t) =
1
2π

∞∑
k=−∞

b̂n,k e−i2πk t/ΔtΔω =
1
2π

∞∑
k=−∞

b̂n,k e−i2πk t/Δt2π
Δt

, (3.13)

where we have set t0 = 0 for simplicity, and Δω = 2π/Δt is the spacing between consecutive
frequency samples in the discretized frequencydomain. Note that Eq. (3.13) is simply the Fourier
series of b̂n(t), and b̂n,k are its Fourier coefficients defined by the integrals:

b̂n,k =
∫ Δt

0
b̂n(t) e−i2πn t/Δt dt. (3.14)

Note, however, that the integral above defines the Fourier coefficients in terms of b̂n(t), i.e. a
segmented version of b̂(t), rather than b̂(t) itself.
For practical purposes, we require a direct transformation of the continuous mode b̂(t) into

the discrete modes or Fourier coefficients b̂n,k. This transformation can be achieved by deriving
the Fourier coefficients from a double series expansion of b̂(t)w.r.t. time and frequency.

By applying the Fourier expansion of the mode b̂n(t) given in Eq. (3.13) to Eq. (3.12), the
continuousmode b̂(t) canbe expressed as a series expansion inboth frequency and time as follows
[118]:

b̂(t) =
1√
Δt

∞∑
n=−∞

∞∑
k=−∞

b̂n,k Θ(t− tn) e−i2πk t/Δt, (3.15)

where the labeling n emphasizes that each frequency mode b̂k is associated with a specific time
interval [tn, tn + Δt) indexed by n. As derived in Proposition C.1, the “Fourier” or discretized
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modes b̂n,k for Eq. (3.15) are:

b̂n,k =
1√
Δt

∫ tn+Δt

tn
b̂(t)ei2πkt/Δt dt, (3.16)

which one might notice to highly resemble the Fourier series and the integral form for its coeffi-
cients (see Table 3.1).

Type of Series Windowed Complex Exponential Series Fourier Series

Time-Domain
Signal b̂(t)=

∞∑
n=−∞

∞∑
k=−∞

1√
Δt b̂n,kΘ(t− tn)e−i2πkt/Δt f(t)= 1

T

∞∑
n=−∞

cn e−i 2πnT t

Frequency-
Domain

Coefficients
b̂n,k= 1√

Δt

∫ tn+Δt
tn b̂(t)ei2πkt/Δt dt cn=

∫ T
0 f(t)ei 2πnT t dt

Table 3.1: Comparison of Signal Representations

As a sanity check, we make sure that the discretized modes b̂n,k obey the discrete canonical
commutation relation:

[b̂n,k, b̂†m,ℓ] =
1
Δt

∫ tn+Δt

tn

∫ tm+Δt

tm
[b̂(t), b̂†(t′)]ei2πkt/Δte−i2πℓt′/Δtdt dt′

=
1
Δt

∫ tn+Δt

tn

∫ tm+Δt

tm
δ(t− t′)ei2πkt/Δte−i2πℓt′/Δtdt dt′

=
1
Δt

∫ tn+Δt

tn
ei2πkt/Δt

∫ tm+Δt

tm
e−i2πℓt′/Δtδ(t− t′) dt′ dt

=

 1
Δt

∫ tn+Δt
tn ei2πkt/Δte−i2πℓt/Δt dt if tm ≤ t ≤ tm + Δt,

0 otherwise,

=
1
Δt

δn,m
∫ tn+Δt

tn
ei2πkt/Δte−i2πℓt/Δt dt

=
1
Δt

δn,m Δt δk,ℓ = δn,mδk,ℓ,

where in the last line we have used the orthogonality condition of integration over the period Δt
given in Eq. (C.4). Note the analogy with the commutation relationship of Eq. (3.11), which
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holds due to writing the time expansion of b̂(t) in Eq. (3.12) with a factor Δt.
As depicted in Fig. 3.3, in each time step, there is an infinite collection of modes b̂n,k with

which the system can interact. Let us perform one more approximation in order to ensure that
the system interacts only with the main on-resonant mode b̂n,0. Namely:

• Quasimonochromatic approximation: Let us pick a time-step Δt much smaller than the
time the state of the system and bath take to “couple”, i.e. Δt ≪ 1/κ, so that the system-
probe interaction is weak during this time-step Δt. Now, recall that the mode frequencies
are discretized as ωk = Ω + 2π

Δtk, with k ∈ Z. Since we have just set the condition that
1/Δt ≫ κ, that means that all probe modes except the on-resonant one will be far away
from the main part of the spectrum of the system (see Fig. 3.2).

Hence, only the on-resonant mode will interact with the system (k = 0) and thus we can
disregard the rest of the modes (k ̸= 0) from all our calculations moving forward. Namely, the
mode b̂(t) can now be expanded as:

b̂(t) =
1√
Δt

∞∑
n=−∞

b̂nΘ(t− tn) (3.17)

where

b̂n := b̂n,0 =
1√
Δt

∫ tn+Δt

tn
b̂(t) dt, (3.18)

which is obtained by simply setting k = 0 in Eq. (3.16). Note that so far in this derivation,
the mode at time n can be correlated with past or future modes. Thus, to further simplify the
treatment, we perform yet another assumption: that the time Δt is longer than the correlation
time of the bath τc such that different segmented modes are uncorrelated with other modes:

• Born-Markov approximation: As explained in the first Markov approximation, the corre-
lation time τc quantifies how rapidly the bath (a.k.a. the probe) “forgets” its interaction
with the system. In the setup considered so far, the probe is divided into a series of dis-
crete temporal modes b̂n(t) with n ∈ Z, each interacting with the system over a distinct
time interval [tn, tn + Δt). When the condition τc ≪ Δt is satisfied, the memory of the
bath decays much faster than the duration of each probe segment. This means that the
influence of the system on any given probe segment b̂n(t) does not propagate forward to
affect subsequent probe segments. Importantly, the state of each probe segment after in-
teracting with the system is not “lost”. Instead, each segment leaves the interaction region
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with its new state preserved, i.e. dissipating away from the system, potentially to be mea-
sured later. However, the assumption of memorylessness means that when a new probe
segment b̂n+1(t) arrives, it is initialized in the same state as the earlier segments before their
interactions, typically |0⟩⟨0|. This ensures that the joint state of the system and the incom-
ing probe prior to interaction is separable and can be written as ρ[n] ⊗ |0⟩⟨0|, where ρ[n]
describes the state of the system before the interaction with the n-th segment.

This discretization of the probe, combined with the Born-Markov approximation, yields a
“conveyor belt”-type interaction [118, 119]: for instance, at time tn = 0, modes b̂n<0 have not
yet interacted with the system and modes b̂n≥0 may be correlated with the system but will not
interact with it ever again. We can view this from the perspective of Hilbert spaces: each of these
discrete modes exist in a distinct Hilbert space b̂n(t) ∈ HB

n such that the total subspace of the
bath is HB =

⊗
n∈ZHB

n . Furthermore, the joint system-bath state will live in an even larger
Hilbert spaceHSB = HS⊗

n∈ZHB. However, at each time tn, it is not necessary to consider the
whole Hilbert space but rather the reduced spaceHS ⊗HB

n .
At each time, the Hamiltonian living in HS ⊗ HB

n and describing the interaction between
system and probe at time tn will also be labeled with n. To derive its expression, we plug in the
expression of the segmented probe field given in Eq. (3.17) into Eq. (3.9):

ĤI(t) =
∞∑

n=−∞

i
√

κ
Δt

(
L̂⊗ b̂†n − L̂† ⊗ b̂n

)
Θ(t− tn) :=

∞∑
n=−∞

Ĥ (n)
I Θ(t− tn)

where the interaction Hamiltonian acting from time tn to time tn+1 is:

Ĥ (n)
I := i

√
κ
Δt

(
L̂⊗ b̂†n − L̂† ⊗ b̂n

)
,

which, importantly, is inversely proportional to
√
Δt. It then follows that the unitary evolution

governed by the interaction Hamiltonian from time tn to tn + Δt has the form:

Û (n)
Δt = ÛΔt(tn) = e−iĤ (n)

I Δt = exp
[
−i
(
i
√

κ
Δt

(
L̂⊗ b̂†n − L̂† ⊗ b̂n

))
Δt
]

= exp
[√

κΔt
(
L̂⊗ b̂†n − L̂† ⊗ b̂n

)]
, (3.19)

with the exponent proportional to
√
Δt instead of Δt. By taking the limit Δt → 0, the unitary
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responsible for the evolution of the joint system and probe from t to t+ dt can be written as:

Ûdt(t) = e−iĤ I(t)dt = exp
[√

κ dt
(
L̂⊗ b̂†t − L̂† ⊗ b̂t

)]
, (3.20)

where dt is an infinitesimally small time increment. Note that the input modes are written as b̂t
(not as b̂(t)) to highlight that t is a label identifying a particular input operator in the collection
{b̂t}t∈R, rather than a variable.

The derivation of the unitary in Eq. (3.20) is the main result of this section. Now that we
understand how the probe interacts with the system through a series of “conveyor belt”-like in-
teractions, represented by sequential joint unitaries, we will summarize each approximation per-
formed on the way:

• Rotating-Wave Approximation (when necessary): If the RWA is performed, then it is im-
portant that Δt ≫ 1/Ω, so that the interaction of the system with the probe is averaged
over many oscillations of the system during the interval Δt.

• The FirstMarkov approximation, argues that κ(ω) = κ for ω ∈ W = [Ω−θ,Ω+θ ] and
zero elsewhere, since the bath fluctuates so quickly that the system cannot resolve them
and sees a uniform coupling.

• Weak-coupling approximation: the state of the bath is weakly coupled to the system, Ω≫
κ.

• Quasimonochromatic approximation: If the system interactsweakly enoughwith theprobe
during a time interval Δt, i.e., Δt ≪ 1/κ, then we can ignore all modes with k ̸= 0 since
their frequencies would fall outside the spectrum of the system and therefore not interact
with it.

• Born-Markov approximation: The correlation time τc quantifies how quickly the bath (or
probe) ”forgets” its interaction with the system. When τc ≪ Δt, where Δt is the duration
of each probe segment, the effect of the system on one probe segment does not propagate
to subsequent segments. Inotherwords, eachdiscrete temporalmode b̂n(t) is uncorrelated
from othermodes, both in its past and future. Then, each new probe segment starts in the
same initial state, typically |0⟩⟨0|, ensuring that the joint state of the system and probe
before interaction is separable: ρ[n]⊗ |0⟩⟨0|, where ρ[n] represents the state of the system
before interacting with the corresponding probe segment at time tn. After interaction,
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each probe segment retains its state and is not ”lost”, but simply propagates away from the
system, remaining available for future measurements.

To summarize, the conditions that Δt has to fulfill are [118]:

Δx≪ cΔt,

τc ≪ Δt,
1
Ω
≪ Δt≪ 1

κ
.

3.2 Derivation of the stochastic master equation

Until nowwehave considered a general system interacting solelywith a probe in a “conveyor belt”
fashion. This means that the probe is discretized in time so that, at each time step Δt, its mode
b̂n (with n = t/Δt) interacts with the system and is then measured, yielding an outcome yn. The
effect of this interaction and subsequentmeasurement is captured by the followingmeasurement
operator:

Êyn = ⟨yn|Û
(n)
Δt |0⟩, (3.21)

which is obtainedby evolving the initial probe state, assumed tobe |0⟩⟨0|due to theBorn-Markov
approximation, via the unitary interaction of Eq. (3.19). Finally, the evolved state is projected
onto the eigenstate associated to the measurement outcome yn.

However, in more general models including, the systemmay also dissipate into an additional,
unmonitored environment. In this case, its evolution is no longer governed exclusively by a
Hamiltonian but rather by a completely positive and trace-preserving (CPTP) map, Φn, acting
from tn91 to tn.

Thus, the discretized evolution of the state consists of two alternating processes: (1) its “inter-
nal” evolution as described by the CPTP map Φn that accounts for both the Hamiltonian dy-
namics and the coupling to an unmonitored environment, and (2) the measurement update via
the operator Êyn corresponding to the outcome yn obtained from the probe. Collecting these out-
comes gives a discretised measurement record yyy0:n = {y0, y1, . . . , yn}, with n = t/Δt, which, in
the continuous limit of n→∞ as Δt→ 0 becomes a continuous measurement record yyyt. Since
the measurement update at each time step depends on the specific outcome yn, the evolution of
the state is conditional on the measurement record. Thus, different measurement trajectories
lead to different state evolutions. For instance, in photodetection the outcomes are inherently
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stochastic: each time step yields either a photoclick yn = 1 or no click yn = 0. Thus, taking the
continuous-time limit of the discretized evolution results in a (stochastic) master equation, with
its state evolving along a (stochastic) trajectory fully conditioned on themeasurement outcomes.

We therefore begin by writing down the full discretized conditional evolution:

ρ[n|yyy0:n] =
Φn

[
Êyn . . .Φ1

[
Êy1 Φ0

[
Êy0 ρ0Ê

†
y0

]
Ê†
y1

]
. . . Ê†

yn

]
Tr
{
Φn

[
Êyn . . .Φ1

[
Êy1 ρ0Ê

†
y1

]
. . . Ê†

yn

]} , (3.22)

where the brackets [·] emphasize that this is the discrete conditional state, which at time n = t/Δt
reads as:

ρ[n|yyy0:n] := ρ(tn|yyytn) := ρ
(c)
(tn). (3.23)

It follows from Eq. (3.22) that any consecutive conditional states are related as:

ρ[n|yyy0:n] =
ρ̃[n|yyy0:n]

Tr{ρ̃[n|yyy0:n]}
=

Φn

[
Êyn ρ[n91|yyy0:n91]Ê

†
yn

]
Tr
{
Φn

[
Êyn ρ[n91|yyy0:n91]Ê

†
yn

]} , (3.24)

where ρ̃ denotes the unnormalized state. This iterative rule relating the state at time n 9 1 with
the one at time n can be further split into two steps: first a measurement update and then an
“internal” evolution. Specifically, we can write

ρ[n|yyy0:n] =
Φn [ρ[n91|yyy0:n]]

Tr{Φn [ρ[n91|yyy0:n]]}
(3.25)

where ρ[n91|yyy0:n] is the updated state after performing the measurement but before evolving the
system under the internal map Φn[·], i.e.,

ρ[n91|yyy0:n] =
ρ̃[n91|yyy0:n]

Tr{ρ̃[n91|yyy0:n]}
=

Êynρ[n91|yyy0:n91]Ê
†
yn

Tr
{
Êynρ[n91|yyy0:n91]Ê

†
yn

} , (3.26)

with
pΔt(yn|yyy0:n91) = Tr{ρ̃[n91|yyy0:n]} (3.27)

representing the probability of obtaining the outcome yn given a state evolved according to a
previous measurement record yyy0:n91. This two-step procedure: first updating the state by the
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measurement and then evolving it with the internal CPTP map, is analogous to the two-step
process of a discrete KF. Accordingly, we label the states as follows:

update : ρ[n91|yyy0:n] = state after measurement update but before internal evolution

predict : ρ[n|yyy0:n] = state after measurement update and internal evolution. (3.28)

To explicitly derive the measurement update, let us now examine up to first order in Δt the effect
of the probe-system interaction and subsequent measurement. Specifically, we have to expand
the unnormalized post-measurement state to first order in Δt:

ρ̃[n91|yyy0:n] = Êyn ρ[n91|yyy0:n91]Ê
†
yn . (3.29)

Todo so, we need towrite this expression in terms of the unitary interaction of the system and the
probe, and thus, their joint state. Recalling the form of themeasurement operators Êyn described
in Eq. (3.21), we can rewritte the expression above as

ρ̃[n91|yyy0:n] = Êyn ρ[n91|yyy0:n91]Ê
†
yn

= ⟨yn|Û (n)
Δt |0⟩ρ[n91|yyy0:n91]⟨0|Û

(n)†
Δt |yn⟩ (3.30)

= ⟨yn| Û (n)
Δt (ρ[n91|yyy0:n91]⊗ |0⟩⟨0|)Û

(n)†
Δt |yn⟩ , (3.31)

where the joint system–probe state before measurement is separable under the Born–Markov
approximation. To proceed, we expand the unitary operator Û (n)

Δt of Eq. (3.19) to first order in
Δt:

Û (n)
Δt = I⊗I+

(
L̂⊗b̂†n−L̂†⊗b̂n

)√
κΔt

+
1
2

(
L̂2⊗(b̂†n)2 −L̂†L̂⊗b̂nb̂†n−L̂L̂†⊗b̂†nb̂n+(L̂†)2⊗(b̂n)2

)
κΔt+ o(Δt). (3.32)
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Then, it follows that the joint state after the probe-system interaction reads as:

Û (n)
Δt (ρ[n91|yyy0:n91]⊗ |0⟩⟨0|)Û

(n)†
Δt = ρ[n91|yyy0:n91]⊗|0⟩⟨0|+ κ L̂ρ[n91|yyy0:n91]L̂†⊗|1⟩⟨1|Δt

+
(
L̂ρ[n91|yyy0:n91]⊗|1⟩⟨0|+ ρ[n91|yyy0:n91]L̂†⊗|0⟩⟨1|

)√
κΔt

+
κ
2

(√
2L̂2ρ[n91|yyy0:n91]⊗|2⟩⟨0|−L̂†L̂ρ[n91|yyy0:n91]⊗|0⟩⟨0|

+
√
2ρ[n91|yyy0:n91](L̂†)2⊗|0⟩⟨2|−ρ[n91|yyy0:n91]L̂†L̂⊗|0⟩⟨0|

)
Δt+ o(Δt). (3.33)

Thus, different SMEs will be obtained depending on our choice of measurement, i.e. the projec-
tor |yn⟩⟨yn|, where yn can for instance be the number of photons in the case of photodetection,
or a Gaussian photocurrent in the case of homodyne measurement.

3.2.1 Photodetection

Let us consider the case where the probe is continuously measured with a photodetector, i.e., by
projecting it on the Fock basis |n⟩⟨n|. It is obvious from the form of the joint state before the
measurement given in Eq. (3.33) that only when projecting the joint state onto the vacuum state
|0⟩⟨0| or the single photon state |1⟩⟨1|, a non-zero result will be obtained. Thus, let us consider
each event, no-detection and detection, separately. If no photon is detected, then the unnormal-
ized conditional state is:

ρ̃[n91|{0, yyy0:n91}] = ⟨0|Û (n)
Δt (ρ[n91|yyy0:n91]⊗ |0⟩⟨0|)Û

(n)†
Δt |0⟩ (3.34)

= ρ[n91|yyy0:n91]−
κ
2
{L̂†L̂ , ρ[n91|yyy0:n91]}Δt+ o(Δt), (3.35)

where ρ[n91|yyy0:n91] is the state conditioned by the measurement at the previous time step. Then,
the probability of actually detecting no photons after the state evolves for a time-step Δt is:

pΔt(0|yyy0:n91) = Tr{ρ̃[n91|{0, yyy0:n91}]} = 1− κ⟨L̂†L̂⟩Δt+ o(Δt) (3.36)

where ⟨L̂†L̂⟩ = Tr{ρ[n91|yyy0:n91]L̂†L̂}. By now expanding the inverse of pΔt(0|yyy0:n91) to first order
Δt,

pΔt(0|yyy0:n91)−1 = 1+ κ⟨L̂†L̂⟩Δt+ o(Δt), (3.37)
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wecan calculate, to first orderΔt, the normalized state conditionedon themeasurement outcome
0 w.r.t. the conditional state at the previous time ρ[n91|yyy0:n91] := ρ

(c)
(tn91):

ρ[n91|{0, yyy0:n91}] =
ρ̃[n91|{0, yyy0:n91}]

pΔt(0|yyy0:n91)

=
(
ρ
(c)
(tn91)−

κ
2
{L̂†L̂ , ρ

(c)
(tn91)}Δt+ o(Δt)

)(
1+ κ⟨L̂†L̂⟩Δt+ o(Δt)

)
= ρ

(c)
(tn91)−

κ
2
{L̂†L̂ , ρ

(c)
(tn91)}Δt+ κ⟨L̂†L̂⟩ρ

(c)
(tn91)Δt+ o(Δt)

= ρ
(c)
(tn91)−

κ
2
{L̂†L̂ , ρ

(c)
(tn91)}Δt+

κ
2
⟨L̂†L̂+ L̂†L̂⟩ρ

(c)
(tn91)Δt+ o(Δt)

= ρ
(c)
(tn91)−

κ
2
H[L̂†L̂]ρ

(c)
(tn91)Δt+ o(Δt), (3.38)

where we introduce the nonlinear superoperator:

H[Ô] · = Ô · + · Ô† − Tr
{
(Ô+ Ô†) ·

}
· . (3.39)

If instead a photon is detected, the unnormalized conditional state becomes

ρ̃[n91|{1, yyy0:n91}] = ⟨1|Û (n)
Δt (ρ[n91|yyy0:n91]⊗|0⟩⟨0|)Û

(n)†
Δt |1⟩ = κ L̂ρ

(c)
(tn91)L̂†Δt+o(Δt), (3.40)

from which we can calculate the associated probability:

pΔt(1|yyy0:n91) = Tr{ρ̃[n91|{1, yyy0:n91}]} = κ⟨L̂†L̂⟩Δt+ o(Δt). (3.41)

By dividing the unnormalized updated state by the probability of measuring one photon, we
retrieve:

ρ[n91|{1, yyy0:n91}] =
ρ̃[n91|{1, yyy0:n91}]

pΔt(1|yyy0:n91)
=

L̂ρ
(c)
(tn91)L̂†

⟨L̂†L̂⟩
+ o(Δt). (3.42)

To sum up, at each time step, the photodetector yields either 0 or 1 with probabilities:

yn = 0 ∼ pΔt(0|yyy0:n91) = 1− κ⟨L̂†L̂⟩Δt+ o(Δt) (3.43)

yn = 1 ∼ pΔt(1|yyy0:n91) = κ⟨L̂†L̂⟩Δt+ o(Δt) (3.44)

If one recalls the definition of a Poisson increment in Sec. 1.2.2, it comes natural to model the
{0, 1} output within the timestep Δt as a Poisson increment ΔN ∼ Pois(λΔt), where as Δt →
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0, Pr[ΔN ∈ {0, 1}]→ 1. Thus, the Poisson increment we introduce has a mean

E[ΔN] = 0 · pΔt(0|yyy0:n91) + 1 · pΔt(1|yyy0:n91) = κ⟨L̂†L̂⟩Δt+ o(Δt) (3.45)

which completely describes ΔN, as discussed in Sec. 1.2.2. Finally, if we apply the “internal”
evolution map Φn, we get the unnormalized conditional state at time t = nΔt:

if yn = 1 =⇒ ρ̃[n|{1, yyy0:n91}] = Φn [ρ[n91|{1, yyy0:n91}]] (3.46)

if yn = 0 =⇒ ρ̃[n|{0, yyy0:n91}] = Φn [ρ[n91|{0, yyy0:n91}]] (3.47)

Let us now consider a measurement-based feedback map Φn[ · ] where the whole history of
measurement results yyy0:n affects the Lindbladian governing the evolution of the state as

Φn[ · ] = eLyyy0:nΔt[ · ] = · + Lyyy0:n · Δt+ o(Δt), (3.48)

where we assumeLyyy0:n = O(1)*. Then, the unnormalized conditional state becomes:

if yn = 1 =⇒ ρ̃[n|{1, yyy0:n91}] = Φn

[
L̂ρ

(c)
(tn91)L̂†

⟨L̂†L̂⟩
+ o(Δt)

]

=
L̂ρ

(c)
(tn91)L̂†

⟨L̂†L̂⟩
+ O(Δt) (3.49)

if yn = 0 =⇒ ρ̃[n|{0, yyy0:n91}] = Φn

[
ρ
(c)
(tn91)−

κ
2
H[L̂†L̂]ρ

(c)
(tn91)Δt+ o(Δt)

]
= ρ

(c)
(tn91) + Lyyy0:n ρ(c)(tn91)Δt−

κ
2
H[L̂†L̂]ρ

(c)
(tn91)Δt+ o(Δt), (3.50)

where for the case of yn = 1, we expand only to zeroth order. Since Tr
{
H[L̂†L̂]ρ

}
= 0 and

Tr{Lρ} = 0, the trace of both unnormalized states above is 1. In other words, the states are

*Big-O notation, O(Δt), describes terms that scale at most linearly with Δt, i.e., they may be proportional to
Δt or smaller (e.g. Δt3/2, Δt2, . . .). Little-o, o(Δt), includes only terms that vanish faster than Δt as Δt → 0. For
instance, Δt3/2 ∈ o(Δt), while Δt ∈ O(Δt) but not in o(Δt).
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already normalized:

ρ[n|{1, yyy0:n91}] =
L̂ρ

(c)
(tn91)L̂†

⟨L̂†L̂⟩
+ O(Δt) (3.51)

ρ[n|{0, yyy0:n91}] = ρ
(c)
(tn91) + Lyyy0:n ρ(c)(tn91)Δt−

κ
2
H[L̂†L̂]ρ

(c)
(tn91)Δt+ o(Δt). (3.52)

Since ΔN indicates whether a particular quantum event within the interval Δt has occurred, i.e.,

ΔN = 1 if the event occurs (measurement outcome 1), (3.53)

ΔN = 0 if the event does not occur (measurement outcome 0), (3.54)

then the change on the state when the event occurs v.s. when it does not can be written as

ΔN (ρ[n|{1, yyy0:n91}]− ρ[n91|yyy0:n91]) if the event occurs (outcome 1), (3.55)

(1− ΔN) (ρ[n|{0, yyy0:n91}]− ρ[n91|yyy0:n91]) if the event does not occur (outcome 0), (3.56)

where the state ρ[n9 1|yyy0:n91] := ρ
(c)
(tn91) is the conditional state of the system at the previous

step. Note that ΔN and 1 − ΔN are included when describing the change in the state because
they indicate which of the outcomes, i.e. 1 or 0, actually occur within the interval Δt. Thus, the
overall change in ρ

(c)
(tn91) can be written as:

Δρ
(c)
(tn) = ρ

(c)
(tn)− ρ

(c)
(tn91) (3.57)

= ΔN
(
ρ[n|{1, yyy0:n91}]− ρ

(c)
(tn91)

)
+(1− ΔN)

(
ρ[n|{0, yyy0:n91}]− ρ

(c)
(tn91)

)
+o(Δt),

where we can disregard any terms ΔtΔN because they represent higher-order infinitesimal con-
tributions that are negligible in this analysis. In particular, for any calculus involving averages
or integrations over time, the terms with ΔtΔN become a second-order small term, akin to Δt2,
since for a general Poisson increment with a rate λ > 0:

E[ΔtΔN] = ΔtE[ΔN] = Δt λΔt = λΔt2. (3.58)
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Therefore, when substituting Eq. (3.38) and Eq. (3.42) into Eq. (3.57), it becomes

Δρ
(c)
(tn)=ΔN

(
L̂ρ

(c)
(tn91)L̂†

⟨L̂†L̂⟩
− ρ

(c)
(tn91)

)
+(1−ΔN)

(
Lyyy0:n ρ(c)(tn91)Δt−

κ
2
H[L̂†L̂]ρ

(c)
(tn91)Δt

)

= Lyyy0:n ρ(c)(tn91)Δt−
κ
2
H[L̂†L̂]ρ

(c)
(tn91)Δt+

 L̂ρ
(c)
(tn91)L̂†

Tr
{
L̂ρ

(c)
(tn91)L̂†

} − ρ
(c)
(tn91)

ΔN, (3.59)

whereH[ · ] is the nonlinear operator defined in Eq. (3.39) and the jumps governed by the Pois-
son increment ΔN are modulated by a nonlinear quantity. As we will also see in the case of
the homodyne measurement, these nonlinearities arise as a consequence of the normalization of
the conditional state after conditioning due to the measurement. By finally taking the limit of
Δt→ 0, we retrieve the SME for photodetection:

dρ
(c)
(t) = Lyyyt ρ(c)(t)dt−

κ
2
H[L̂†L̂]ρ

(c)
(t)dt+

 L̂ρ
(c)
(t)L̂†

Tr
{
L̂ρ

(c)
(t)L̂†

} − ρ
(c)
(t)

dN. (3.60)

3.2.2 Homodyne measurement

Next, we explore monitoring the quantum system S via a homodyne measurement instead of
with photodetection. Thismethod involves the projection of the probe state onto the eigenstates
{
∣∣xφn〉} of the general quadrature operator X̂ φ

n defined as

X̂ φ
n :=

b̂n eiφ + b̂†ne−iφ
√
2

, (3.61)

which corresponds to the position operator X̂ defined in Eq. (1.184) when φ = 0, and the mo-
mentum operator P̂ when φ = π/2. The set of eigenstates {

∣∣xφn〉} related to X̂ φ
n are known

as quadrature eigenstates and measure the amplitude or phase quadrature when φ = 0 and
φ = π/2, respectively. The statistics of the homodyne outcomes xφn depend on both the state
of the probe being measured and the choice of φ. For specific quantum states, such as the vac-
uum, coherent and squeezed states, the quadrature distribution is Gaussian, characterized by its
mean and variance. The mean reflects the displacement of the state, while the variance captures
quantum noise, including any squeezing effects. For example, the vacuum state yields a Gaussian
distribution centered at zero with variance 1/2, representing the fundamental quantumnoise, or
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shot noise.
Since the probe segments are initially assumed to be in the vacuum state (recall Eq. (3.21)),

performing a homodyne measurement on the probe before its interaction with the system yields
a Gaussian distribution:

p0(xφn |xxx
φ
0:n91) = Tr

{
⟨xφn |Û

(n)
0 |0⟩ρ(c)(tn91)⟨0|Û

(n)
0 |xφn⟩

}
= Tr

{
⟨xφn | (ρ(c)(tn91)⊗ |0⟩⟨0|) |x

φ
n⟩
}

= Tr
{
ρ
(c)
(tn91)

}
|⟨0|xφn⟩|2 = |⟨0|xφn⟩|2 =

1√
π
e−xφn

2
, (3.62)

where in the last step we have used the fact that the ground state wavefunction of the 1D har-
monic oscillator – with its energy eigenstates being the Fock states – in the (rotated) position
representation is a Gaussian function, as derived in Eq. (1.240).

If, instead, we first evolve the joint system-probe state with the interaction unitary before per-
forming the homodynemeasurement as described above, the probability distribution of themea-
surement outcome xφn will also be Gaussian, but with a shifted mean and potentially modified
variance due to the system-probe interaction. To derive this result, we need to consider the trace
of the unnormalized state after the measurement, which determines he probability distribution
of the measurement outcome:

pΔt(xφn |xxx
φ
0:n91) = Tr

{
ρ̃[n91|xxxφ0:n]

}
(3.63)

where

ρ̃[n91|xxxφ0:n] = ⟨xφn | Û
(n)
Δt (ρ[n91|xxx

φ
0:n91]⊗ |0⟩⟨0|)Û

(n)†
Δt |xφn⟩

= ρ[n91|xxxφ0:n91]|⟨0|xφn⟩|2 + κ L̂ρ[n91|xxxφ0:n91]L̂†|⟨1|xφn⟩|2 Δt

+
(
L̂ρ[n91|xxxφ0:n91]⟨xφn |1⟩⟨0|xφn⟩+ ρ[n91|xxxφ0:n91]L̂†⟨xφn |0⟩⟨1|xφn⟩

)√
κΔt

+
κ
2

(√
2L̂2ρ[n91|xxxφ0:n91]⟨xφn |2⟩⟨0|xφn⟩−L̂†L̂ρ[n91|xxxφ0:n91]|⟨0|xφn⟩|2

+
√
2ρ[n91|xxxφ0:n91](L̂†)2⟨xφn |0⟩⟨2|xφn⟩−ρ[n91|xxx

φ
0:n91]L̂†L̂|⟨0|xφn⟩|2

)
Δt+ o(Δt). (3.64)
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The terms⟨xφn |1⟩and⟨xφn |2⟩can be written in terms of⟨xφn |0⟩:

⟨xφn |1⟩= ⟨xφn |b̂†n|0⟩ =
√
2eiφ

〈
xφn

∣∣∣∣∣ b̂n eiφ + b̂†ne−iφ
√
2

∣∣∣∣∣0
〉

=
√
2eiφ⟨xφn |X̂ φ

n |0⟩

=
√
2eiφxφn⟨xφn |0⟩, (3.65)

√
2⟨xφn |2⟩= (2xφn

2 − 1)e2iφ⟨xφn |0⟩, (3.66)

which we derived using the fact that the second identity follows from:

xφn
2⟨xφn |0⟩= ⟨xφn |X̂ φ

n
2|0⟩ =

〈
xφn

∣∣∣∣∣ b̂n eiφ + b̂†ne−iφ
√
2

b̂n eiφ + b̂†ne−iφ
√
2

∣∣∣∣∣0
〉

=
1
2
⟨xφn |(b̂†n)2e−2iφ + b̂n b̂†n|0⟩ =

1
2

(√
2e−2iφ⟨xφn |2⟩+⟨xφn |0⟩

)
. (3.67)

By now substituting Eq. (3.65) and Eq. (3.66) into Eq. (3.64), and recalling that |⟨xφn |0⟩|2 =

p0(x
φ
n |xxxφ0:n91), then the unnormalized updated state becomes

ρ̃[n91|xxxφ0:n] = p0(xφn |xxx
φ
0:n91)

{
ρ
(c)
(tn91)+

(
L̂ρ

(c)
(tn91)eiφ+ρ

(c)
(tn91)L̂†e−iφ)√2κΔt xφn+

+ κL̂ρL̂† 2 xφn
2Δt+

κ
2

(
L̂2ρ

(c)
(tn91)(2xφn

2 − 1)e2iφ−L̂†L̂ρ
(c)
(tn91)

+ρ
(c)
(tn91)(L̂†)2(2xφn

291)e−2iφ−ρ
(c)
(tn91)L̂†L̂

)
Δt
}
+ o(Δt). (3.68)

By now taking the trace of the unconditional state as described in Eq. (3.63), we get the prob-
ability of obtaining the measurement outcome xφn after the system and probe interact for a time
Δt:

pΔt(xφn |xxx
φ
0:n91) = p0(xφn |xxx

φ
0:n91)

(
1+xφn⟨L̂eiφ + L̂†e−iφ⟩

√
2κΔt+O(Δt)

)
, (3.69)

which, up to order
√
Δt, follows a Gaussian distribution, since any Gaussian function can be

expanded as:
g(t) = Ae−(x−μ

√
t/2)2 = g(0)

{
1+ x μ

√
2t+ O(t)

}
. (3.70)

Thus, the probability of the homodynemeasurement yielding an outcome xφn at time t is given,
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up to leading order in Δt, by the following Gaussian distribution:

pΔt(xφn |xxx
φ
0:n91) =

1√
π
exp

{
−

(
xφn − ⟨L̂eiφ + L̂†e−iφ⟩

√
κΔt
2

)2}
+ O(Δt), (3.71)

with a mean
√
κΔt/2⟨L̂eiφ + L̂†e−iφ⟩ =

√
κΔt/2Tr{(L̂eiφ + L̂†e−iφ)ρ

(c)
(tn91)} and variance

1/2. We can now introduce a new stochastic increment Δyn by multiplying xφn by
√
2Δt:

Δyn := xφn
√
2Δt, (3.72)

which, therefore, has a mean
√
κ⟨L̂eiφ + L̂†e−iφ⟩Δt and a variance Δt. Namely,

Δyn := xφn
√
2Δt =

√
κ⟨L̂eiφ + L̂†e−iφ⟩Δt+ ΔW, (3.73)

where ΔW ∼ N (0,Δt) denotes the Wiener increment introduced in Sec. 1.2.3. Physically, the
derivative I(t) := limΔt→0 Δyn/Δt corresponds to the stochastically fluctuating photocurrent
beingmeasured in real time in a homodyne setup. Next, by using xφn

√
2Δt = Δyn and 2x

φ
n
2Δt =

Δy2n = Δt+ o(Δt), we can rewrite Eq. (3.68) it into the following, more familiar, form:

ρ̃[n91|xxxφ0:n] = p0(xφn |xxx
φ
0:n91)

{
ρ
(c)
(tn91)+

√
κ
(
L̂ρ

(c)
(tn91)eiφ+ρ

(c)
(tn91)L̂†e−iφ)Δyn + κL̂ρL̂†Δt

− κ
2

(
L̂†L̂ρ

(c)
(tn91)+ρ

(c)
(tn91)L̂†L̂

)
Δt+ o(Δt)

}
= p0(xφn |xxx

φ
0:n91)

{
ρ
(c)
(tn91)

+ κD[L̂]ρ
(c)
(tn91)Δt+

√
κ
(
L̂ρ

(c)
(tn91)eiφ+ρ

(c)
(tn91)L̂†e−iφ)Δyn + o(Δt)

}
, (3.74)

where the superoperator representing the measurement-induced decoherence has the same form
as the one defined in Eq. (1.196). To normalize this state, we divide it by pΔt(x

φ
n |xxxφ0:n91) whilst
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keeping terms to first order in Δt and lower:

ρ[n91|xxxφ0:n] =
ρ̃[n91|xxxφ0:n]
pΔt(x

φ
n |xxxφ0:n91)

=
(
ρ
(c)
(tn91) + κD[L̂]ρ

(c)
(tn91)Δt

+
√
κ
(
L̂ρ

(c)
(tn91)eiφ+ρ

(c)
(tn91)L̂†e−iφ)Δyn)(1−√κ⟨L̂eiφ+L̂†e−iφ⟩Δyn

+κ⟨L̂eiφ+L̂†e−iφ⟩2Δt
)
+o(Δt) = ρ

(c)
(tn91) + κD[L̂]ρ

(c)
(tn91)Δt

+
√
κ
(
L̂ρ

(c)
(tn91)eiφ +ρ

(c)
(tn91)L̂†e−iφ)Δyn −√κ⟨L̂eiφ+L̂†e−iφ⟩ρ

(c)
(tn91)Δyn

−κ
(
L̂ρ

(c)
(tn91)eiφ+ρ

(c)
(tn91)L̂†e−iφ)⟨L̂eiφ+L̂†e−iφ⟩Δt+κ⟨L̂eiφ

+L̂†e−iφ⟩2Δt+ o(Δt). (3.75)

where we have used that the inverse of the conditional probability to leading order Δt is:

1
pΔt(x

φ
n |xxxφ0:n91)

=
1

p0(x
φ
n |xxxφ0:n91)

(
1+ xφn⟨L̂eiφ + L̂†e−iφ⟩

√
2κΔt+ o(Δt)

)−1

=
1

p0(x
φ
n |xxxφ0:n91)

(
1+
√
κ⟨L̂eiφ + L̂†e−iφ⟩Δyn + o(Δt)

)−1

=
1

p0(x
φ
n |xxxφ0:n91)

(
1−
√
κ⟨L̂eiφ + L̂†e−iφ⟩Δyn + κ⟨L̂eiφ + L̂†e−iφ⟩2Δt+ o(Δt)

)
. (3.76)

Bynow inserting the expressionofΔyn defined inEq. (3.73),we can simplify the state inEq. (3.75)
and get

ρ[n91|xxxφ0:n] = ρ
(c)
(tn91) + κD[L̂]ρ

(c)
(tn91)Δt+

√
κH[L̂eiφ]ρ

(c)
(tn91)ΔW+ o(Δt) (3.77)

with thenonlinear superoperatormodulating the stochastic (Gaussian) kicks defined inEq. (3.39).
Then, if we evolve the state with the “internal” map Φn, we get the conditional state at time
t = nΔt

ρ
(c)
(tn) = ρ[n|xxxφ0:n] =

ρ̃[n|xxxφ0:n]
Tr
{
ρ̃[n|xxxφ0:n]

}
=

Φn

[
ρ
(c)
(tn91) + κD[L̂]ρ

(c)
(tn91)Δt+

√
κH[L̂eiφ]ρ

(c)
(tn91)ΔW+ o(Δt)

]
Tr
{
ρ̃[n|xxxφ0:n]

} , (3.78)

which, when the CPTP map Φn[ · ] has the same form as the one considered in Eq. (3.48), the
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conditional state at time tn becomes

ρ
(c)
(tn)=ρ

(c)
(tn91)+Lyyy0:nρ(c)(tn91)Δt+κD[L̂]ρ

(c)
(tn91)Δt+

√
κH[L̂eiφ]ρ

(c)
(tn91)ΔW+o(Δt), (3.79)

since Tr{ρ̃[n|xxxφ0:n]} = 1. Finally, to wrap up this derivation, we just need to identify the change
in the conditional state as dρ

(c)
(tn) = ρ

(c)
(tn)− ρ

(c)
(tn91) and keep the terms up to first order in dt

to get the final form of the SME:

dρ
(c)
(t) = Lyyyt ρ(c)(t)dt+ κD[L̂]ρ

(c)
(t)dt+

√
κH[L̂eiφ]ρ

(c)
(t)dW, (3.80)

with an associated measurement:

dy =
√
κ⟨L̂eiφ + L̂†e−iφ⟩dt+ dW. (3.81)

Note here that theLindbladiandepends only on themeasurement resultsyyyt andnot, importantly,
on the derivatives of the measurement results, i.e., I(t) = dyt

dt = limΔt→0
Δyn
Δt .

3.2.3 Polarimetric measurement

Consider a quasimonochromatic probe beam propagating in the y-direction, such that a general
quantized multi-mode electric field [124] can be approximated as a single traveling-wave spacial
modewith twoorthogonal polarizations{âH, âV} [120, 125]. Then, the positive frequency com-
ponent for the monochromatic quantized electric field is [120, 125]:

ÊEE
(+)

=

√
2πℏω
AcΔt

(eeeH âH + eeeV âV) , (3.82)

and ÊEE
(−)

= ÊEE
(+)†

, A is the area of the beam and c the speed of light. Thus, to describe the
beam it is sufficient with the photon annihilation operators {âH, âV}, associated with horizontal
and vertical polarizations, respectively. Similarly as before, for each polarization component, the
beam has been divided into a train of modes of duration Δt, each segment interacting for a time
Δtwith an atomic cloud of length Δx such that cΔt≫ Δx [125].
After the segmented electric field at time tk = kΔt has interacted with the cloud for a time

Δt, we perform a measurement of the transmitted light using a polarimeter: a polarization beam
splitter and a differential photo detector [126, 127] made up of two photodiodes counting the
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number of horizontal polarized photons ⟨N̂H⟩ and the number of vertical ones ⟨N̂V⟩, respec-
tively [128]. The difference between the number of horizontal photons and the vertical ones is
the expected value of the first Stokes vector. The Stokes operators are defined using the polariza-
tion modes {âH, âV}, and the position of their vector SSS =

(
Ŝ1, Ŝ2, Ŝ3

)
on the Poincaré sphere

represents the polarization state of the field. These operators can be introduced from the classical
Stokes parameters [129] by changing intensities to photon-number operators:

Ŝ1 =
1
2

(
N̂H − N̂V

)
=

1
2

(
â†H âH − â†V âV

)
(3.83)

Ŝ2 =
1
2

(
N̂H ′ − N̂V ′

)
=

1
2

(
â†H ′ âH ′ − â†V ′ âV ′

)
=

1
2

(
â†H âV + â†V âH

)
(3.84)

Ŝ3 =
1
2

(
N̂+ − N̂−

)
=

1
2

(
â†+ â+ − â†− â−

)
=

1
2i

(
â†H âV − â†V âH

)
, (3.85)

which satisfy the SU(2) algebra [Ŝ i, Ŝ j] = iεijk Ŝ k. We define the total photon number opera-
tor as Ŝ0 = â†H âH + â†V âV. The Stokes operator Ŝ1 represents linearly polarized light in either
the horizontal or vertical direction, quantified through the annihilation and creation operators
{âH, âV} and {â†H, â

†
V}. Thus, note how the expected value of Ŝ1 yields the difference between

the number of horizontal v.s. vertical photons. The operator Ŝ2 measures the difference in pop-
ulation of linearly polarized modes rotated in the±45 degree direction, and Ŝ3, of left and right
circularly polarized light:

âH ′ =
1√
2
(âH + âV) , âV ′ =

1√
2
(−âH + âV) , (3.86)

â+ =
1√
2
(âH − iâV) , â− =

1√
2
(−âH − iâV) . (3.87)

Two polarizations perpendicular in real space will be represented by two vectors pointing in the
opposite directions in the Poincaré sphere, and for example, measuring |H⟩ or |V⟩ with Ŝ1 will
yield+1 and−1, respectively (see Fig. 3.4).
In general, the Hamiltonian governing the interaction of the atomic cloud with a monochro-

matic probe detuned off-resonance is given by:

ĤI =
∑
g,e

ÊEE
(−)
·
αααg,e
ℏΔg,e

· ÊEE
(+)

, (3.88)

where Δg,e is the detuning of the probe from the g→ e transition (e.g. for a cloud of Rubidium
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Θ

Ŝ1

Ŝ2

Ŝ3

Figure 3.4: Stokes vectors on the Pointcaré sphere. (left) Definition of the±45◦ polarization basis {H′,V′} w.r.t. the linear
polarization {H,V}. (right) Pointcaré sphere, a graphical representation describing the polarization of light. Points on the
sphere correspond to different polarization states, with the equator representing linear polarization, and the poles repre‐
senting circular polarization. Note that the rotation of linear polarization is confined to the equatorial plane of the Poincaré
sphere. A rotation of the polarization by an angleΘ/2 corresponds to a rotation ofΘ in the Poincaré sphere. This can be
observed from the stateH′, which can be generated fromH by rotating the polarization by 45 degrees; as a result, in the
Poincaré sphere,H′ lies at a 90‐degree angle fromH.

87Rb, that would be the transition of theD2 line [130]). The termαααg,e is the atomic polarizability
tensor of that same transition and has the form:

αααg,e = P̂g dddP̂e ddd†P̂g, (3.89)

where ddd corresponds to the vector of dipole operators, and P̂g and P̂e are the projectors for the
ground and excited states, respectively [120]. Ultimately, theHamiltonian in Eq. (3.88) describes
the interaction and eventual transmission of the light through the sample: a photon is annihilated
from the probe field through ÊEE

(+)
, which brings the atom from its ground state to its excited

state via the dipole raising operator ddd†. Then the excited atom returns to a ground state via ddd by
emitting a photon into a transmitted probe mode through ÊEE

(−)
[125].

The atomic polarizability tensor of Eq. (3.89) can be decomposedunder the groupof rotations
into three irreducible components: αααg,e = ααα(0)g,e + ααα(1)g,e + ααα(2)g,e , and thus, so can the Hamiltonian:

ĤI = Ĥ (0)
I + Ĥ (1)

I + Ĥ (2)
I , (3.90)
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where each term corresponds to a scalar, vectorial and tensorial component, respectively [125,
130, 131, 120]. The scalar or rank-0 component is invariant under the group of SO(3) rotations,
and since it is state independent, it can be dropped. The vectorial term transforms like a rank-1
vector, and hence, it can be written as a linear combination of components of some vector like
the spin ŜSS. Finally, the tensorial term, a rank-2 tensor, can also be neglected by further increasing
the probe detuning [130, 131]. Therefore, the Hamiltonian reduces to:

ĤI = Ĥ (1)
I = χ Ĵy Ŝ3, (3.91)

where the light, which propagates along the y-direction, couples to the y component of the an-
gular momentum of the atoms through the linear Stokes component Ŝ3, since a rotation of the
linear polarization by an angle Θ/2 corresponds to a rotation on the Pointcaré sphere of an angle
Θ about Ŝ3 (see Fig. 3.4).
Thus, thanks to Hamiltonian engineering [131, 132], the continuous non-demolition mea-

surement required to monitor a system is implemented through a rotation of the polarization
of the off-resonant probe beam proportional to the collective angular momentum of the atoms
at an angle Θ ∼ χ⟨ Ĵy⟩(t) [133, 120, 63], a magneto-optical effect known as Faraday rotation
[134, 120].

Similarly to the approximation of the generalized Bloch sphere as a phase-plane in the linear-
Gaussian (or Holstein-Primakoff) approximation, the Poincaré sphere can also be approximated
as a plane under the conditions of a large photon number, an initial polarization aligned with
Ŝ1, and small-angle Faraday rotation during transmission through the atomic cloud [120]. Then,
the Stokes vectors can be approximated as:

Ŝ1 ∼
√

Nph/2, X̂ph = Ŝ2/
√

Nph

2
, P̂ph = Ŝ3/

√
Nph

2
, (3.92)

whereNph is the number of photons in the probe. Now, the interaction Hamiltonian becomes,

ĤI = χ
√

Nph/2 Ĵy P̂ph, (3.93)

and a rotation of the polarization along the axis Ŝ3 becomes a displacement along X̂ph. Hence,
measurement of the Faraday rotation of the probe is fully characterized by the eigenvectors of
X̂ph, i.e.

∣∣∣X̂ph

〉
.
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Therefore, if nowwe discretize the system-probe evolution just like in Sec. 3.1, the interaction
Hamiltonian for a segment Δt is:

Ĥ (n)
I := iχ

√
Nph

4Δt
Ĵy
(
b̂†n − b̂n

)
, (3.94)

where we have written the momentum operator P̂ph in terms of creation and annihilation opera-
tors (see Eq. (1.184)) and then discretized the modes according to Eq. (3.18). Hence, the unitary
evolution operator taking the state of the system from tn to tn + Δt reads as

Û (n)
Δt = e−iĤ (n)

I Δt = exp
(√

κΔt Ĵy
(
b̂†n − b̂n

))
, (3.95)

where κ = χ2Nph/4. Since angularmomentumoperators areHermitian, the unitary form above
matches Eq. (3.19) for L̂ := Ĵy. Furthermore, since the measurement of the Faraday rotation
of the polarization in the Holstein-Primakoff approximation corresponds to a measurement of
the displacement along X̂ph, which is equivalent to Eq. (3.61) but with φ = 0, then this type of
polarimetric measurement is equivalent to a homodyne measurement. And thus, we can write
the conditional state evolution as:

dρ
(c)
(t) = Lyyytρ(c)(t)dt+ κD[ Ĵy]ρ(c)(t)dt+

√
κH[ Ĵy]ρ(c)(t)dW, (3.96)

with a continuous measurement output:

dy = 2
√
κ⟨ Ĵy⟩dt+ dW. (3.97)

3.3 Measurement-based feedback

There are two types of measurement-based feedback one might consider. The first is feedback
thatutilizes the entire historyofmeasurementoutcomes, often referred to as state-basedorBayesian
feedback [119]. The second is Markovian feedback [104], where we feed back in an instanta-
neous measurement signal, e.g. a photocurrent, modeled at each time step as a stochastic incre-
ment.
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3.3.1 Bayesian feedback

In the previous sections, we derived the SME for homodyne and photodetection measurements,
accounting for the possibility ofmeasurement-based feedback. In particular, we considered a spe-
cific class of feedback inwhich the entire history ofmeasurement outcomesyyy≤t enters the dynam-
ics only through terms proportional to dt, such thatLyyy≤tdt = O(dt), and not through stochastic
contributions like dW or the photocurrent dy. We refer to this subclass of measurement-based
feedback as Bayesian feedback following the terminology of Ref. [119].
Because the GKSL generator appears at order dt, the corresponding feedback-modified evo-

lution map can be expanded as shown in Eq. (3.48). This leads directly to the final form of the
SME for homodyne detection with Bayesian feedback, given in Eq. (3.80). If now we consider
the case where the GKSL generator takes the form

Lyyyt ρ(c)(t) = −i
[
Ĥ + u(t|yyyt) F̂ , ρ(c)(t)

]
, (3.98)

where the control function u(t|yyyt) depends on the measurement history yyyt but not on its deriva-
tive, then the SME becomes

dρ
(c)
(t) = −i

[
Ĥ + u(t|yyyt) F̂ , ρ(c)(t)

]
dt+ κD[L̂]ρ

(c)
(t)dt+

√
κH[L̂]ρ

(c)
(t)dW. (3.99)

3.3.2 Markovian feedback

We now contrast Bayesian feedback with another common class of measurement-based control:
Markovian feedback. In Bayesian control, the feedback appears only at order dt, as part of a
Lindbladian contribution Lyyy≤tdt = O(dt). In contrast, Markovian feedback modifies the SME
through stochastic terms, with the feedback entering directly through the homodyne signal dy.
As a result, the evolution now includes terms of order

√
dt and the feedback cannot be described

as aGKSLmap at order dt. In otherwords, to includeMarkovian feedback, themap in Eq. (3.48)
has to be modified as:

Φn = exp {L0Δt+ LYΔyn}, (3.100)

where now the dependence on the measurement outcomes is limited to the term LYΔyn, with
Δyn being the discretized photocurrent dy at time n = t/Δt and LY its associated Lindbladian.
The other term, L0Δt, contains the internal dynamics of the atoms, e.g. Larmor precession and
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dephasing. Expanding the map above yields:

Φn = I+ L0Δt+ LYΔyn +
1
2
(LY)

2 (Δyn)2 + o(Δt)

= (I+ L0Δt+ o(Δt))
(
I+ ΔynLY +

1
2
(Δyn)2 (LY)

2 + o(Δt)
)

= Ξ0 ◦ Fn, (3.101)

where the last two expressions correspond to the lowest-order Suzuki–Trotter decomposition
into deterministic and stochastic components, with

Ξ0 := exp {L0Δt} and Fn := exp {LYΔyn}. (3.102)

Thus, similarly to Eq. (3.24), the conditional state evolves from time tn91 = t − dt to tn = t
according to:

ρ
(c)
(tn) =

Fn

[
Ξ0

[
Êyn ρ(c)(tn91)Ê

†
yn

]]
Tr
{
Fn

[
Ξ0

[
Êyn ρ(c)(tn91)Ê

†
yn

]]} , (3.103)

where Êyn is a general operator representing the weak measurement. In the case of a photocount
measurement, the operators read Êyn = ⟨yn| ÛΔt |0⟩, where yn = 0, 1. For a homodyne mea-
surement, the measurement operators are Êyn =

〈
xφn
∣∣ ÛΔt |0⟩, where

∣∣xφn〉 is the eigenstate of
Eq. (3.61). As shown in Sec. 3.2.2, the eigenvalue xφn is a Gaussian random variable, which de-
fines the homodyne signal Δyn ∝ xφn .
In the formulation introduced by Wiseman [104, 105], Markovian feedback is realized via a

unitary Hamiltonian evolution driven by the instantaneous measurement record:

Ĥf = F̂ dy, (3.104)

where F̂ is a fixed Hermitian feedback operator and dy is given by Eq. (3.81). Therefore, the
feedback map Fn is actually an unitary evolution that reads as:

Fn := Ûf · Û †
f = exp

{
−i F̂Δyn

}
· exp

{
i F̂Δyn

}
, (3.105)
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where Δyn follows Eq. (3.73). Furthermore, this map can be expanded to first order in Δt as

Fn = Ûf · Û †
f = I− i Δyn

[
F̂ , ·

]
+D[ F̂ ] · Δt+ o(dt). (3.106)

Therefore, to derive a SMEwhich accounts forMarkovian feedback, we simply have to apply the
feedback unitary to the continuous measurement map, where we have set φ = 0:

ρ
(c)
(tn) = Ûf

Ξ0

[
Êyn ρ(c)(tn91)Ê

†
yn

]
Tr
{
Ξ0

[
Êyn ρ(c)(tn91)Ê

†
yn

]}Û †
f

= Ûf

[
ρ
(c)
(tn91) + L0ρ(c)(tn91)Δt+ κD[L̂]ρ

(c)
(tn91)Δt+

√
κH[L̂]ρ

(c)
(tn91)ΔW

]
Û †

f

= ρ
(c)
(tn91) + L0ρ(c)(tn91)Δt+ κD[L̂]ρ

(c)
(tn91)Δt+D[ F̂ ]ρ(c)(tn91)Δt− i ΔW[ F̂ , ρ

(c)
(tn91)]

− i
√
κ
[
F̂ , L̂ρ

(c)
(tn91) + ρ

(c)
(tn91)L̂†

]
Δt+
√
κH[L̂]ρ

(c)
(tn91)ΔW+ o(Δt). (3.107)

The expression above can be reformulated using the following identities:

κD[L̂]ρ
(c)
(t) +D[ F̂ ]ρ

(c)
(t)− i

√
κ
[
F̂ , L̂ρ

(c)
(t) + ρ

(c)
(t)L̂†

]
=

= −i
√
κ

[
L̂† F̂ + F̂ L̂

2
, ρ

(c)
(t)

]
+D[

√
κL̂− i F̂ ]ρ

(c)
(t), (3.108)

√
κH[L̂]ρ

(c)
(t)− i

[
F̂ , ρ

(c)
(t)
]
= H[

√
κL̂− i F̂ ]ρ

(c)
(t). (3.109)

Namely,

ρ
(c)
(tn) = ρ

(c)
(tn91) + Lyyy0:nρ(c)(tn91)Δt− i

√
κ

[
L̂† F̂ + F̂ L̂

2
, ρ

(c)
(tn91)

]
Δt

+D[
√
κL̂− i F̂ ]ρ

(c)
(tn91)Δt+H[

√
κL̂− i F̂ ]ρ

(c)
(tn91)ΔW+ o(dt). (3.110)

Finally, if the internal evolution represented by the LindbladianL0 is of the form:

L0ρ(c)(t) = −i
[
Ĥ , ρ

(c)
(t)
]
, (3.111)
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then, Eq. (3.110) in the limit of Δt→ 0, can be written as

dρ
(c)
(t) = −i

[
Ĥeff, ρ(c)(t)

]
dt+D[L̂eff]ρ(c)(t) +H[L̂eff]ρ(c)(t)dW, (3.112)

where

Ĥeff = Ĥ +

√
κ
2

(
L̂† F̂ + F̂ L̂

)
, (3.113)

L̂eff =
√
κL̂− i F̂ . (3.114)
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4
Ultimate precision limits in noisy systems

In quantum metrology, finding the fundamental limits to precision is essential for verify-
ing optimal sensing strategies. Thus, this chapter focuses on the derivation and analysis of a
lower bound on the BCRB introduced in Sec. 2.2.3 for frequency estimation in the presence of
atomic dephasing and field fluctuations. This bound is referred throughout this thesis as either
the classically-simulated (CS) limit or the quantum limit. The term classically-simulated stems
from its derivation via the decomposition of quantum channels as a convex mixture of unitaries,
while the term quantum limit highlights that, given a particular form and strength of noise, no
strategy involving any possible quantum effects may surpass it.

Importantly, as will become clear through the derivation, this bound is entirely independent
of the choice of initial quantum state, measurement, ormeasurement-based feedback. It depends
only on the noise model of the system (in our case, local and collective dephasing along the field
direction) and the fluctuating strength of the signal we aim to track. As such, attaining this limit
would certify that the entire sensing protocol is optimal, i.e. that our particular choice of initial
state, measurement, estimator andmeasurement-based control yields the best possible sensitivity.
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This chapter, which one can view as an extended derivation or proof, is organized as follows:
we begin in Sec. 4.1 by introducing the most general discrete-time evolution of a quantum state,
alternating between internal system dynamics and measurement updates, which is connected to
the conditional evolution of Chap. 3. Next, we specify the types of quantum channels used in
our model: the feedback map, and the collective and local dephasing maps.

In Sec. 4.2.1, we turn to the central step of this proof: the convex decomposition of the likeli-
hood p(yyy0:k|ωωω0:k), which describes the probability of observing measurement outputs yyy0:k given
a signal trajectory ωωω0:k. This likelihood is rewritten as a mixture of two other conditional proba-
bilities: one that contains the ω-dependence via a classical mixing distribution, and another “fic-
titious” likelihood encoding all the measurement record, independent of the signal. To enable
this decomposition, both collective and local dephasing channels must be expressed as Gaussian-
weighted integrals over unitary operations (see Sec. 4.2.2 and Sec. 4.2.3). This allows us to refor-
mulate p(yyy0:k|ωωω0:k) accordingly, which in turn enables us to upper-bound the FI of the marginal
likelihood p(yyy0:k|ωk) in Sec. 4.2.5.

This upper-bound on the FI can be analytically derived (see Sec. 4.2.7), since it ultimately in-
volves computing the FI of several Gaussian distributions, each given by the inverse of their vari-
ance. In the case of fluctuating fields, finding such a variance requires solving a recursive relation,
which can be done explicitly for the problem at hand. Taking the continuous-time limit of the
resulting expression in Sec. 4.2.8, yields the CS limit or quantum limit. Finally, in Sec. 4.2.9 we
extend the analysis to account for scenarios where the number of atoms N fluctuates between
experimental runs, and show how the bounds can be appropriately modified.

4.1 Discrete-time picture of measurement-based feedback scheme

Consider the discrete evolution of a quantum state that alternates between its intrinsic dynamics
andmeasurement updates, as shown in Eq. (3.22). In this picture, eachmeasurement is modeled
by a set of measurement Kraus operators Êyk , which form a POVM {Ê†

ykÊyk}k whose elements

fulfill
∑

k Ê
†
ykÊyk = I and whose outcome yk forms part of the discretized measurement record

yyy0:k = {y0, y1, . . . , yk}. The quantum channel governing the evolution of the state in between
measurements is a generic map

Φk := ΦΔt(yyy0:k, ωk), (4.1)

which acts on the state for a time Δt and depends on a parameter ωk, as well as, potentially, on
all previous measurement records yyy0:k = {y0, y1, . . . , yk}. The frequency ωk is itself also a time-
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discretized element from a frequency trajectory ωωω0:k = {ω0, ω1, . . . , ωk}, whose elements will
later be assumed to be drawn from a probability distribution at each time-step. Therefore, the
state at time t = kΔt, conditional on the measurement outcomes yyy0:k = {y0, y1, . . . , yk}, reads
as

ρ[k|yyy0:k] =
Φk

[
ÊykΦk91

[
Êyk91 . . .Φ1

[
Êy1Φ0

[
Êy0 ρ0 Ê

†
y0

]
Ê†
y1

]
. . . Ê†

yk91

]
Ê†
yk

]
p(yyy0:k|ωωω0:k)

, (4.2)

where we have used a similar notation to Eq. (3.23), ρ[k|yyy0:k] := ρ
(c)
(kΔt) = ρ(kΔt|yyykΔt), to

refer to the discretized conditional state at time t = kΔt. Note that ρ0 denotes the initial state
of the atoms before any operation is applied, and hence, is different from the state ρ[0|yyy0], which
is obtained after getting the first outcome y0 and evolving the state with the map Φ0, dependent
on the measurement y0 and the frequency ω0. The denominator is the discretized version of the
likelihood p(yyyt|ωωωt), i.e. the probability of measuring yyy0:k = {y0, y1, . . . , yk} given field inputs
ωωω0:k = {ω0, ω1, . . . , ωk}. Namely,

p(yyy0:k|ωωω0:k) = Tr
{
Φk

[
ÊykΦk91

[
Êyk91 . . .Φ1

[
Êy1Φ0

[
Êy0 ρ0 Ê

†
y0

]
Ê†
y1

]
. . . Ê†

yk91

]
Ê†
yk

]}
, (4.3)

which will later play a crucial role when bounding the aMSE, introduced in Definition 2.5.
If we now focus on a single time interval Δt in the discrete evolution described above, we can

relate the two time-consecutive conditional states, ρ[k91|yyy0:k91] and ρ[k|yyy0:k] as:

ρ[k|yyy0:k] =
Φk

[
Êyk ρ[k91|yyy0:k91]Ê

†
yk

]
Tr
{
Φk

[
Êyk ρ[k91|yyy0:k91]Ê

†
yk

]} , (4.4)

with the first time step defined as

ρ[0|yyy0] =
Φ0

[
Êy0 ρ0 Ê

†
y0

]
Tr
{
Φ0

[
Êy0 ρ0 Ê

†
y0

]} . (4.5)

As discussed in Sec. 3.3.1, we focus here on Bayesian feedback*, in which case, withLω
yyy0:kΔt =

*Nonetheless, our analysis can be straightforwardly generalized to alsoMarkovian feedback or any other form of
measurement-based feedback, even with general Lévy processes [65].
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ρ0 Êy0 Φ0

ω0

yyy0 = {y0}

Êy1 Φ1

ω1

yyy1 = {yyy0, y1}

. . .

...

Êyk Φk

ωk

yyyk = {yyyk91, yk}

Figure 4.1: Quantum circuit representation of conditional evolution via sequential measurements. Scheme depicting a quan‐
tum circuit representing a sequential measurement on a system ofN atoms with an initial density matrix ρ0. Each step in‐
volves a POVM Êyk , which depends on a measurement outcome yk, followed by an evolution through a quantum channelΦk.
This map depends on an input parameter ωk and all prior measurement outcomes yyy0:k, which are progressively collected as
the system evolves.

O(Δt):
Φk = eL

ω
yyy0:k

Δt. (4.6)

Theoverall dynamical generatorLω
yyy0:k dependsonall previousoutcomesyyy0:k through themeasurement-

based feedback, aswell as accounting forω-encodingbut also importantly, decoherence. Nonethe-
less, it can always be decomposed into two parts: one corresponding to the dynamics generated
by theω-encoding, and the other corresponding to the feedback based onpreviousmeasurements
by Trotter-Suzuki arguments as Δt→ 0:

Φk = e(Lωk+Lf
yyy0:k )Δt = eLωkΔt ◦ eL

f
yyy0:kΔt + O(Δt2) (4.7)

= Ξωk ◦ Fyyy0:k + O(Δt2)

where Ξωk represents the portion of the evolution due to the ω-encoding and decoherence (i.e.
the intrinsic, noisy dynamics), while Fyyy0:k accounts for the measurement-based feedback.
As a result, the discrete conditional evolution given in Eq. (4.2) can be equivalently written in

a form that explicitly separates the state evolution into three parts: the measurement update, the
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feedback and the remaining internal dynamics:

ρ[k|yyy0:k] =
Ξωk

[
Fyyy0:k

[̂
Eyk . . .Ξω1

[
Fyyy0:1

[
Êy1 Ξω0

[
Fyyy0

[
Êy0 ρ0Ê

†
y0

]]
. . . Ê†

y1

]]
. . . Ê†

yk

]]
p(yyy0:k|ωωω0:k)

, (4.8)

with its likelihood now being:

p(yyy0:k|ωωω0:k) =

= Tr
{
Ξωk

[
Fyyy0:k

[̂
Eyk . . .Ξω1

[
Fyyy0:1

[
Êy1 Ξω0

[
Fyyy0

[
Êy0 ρ0Ê

†
y0

]]
. . . Ê†

y1

]]
. . . Ê†

yk

]]}
. (4.9)

Hence, the proof that follows, which is fully based on the form of the map Ξωk responsible for
noisy ω-encoding, applies to any form of measurement-based feedback.

4.2 Precision bound for any protocol with local and global noise

Wemay further assume that the internal dynamics of the system consists of an ω-encoded unitary
evolution, collective dephasing and local dephasing. The map representing this internal evolu-
tion, Ξω, can therefore be decomposed into two additional maps,

Ξω = Ω ◦ Λω, (4.10)

where Ω denotes the non-unitary evolution arising in between measurements due to the collec-
tive decoherence (of strength κc), and the channel Λω accounts for both the unitary frequency-
encoding and thenon-unitary local decoherence (of strengthκℓ). Even fornon-commutingmaps,
we can apply the Suzuki-Trotter expansion to first order in Δt and split up the map Ω and Λω as
required. Then, Eq. (4.8) becomes

ρ[k|yyy0:k] =

=
Ωk

[
Λωk

[
Fyyy0:k

[
Êyk . . .Ω1

[
Λω1

[
Fyyy0:1

[
Êy1Ω0

[
Λω0

[
Fyyy0

[
Êy0 ρ0Ê

†
y0

]]]
Ê†
y1

]]]
. . . Ê†

yk

]]]
p(yyy0:k|ωωω0:k)

, (4.11)
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such that

p(yyy0:k|ωωω0:k)=

= Tr
{
Ωk

[
Λωk

[
Fyyy0:k

[
Êyk . . .Ω1

[
Λω1

[
Fyyy0:1

[
Êy1Ω0

[
Λω0

[
Fyyy0

[
Êy0 ρ0Ê

†
y0

]]]
Ê†
y1

]]]
. . . Ê†

yk

]]]}
. (4.12)

ρ0 Êy0 Fyyy0

yyy0 = {y0}

Λω0

ω0

Ω Êy1 Fyyy0:1

yyy0:1 = {yyy0, y1}

Λω1

ω1

Ω . . .

...

Êyk Fyyy0:k

yyy0:k = {yyy0:k91, yk}

Λωk

ωk

Ω

Figure 4.2: Scheme illustrating a quantum circuit with sequential measurements, feedback and dephasing on a multi‐qubit
system. The state evolves step‐by step through a repeating sequence of operations: a measurement operator Êyj , a feedback
map Fyyy0:j conditioned on past outcomes, and an internal dynamics channelsΩ and Λωj . Here,Ω represents a collective
dephasing map, while Λωk encodes both local dephasing and the unitary ωk‐dependent evolution. Measurement outcomes
yyy0:k are collected progressively and used to inform future feedback steps, allowing the system to evolve adaptively under
both unitary and non‐unitary processes.

4.2.1 Convex decomposition of the likelihood

As in our earlier work [69], which dealt only with collective decoherence, our motivation is to
find a convex decomposition of the effective noisy ω-encoding map [65, 66], i.e. Ω [Λω [ · ]] in
Eq. (4.10), so that the discretised likelihood (4.12) can be decomposed as follows:

p(yyy0:k|ωωω0:k) =

∫
DZZZ0:k q(ZZZ0:k|ωωω0:k) p(yyy0:k|ZZZ0:k) (4.13)

whereZZZ0:k = {ζζζ0, ζζζ1, . . . , ζζζk} is a sequence of sets, each containing N auxiliary frequency-like
random variables. For instance, ζζζℓ = {ζ (1)ℓ , ζ (2)ℓ , . . . , ζ (N)

ℓ } indicates that within the ℓth step, the
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first probe undergoes the Larmor precession for Δt with frequency ζ (1), the second probe with
ζ (2), etc [65, 66].

While q(ZZZ0:k|ωωω0:k) in Eq. (4.13) represents the mixing distribution, which contains all the de-
pendence on the frequency trajectory ωωω0:k, the term p(y0:k|ZZZ0:k) can be interpreted as a fictitious
likelihood of obtaining themeasurement recordyyy0:k = {yj}kj=0. Here, the sequenceZZZ0:k specifies
a series of unitary maps that encode the frequency information in between discretized measure-
ments and feedback operations:

p(yyy0:k|ZZZ0:k) =

= Tr
{
Uζζζk
[
Fyyy0:k

[
Êyk . . .Uζζζ1

[
Fyyy0:1

[
Êy1Uζζζ0

[
Fyyy0

[
Êy0 ρ0Ê

†
y0

]]
Ê†
y1

]]
. . .Ê†

yk

]]}
. (4.14)

To justify the formof the convexdecomposition in (4.13), we seek to represent the overall noisy
encoding channel Ω [Λω[ · ]] as a probabilistic mixture of unitaries. Rather than decomposing
the full channel all at once, we handle its components separately: the collective map Ω[·], which
acts globally, and the local channel, which describes local dynamics and exhibits a tensor prod-
uct structure with local dephasing and unitary evolution acting independently on each two-level
system.

4.2.2 The map Ω as a convex mixture of unitaries

The channel Ω, which represents the evolution of the atomic state under collective dephasing,
admits a representation as a convex mixture of unitaries. This follows from the following result
established in [69]:

Theorem 4.1 (Map as a convex mixture of unitaries). Given a unitary evolution governed by a
Hamiltonian ξĤ Uξ,τ[ · ] = e−i ξ Ĥ τ · ei ξ Ĥ τ, (4.15)

whose scalar encoding ξ ∈ R (frequency) is randomly distributed according to a Gaussian proba-
bility density

ξ ∼ pμ,σ(ξ ) = N (μ(τ), σ2(τ)) =
1√

2πσ2(τ)
exp
{
9(ξ− μ(τ))2

2σ2(τ)

}
, (4.16)

140



then, the quantummapΩ can be written as a convex mixture of these unitaries as:

ρ(τ) = Ω[ρ(0)] = Ep(ξ )[Uξ,τ[ρ(0)]] =
∫

dξ pμ,σ(ξ ) e−i ξ Ĥ τρ(0)ei ξ Ĥ τ, (4.17)

if ρ(τ) corresponds to the solution of the following master equation:

dρ(τ)
dτ

= −iω(τ)[Ĥ , ρ(τ)] + Γ(τ)
(
Ĥρ(τ)Ĥ − 1

2
{Ĥ 2, ρ(τ)}

)
(4.18)

= −iω(τ)[Ĥ , ρ(τ)]− 1
2
Γ(τ)

[
Ĥ , [Ĥ , ρ(τ)]

]
(4.19)

with the time-dependent frequency and decay parameters being

ω(τ) = μ(τ) + τμ̇(τ) and Γ(τ) = 2σ2(τ)τ
(
1+

σ̇(τ)
σ(τ)

τ
)
. (4.20)

Proof. Available in App. D.1.

Now consider a system ofN spin−1/2 particles evolving for a time Δt under the dynamics of
Eq. (D.5):

dρ(Δt)
d(Δt)

= − 1
2
κc
[
Ĵz,
[
Ĵz, ρ(Δt)

]]
, (4.21)

with frequency ω(Δt) = 0, Γ(Δt) = κc and Ĥ = Ĵz. This particular choice of Ĥ = Ĵz
anticipates the structure of the SME considered in the next chapter, where the atomic sensor
undergoes collective dephasing along the z-axis.

Then, the effective map Ω describing the evolution from ρ(0) to ρ(Δt) can be written as a
mixture of unitary channels. Specifically, it takes the form:

Ω[ · ] =
∫

dξ pc(ξ ) e−iξ ĴzΔt · eiξ ĴzΔt, (4.22)

where the mixing probability of Eq. (D.2) is a Gaussian distribution pc(ξ) = N (0,Vc)with zero
mean and variance:

Vc := κc/Δt. (4.23)
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4.2.3 The map Λω as a convex mixture of unitaries

On the other hand, the overall map associated with the local dephasing is given by

Λω = etL, (4.24)

whereL is the GKSL generator defined in Eq. (1.195), i.e.:

dρ
dt

= L ρ = −i[Ĥ , ρ(t)] +
N∑
i=1

D[L̂i]ρ(t). (4.25)

Ifwe choose theHamiltonian as Ĥ = ω Ĵz, with Ĵz = 1
2

∑N
i=1 σ̂

(i)
z being the collective angularmo-

mentum operator in the z-direction, and define the local collapse operators as L̂i =
√

κℓ/2σ̂(i)z ,
then the master equation becomes

dρ
dt

= −iω[ Ĵz, ρ(t)] +
κℓ
2

N∑
i=1

D[σ̂(i)z ]ρ(t)

=

(
−iω

2

N∑
i=1

[σ̂(i)z , · ] + κℓ
2

N∑
i=1

D[σ̂(i)z ] ·

)
ρ(t)

=

[
N⊕
i=1

L(i)

]
ρ, (4.26)

where the subscript (i) denoting the position of σ̂z in the tensor-product structure. Just as in the
previous section, the choice of Ĥ and L̂i reflects our atomic sensor model, where both the field
and dephasing occur along the z-axis. More details regarding this model will be presented in the
next chapter, i.e. Chap. 5. We then define the local generator for each spin as

L(i) = −iω
2
[σ̂(i)z , · ] + κℓ

2
D[σ̂(i)z ] ·, (4.27)

so that the overallmapL is simply the direct sumof the individual contributionsL(i). The formal
solution to the master equation above is given by the collective map Λω, which can be written as
a tensor product of individual CPTPmaps acting on each atom:

Λω = e
⊕

tL(i)
=

N⊗
i=1

etL(i)
=

N⊗
i=1

Λ(i)
ω , (4.28)
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with the semigroup map Λ(i)
ω = etL(i) defined by the GKSL generator L(i) representing the un-

conditional evolution of the ith atom, i.e.:

dρi(t)
dt

= −iω[̂s(i)z , ρi(t)] + 2κℓD[̂s(i)z ]ρi(t), (4.29)

where ŝz = 1
2 σ̂z, and ρi(t) = Tr∀̸=i{ρ(t)} is the reduced state of the ith atom, i.e. the state after

tracing out all atoms except the ith one. Applying again the result from Theorem 4.1, each local
map Λ(i)

ω can be expressed as a convex mixture of unitary channels:

Λ(i)
ω [ · ] =

∫
dυ(i) pℓ(υ(i)|ω) Uυ(i),Δt[ · ], (4.30)

where the auxiliary variable υ(i) is distributed according to pℓ(υ(i)|ω) = N (ω,Vℓ), i.e. a Gaussian
with mean ω and variance

Vℓ := 2κℓ/Δt. (4.31)

The corresponding unitary channel Uυ(i),Δt[ · ] is also parametrized w.r.t. the auxiliary variable
υ(i):

Uυ(i),Δt[ · ] = e−i υ(i)̂s(i)z Δt · ei υ(i)̂s
(i)
z Δt. (4.32)

Putting everything together, the overall local map Λω defined in Eq. (4.24) is equivalent to a
convex combination of tensor products of unitary maps:

Λω[ · ]=
N⊗
i=1

Λ(i)
ω [ · ]=

∫
Dυυυ℘ℓ(υυυ|ω)

N⊗
i=1

Uυ(i),Δt[ · ] =
∫
Dυυυ℘ℓ(υυυ|ω)Uυυυ[ · ], (4.33)

where υυυ = (υ(1), . . . , υ(i), . . . , υ(N)), the integration measure isDυυυ =
∏N

i=1 dυ(i), and the joint
productdistribution is℘ℓ(υυυ|ω) =

∏N
i=1 pℓ(υ(i)|ω). Note that since exp(A)⊗exp(B) = exp(A⊕ B),

then the overall unitary channel takes the explicit form:

Uυυυ[ · ] :=
N⊗
i=1

Uυ(i),Δt[ · ] = e−iΔt
∑N

i=1 υ
(i) ȷ̂

(i)
z · eiΔt

∑N
i=1 υ

(i) ȷ̂
(i)
z (4.34)

where ȷ̂(i)z = I⊗ · · · ⊗ I︸ ︷︷ ︸
i−1

⊗ ŝ(i)z ⊗ I⊗ · · · ⊗ I︸ ︷︷ ︸
N−i

denotes the appropriately embedded single-site

spin operator ŝ(i)z = 1
2 σ̂

(i)
z in the full tensor-product Hilbert space.
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4.2.4 The joint map Ω ◦ Λω as a convex mixture of unitaries

The overall evolution of the system under ω-encoding, including both collective and local deco-
herence effects, is described by the combinedmapΩ[Λω[ · ]]. Both the collective mapΩ[ · ] and
the local channel Λω[ · ] have already been represented as a convex combination of unitaries in
Eq. (4.22) and Eq. (4.33), respectively. To now represent the overall map Ω[Λω[ · ]] as a convex
mixture of unitaries, the first step is to combine the collective and local channels as:

Ω[Λω[ · ]] =
∫
dξ pc(ξ)

∫
Dυυυ℘ℓ(υυυ|ω) Uξ,υυυ[ · ] (4.35)

where
Uξ,υυυ[ · ] = e−iΔt

∑N
i=1(ξ+υ(i))ȷ̂(i)z · eiΔt

∑N
i=1(ξ+υ(i))ȷ̂(i)z . (4.36)

Here, pc(ξ) is the Gaussian probability density associated with the collective dephasing, while
℘ℓ(υυυ|ω) =

∏N
i=1 pℓ(υ(i)|ω) is the product of local densities.

In the above expression, the unitary operator depends on the sum ξ + υ(i), meaning that the
collective parameter ξ and the local variables υ(i) appear together. To recast the overall map into a
form that ismore amenable to classical simulation, we redefine the integration variables by setting

υ(i) → ζ (i) − ξ, (4.37)

for each i. This change of variables incorporates the contribution of ξ into a new effective vari-
able ζ (i) for each particle. Consequently, the unitary operator becomes solely a function of ζ (i),
thereby simplifying the overall map into a convex combination of tensor products of local uni-
taries:

Ω[Λω[ · ]] =
∫
Dζζζ

[∫
dξ pc(ξ)

N∏
i=1

pℓ(ζ (i) − ξ|ω)

]
Uζζζ[ · ]

=

∫
Dζζζ

[
1

(2πVc)1/2
1

(2πVℓ)N/2

∫
dξ exp

{
− ξ 2

2Vc

}
exp

{
−

N∑
i=1

(ζ (i) − ξ− ω)2

2Vℓ

}]
Uζζζ[ · ]

(4.38)

where the vector ζζζ = (ζ(1), . . . , ζ (i), . . . , ζ(N)) collects theN auxiliary frequencies acting on each
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particle. The corresponding unitary map is defined as:

Uζζζ[ · ] = e−i Δt
∑N

i=1 ζ
(i) ȷ̂

(i)
z · ei Δt

∑N
i=1 ζ

(i) ȷ̂
(i)
z . (4.39)

By evaluating the integral inEq. (4.38)using standard results forGaussian integrals (seeLemma
D.2 in Appendices), we obtain the final expression for the overall map:

Ω[Λω[ · ]] =
1√

2π (Vc + Vℓ/N)

∫
Dζζζ f (ζζζ ) exp

{
− (ζ− ω)2

2(Vc + Vℓ/N)

}
Uζζζ[ · ] (4.40)

where ζ is the average (mean) of the components of ζζζ,

ζ :=
1
N

N∑
i=1

ζ (i), (4.41)

and

f (ζζζ ) =

√
1

N(2πVℓ)N−1 exp

{
− 1
2Vℓ

(
N∑
i=1

(ζ (i)) 2 −Nζ 2

)}
. (4.42)

4.2.5 Upper-bounding the Fisher information

The main goal of this chapter is to find an analytical lower bound for the aMSE of the estimator
for ω at the time-step t = kΔt. To achieve this, we rely on a family of BCRBs [2, 67], and, in
particular, choose the one that lower bounds the aMSE of the estimator at the last step k [67]:

E
[
Δ2ω̃k

]
≥ 1

F[p(ωk)] +
∫
dωk p(ωk)F[p(yyy0:k|ωk)]

, (4.43)

where p(ωk) represents the prior knowledge about the frequency at time t = kΔt, and p(yyy0:k|ωk)

is the probability of observing a measurement trajectory yyy0:k given that the frequency at time
t = kdt is ωk. Here, the FI F[ · ] is defined just like in Sec. 2.2.1:

F[p(yyy0:k|ωk)] = Ep(yyy0:k|ωk)
[
(∂ωk log p(yyy0:k|ωk))

2] (4.44)

= Ep(yyy0:k|ωk)
[
−∂2

ωk log p(yyy0:k|ωk)
]
. (4.45)
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However, for our problem there is no analytical solution for F[p(yyy0:k|ωk)]. Therefore, to avoid the
computationally demanding task of calculating F[p(yyy0:k|ωk)], we opt to derive an upper bound
by using another probability for which the FI can be analytically determined. To do so, we begin
by rewriting the conditional probability of interest p(yyy0:k|ωk) using the Bayes’ rule:

p(yyy0:k|ωk) =
p(yyy0:k, ωk)

p(ωk)
=

1
p(ωk)

∫
Dωωω0:k91 p(yyy0:k,ωωω0:k)

=
1

p(ωk)

∫
Dωωω0:k91 p(ωωω0:k)p(yyy0:k|ωωω0:k), (4.46)

which allows us to establish a connection between p(yyy0:k|ωk), i.e. the probability of observing the
vector of outcomesyyy0:k conditioned on the last parameter ωk, and p(yyy0:k|ωωω0:k), i.e. the probability
of detecting ameasurement trajectory yyy0:k given that the parameter to estimate has followed a tra-
jectoryωωω0:k. Then, it is possible to apply Eq. (4.13) to Eq. (4.46), which reveals a decomposition
analogous to Eq. (4.13) but now for p(yyy0:k|ωk):

p(yyy0:k|ωk) =

∫
DZZZ0:k p(yyy0:k|ZZZ0:k)

[
1

p(ωk)

∫
Dωωω0:k91 p(ωωω0:k)q(ZZZ0:k|ωωω0:k)

]
=

∫
DZZZ0:k p(yyy0:k|ZZZ0:k) Pωk(ZZZ0:k) = SZZZ0:k→yyy0:k [Pωk(ZZZ0:k)] (4.47)

where we identify SZZZ0:k→ yyy0:k [ · ] =
∫
DZZZ0:k p(yyy0:k|ZZZ0:k) · as a stochastic map independent

of the parameter ωk, and the probability distribution Pωk(ZZZ0:k) as

Pωk(ZZZ0:k) =
1

p(ωk)

∫
Dωωω0:k91 p(ωωω0:k)q(ZZZ0:k|ωωω0:k), (4.48)

which contains the information on ωk. As the FI is always nonincreasing under the action of any
stochastic map, we can now upper-bound F[p(yyy0:k|ωk)] as

F[p(yyy0:k|ωk)] = F[SZZZ0:k→yyy0:k [Pωk(ZZZ0:k)]] ≤ F[Pωk(ZZZ0:k)]. (4.49)

Thus, the problem of lower-bounding the BCRB in Eq. (4.43) now reduces to evaluating the
FI of Pωk(ZZZ0:k).
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4.2.6 Analytical form of Pωk(ZZZ0:k)

The probability distribution in Eq. (4.48) is made up of three different probability components:
the marginal probability distribution p(ωk), the prior p(ωωω0:k) and the CS likelihood or mixing
distributionq(ZZZ0:k|ωωω0:k). Tofindan analytical expression forEq. (4.48),wefirst need to elaborate
on the exact forms of each probability component, which, in turn, depend on the stochastic
process governing ω(t). Specifically, throughout this chapter, we assume that ω(t) follows an
OU process.

4.2.6.1 Prior contribution

As mentioned in the beginning of this section, we wish to track the trajectory of a parameter or
frequencyωωω0:k = {ω0, ω1, . . . , ωk}, with each element ωk drawn from a probability distribution
p(ωk):

p(ωk) =

∫
Dωωω0:k91 p(ωωω0:k) (4.50)

If we choose ωk to be the time-discretized version of the process ω(t) following the OU equa-
tion

dω(t) = −χω(t)dt+ dWω (4.51)

where χ > 0 and qω > 0 parametrize the decay and volatility of the process, and dWω denotes the
Wiener differential with mean E[dWω] = 0 and variance E

[
dW2

ω
]
= qωdt, then the probability

of the process transitioning from ωk91 at time (k91)Δt to ωk at kΔt is given by

p(ωk|ωk91) =

√
1

2πVP
exp
{
−(ωk − ωk91e−χΔt)2

2VP

}
(4.52)

with variance
VP =

qω
2χ

(1− e−2χΔt). (4.53)

We choose to consider the OU process in Eq. (4.51) instead of the more general process dω(t) =
−χ (ω(t)− ω̄) dt+dWω because the constant shift ω̄preserves the aMSEE

[
Δ2ν̃(t)

]
= E

[
Δ2ω̃(t)

]
[66], so that the simplified OU process is sufficient for our purposes.

Since the OU process is a Markov process (see Sec. 1.2.1), the probability of the process ω(t)
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of following a discrete trajectoryωωω0:k = {ω0, ω1, . . . , ωk} is given by

p(ωωω0:k) =
k∏

i=1

p(ωi|ωi−1)p(ω0), (4.54)

where we assume p(ω0) to be a Gaussian prior with mean zero and variance σ20, i.e. p(ω0) =

N (0, σ20). From that, we can compute the probability of the frequency taking the value ωk at
time kΔt, irrespective of the previous values of ω:

p(ωk) =
1√

2πV(k)
P

exp

(
− ω2

k

2V(k)
P

)
, (4.55)

with variance
V(k)
P = σ20e−2kχΔt +

qω
2χ

(1− e−2kχΔt). (4.56)

4.2.6.2 Classically-simulated contribution

If now we substitute the CS form of the joint map Ω[Λω[ · ]] of Eq. (4.40) into the likelihood
p(yyy0:k|ωωω0:k) in Eq. (4.12), we retrieve the desired decomposition of Eq. (4.13). Namely,

p(yyy0:k|ωωω0:k) =

∫
DZZZ0:k

 k∏
j=0

f (ζζζj )
1√

2π(Vc + Vℓ/N)
exp

{
−

(ζj − ωj)
2

2(Vc + Vℓ/N)

}p(yyy0:k|ZZZ0:k)

=

∫
DZZZ0:k q(ZZZ0:k|ωωω0:k) p(yyy0:k|ZZZ0:k), (4.57)

with p(yyy0:k|ZZZ0:k) consistent with the form given in Eq. (4.14). Thus, we identify the conditional
distribution q(ZZZ0:k|ωωω0:k) as a product of independent likelihood terms:

q(ZZZ0:k|ωωω0:k) =
k∏

j=0

q(ζζζj|ωj) =
k∏

j=0

f (ζζζj )
1√

2π(Vc + Vℓ/N)
exp

{
−

(ζj − ωj)
2

2(Vc + Vℓ/N)

}

=
k∏

j=0

f (ζζζj )Q(ζj|ωj) = f (ZZZ0:k)Q(ζζζ0:k|ωωω0:k), (4.58)

148



where we define the prefactor f (ZZZ0:k) =
∏k

j=0 f (ζζζj ) as the product of normalization constants
(which do not depend onωωω0:k), and

Q(ζζζ0:k|ωωω0:k) =
k∏

j=0

Q(ζj|ωj) =
k∏

j=0

1√
2π(Vc + Vℓ/N)

exp

{
−

(ζj − ωj)
2

2(Vc + Vℓ/N)

}
(4.59)

is a product of k+ 1 GaussiansQ(ζj|ωj) each centered around ωj with a common variance

VQ = Vc +
Vℓ

N
=

κc
Δt

+
2κℓ
NΔt

, (4.60)

which uses the definitions of the collective and local variances in Eq. (4.23) and Eq. (4.31), re-
spectively.

4.2.6.3 Integrated form of Pωk(ZZZ0:k)

Once each contribution to Pωk(ZZZ0:k) has been established, we can bring them all together and
rearrange its integral form in Eq. (4.48) as a set of nested integrals:

Pωk(ZZZ0:k) =
1

p(ωk)

∫
Dωωω0:k91 p(ωωω0:k)q(ZZZ0:k|ωωω0:k) =

f (ZZZ0:k)

p(ωk)

∫
Dωωω0:k91 p(ωωω0:k)Q(ζζζ0:k|ωωω0:k)

=
f (ZZZ0:k)

p(ωk)

∫
Dωωω0:k91

k∏
j=1

p(ωj|ωj91)Q(ζj|ωj) p(ω0)Q(ζ0|ω0)

=
f (ZZZ0:k)

p(ωk)
Q(ζk|ωk)

∫
dωk91 p(ωk|ωk91)Q(ζk91|ωk91) . . .

∫
dω0 p(ω1|ω0)Q(ζ0|ω0)p(ω0). (4.61)

Since all functionswithin the integrals areGaussian, this set of nested integrals admits a closed-
form recursive solution, as established inLemma D.3 inAppendices. Inparticular, by identifying
the variancesVP andVQ in Eq. (D.29)with those defined in Eq. (4.53) andEq. (4.60), respectively,
we can directly state that:

Pωk(ZZZ0:k) =
f (ZZZ0:k)

p(ωk)
Q(ζk|ωk)Pk(ωk), (4.62)
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wherePk(ωk) is a Gaussian distribution of the form

Pk(ωk) = Ck exp
{
−
(
(ωk − μk)

2

2VCS
k

)}
(4.63)

with a variance that evolves recursively according to

VCS
k = VP +

VQVCS
k91

VQ + VCS
k91

(4.64)

starting from an initial value V0 = σ20.

4.2.7 Fisher information of Pωk(ZZZ0:k)

Now that we have a closed-form expression for Pωk(ZZZ0:k), as given in Eq. (4.62), we can move to
computing its FI using the definition provided in Eq. (4.45). Namely,

F[Pωk(ZZZ0:k)] =

∫
DZZZ0:k Pωk(ZZZ0:k)

[
−∂2

ωk log
(
f (ZZZ0:k)

p(ωk)
Q(ζk|ωk)Pk(ωk)

)]
=

∫
DZZZ0:k Pωk(ZZZ0:k)

[
−∂2

ωk log f (ZZZ0:k)
]

(4.65)

−
∫
DZZZ0:k Pωk(ZZZ0:k)

[
−∂2

ωk log p(ωk)
]

(4.66)

+

∫
DZZZ0:k Pωk(ZZZ0:k)

[
−∂2

ωk logQ(ζk|ωk)
]

(4.67)

+

∫
DZZZ0:k Pωk(ZZZ0:k)

[
−∂2

ωk logPk(ωk)
]

(4.68)

= − 1
V(k)
P

+
1
VQ

+
1

VCS
k
, (4.69)

where in Eq. (4.65) we have used that f (ZZZ0:k) is independent of ωk, and therefore, does not con-
tribute to the FI. Meanwhile, the non-zero contributions arising from Eqs. (4.66-4.68) follow
from the identity:

F[N (μ,V)] = −∂2
ωk log exp

{
−(ωk − μ)2

2V

}
= V−1, (4.70)

where we have used the definition of a Gaussian distribution and the FI of Eq. (4.45). While we
already have a closed-form expression for both V(k)

P and VQ, obtaining VCS
k requires solving the
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recursive relation in Eq. (4.64). Fortunately, despite being somewhat lengthy, an explicit expres-
sion for VCS

k exists:

VCS
k =

W+V k
+ +W−V k

−

U−V k
− + U+V k

+

, (4.71)

with termsW+,V+,U+,W−,V−, andU− given by

W+ = 2VPVQ + σ20VP + σ20
√
VP(4VQ + VP) (4.72)

W− = −2VPVQ − σ20VP + σ20
√

VP(4VQ + VP (4.73)

U+ = −VP + 2σ20 +
√
VP(4VQ + VP) (4.74)

U− = VP − 2σ20 +
√

VP(4VQ + VP) (4.75)

V+ = 2VQ + VP +
√

VP(4VQ + VP) (4.76)

V− = 2VQ + VP −
√

VP(4VQ + VP) (4.77)

where VQ is the variance given in Eq. (4.60) and VP is the variance of the process when transition-
ing from ωk91 to ωk, i.e. Eq. (4.53).

4.2.8 The continuous-time limit

If now we take the continuous-time limit of Δt → 0, the term 1/VQ in Eq. (4.69) goes to zero
since VQ is inversely proportional to Δt. The other terms become,

V(t)
P = lim

Δt→0
V(k)
P = σ20e−2χt +

qω
2χ

(1− e−2χt) (4.78)

and

VCS(t) = lim
Δt→0

VCS
k =

√
qωκQ(N) σ20 cosh

(
t
√

qω
κQ(N)

)
+ qωκQ(N) sinh

(
t
√

qω
κQ(N)

)
√

qωκQ(N) cosh
(
t
√

qω
κQ(N)

)
+ σ20 sinh

(
t
√

qω
κQ(N)

) (4.79)
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where κQ(N) = κc + 2κℓ/N. Therefore, the BCRB of Eq. (4.43) in the continuous-time limit
can be now bounded as follows:

E
[
Δ2ω̃(t)

]
≥ 1

F[p(ω(t))] +
∫
dω p(ω(t))F[p(yyyt|ω(t))]

≥ 1
F[p(ω(t))] +

∫
dω p(ω(t))F[Pω(ZZZ t)]

=
1

1
V(t)
P

− 1
V(t)
P

+
1

VCS(t)

= VCS(t) (4.80)

where yyyt = {y(τ) : 0 ≤ τ ≤ t} is the realization of the measurement process, and we have
used Eq. (4.70) to write F[p(ω(t))] = 1/V(t)

P . Hence, in its most general form, the aMSE in the
continuous limit of Δt→ 0 is lower bounded by

E
[
Δ2ω̃(t)

]
≥VCS

σ0 (t) =

√
qωκQ(N) σ20 cosh

(
t
√

qω
κQ(N)

)
+ qωκQ(N) sinh

(
t
√

qω
κQ(N)

)
√

qωκQ(N) cosh
(
t
√

qω
κQ(N)

)
+ σ20 sinh

(
t
√

qω
κQ(N)

) , (4.81)

which in the limit of t→∞, i.e. the steady-state, simplifies to:

E
[
Δ2ω̃(t)

]
≥ VCS

σ0 (t→∞) =
√

qωκQ(N) =

√
qω
(
κc+

2κℓ
N

)
, (4.82)

since coth x = 1 when x→∞. The general form of Eq. (4.81) can be simplified when consider-
ing different regimes: (1) an infinitely wide prior, (2) no field fluctuations and (3) a combination
of both cases. In particular, when σ0 →∞, then Eq. (4.81) reduces to

E
[
Δ2ω̃(t)

]
≥ VCS

∞ (t) =
√

qω κQ(N) coth
(
t
√ qω

κQ(N)

)

=

√
qω
(
κc+

2κℓ
N

)
coth

t
√

qω
(
κc+

2κℓ
N

)−1
. (4.83)
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Figure 4.3: 3D Plot of the CS limit with finite σ0 w.r.t. N and t. Log‐log plot of the CS limit in Eq. (4.81) as a function ofN
and t, showcasing the behavior of the function over several orders of magnitude. The color gradient indicates the magnitude
of the function, transitioning from high (bright) values to low (dark) values. The parameters used to generate this figure:
σ0 = 10 rads−1, qω = 104rad2s−3, κc = 0, κℓ = 100Hz.

If instead we take the limit of qω → 0 of Eq. (4.81), it becomes

E
[
Δ2ω̃(t)

]
≥ VCS

σ0 (t, qω → 0) =
1

1
σ20

+
t

κQ(N)

=
1

1
σ20

+
t

κc +
2κℓ
N

, (4.84)

which exhibits the standard quantum limit (SQL) when considering an infinitely wide prior:

E
[
Δ2ω̃(t)

]
≥ VCS

∞ (t, qω → 0) =
κQ(N)

t
=

κc
t
+

2κℓ
Nt

. (4.85)

As briefly hinted at in the introduction, we refer to this lower bound on the BCRB,VCS
σ0 (t,N),

as either theCS limit or thequantum limit. After going through its derivation, it is hopefully clear
that the term “classically-simulated” is used because the bound is derived by expressing the noisy
quantum evolution as a convex combination of unitary channels (recall Eq. (4.22) or Eq. (4.33)),
which can be efficiently simulated using classical methods. At the same time, we also call it the
“quantum limit” because it represents the general bound on sensitivity that cannot be surpassed
by any strategy involving any quantum effects. Although this limit sets a lower bound on the
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Figure 4.4: 3D Plot of the CS limit with infinitely wide prior w.r.t. N and t. Log‐log plot of the CS limit in Eq. (4.83) as a func‐
tion ofN and t over several orders of magnitude showing its convexity over this specific range. The color gradient indicates
the magnitude of the function: bright is high, and dark is low. The parameters used are: qω = 104rad2s−3, κc = 0, κℓ =
100Hz.

aMSE, it is not guaranteed to be tight; that is, there is no guarantee that there exists an estimator
can attain this bound. However, the CS limit still disproves the possibility of attaining super-
classical scalings ofN2 and t3 in the presence of dephasing [54, 69, 65].
Perhaps most crucially, this quantum limit serves as a powerful benchmark. Since it depends

solely on the noise model and field fluctuations and is entirely independent on the initial state,
measurement and measurement-based feedback, attaining this bound would demonstrate that
the chosen sensing strategy is optimal; namely, that the state preparation, measurement, estima-
tion and control all collectively yield the best possible precision in estimating the fluctuating field.

4.2.9 Atom number fluctuations and the convexity of the CS limit

In practice, the exact number of atomsN in the ensemble may vary from shot to shot. Wemodel
this uncertainty by assumingN ∼ p(N) = N (N̄ , σ2). As a result, the bound given in Eq. (4.80)
must be averaged over the distribution p(N), yielding

Ep(N)

[
E
[
Δ2ω̃(t)

]]
≥ Ep(N)

[
VCS
σ0 (t,N)

]
, (4.86)

where we emphasize the dependence of VCS
σ0 (t,N)w.r.tN.

Importantly, we focus on the CS limit for an infinitely wide prior (see Eq. (4.83)) such that
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the influence of the prior is effectively negligible, allowing us to isolate the effects of the noise
model on the estimation process. In this case, VCS

∞ (t,N) is a convex function of N, which we
verify by evaluating the second derivative of Eq. (4.83) w.r.t. N and checking that it is positive
for allN > 0, t > 0, and qω, κℓ, κc > 0† (see also Fig. 4.4 for a more graphical confirmation).
Then, by applying Jensen’s inequality we obtain

Ep(N)

[
VCS
∞ (t,N)

]
≥ VCS

∞ (t,Ep(N)[N]) = VCS
∞ (t, N̄). (4.87)

Hence, for an uninformative prior and a system with fluctuating atomic number, the aMSE of
the estimate ω is lower bounded by:

Ep(N)

[
E
[
Δ2ω̃(t)

]]
≥
√
qω κQ(N̄) coth

(
t
√ qω

κQ(N̄)

)
(4.88)

where κQ(N̄) = κc + 2κℓ/N̄ .

†We omit the second derivative with respect toN in the CS limit with an infinitely wide prior due to its length,
but it can be readily computed using a symbolic algebra tool such asMathematica.
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5
Models for Noisy Real-Time Atomic

Magnetometry

Tracking a time-varying magnetic field in real time with high sensitivity is es-
sential for applications ranging non-invasive medical diagnostics like magnetocardiography [22,
23, 24, 25, 26] or magnetoencephalography [27, 135], to navigation in GPS-denied environ-
ments [28]. Since in these situations the field varies over time (sometimes even randomly), we
cannot rely on repeated runs to lower the estimation error; and instead, we must explore other
strategies. Besides classical methods, such as boosting signal strength or reducing noise, quan-
tum resources offer another way to enhance sensor performance [8, 10]. In particular, inter-
atomic entanglement in the form of spin-squeezing can improve their sensitivity beyond the
SQL [13, 14, 15, 16, 17].

While quantum enhancement has been demonstrated in repeated measurements using spin-
squeezing [14, 16, 17], its application to single-shot estimation of time-varying signals [136] re-
quires further investigation, particularly for atomic magnetometers. Specifically, having an accu-
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ratemodel of the systemdynamics that incorporatesmeasurement backaction [34, 35, 112, 40] is
essential for understanding how spin-squeezing can enhance real-time estimation. This has been
achieved formechanical oscillators usingquantumGaussian stochasticmodels, enabling accurate
state estimation [44], even at the quantum limit [43], as well as cooling and controlling of both
optomechanical resonators [45, 46, 48, 47, 137] and levitated nanoparticles [49, 50]. Notably,
experiments on unpolarized atomic ensembles with Gaussian unconditional spin dynamics have
also shown that continuous quantum backaction can be used to generate multipartite entangle-
ment [63], even without a fully explicit conditional dynamical model.

In contrast, high-sensitivity spin-precession sensors used in optical magnetometry rely on po-
larized atomic ensembles [64], which generally require a nonlinear (and thus non-Gaussian) de-
scription. This more complex description is given by a stochastic master equation (SME), as
derived in Chap. 3, which we now apply in Sec. 5.1 to the particular case of an optical atomic
magnetometer, detailing both the model and its dynamics. The SME automatically provides a
rigorous model of continuously monitored atomic ensembles [55, 56], incorporating both the
measurement backaction [34, 35, 112, 40] and environmental decoherence due to the unavoid-
able noise present in thesemagnetometers [51, 15, 138, 57, 139, 63]. However, solving it becomes
infeasible for the typical sizes of high-performance magnetometers, where N ∼ 106 − 1015, as
explained in Sec. 5.2.1. As a result, most approaches either (1) ignore [57] or (2) evade [58, 59]
the measurement backaction, (3) simulate the SME for moderately sized ensembles [62] or (4)
adopt approximate linearized Gaussian models [54, 60, 61, 56, 69], as discussed in Sec. 5.2.2.1.
Instead, we address this challenge by developing a nonlinear dynamical model for a continu-

ously measured atomic spin-1/2 ensemble that includes both measurement-based feedback and
dephasing, without relying on linear approximations [65, 66] in Sec. 5.2.2.2. This nonlinear
model, referred to as the co-moving Gaussian (CoG) approximation, allows us to simulate large
ensemblesN ∼ 106 − 1015. We validate this dynamical model by comparing it to the exact SME
solution for moderate-sized ensembles (N ∼ 100), demonstrating its accuracy and scalability.
Besides having a reliable and scalable quantummodel for the atomic magnetometer, we also ad-
dress the problem of optimally estimating the field and controlling the sensor in Sec. 5.3. To this
end, we propose combining an extended Kalman filter (EKF) with a linear-quadratic regulator
(LQR), both introduced in Chap. 2, which are designed using the CoG nonlinear model. The
optimality of the entire sensing protocol, which includes the initial state, measurement, estimate
and control, is verified by deriving and attaining bounds on precision applicable to any sensing
scheme involving measurement-based feedback, as established in Chap. 4.
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Figure 5.1: Geometry of the atomic magnetometer. (a) The magnetometry scheme involves an atomic ensemble optically
pumped along the x‐direction (red arrow) into a coherent spin‐state (CSS). The magnetic field being sensed is directed along
y, while the Faraday‐rotation‐based continuous measurement is performed by using the light‐probe propagating along z (blue
arrow), which yields a photocurrent signal y(t) being recorded. (b) Bloch sphere representation of the angular momentum of
the ensemble prepared in a CSS along x (with red and blue arrows indicating the pumping and probing directions, respectively).

First, we demonstrate how to reach the quantum limit in the Gaussian regime (i.e., the weak-
field regime) in Sec. 5.4.1. We then focus on the more general—and practically important—case
of precession-inducing fields. These field can be (1) constant (see Sec. 5.4.2.1), (2) fluctuating
stochastically (see Sec. 5.4.2.2), or (3) determined by a continuously varying waveform, a mag-
netocardiogram (MCG) (see Sec. 5.4.2.3), which is distorted by stochastic noise that should be
filtered out rather than tracked. The two last signals are tracked by an optical atomicmagnetome-
ter with realistic parameters taken from the experimental setting of Ref. [63] but ignoring spin-
exchange atomic collisions [140, 141]. For both constant and fluctuating fields, we show that the
magnetometer operates at the quantum limit, and that it generates conditional spin-squeezing.

Finally, in Sec. 5.4.3, we resort back to the exact SME in order to demonstrate that the pro-
posed sensing scheme steers the atomic ensemble into a state that exhibits unconditional spin-
squeezing [12], i.e. the state is entangled even when not recording the measurement data.

5.1 Atomic magnetometer model

5.1.1 Setup and its dynamics

At its core, an optical atomic magnetometer extracts information about a field from light that
is scattered after interacting with a collection ofN atoms (as depicted in Fig. 3.1). Importantly,
these atoms should be sensitive to the time-varying and/or stochastic magnetic field B(t)we aim
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to sense.
Thus, to monitor the changes in the atomic state caused by the interaction with the magnetic

field, the magnetometer must: (1) prepare the atoms into a suitable initial state, (2) allow their
state to evolve due to its interaction with the magnetic field, and (3) simultaneously probe that
state with a continuous non-demolition measurement [138]. Additionally, one might devise a
control law that (4) steers the atoms towards a state optimized for magnetometry.

5.1.1.1 Preparation

The ensemble ofN atoms is initialized by pumping it with circularly polarized light along the x-
direction (see Fig. 5.1) such that only two energy levels of each atom contributes to the field and
probing interactions [142, 134]. Thus, we treat the ensemble as a collection ofN spin-1/2 parti-
cles. Then, the evolution of the total spin can be described through collective angularmomentum
operators:

Ĵα =
N∑
i=1

σ̂(i)α
2
, with α = x, y, z, (5.1)

defining a vector of collective angular momentum operators ĴJJ = ( Ĵx, Ĵy, Ĵz)T. Optical pumping
of the atoms along the x-direction initializes a coherent spin state (CSS) along the same direc-
tion [143] (see also Sec. 1.4.4), so that the initial mean and variance of the ensemble angular mo-
mentumoperators, denoted by the vector ĴJJ(t) = ( Ĵx(t), Ĵy(t), Ĵz(t))T in theHeisenberg picture,
read ⟨ ĴJJ(0)⟩CSS = (J, 0, 0)T and ⟨Δ2ĴJJ(0)⟩CSS = (0, J/2, J/2)T, respectively, where J = N/2. As
shown in Fig. 5.2a, one may visualize the distribution of the angular momentum of a CSS with
the help of the Wigner distribution, which is mapped onto the Bloch sphere (see Sec. 1.4.6).

5.1.1.2 Evolution

Once pumped, the total spin of the polarized atoms starts to precess around the magnetic field
axis (see Fig. 5.2a), assumed hereafter to be the z-axis, at a Larmor frequency ω(t) = γB(t), with
γ being the effective (constant) gyromagnetic ratio. This translates into a unitary evolution of the
state of the atoms:

dρ(t) = −iω(t)
[
Ĵz, ρ(t)

]
dt, (5.2)

where ρ(t) is the density matrix of the atoms. Thanks to this Zeeman term, it becomes clear how
the atomic state can bemonitored to indirectly track themagnetic field, which is themain goal of
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Figure 5.2: Bloch sphere representation of a CSS and phase representation of a coherent state. (a) Visual representation onto
a generalized Bloch sphere of the Wigner function of a CSS of 100 spin‐1/2. Warmer colors near the center represent higher
values of the Wigner distribution, while cooler colors farther away indicate its gradual decay. To generate this figure, we have
used the spherical harmonic expansion described in Sec. 1.4.6. (b) Depiction of a coherent state in the phase space.

any magnetometer. In this thesis, we consider the signal to track, i.e. B(t) (or equivalently, ω(t)),
to follow three different profiles:

1. Constant: The Larmor frequency does not change in time, i.e. ω(t) = ω s.t.,

dω(t) = 0. (5.3)

2. Fluctuating: The stochastic field we consider is an OUP (see Sec. 1.3.6), whose evolution
is governed by the following SDE:

dω(t) = −χ(ω(t)− ω̄)dt+√qωdWω, (5.4)

where dWω is a Wiener differential, with mean zero and varianceE
[
dW2

ω
]
= dt. The drift

and volatility parameters: χ ≥ 0 and qω ≥ 0, are constant. The long-term mean towards
which the process reverts, ω̄, is also positive.

3. Time-varying: The last magnetic field profile we aim to track is a time-varying but deter-
ministic signal resembling a heartbeat, i.e. a MCG. This MCG-like signal can be modeled
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using the dynamics of a filtered Van der Pol (VdP) oscillator:

dν(t) = −p ω(t) dt (5.5)

dω(t) =
k
m
ν(t) dt+ 2

c
m
(1− υ(t)) ω(t) dt (5.6)

dυ(t) =
|ν(t)| − ν(t)

2T
dt− υ(t)

T
dt, (5.7)

where the frequency of interest, ω(t), is part of a larger state vector describing the signal
evolution: xxxs(t) = (ν(t), ω(t), υ(t)). The parameters specifying the MCG-like signal are
all positive constants: p, k,m, c,T > 0. Additionally, we distort the time-varying signal
ω(t)by addingwhite noise. This noise is not a featurewe aim to track and therefore, should
be filtered out without resorting to time-averaging [22, 144].

5.1.1.3 Measurement

In order to track the magnetic field in real time, we must continuously measure the state of the
atoms. There are various continuous measurements that can be implemented, but here we con-
sider a continuous polarimetric measurement [133, 13, 130, 125, 120, 63] (see Sec. 3.2.3). As
depicted in Fig. 5.1, a probe beam traveling along y with linearly polarized light is transmitted
through an atomic cloud. The interaction with the atoms rotates the polarization of the probe
by angle Θ ∝

〈
Ĵy(t)

〉
(c)
, due to the Faraday effect [134]. This change in polarization, and thus,

the variation in
〈
Ĵy(t)

〉
(c)
, is later measured with a polarizing beam splitter and two photodetec-

tors [130]. The effect of such a measurement on the state of the atoms can be described through
a SME, as derived in detail in Sec. 3.2.3. Hence, the master equation in Eq. (5.2) becomes a SME
of the form:

dρ
(c)
(t) = −iω(t)

[
Ĵz, ρ(c)(t)

]
dt+MD[ Ĵy]ρ(c)(t)dt+

√
ηMH[ Ĵy]ρ(c)(t)dW, (5.8)

with an associated measurement:

dy = 2η
√
M
〈
Ĵy(t)

〉
(c)
dt+√ηdW, (5.9)

where M is the measurement strength, η ∈ [0, 1] the detection efficiency, dW is the Wiener
differential (see Sec. 1.2.3) and

〈
Ĵy(t)

〉
(c)

:= Tr
{
ρ
(c)
(t) Ĵy

}
. Note that throughout this thesis, the

detection efficiency is assumed to be perfect (i.e. η = 1), and thus, in Sec. 3.2 we have not derived
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the SME for inefficient detection as given in Eq. (5.8). A detailed derivation yielding the SME
of Eq. (5.8) can be found in Ref. [119]. The sub-(c) notation simply indicates that the density
matrix of the atoms is now dependent, i.e. conditional, on the recorded measurement trajectory
yyyt = {y(τ)}τ≤t. Namely,

ρ
(c)
(t) := ρ(t|yyyt), (5.10)

which is simply Eq. (3.23) but written in continuous time. The two terms in Eq. (5.8) describing
themeasurement back-action arise naturally when discretizing the interaction of the systemwith
a conveyor-belt like probe (see Sec. 3.2). The first term is a dissipative one, with the superoperator
D[ · ] · given by Eq. (1.196). The second term is stochastic as well as nonlinear w.r.t. ρ

(c)
(t),

where the superoperatorH[ · ] · is defined in Eq. (3.39), and is correlated with the measure-
ment outcomes dy through the Wiener differential dW. This last term is the one responsible for
the creation of conditional spin squeezing [125, 69].

5.1.1.4 Modeling noise

Noise in quantum systems arise from the interaction of the system with an unmonitored envi-
ronment. In our work, we incorporate local and global dephasing terms into Eq. (5.8):

dρ
(c)
(t) =− iω(t)

[
Ĵz, ρ(c)(t)

]
dt+

κℓ
2

N∑
j=1

D[σ̂(j)z ]ρ
(c)
(t)dt + κcD[ Ĵz]ρ(c)(t)dt

+MD[ Ĵy]ρ(c)(t)dt+
√
ηMH[ Ĵy]ρ(c)(t)dW, (5.11)

dy = 2η
√
M⟨ Ĵy⟩(c)(t)dt+

√ηdW, (5.12)

which model effects such as collisions, stray fields, and laser instabilities occurring along the z-
direction, i.e. the direction along which the B-field is applied. Local dephasing, as its name sug-
gests, acts independently on each individual atom at a rate κℓ [145]. Similar mechanisms affect-
ing the entire ensemble uniformly can instead be modeled with collective dephasing, at a rate κc
[146, 147].

5.1.1.5 Feedback

Finally, we also consider controlling the system by feeding back estimates constructed from the
measurement record through, for instance, coils placed around the atomic ensemble (see Fig. 5.1).
In particular, by applying the control law u(t) := u(yyy(t)) along the direction of the field B(t),
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the Larmor frequency at time t will be modified to ω(t) → ω(t) + u(t). Importantly, because
of the addition of a control field which depends on the whole measurement record yyy(t) up to
time t, the dynamics of the atomic ensemble at each time step are now dependent on the entire
measurement history, instead of the last measurement increment. Since the control is applied as
a magnetic field along z, it comes up in the SME of Eq. (5.11) as a unitary term:

dρ
(c)
(t) =− i (ω(t) + u(t))

[
Ĵz, ρ(c)(t)

]
dt+

κℓ
2

N∑
j=1

D[σ̂(j)z ]ρ
(c)
(t)dt + κcD[ Ĵz]ρ(c)(t)dt

+MD[ Ĵy]ρ(c)(t)dt+
√
ηMH[ Ĵy]ρ(c)(t)dW, (5.13)

y(t)dt = 2η
√
M
〈
Ĵy(t)

〉
(c)
dt+√ηdW. (5.14)

This is the final form of the SME that we consider throughout this chapter. One important
question that remains to be answered is how to design the control law u(t). As hinted earlier
and also depicted in Fig. 5.1, the control u(t) will be a function of estimates constructed from
themeasurement record yyy(t) = {y(τ)}0≤τ≤t, applied back into the system through a closed-loop
structure of the form shown in Fig. 5.3. The exact form of the controller and estimator will be
discussed later.

Atomic ensemble
(System) Estimator

Controller

ω(t)
yyy(t) x̃xx(t)

Record

uuu(t)

Figure 5.3: Block diagram of the optical atomic magnetometer. Structure of a closed‐loop control feeding back to the atoms
a control function u(t) devised from estimators computed from measurement data yyy(t) provided by a system (in this case,
an atomic ensemble). The control law at time t is constructed from the whole measurement history because the estimator
at time t depends on the estimator at the previous time step and the measurement at time t. The photocurrent y(t) is com‐
puted following Eq. (5.14), with the conditional mean of Ĵy provided either by the conditional state evolved according to
Eq. (5.13) or by an approximate dynamical model containing first and second order moments. Assessing the accuracy of such
an approximation in replicating the evolution of the system can be done at two different stages: comparing the estimator ω̃
w.r.t. the real Larmor frequency ω (output of dashed box v.s. input), or comparing comparing the first and second moments
given by the approximation v.s. the moments provided by the evolution of the conditional density matrix (output of dashed
box depending on how we evolve the system).
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5.2 Simulating the system

In the absence of an experiment providing us with real-time measurements y(t), the next best
thing is simulating Eqs. (5.13-5.14) to generate the measurement trajectories y(t). To explic-
itly simulate this SME, we adapt recent numerical methods [148] to incorporate estimation and
feedback. However, a direct numerical simulation is feasible only for atomic ensembles of small
to moderate size. This limitation motivates us to develop an effective model for the dynamics
that applies to relevant experiments [13, 15, 63]. Moreover, this effective dynamical model can
be then used to design the building blocks of an estimation+control scheme. Nevertheless, nu-
merical simulations remain crucial for validating our approach and studying unconditional spin-
squeezing (see Sec. 5.4.3 for more details). In particular, by benchmarking against “brute-force”
numerics, we ensure that ourmodel can be extrapolated to larger ensemble sizes beyond the reach
of direct simulation.

5.2.1 Exact numerical solution of the SME

Simulating the full ensemble dynamics of a typical optically pumped magnetometer, with sizes
ranging in betweenN ≈ 105−1013 [13, 14, 15, 16, 17, 63], is computationally prohibitive, since
the dimension of the underlyingHilbert space scales exponentially withN, i.e. as 2N for two-level
systems such spin-1/2 atoms. Fortunately, the size of the density matrix can be reduced to scale
only polynomially withN when the system maintains permutational invariance throughout its
evolution, i.e., when any two atoms in the ensemble are indistinguishable. In particular, the com-
plexity of a collection of spin-1/2 atoms scales asO(N 3) [149, 150, 76], since the density matrix
is now a block-diagonal matrix with each block corresponding to a spin-number j ranging from
0 ( 12 ) toN/2 for even (odd)N. Additionally, if the evolution is exclusively governed by collective
operators, which are themselves also permutationally invariant, any state initially living within
the totally symmetric subspace (with j = N/2), e.g. CSS, evolves within it, further reducing the
complexity toO(N) [149, 150, 76].

Turns out, that the SME in Eq. (5.13) preserves the permutational symmetry and, for the case
of κℓ = 0, it is even sufficient to study the evolution of the densitymatrix supported by the totally
symmetric subspace (with j = N/2). Although this symmetry greatly simplifies the simulation
of the SME, it still cannot be solved for ensembleswithN ≈ 105−1013 but rather for ensembles of
more moderate sizes of aroundN ≈ 100 [76, 62]. For these type of systems, we employ the code
of Rossi et al. [148] to numerically integrate the SME by exploiting the symmetries described
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above. In particular, it constructs Kraus operators of the weak measurement at each time-step,
while also guaranteeing the positivity of the density matrix [151, 152]. We extend it to perform
estimation and control tasks in order to implement the closed-open loop described in Fig. 5.3.

5.2.2 Gaussian approximations

Since the exploitation of permutational symmetry is not sufficient to simulate the system in the
experimentally relevant values ofN, an alternative approach is to derive from Eq. (5.13) a system
of SDEs of the moments of the collective angular momentum operators Ĵx, Ĵy and Ĵz. Although
the density matrix ρ

(c)
(t) encodes all the statistical information about the system, one may alter-

natively focus on the evolution of the moments of the system’s observables [38, 153, 121]. By
taking expectation values and higher-order correlations from the SME, it is possible to derive a
set of SDEs for these moments (or cumulants). In general, the evolution of a lower-order mo-
ment (such as the mean value of an observable) depends on higher-order moments (such as the
variance), resulting in an infinite hierarchy of coupled SDEs. Tomanage this complexity, one can
approximate the higher-order products by neglecting correlations beyond a certain order, effec-
tively truncating the hierarchy [154]. In certain special cases, such as when the state of the system
is Gaussian, the hierarchy closes; that is, all higher-order moments can be expressed in terms of
the first and second moments. Consequently, only a finite number of equations are required to
capture the system’s dynamics completely [54, 155].

5.2.2.1 Linear and Gaussian regime

It is evident from Eq. (5.13) that the evolution of the state is not inherently linear, meaning that
the atomic state is not guaranteed to remainGaussian over time. However, under certain approx-
imations, the SME in Eq. (5.13) can be reduced to a closed, linear system of SDEs of the first and
second moments. Specifically, by neglecting feedback and local noise effects, and assuming the
magnetic field B is sufficiently small, then at short enough timescales, t . 1/(M + κc), we can
approximate

〈
Ĵx(t)

〉
(c)
with its unconditional average value ⟨ Ĵx(t)⟩ = J e−(M+κc)t/2 [69], where

J = N/2. If the B−field is not constant and instead follows an OU process like in Eq. (5.4),
one must ensure that the process obeys the constraints χt . 1 and qωt3 . 1 for any time
t < (M+ κc)−1 (see App. E.1 for a detailed derivation *).

*In it we also discuss why the system is unaffected by dephasing acting along the x or y directions
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Figure 5.4: Bloch sphere representation of the atomic state: Linear and Gaussian and co‐moving Gaussian approximations.
The 3D‐plot on the left shows the Wigner function of a CSS aligned along the x‐axis, represented on a generalized Bloch
sphere forN = 100 particles. When the atomic ensemble is large (N ≫ 1), the local curvature of the sphere near the
peak of the CSS can be approximated by a tangent plane, often referred to as the LG‐plane or Holstein‐Primakoff plane (in
light blue or light pink), in which the effective phase‐space quadratures X̂ and P̂ are defined as in Eq. (5.15). The continuous
measurement of the y spin‐component induces spin‐squeezing of the atomic state, which in this planar approximation, cor‐
responds to the (anti)squeezing of the (P̂ )X̂ quadrature (see right side). To preserve this Gaussian approximation over longer
timescales, the LG‐plane is allowed to co‐rotate with the spin at the Larmor frequency ω, an approach referred to as the as
the CoG approximation.

Under these approximations, the collective angular momentum vector ĴJJ(t) remains predomi-
nantly aligned with the x-axis, with only small deviations. In that case, and for sufficiently large
N, the surface of the generalized Bloch sphere can thus be approximated by a two-dimensional
phase-plane perpendicular to the vector ĴJJ(t) [54, 56, 69] (see Fig. 5.4 for a depiction). This plane
then defines an effective phase space with position and momentum operators given by:

X̂ := Ĵy/
√
|⟨ Ĵx(t)⟩|, and P̂ := Ĵz/

√
|⟨ Ĵx(t)⟩|, (5.15)

which satisfy the canonical commutation relation [X̂ , P̂ ] ≈ i, as long as Ĵx ≈
∣∣∣⟨ Ĵx(t)⟩∣∣∣ I for

sufficiently largeN [60, 61] and (M+κc)t . 1, qωt3 . 1, and χt . 1. With these approximations
in place, the SME (5.13) reduces to a linear set of SDEs for the first and second moments of the
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quadratures (5.15), as well as in the magnetic field B [60, 61]:

y(t)dt = 2η
√
M
〈
Ĵy(t)

〉
(c)
dt+√ηdW, (5.16)

dω(t) = −χω(t)dt+√qωdWω, (5.17)

d
〈
Ĵy(t)

〉
(c)

= ω(t) J e−(M+κc)t/2dt+ 2
√

ηMVy(t)dW, (5.18)

dVy(t) = −4ηMVy(t)dt+ κc J 2 e−(M+κc)tdt, (5.19)

where we have dropped the sub-index (c) because the variance is no longer conditional on the
measurement outcomes. In fact, Eq. (5.19) is completely decoupled of other state variables and
can, therefore, be solved independently (see App. E.2). Therefore, Eqs. (5.16-5.18) define a con-
tinuous state-spacemodel that describes both the evolution of the state vector and its relationship
to observations (i.e., themeasurement vectoryyy≤t. In this case, the state vector is constructed from
the variables

〈
Ĵy(t)

〉
(c)
and ω(t) as follows:

xxx(t) = (
〈
Ĵy(t)

〉
(c)
, ω(t) )T. (5.20)

Following the framework of state-space models provided in Sec. 2.3.1, we identify the state and
measurement noise vectors as dwww(t) = ( dW, dWω )

T and dvvv(t) = √η dW, respectively. Using
these definitions, the system of SDEs given by Eqs. (5.16-5.18) can be expressed as:

dxxx(t) = FFF(t)xxx(t) dt+GGG(t) dwww(t), (5.21)

dyyy(t) = HHH(t)xxx(t) dt+ dvvv(t), (5.22)

where the matrices are defined as:

FFF(t) =

(
0 J e−r t/2

0 −χ

)
, GGG(t) =

(
2
√

ηMVy(t) 0
0 √qω

)
, HHH(t) = 2

√
ηM

(
1 0

)
, (5.23)

with the noise correlations defined as E
[
dwww(t)dwwwT(s)

]
= QQQ(t) δ(t − s) dt, E

[
dvvv(t)dvvvT(s)

]
=

RRR(t) δ(t − s) dt and E
[
dwww(t)dvvvT(s)

]
= SSS(t) δ(t − s) dt. Based on the noise vector definitions,

the covariance matrix for the system noise is QQQ(t) = I, the measurement noise has a scalar
variance RRR(t) = η, and the cross-correlation matrix between the system and measurement is
SSS(t) = (

√η , 0 )T. Notably, the field and atomic noises are uncorrelated: E[dWωdW] =

E[dWdWω] = 0. Furthermore, since E
[
dW2] = E

[
dW2

ω
]
= dt ≥ 0, the covariance matrix
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QQQ(t) satisfies semi-positivity (i.e.,QQQ ≥ 0). Finally, observe that both dwww(t) and dvvv(t) are partially-
correlated Gaussian noises and FFF(t)xxx(t) andHHH(t)xxx(t) are both linear functions w.r.t. the state
vector. This is consistent with Eqs. (5.16-5.18), which involve Gaussian stochastic terms and are
linear with respect to one another. Therefore, a state-spacemodel of the form in Eqs. (5.21-5.22)
(or Eqs. (5.16-5.19)) is referred to as linear and Gaussian (LG) [69].

Analytical solutionof the spin-squeezing parameter in theLGregime The dy-
namics of Vy(t) can be found analytically by solving Eq. (5.19), since it is a differential equation
fully decoupled from the rest. Due to its complexity, the complete analytical solution is presented
in detail in App. E.2 [69]. However, the expression for the variance of Ĵy greatly simplifies when
dividing it into a short-time and long-time regime:

Vy(t) =


V<t∗(t) =

J
2

1+ 2Jtκc
1+ 2JtMη

e−(M+κc)t/2, if 0 ≤ t≪ t∗ (5.24a)

V>t∗(t) =
J
2

√ κc
ηM

e−(M+κc)t/2, if t≫ t∗ (5.24b)

where initially Vy(0) = J/2, and t∗ = (2J
√

Mκcη)−1 is the transition time between the two
regimes. Importantly, note that t≪ t∗ implies 2Jtκc ≪

√
κc/(ηM). Then, if also κc < ηM, we

may infer 2Jtκc ≪ 1 and approximate 1 + 2Jtκc ≈ 1 in (5.24a). As a result, we then recover the
known noiseless (κc = 0) solution for the variance within the short-time regime [54]:

Vy(t) =
J
2

1+ 2Jtκc
1+ 2JtMη

e−(M+κc)t/2 ≈ J
2+ 4JtMη

, (5.25)

despite collective dephasing being present, i.e. κc > 0. In fact, we prove also in App. E.2 that
Vy(t) is a non-decreasing function at t ≈ 0 if κc ≥ ηM. Hence, the noise may be considered
negligible at small times only if κc < ηM.

Finding an analytical solution for the variance Vy(t) is crucial because of its close relationship
with the spin-squeezing parameter of the atomic ensemble [143] introduced by Wineland et al.
[6]. In the experimental setup of Fig. 5.1, a continuousmeasurement performed along y squeezes
the variance of Ĵy, Vy(t), in detriment of the variance of Ĵz. Given that we want to use this state
to sense small variations in ω, it follows that the state should have maximal polarization along
x and minimal variance along y (or maximal squeezing). How closely such a state resembles a
CSS pointing along x is therefore quantified by the spin-squeezing parameter ξ 2y [83, 6, 12] (see
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Figure 5.5: Strong and weak dephasing regimes for the squeezing parameter. Both figures plot the squeezing parameter ξ 2y (t)
as defined in equation (5.26) as a function of scaled time ts = (M+κc)t, for the case of κc = 10mHz < M = 100 kHz
(right) and κc = 100MHz > M = 100 kHz (left). The exact function ξ 2y (t) (solid, blue) is compared with its two different
regimes ξ 2<t∗(t) and ξ

2
>t∗(t) (dashed, yellow and green, respectively), as well as the noiseless solution when κc < M

(dashed, red). The gray dash‐dot line indicates the inflection point t∗, where the transition between the two regimes occurs.
The other parameters used to generate the plots are J = 109, γ = 1 kHz/mG, and η = 1. The time has been rescaled to
tS = (M+ κc)t so that its range is therefore limited to tS ∈ [0, 1], where the LG approximation holds.

Sec. 1.4.7):

ξ 2y (t) :=
Vy(t)
⟨ Ĵx(t)⟩2

( VCSS
y

⟨ Ĵx⟩2CSS

)−1

=
N Vy(t)
⟨ Ĵx(t)⟩2

, (5.26)

since ξ 2y (t) < 1 indicates a gain in squeezing relative to the CSS [6], whereas ξ 2y (t) ≥ 1 implies
the absence of spin squeezing and, consequently, the inability to certify multi-particle entangle-
ment [12].

Next, given that Vy(t) has two distinct regimes, as presented in Eq. (5.24), the spin-squeezing
parameter can be similarly split as

ξ 2y (t) ≈
2Vy(t)

Je−(M+κc)t
=


ξ 2<t∗(t) =

1+ 2Jtκc
1+ 2JtMη

e(M+κc)t/2, if 0 ≤ t≪ t∗, (5.27a)

ξ 2>t∗(t) =
√ κc

ηM
e(M+κc)t/2, if t≫ t∗. (5.27b)

In Fig. 5.5 we present explicitly the exact dynamics of the squeezing parameter (5.26) in the LG
regime for the two important cases: (right), when κc < ηM and the spin-squeezing (ξ 2y (t) < 1)
occurs within a finite-time window (see Fig. 5.5 (right)); and (left), when κc ≥ ηM for which
spin-squeezing is forbidden (i.e. ξ 2y (t) ≥ 1, as shown in Fig. 5.5 (left)). In both cases, it is evident
that the exact solution for ξ 2y (t) very closely follows the two-regime behavior in (5.27), with a
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clear transition at t ≈ t∗. Moreover, as seen explicitly from the two-regime solution (5.27) (and
the exact solution that can be straightforwardly derived based on the explicit variance evolution
of App. E.2), the dynamics of the squeezing parameter are specified solely by the properties of
the continuous measurement (η andM), collective decoherence (κc), and the number of atoms
( J = N/2).

5.2.2.2 Co-moving Gaussian approximation

In practical magnetometers [13, 14, 15, 16, 17, 63], the atomic spin must precess multiple times
during detection to collect a sufficient signal. Since the LG approximation assumes that the an-
gular momentum vector does not precess, it is no longer applicable. To then maintain an ap-
proximately Gaussian description of the system at all times, we allow the LG-plane (see Fig. 5.4)
to precess with the mean angular-momentum vector ⟨ ĴJJ(t)⟩ at the frequency ω [156]. This ap-
proach is referred to as the co-moving Gaussian (CoG) approximation [65], and it holds under
the following conditions: (1) the ensemble size is large, i.e.,N≫ 1; and (2) the squeezing arising
from the continuous measurement is not strong enough to wrap the Wigner function around
the Bloch sphere.

Specifically, by analyzing the conditional evolution in the Heisenberg picture for the mean
angular momenta

〈
Ĵα(t)

〉
(c)
, α = x, y, z, and their corresponding covariance matrix C(c)

αβ(t) :=

1
2

(〈
{ Ĵα(t), Ĵβ(t)}

〉
(c)
− 2
〈
Ĵα(t)

〉
(c)

〈
Ĵβ(t)

〉
(c)

)
with diagonal elements V(c)

α (t) := C(c)
αα(t) (α, β =

x, y, z), we derive a set of coupled SDEs based on the SME (5.13) (details in App. E.3). For sim-
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plicity, the explicit time dependence of all the quantities is omitted below:

d
〈
Ĵx
〉
(c)
=−(ω(t)+u(t))

〈
Ĵy
〉
(c)
dt− 1

2
(κc+2κℓ+M)

〈
Ĵx
〉
(c)
dt+2

√
ηMC(c)

xy dW (5.28a)

d
〈
Ĵy
〉
(c)
=(ω(t)+u(t))

〈
Ĵx
〉
(c)
dt− 1

2
(κc+2κℓ)

〈
Ĵy
〉
(c)
dt+2

√
ηMV(c)

y dW (5.28b)

dV(c)
x =−2(ω(t)+u(t))C(c)

xy dt+κc
(
V(c)

y +
〈
Ĵy
〉2
(c)
−V(c)

x

)
dt+κℓ

(
N
2
−2V(c)

x

)
dt

+M
(
V(c)

z −V(c)
x −4ηC(c)

xy
2
)
dt (5.28c)

dV(c)
y =2(ω(t)+u(t))C(c)

xy dt+κc
(
V(c)

x +
〈
Ĵx
〉2
(c)
−V(c)

y

)
dt+κℓ

(
N
2
−2V(c)

y

)
dt

−4ηMV(c)
y

2dt (5.28d)

dV(c)
z =M

(
V(c)

x +
〈
Ĵx
〉2
(c)
−V(c)

z

)
dt (5.28e)

dC(c)
xy =(ω(t)+u(t))

(
V(c)

x −V(c)
y

)
dt−κc

(
2C(c)

xy +
〈
Ĵx
〉
(c)

〈
Ĵy
〉
(c)

)
dt−2κℓC(c)

xy dt

− 1
2
MC(c)

xy

(
1+ 8ηV(c)

y

)
dt (5.28f)

dω=−χω(t) dt+√qω dWω, (5.28g)

wherewe have ignored all the (stochastic) contributions that involve the third-ordermoments (as
discussed in App. E.3).

This systemof SDEgives us a state-spacemodel, a continuous-time version of the discrete-time
state-spacemodel introduced in Sec. 2.3.1. If wewrite Eq. (5.28) in Langevin form instead of Itô,
then:

ẋxx(t) = fff (xxx(t), u(t),qqq(t), t) , (5.29)

y(t) = h(xxx(t), r(t), t), (5.30)

where xxx(t) = (
〈
Ĵx
〉
(c)
,
〈
Ĵy
〉
(c)
,V(c)

x ,V(c)
y ,V(c)

z ,C(c)
xy , ω)T is the state vector, u(t) is the control field,

and qqq(t) and r(t) are the state and measurement noises. The function fff (xxx(t), u(t),qqq(t), t) is
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nonlinear w.r.t. xxx(t) and given by the SDE system in Eq. (5.28):

fff (xxx(t), u(t),qqq(t), t) = (5.31)

−(ω(t)+u(t))
〈
Ĵy
〉
(c)
− 1

2(κc+2κℓ+M)
〈
Ĵx
〉
(c)
+2
√
ηMC(c)

xy ξ
(ω(t)+u(t))

〈
Ĵx
〉
(c)
− 1

2(κc+2κℓ)
〈
Ĵy
〉
(c)
+2
√
ηMV(c)

y ξ

−2(ω(t)+u(t))C(c)
xy +κc

(
V(c)

y +
〈
Ĵy
〉2
(c)
−V(c)

x

)
+κℓ

(N
2 −2V

(c)
x
)
+M

(
V(c)

z −V(c)
x −4ηC(c)

xy
2
)

2(ω(t)+u(t))C(c)
xy +κc

(
V(c)

x +
〈
Ĵx
〉2
(c)
−V(c)

y

)
+κℓ

(
N
2 −2V

(c)
y

)
−4ηMV(c)

y
2

M
(
V(c)

x +
〈
Ĵx
〉2
(c)
−V(c)

z

)
(ω(t)+u(t))

(
V(c)

x −V(c)
y

)
−κc

(
2C(c)

xy +
〈
Ĵx
〉
(c)

〈
Ĵy
〉
(c)

)
−2κℓC(c)

xy− 1
2MC(c)

xy

(
1+ 8ηV(c)

y

)
−χω(t) +

√qω ξω


.

On the other hand, h(xxx(t), r(t), t) is actually a linear function, since the measurement model in
Eq. (5.14) is linear w.r.t. the state xxx(t):

y(t) = 2η
√
M
〈
Ĵy(t)

〉
(c)
+
√ηξ = h(xxx(t), r(t), t) = HHHxxx(t) + r(t) (5.32)

whereHHH = 2η
√
M (0 1 0 0 0 0 0) and the state and measurement noises are:

qqq(t) =

(
ξ
ξω

)
, and r(t) = √ηξ, (5.33)

where ξ and ξω are Langevin noises defined as ξ := dW/dt and ξω := dWω/dt, respectively.
In order to validate the CoG approximation, we compare it against the exact SME solution for

simulatable ensemble sizes. Our results indicate that while the first and second moments of the
system (e.g.,

〈
Ĵx
〉
(c)
,
〈
Ĵy
〉
(c)
, and V(c)

y ) show good agreement between the exact and approximate
approaches, the real-time estimation of the Larmor frequency ω̃(t) using the CoG-based dynam-
ics aligns evenmore closely with the one generated by the exact SME. This accurate generation of
an estimate of ω(t) without having to resort to a full SME simulation, reinforces the usefulness
of the proposed CoG approximation, especially in the experimentally relevant regimes of large
N. A comprehensive error analysis is presented in App. E.4.
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5.3 Estimation and control

So far, we have outlined both the physical dynamics and numerical solution of the system—that
is, the atomic ensemble within the optical atomicmagnetometer. In particular, we discussed two
complementary simulation strategies: one that exploits the permutational symmetry of the en-
semble to numerically solve the SME for moderate system sizes, and another based on Gaussian
approximations that captures the essential dynamics in larger, experimentally relevant regimes.
However, as illustrated in Fig. 5.3, this represents only part of the complete picture. Our next
goal is to explore state estimation and control methods that use the real-time measurement data
to monitor and steer the system continuously, thereby enhancing the performance of the mag-
netometer in tracking the magnetic field.

5.3.1 Kalman filter

For an atomic magnetometer operated in the LG regime, like the one in Sec. 5.2.2.1, the optimal
estimator x̃̃x̃x(t) = (

〈 ˜̂Jy(t)〉(c), ω̃(t) )T is given by the correlated Kalman filter (KF) [29] (see also
Sec. 2.6):

˙̃xxx(t) = FFF(t)x̃xx(t)+KKK(t)(y(t)−HHH(t)x̃xx(t)) , (5.34)

KKK(t) =
(
ΣΣΣ(t)HHHT(t)−GGG(t)SSS(t)

)
RRR−1(t), (5.35)

Σ̇ΣΣ(t) = FFF(t)ΣΣΣ(t)+ΣΣΣ(t)FFFT(t)−KKK(t)RRR(t)KKKT(t)+GGG(t)QQQ(t)GGGT(t), (5.36)

where the differential equation for the covariance matrix ΣΣΣ(t) = E
[
xxx(t)− x̃̃x̃x(t))(xxx(t)− x̃̃x̃x(t))T

]
,

the Riccati equation, yields the (minimal) estimator error of xxx(t), with initial conditionsΣΣΣ(0) =
Diagonal [0, σ20], where σ20 is the variance of the prior distribution p(ω0). The rest of the matri-
ces, FFF(t), GGG(t), HHH(t), QQQ(t), SSS(t) and RRR(t) are provided by the model in Eq. (5.23), and the
photocurrent y(t) is given by Eq. (5.22).

Solution in the absence of decoherence and field fluctuations In the absence
of dephasing and field fluctuations (κc = κℓ = 0, and qω = χ = 0), the Ricatti equation in
(5.36) can be explicitly solved [54] by redefining the covariancematrix asΣΣΣ(t) = YYY(t)XXX(t)−1, and
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thus decoupling the Riccati equation as:

ẊXX(t) = −
(
FFF(t)−GGG(t)SSS(t)RRR−1(t)HHH(t)

)T
XXX(t) +HHHT(t)RRR−1(t)HHH(t)YYY(t), (5.37)

ẎYY(t) =
(
FFF(t)−GGG(t)SSS(t)RRR−1(t)HHH(t)

)
YYY(t)+GGG(t)

(
QQQ(t)−SSS(t)RRR−1(t)SSST(t)

)
BBBT(t)XXX(t), (5.38)

with initial conditionsXXX(0) = I and YYY(0) = ΣΣΣ(0). Since κc = 0, the solution to the variance
differential equation in Eq. (5.19) is

Vy(t) =
J

2+ 4Mη J t
, (5.39)

as shown in App. E.2. Moreover, since no fluctuations of the field are being considered, the
volatility matrix is now simplyGGG(t) = Diag[2

√
ηMVy(t), 0]. Under these conditions, the de-

coupled system of differential equations introduced in Eqs. (5.37-5.38), given initial conditions
XXX(0) = I andYYY(0) = Diag[0, σ20], can be analytically solved. The solution for ΣΣΣω,ω, which for a
LG systemmatches the aMSE,E

[
Δ2ω̃(t)

]
, is:

E
[
Δ2ω̃HS(t, σ0)

]
= A

(1+ 2 JMtη)
a(t) e−Mt + 4 (1+ 4 J η) e−Mt/2 + b(t)

, (5.40)

where

A = M2/(16η J2), (5.41)

a(t) = −(1+ 2η J (4+Mt)), (5.42)

b(t) =
M2

16η J 2σ20
+

M3t
8 J σ20

+ (Mt− 3) + 2η J (Mt− 4) (5.43)

=
M2

16η J 2σ20
+

M3t
8 J σ20

+ c(t), (5.44)

with the subscriptHShighlighting the super-classical scaling of the error in both t andN (Heisen-
berg scaling). Note that for σ20 →∞, the functions b(t) and c(t) are equal andE

[
Δ2ω̃HS(t,∞)

]
matches consistently the solution of Geremia et al. [54]. In order to highlight its non-classical
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scaling with t andN, the aMSE can be approximated as

E
[
Δ2ω̃HS(t,∞)

]
≈


1
N 2

3
ηMt3

, for t≪ (NM)−1,

4
N 2

3
ηMt3

, for (NM)−1 ≪ t (< M−1),
(5.45)

when assuming no initial knowledge of the field (σ20 → ∞). The first term in (5.45) is derived
by Taylor expanding to leading order in time the solution E

[
Δ2ω̃HS(t,∞)

]
. The second term is

obtained by expandingE
[
Δ2ω̃HS(t,∞)

]
to leading order around (NMt)−1.

Steady state solution of theKalman filter The KF of Eqs. (5.34-5.36) which tracks
an OU process has an analytical steady solution, both in the case of χ = 0 and χ ̸= 0. Below we
discuss the steady-state solution for the case of a pureWiener noise (i.e. χ = 0), with the general
solution for χ ̸= 0 presented in App. E.5.

To find the steady-state solution of the Riccati differential equation one must set dΣΣΣ(t) = 0,
which is greatly simplified by noting that the variance of Ĵy at t ≫ t∗ is V>t∗(t) (5.24b). Then,
the steady-state solution for ΣΣΣω,ω, which in the case of a KF coincides with the minimal aMSE
E
[
Δ2ω̃(t)

]
, can be shown to be:

E
[
Δ2ω̃SS(t)

]
=

(
qω κc +

2
N

√
q3ω
Mη

e(M+κc)t/2

)1/2

, (5.46)

where second term, which survives in the κc → 0 limit, had been derived previously in Ref. [55].
By accounting for collective dephasing in our analysis, an additional and important term appears,
which dominates for largeN. Namely, for

N >
2
κc

√ qω
ηM

e(M+κc)t/2, (5.47)

the steady-state solution of the Riccati equation simplifies to

E
[
Δ2ω̃SS(t)

]
=
√qωκc for N >

2
κc

√ qω
ηM

e(M+κc)t/2 (5.48)
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which coincides with the form of the CS limit for an OU process (4.82) when t &
√

κc/qω, i.e.:

E
[
Δ2ω̃SS(t)

]
= lim

t→∞
VCS
σ0 (t) = √qωκc, for t &

√ κc
qω

and N≫ 2
κc

√ qω
ηM

. (5.49)

Hence, this proves that the chosen set of measurements and initial state, i.e. a continuous ho-
modyne measurement and CSS, give us the best possible precision in the steady state when the
atomic ensemble is large (i.e. N≫ 1, which is also required for the LG approximation to hold).

5.3.2 Extended Kalman filter

When our system is no longer LG but rather described by a nonlinear dynamical model like the
one in Sec. 5.2.2.2, we need an estimator capable of handing nonlinearities, such as an extended
Kalman filter (EKF). As discussed in Sec. 2.7, an EKF estimates the state vector xxx(t) in real time
from thenoisymeasurement recordusing a state-spacemodel definedbynonlinear state andmea-
surement functions, fff and hhh, as well as their associated noise vectors. Namely, at each time t, the
EKF produces the state estimate x̃xx(t) and its error covariance ΣΣΣ(t) by integrating the differential
equations along the photocurrent record yyy(t) = {y(t)}≤t [29]:

˙̃xxx(t) = fff(x̃xx(t), u(t), 0, t) +KKK(t)(y(t)− h(x̃xx(t), 0, t)) (5.50a)

Σ̇ΣΣ(t) = (FFF(t)−GGG(t)SSSRRR−1HHH)ΣΣΣ(t) + ΣΣΣ(t)(FFF(t)−GGG(t)SSSRRR−1HHH)T+

+GGG(t)(QQQ− SSSRRR−1SSST)GGG(t)T − ΣΣΣ(t)HHHTRRR−1HHHΣΣΣ(t), (5.50b)

where in the state update-predict equation for the estimate (5.50a), the term

y(t)− h(x̃xx(t), 0, t), (5.51)

represents the innovation, i.e. the difference between the actual measurement (provided by the
model in Eq. (5.32)) and the predicted measurement based on the current state estimate. This
innovation is scaled by the Kalman gain

KKK(t) := (ΣΣΣ(t)HHHT −GGG(t)SSS)RRR−1, (5.52)

which couples the state and covarianceΣΣΣ(t) in Eq. (5.50b). ThematricesFFF(t),GGG(t), andHHH are the
Jacobians of the nonlinear functions, determined by the dynamical model in Eq. (5.28). Specifi-
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cally, we have:

FFF(t) := ∇xxx fff |(x̃xx,u,0), GGG(t) := ∇ξ fff |x̃xx and H := ∇xxxh, (5.53)

with their exact form provided in Sec. E.8. Because the entries of these matrices depend on the
current state estimate x̃xx(t), they must be recomputed at each EKF iteration (see Sec. 2.7 for an
introduction to the EKF). In contrast, the noise matrices are predetermined:

QQQ := E
[
qqq(t)qqqT(t)

]
= I, R := E

[
r2(t)

]
= η, and SSS := E[qqq(t)r(t)] = (

√η, 0)T. (5.54)

The initial estimates, x̃xx(0), and its error covariance, ΣΣΣ(0) = E
[
Δ2x̃xx(0)

]
, are chosen based on the

assumed prior distribution [29].

5.3.3 Linear-quadratic regulator

A naive approach to controlling the state of the atoms is to directly compensate the estimated
frequency by setting

u(t) = −ω̃(t), (5.55)

which we refer to as field compensation. In principle, this should cancel the precession; however,
as the EKF estimate ω̃(t) is only approximate, small errors accumulate over time and the resulting
control becomes suboptimal, leading to residual precession that degrades overall performance. To
build upon the frequency cancellation achieved by the initial control, we design a more refined
control law using linear-quadratic regulator (LQR) theory (introduced in Sec. 2.8.1). In our
approach, the overall control input is expressed as

u(t) = −ω̃(t)− υ(t) (5.56)

where the term ω̃(t) provides the primary compensation for the rapid Larmor precession, and
the additional correction υ(t) is determined via LQR to minimize a prescribed quadratic cost
function. Once the frequency-cancellation part of the control counteracts the rapid Larmor pre-
cession, which is responsible for driving the state away from the x-axis, the system dynamics slow
down and become nearly linear. Then, we can assume that the system resides in the LG regime
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and describe the system with a reduced state vector

zzz(t) = (⟨ Ĵy⟩, ω)T, (5.57)

which simplifies the dynamics and allows us to apply the optimal control strategy derived from
LQR theory. Under a linearization of the full dynamical model at short timescales [54, 69], the
state vector evolves according to Eqs. (5.21-5.23), which can be further approxmated as:

żzz(t) = AAAzzz(t) + BBB u(t) +GGG(t)qqq(t), (5.58)

where

AAA(t) =

(
0 J
0 −χ

)
, GGG(t) =

(
2
√

ηMVy(t) 0
0 √qω

)
, BBB(t) =

(
J
0

)
, (5.59)

with qqq = (ξ, ξω)T being the same stochastic term as in Eq. (5.33), such that dW = ξdt. Notably,
in the LG regime, the variance of Ĵy, Vy(t), is a deterministic function and can be computed
analytically [55, 69] (see App. E.2). The LQR design is based on minimizing a quadratic cost
function [29, 55]:

I(u) =
∫ ∞

0
dt
[
zzzT(t)PPPzzz(t) + u(t)Vu(t)

]
(5.60)

=

∫ ∞

0
dt
[
pJ
〈
Ĵy
〉2
(c)
+ pω ω2 + ν u2(t)

]
, (5.61)

where, following Ref. [55], we choose the cost matrices P ≥ 0 andV > 0 to take the form

PPP =

(
pJ 0
0 pω

)
and V = ν, (5.62)

with pJ, pω ≥ 0 and ν > 0. This cost function not only penalizes deviations of ω(t) from zero
(thereby counteracting the Larmor precession) but also drives the angular-momentum compo-
nent

〈
Ĵy
〉
(c)
towards zero.

Since the dynamics in Eq. (5.58) are linear, the optimal control law can be obtained by neglect-
ing the stochastic terms, which only increase the attainable minimal cost (5.60) on average [29].
Moreover, when the state-space model is linear, as in Eqs. (5.21-5.22), the optimal control design
can be decoupled from the state estimation [29] (see also Sec. 2.8.2). The resulting LQR solution
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takes the form:

u(t) = −KKKC z̃zz(t), (5.63)

KKKC := V−1BBBTΛΛΛ, (5.64)

0 = AAATΛΛΛ +ΛΛΛAAA+ PPP−ΛΛΛBBBV−1BBBTΛΛΛ (5.65)

where the optimal control field u(t) is linearly related to the state estimator z̃zz(t)by the gainmatrix
KKKC, and the gain, defined in Eq. (5.64), couples to the control “covariance” ΛΛΛ, the steady-state
solution of the algebraic Ricatti equation in Eq. (5.65). Since the matrices A and B in Eq. (5.58)
are time-independent, ΛΛΛ (and consequently KKKC and u(t)) can be determined analytically [55].
A detailed derivation, as provided in App. E.6, shows that the gain matrix simplifies so that the
control law can be recast as

u(t) = −ω̃(t)− λ
〈 ˜̂Jy(t)〉(c), (5.66)

where λ :=
√
pJ/ν is a constant parameter functioning like a control “knob”. Notably, by setting

λ = 0, thenEq. (E.75)we recover the field compensation strategy considered initially. In order to
apply this result to the setting of Sec. 5.2.2.2, one has to simply combine the EKF that estimates
the full state xxx(t) = (

〈
Ĵx
〉
(c)
,
〈
Ĵy
〉
(c)
,V(c)

x ,V(c)
y ,V(c)

z ,C(c)
xy , ω)T with the LQR, along the lines of

the linear-quadratic Gaussian controller discussed in Sec. 2.8.2. In particular, to apply the LQR
strategy in this broader context, we generalize the control law of Eq. (5.63) to

u(t) = −KKKCΞΞΞ x̃xx(t) (5.67)

where

ΞΞΞ :=

(
0 1 0 . . . 0 0
0 0 0 . . . 0 1

)
(5.68)

is just a matrix that extracts the relevant state components of xxx(t) that appear in zzz(t), while x̃xx(t)
is now the EKF estimator provided by Eq. (5.50a) [65].

5.4 Results

In the previous sections, we detailed the model of the optical atomic magnetometer and its nu-
merical simulation, including its atomic ensemble dynamics, simulation methods, and the esti-
mation and control strategies that enhance its performance. We now present our main results,
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which we organize as follows: in Sec. 5.4.1, we begin by examining the response of the magne-
tometer under weak-field sensing conditions, where it exhibits LG dynamics. Sec. 5.4.2 then de-
tails the real-time sensing of a precession-inducing field, with separate analyses for constant, fluc-
tuating, and nonlinear MCG-like field profiles. Finally, Sec. 5.4.3 demonstrates the generation
of multiparticle entanglement by evaluating conditional as well as unconditional spin squeezing.

5.4.1 Weak-field sensing

When employing large ensembles to track weak fields, which is the relevant regime when dis-
cussing detection limits, one can safely assume that the system is LG for times within the co-
herence time of the system and measurement (i.e. t < (M + κc)−1 (see Sec. 5.2.2.1). In this
regime, the KF provides an optimal, recursive strategy (see Sec. 5.3.1). By continually incorpo-
rating new measurement data, the filter updates both the state estimate and its error covariance,
ensuring that the mean-squared error is minimized at every step. Crucially, the KF not only pro-
vides a real-time estimate of the magnetic field but also yields a quantifiable metric of its precision
through the covariancematrix, which for the case of a KF, coincides with the aMSE (see Sec. 2.6).

In Fig. 5.6 we show the minimal averaged error (solid, red) for the estimator of the Larmor
frequency (the squared root of the aMSE,

√
E[Δ2ω̃(t)] =

√
ΣΣΣω,ω). The top plots display the

error as a function of time for two atomic ensembles of different sizes: N = 109 (a) andN = 105

(b), and the bottom plots show the error as a function of the number of atoms for two different
time slices: t = 10−4s (c) and t = 10−2s (d). In all cases, the error is obtained by numerically
solving the Riccati equation of Eq. (5.36), with the model matrices defined in Eq. (5.23) and
the exact form for the variance of Ĵy provided in Eq. (E.26). In Fig. 5.6 we further analyze the
different behaviors of the error of the KF (solid, red), by comparing it to the analytical solutions
of the KF derived in Sec. 5.3.1 for (1) the steady state (dashed, green) and (2) the noiseless regime
(dashed, blue). In particular, for short times or low atomic numbers, the error of ω̃ behaves like
in the ideal case of negligible dephasing and field fluctuations, revealing a non-classical scaling of
the estimation error with both time and the number of atoms:

E
[
Δ2ω̃(t)

]
∝ 1

N 2t3
, (5.69)

highlighting the quantum-enhanced sensitivity achievable in our setup[54]. Over time, however,
the precision scaling deteriorates, as shown in the two top plots. This occurs either when the

180



Figure 5.6: The minimal estimation error as a function of time. Subplots (a) and (b) show the time evolution of the averaged
error of estimating ω(t),

√
E[Δ2ω̃(t)], for large (N = 109) and small (N = 105) ensembles, respectively. Subplots (c) and

(d) present the dependence of the error on the number of atoms at short (t = 10−4s, (c)) and long (t = 10−2s, (d)) mea‐
surement times. Other parameters used to generate this figure are:M = 100 kHz, qω = 1014rad2 s−3, κc = 100mHz,
χ = 0 and η = 1. Colored dashed lines serve as references, representing different scaling behaviors of the Riccati solution:
dashed green corresponds to the steady‐state (SS) solution of the KF, dashed blue represents the analytical solution obtained
in an ideal noiseless scenario, and finally, solid black corresponds to the quantum limit imposed by dephasing and field fluctu‐
ations, i.e. the CS limit. This quantum limit is attained for largeN when t > tCS, proving in this regime the optimality of our
measurement and initial state.

system reaches a steady state (Fig. 5.6 (b)) at time

t′SS = 31/3
(

4
N2ηMqω

)
, (5.70)

or by first attaining the CS limit of Eq. (4.83) (see Fig. 5.6 (a)) at time

tCS =
2
N

√
3

ηMκc
, (5.71)

which also later coincides with the KF steady state after t = tSS. One might therefore realize that

181



the CS bound in the limit of an infinitely wide prior, as presented in Eq. (4.83), has two distinct
regimes:

VCS
∞ (t) = √qωκc coth

(
t
√

qω
κc

)
=


κc
t

for t < tSS
√qωκc for t ≥ tSS

(5.72)

where
tSS =

√ κc
qω

. (5.73)

Fig. 5.6 (c) and (d) illustrate that while small ensemblesmay achieve a precision scaling of 1/N2 in
estimating ω(t), this advantage diminishes as the system size increases. As a result, larger atomic
ensembles do not provide a net gain in precision. That occurs at

NCS =
2
t

√
3

ηMκc
, and N ′

SS =
2
κc

√ qω
ηM

. (5.74)

For a certain range of ensemble sizes, i.e. [NSS,N ′
SS], where

NSS =
2 32/3

t2
√

ηMqω
(5.75)

and for short times, the KF error follows the steady-state solution (dashed, green) of Eq. (5.46),
which scales as∝ 1/N 1/2 (and thus, the error displayed in Fig. 5.6 (c) scales as∝ 1/N 1/4).
The most important message that Fig. 5.6 aims to convey is that for large ensembles (i.e. N =

109) the aMSE of the KF attains the lower bound on the error dictated by dephasing and fluctua-
tions, referred throughout this thesis as Classical Simulation (CS) limit. Even though we already
know that for a LG system, the KF is the optimal estimator, Fig. 5.6 (a) also confirms that for
large atomic ensembles, our choice ofmeasurement and initial state are also optimal, since theCS
limit is independent of our choice of measurement and initial state (see Chap. 4). In summary,
applying theKF to a system initialized in aCSS and continuouslymonitored through homodyne
measurement not only resolves the estimation error in real time but also establishes an optimal
framework for high-precision sensing of weak magnetic fields.
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5.4.2 Real-time sensing of a larger frequency

Wenow turn our attention to the practical task of real-time sensing of a precession-inducingmag-
netic field. As before, ourmain goal is to estimate the Larmor frequency and benchmark the per-
formance of our proposed EKF+LQR strategy against other estimation and control approaches
as well as the quantum limit dictated by dephasing and field fluctuations derived in Chap. 4. To
explore the role of quantum effects in enhancing estimation, we go beyond analyzing the aver-
age error of the frequency estimate,

√
E[Δ2ω̃(t)], and also examine the averaged evolution of the

spin-squeezing parameter E[ξ 2y (t)] (defined in Sec. 1.4.7), along with the averaged ensemble po-
larization,E[

〈
Ĵx(t)

〉
(c)
].

5.4.2.1 Constant field

In what follows, we investigate the real-time tracking of the simplest type of field: a constant
magnetic field. First, we do so by using the full SME of Eq. (5.13) to model the evolution of the
system. Using this “brute-force” approachweperform two important tasks: (1) benchmarking of
theEKF+LQRstrategy against alternativemethods and (2) validationof theCoGapproximation
introduced in Sec. 5.2.2.2. Once validated, we employ this approximation to study larger atomic
ensembles, determiningwhether our approach reaches the quantum limit imposed by dephasing,
and hence, testing the optimality of our magnetometry setup.

Low atomic numbers Fig. 5.7 (top) presents the real-time estimation of a constant mag-
netic field, simulated via the full SME of Eq. (5.13) for a system of N = 200 atoms. As time
progresses, the continuous incorporation of measurement data reduces the error (green shaded
area), while the estimate (solid, red) converges towards the true value (solid, blue). The middle
panel illustrates that spin squeezing (solid, blue) quickly emerges and is maintained throughout
the experiment, which can be correctly estimated with the EKF (dashed, red) for times within
the LG region. Finally, the bottom plot shows that the averaged error approaches the quantum
limit dictated by dephasing (i.e., the CS limit, in solid, black):

E
[
Δ2ω̃(t)

]
≥ 1

1
σ20

+
t
κc

, (5.76)
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Figure 5.7: Quantum‐enhanced tracking of a constant magnetic field withN = 200. Top: Constant field (solid, blue) tracked
in real time by the EKF estimate (solid, red). The shaded area represents the confidence band limited by the averaged error,
i.e. ±2

√
E[Δ2ω̃(t)]. Middle: Averaged evolution of the spin‐squeezing parameter (solid, blue), compared with its real‐time

EKF prediction (dashed, red). When the parameter is below the dashed black line of ξ 2y,(c)(t) = 1, it indicates squeezing
and thus, the presence of multipartite entanglement. Bottom: Evolution of the average error (solid, green) in estimating the
fluctuating field,

√
E[Δ2ω̃(t)], which attains the quantum limit imposed by dephasing (solid, black), as correctly predicted

by the EKF covariance (dashed, yellow), which matches the averaged error within the LG regime. In all plots, averaging was
performed over 1000 atom stochastic trajectories, and the parameters used are:N = 200, κc = 0.02, κℓ = 0,M = 0.3,
ω = 1, η = 1, and σ0 = 0.5.

where σ0 is the standard deviation of the initial prior of the Larmor frequency. As expected, the
EKF covariance (its squared root in dashed yellow) provides a good estimate of the error within
the LG regime, although it becomes slightly optimistic beyond the (M+ κc)−1 mark.

We further compare theperformanceof theEKF+LQRstrategy against less sophisticatedmeth-
ods, including the KF with field compensation (green), the EKF without control (yellow), and
the EKF with field compensation (blue). In the left column of Fig. 5.8, we keep the estimator as
the EKF and switch the type of controller: none (yellow), frequency compensation (blue) and
LQR (red). In contrast, in the right column we fix the control as LQR and compare different
estimators: either KF (green) or EKF (red). This comparison in Fig. 5.8 (a)-(b) under controlled
conditions, e.g. no local dephasing such that we can simulate for larger N, highlights the supe-
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Figure 5.8: Performance of different estimation and control strategies. The top row shows the averaged estimation error,
the middle row displays the spin‐squeezing parameter (as defined in (5.26)), and the bottom row illustrates the ensemble
polarization,

〈
Ĵx
〉
(c)
. In the left column (subplots (a), (c), and (e)), the estimator is fixed as the EKF while three control methods

are compared: no control (yellow), field compensation (blue), and LQR (red). In the right column (subplots (b), (d), and (f)), the
control method is fixed to LQR while two different estimators are considered: KF (green) and EKF (red). In both subplot (a)
and (b), the EKF+LQR strategy (red) is benchmarked against the CS limit (black), which sets the quantum limit imposed by
dephasing on the attainable error. Notably, the EKF+LQR approach outperforms the other methods by achieving the lowest
estimation error, which continues to decrease even beyond the LG regime (shaded grey). Subplots (c)–(f) demonstrate that
only the combination of an EKF with an LQR maintains both spin squeezing and polarization throughout the experiment.
Additionally, in subplot (d), the black dashed line indicates the overoptimistic predictions from the EKF, as shown already in
Fig. 5.7. The parameters used in the SME (5.13) for simulations are:N = 200, κc = 0.02, κℓ = 0,M = 0.3, ω = 1 and
η = 1. The KF and EKF estimators are initialized with the mean x̃xx(0) = (N/2, 0, 0,N/4,N/4, 0, μ0)

T and covariance
ΣΣΣ(0) = Diag[0, 0, 0, 0, 0, 0, σ20] dictated by the initial CSS state of the atoms, and the Gaussian prior distribution for
ω ∼ N (μ0, σ

2
0). All results are obtained after averaging over ν = 1000 measurement trajectories, whereas ω‐averaging is

avoided by choosing its true value ω = 1 for a prior with μ0 = ω+ σ0 = 1.5 and σ0 = 0.5.
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riority of combining an EKF with an LQR, since it yields the lowest average error (red) closest
to the quantum limit dictated by dephasing (i.e. the CS limit in black of Eq. (5.76)). The other
estimation and control approaches also fail to yield both spin-squeezing and a non-vanishing po-
larization for the full duration of the experiment (T = 30 s > (M+ κc)−1 ≈ 3 s), as illustrated
in Fig. 5.8 (c)-(d) for squeezing and (e)-(f) for the polarization.

Lastly, simulating the full SME of Eq. (5.13) allows us to verify the accuracy of the CoG ap-
proximation in simulating our system. As briefly discussed in Sec. 5.2.2.2 and extensively in
App. E.4, we compare the Larmor frequency estimates obtained using two methods: one by
solving the full SME and the other by solving a system of SDEs given by the CoG approximation
(see Sec. 5.2.2.2). In both cases, the estimation and control is carried out using an EKF com-
bined with an LQR, since Fig. 5.8 established it as the best known strategy. The results, shown
in the first column of Fig. E.3, demonstrate that the relative error remains below 1% at all times
and decreases with increasingN. This confirms that the CoG approximation is valid and can be
confidently used in the subsequent analysis.

High atomic numbers For larger ensembles (N ∼ 105 − 1015 c.f. [157, 158]), simulating
the exact SMEbecomes computationally prohibitive. In this regime, we rely on theCoG approx-
imation, which accurately captures the conditional evolution of the first and secondmoments of
the angular-momentum operators.

The top row of Fig. 5.9 demonstrates that, forN = 105 atoms, the EKF+LQRstrategy achieves
optimal performance when its averaged estimation error (solid, red) reaches the quantum limit
imposedbydephasingEq. (4.84) (solid, black). This optimal behavior is observedunder both col-
lective (a) and local (b) decoherence. Although the quantum limit is reached only briefly within
the LG regime under local dephasing, using an EKF is essential, as the KF is not applicable in
this scenario (see Sec. 5.2.2.1). For collective dephasing, the EKF+LQR still outperforms the
KF (solid, green), even within the LG regime (shaded grey area). Attaining the quantum limit
ensures that the measurement, feedback, and initial state are optimal during that period, thereby
addressing the open question posed inRef. [62]. Moreover, the EKF covariance (its squared root
in dashed, blue) closely tracks the averaged estimation error (solid, red), confirming that, despite
the nonlinearity of the CoGmodel (5.28), the EKF provides reliable trajectory-dependent error
estimates.

Themiddle row of Fig. 5.9 shows the averaged spin-squeezing parameter in decibels, while the
bottom row displays the averaged ensemble polarization. In all cases, the EKFpredictions (dashed,
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Figure 5.9: Performance in estimation and spin‐squeezing extrapolated to large atomic ensembles (N = 105). Subplots (a)
and (b) (upper row) depict the case of pure collective decoherence κc = 0.005, whereas subplots (c) and (d) (lower row) deal
with pure local decoherence κℓ = 0.05. Left column: (a) and (c) show the error (aMSE) attained by the EKF+LQR strategy
(red dots) when estimating ω and its average prediction by the EKF (blue line),E[ΣΣΣωω], both being lower‐bounded by the
CS limit (5.76) (black line). For collective decoherence, the performance of KF+LQR strategy is also included (grey dots) to
emphasize its failure beyond the LG regime (pink shading in all subplots). Right column: (b) and (d) illustrate the evolution of
the spin‐squeezing parameter (5.26) for conditional (blue line) and unconditional (red dots) dynamics, as compared with its
classical threshold (horizontal dash‐dotted line). The evolution of the ensemble polarization ⟨ Ĵx⟩ = E[

〈
Ĵx
〉
(c)
] (green line)

is also shown in both cases in extra lower plots. Both the conditional spin‐squeezing and the polarization in (b) and (d) are
estimated very accurately by the EKF on average (superimposed dashed black lines). The above data is simulated employing
the CoG model (5.28) with other parameters set to:M = 0.05, ω = 1 and η = 1. As in Fig. 5.8, the KF and EKF estimators
are initialized with the mean x̃xx(0) = (N/2, 0, 0,N/4,N/4, 0, μ0)

T and covarianceΣΣΣ(0) = Diag[0, 0, 0, 0, 0, 0, σ20]
dictated by the initial CCS state and the Gaussian prior distribution for ω ∼ N (μ0, σ

2
0). All results are obtained after

averaging over ν = 20000 measurement trajectories, while ω‐averaging is avoided by choosing the prior with σ0 = 0.5 and
μ0 = ω+ σ0 = 1.5.
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black) closely match the simulation results: the averaged conditional spin squeezing (solid, blue)
and the polarization or averaged

〈
Ĵx
〉
(c)
(t) (solid, yellow). This excellent agreement holds as long

as the CoG approximation is reliable, and contrasts with our earlier findings in Fig. 5.8(d), where
the EKF predictions overestimated the spin-squeezing parameter. Moreover, subplots (c) and
(d) confirm that the EKF+LQR strategy not only generates conditional spin-squeezing, as al-
ready shown in Fig. 5.8(c) and (d) forN = 200, but also yields significant unconditional spin-
squeezing (red dots) above the classical limit (horizontal dash-dot black line). Additionally, sub-
plot (c) demonstrates that the EKF outperforms the KF (green dots) in preserving an uncondi-
tional multiparticle entangled state beyond the LG regime, though it also eventually degrades
after approximately∼50 s.

5.4.2.2 Fluctuating field

In this subsection, we extend our discussion to the case where the Larmor frequency fluctuates
as an Orstein-Uhlenbeck process (OUP) [55, 159] (see Sec. 1.3.6):

dω(t) = −χω(t)dt+√qωdWω, (5.77)

where dWω is a (new) Wiener increment, χ > 0 is the decay rate, and qω > 0 sets the strength
of fluctuations, which are chosen to be χ = 0.01 s−1 and qω = 104rad2s−3 for the simula-
tions presented throughout this section. The results discussed here and in the following sections
are obtained using experimentally realistic parameters, chosen to reflect conditions achievable in
state-of-the-art setups. These parameter values are inspired byRef. [63], though their adaptation
to our setting required interpreting experimental quantities such as the measurement strength,
which are not directly provided but must be inferred from various experimental parameters. A
detailed explanation is given in App. E.7. Given these parameters, the standard deviation of the
fluctuations over the magnetometer coherence time T2 (here 10ms) is approximately 0.1% of
the initial Larmor frequency ω0 = 104rad s−1 (recall from Eq. (1.136) that the variance of anOU
process can be approximated as qω t at short times t . 1/χ). Fig. 5.10 (top) illustrates how the pro-
posed EKF+LQR strategy is capable of tracking the OUP-induced fluctuations in real time for
an experiment with realistic parameters (with the EKF equations explicitly written in App. E.8).
Additionally, the EKF also provides an accurate estimate of the atomic spin-squeezing parame-
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Figure 5.10: Quantum‐enhanced tracking of a fluctuating magnetic field. Top: Efficiently tracking in real time of field fluc‐
tuations (solid, blue) by its corresponding EKF estimate (solid, red) after gathering only≈ 0.01ms of photocurrent data.
The shaded area represents the confidence band limited by±2

√
E[Δ2ω̃(t)], i.e. the error obtained upon averaging. Mid‐

dle: Evolution of the (average) spin‐squeezing parameter (solid, blue) in dB, compared with its real‐time prediction by the EKF
(dashed, red). Bottom: The averaged error (solid, green) in estimating the fluctuating field,

√
E[Δ2ω̃(t)], which stabilizes at

≈ 0.21 rads−1, as correctly predicted by the EKF covariance (grey). The quantum limit imposed by local dephasing (a.k.a. CS
limit, in dashed, black) is not attained due to insufficient measurement strength (M = 10−8Hz [63], see also Fig. E.4) [65].
Averaging was performed over 1000 field+atom stochastic trajectories.

ter [143] (middle) that reaches&13 dB † at around 0.5ms, being induced purely by themeasure-
ment backaction emerging at≈ 0.01ms. The magnetometer reaches its best resolution at times
0.01ms . t . T2, where it tracks field fluctuations in real time with an error of 0.21 rad s−1

(bottom). The minimal averaged error (solid, green) is correctly predicted by the EKF covari-
ance (its squared root in dashed, yellow). While the quantum limit imposed by local dephasing
(Eq. (4.81) with κc = 0) sets a fundamental lower bound of 0.021 rad s−1 (solid, black), this limit
is not reached under the current measurement strength. However, increasingM can, in princi-
ple, allow the system to attain this bound [65] (see Fig. E.4), though the required measurement
strengths may not be experimentally feasible.

†The value of≈2 dB reached in Ref. [63] should not be directly compared, as therein an unpolarised ensemble
in the spin-exchange relaxation-free regime was considered.
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Figure 5.11: Tracking field fluctuations at the quantum limit (4.81). As in the bottom plot of Fig. 5.10, the true average error,√
E[Δ2ω̃(t)] (solid, green), is compared against the error predicted by the EKF (dashed, yellow), i.e. the covariance, and the

quantum limit imposed by dephasing, as given in Eq. (4.81), now including collective dephasing κc = 1 µHz. Remarkably,
the magnetometer operates at the quantum limit regardless of whether the EKF is provided with the exact OUP dynamics
(5.77) (a‐b) or a mismatched version (c‐d). In the latter case, despite the EKF assuming a fluctuation strength that is half as
large (qK = qω/2) and much faster decay (χK = 10χ), the average error (solid, green) still reaches the quantum limit (solid,
black), while the EKF covariance (dashed, yellow) underestimates the error. Both plots were obtained by averaging over 1000
field+atom stochastic trajectories. Additionally, subplots (a) and (c) show a representative field trajectory (blue) alongside its
EKF real‐time estimate (red), which remains well within the confidence interval±2

√
E[Δ2ω̃(t)] (shaded green).

Another scenario where the magnetometer operates at the quantum limit, i.e. the CS limit
of Eq. (4.81), is when a small amount of collective dephasing is present. In Fig. 5.11, we add
κc = 1 µHz (1/κc≈11 days) alongside the local dephasing of κℓ = 100Hz. As shown in Fig. 5.11
(b), while collective dephasing worsens the estimation error and raises the quantum limit, it also
leads to a favorable outcome: the averaged estimation error (solid, green) saturates the quantum
limit at ≈ 0.32 rad s−1 (solid, black), indicating that the magnetometer operates in an optimal
regime. This holds true even though spin-squeezing is no longer present, as collective dephas-
ing dominates over measurement-induced correlations (κc > ηM), preventing the generation
of spin-squeezed states [69] (see also Fig. 5.5). Additionally, the quantum limit (solid, black)
is not only reached when the EKF is provided with the exact OU field dynamics (subplot (b)),
i.e. the parameters defining Eq. (5.77), but also when the field decay and fluctuating strength
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are mismatched (subplot (d)). In this later case, the EKF operates assuming that the fluctuation
strength is half as strong, qK = qω/2, and the field decay is ten times faster, χK = 10χ. Although
under thesemismatched conditions the EKF covariance (dashed, yellow) is no longer reliable, the
averaged error (solid, green) remains unaffected and still attains the quantum limit. This result
confirms that even with imperfect knowledge of the OU process parameters, the magnetometer
can still operate optimally and yield field estimates at the quantum limit of precision, even though
the EKF covariance in each realization no longer provides an exact measure of the error.

5.4.2.3 nonlinearMCG-like field

Similarly to electrocardiography, atomic magnetocardiography (MCG) [23, 24, 25, 26] is a non-
invasive technique for imaging themagnetic fields generatedby the electrical activity of theheart [22].
The goal in MCG is to reconstruct in real time the full magnetic waveform produced by the
heart, capturing the characteristic P-wave, QRS-complex and T-wave [160], while filtering out
unwanted stochastic noise [144] without resorting to extensive time-averaging [22].
As in previous sections, we use the EKF+LQR feedback loop to estimate in real time the car-

diac magnetic signal from the homodyne photocurrent, since this type of recurrent estimation
and control is well suited for tracking such complex, time-varying signals. To simulate a realistic
MCG signal, we use a filtered VdP oscillator [161, 162] as defined in Eq. (5.5):

dν(t) = −p ω(t) dt (5.78)

dω(t) =
k
m
ν(t) dt+ 2

c
m
(1− υ(t)) ω(t) dt (5.79)

dυ(t) =
|ν(t)| − ν(t)

2T
dt− υ(t)

T
dt, (5.80)

with parameters p, k,m, c,T > 0. The VdP model effectively reproduces the P-wave and QRS
complex, though it does not fully capture theT-wave. We then superimposewhite noise onto the
VdP-generated signal to mimic the stochastic disturbances observed in practice. The simulation
parameters are adapted from Ref. [63] for our setting, as discussed in App. E.7, with the EKF
parameters for theVdPestimatematching theonesused to generate the cleanVdP signal. Namely,
p = pK = 103, k = kK = 1,m = mK = 0.00098, c = cK = 1 and T = TK = 0.003, with initial
values: ν(0) = ω(0) = υ(0) = 0.0045. The exact expressions for the EKF gradients FFF(t),GGG(t)
andHHH(t) needed to construct the EKF, are given in App. E.9.
Fig. 5.12 (left) displays a cyclic MCG-like signal with a period of approximately 20ms and a
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Figure 5.12: Tracking a MCG‐like signal. Under the same conditions as in Fig. 5.11, the magnetometer tracks a MCG signal
in the pT range [23, 25]. Although the atoms sense the noisy raw signal (blue), our goal is to recover the clean, noise‐free
waveform (black). The EKF, configured to expect a VdP–type signal [161, 162], produces an estimate (red) that converges to
the clean waveform after one MCG cycle (≈ 20ms), as shown in the left subplot. In it, the green‐shaded area represents
the±3

√
E[Δ2ω̃(t)] confidence band, obtained after averaging over 1000 trajectories. Notably, at the R‐wave in the third

cycle, this band spans approximately 40 pT, implying an average error of roughly 6.6 pT. The subplot on the right displays
the difference (gray) between the clean waveform and the EKF estimate, with the same confidence bounds clearly delineating
the error magnitude (green).

fieldB(t) ranging over [−14.2 pT, 42.6 pT], compatible with human-heart fields [23, 25] (where
we have used the Rb-87 ground state hyperfine gyromagnetic ratio, 2π × 7GHzT−1). After an
initial transient, the EKF estimate (red) closely follows the true waveform (black), despite the raw
signal that the magnetometer actually senses (blue) being contaminated by white noise with a
strength of qω = 2.5× 105 rad2 s−3.

In Fig. 5.12 (right), we further assess the tracking performance by plotting the difference be-
tween the trueLarmor frequency and itsEKFestimate (grey). This error is boundedby±3

√
E[Δ2ω̃(t)]

(green), confirming that the estimation remains robust under noisy conditions.

5.4.3 Multiparticleentanglement: conditionalv.s. unconditionalspinsqueez-
ing

So far, our primary focus has been estimation, where conditional spin-squeezing, i.e. squeezing
of the atomic state dependent on themeasurement record ρ

(c)
(t) ≡ ρ(t|yyy≤t), has potential for en-

hancing precision beyond classical limits. However, instead of viewing the magnetometer solely
as a sensing device, we can ask whether it can also function as a mechanism for preparing the
system in a multipartite entangled state independent of the measurement trajectory.

In that case, evaluating the spin-squeezing parameter along a specific measurement trajectory
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(i.e. conditional), is no longer sufficient. Instead, we should quantify the entanglement of the
state independent of our observations (i.e. unconditional). While the conditional state of the sys-
tem ρ

(c)
(t) ≡ ρ(t|yyy≤t) is understood as the one most closely describing the state given a particular

measurement record yyy≤t, an unconditional state ρ(t) describes the system when we discard, or
do not have access to, the measurement outcomes, what formally corresponds to averaging the
conditional state over all the possible past measurement trajectories:

ρ(t) = Ep(yyy≤t)

[
ρ
(c)
(t)
]
. (5.81)

Without feedback, the only effect experienced by the unconditional state ρ(t) is a collective
dephasing induced by the continuousmeasurement. For example, in the SME of Eq. (5.13) with
u(t) = 0, averaging over measurement records simply introduces an extraMD[ Ĵy]-term. How-
ever, once feedback is turned on, determining an effective master equation for the unconditional
dynamics is far less straightforward. In general, feedback-driven evolution relies onMarkovianity
assumptions [104, 163], which are not satisfied in ourLQR-based control scheme (see Sec. 5.3.3).
Nevertheless, as in Markovian feedback scenarios where the system is unconditionally driven
into a spin-squeezed state [104, 164], we demonstrate that this is also the case under the non-
Markovian LQR control considered here.

Already in Fig. 5.9 we showed that an EKF combined with a LQR generates unconditional
spin-squeezing, even in the presence of collective dephasing (red dots in Fig. 5.9(c)) or local de-
phasing (red dots in Fig. 5.9(d)). However, these results rely on the CoG approximation and
the solution of the SDE system in Eq. (5.28) to compute the unconditional moments of angular
momentum, and thus, the unconditional spin squeezing. Since theCoG approximation circum-
vents the need for the full densitymatrix, it does not allow direct visualization of how continuous
measurement and feedback squeeze the atoms. To obtain the Wigner function and map it into
the generalized Bloch sphere, a full numerical solution of the SME in Eq. (5.13) is required. For
this reason, in Fig. 5.13 we present results from the exact SME (5.13) under purely collective de-
coherence (N = 100, κc = 0.005) to compare the EKF+LQR strategy (left column) with the
naive field compensation (right column) in generating conditional as well as unconditional spin-
squeezing. As in Fig. 5.9(c-d), Fig. 5.13 shows the average conditional spin-squeezing parameter
(solid, blue) alongside the unconditional spin-squeezing of the average state (red, dots). Notably,
only the EKF+LQR strategy generates an averaged state with unconditional squeezing that con-
sistently breaches the classical value (dash-dot black horizontal line). This is further confirmed
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hĴJ J
(t
)i

po
in

ti
ng

al
on

g
it
s

in
it
ia

l
x
-d

ir
ec

ti
on

,
so

th
at

th
e

m
ea

su
re

m
en

t
m

ay
in

du
ce

sq
ue

ez
in

g
pe

rp
en

di
cu

la
rl

y
to
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prior knowledge about the parameter, and the other as-
sociated with the information about the parameter con-
tained within the measured data. Importantly, as the
bound (9) always applies for a given measurement scheme
determining p(yyyt|!), when saturated, it proves the op-
timality of the estimation strategy considered.

Nonetheless, both Eqs. (5) and (9) still depend on a
particular choice of the measurement scheme. Hence, in
order to construct a benchmark applicable in any sce-
nario, we determine a further lower bound on the aMSE
(5) that is independent of both the estimation method
and the measurement strategy. In particular, see App. D,
the presence of decoherence allows us to derive such a
bound as (here, written for a prior p(!) of infinite width)

E
h⌦
Ĵx

↵
(c)

i
E
⇥
⇠�2
y

(t)
⇤
E
⇥
�2!̃t

⇤
� coll

t
+

2loc

Nt
, (10)

which applies at any timescale, consistently vanishing
when coll = loc = 0. Crucially, the bound (10)—that
we refer to as the Classical Simulation (CS) limit follow-
ing [35, 66, 67]—holds for any measurement-based feed-
back strategy, independently of the initial state of the
system, or the form of the measurements (also adaptive)
involved, see App. D and Ref. [35].

As a consequence, the CS limit (10) directly disproves
the possibility of attaining the super-classical scalings of
N2 and t3 in the presence of decoherence. In particular,
the first term in Eq. (10) sets an N -independent bound
dictated by the collective decoherence [35], while the sec-
ond one arising from the local noise follows the Standard
Quantum Limit (SQL) of 1/Nt—leaving room only for
a constant-factor quantum enhancement [67]. The latter
observation unfortunately disproves the conjecture about
breaching the SQL-like scaling in N despite local dephas-
ing, formulated in Ref. [36] based on numerical evidence.

V. ESTIMATION AND CONTROL

With a universal lower bound established for the
aMSE, let us propose the estimation and control strate-
gies that we anticipate to yield the lowest possible estima-
tion error, while remaining feasible for implementation.

A natural choice of an estimator tailored to the non-
linear Gaussian dynamical model derived in Eq. (4) is the
EKF [37, 38]. However, even though the CoG approxi-
mation accounts for the precession of the LG-plane with
the mean angular-momentum vector hĴJJ(t)i, the measure-
ment direction is physically fixed to y and cannot be var-
ied, so that, e.g., the stochastic term in Eq. (4b) is always
determined by Vy. That is why, the principal aim of the
measurement-based feedback that we introduce is to keep
hĴJJ(t)i pointing along its initial x-direction, so that the
measurement may induce squeezing perpendicularly to
hĴJJ(t)i at all times, prolonging the LG-regime of Fig. 2.

For this purpose, we use the Linear Quadratic Regula-
tor (LQR) to find the control law, which we expect to be
optimal in the LG regime [31]. Within our scheme, the

control field u(t) provided by the LQR is built from the
estimates of the EKF, unlike other measurement-based
control strategies that rely on feeding back directly the
photocurrent (1) [68, 69].

A. Estimator: Extended Kalman Filter

Within the CoG approximation, the ensemble dynam-
ics is completely described by a vector of dynamical pa-
rameters, xxx(t) = (

⌦
Ĵx

↵
(c)
,
⌦
Ĵy

↵
(c)
,V(c)

x
,V(c)

y
,V(c)

z
,C(c)

xy
,!)T

appearing in Eq. (4), referred to as the state in estima-
tion theory [37], which evolves according to a system of
coupled non-linear stochastic equations of the form:

ẋxx(t) = fff [xxx(t), u(t),⇠⇠⇠, t], (11)

with the function fff determined by the dynamical model
(4), and ⇠⇠⇠ denoting a vector of independent Langevin-
noise terms—here, ⇠⇠⇠ = (⇠, 0)T with the Wiener increment
in Eq. (4) corresponding then to dW = ⇠dt [45].

Additionally, the observation of the true state xxx is per-
formed according to the measurement model (1), which
can be conveniently written as

y(t) = h[xxx(t), ⇣, t] = Hxxx(t) + ⇣, (12)

where a general h-function is linear in xxx for the case of
Eq. (1), with H = 2⌘

p
M(0, 1, 0, 0, 0, 0, 0). Moreover, we

must impose now that ⇣ =
p
⌘ ⇠ in the quantum setting,

as the observation noise ⇣ is fully correlated with the
state noise ⇠ due to the quantum back-action [43].

Let us denote by x̃xx(t) the EKF estimator of the state
xxx(t) at time t, and its corresponding error matrix by
E
⇥
�2x̃xx(t)

⇤
:= Ep(yyyt,xxx(0))

⇥
(x̃xx(t)� xxx(t))(x̃xx(t)� xxx(t))T

⇤
.

Although the latter can in principle be computed only
when having access to the true state dynamics, the EKF
provides its estimate also for the error matrix, which we
refer to as the EKF covariance ⌃(t). Setting initially
at t = 0—prior to taking any measurements—x̃xx(0) and
⌃(0) = E

⇥
�2x̃xx(0)

⇤
to be the mean and covariance of the

prior distribution for the state, respectively, the EKF es-
timator is found by integrating simultaneously the follow-
ing differential equations along a particular photocurrent
record yyyt = {y(⌧)}0⌧t, i.e. [38]:

˙̃xxx = fff [x̃xx, u, 0, t] +K(y(t)� h[x̃xx, 0, t]) (13a)

⌃̇ = (F �GSR�1H)⌃+ ⌃(F �GSR�1H)T+

+G(Q� SR�1ST )GT � ⌃HTR�1H⌃, (13b)

which are coupled via the Kalman gain K := (⌃HT �
GS)R�1, whose explicit t-dependence we drop above,
similarly to the dynamical matrices F (t) and G(t).

The matrices Q := E
⇥
⇠⇠⇠ ⇠⇠⇠T

⇤
= (1, 0 ; 0, 0), R := E

⇥
⇣2
⇤
=

⌘ and S := E[⇠⇠⇠⇣] = (
p
⌘, 0)T that appear in the Riccati

equation (13b) (and in the Kalman gain K) correspond
to the covariance and correlation matrices of the noise-
vectors and are importantly predetermined. Moreover,
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ing [35, 66, 67]—holds for any measurement-based feed-
back strategy, independently of the initial state of the
system, or the form of the measurements (also adaptive)
involved, see App. D and Ref. [35].

As a consequence, the CS limit (10) directly disproves
the possibility of attaining the super-classical scalings of
N2 and t3 in the presence of decoherence. In particular,
the first term in Eq. (10) sets an N -independent bound
dictated by the collective decoherence [35], while the sec-
ond one arising from the local noise follows the Standard
Quantum Limit (SQL) of 1/Nt—leaving room only for
a constant-factor quantum enhancement [67]. The latter
observation unfortunately disproves the conjecture about
breaching the SQL-like scaling in N despite local dephas-
ing, formulated in Ref. [36] based on numerical evidence.

V. ESTIMATION AND CONTROL

With a universal lower bound established for the
aMSE, let us propose the estimation and control strate-
gies that we anticipate to yield the lowest possible estima-
tion error, while remaining feasible for implementation.

A natural choice of an estimator tailored to the non-
linear Gaussian dynamical model derived in Eq. (4) is the
EKF [37, 38]. However, even though the CoG approxi-
mation accounts for the precession of the LG-plane with
the mean angular-momentum vector hĴJJ(t)i, the measure-
ment direction is physically fixed to y and cannot be var-
ied, so that, e.g., the stochastic term in Eq. (4b) is always
determined by Vy. That is why, the principal aim of the
measurement-based feedback that we introduce is to keep
hĴJJ(t)i pointing along its initial x-direction, so that the
measurement may induce squeezing perpendicularly to
hĴJJ(t)i at all times, prolonging the LG-regime of Fig. 2.

For this purpose, we use the Linear Quadratic Regula-
tor (LQR) to find the control law, which we expect to be
optimal in the LG regime [31]. Within our scheme, the

control field u(t) provided by the LQR is built from the
estimates of the EKF, unlike other measurement-based
control strategies that rely on feeding back directly the
photocurrent (1) [68, 69].

A. Estimator: Extended Kalman Filter

Within the CoG approximation, the ensemble dynam-
ics is completely described by a vector of dynamical pa-
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appearing in Eq. (4), referred to as the state in estima-
tion theory [37], which evolves according to a system of
coupled non-linear stochastic equations of the form:

ẋxx(t) = fff [xxx(t), u(t),⇠⇠⇠, t], (11)

with the function fff determined by the dynamical model
(4), and ⇠⇠⇠ denoting a vector of independent Langevin-
noise terms—here, ⇠⇠⇠ = (⇠, 0)T with the Wiener increment
in Eq. (4) corresponding then to dW = ⇠dt [45].

Additionally, the observation of the true state xxx is per-
formed according to the measurement model (1), which
can be conveniently written as

y(t) = h[xxx(t), ⇣, t] = Hxxx(t) + ⇣, (12)

where a general h-function is linear in xxx for the case of
Eq. (1), with H = 2⌘
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M(0, 1, 0, 0, 0, 0, 0). Moreover, we

must impose now that ⇣ =
p
⌘ ⇠ in the quantum setting,

as the observation noise ⇣ is fully correlated with the
state noise ⇠ due to the quantum back-action [43].

Let us denote by x̃xx(t) the EKF estimator of the state
xxx(t) at time t, and its corresponding error matrix by
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Although the latter can in principle be computed only
when having access to the true state dynamics, the EKF
provides its estimate also for the error matrix, which we
refer to as the EKF covariance ⌃(t). Setting initially
at t = 0—prior to taking any measurements—x̃xx(0) and
⌃(0) = E

⇥
�2x̃xx(0)

⇤
to be the mean and covariance of the

prior distribution for the state, respectively, the EKF es-
timator is found by integrating simultaneously the follow-
ing differential equations along a particular photocurrent
record yyyt = {y(⌧)}0⌧t, i.e. [38]:

˙̃xxx = fff [x̃xx, u, 0, t] +K(y(t)� h[x̃xx, 0, t]) (13a)

⌃̇ = (F �GSR�1H)⌃+ ⌃(F �GSR�1H)T+

+G(Q� SR�1ST )GT � ⌃HTR�1H⌃, (13b)

which are coupled via the Kalman gain K := (⌃HT �
GS)R�1, whose explicit t-dependence we drop above,
similarly to the dynamical matrices F (t) and G(t).

The matrices Q := E
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= (1, 0 ; 0, 0), R := E
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=

⌘ and S := E[⇠⇠⇠⇣] = (
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⌘, 0)T that appear in the Riccati

equation (13b) (and in the Kalman gain K) correspond
to the covariance and correlation matrices of the noise-
vectors and are importantly predetermined. Moreover,
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prior knowledge about the parameter, and the other as-
sociated with the information about the parameter con-
tained within the measured data. Importantly, as the
bound (9) always applies for a given measurement scheme
determining p(yyyt|!), when saturated, it proves the op-
timality of the estimation strategy considered.

Nonetheless, both Eqs. (5) and (9) still depend on a
particular choice of the measurement scheme. Hence, in
order to construct a benchmark applicable in any sce-
nario, we determine a further lower bound on the aMSE
(5) that is independent of both the estimation method
and the measurement strategy. In particular, see App. D,
the presence of decoherence allows us to derive such a
bound as (here, written for a prior p(!) of infinite width)
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when coll = loc = 0. Crucially, the bound (10)—that
we refer to as the Classical Simulation (CS) limit follow-
ing [35, 66, 67]—holds for any measurement-based feed-
back strategy, independently of the initial state of the
system, or the form of the measurements (also adaptive)
involved, see App. D and Ref. [35].

As a consequence, the CS limit (10) directly disproves
the possibility of attaining the super-classical scalings of
N2 and t3 in the presence of decoherence. In particular,
the first term in Eq. (10) sets an N -independent bound
dictated by the collective decoherence [35], while the sec-
ond one arising from the local noise follows the Standard
Quantum Limit (SQL) of 1/Nt—leaving room only for
a constant-factor quantum enhancement [67]. The latter
observation unfortunately disproves the conjecture about
breaching the SQL-like scaling in N despite local dephas-
ing, formulated in Ref. [36] based on numerical evidence.
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at t = 0—prior to taking any measurements—x̃xx(0) and
⌃(0) = E
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to be the mean and covariance of the

prior distribution for the state, respectively, the EKF es-
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sociated with the information about the parameter con-
tained within the measured data. Importantly, as the
bound (9) always applies for a given measurement scheme
determining p(yyyt|!), when saturated, it proves the op-
timality of the estimation strategy considered.

Nonetheless, both Eqs. (5) and (9) still depend on a
particular choice of the measurement scheme. Hence, in
order to construct a benchmark applicable in any sce-
nario, we determine a further lower bound on the aMSE
(5) that is independent of both the estimation method
and the measurement strategy. In particular, see App. D,
the presence of decoherence allows us to derive such a
bound as (here, written for a prior p(!) of infinite width)
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which applies at any timescale, consistently vanishing
when coll = loc = 0. Crucially, the bound (10)—that
we refer to as the Classical Simulation (CS) limit follow-
ing [35, 66, 67]—holds for any measurement-based feed-
back strategy, independently of the initial state of the
system, or the form of the measurements (also adaptive)
involved, see App. D and Ref. [35].

As a consequence, the CS limit (10) directly disproves
the possibility of attaining the super-classical scalings of
N2 and t3 in the presence of decoherence. In particular,
the first term in Eq. (10) sets an N -independent bound
dictated by the collective decoherence [35], while the sec-
ond one arising from the local noise follows the Standard
Quantum Limit (SQL) of 1/Nt—leaving room only for
a constant-factor quantum enhancement [67]. The latter
observation unfortunately disproves the conjecture about
breaching the SQL-like scaling in N despite local dephas-
ing, formulated in Ref. [36] based on numerical evidence.

V. ESTIMATION AND CONTROL

With a universal lower bound established for the
aMSE, let us propose the estimation and control strate-
gies that we anticipate to yield the lowest possible estima-
tion error, while remaining feasible for implementation.

A natural choice of an estimator tailored to the non-
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EKF [37, 38]. However, even though the CoG approxi-
mation accounts for the precession of the LG-plane with
the mean angular-momentum vector hĴJJ(t)i, the measure-
ment direction is physically fixed to y and cannot be var-
ied, so that, e.g., the stochastic term in Eq. (4b) is always
determined by Vy. That is why, the principal aim of the
measurement-based feedback that we introduce is to keep
hĴJJ(t)i pointing along its initial x-direction, so that the
measurement may induce squeezing perpendicularly to
hĴJJ(t)i at all times, prolonging the LG-regime of Fig. 2.

For this purpose, we use the Linear Quadratic Regula-
tor (LQR) to find the control law, which we expect to be
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which are coupled via the Kalman gain K := (⌃HT �
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sociated with the information about the parameter con-
tained within the measured data. Importantly, as the
bound (9) always applies for a given measurement scheme
determining p(yyyt|!), when saturated, it proves the op-
timality of the estimation strategy considered.

Nonetheless, both Eqs. (5) and (9) still depend on a
particular choice of the measurement scheme. Hence, in
order to construct a benchmark applicable in any sce-
nario, we determine a further lower bound on the aMSE
(5) that is independent of both the estimation method
and the measurement strategy. In particular, see App. D,
the presence of decoherence allows us to derive such a
bound as (here, written for a prior p(!) of infinite width)
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determining p(yyyt|!), when saturated, it proves the op-
timality of the estimation strategy considered.

Nonetheless, both Eqs. (5) and (9) still depend on a
particular choice of the measurement scheme. Hence, in
order to construct a benchmark applicable in any sce-
nario, we determine a further lower bound on the aMSE
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when coll = loc = 0. Crucially, the bound (10)—that
we refer to as the Classical Simulation (CS) limit follow-
ing [35, 66, 67]—holds for any measurement-based feed-
back strategy, independently of the initial state of the
system, or the form of the measurements (also adaptive)
involved, see App. D and Ref. [35].

As a consequence, the CS limit (10) directly disproves
the possibility of attaining the super-classical scalings of
N2 and t3 in the presence of decoherence. In particular,
the first term in Eq. (10) sets an N -independent bound
dictated by the collective decoherence [35], while the sec-
ond one arising from the local noise follows the Standard
Quantum Limit (SQL) of 1/Nt—leaving room only for
a constant-factor quantum enhancement [67]. The latter
observation unfortunately disproves the conjecture about
breaching the SQL-like scaling in N despite local dephas-
ing, formulated in Ref. [36] based on numerical evidence.

V. ESTIMATION AND CONTROL

With a universal lower bound established for the
aMSE, let us propose the estimation and control strate-
gies that we anticipate to yield the lowest possible estima-
tion error, while remaining feasible for implementation.

A natural choice of an estimator tailored to the non-
linear Gaussian dynamical model derived in Eq. (4) is the
EKF [37, 38]. However, even though the CoG approxi-
mation accounts for the precession of the LG-plane with
the mean angular-momentum vector hĴJJ(t)i, the measure-
ment direction is physically fixed to y and cannot be var-
ied, so that, e.g., the stochastic term in Eq. (4b) is always
determined by Vy. That is why, the principal aim of the
measurement-based feedback that we introduce is to keep
hĴJJ(t)i pointing along its initial x-direction, so that the
measurement may induce squeezing perpendicularly to
hĴJJ(t)i at all times, prolonging the LG-regime of Fig. 2.

For this purpose, we use the Linear Quadratic Regula-
tor (LQR) to find the control law, which we expect to be
optimal in the LG regime [31]. Within our scheme, the

control field u(t) provided by the LQR is built from the
estimates of the EKF, unlike other measurement-based
control strategies that rely on feeding back directly the
photocurrent (1) [68, 69].

A. Estimator: Extended Kalman Filter

Within the CoG approximation, the ensemble dynam-
ics is completely described by a vector of dynamical pa-
rameters, xxx(t) = (

⌦
Ĵx

↵
(c)
,
⌦
Ĵy

↵
(c)
,V(c)

x
,V(c)

y
,V(c)

z
,C(c)

xy
,!)T

appearing in Eq. (4), referred to as the state in estima-
tion theory [37], which evolves according to a system of
coupled non-linear stochastic equations of the form:

ẋxx(t) = fff [xxx(t), u(t),⇠⇠⇠, t], (11)

with the function fff determined by the dynamical model
(4), and ⇠⇠⇠ denoting a vector of independent Langevin-
noise terms—here, ⇠⇠⇠ = (⇠, 0)T with the Wiener increment
in Eq. (4) corresponding then to dW = ⇠dt [45].

Additionally, the observation of the true state xxx is per-
formed according to the measurement model (1), which
can be conveniently written as

y(t) = h[xxx(t), ⇣, t] = Hxxx(t) + ⇣, (12)

where a general h-function is linear in xxx for the case of
Eq. (1), with H = 2⌘

p
M(0, 1, 0, 0, 0, 0, 0). Moreover, we

must impose now that ⇣ =
p
⌘ ⇠ in the quantum setting,

as the observation noise ⇣ is fully correlated with the
state noise ⇠ due to the quantum back-action [43].

Let us denote by x̃xx(t) the EKF estimator of the state
xxx(t) at time t, and its corresponding error matrix by
E
⇥
�2x̃xx(t)

⇤
:= Ep(yyyt,xxx(0))

⇥
(x̃xx(t)� xxx(t))(x̃xx(t)� xxx(t))T

⇤
.

Although the latter can in principle be computed only
when having access to the true state dynamics, the EKF
provides its estimate also for the error matrix, which we
refer to as the EKF covariance ⌃(t). Setting initially
at t = 0—prior to taking any measurements—x̃xx(0) and
⌃(0) = E

⇥
�2x̃xx(0)

⇤
to be the mean and covariance of the

prior distribution for the state, respectively, the EKF es-
timator is found by integrating simultaneously the follow-
ing differential equations along a particular photocurrent
record yyyt = {y(⌧)}0⌧t, i.e. [38]:

˙̃xxx = fff [x̃xx, u, 0, t] +K(y(t)� h[x̃xx, 0, t]) (13a)

⌃̇ = (F �GSR�1H)⌃+ ⌃(F �GSR�1H)T+

+G(Q� SR�1ST )GT � ⌃HTR�1H⌃, (13b)

which are coupled via the Kalman gain K := (⌃HT �
GS)R�1, whose explicit t-dependence we drop above,
similarly to the dynamical matrices F (t) and G(t).

The matrices Q := E
⇥
⇠⇠⇠ ⇠⇠⇠T

⇤
= (1, 0 ; 0, 0), R := E

⇥
⇣2
⇤
=

⌘ and S := E[⇠⇠⇠⇣] = (
p
⌘, 0)T that appear in the Riccati

equation (13b) (and in the Kalman gain K) correspond
to the covariance and correlation matrices of the noise-
vectors and are importantly predetermined. Moreover,
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prior knowledge about the parameter, and the other as-
sociated with the information about the parameter con-
tained within the measured data. Importantly, as the
bound (9) always applies for a given measurement scheme
determining p(yyyt|!), when saturated, it proves the op-
timality of the estimation strategy considered.

Nonetheless, both Eqs. (5) and (9) still depend on a
particular choice of the measurement scheme. Hence, in
order to construct a benchmark applicable in any sce-
nario, we determine a further lower bound on the aMSE
(5) that is independent of both the estimation method
and the measurement strategy. In particular, see App. D,
the presence of decoherence allows us to derive such a
bound as (here, written for a prior p(!) of infinite width)

E
h⌦
Ĵx

↵
(c)

i
E
⇥
⇠�2
y

(t)
⇤
E
⇥
�2!̃t

⇤
� coll

t
+

2loc

Nt
, (10)

which applies at any timescale, consistently vanishing
when coll = loc = 0. Crucially, the bound (10)—that
we refer to as the Classical Simulation (CS) limit follow-
ing [35, 66, 67]—holds for any measurement-based feed-
back strategy, independently of the initial state of the
system, or the form of the measurements (also adaptive)
involved, see App. D and Ref. [35].

As a consequence, the CS limit (10) directly disproves
the possibility of attaining the super-classical scalings of
N2 and t3 in the presence of decoherence. In particular,
the first term in Eq. (10) sets an N -independent bound
dictated by the collective decoherence [35], while the sec-
ond one arising from the local noise follows the Standard
Quantum Limit (SQL) of 1/Nt—leaving room only for
a constant-factor quantum enhancement [67]. The latter
observation unfortunately disproves the conjecture about
breaching the SQL-like scaling in N despite local dephas-
ing, formulated in Ref. [36] based on numerical evidence.

V. ESTIMATION AND CONTROL

With a universal lower bound established for the
aMSE, let us propose the estimation and control strate-
gies that we anticipate to yield the lowest possible estima-
tion error, while remaining feasible for implementation.

A natural choice of an estimator tailored to the non-
linear Gaussian dynamical model derived in Eq. (4) is the
EKF [37, 38]. However, even though the CoG approxi-
mation accounts for the precession of the LG-plane with
the mean angular-momentum vector hĴJJ(t)i, the measure-
ment direction is physically fixed to y and cannot be var-
ied, so that, e.g., the stochastic term in Eq. (4b) is always
determined by Vy. That is why, the principal aim of the
measurement-based feedback that we introduce is to keep
hĴJJ(t)i pointing along its initial x-direction, so that the
measurement may induce squeezing perpendicularly to
hĴJJ(t)i at all times, prolonging the LG-regime of Fig. 2.

For this purpose, we use the Linear Quadratic Regula-
tor (LQR) to find the control law, which we expect to be
optimal in the LG regime [31]. Within our scheme, the

control field u(t) provided by the LQR is built from the
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(4), and ⇠⇠⇠ denoting a vector of independent Langevin-
noise terms—here, ⇠⇠⇠ = (⇠, 0)T with the Wiener increment
in Eq. (4) corresponding then to dW = ⇠dt [45].

Additionally, the observation of the true state xxx is per-
formed according to the measurement model (1), which
can be conveniently written as
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Although the latter can in principle be computed only
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provides its estimate also for the error matrix, which we
refer to as the EKF covariance ⌃(t). Setting initially
at t = 0—prior to taking any measurements—x̃xx(0) and
⌃(0) = E
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prior distribution for the state, respectively, the EKF es-
timator is found by integrating simultaneously the follow-
ing differential equations along a particular photocurrent
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equation (13b) (and in the Kalman gain K) correspond
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prior knowledge about the parameter, and the other as-
sociated with the information about the parameter con-
tained within the measured data. Importantly, as the
bound (9) always applies for a given measurement scheme
determining p(yyyt|!), when saturated, it proves the op-
timality of the estimation strategy considered.

Nonetheless, both Eqs. (5) and (9) still depend on a
particular choice of the measurement scheme. Hence, in
order to construct a benchmark applicable in any sce-
nario, we determine a further lower bound on the aMSE
(5) that is independent of both the estimation method
and the measurement strategy. In particular, see App. D,
the presence of decoherence allows us to derive such a
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a constant-factor quantum enhancement [67]. The latter
observation unfortunately disproves the conjecture about
breaching the SQL-like scaling in N despite local dephas-
ing, formulated in Ref. [36] based on numerical evidence.
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ment direction is physically fixed to y and cannot be var-
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determined by Vy. That is why, the principal aim of the
measurement-based feedback that we introduce is to keep
hĴJJ(t)i pointing along its initial x-direction, so that the
measurement may induce squeezing perpendicularly to
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ment direction is physically fixed to y and cannot be var-
ied, so that, e.g., the stochastic term in Eq. (4b) is always
determined by Vy. That is why, the principal aim of the
measurement-based feedback that we introduce is to keep
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Ĵx

↵
(c)
,
⌦
Ĵy
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ẋxx(t) = fff [xxx(t), u(t),⇠⇠⇠, t], (11)

with the function fff determined by the dynamical model
(4), and ⇠⇠⇠ denoting a vector of independent Langevin-
noise terms—here, ⇠⇠⇠ = (⇠, 0)T with the Wiener increment
in Eq. (4) corresponding then to dW = ⇠dt [45].

Additionally, the observation of the true state xxx is per-
formed according to the measurement model (1), which
can be conveniently written as

y(t) = h[xxx(t), ⇣, t] = Hxxx(t) + ⇣, (12)

where a general h-function is linear in xxx for the case of
Eq. (1), with H = 2⌘

p
M(0, 1, 0, 0, 0, 0, 0). Moreover, we

must impose now that ⇣ =
p
⌘ ⇠ in the quantum setting,

as the observation noise ⇣ is fully correlated with the
state noise ⇠ due to the quantum back-action [43].

Let us denote by x̃xx(t) the EKF estimator of the state
xxx(t) at time t, and its corresponding error matrix by
E
⇥
�2x̃xx(t)

⇤
:= Ep(yyyt,xxx(0))

⇥
(x̃xx(t)� xxx(t))(x̃xx(t)� xxx(t))T

⇤
.

Although the latter can in principle be computed only
when having access to the true state dynamics, the EKF
provides its estimate also for the error matrix, which we
refer to as the EKF covariance ⌃(t). Setting initially
at t = 0—prior to taking any measurements—x̃xx(0) and
⌃(0) = E

⇥
�2x̃xx(0)

⇤
to be the mean and covariance of the

prior distribution for the state, respectively, the EKF es-
timator is found by integrating simultaneously the follow-
ing differential equations along a particular photocurrent
record yyyt = {y(⌧)}0⌧t, i.e. [38]:

˙̃xxx = fff [x̃xx, u, 0, t] +K(y(t)� h[x̃xx, 0, t]) (13a)

⌃̇ = (F �GSR�1H)⌃+ ⌃(F �GSR�1H)T+

+G(Q� SR�1ST )GT � ⌃HTR�1H⌃, (13b)

which are coupled via the Kalman gain K := (⌃HT �
GS)R�1, whose explicit t-dependence we drop above,
similarly to the dynamical matrices F (t) and G(t).

The matrices Q := E
⇥
⇠⇠⇠ ⇠⇠⇠T

⇤
= (1, 0 ; 0, 0), R := E

⇥
⇣2
⇤
=

⌘ and S := E[⇠⇠⇠⇣] = (
p
⌘, 0)T that appear in the Riccati

equation (13b) (and in the Kalman gain K) correspond
to the covariance and correlation matrices of the noise-
vectors and are importantly predetermined. Moreover,

6

prior knowledge about the parameter, and the other as-
sociated with the information about the parameter con-
tained within the measured data. Importantly, as the
bound (9) always applies for a given measurement scheme
determining p(yyyt|!), when saturated, it proves the op-
timality of the estimation strategy considered.

Nonetheless, both Eqs. (5) and (9) still depend on a
particular choice of the measurement scheme. Hence, in
order to construct a benchmark applicable in any sce-
nario, we determine a further lower bound on the aMSE
(5) that is independent of both the estimation method
and the measurement strategy. In particular, see App. D,
the presence of decoherence allows us to derive such a
bound as (here, written for a prior p(!) of infinite width)

E
h⌦
Ĵx
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which applies at any timescale, consistently vanishing
when coll = loc = 0. Crucially, the bound (10)—that
we refer to as the Classical Simulation (CS) limit follow-
ing [35, 66, 67]—holds for any measurement-based feed-
back strategy, independently of the initial state of the
system, or the form of the measurements (also adaptive)
involved, see App. D and Ref. [35].

As a consequence, the CS limit (10) directly disproves
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observation unfortunately disproves the conjecture about
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ing, formulated in Ref. [36] based on numerical evidence.
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hĴJJ(t)i pointing along its initial x-direction, so that the
measurement may induce squeezing perpendicularly to
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field compensation

Figure 5.13: Conditional v.s. unconditional spin‐squeezing. The exact (N = 100) spin‐squeezing dynamics with collective
decoherence is shown depending on the control strategy: LQR (left column) vs (naive) field compensation (right column). Top
row: Subplots (a) and (c) depict evolution of angular momentum components in Ĵx (red) and Ĵy (blue) directions, in particular
their conditional and unconditional means that consistently match. Middle row: Subplots (b) and (d) compare the dynamics
of the average unconditional (in red) and conditional (in blue) spin‐squeezing parameters (5.26), also verifying whether they
surpass the classical value (horizontal black line). Vertical dashed grey lines mark the relevant times for which we explicitly
plot the spherical Wigner functions (bottom row) representing the instantaneous unconditional state. Note that for the LQR
control (left), even though the width along y of the distribution progressively narrows with time, the amplitude of the Wigner
function also decays. The other parameters used in the SME (??) for simulations read: κc = 0.005, κℓ = 0,M = 0.1,
ω = 1, η = 1. The EKF is initialized with the mean x̃xx(0) = (N/2, 0, 0,N/4,N/4, 0, μ0)

T and covariance Σ(0) =
Diag[0, 0, 0, 0, 0, 0, σ20] dictated by the initial CCS state, and the Gaussian prior distribution for ω ∼ N (μ0, σ

2
0). All

results are obtained after averaging over ν = 500 measurement trajectories, while ω‐averaging is avoided by choosing the
prior with σ0 = 0.5 and μ0 = ω+ σ0 = 1.5.

by the (spherical) Wigner distribution plots (snapshots at t = 0.5, 3), where the EKF+LQR
strategy maintains steady squeezing along the y-direction over time. In contrast, under the naive
field-compensation strategy, the Wigner distribution begins to lose its structure as early as t = 3
within the LQ regime.

As the ω-estimate of the EKF is initially set in Fig. 5.13 to ω̃(0) > ω, the control initially over-
compensates for the Larmor precession and rotates the spin in the counter-clockwise direction
when viewed along z. This is reflected in the spin components, with ⟨ Ĵy⟩ = E[

〈
Ĵy
〉
(c)
] acquir-
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ing negative values in both top plots, and in the corresponding Wigner function being shifted
leftward at ≈ t = 0.1. A similar effect would occur when choosing ω̃(0) < ω, in which case
the control operation would initially undercompensate the Larmor precession, causing an initial
clockwise spin rotation around z (Wigner function shifts to the right). Over time, the LQR con-
trol corrects the counter-rotation and stabilizes the spin along x (left), whereas under naive field
compensation (right), stability is eventually lost.
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6
Conclusions

In this thesis, we have studied how to track fluctuating or time-varying signalswith optical atomic
magnetometers at the quantum limit of precision. A key result of our work is the derivation of
this quantum limit by establishing a lower bound on the BCRB [2, 67, 69]. Notably, the bound
scales at best linearly with the number of atoms and sensing time, thus precluding any super-
classical scaling [65, 66]. Also sometimes referred to as the classically-simulated limit, the quan-
tum limit is independent of the choices of initial state, measurement, estimator, ormeasurement-
based feedback, relying solely on the decoherencemodel and strength of field fluctuations. Thus,
bydeveloping ameasurement, estimation, and control strategy that saturates this limit, wedemon-
strate that the sensing protocol is optimal.

But how can we develop an optimal sensing protocol? First, we need to be able to simulate
the optical atomic magnetometer under typical experimental conditions using a quantum dy-
namical model that is scalable w.r.t. N. This model must rigorously incorporate both the mea-
surement back-action and the environmental decoherence [57, 58, 63]. Second, we must select
an estimator and controller that, when combined with the typical measurement (polarization
spectroscopy [128, 126, 125, 120]) and initial state (coherent spin state) used in optical atomic
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magnetometers, will enable us to attain the quantum limit.
The dynamics of an optical atomicmagnetometer are rigorously described by a stochasticmas-

ter equation [40, 55, 56], but it is not scalable w.r.t. N. To overcome this, we introduce the co-
moving Gaussian approximation, which yields a nonlinear dynamical model that scales with N
while accurately capturing the effects of measurement backaction and dephasing [65]. To vali-
date this approximation, we compared it to the solution of the exact SME, which is numerically
tractable for up to N ≈ 100 atoms [65]. Building on this model, we have designed an inte-
grated estimation and control scheme that couples an extended Kalman filter (EKF) with a linear
quadratic regulator (LQR) [55, 65, 66].

We show that this sensing protocol achieves real-time tracking of constant and fluctuating
fields at the quantum limit of precision [65, 66]. It also can track more complex waveforms
such as those encountered in magneto-cardiography [66]. Furthermore, we also demonstrate
that the continuousmeasurement and feedback generate inter-atomic entanglement, manifest as
conditional spin-squeezing [65, 66]. Remarkably, even if themeasurement data is not stored, the
sensor is driven by the LQR feedback into an entangled state [65].
In this work, we have aimed to bridge the gap between mathematical formulations of con-

tinuous quantum measurement and estimation theory, and experiments in optical atomic mag-
netometry. Our results mark a significant step towards real-time quantum-limited metrology,
even in the presence of decoherence, by leveraging continuousmeasurement, feedback, and spin-
squeezing. To apply our framework to experimentswith orientation-basedmagnetometers in the
Bell-Bloom configuration [165, 58, 59], or alignment-based magnetometers [166, 167, 168], the
dynamical model must be extended to incorporate spin-exchange collisions [140, 141] and other
relevant sources of atomic decoherence [169]. These additions would require more general tech-
niques to bound the Fisher information [170], beyond those used in this thesis.
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A
Appendix for Chap. 1

A.1 Proof of (dW(t))2+N = 0

Proposition A.1 (Proof of (dW(t))2+N = 0). Consider a standard Wiener processW(t), then
for any N > 0, we have:

(dW(t))2+N = 0. (A.1)

To interpret this rigorously, we need to write it in terms of the Itô stochastic integral. Specifically, let
f(t,X(t)) be a non-anticipating function of time andX(t), a stochastic process. Then, the following
holds∫ T

0
f (t,X(t)) dW(t)2+N = ms-lim

n→∞

n∑
i=1

f (ti91,X(ti91))ΔW2+N
i = 0 for N > 0. (A.2)

Proof. To prove Eq. (A.2), we have to start with the definition of the mean-squared limit and
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show:
lim
n→∞

E
[
(Sn − S)2

]
= lim

n→∞
E
[
S 2
n
]
= 0, (A.3)

where S = 0 and

Sn =
n∑
i=1

f (ti91,X(ti91))ΔW2+N
i . (A.4)

Thus, let us start by expanding S 2
n using Eq. (1.80):

lim
n→∞

E
[
S 2
n
]
= lim

n→∞
E

[(
n∑
i=1

f (ti91,X(ti91))ΔW2+N
i

)2]

= lim
n→∞

E

 n∑
i=1

(
fi91ΔW2+N

i
)2

+ 2
n∑
i=1

i−1∑
j=1

fi91 fj91ΔW2+N
i ΔW2+N

j


= lim

n→∞


n∑
i=1

E
[
f 2i91
]
E
[
(ΔW2

i )
2+N]+ 2

n∑
i=1

i−1∑
j=1

E
[
fi91fj91

]
E
[
ΔW2+N

i
]
E
[
ΔW2+N

j
] .

Let us now recall that the higher order moments of a Gaussian random variable can be
written as:

E
[(
ΔW2

i
)2+N

]
= Δt2+N

i , (A.5)

E
[
ΔW2+N

i
]
=

 0 for N odd,

(N+ 1)!!Δt
N
2 +1
i for N even.

(A.6)

Note that for any value of N, the expectation values of ΔW2+N
i and (ΔW2

i )
2+N will be either

zero or at least Δt2i . Therefore, ∀N, in the limit of n→∞,E[S 2
n ] goes to zero:

lim
n→∞

E
[
S 2
n
]
= 0, (A.7)

and thus ∫ T

0
f (t,X(t)) dW(t)2+N = 0 for N > 0, (A.8)

s.t.
dW(t)2+N = 0. (A.9)
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A.2 Proof of dW(t)dt = 0

Proposition A.2 (Proof of dW(t)dt = 0). Consider a standard Wiener processW(t), then we
have:

dW(t)dt = 0. (A.10)

Similarly as before, we write this it in terms of the Itô stochastic integral:

∫ T

0
f (t,X(t)) dW(t)dt = ms-lim

n→∞

n∑
i=1

f (ti91,X(ti91))ΔWi Δti = 0, (A.11)

where f(t,X(t)) is a non-anticipating function of time andX(t) is a general a stochastic process.

Proof. To prove Eq. (A.11), we have to follow the same steps as in App. A.1. Since the stochastic
integral S is defined as the mean-square limit of the Riemann sum Sn, we have to start from
the definition of convergence in the mean-squared sense:

lim
n→∞

E
[
(Sn − S )2

]
= 0, (A.12)

and identify S and Sn. It is straightforward to see that for Eq. (A.11), S = 0 and

Sn =
n∑
i=1

f (ti91,X(ti91))ΔWi Δti. (A.13)

Then, it follows that Eq. (A.12) is simply

lim
n→∞

E
[
S 2
n
]
= 0, (A.14)
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which we can easily show by expanding its l.h.s. using Eq. (1.80):

lim
n→∞

E
[
S 2
n
]
= lim

n→∞
E

[(
n∑
i=1

f (ti91,X(ti91))ΔWi Δti

)2]

= lim
n→∞

E

 n∑
i=1

( fi91ΔWi Δti)2 + 2
n∑
i=1

i−1∑
j=1

fi91 fj91ΔWi ΔtiΔWj Δtj


= lim

n→∞


n∑
i=1

E
[
f 2i91
]
E
[
(ΔW2

i )
]
Δt2i + 2

n∑
i=1

i−1∑
j=1

E
[
fi91fj91

]
E[ΔWi]E

[
ΔWj

]
ΔtiΔtj


= lim

n→∞

n∑
i=1

E
[
f 2i91
]
Δt3i + 0 = 0. (A.15)

Thus ∫ T

0
f (t,X(t)) dW(t)dt = 0, (A.16)

s.t.
dW(t)dt = 0. (A.17)

A.3 Solution to forced linear stochastic systems

Theorem A.3 (General solution of time‑varying inhomogeneous linear stochastic differential
equations). Consider the following time-varying inhomogeneous stochastic differential equation

ẋxx(t) = FFF(t)xxx(t) + BBB(t)uuu(t) +GGG(t)www(t) (A.18)

where FFF(t) is the systemmatrix, xxx(t) is the state vector, BBB(t) is the control matrix, uuu(t) is the control
vector, GGG(t) is the time-varying matrix modifying the stochastic term, and www(t) is the white noise
with mean zero and covarianceE

[
www(t)www(s)T

]
= QQQ(t)δ(t− s). The solution is

xxx(t) = ΦΦΦ(t, t0)xxx(t0) +
∫ t

t0
ΦΦΦ(t, τ)BBB(τ)uuu(τ)dτ+

∫ t

t0
ΦΦΦ(t, τ)GGG(τ)www(τ)dτ, (A.19)
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whereΦΦΦ(t, t0) is the state-transition matrix that satisfies

dΦΦΦ(t, t0)
dt

= FFF(t)ΦΦΦ(t, t0), ΦΦΦ(t0, t0) = I. (A.20)

and fulfills the following properties for all t0 ≤ t ≤ T:

ΦΦΦ(t0, t) = ΦΦΦ−1(t, t0), (A.21)

ΦΦΦ(T, t0) = ΦΦΦ(T, t)ΦΦΦ(t, t0). (A.22)

Proof. The standard approach to solving any forced linear system is to first derive the
homogeneous solution. Namely, solving the homogeneous system of the form

dxxx
dt

= FFF(t)xxx(t), xxx(t0) = xxx0. (A.23)

Let us assume then that the system’s response in the absence of external forces is given by

xxx(t) = ΦΦΦ(t, t0)xxx(t0), (A.24)

whereΦΦΦ(t, t0) is a so-called transition matrix. By substituting this solution into the
homogeneous differential equation in (A.23), we obtain a differential equation for the
transition matrix with its corresponding initial conditions:

dΦΦΦ(t, t0)
dt

= FFF(t)ΦΦΦ(t, t0), ΦΦΦ(t0, t0) = I. (A.25)

Let us now consider the full dynamical model

ẋxx(t) = FFF(t)xxx(t) + BBB(t)uuu(t) +GGG(t)www(t), (A.26)

for which, following the method of variation of parameters, we assume a solution of the form:

xxx(t) = ΦΦΦ(t, t0)zzz(t), zzz(t0) = xxx(t0), (A.27)

where zzz(t) is a vector of unknown functions that modifies the homogeneous solution to account
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for the non-homogeneous terms in the full differential equation. If now we differentiate
Eq. (A.27) we will get

ẋxx(t) = ΦΦΦ(t, t0) żzz(t) + Φ̇ΦΦ(t, t0) zzz(t) = ΦΦΦ(t, t0) żzz(t) + FFF(t)ΦΦΦ(t, t0) zzz(t). (A.28)

Let us now substitute Eq. (A.27) and in the lhs and rhs of Eq. (A.26):

ΦΦΦ(t, t0) żzz(t) + FFF(t)ΦΦΦ(t, t0) zzz(t) = FFF(t)ΦΦΦ(t, t0) zzz(t) + BBB(t)uuu(t) +GGG(t)www(t) (A.29)

such that

żzz(t) = ΦΦΦ−1(t, t0)BBB(t)uuu(t) +ΦΦΦ−1(t, t0)GGG(t)www(t). (A.30)

By now integrating this expression and recalling that zzz(t0) = xxx(t0), we obtain∫ t

t0
żzz(t) = zzz(t)− zzz(t0) = zzz(t)− xxx(t0) = ΦΦΦ−1(τ, t0)xxx(t)− xxx(t0)

=

∫ t

t0
ΦΦΦ−1(τ, t0)BBB(τ)uuu(τ) dτ+

∫ t

t0
ΦΦΦ−1(τ, t0)GGG(τ)www(τ) dτ (A.31)

such that

xxx(t) = ΦΦΦ(t, t0)xxx(t0) +ΦΦΦ(t, t0)
∫ t

t0
ΦΦΦ−1(τ, t0)BBB(τ)uuu(τ) dτ (A.32)

+ΦΦΦ(t, t0)
∫ t

t0
ΦΦΦ−1(τ, t0)GGG(τ)www(τ) dτ. (A.33)

By now using Eq. (A.22), and first multiplying from the rightΦΦΦ−1(τ, t0) and then from the
leftΦΦΦ−1(t, t0):

ΦΦΦ−1(t, t0)ΦΦΦ(t, t0)ΦΦΦ−1(τ, t0) = ΦΦΦ−1(t, t0)ΦΦΦ(t, τ)ΦΦΦ(τ, t0)ΦΦΦ−1(τ, t0) (A.34)

we obtain
ΦΦΦ−1(τ, t0) = ΦΦΦ−1(t, t0)ΦΦΦ(t, τ) (A.35)
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which when substituted into Eq. (A.31) yields the final expression of Eq. (A.19):

xxx(t) = ΦΦΦ(t, t0)xxx(t0) +
∫ t

t0
ΦΦΦ(t, τ)BBB(τ)uuu(τ)dτ+

∫ t

t0
ΦΦΦ(t, τ)GGG(τ)www(τ)dτ. (A.36)

A.4 (some) Angular momentum properties

Proposition A.4 (Generation of angular momentum eigenstates via the raising operator). The
angular momentum eigenstate |j,m⟩ where j is the total angular momentum quantum number
and m the magnetic quantum number, can be generated from applying the raising operator Ĵ+ to
the lowest eigenstate |j,−j⟩ as follows [78]:

|j,m⟩ = 1
(m+ j)!

(
2j

m+ j

)−1/2

Ĵ m+j
+ |j,−j⟩ , (A.37)

where Ĵ+ is the angular momentum raising operator, defined as Ĵ+ = Ĵx + i Ĵy.

Proof. Recall how Ĵ+ acts on |j,m⟩:

Ĵ+ |j,m⟩ =
√

j(j+ 1)−m(m+ 1) |j,m+ 1⟩ . (A.38)

Note that the factor inside the square root can be rewritten as:

j(j+ 1)−m(m+ 1) = (j+m+ 1)(j−m). (A.39)

Therefore, applying the operator Ĵ+, j+m times, in order to raise the state |j,−j⟩ to |j,m⟩, as
sketched in Table A.1, yields:

Ĵ m+j
+ |j,−j⟩ =

√
(j+m)!

(2j)!
(j−m)!

|j,m⟩ , (A.40)
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which can be rewritten using a binomial notation, since

(j+m)!

(
2j

m+ j

)1/2
= (j+m)!

√
(2j)!

(j+m)!(j−m)!
=

√
(j+m)!

(2j)!
(j−m)!

. (A.41)

Hence,

|j,m⟩ = 1
(j+m)!

(
2j

m+ j

)−1/2

Ĵ m+j
+ |j,−j⟩ . (A.42)

(a)
|j, j ⟩

|j,m⟩

|j,−j ⟩

Ĵ j+m
+

(b)
m (j+m+ 1)(j−m)
−j 1 · 2j
−j+ 1 2(2j− 1)
−j+ 2 3(2j− 2)

...
...

m− 1 (j+m)(j−m+ 1)

Table A.1: Raising and lowering operators for the angular momentum. (a) Scheme depicting the transition from state |j,−j⟩
to |j,m⟩ by applying the raising operator Ĵ+ j+m times. (b) Table summarizing the factors that appear every time we apply
the Ĵ+ operator to state |j,−j⟩ and subsequent states.

A.4.1 Coherent spin state means and variances

A.4.1.1 Means

First, wewill compute the term ⟨ Ĵx⟩CSSx . To do so, let us write Ĵx in terms of the ladder operators,
Ĵx = 1

2( Ĵ+ + Ĵ−), such that:

⟨ Ĵx⟩CSSx = ⟨η| Ĵx|η⟩ =
1
2
(
⟨η| Ĵ+|η⟩+ ⟨η| Ĵ−|η⟩

)
. (A.43)
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Then, the expected value of Ĵ+ w.r.t a CSS can be computed to beN/4:

⟨η| Ĵ+|η⟩ =

=
1

2N+1

N/2∑
n,m=−N/2

(
N

N
2 + n

)1/2( N
N
2 +m

)1/2√N
2

(
N
2
+1
)
−m(m+ 1)

〈
n,

N
2

∣∣∣∣N2 ,m+ 1
〉

=
1

2N+1

N/2∑
m=−N/2

(
N

N
2 +m+ 1

)1/2( N
N
2 +m

)1/2√N
2

(
N
2
+ 1
)
−m(m+ 1)

A.1
=

1
2N+1

N/2∑
m=−N/2

(
N
2
−m

)(
N

N
2 +m

)
A.2 & A.4
=

1
2N+1N2N−1 =

N
4
, (A.44)

and similarly for Ĵ−:

⟨η| Ĵ−|η⟩ =

=
1

2N+1

N/2∑
n,m=−N/2

(
N

N
2 + n

)1/2( N
N
2 +m

)1/2√N
2

(
N
2
+1
)
−m(m−1)

〈
n,

N
2

∣∣∣∣N2 ,m− 1
〉

=
1

2N+1

N/2∑
m=−N/2

(
N

N
2 +m− 1

)1/2( N
N
2 +m

)1/2√N
2

(
N
2
+ 1
)
−m(m− 1)

A.1
=

1
2N+1

N/2∑
m=−N/2

(
N
2
+m

)(
N

N
2 −m

)
A.2 & A.4
=

1
2N+1N2N−1 =

N
4
. (A.45)

Hence,
⟨ Ĵx⟩CSSx =

N
2
. (A.46)

The other terms ⟨ Ĵy⟩CSSx and ⟨ Ĵz⟩CSSx are straightforward:

⟨ Ĵy⟩CSSx =
1
2i
(
⟨η| Ĵ+|η⟩ − ⟨η| Ĵ−|η⟩

)
= 0, (A.47)
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and

⟨ Ĵz⟩CSSx = ⟨η| Ĵz|η⟩ =
1
2N

N/2∑
n=−N/2

N/2∑
m=−N/2

(
N

N
2 + n

)1/2( N
N
2 +m

)1/2
m
〈
n,

N
2

∣∣∣∣N2 ,m
〉

=
1
2N

N/2∑
m=−N/2

m
(

N
N
2 +m

)
A.4
= 0. (A.48)

A.4.1.2 Variances

Let us start with ⟨Δ2 Ĵx⟩CSSx = ⟨η| Ĵ 2x |η⟩ − ⟨η| Ĵx|η⟩2. Note that,

⟨Δ2 Ĵx⟩CSSx = ⟨η| Ĵ 2x |η⟩ − ⟨η| Ĵx|η⟩2 = ⟨η| Ĵ 2x |η⟩ −
N 2

4
. (A.49)

Thus, it only remains to compute the term ⟨η| Ĵ 2x |η⟩, i.e.,

⟨η| Ĵ 2x |η⟩ =
1
4
(
⟨η| Ĵ+ Ĵ+|η⟩+ ⟨η| Ĵ+ Ĵ−|η⟩+ ⟨η| Ĵ− Ĵ+|η⟩+ ⟨η| Ĵ− Ĵ−|η⟩

)
. (A.50)

To calculate the variances of a CSS polarized along the x-axis, the first term, when evaluated for a
CSS as defined in Eq. (1.222), reads as:

⟨η| Ĵ+ Ĵ+|η⟩ =
1
2N

N/2∑
n,m=−N/2

(
N

N
2 + n

)1/2( N
N
2 +m

)1/2〈
n,

N
2

∣∣∣∣ Ĵ+ Ĵ+
∣∣∣∣N2 ,m

〉
. (A.51)

Note that Ĵ+ applied to the bra representing the angular state with magnetic quantum number
n, can be rewritten as:

〈
n,

N
2

∣∣∣∣ Ĵ+ =

〈
n,

N
2

∣∣∣∣ Ĵ †− =

(
Ĵ−
∣∣∣∣N2 , n

〉)†

=

(√
N
2

(
N
2
+1
)
−n(n−1)

∣∣∣∣N2 , n−1
〉)†

=

〈
n− 1,

N
2

∣∣∣∣
√

N
2

(
N
2
+ 1
)
− n(n− 1). (A.52)
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Therefore,

⟨η| Ĵ+ Ĵ+|η⟩ =
1
2N

N/2∑
n,m=−N/2

(
N

N
2 + n

)1/2( N
N
2 +m

)1/2〈
n,

N
2

∣∣∣∣ Ĵ+ Ĵ+
∣∣∣∣N2 ,m

〉
=

=
1
2N

N/2∑
n,m=−N/2

(
N

N
2 + n

)1/2( N
N
2 +m

)1/2√N
2

(
N
2
+1
)
−n(n− 1)×

×

√
N
2

(
N
2
+1
)
−m(m+ 1)

〈
n− 1,

N
2

∣∣∣∣N2 ,m+ 1
〉
=

=
1
2N

N/2∑
m=−N/2

(
N

N
2 +m+ 2

)1/2( N
N
2 +m

)1/2√N
2

(
N
2
+1
)
−(m+ 2)(m+ 1)×

×

√
N
2

(
N
2
+ 1
)
−m(m+ 1) =

1
2N

N/2∑
m=−N/2

N!(
N
2 +m

)
!
(

N
2 −m− 2

)
!
=

=
1
2N

N/2∑
m=−N/2

(
N
2
−m

)(
N
2
−m− 1

)(
N

N
2 +m

)
=

=
1

2N+2N(N− 2)
N/2∑

m=−N/2

(
N

N
2 +m

)
+

1
2N

N/2∑
m=−N/2

m2
(

N
N
2 +m

)
=

= N(N− 2)2−2 +N2−2 = N(N− 2+ 1)2−2 =
N
4
(N− 1). (A.53)

The rest of the terms are:

⟨η| Ĵ+ Ĵ−|η⟩ =
1
2N

N/2∑
n=−N/2

(
N

N
2 + n

)1/2( N
N
2 +m

)1/2√N
2

(
N
2
+ 1
)
− n(n− 1)×

×

√
N
2

(
N
2
+ 1
)
−m(m− 1)

〈
n− 1,

N
2

∣∣∣∣N2 ,m− 1
〉
=

=
1
2N

N/2∑
m=−N/2

(
N

N
2 +m

)(
N
2

(
N
2
+ 1
)
−m(m− 1)

)
=

=
1
2N

N(N+ 2) 2N−2 − 1
2N

N2N−2 =
N
4
(N+ 1), (A.54)
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which yields the same value as:

⟨η| Ĵ− Ĵ+|η⟩ =
1
2N

N/2∑
n=−N/2

(
N

N
2 + n

)1/2( N
N
2 +m

)1/2√N
2

(
N
2
+ 1
)
− n(n+ 1)×

×

√
N
2

(
N
2
+ 1
)
−m(m+ 1)

〈
n+ 1,

N
2

∣∣∣∣N2 ,m+ 1
〉
=

=
1
2N

N/2∑
m=−N/2

(
N

N
2 +m

)(
N
2

(
N
2
+ 1
)
−m(m+ 1)

)
=

=
N
4
(N+ 1), (A.55)

with the expected value of Ĵ 2− being:

⟨η| Ĵ− Ĵ−|η⟩ =
1
2N

N/2∑
n=−N/2

(
N

N
2 + n

)1/2( N
N
2 +m

)1/2√N
2

(
N
2
+ 1
)
− n(n+ 1)×

×

√
N
2

(
N
2
+ 1
)
−m(m− 1)

〈
n+ 1,

N
2

∣∣∣∣N2 ,m− 1
〉
=

=
1
2N

N/2∑
m=−N/2

(
N

N
2 +m− 2

)1/2( N
N
2 +m

)1/2√N
2

(
N
2
+1
)
−(m−2)(m−1)×

×

√
N
2

(
N
2
+ 1
)
−m(m− 1) =

1
2N

N/2∑
m=−N/2

N!(
N
2 +m− 2

)
!
(

N
2 −m

)
!
=

=
1
2N

N/2∑
m=−N/2

(
N
2
+m

)(
N
2
+m− 1

)(
N

N
2 −m

)
=

=
1

2N+2N(N− 2)
N/2∑

m=−N/2

(
N

N
2 +m

)
+

1
2N

N/2∑
m=−N/2

m2
(

N
N
2 +m

)
=

= N(N− 2)2−2 +N2−2 = N(N− 2+ 1)2−2 =
N
4
(N− 1). (A.56)
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Hence, the second moment of Ĵx w.r.t. |η⟩ is:

⟨η| Ĵ 2x |η⟩ =
1
4

(
N
2
(N+ 1) +

N
2
(N− 1)

)
=

N 2

4
. (A.57)

We know from previous calculations that ⟨η| Ĵx|η⟩ = N
2 . Hence,

⟨Δ2 Ĵx⟩CSSx = ⟨η| Ĵ 2x |η⟩ − ⟨η| Ĵx|η⟩2 =
N2

4
−
(
N
2

)2

= 0. (A.58)

The variances for the rest of the components are,

⟨Δ2 Ĵy⟩CSSx = ⟨η| Ĵ 2y |η⟩ − ⟨η| Ĵy|η⟩2 = ⟨η| Ĵ 2y |η⟩ = −
1
4
⟨η|( Ĵ+ − Ĵ−)( Ĵ+ − Ĵ−)|η⟩

= − 1
4
(
⟨η| Ĵ+ Ĵ+|η⟩ − ⟨η| Ĵ+ Ĵ−|η⟩ − ⟨η| Ĵ− Ĵ+|η⟩+ ⟨η| Ĵ− Ĵ−|η⟩

)
= − 1

4

(
N
4
(N− 1)− N

4
(N+ 1)− N

4
(N+ 1) +

N
4
(N− 1)

)
=

N
4
, (A.59)

and,

⟨Δ2 Ĵz⟩CSSx =
1
2N

N/2∑
n=−N/2

N/2∑
m=−N/2

(
N

N
2 + n

)1/2( N
N
2 +m

)1/2〈
n,

N
2

∣∣∣∣ Ĵ 2z ∣∣∣∣m,
N
2

〉
=

=
1
2N

N/2∑
n=−N/2

N/2∑
m=−N/2

(
N

N
2 + n

)1/2( N
N
2 +m

)1/2
n m
〈
n,

N
2

∣∣∣∣m,
N
2

〉
=

=
1
2N

N/2∑
m=−N/2

m2
(

N
N
2 +m

)
=

1
2N

N 2N−2 =
N
4
. (A.60)

A.5 Binomial identities

Theorem A.5 (Binomial theorem). The expansion of the binomial x + y to the power n, where n
is any nonnegative integer, is given by

(x+ y)n =
n∑

k=0

(
n
k

)
xkyn−k, (A.61)
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which in the case of y = 1, reads as

(1+ x)n =
n∑

k=0

(
n
k

)
xk. (A.62)

Identity A.1.

(
N

N
2 +m± 1

)1/2( N
N
2 +m

)1/2
=

(N
2 ∓m

)√
N
2

(N
2 + 1

)
−m

(
m± 1

)( N
N
2 ±m

)
(A.63)

Proof. It is straightforward to show using factorial notation:

(
N

N
2 +m± 1

)1/2( N
N
2 +m

)1/2
=

=

(
N!(N

2 +m± 1
)
!
(N
2 −m∓ 1

)
!

)1/2(
N!(N

2 +m
)
!
(N
2 −m

)
!

)1/2
=

1√(N
2 ±m+ 1

) (N
2 ∓m

) N!(N
2 ±m

)
!
(N
2 ∓m− 1

)
!

=

(N
2 ∓m

)√
N
2

(N
2 + 1

)
−m (m± 1)

(
N

N
2 ±m

)

Identity A.2. Follows straightforwardly from the binomial formula of Eq. (A.62) by setting x = 1
and changing the summand index k to N

2 +m:

N/2∑
m=−N/2

(
N

N
2 +m

)
= 2N. (A.64)

Identity A.3.
N/2∑

m=−N/2

(
N

N
2 ±m

)(
N
2
±m

)
= N 2N−1. (A.65)
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Proof. The closed forms for the above sums can be found using the derivative of the binomial
formula given in Eq. (A.62). Namely,

d
dx

(x+ 1)N = N(x+ 1)N−1 =
d
dx

N∑
k=0

(
N
k

)
xk =

N∑
k=0

(
N
k

)
k xk−1. (A.66)

Then, Eq. (A.65) is obtained by setting x = 1 and changing the summation limits.

Identity A.4.
N/2∑

m=−N/2

m
(

N
N
2 +m

)
= N2N−1 −N2N−1 = 0, (A.67)

which follows trivially from Identity A.2 and Identity A.3.

Identity A.5.
N/2∑

k=−N/2

m2
(

N
N
2 +m

)
= N 2N−2. (A.68)

Proof. To find the close form expression of Identity A.5, we take the second order derivative of
the binomial of Eq. (A.62) multiplied by x:

x (x+ 1)N =
N∑

k=0

(
N
k

)
xk+1. (A.69)

To do so, we first compute the second derivative of the l.h.s. is

d2

dx2
(
x(x+ 1)N

)
= 2N(x+ 1)N−1 +Nx (N− 1)(x+ 1)N−2, (A.70)

and of the r.h.s.:
d2

dx2
N∑

k=0

(
N
k

)
xk+1 =

N∑
k=0

(
N
k

)
(k+ 1)k xk−1. (A.71)

If we now set x = 1 and change the summation limits by redefining the index k as
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k = N
2 +m, then, Eq. (A.69) can be written as

N/2∑
m=−N/2

(
N
2
+m+ 1

)(
N
2
+m

)(
N

N
2 +m

)
= N2N +N(N− 1)2N−2. (A.72)

If now we massage the l.h.s. a bit more:

N/2∑
m=−N/2

(
N
2
+m+ 1

)(
N
2
+m

)(
N

N
2 +m

)
=

=

N/2∑
m=−N/2

(
N
2

(
N
2
+ 1
)
+m2 +m(N+ 1)

)(
N

N
2 +m

)

=
A.4

N(N+ 2)2−2
N/2∑

m=−N/2

(
N

N
2 +m

)
+

N/2∑
m=−N/2

m2
(

N
N
2 +m

)

=
A.2

N(N+ 2)2N−2 +

N/2∑
m=−N/2

m2
(

N
N
2 +m

)
, (A.73)

we can finally rewrite Eq. (A.72) as

N(N+ 2)2N−2 +

N/2∑
m=−N/2

m2
(

N
N
2 +m

)
= N 2N +N(N− 1)2N−2, (A.74)

and thus, reach the final form of Eq. (A.68):

N/2∑
m=−N/2

m2
(

N
N
2 +m

)
= N 2N +N(N− 1)2N−2 −N(N+ 2)2N−2

= N (4+ (N− 1)− (N+ 2)) 2N−2 = N2N−2. (A.75)
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B
Appendix for Chap. 2

B.1 Gaussian properties I

Property B.1 (Inversion of a 2x2 Block matrix). Consider a Block matrix partitioned into four
blocks where AAA andDDD are square blocks of arbitrary size. Then,(

AAA BBB
CCC DDD

)−1

=

(
AAA−1 +AAA−1BBB(DDD−CCCAAA−1BBB)−1CCCAAA−1 −AAA−1BBB(DDD−CCCAAA−1BBB)−1

−(DDD−CCCAAA−1BBB)−1CCCAAA−1 (DDD−CCCAAA−1BBB)−1

)
. (B.1)

Property B.2 (Determinant of a 2x2 Block matrix). Consider the following Block matrix(
AAA BBB
CCC DDD

)
. (B.2)

If AAA is invertible, then the determinant is given by:

det

[(
AAA BBB
CCC DDD

)]
= det [AAA] det [DDD−CCCAAA−1BBB] (B.3)
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Lemma B.1 (The joint distribution of Gaussian variables). Let xxx ∈ Rn and yyy ∈ Rm be two
Gaussian random variables such that:

xxx ∼ p(xxx) = N (xxx|μμμ,ΣΣΣ), (B.4)

yyy|xxx ∼ p(yyy|xxx) = N (yyy|AAAxxx+ BBBuuu,GGGQQQGGGT) (B.5)

where AAA is a transition matrix, BBB is the control input matrix, uuu is an external control, and ΣΣΣ and
QQQ are positive-definite covariance matrices. Then, the joint distribution of (xxx, yyy) is a multivariate
Gaussian given by:(

xxx
yyy

)
∼ p(xxx, yyy) = N

((
xxx
yyy

)∣∣∣∣∣
(

μμμ
AAAμμμ+ BBBuuu

)
,

(
ΣΣΣ ΣΣΣAAAT

AAAΣΣΣ AAAΣΣΣAAAT +GGGQQQGGGT

))
(B.6)

Proof. The joint distribution of (xxx, yyy) can be expressed using the product rule (Property 1.2):

p(xxx, yyy) = p(yyy|xxx)p(xxx) = N (yyy|AAAxxx+ BBBuuu,GGGQQQGGGT) N (xxx|μμμ,ΣΣΣ). (B.7)

Let us now work backwards by assuming that Eq. (B.6) holds and see if we can split the joint
distribution into the following two explicit forms of the Gaussian distributions of xxx and yyy|xxx:

N (yyy|AAAxxx,GGGQQQGGGT)=
1√

(2π)m|GGGQQQGGGT|
exp
(
9 1
2
(yyy9AAAxxx9BBBuuu)T(GGGQQQGGGT)91(yyy9AAAxxx9BBBuuu)

)
, (B.8)

N (xxx|μμμ,ΣΣΣ)= 1√
(2π)n|ΣΣΣ|

exp
(
9 1
2
(xxx9μμμ)TΣΣΣ−1(xxx9μμμ)

)
. (B.9)

Namely, if

p(xxx, yyy) = N

((
xxx
yyy

)∣∣∣∣∣mmm,PPP

)
(B.10)

= N

((
xxx
yyy

)∣∣∣∣∣
(

μμμ
AAAμμμ+ BBBuuu

)
,

(
ΣΣΣ ΣΣΣAAAT

AAAΣΣΣ AAAΣΣΣAAAT +GGGQQQGGGT

))
(B.11)

=
1√

(2π)n+m|ΣΣΣ||GGGQQQGGGT|
exp

9 1
2

((
xxx
yyy

)
9
(

μμμ
AAAμμμ+BBBuuu

))T
PPP−1

((
xxx
yyy

)
9
(

μμμ
AAAμμμ+BBBuuu

))
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where we have used Property B.1 and Property B.2 to compute the inverse and determinant of
PPP sinceΣΣΣ is a positive-definite symmetric matrix and thus, invertible:

PPP−1 =

(
ΣΣΣ ΣΣΣAAAT

AAAΣΣΣ AAAΣΣΣAAAT +GGGQQQGGGT

)−1

=

(
ΣΣΣ−1 +AAAT(GGGQQQGGGT)−1AAA −AAAT(GGGQQQGGGT)−1

−(GGGQQQGGGT)−1AAA (GGGQQQGGGT)−1

)
,

(B.12)

detPPP = det

[(
ΣΣΣ ΣΣΣAAAT

AAAΣΣΣ AAAΣΣΣAAAT +GGGQQQGGGT

)]
= det [ΣΣΣ] det

[
GGGQQQGGGT]. (B.13)

If now we expand the exponent of Eq. (B.10), we get(
xxx− μμμ
yyy−AAAμμμ

)T(
ΣΣΣ−1 +AAAT(GGGQQQGGGT)−1AAA −AAAT(GGGQQQGGGT)−1

−(GGGQQQGGGT)−1AAA (GGGQQQGGGT)−1

)(
xxx− μμμ
yyy−AAAμμμ

)

=

(
xxx− μμμ
yyy−AAAμμμ

)T(
(ΣΣΣ−1 +AAAT(GGGQQQGGGT)−1AAA)(xxx− μμμ)−AAAT(GGGQQQGGGT)−1(yyy−AAAμμμ)

−(GGGQQQGGGT)−1AAA(xxx− μμμ) + (GGGQQQGGGT)−1(yyy−AAAμμμ)

)

=

(
xxx− μμμ
yyy−AAAμμμ

)T(
(ΣΣΣ−1(xxx− μμμ) +AAAT(GGGQQQGGGT)−1(AAAxxx− yyy)

−(GGGQQQGGGT)−1(AAAxxx− yyy)

)
= (xxx−μμμ)TΣΣΣ−1(xxx−μμμ) + (xxx−μμμ)TAAAT(GGGQQQGGGT)−1(AAAxxx−yyy) + (yyy−AAAμμμ)T(GGGQQQGGGT)−1(yyy−AAAxxx)

= (xxx−μμμ)TΣΣΣ−1(xxx−μμμ) + (μμμTAAAT−xxxTAAAT+yyyT−μμμTAAAT)(GGGQQQGGGT)−1(yyy−AAAxxx)

= (xxx−μμμ)TΣΣΣ−1(xxx−μμμ) + (yyy−AAAxxx)T(GGGQQQGGGT)−1(yyy−AAAxxx). (B.14)

It follows then that Eq. (B.10) can indeed be split into the two Gaussian densities of Eq. (B.4)
and Eq. (B.5):

p(xxx, yyy) =
1√

(2π)n+m|ΣΣΣ||GGGQQQGGGT|
exp
(
9 1
2
(
(xxx−μμμ)TΣΣΣ−1(xxx9μμμ)+(yyy9AAAxxx)T(GGGQQQGGGT)−1(yyy9AAAxxx)

))
=

1√
(2π)n|ΣΣΣ|

e−
1
2((xxx−μμμ)TΣΣΣ−1(xxx−μμμ)) 1√

(2π)m|GGGQQQGGGT|
e−

1
2((yyy−AAAxxx)T(GGGQQQGGGT)−1(yyy−AAAxxx))

=N (xxx|μμμ,ΣΣΣ)N (yyy|AAAxxx,GGGQQQGGGT). (B.15)

LemmaB.2 (Marginal and conditional distributions of a jointGaussian probability density). Let
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two random variables xxx and yyy have the joint Gaussian probability density(
xxx
yyy

)
∼ N

((
xxx
yyy

)∣∣∣∣∣
(
μμμx
μμμy

)
,

(
ΣΣΣx,x ΣΣΣx,y

ΣΣΣy,x ΣΣΣy,y

))
(B.16)

whereΣΣΣT
x,y = ΣΣΣy,x. Then, the marginal and conditional probability densities of xxx and yyy are

xxx ∼ p(xxx) = N (xxx|μμμx,ΣΣΣx,x), (B.17)

yyy ∼ p(yyy) = N (yyy|μμμy,ΣΣΣy,y), (B.18)

xxx|yyy ∼ p(xxx|yyy) = N (xxx|μμμx + ΣΣΣx,yΣΣΣ−1
y,y(yyy− μμμy),ΣΣΣx,x − ΣΣΣx,yΣΣΣ−1

y,yΣΣΣ
T
x,y), (B.19)

yyy|xxx ∼ p(yyy|xxx) = N (yyy|μμμy + ΣΣΣT
x,yΣΣΣ

−1
x,x(xxx− μμμx),ΣΣΣy,y − ΣΣΣT

x,yΣΣΣ
−1
x,xΣΣΣx,y) (B.20)
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C
Appendix for Chap. 3

C.1 Fourier coefficients of a double series expansion

Proposition C.1 (Double time–frequency Fourier series expansion of a continuous mode). Let
b̂(t) be a continuousmode defined over time t. By segmenting time into intervals of durationΔt and
applying a Fourier expansion, the continuous mode b̂(t) can be written as a double series expansion
in both time and frequency:

b̂(t) =
1√
Δt

∞∑
n=−∞

∞∑
k=−∞

b̂n,k Θ(t− tn) e−i2πk t/Δt, (C.1)

where tn = nΔt is the discretized time step,Θ(t− tn) is theHeaviside function defined asΘ(u) = 1
for 0 ≤ u < Δt and zero otherwise, and b̂n,k are the “Fourier” coefficients of the double series, given
by:

b̂n,k =
1√
Δt

∫ tn+Δt

tn
b̂(t)ei2πk t/Δt dt. (C.2)
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Proof. Let us start the proof by multiplying both sides of Eq. (C.1) by ei2πℓt/Δt, as well as
integrating them w.r.t. time from tm to tm + Δt:

∫ tm+Δt

tm
b̂(t)ei2πℓ t/Δt dt =

∫ tm+Δt

tm

1√
Δt

∞∑
n=−∞

∞∑
k=−∞

b̂n,k Θ(t− tn) e−i2πk t/Δtei2πℓ t/Δt dt. (C.3)

SinceΘ(t− tn) is nonzero only for tn ≤ t < tn + Δt, and considering that the integration is
specifically performed over the interval tm to tm + Δt,Θ(t− tn) can be replaced with 1 within
the integration interval [tm, tm + Δt) and zero otherwise. This allows for the removal of the
summation over n in the expression, as the only non-zero contribution comes from the term
when n = m, i.e., when the interval picked by the Heaviside function coincides with the
integration interval. Then, the rhs of Eq. (C.3) reduces to

∫ tm+Δt

tm
b̂(t)ei2πℓ t/Δt dt =

∞∑
k=−∞

1√
Δt

b̂m,k

∫ tm+Δt

tm
e−i2πk t/Δtei2πℓ t/Δt dt.

It can be further simplified by using the orthogonality of the exponential functions, i.e.,
meaning that for terms with k ̸= ℓ, the integral over the interval Δt will be zero due to
periodicity of the exponents over that time period, and for k = ℓ, the integral will yield the
interval Δt: ∫ tm+Δt

tm
e−i2πk t/Δtei2πℓ t/Δt dt = Δt δk,ℓ, (C.4)

where δk,ℓ denotes the Kronecker delta. Therefore,∫ tm+Δt

tm
b̂(t)ei2πℓ t/Δt dt =

∞∑
k=−∞

1√
Δt

b̂m,k Δt δk,ℓ = b̂m,ℓ

√
Δt,

such that we can easily isolate the discretized modes b̂n,k as:

b̂n,k =
1√
Δt

∫ tn+Δt

tn
b̂(t)ei2πk t/Δt dt. (C.5)
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D
Appendix for Chap. 4

D.1 Writing a quantummap as a convex mixture of unitaries

Theorem D.1 (Quantummap as a convex mixture of unitaries). Given a unitary evolution gov-
erned by a Hamiltonian ξĤ Uξ,τ[ · ] = e−i ξ Ĥ τ · ei ξ Ĥ τ, (D.1)
whose scalar encoding ξ ∈ R (frequency) is randomly distributed according to a Gaussian proba-
bility density

ξ ∼ pμ,σ(ξ ) = N (μ(τ), σ2(τ)) =
1√

2πσ2(τ)
exp
{
9(ξ− μ(τ))2

2σ2(τ)

}
, (D.2)

then, the quantummapΩ can be written as a convex mixture of these unitaries as:

ρ(τ) = Ω[ρ(0)] = Ep(ξ )[Uξ,τ[ρ(0)]] =
∫

dξ pμ,σ(ξ ) e−i ξ Ĥ τρ(0)ei ξ Ĥ τ, (D.3)
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if ρ(τ) corresponds to the solution of the following master equation:

dρ(τ)
dτ

= −iω(τ)[Ĥ , ρ(τ)] + Γ(τ)
(
Ĥρ(τ)Ĥ − 1

2
{Ĥ 2, ρ(τ)}

)
(D.4)

= −iω(τ)[Ĥ , ρ(τ)]− 1
2
Γ(τ)

[
Ĥ , [Ĥ , ρ(τ)]

]
(D.5)

with the time-dependent frequency and decay parameters being

ω(τ) = μ(τ) + τμ̇(τ) and Γ(τ) = 2σ2(τ)τ
(
1+

σ̇(τ)
σ(τ)

τ
)
. (D.6)

Proof. The first step is to differentiate ρ(τ), as defined in Eq. (D.3), with respect to τ:

dρ(τ)
dτ

=

∫
dξ
(

d
dτ

pμ,σ(ξ )
)
Uξ,τ[ρ(0)] +

∫
dξ pμ,σ(ξ )

d
dτ
Uξ,τ[ρ(0)], (D.7)

which, in turn, requires the differentiation of the Gaussian probability distribution,

d
dτ

pμ,σ(ξ ) =
d
dτ

[
1√

2πσ2(τ)
exp
{
9(ξ9μ(τ))

2

2σ2(τ)

}]

=
d
dτ

[
1√

2πσ2(τ)

]
exp
{
9(ξ9μ(τ))

2

2σ2(τ)

}
+

1√
2πσ2(τ)

d
dτ

[
exp
{
9(ξ9μ(τ))

2

2σ2(τ)

}]
= − σ̇(τ)

σ(τ)
1√

2πσ2(τ)
exp
{
9(ξ9μ(τ))

2

2σ2(τ)

}
− 1√

2πσ2(τ)
exp
{
9(ξ9μ(τ))

2

2σ2(τ)

}
d
dτ

(ξ9μ(τ))2
2σ2(τ)

= pμ,σ(ξ )

(
− σ̇(τ)
σ(τ)
−

2σ2(τ) d
dτ(ξ− μ(τ))2 − (ξ− μ(τ))2 d

dτ2σ
2(τ)

4σ4(τ)

)

= pμ,σ(ξ )
(
− σ̇(τ)
σ(τ)
− −4σ

2(τ)(ξ− μ(τ))μ̇(τ)− (ξ− μ(τ))24σ(τ)σ̇(τ)
4σ4(τ)

)
= pμ,σ(ξ )

(
(ξ− μ(τ))σ(τ)μ̇(τ) + ((ξ− μ(τ))2 − σ2(τ)) σ̇(τ)

σ3(τ)

)
, (D.8)
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and the unitary map,

d
dτ
Uξ,τ[ρ(0)] =

d
dτ

[
e−i ξ Ĥ τρ(0)ei ξ Ĥ τ

]
=

d
dτ

[
e−i ξ Ĥ τ

]
ρ(0)ei ξ Ĥ τ + e−i ξ Ĥ τρ(0)

d
dτ

[
ei ξ Ĥ τ

]
= (−iξĤ)Uξ,τ[ρ(0)] + Uξ,τ[ρ(0)](iξĤ) = −i

[
Ĥ , ξ Uξ,τ[ρ(0)]

]
. (D.9)

Therefore, the derivative of the density matrix with respect to τ becomes,

dρ(τ)
dτ

=
1

σ3(τ)

∫
dξ pμ,σ(ξ )

(
(ξ− μ(τ))σ(τ)μ̇(τ) +

(
(ξ− μ(τ))2 − σ2(τ)

)
σ̇(τ)

)
Uξ,τ[ρ(0)]

− i
∫

dξ pμ,σ(ξ )
[
Ĥ , ξ Uξ,τ[ρ(0)]

]
=

1
σ3(τ)

Epμ,σ(ξ )
[(
ξ σ(τ) μ̇(τ)9μ(τ)σ(τ)μ̇(τ) + (ξ9μ(τ))2σ̇(τ)9σ2(τ)σ̇(τ)

)
Uξ,τ[ρ(0)]

]
− i
[
Ĥ ,Epμ,σ(ξ )[ξ Uξ,τ[ρ(0)]]

]
=

1
σ3(τ)

Epμ,σ(ξ )[ξ σ(τ) μ̇(τ)Uξ,τ[ρ(0)]]

− 1
σ3(τ)

Epμ,σ(ξ )[μ(τ) σ(τ) μ̇(τ)Uξ,τ[ρ(0)]] +
1

σ3(τ)
Epμ,σ(ξ )

[
(ξ− μ(τ))2σ̇(τ)Uξ,τ[ρ(0)]

]
− 1

σ3(τ)
Epμ,σ(ξ )

[
σ2(τ)σ̇(τ)Uξ,τ[ρ(0)]

]
− i
[
Ĥ ,Epμ,σ(ξ )[ξ Uξ,τ[ρ(0)]]

]
=

μ̇(τ)
σ2(τ)

Epμ,σ(ξ )[ξUξ,τ[ρ(0)]]−
μ(τ) μ̇(τ)
σ2(τ)

ρ(τ) +
σ̇(τ)
σ3(τ)

Epμ,σ
[
(ξ− μ(τ))2 Uξ,τ[ρ(0)]

]
− σ̇(τ)

σ(τ)
ρ(τ)− i

[
Ĥ ,Epμ,σ(ξ )[ξ Uξ,τ[ρ(0)]]

]
. (D.10)

To continue our proof, we must then explicitly evaluate the averaged expressions
Epμ,σ(ξ )[ξ Uξ,τ[ρ(0)]] andEpμ,σ [(ξ− μ(τ))2 Uξ,τ[ρ(0)]]. To do so we will employ the trick of
taking the derivative of the Gaussian probability distribution with respect to μ(τ). Namely,

σ2(τ)
d

dμ(τ)
pμ,σ(ξ ) = σ2(τ)

d
dμ(τ)

[
1√

2πσ2(τ)
exp
{
9(ξ− μ(τ))2

2σ2(τ)

}]
= ξ pμ,σ(ξ )− μ(τ) pμ,σ(ξ ) (D.11)
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and

σ4(τ)
d2

dμ(τ)2
pμ,σ(ξ ) = σ2(τ)

d
dμ(τ)

[
(ξ− μ)pμ,σ(ξ )

]
= σ2(τ)

(
−pμ,σ(ξ ) + (ξ− μ(τ))

d
dμ(τ)

pμ,σ(ξ )
)

= −σ2(τ) pμ,σ(ξ ) + (ξ− μ(τ))σ2(τ)
d

dμ(τ)
pμ,σ(ξ )

= −σ2(τ) pμ,σ(ξ ) + (ξ− μ(τ))2pμ,σ(ξ ). (D.12)

Then, we can move to evaluating the averages, i.e.,

Epμ,σ(ξ )[ξ Uξ,τ[ρ(0)]] =
∫

dξ ξ pμ,σ(ξ )Uξ,τ[ρ(0)]

(D.11)
=

∫
dξ
(
σ2(τ)

d
dμ(τ)

pμ,σ(ξ ) + μ(τ) pμ,σ(ξ )
)
Uξ,τ[ρ(0)]

= σ2(τ)
∫

dξ
d

dμ(τ)
pμ,σ(ξ )Uξ,τ[ρ(0)] + μ(τ) ρ(τ)

(D.15)
= −iσ2(τ)τ

[
Ĥ , ρ(τ)

]
+ μ(τ) ρ(τ), (D.13)

and

Epμ,σ
[
(ξ− μ(τ))2 Uξ,τ[ρ(0)]

]
=

∫
dξ (ξ− μ(τ))2 pμ,σ(ξ )Uξ,τ[ρ(0)]

(D.12)
=

∫
dξ
(
σ4(τ)

d2

dμ(τ)2
pμ,σ(ξ ) + σ2(τ) pμ,σ(ξ )

)
Uξ,τ[ρ(0)]

= σ4(τ)
∫

dξ
d2

dμ(τ)2
pμ,σ(ξ )Uξ,τ[ρ(0)] + σ2(τ) ρ(τ)

(D.16)
= −σ4(τ)τ2

[
Ĥ ,
[
Ĥ , ρ(τ)

]]
+ σ2(τ) ρ(τ) (D.14)

where in the last step of both expressions we have used the change of variable of ξ→ ξ+ μ(τ) to
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calculate

d
dμ(τ)

∫
dξ pμ,σ(ξ )Uξ,τ[ρ(0)] =

d
dμ(τ)

∫
dξ pμ,σ(ξ+ μ(τ) )Uξ+μ(τ),τ[ρ(0)]

=
d

dμ(τ)

∫
dξ p0,σ(τ)(ξ )Uξ+μ(τ),τ[ρ(0)] =

∫
dξ p0,σ(τ)(ξ )

d
dμ(τ)

Uξ+μ(τ),τ[ρ(0)]

(D.9)
= −i

∫
dξ p0,σ(τ)(ξ )

[
Ĥ , τ Uξ,τ[ρ(0)]

]
= −iτ

[
Ĥ , ρ(τ)

]
, (D.15)

which then implies that

d2

dμ(τ)2

∫
dξ pμ,σ(ξ )Uξ,τ[ρ(0)] =

d
dμ(τ)

[
d

dμ(τ)

∫
dξ pμ,σ(ξ )Uξ,τ[ρ(0)]

]
=−iτ

[
Ĥ ,

d
dμ(τ)

ρ(τ)
]
= −iτ

[
Ĥ ,

d
dμ(τ)

∫
dξ pμ,σ(ξ )Uξ,τ[ρ(0)]

]
= −τ2

[
Ĥ ,
[
Ĥ , ρ(τ)

]]
. (D.16)

Armed now with the explicit form of the expected values given in Eq. (D.13) and Eq. (D.14),
we can complete our derivation of Eq. (D.10). Namely,

dρ(τ)
dτ

=
μ̇(τ)
σ2(τ)

Epμ,σ(ξ )[ξUξ,τ[ρ(0)]] +
σ̇(τ)
σ3(τ)

Epμ,σ
[
(ξ− μ(τ))2 Uξ,τ[ρ(0)]

]
−
(
μ(τ) μ̇(τ)
σ2(τ)

+
σ̇(τ)
σ(τ)

)
ρ(τ)− i

[
Ĥ ,Epμ,σ(ξ )[ξ Uξ,τ[ρ(0)]]

]
=

μ̇(τ)
σ2(τ)

(
−iσ2(τ)τ

[
Ĥ , ρ(τ)

]
+ μ(τ) ρ(τ)

)
−
(
μ(τ) μ̇(τ)
σ2(τ)

+
σ̇(τ)
σ(τ)

)
ρ(τ)

+
σ̇(τ)
σ3(τ)

(
−σ4(τ)τ2

[
Ĥ ,
[
Ĥ , ρ(τ)

]]
+ σ2(τ) ρ(τ)

)
− i
[
Ĥ ,
(
−iσ2(τ)τ

[
Ĥ , ρ(τ)

]
+ μ(τ) ρ(τ)

)]
= −i μ̇(τ)τ

[
Ĥ , ρ(τ)

]
− σ(τ)σ̇(τ)τ2

[
Ĥ ,
[
Ĥ , ρ(τ)

]]
− σ2(τ)τ

[
Ĥ ,
[
Ĥ , ρ(τ)

]]
− iμ(τ)

[
Ĥ , ρ(τ)

]
= −i(μ(τ) + μ̇(τ)τ)

[
Ĥ , ρ(τ)

]
−
(
σ̇(τ)
σ(τ)

τ+ 1
)
σ2(τ)τ

[
Ĥ ,
[
Ĥ , ρ(τ)

]]
(D.17)

which is then in the desired form of Eq. (D.5).
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D.2 Gaussian properties II

Lemma D.2 (The integral ofN + 1 Gaussians). The integral of N + 1 Gaussians can be written
as

1
(2πVc)1/2

1
(2πVℓ)N/2

∫
dξ e−

ξ2
2Vc e−

∑N
i=1

(ζ (i)−ξ−ω)2
2Vℓ

=
1√

2π(Vc + Vℓ/N)
f (ζζζ ) exp

{
− (ζ− ω)2

2(Vc + Vℓ/N)

}
(D.18)

where ζ := 1
N
∑N

i=1 ζ
(i) and

f (ζζζ ) =

√
1

N(2πVℓ)N−1 exp

{
− 1
2Vℓ

(
N∑
i=1

(ζ (i))2 −Nζ 2

)}
(D.19)

Proof. Let us first start by expanding the exponent of the local term,

(ζ (i) − (ξ+ ω))2 = (ζ (i))2 − 2(ξ+ ω)ζ (i) + (ξ+ ω)2 (D.20)

such that when summing over i = 1, . . . ,N, we can it as

N∑
i=1

(ζ (i) − (ξ+ ω))2 =
N∑
i=1

(
(ζ (i))2−2(ξ+ω)ζ (i)+(ξ+ω)2

)
=

N∑
i=1

(ζ (i))2−2(ξ+ ω)
N∑
i=1

ζ (i)+N(ξ+ω)2 (D.21)

Next, we introduce the average of auxiliary frequencies experienced by N atoms,

ζ :=
1
N

N∑
i=1

ζ (i) (D.22)
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which will be employed to reformulate Eq. (D.21):

N∑
i=1

(ζ (i) − (ξ+ ω))2 =
N∑
i=1

(ζ (i))2−2(ξ+ ω)Nζ+N(ξ+ω)2

= Nζ 2−2(ξ+ ω)Nζ+N(ξ+ω)2 +
N∑
i=1

(ζ (i))2 −Nζ 2

= N(ζ− (ξ+ ω))2 +
N∑
i=1

(ζ (i))2 −Nζ 2, (D.23)

where in the penultimate step we have added and subtracted Nζ. Crucially, the local
exponential in Eq. (D.18) can now be divided into two terms

e−
∑N

i=1
(ζ (i)−ξ−ω)2

2Vℓ = e−
(ζ−(ξ+ω))2

2Vℓ/N e−
1

2Vℓ
(
∑N

i=1(ζ
(i))2−Nζ 2), (D.24)

leaving the first exponential as the only one depending on ξ and ω and the second term as a
function of exclusively ζζζ.
Therefore, we have reduced the problem of integrating N+ 1Gaussian functions with respect
to ξ, to integrating only two Gaussians, i.e.,∫

dξ e−
ξ2
2Vc e−

∑N
i=1

(ζ (i)−ξ−ω)2
2Vℓ = e−

1
2Vℓ
(
∑N

i=1(ζ
(i))2−Nζ 2)

∫
dξ e−

ξ2
2Vc e−

(ζ−(ξ+ω))2
2Vℓ/N (D.25)

which has a known result:∫
dξ e−

ξ2
2Vc e−

(ζ−(ξ+ω))2
2Vℓ/N =

√
2π

VcVℓ/N
Vc + Vℓ/N

exp

{
− (ζ− ω)2

2(Vc + Vℓ/N)

}
. (D.26)

Therefore,

1
(2πVc)1/2

1
(2πVℓ)N/2

∫
dξ e−

ξ2
2Vc e−

∑N
i=1

(ζ (i)−ξ−ω)2
2Vℓ

=
1√

2π(Vc + Vℓ/N)
f (ζζζ ) exp

{
− (ζ− ω)2

2(Vc + Vℓ/N)

}
(D.27)

226



where

f (ζζζ ) =

√
1

N(2πVℓ)N−1 exp

{
− 1
2Vℓ

(
N∑
i=1

(ζ (i))2 −Nζ 2

)}
(D.28)

Lemma D.3 (Set of nested integrals of Gaussian functions). Consider the following recurrence
relation definingPj(ωj) in terms ofPj91(ωj91) for j = 0, 1, 2, . . . :

Pj(ωj)=

∫
dωj91

1√
2πVP

exp
{
−
(ωj − ωj91)

2

2VP

}
1√
2πVQ

exp

{
−
(ζj91 − ωj91)

2

2VQ

}
Pj91(ωj91) (D.29)

which involves a generalized convolution of Gaussian distributions with variances VP and VQ, re-
spectively. The initial condition for the recursive relation is given by a Gaussian of the form

P0(ω0) = C0 exp
{
−
(ω0 − μ0)

2

2V0

}
, (D.30)

where C0 is a constant, V0 ≥ 0 and μ0 ∈ R. Then, ∀j ≥ 1, the solution to the recurrence relation is

Pj(ωj) = Cj exp

{
−
(ωj − μj)

2

2Vj

}
, (D.31)

with parameters Cj, μj and Vj given in turn by the following coupled recurrence relations:

Cj = Cj91

(
2π
(
VP + VQ +

VPVQ

Vj91

))−1/2

exp

{
−
(ωj91 − μj91)

2

2(VQ + Vj91)

}
(D.32)

μj =
VQ μj91 + Vj91ζj91

VQ + Vj91
(D.33)

Vj = VP +
VQVj91

VQ + Vj91
. (D.34)

Proof. As with many recursive problem, it is sufficient to use mathematical induction to prove
that the proposed solution in Eq. (D.31) holds. This involves verifying the base case for j = 0,
and then showing that the relation (D.29) is fulfilled by Eq. (D.31) for any j ≥ 1. The base
case is trivially satisfied by the definition. For the inductive step, we assume thatPj91(ωj91)
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takes the form given in Eq. (D.31), and we show that substituting this into the recurrence
relation in Eq. (D.29) yields the correct form forPj(ωj). This is done by performing the
integral in Eq. (D.29) explicitly:

Pj(ωj)=

∫
dωj91

1√
2πVP

exp
{
9
(ωj9ωj91)

2

2VP

}
1√

2πVQ
exp

{
9
(ζj919ωj91)

2

2VQ

}
Cj91exp

{
9
(ωj919μj91)2

2Vj91

}

=
Cj91√

2π
(
VQ + VP +

VPVQ
Vj91

) exp

− ω 2
j − 2αωj + β

2
(
VP +

VQVj91
VQ+Vj91

)
 (D.35)

with α and β fulfilling:

α =
VQ μj91 + Vj91ζj91

VQ + Vj91
= μj, (D.36)

β =
VQ μ2j91 + Vj91ζ 2

j91 + VP(ζj91 − μj91)
2

VQ + Vj91
, (D.37)

which are both independent of ωj and ωj91. If now we ‘complete the square’, i.e., split the
exponent of Eq. (D.31) into ω 2

j − 2αωj + β = (ωj − α)2 − α2 + β, and substitute the
expressions for α and β, we get,

Pj(ωj) =

Cj91 exp

{
− −α2+β

2
(
VP+

VQVj91
VQ+Vj91

)
}

√
2π
(
VQ + VP +

VPVQ
Vj91

) exp

− (ωj − α)2

2
(
VP +

VQVj91
VQ+Vj91

)
 (D.38)
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which, since α = μj and

−α2 + β = −μ 2
j +

VQ μ2j91 + Vj91ζ 2
j91 + VP(ζj91 − μj91)

2

VQ + Vj91

= −
(VQ μj91 + Vj91ζj91)2

(VQ + Vj91)2
+

VQ μ2j91 + Vj91ζ 2
j91 + VP(ζj91 − μj91)

2

VQ + Vj91

=
−V2

Q μ2j91 − 2VQ μj91Vj91ζj91 − V 2
j91ζ 2

j91 + V2
Q μ2j91 + Vj91VQ μ2j91

(VQ + Vj91)2

+
V 2

j91ζ 2
j91 + VQVj91ζ 2

j91 + VP(VQ + Vj91)(ζ 2
j91 − 2ζj91μj91 + μ2j91)

(VQ + Vj91)2

=
−2VQ μj91Vj91ζj91 + Vj91VQ μ2j91 + VQVj91ζ 2

j91 + VPVQζ 2
j91 − 2VPVQζj91μj91

(VQ + Vj91)2

+
VPVQμ2j91 + VPVj91ζ 2

j91 − 2VPVj91ζj91μj91 + VPVj91μ2j91
(VQ + Vj91)2

=
(VQVj91 + VPVQ + VPVj91)ζ 2

j91 − 2(VQVj91 + VPVQ + VPVj91)ζj91μj91
(VQ + Vj91)2

+
(VQVj91 + VPVQ + VPVj91)μ2j91

(VQ + Vj91)2
=

(VQVj91 + VPVQ + VPVj91)

(VQ + Vj91)2
(ζj91 − μj91)

2

=

(
VP +

VQVj91

VQ + Vj91

) (ζj91 − μj91)
2

VQ + Vj91
, (D.39)

yields the expected form of Eq. (D.31), with Cj, μj and Vj as specified by Eqs. (D.32-D.34).
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E
Appendix for Chap. 5

E.1 Unconditional dynamics in the presence of a fluctuating field in the LG
regime

Consider the most general dephasing evolution possible:

dρ
(c)
(t) =− i ω(t)

[
Ĵz, ρ(c)(t)

]
dt+

∑
α=x,y,z

καD[ Ĵα]ρ(c)(t)dt+MD[ Ĵy]ρ(c)(t)dt, (E.1)

where collective dephasing occurs along the three directions x, y and z at rates κx, κy and κz, re-
spectively. From this master equation, a set of differential equations describing the evolution of
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the corresponding observables Ĵx, Ĵy, and Ĵz can be derived:

dω = −χω(t)dt+√qωdWω, (E.2)

d⟨ Ĵx⟩ = −ω(t)⟨ Ĵy⟩dt−
1
2
(M+ κy + κz)⟨ Ĵx⟩dt, (E.3)

d⟨ Ĵy⟩ = ω(t)⟨ Ĵx⟩dt−
1
2
(κx + κz)⟨ Ĵy⟩dt, (E.4)

d⟨ Ĵz⟩ = −
1
2
(
M+ κy + κx

)
⟨ Ĵz⟩dt, (E.5)

Given that Eqs. (E.2-E.4) form a closed set of coupled differential equations, they can be nu-
merically solved in order to yield the unconditional evolution of ⟨ Ĵx(t)⟩. However, since we
would rather find an approximate analytical expression, we focus on short timescales such that
ω(t) t≪ 1. Then, by substituting the randomvariableω(t)by its time average ω(t) intoEqs. (E.3-
E.5):

ω(t) =
1
t

∫ t

0
dτ ω(τ), (E.6)

the system of differential equations yields,

⟨ Ĵx(t)⟩ =
J

2Θ
e−(M+κx+κy+2κz+Θ) t/4 (M−κx+κy+Θ−etΘ/2(M−κx+κy−Θ)

)
, (E.7)

where Θ =
√

(M− κx + κy)2 − 16ω2(t) and the initial conditions set were to the CSS state:
⟨ Ĵx(0)⟩ = J and ⟨ Ĵy(0)⟩ = 0. By expanding the unconditional evolution of Ĵx to first order in
ω(t), we obtain

⟨ Ĵx(t)⟩ ≈ J e−(M+κz+κy) t/2

+ 2 J e−(M+κz+κy) t/2ω2(t)
2− 2e(M−κx+κy)t/2 + t(M− κx + κy)

(M− κx + κy)2
. (E.8)

Hence, he unconditional evolution of Ĵx can be approximated as

⟨ Ĵx(t)⟩ ≈ J e−(M+κz+κy) t/2, (E.9)
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when the first term of E.8 dominates over the second. In other words, when the time average of
ω(t) fulfills

|ω(t)| ≤
√
2
t
, (E.10)

where we have approximated the exponent e(M−κx+κy)t/2 in (E.8) as its Taylor expansion up to
second order. Namely, e(M−κx+κy)t/2 ≈ 1+ 1

2(M− κx + κy)t+ 1
8(M− κx + κy)2t2. Addition-

ally, note that within the linear-Gaussian regime, the approximation Eq. (E.9) is independent of
the decoherence rate κx. Therefore, the decoherence rate κx is redundant and disappears from
Eqs. (5.16-5.19) when performing the Holstein-Primakoff transformation of the SME accord-
ing to the X̂ and P̂ quadratures of Eq. (5.15). Mathematically, one can check that the dissipa-
tive terms disappear, since Tr

{
P̂D[X̂ ]ρ

(c)

}
= Tr

{
X̂D[P̂ ]ρ

(c)

}
= 0. This is can be intuitively

explained—deviations of ĴJJ(t) from the x-direction are then too small for the collective noiseman-
ifested viaD[ Ĵx] in equation Eq. (E.1) to have any effect on the quadratures Eq. (5.15).
Next, we would like to find the mean and variance of the time average of ω(t),

E[ω(t)] =
1
t

∫ t

0
E[ω(τ)] dτ, (E.11)

V[ω(t)] = E
[
(ω(t)− E[ω(t)])2

]
. (E.12)

As discussed in Sec. 1.3.6, the mean of a random variable ω(t) driven by an OU process of the
form in Eq. (E.2) reads

E[ω(t)] = ω(0) e−χt = 0, (E.13)

where we have taken ω(0) = 0, while its covariance (as shown in Eq. (1.134)) is:

C[ω(s), ω(t)] = E[ω(s)ω(t)] =
qω
2χ
(
e−χ|t−s| − e−χ(t+s)) . (E.14)
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Figure E.1: Validity of the LG approximation for ⟨ Ĵx(t)⟩ at different field fluctuation strengths The parameters used to gen‐
erate the plots areM = 100 kHz, κz = κc = 1Hz, J = 107, η = 1, and χ = 0, with tS = (M + κc)t being the
scaled time such that tS = 1 when t = (M + κc)−1. Plots (a), (c), and (d) (left column) have been generated with a field
fluctuation strength of qω = 1014rad s−3, and plots (b), (d), (f) (right column) with qω = 1016rad s−3. The first row (plots (a)
and (b)) show the fluctuating field in solid blue juxtaposed with the confidence interval ofω(t) (δ) as well as the upper bound
for |ω(t)| which stems from the Taylor expansion of ⟨ Ĵx(t)⟩. The plots in the second row (subfigures (c) and (d)), compare
the exact solution of ⟨ Ĵx(t)⟩ with its approximation Je−(M+κc)t/2. Finally, in the bottom row, plots (e) and (f) show the error
percentage of the approximation of ⟨ Ĵx(t)⟩.

Hence,E[ω(t)] = 0 and its variance:

V[ω(t)] = E
[
(ω(t))2

]
= E

[
1
t

∫ t

0
dτ1 ω(τ1)

1
t

∫ t

0
dτ2 ω(τ2)

]
(E.15)

=
1
t2

∫ t

0
dτ1
∫ t

0
dτ2 E[ω(τ1)ω(τ2)] =

1
t2

∫ t

0
dτ1 dτ2

qω
2χ
(
e−χ|τ1−τ2| − e−χ(τ1+τ2)

)
(E.16)

=
qω
2χt2

[∫ t

0
dτ1
(∫ τ1

0
dτ2 e−χ(τ1−τ2) +

∫ t

τ1
dτ2 eχ(τ1−τ2)

)
−
(
1− e−χt

χ

)2
]

(E.17)

=
qω
2χt2

[
1
χ

∫ t

0
dτ1
(
1− e−χτ1 − eχ(τ1−t) + 1

)
−
(
1− e−χt

χ

)2
]

(E.18)

=
qω

2χ3t2
(4e−χt + 2χt− e−2χt − 3). (E.19)
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If χ≪ 4
3 t , we can correctly approximate the variance as:

V[ω(t)] =
qω t
3

. (E.20)

So, using the 68-95-99.7 rule and taking the confidence interval for ω(t) to be

∣∣∣E[ω(t)]± 2
√
V[ω(t)]

∣∣∣ = 2
√

qωt
3
, (E.21)

we can define an inequality that ensures (E.10) to hold with high (95%) probability:

2
√

qωt
3

.
√
2
t
. (E.22)

As shown infigure Fig. E.1, the inequality in (E.22) correctly assures the approximation ⟨ Ĵx(t)⟩ ≈
Je−(M+κc)t/2 to hold. Moreover, it gives an upper bound to the value of qω,

qω .
3
2t3

. (E.23)

In summary, the unconditional evolution of Ĵx can be taken to be

⟨ Ĵx(t)⟩ ≈ Je−(M+κc) t/2, (E.24)

if χ ≤ 4
3 t and qω . 3

2t3 . Note that we have renamed κz =: κc and dropped κy, since it is unnec-
essary. Namely, by transforming the parameters of the continuous measurement in Eq. (5.16) as
follows:M → M − κy, η → ηM/(M − κy) and y(t) → y(t)

√
M/(M− κy); we retrieve the

conditional dynamics Eqs. (5.16-5.18) with κy = 0. Hence, the impact of the collective noise in-
troduced viaD[ Ĵy] in Eq. (E.1) can always be interpreted and incorporated into a modified form
of the continuous measurement Eq. (5.16).

E.2 Conditional dynamics of the variance Vy(t) in the LG regime

When taking into accountpossible decoherencemechanisms along the samedirectionof themag-
netic field, the differential equation for the conditional variance of Vy(t) is shown to be,

dVy(t) = −4MηVy(t)dt+ κc J 2e−(M+κc)tdt, (E.25)

234



whose solution exists and can be given in terms of modified Bessel functions of first and second
kind (Iβ[·] andKβ[·]), and regularized confluent hypergeometric functions (0F1[·]). Namely,

Vy(t) = Ve(t) = Je−(M+κc)t/2

(
I1
[
2β
](√

η κcMK0[2α]− κcK1[2α]
)
+

+K1

[
2β
](

κc I1[2α] +
√
η κcM 0F1[1, α2]

))
/(

2 0F1[1, β
2]
(√

η κcMK1[2α]−MηK0[2α]
)

+
2ηM

M+ κc
K0[2β]

(
(M+ κc) 0F1[1, α2] + 2κc J 0F1[2, α2]

))
, (E.26)

where α = 2J
√

η κcM/(M + κc) and β = αe−(M+κc)t/2. The behavior of the solution in E.26
can be better understood when broken down into different regimes.

I1[2β] ≈
e2β

2
√

πβ
K0[2α] ≈

1
2

√
π
α
e−2α K1[2α] ≈

1
2

√
π
α
e−2α

K1[2β] ≈
1
2

√π
β
e−2β I1[2α] ≈

e2α

2
√
πα 0F1[1, α2] ≈

e2α

2
√
πα

0F1[1, β
2] ≈ e2β

2
√

πβ
K0[2β] ≈

1
2

√π
β
e−2β

0F1[2, α2] ≈
e2α

2α
√
πα

Table E.1: Series expansions of the Bessel functions for 1/α and 1/β around 1/α0 = 0 and 1/β0 = 0, to leading order.

In order to do so, the first step is to expand the modified Bessel functions and the regularized
confluent hypergeometric functions around infinity and only keep the first order, since α ≫ 1
and β≫ 1. The relevant expansions are shown in Table E.1.

By then substituting the leading order expansions of Table E.1 to solution E.26 and approxi-
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Figure E.2: Strong and weak dephasing regimes for the variance. In the subfigure on the left (κc = 10mHz < M), the
exact variance solutionVy(t) is compared to the approximated functionsV<t∗(t) and V>t∗(t) (dashed green and yellow,
respectively). The transition time t∗ between these two regimes is marked with a dotted black vertical line. In the second
graph (on the right, with κc = 100MHz > M), the two different regimesV<t∗(t) (dashed green) and V>t∗(t) (dashed
yellow) are superimposed with the exact solution ofVy(t) (in solid blue). Notation ts refers to a scaled time, ts = t(M+ κc).
All plots have been generated withM = 100 kHz, η = 1, and J = 109.

mating e4β as e−2α(−2+t(M+κc)), the variance of Ĵz(t) simplifies to

Vy(t) ≈
1
2
Je−(M+κc)t/2

√
Mκcη cosh (2Jt

√
Mκcη) + κc sinh (2Jt

√
Mκcη)√

Mκcη cosh (2Jt
√
Mκcη) +Mη sinh (2Jt

√
Mκcη)

. (E.27)

Note that if 2Jt
√

Mκcη≫ 1, then, cosh (2Jt
√
Mκcη) ≈ 1

2e
2Jt
√

Mκcη and sinh (2Jt
√

Mκcη) ≈
1
2e

2Jt
√

Mκcη, such that,

Vy(t) ≈ V>t∗(t) =
1
2
J e−(M+κc)t/2

√ κc
ηM

. (E.28)

If 2Jt
√

Mκcη ≪ 1, then, cosh (2Jt
√

Mκcη) ≈ 1 and sinh (2Jt
√
Mκcη) ≈ 2Jt

√
Mκcη such

that,

Vy(t) ≈ V<t∗(t) = Je−(M+κc)t/2 (1+ 2Jtκc)
2+ 4JtMη

. (E.29)

Moreover, note that since 2Jt
√
Mκcη≪ 1, we can then derive the condition

t≪ t∗ =
1

2J
√

Mκcη
⇒ 2Jtκc ≪

√ κc
Mη

, (E.30)
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for which E.29 holds. From it, it also follows that if κc < M, then (1+ 2Jtκc) ≈ 1 and,

Vy(t) ≈
J

2+ 4JtMη
e−(M+κc)t/2 ≈ J

2+ 4JtMη
, (E.31)

where in the last step we used the short-time condition t≪ t∗ < (M+ κc)−1.
Next, by showing that Vy(t) is a non-decreasing function at t ≈ 0 if κc ≥ ηM, we can prove

that (E.31) will hold if and only if κc < ηM for J≫ 1. Namely, that we can consider the global
decoherence κc to be insignificant for small times t≪ t∗ only when κc < ηM. In order to do so,
we take the derivative with respect to time of the function E.29 and then compute the limit for
time approaching zero:

lim
t→0

d
dt

[V<t∗(t)] = −
1
4
J(M+ κc − 4Jκc + 4JMη). (E.32)

By then setting the solution above equal to zero, we find the value of κc for which the derivative
changes signs,

κc =
M+ 4JMη

4J− 1
≈Mη+

M(η+ 1)
4J

+
M(η+ 1)

16J 2
+O

[
1
J

]3
, (E.33)

which can be correctly approximated as κc = ηMwhen J≫ 1. Hence,

lim
t→0

d
dt

[V<t∗(t)] ≥ 0 if κc ≥ ηM, (E.34)

and
lim
t→0

d
dt

[V<t∗(t)] < 0 if κc < ηM. (E.35)

Thus proving that the variance of Ĵy can be approximated as (E.31) only when κc < ηM.

E.3 Derivation of the CoG dynamical model of Eq. (5.28)

The set of stochastic differential equations (5.28) can be derived by carefully applying the rules
of Itô calculus, e.g., by noting that the differential of any two functions of time and a stochastic
process, f and g, reads d(fg) = fdg + gdf + dfdg. In our case, these functions are the means,
variances and covariances of some quantum observable Ô , whose dynamical evolution can then
be computed by substituting the conditional dynamics (5.13) of dρ

(c)
into d⟨Ô ⟩ = Tr

{
Ô dρ

(c)

}
.
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Inparticular, considering Ĵα, V(c)
α andC(c)

αβ withα, β = x, y, z appearing inEq. (5.28),which satisfy

d
〈
Ĵα
〉
(c)

= Tr[ Ĵα dρ(c)], (E.36a)

dV(c)
α = d

〈
Ĵ 2α
〉
(c)
− d

(〈
Ĵα
〉2
(c)

)
(E.36b)

= d
〈
Ĵ 2α
〉
(c)
− 2
〈
Ĵα
〉
(c)
d
(〈

Ĵα
〉
(c)

)
− d
〈
Ĵα
〉
(c)
d
〈
Ĵα
〉
(c)
,

dC(c)
αβ =

1
2
d
〈
Ĵα Ĵβ
〉
(c)
+

1
2
d
〈
Ĵβ Ĵα
〉
(c)
− d

(〈
Ĵα
〉
(c)

〈
Ĵβ
〉
(c)

)
=

1
2
d
〈
Ĵα Ĵβ
〉
(c)
+

1
2
d
〈
Ĵβ Ĵα
〉
(c)
−
〈
Ĵβ
〉
(c)
d
〈
Ĵα
〉
(c)

−
〈
Ĵα
〉
(c)
d
〈
Ĵβ
〉
(c)
− d
〈
Ĵα
〉
(c)
d
〈
Ĵβ
〉
(c)
, (E.36c)

with the initial conditions set to themean, variances andco-variances of aCSS along x (see Sec. 1.4.4):

〈
ĴJJ(0)

〉
(c)

=
(〈

Ĵx(0)
〉
(c)
,
〈
Ĵy(0)

〉
(c)
,
〈
Ĵz(0)

〉
(c)

)T
=

(
N
2
, 0, 0

)T
, (E.37)

〈
CCC(c)

J (0)
〉
(c)

=

V(c)
x (0) C(c)

xy (0) C(c)
xz (0)

C(c)∗
xy (0) V(c)

y (0) C(c)∗
zy (0)

C(c)∗
xz (0) C(c)

zy (0) V(c)
z (0)

 =

0 0 0
0 N/4 0
0 0 N/4

 . (E.38)
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By carefully working to the relevant orderO(dt3/2):

d
〈
Ĵx
〉
(c)

= −(ω(t)+u(t))
〈
Ĵy
〉
(c)
dt− 1

2
(κc+2κℓ+M)

〈
Ĵx
〉
(c)
dt+2

√
ηMC(c)

xy dW (E.39a)

d
〈
Ĵy
〉
(c)

= (ω(t)+u(t))
〈
Ĵx
〉
(c)
dt− 1

2
(κc+2κℓ)

〈
Ĵy
〉
(c)
dt+2

√
ηMV(c)

y dW (E.39b)

d
〈
Ĵz
〉
(c)

= − 1
2
M
〈
Ĵz
〉
(c)
dt+2

√
ηMC(c)

zy dW (E.39c)

dV(c)
x = −2(ω(t)+u(t))C(c)

xy dt+κc
(
V(c)

y +
〈
Ĵy
〉2
(c)
−V(c)

x

)
dt+κℓ

(
N
2
−2V(c)

x

)
dt

+M
(
V(c)

z −V(c)
x −4ηC(c)

xy
2
)
dt+2

√
ηM
(
1
2
cov(c)( Ĵ 2x Ĵy)+

1
2
cov(c)( Ĵy Ĵ 2x )

)
dW (E.39d)

dV(c)
y = 2(ω(t)+u(t))C(c)

xy dt+κc
(
V(c)

x +
〈
Ĵx
〉2
(c)
−V(c)

y

)
dt+κℓ

(
N
2
−2V(c)

y

)
dt

−4ηMV(c)
y

2dt+ 2
√

ηM cov(c)( Ĵ 3y ) dW (E.39e)

dV(c)
z = M

(
V(c)

x +
〈
Ĵx
〉2
(c)
−V(c)

z

)
dt

+ 2
√

ηM
(
1
2
cov(c)( Ĵ 2z Ĵy) +

1
2
cov(c)( Ĵy Ĵ 2z )

)
dW (E.39f)

dC(c)
xy = (ω(t)+u(t))

(
V(c)

x −V(c)
y

)
dt−κc

(
2C(c)

xy +
〈
Ĵx
〉
(c)

〈
Ĵy
〉
(c)

)
dt

−2κℓC(c)
xy dt−

1
2
MC(c)

xy

(
1+ 8ηV(c)

y

)
dt
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√

ηM
(
1
4
cov(c)( Ĵx Ĵ 2y ) +

1
2
cov(c)( Ĵy Ĵx Ĵy) +

1
4
cov(c)( Ĵ 2y Ĵx)

)
dW (E.39g)

dC(c)
zy = (ω(t)+u(t))C(c)

xz dt−
1
2

(
κc + 2κℓ +M

(
1+ 8ηV(c)

y

))
C(c)

zy dt

+ 2
√

ηM
(
1
4
cov(c)( Ĵz Ĵ 2y ) +

1
2
cov(c)( Ĵy Ĵz Ĵy) +

1
4
cov(c)( Ĵ 2y Ĵz)

)
dW (E.39h)

dC(c)
xz = −(ω(t)+u(t))C(c)

zy dt−
1
2
(κc + 2κℓ + 4M)C(c)

xz dt−M
〈
Ĵz
〉
(c)

〈
Ĵx
〉
(c)
dt

− 4ηMC(c)
xyC

(c)
zy dt+ 2

√
ηM
(
1
4
cov(c)( Ĵx Ĵz Ĵy) +

1
4
cov(c)( Ĵy Ĵx Ĵz)

+
1
4
cov(c)( Ĵz Ĵx Ĵy) +

1
4
cov(c)( Ĵy Ĵz Ĵx)

)
dW (E.39i)

dω = −χω(t)dt+√qωdWω (E.39j)
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where for any three operators Â , B̂ and Ĉ , we define

cov(c)(ÂB̂Ĉ) :=
〈
ÂB̂Ĉ

〉
(c)
−
〈
Â
〉
(c)

〈
B̂Ĉ
〉
(c)
−
〈
B̂
〉
(c)

〈
ÂĈ
〉
(c)

−
〈
Ĉ
〉
(c)

〈
ÂB̂
〉
(c)
+ 2
〈
Â
〉
(c)

〈
B̂
〉
(c)

〈
Ĉ
〉
(c)
. (E.40)

We simplify the full dynamical model given in Eq. (E.39) by applying a cut-off approximation
that discards the third-order moments and higher. This step is crucial for two reasons: it allows
us to construct an EKF and provides a self-contained set of stochastic differential equations de-
scribing our sensor. Importantly, the impact of neglecting third-order moments on the CoG
model is limited, as these moments appear only within the stochastic terms of the second-order
moment dynamics.

Additionally, we omit the differential equations for
〈
Ĵz
〉
(c)
, C(c)

xz , and C(c)
zy in the main text be-

cause these quantities remain consistently zero throughout the time evolution. This is due to
their initial values being zero (CSS-state conditions:

〈
Ĵz(0)

〉
(c)

= C(c)
xz (0) = C(c)

zy (0) = 0) and
their exclusively decaying dynamics. By disregarding these irrelevant terms, we arrive at the dy-
namical equations presented in the main text as Eq. (5.28).
Finally, in order to solve the system of SDE numerically, is also convenient to normalize the

state and hence the system of SDEs w.r.t.
√
N. Namely,

X̂ := Ĵx/
√
N Ŷ := Ĵy/

√
N, (E.41)

with new variances and covariances being:

〈
Δ2X̂

〉
(c)

= Vx/N
〈
Δ2Ŷ

〉
(c)

= Vy/N
〈
Δ2Ẑ

〉
(c)

= Vz/N
〈
Δ(X̂Y )

〉
(c)

= Cxy/N. (E.42)
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Then, the system of SDE simulating the system in the co-moving approximation is:

d
〈
X̂
〉
(c)
=−(ω(t)+u(t))

〈
Ŷ
〉
(c)
dt− 1

2
(κc+2κℓ+M)

〈
X̂
〉
(c)
dt

+2
√
ηMN

〈
Δ(X̂Y )

〉
(c)
dW (E.43)

d
〈
Ŷ
〉
(c)
=(ω(t)+u(t))

〈
X̂
〉
(c)
dt− 1

2
(κc+2κℓ)

〈
Ŷ
〉
(c)
dt+2

√
ηMN

〈
Δ2Ŷ

〉
(c)
dW (E.44)

d
〈
Δ2X̂

〉
(c)
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〈
Δ(X̂Y )

〉
(c)
dt+κc

(〈
Δ2Ŷ

〉
(c)
+
〈
Ŷ
〉2
(c)
−
〈
Δ2X̂

〉
(c)

)
dt

+κℓ
(
1
2
−2
〈
Δ2X̂

〉
(c)

)
dt+M

(〈
Δ2Ẑ

〉
(c)
−
〈
Δ2X̂

〉
(c)
−4ηN

〈
Δ(X̂Y )

〉
(c)

2 )
dt (E.45)

d
〈
Δ2Ŷ
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〈
Δ(X̂Y )

〉
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dt+κc

(〈
Δ2X̂

〉
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+
〈
X̂
〉2
(c)
−
〈
Δ2Ŷ

〉
(c)

)
dt

+κℓ
(
1
2
−2
〈
Δ2Ŷ

〉
(c)

)
dt−4ηMN

〈
Δ2Ŷ

〉
(c)

2 dt (E.46)

d
〈
Δ2Ẑ

〉
(c)
=M

(〈
Δ2X̂

〉
(c)
+
〈
X̂
〉2
(c)
−
〈
Δ2Ẑ

〉
(c)

)
dt (E.47)

d
〈
Δ(X̂Y )

〉
(c)
=(ω(t)+u(t))

(〈
Δ2X̂

〉
(c)
−
〈
Δ2Ŷ

〉
(c)

)
dt−κc

(
2
〈
Δ(X̂Y )

〉
(c)
+
〈
X̂
〉
(c)

〈
Ŷ
〉
(c)

)
dt

−2κℓ
〈
Δ(X̂Y )

〉
(c)
dt− 1

2
M
〈
Δ(X̂Y )

〉
(c)

(
1+ 8ηN

〈
Δ2Ŷ

〉
(c)

)
dt (E.48)

dω=−χω(t) dt+√qω dWω, (E.49)

with the initial values for the means:
(〈

X̂(0)
〉
(c)
,
〈
Ŷ(0)

〉
(c)

)
= (
√
N/2, 0), the variances and

co-variances:
(〈
Δ2X̂(0)

〉
(c)
,
〈
Δ2Ŷ(0)

〉
(c)
,
〈
Δ2Ẑ(0)

〉
(c)
,
〈
Δ(X̂Y )(0)

〉
(c)

)
= (0, 1/4, 1/4, 0) and the

Larmor frequency ω(0) = μ.
〈 ˜Δ(X̂ Ŷ)

〉
(c)

E.4 Verification of the CoG approximation

In this section, we simulate the exact dynamics of the densitymatrix for low values ofN using the
SME of Eq. (5.13) in order to verify that the approximate evolution of the lowest moments given
by Eq. (5.28) correctly captures the system behavior for moderate dephasing and measurement-
strength parameters. We observe that the agreement between the full model and the approximate
equations improves with increasing atomic number at short timescales, and because the experi-
mental regimes involve largeN ≈ 105−1013 [13, 14, 15, 16, 17, 63],we subsequently useEq. (5.28)
to simulate the dynamics of the atomic sensor with sufficient accuracy.

Fig. 5.3 shows the architecture of the feedback loop employed in our atomic magnetometry
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Figure E.3: Performance of the CoG approximation: Larmor frequency estimation and moment error analysis. (Left column)
Evolution of the relative error in estimating the Larmor frequency when comparing the exact model (SME, Eq. (5.13)) with
the approximate CoG model of Eq. (5.28). Each graph shows the relative error (in %) for three different noise scenarios
(from top to bottom): dephasing induced solely by continuous measurement; combined measurement‐induced and collec‐
tive dephasing; and combined measurement‐induced, collective, and local dephasing. For the first two cases, system sizes
N = 50, 100, 150 (blue, red, and green, respectively) are considered, while for the case including local decoherence,
N = 10, 20, 30 are used. In all cases, the error remains below 1% and decreases with increasingN. (Center and right
columns) Comparative error analysis of the moments

〈
Ĵx(t)

〉
(c)
and V(c)

y (t) between the exact SME solution and the CoG
model. Here, the relative error (in %) is defined in Eq. (E.50). The analysis is performed for the same three decoherence sce‐
narios: (top row) continuous measurement only (M = 0.05, κc = κℓ = 0); (middle row) measurement‐induced and
collective decoherence (M = 0.05, κc = 0.005, κℓ = 0); and (bottom row) measurement‐induced and local decoherence
(M = 0.05, κc = 0, κℓ = 0.05). In each plot, increasing system sizes (eitherN = 50, 100, 150 orN = 10, 20, 30
for the local case) demonstrate that the CoG approximation becomes more accurate at short times asN increases. All error
values are obtained by averaging over ν = 1000 measurement trajectories. Figure adapted from Ref. [65].

scheme. In each round, the measurement data yyy(t) is generated by simulating the “Atomic en-
semble” either exactly – evolving its full conditional density matrix ρ

(c)
via the SME (5.13) — or

approximately, through the dynamics of its relevant first and second moments,
〈
Ĵx
〉
(c)
,
〈
Ĵy
〉
(c)

and V(c)
y , according to the CoGmodel (5.28). The measurement record generated by the system

is then processed by the “Estimator” (i.e., the EKF), which provides in real time not only an esti-
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mate of the Larmor frequency, ω̃(t), but also estimates of the dynamical parameters, x̃xx(t). These
estimates are used by the “Controller” (i.e., the LQR) to adjust the system dynamics on the fly by
modifying u(t).

To assess the accuracy of the CoG approximation of Eq. (5.28) when simulating the system
dynamics, we benchmark it against the exact SME solution formoderate atomic numbers, where
the exact simulation is computationally feasible. This comparison is carried out at two levels: (1)
we focus solely on the estimation task by computing the average error in the real-time estimate
ω̃(t) (large box in Fig. 5.3), and (2) we adopt a stricter criterion by requiring that the relevant
moments,

〈
Ĵx
〉
(c)
,
〈
Ĵy
〉
(c)
, andV(c)

y , are accurately reproducedwhen compared to their exact values
obtained from evolving ρ

(c)
(t)with the SME(smaller box in Fig. 5.3).

In the left column of Fig. E.3, we present in percentage the average relative error between the
real-time estimate ω̃(t) of ω obtained using the exact model (full SME solution) and the approx-
imate model (CoG), i.e.

E[δω̃] (%) = 100× E
[∣∣∣∣ ω̃SME − ω̃CoG

ω̃SME

∣∣∣∣]
= 100×

∫
dω p(ω)

∫
Dyyy≤t p(yyy≤t|ω)

∣∣∣∣ ω̃SME − ω̃CoG

ω̃SME

∣∣∣∣ (E.50)

where the expectation is taken over the realizations of the experiment. In the left column of
Fig. E.3, three plots corresponding to a different noise scenario are showcased. From top to bot-
tom: only measurement decoherence (κc = κℓ = 0), combined measurement and collective
decoherence (M = 0.05, κc = 0.005 and κℓ = 0), and combined measurement and local
decoherence (M = κℓ = 0.05 and κc = 0.005). Each plot shows the averaged relative er-
ror for increasing system sizes — specifically, N = 50, 100, 150 for the first two scenarios, and
N = 10, 20, 30 for the local case. In each case the average relative error decreases as the system size
increases, reaching below 1% error, which indicates that for large ensembles (N ∼ 105−1013) the
CoGapproximation is sufficiently accurate for generating themeasurement data used to estimate
the Larmor frequency.

We further assess the CoG model by comparing the evolution of key dynamical moments
(
〈
Ĵx
〉
(c)
,
〈
Ĵy
〉
(c)
, and V(c)

y ) to their exact values computed from the full density matrix ρ
(c)
(via the

SME, Eq. (1)). In this comparison, the error is quantified as

E[δx] = 100× E[|xSME − xCoG|]
E[|xSME|]

for x ∈ {
〈
Ĵx
〉
(c)
,
〈
Ĵy
〉
(c)
,V(c)

y }, (E.51)
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where x stands for any of themoments. As illustrated in the center and right columns of Fig. E.3,
for short times the error in simulating these moments decreases with increasing system size, and
remains below approximately 10% for times t . 1/(M + κc + 2κℓ). This supports the validity
of using the CoG approximation to predict quantities such as the spin-squeezing parameter in
large atomic ensembles.

E.5 Steady-state solution of the Kalman Filter for χ ̸= 0 in the LG regime

Letus consider the covariance differential equation introduced in (5.36), withmatricesFFF(t),GGG(t),
andHHH(t) defined in (5.23) and noise covariance matrices beingQQQ = Diagonal[1, qω],RRR = η, and
SSS = (

√η 0)T.
Next, for simplicity in the upcoming analysis, we will rename the elements of the covariance

matrix ΣΣΣ as Δ2( ˜̂Jy)t ≡ x(t), Δ( ˜̂Jy ω̃)t = Δ(ω̃ ˜̂Jy)t ≡ y(t), and Δ2ω̃t ≡ z(t). Then, the system of
equations in the steady state (dΣΣΣt = 0) can be written as,

−8MηV>t∗(t) x(t)− 4Mηx2(t)− 2Je−(M+κc)t/2 y(t) = 0, (E.52)

−χ y(t)− 4MηV>t∗(t) y(t)− 4Mηx(t)y(t)− Je−(M+κc)t/2z(t) = 0, (E.53)

qω − 4Mηy2(t)− 2χz(t) = 0, (E.54)

where the variance
〈
Δ2 Ĵy(t)

〉
(c)
in the steady state (t ≫ t∗) is

〈
Δ2 Ĵy(t)

〉
(c)

= V>t∗(t) (5.24b). It
follows that the solution for z(t) is

z(t) = −κc χ −
χ3

4J2Mη
e(M+κc)t − χ

J
√
Mη
√

qω + κc χ2 e(M+κc)t/2

+
1

2JMη
√
qω + κc χ2

(√
Mη+

χ2e(M+κc)t/2

2J
√

qω + κc χ2

)
×

×

√
χ2e(M+κc)t + 4J

(
κc JMη+ e(M+κc)t/2

√
Mη(qω + κc χ2)

)
, (E.55)

which, when expanded in powers of 1/J around zero and truncated at first order, can be approx-
imated as

Δ2ω̃SS ≡ z(t) ≈ −κc χ +
√

κcqω + κ2c χ2. (E.56)
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Moreover, when χ = 0, the term (E.55) becomes,

Δ2ω̃SS(t)|χ=0 =

(
qω κc +

1
J

√
q3ω
Mη

e(M+κc)t/2

)1/2

, (E.57)

matching the solution introduced in (5.46).

E.6 Derivation of the LQR control law

In this sectionwe present a detailed derivation, along the lines ofRef. [55], of the optimal control
law used in our LQR design. The final control law is given by

u(t) = −ω̃(t)− λ
〈 ˜̂Jy(t)〉(c), (E.58)

where the constant parameter λ =

√
pJ
ν
is determined by the weights in the quadratic cost func-

tion. Our starting point is the linearized system dynamics in the LG regime. In this regime the
state of interest is the reduced vector

zzz(t) =

(〈
Ĵy(t)

〉
(c)

ω(t)

)
, (E.59)

which evolves according to

żzz(t) = AAAzzz(t) + BBB u(t) +GGG(t)qqq(t), (E.60)

with

AAA =

(
0 J
0 −χ

)
, BBB =

(
J
0

)
. (E.61)

The performance of the controller is measured by the quadratic cost function

I(u) =
∫ ∞

0

[
zzzT(t)PPPzzz(t) + ν u2(t)

]
dt, (E.62)

where

PPP =

(
pJ 0
0 pω

)
≥ 0, ν > 0.
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For such a linear systemwith cost (E.62), the optimal state feedback control law takes the form

u(t) = −KKKC z̃zz(t), (E.63)

with the gain matrix computed as

KKKC = ν−1BBBTΛΛΛ, (E.64)

where ΛΛΛ is the unique positive semidefinite solution of the algebraic Riccati equation (ARE)

AAATΛΛΛ +ΛΛΛAAA+ PPP−ΛΛΛBBB ν−1BBBTΛΛΛ = 0. (E.65)

We now parameterize ΛΛΛ as a symmetric 2× 2 matrix:

ΛΛΛ =

(
Λ11 Λ12

Λ12 Λ22

)
(E.66)

in order to solve theAREEq. (E.65) component by component. Focusing first on the (1, 1) entry,
we obtain

0+ pJ −
J 2

ν
Λ2

11 = 0 =⇒ Λ11 =

√pJ ν
J

. (E.67)

Next, the (1, 2) entry of Eq. (E.65) yields

JΛ11 − χΛ12 −
J 2

ν
Λ11 Λ12 = 0 =⇒ Λ12 =

JΛ11

χ +
J 2

ν
Λ11

=

√pJ ν

χ + J
√

pJ
ν

, (E.68)

where in the last step we substituted the expression from Eq. (E.67) into Eq. (E.68). The (2, 2)
entry of Eq. (E.65) is

2
(
JΛ12 − χΛ22

)
+ pω −

J 2

ν
Λ2

12 = 0, (E.69)
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which can be rearranged to solve for Λ22:

Λ22 =
1
2χ

(
2JΛ12 + pω −

J 2

ν
Λ2

12

)
, (E.70)

which fully determines the explicit formofΛ22, even though it is not required for the final control
law. Having determined the components of ΛΛΛ in the steady state, we now compute the gain
matrixKKKC from Eq. (E.64). Given the form ofBBB of Eq. (E.61), we have

KKKC =
1
ν
BBBTΛΛΛ =

J
ν

(
Λ11 Λ12

)
. (E.71)

Thus, the state feedback control law (E.63) can be written as

u(t) = −KKKC z̃zz(t)

= − JΛ11

ν
〈 ˜̂Jy(t)〉(c) − JΛ12

ν
ω̃(t). (E.72)

It is straightforward to verify that using Eq. (E.67) and Eq. (E.68) we obtain

JΛ11

ν
=

J
ν
·
√pJ ν
J

=

√
pJ
ν
= λ, (E.73)

JΛ12

ν
=

1

1+
χ
J

√ ν
pJ

=
1

1+
χ
Jλ

≈ 1, (E.74)

where the second term has been approximated to 1 since under typical experimental conditions,
χ is small compared to J. Thus, the control law Eq. (E.72) reduces to the desired form:

u(t) = −ω̃(t)− λ
〈 ˜̂Jy(t)〉(c). (E.75)

E.7 Experimentally realistic parameters

Sec. 5.4.2.2 and Sec. 5.4.2.3 analyze the estimation of a fluctuating and time-varying magnetic
field, respectively, in experimentally realistic conditions, using parameters inspired by Ref. [63].
Most parameters are straightforward to define: we take the atomic ensemble size as N = 1013

and set the coherence time to T2 = 10ms, which implies a local dephasing rate of κℓ = 1/T2 =

100Hz. We further consider frequencies on the order of kHz, specifically ω0 = 104rad s−1. The
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Figure E.4: Tracking a fluctuating magnetic field with a strong continuous measurement. The top plot illustrates how the
EKF estimate (solid, red) closely follows the true field OUP dynamics (solid, blue), staying well within the error bounds

of±2
√

E
[
Δ2ω̃(t)

]
, which are so small compared to the fluctuating field that they are nearly imperceptible. The mid‐

dle plot shows the conditional spin squeezing (solid, blue) induced by the strong continuous measurement of strength
M = 1mHz ≫ κc = 1 nHz and the LQR feedback, along with its real‐time estimation by the EKF (dashed red). In
the bottom plot, the estimation error of ω(t) (solid, green) reaches a sensitivity of∼ 0.066 rad s−1 that matches the square‐
root of the EKF covariance (dashed, yellow). While the stronger measurement significantly enhances precision, the quantum
limit dictated by dephasing (solid, black) at roughly 0.056 rad s−1 is not perfectly saturated. A further increase inM could
bring the error closer to this optimal limit [65]. The results in the bottom two plots are obtained by averaging over 1000
stochastic field‐atom trajectories.

one parameter that is trickier to determine is the measurement strength parameter M. To es-
tablishM, we compare the equation for the photocurrent of Eq. (5.14) with Equation 18 from
Ref. [63]. Namely, since theWiener differential in Eq. (5.14) has a variance of dt, then Equation

18 fromRef. [63] should be normalized by
√
ηq2eṄ . Expressing it in our notation, the measure-

ment equation of Ref. [63] can be then rewritten as:

I(t)dt = η
√

g2Ṅ
〈
Ĵy(t)

〉
(c)
dt+√η dW, (E.76)

where E
[
dW2] = dt, and we write Ĵy instead of Ĵz to account for the different experimental

geometry. By directly comparing this to Eq. (5.14), we identify the measurement strength pa-
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rameter as:

M =
g2Ṅ
4

. (E.77)

Here,Ṅ represents the photon flux, given by:

Ṅ =
P

2πℏ ν
(E.78)

where P is the probe power, varying between 0.5mW and 2mW, and ν is the frequency of the
probe light, detuned by Δν = νD1Rb − ν from the Rb D1 transition at νD1Rb = c/λD1Rb of
794.8 nm. The coupling constant g in Eq. (E.77) is defined in Ref. [63] as:

g ≈ c refosc
Aeff

1
Δν

(E.79)

where c is the speed of light, re = 2.82× 10−13 cm is the classical electron radius, fosc = 0.34 is
the oscillator strength for the RbD1 transition, andAeff = 0.0503 cm2 is the effective beam area.
As a result, M is expected to lie within the range of 1× 10−10Hz and 1× 10−8 Hz, depending
on the probe power P and optical detuning Δν, which can vary from Δν ≈ 24GHz to 64GHz
when off-resonance.

Physically, the measurement strengthM characterizes the balance between the light-atom in-
teraction to the photon shot-noise in the detection process of Eq. (E.76). However, quantum
backaction from continuousmeasurement unfolds on a timescale dictated byM′ = MN, rather
thanM alone. This arises because in thequantummodel ofEq. (5.13), the varianceof the relevant
spin operators decays with an effective rate 1/M′. This behavior has been rigorously established
in both decoherence-free cases [54] and scenarios with collective noise [69, 65], and is further
corroborated here (see Fig. 5.10), as well as experimentally [63].
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E.8 Exact forms of gradient matrices FFF(t),GGG(t) andHHH(t) for an OUP

x̃x x
=
( x̃ 1

x̃ 2
x̃ 3

x̃ 4
x̃ 5

x̃ 6
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E.9 Exact forms of gradient matricesFFF(t),GGG(t) andHHH(t) for an VdP oscillator
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